
www.it-ebooks.info

http://www.it-ebooks.info/

Python Geospatial
Development
Second Edition

Learn to build sophisticated mapping applications from
scratch using Python tools for geospatial development

Erik Westra

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Python Geospatial Development
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2012
Second Edition: May 2013

Production Reference: 1170513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-152-3

www.packtpub.com

Cover Image by Karl Moore (karl@karlmoore.co.uk)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Erik Westra

Reviewers
Will Cadell

Richard Marsden

Silas Toms

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Susmita Panda

Technical Editors
Sharvari Baet

Meenakshi Gupta

Chirag Jani

Project Coordinator
Arshad Sopariwala

Proofreaders
Stephen Silk

Katherine Tarr

Indexers
Hemangini Bari

Rekha Nair

Tejal Daruwale

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Erik Westra has been a professional software developer for over 25 years, and
has worked almost exclusively in Python for the past decade. Erik's early interest in
graphical user-interface design led to the development of one of the most advanced
urgent courier dispatch systems used by messenger and courier companies worldwide.
In recent years, Erik has been involved in the design and implementation of systems
matching seekers and providers of goods and services across a range of geographical
areas. This work has included the creation of real-time geocoders and map-based
views of constantly changing data. Erik is based in New Zealand, and works for
companies worldwide.

I would like to thank Ruth, the love of my life, for all of her support
and encouragement.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Richard Marsden has over 15 years of professional software development
experience. After starting in the field of geophysics and oil exploration, he has spent
the last ten years running the Winwaed Software Technology LLC, an independent
software vendor. Winwaed specialize in geospatial tools and applications including
web applications, and operate the http://www.mapping-tools.com website for
tools and add-ins for Microsoft's MapPoint product.

Richard also manages the technical aspects of the EcoMapCostaRica.com project
for the Biology Department at the University of Dallas. This includes the website,
online field maps, field surveys, and the creation and comparison of panoramic
photographs.

Richard is also active in the field of natural language processing, especially with
Python's NLTK package.

Will Cadell is a principal consultant with Sparkgeo.com. He builds next generation
web mapping applications, primarily using Google Maps, geoDjango, and PostGIS.
He has worked in academia, government, and natural resources but now mainly
consults for the start-up community in Silicon Valley. His passion has always been
the implementation of geographic technology and with over a billion smart, mobile
devices in the world it's a great time to be working on the geoweb.

Will lives in Prince George, Northern British Columbia, and when he's not writing
code or talking about geographic web technology you can find him on a ski hill with
his family.

www.it-ebooks.info

http://www.it-ebooks.info/

Silas Toms is a GIS programmer with ICF International. His main professional
interests are programming in Python and automation of large-scale environmental
impact analyses. He has lived in San Francisco for 6 years while finishing a masters
in GIS at San Francisco State University on temperature interpolation. He wishes to
thank his girlfriend and his family for being supportive of his many interests.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Geospatial Development Using Python	 7

Python	 7
Geospatial development	 9
Applications of geospatial development	 12

Analyzing geospatial data	 12
Visualizing geospatial data	 14
Creating a geospatial mash-up	 16

Recent developments	 17
Summary	 19

Chapter 2: GIS	 21
Core GIS concepts	 21

Location	 22
Distance	 25
Units	 27
Projections	 29

Cylindrical projections	 29
Conic projections	 31
Azimuthal projections	 32
The nature of map projections	 33

Coordinate systems	 34
Datums	 36
Shapes	 37

GIS data formats	 39
Working with GIS data manually	 41
Summary	 49

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 3: Python Libraries for Geospatial Development	 51
Reading and writing geospatial data	 51

GDAL/OGR	 52
GDAL design	 52
GDAL example code	 55
OGR design	 56
OGR example code	 57

Documentation	 58
Availability	 58

Dealing with projections	 59
pyproj	 59
Design	 60

Proj	 60
Geod	 61

Example code	 62
Documentation	 63
Availability	 64

Analyzing and manipulating geospatial data	 66
Shapely	 66
Design	 66
Example code	 68
Documentation	 69
Availability	 69

Visualizing geospatial data	 70
Mapnik	 71
Design	 72
Example code	 74
Documentation	 76
Availability	 76

Summary	 77
Chapter 4: Sources of Geospatial Data	 79

Sources of geospatial data in vector format	 80
OpenStreetMap	 80

Data format	 81
Obtaining and using OpenStreetMap data	 82

TIGER	 84
Data format	 86
Obtaining and using TIGER data	 87

Natural Earth	 88
Data format	 89
Obtaining and using Natural Earth vector data	 89

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Global, self-consistent, hierarchical, high-resolution
shoreline database (GSHHS)	 90

Data format	 91
Obtaining the GSHHS database	 92

World Borders Dataset	 92
Data format	 93
Obtaining World Borders Dataset	 93

Sources of geospatial data in raster format	 93
Landsat	 94

Data format	 95
Obtaining Landsat imagery	 95

Natural Earth	 98
Data format	 99
Obtaining and using Natural Earth raster data	 99

Global Land One-kilometer Base Elevation (GLOBE)	 100
Data format	 100
Obtaining and using GLOBE data	 101

National Elevation Dataset (NED)	 102
Data format	 103
Obtaining and using NED data	 103

Sources of other types of geospatial data	 105
GEOnet Names Server	 106

Data format	 107
Obtaining and using GEOnet Names Server data	 107

Geographic Names Information System (GNIS)	 107
Data format	 108
Obtaining and using GNIS Data	 109

Choosing your geospatial data source	 109
Summary	 110

Chapter 5: Working with Geospatial Data in Python	 111
Pre-requisites	 111
Reading and writing geospatial data	 112

Task – calculate the bounding box for each country in the world	 112
Task – save the country bounding boxes into a shapefile	 114
Task – analyze height data using a digital elevation map	 119

Changing datums and projections	 126
Task – change projections to combine shapefiles using geographic
and UTM coordinates	 127
Task – change datums to allow older and newer TIGER data to
be combined	 132

Representing and storing geospatial data	 135
Task – define the border between Thailand and Myanmar	 136

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Task – save geometries into a text file	 140
Performing geospatial calculations	 141

Task – identify parks in or near urban areas	 141
Converting and standardizing units of geometry and distance	 146

Task – calculate the length of the Thai-Myanmar border	 147
Task – find a point 132.7 kilometers west of Soshone, California	 154

Exercises	 156
Summary	 158

Chapter 6: GIS in the Database	 159
Spatially-enabled databases	 159
Spatial indexes	 160
Open source spatially-enabled databases	 163

MySQL	 163
PostGIS	 168

Installing and configuring PostGIS	 168
Using PostGIS	 170
Documentation	 172
Advanced PostGIS Features	 173

SpatiaLite	 174
Installing SpatiaLite	 174
Installing pysqlite	 175
Accessing SpatiaLite from Python	 175
Documentation	 176
Using SpatiaLite	 177
SpatiaLite capabilities	 178

Commercial Spatially-enabled database	 179
Oracle	 180
MS SQL Server	 180

Recommended best practices	 181
Using the database to keep track of spatial references	 181
Using the appropriate spatial reference for your data	 183

Option 1 – using a database that supports geographies	 184
Option 2 – transform features as required	 185
Option 3 – transform features from the outset	 185
When to use unprojected coordinates	 185

Avoiding on-the-fly transformations within a query	 186
Don't create geometries within a query	 187

Using spatial indexes appropriately	 188
Knowing the limits of your database's query optimizer	 189

MySQL	 189
PostGIS	 191
SpatiaLite	 193

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Working with geospatial databases using Python	 195
Prerequisites	 195
Working with MySQL	 195
Working with PostGIS	 199
Working with SpatiaLite	 201
Comparing the databases	 204

Summary	 205
Chapter 7: Working with Spatial Data	 207

About DISTAL	 207
Designing and building the database	 211
Downloading the data	 216

World Borders Dataset	 216
GSHHS	 216
GNIS	 216
GEOnet Names Server	 217

Importing the data	 217
World Borders Dataset	 218
GSHHS	 220
US place name data	 222
Worldwide places' name data	 227

Implementing the DISTAL application	 229
The shared "database" module	 232
The "select country" script	 233
The "select area" script	 236

Calculating the bounding box	 241
Calculating the map's dimensions	 242
Setting up the data source	 245
Rendering the map image	 246

The "show results" script	 248
Identifying the clicked-on point	 249
Identifying features by distance	 250
Displaying the results	 259

Application review and improvements	 262
Usability	 262
Quality	 264

Place name issues	 264
Lat/Long coordinate problems	 264

Performance	 266
Finding the problem	 266
Improving performance	 269
Calculating the tiled shorelines	 271

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Using tiled shorelines	 280
Analyzing performance improvement	 282

Summary	 282
Chapter 8: Using Python and Mapnik to Generate Maps	 285

Introducing Mapnik	 286
Creating an example map	 292
Mapnik in depth	 296

Data sources	 296
Shapefile	 297
PostGIS	 298
Gdal	 300
Ogr	 301
SQLite	 302
OSM	 303
MemoryDatasource	 304

Rules, filters, and styles	 304
Filters	 305
Scale denominators	 307
"Else" rules	 309
"Also" rules	 309

Symbolizers	 310
Drawing lines	 310
Drawing polygons	 316
Drawing labels	 319
Drawing points	 329
Drawing raster images	 333
Using colors	 335

Maps and layers	 336
Map attributes and methods	 337
Layer attributes and methods	 338

Map rendering	 339
MapGenerator revisited	 341

The MapGenerator interface	 342
Creating the main map layer	 343
Displaying points on the map	 344
Rendering the map	 345
What the map generator teaches us	 346

Map definition files	 346
Summary	 350

Chapter 9: Putting It All Together – a Complete Mapping System	 353
About ShapeEditor	 353
Designing ShapeEditor	 357

Importing a shapefile	 358

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

Selecting a feature	 360
Editing a feature	 362
Exporting a shapefile	 362

Prerequisites	 362
The structure of a Django application	 363

Models	 365
Views	 366
URL dispatching	 366
Templates	 369

Setting up the database	 371
Setting up the ShapeEditor project	 373
Defining ShapeEditor's applications	 375
Creating a shared application	 375
Defining data models	 377

Shapefile	 378
Attribute	 378
Feature	 379
AttributeValue	 379
The models.py file	 380

Playing with the admin system	 384
Summary	 391

Chapter 10: ShapeEditor – Implementing List View, Import,
and Export	 393

Implementing the "list shapefiles" view	 393
Importing shapefiles	 398

The "import shapefile" view function	 399
Extracting the uploaded shapefile	 403
Importing the shapefile's contents	 405

Open the shapefile	 405
Add the Shapefile object to the database	 406
Define the shapefile's attributes	 407
Store the shapefile's features	 408
Store the shapefile's attributes	 410

Cleaning up	 413
Exporting shapefiles	 414

Defining the OGR shapefile	 415
Saving the features into the shapefile	 416
Saving the attributes into the shapefile	 418
Compressing the shapefile	 420
Deleting temporary files	 420

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[viii]

Returning the ZIP archive to the user	 420
Summary	 422

Chapter 11: ShapeEditor – Selecting and Editing Features	 423
Selecting a feature to edit	 424

Implementing Tile Map Server	 425
Setting up the base map	 435
Tile rendering	 438

Using OpenLayers to display the map	 444
Intercepting mouse clicks	 449
Implementing the find feature view	 454

Editing features	 460
Adding features	 468
Deleting features	 471
Deleting shapefiles	 472
Using ShapeEditor	 474
Further improvements and enhancements	 474
Summary	 475

Index	 477

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
With the explosion of map-based websites and spatially-aware devices and
applications, geospatial development is becoming increasingly important. The
geospatial market is growing rapidly, and as a Python developer you can't afford to
be left behind. In today's location-aware world, all commercial Python developers can
benefit from an understanding of geospatial concepts and development techniques.

Working with geospatial data can get complicated because you are dealing with
mathematical models of the Earth's surface. Since Python is a powerful programming
language with high-level toolkits, it is well-suited to geospatial development. This
book will familiarize you with the Python tools required for geospatial development.
It introduces basic geospatial concepts with a clear, detailed walkthrough of the key
concepts such as location, distance, units, projections, datums, and geospatial data
formats. We then examine a number of Python libraries and use these with freely-
available geospatial data to accomplish a variety of tasks. The book provides an in-
depth look at the concept of storing spatial data in a database and how you can use
spatial databases as tools to solve a variety of geospatial problems.

It goes into the details of generating maps using the Mapnik map-rendering toolkit,
and helps you to build a sophisticated web-based geospatial map editing application
using GeoDjango, Mapnik, and PostGIS. By the end of the book, you will be able
to integrate spatial features into your applications and build a complete mapping
application from scratch.

This book is a hands-on tutorial. It teaches you how to access, manipulate, and display
geospatial data efficiently using a range of Python tools for GIS development.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

What this book covers
Chapter 1, Geospatial Development Using Python, gives an overview of the Python
programming language and the concepts behind geospatial development. Major
use-cases of geospatial development and recent and upcoming developments in
the field are also covered.

Chapter 2, GIS, introduces the core concepts of location, distance, units, projections,
shapes, datums, and geospatial data formats, before discussing the process of
working with geospatial data manually.

Chapter 3, Python Libraries for Geospatial Development, explores the major Python
libraries available for geospatial development, including the available features,
how the library is organized, and how to install and use it.

Chapter 4, Sources of Geospatial Data, investigates the major sources of freely-available
geospatial data, what information is available, the data format used, and how to
import the downloaded data.

Chapter 5, Working with Geospatial Data in Python, uses the libraries introduced earlier to
perform various tasks using geospatial data, including changing projections, importing
and exporting data, converting and standardizing units of geometry and distance, and
performing geospatial calculations.

Chapter 6, GIS in the Database, introduces the spatial capabilities of PostGIS, MySQL,
and SQLite. It discusses best practices for storing different types of spatial data, and
looks at how to access these databases from Python.

Chapter 7, Working with Spatial Data, works through the design and implementation
of a complete geospatial application called DISTAL, using freely-available geospatial
data stored in a spatial database. It investigates the performance of this application
and then works to optimize it using best-practice techniques.

Chapter 8, Using Python and Mapnik to Produce Maps, gives an in-depth look at the
Mapnik map-generation toolkit, and how to use it to produce a variety of maps.

Chapter 9, Putting it all Together: a Complete Mapping Application, introduces the
"ShapeEditor", a complete and sophisticated web application built using PostGIS,
Mapnik and GeoDjango. We start by designing the overall application, and then
build the ShapeEditor's database models.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Chapter 10, ShapeEditor: Implementing List View, Import, and Export, continues the
implementation of the ShapeEditor system, concentrating on displaying a list of
imported shapefiles, along with the logic for importing and exporting shapefiles
via a web browser.

Chapter 11, ShapeEditor: Selecting and Editing Features, concludes the implementation
of the ShapeEditor, adding logic to let the user select and edit features within an
imported shapefile. This involves the creation of a custom Tile Map Server, and the
use of the OpenLayers JavaScript library to display and interact with geospatial data.

Bonus chapter, Web Frameworks for Geospatial Development, examines the concepts of
web application frameworks, web services, JavaScript UI libraries, and slippy maps.
It introduces a number of standard web protocols used by geospatial applications,
and finishes with a survey of the tools and frameworks available for building
geospatial applications that run via a web interface.

You can download this chapter from: http://www.packtpub.com/sites/default/
files/downloads/1523OS_Bonuschapter.pdf

What you need for this book
To follow through this book, you will need to have Python Version 2.5 to 2.7.
You will also need to download and install the following tools and libraries;
full instructions are given in the relevant sections of this book:

•	 GDAL/OGR
•	 GEOS
•	 Shapely
•	 Proj
•	 pyproj

•	 MySQL

•	 MySQLdb
•	 SpatiaLite
•	 pysqlite

•	 PostgreSQL
•	 PostGIS
•	 pyscopg2

•	 Mapnik
•	 Django

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Who this book is for
This book is aimed at experienced Python developers who want to get up to speed
with open source geospatial tools and techniques in order to build their own geospatial
applications, or to integrate geospatial technology into their existing Python programs.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: " The pyproj Geod class allows you to
perform various geodetic calculations based on points on the Earth's surface."

A block of code is set as follows:

import mapnik

symbolizer = mapnik.PolygonSymbolizer(
 mapnik.Color("darkgreen"))

rule = mapnik.Rule()
rule.symbols.append(symbolizer)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 import mapnik

symbolizer = mapnik.PolygonSymbolizer(
 mapnik.Color("darkgreen"))
rule = mapnik.Rule()
rule.symbols.append(symbolizer)

Any command-line input or output is written as follows:

python setup.py build

sudo python.setup.py install

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Development
Using Python

This chapter provides an overview of the Python programming language and
geospatial development. Please note that this is not a tutorial on how to use the
Python language; Python is easy to learn, but the details are beyond the scope
of this book.

In this chapter, we will cover:

•	 What the Python programming language is, and how it differs
from other languages

•	 An introduction to the Python Standard Library and the Python
Package Index

•	 What the terms "geospatial data" and "geospatial development" refer to
•	 An overview of the process of accessing, manipulating, and displaying

geospatial data
•	 Some of the major applications for geospatial development
•	 Some of the recent trends in the field of geospatial development

Python
Python (http://python.org) is a modern, high level language suitable for a wide
variety of programming tasks. It is often used as a scripting language, automating
and simplifying tasks at the operating system level, but it is equally suitable for
building large and complex programs. Python has been used to write web-based
systems, desktop applications, games, scientific programming, and even utilities
and other higher-level parts of various operating systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Development Using Python

[8]

Python supports a wide range of programming idioms, from straightforward
procedural programming to object-oriented programming and functional
programming.

While Python is generally considered to be an "interpreted" language, and is
occasionally criticized for being slow compared to "compiled" languages such as
C, the use of byte-compilation and the fact that much of the heavy lifting is done
by library code means that Python's performance is often surprisingly good.

Open-source versions of the Python interpreter are freely available for all major
operating systems. Python is eminently suitable for all sorts of programming,
from quick one-off scripts to building huge and complex systems. It can even be
run in interactive (command-line) mode, allowing you to type in commands and
immediately see the results. This is ideal for doing quick calculations or figuring
out how a particular library works.

One of the first things a developer notices about Python compared with other
languages such as Java or C++ is how expressive the language is: what may take
20 or 30 lines of code in Java can often be written in half a dozen lines of code in
Python. For example, imagine that you wanted to print a sorted list of the words
that occur in a given piece of text. In Python, this is trivial:

words = set(text.split())
for word in sorted(words):
 print word

Implementing this kind of task in other languages is often surprisingly difficult.

While the Python language itself makes programming quick and easy, allowing you
to focus on the task at hand, the Python Standard Libraries make programming
even more efficient. These libraries make it easy to do things such as converting date
and time values, manipulating strings, downloading data from websites, performing
complex maths, working with e-mail messages, encoding and decoding data, XML
parsing, data encryption, file manipulation, compressing and decompressing files,
working with databases—the list goes on. What you can do with the Python Standard
Libraries is truly amazing.

As well as the built-in modules in the Python Standard Libraries, it is easy to
download and install custom modules, which can be written in either Python
or C.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

The Python Package Index (http://pypi.python.org) provides thousands of
additional modules which you can download and install. And if that isn't enough,
many other systems provide python "bindings" to allow you to access them directly
from within your programs. We will be making heavy use of Python bindings in
this book.

It should be pointed out that there are different versions of
Python available. Python 2.x is the most common version in
use today, while the Python developers have been working for
the past several years on a completely new, non-backwards-
compatible version called Python 3. Eventually, Python 3 will
replace Python 2.x, but at this stage most of the third-party
libraries (including all the GIS tools we will be using) only
work with Python 2.x. For this reason, we won't be using
Python 3 in this book.

Python is in many ways an ideal programming language. Once you are familiar
with the language itself and have used it a few times, you'll find it incredibly easy
to write programs to solve various tasks. Rather than getting buried in a morass
of type-definitions and low-level string manipulation, you can simply concentrate
on what you want to achieve. You end up almost thinking directly in Python code.
Programming in Python is straightforward, efficient, and, dare I say it, fun.

Geospatial development
The term "geospatial" refers to information that is located on the earth's surface
using coordinates. This can include, for example, the position of a cell phone tower,
the shape of a road, or the outline of a country:

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Development Using Python

[10]

Geospatial data often associates some piece of information with a particular location.
For example, the following is an interactive map from the http://www.bbc.co.uk/
website, showing the percentage of people in each country with access to the Internet
in 2008:

Geospatial development is the process of writing computer programs that can access,
manipulate, and display this type of information.

Internally, geospatial data is represented as a series of coordinates, often in the
form of latitude and longitude values. Additional attributes such as temperature,
soil type, height, or the name of a landmark are also often present. There can be
many thousands (or even millions) of data points for a single set of geospatial
data. For example, the following outline of New Zealand consists of almost
12,000 individual data points:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Because so much data is involved, it is common to store geospatial information
within a database. A large part of this book will be concerned with how to store
your geospatial information in a database, and how to access it efficiently.

Geospatial data comes in many different forms. Different Geographical Information
System (GIS) vendors have produced their own file formats over the years, and
various organizations have also defined their own standards. It is often necessary
to use a Python library to read files in the correct format when importing geospatial
data into your database.

Unfortunately, not all geospatial data points are compatible. Just like a distance
value of 2.8 can have a very different meaning depending on whether you are
using kilometers or miles, a given latitude and longitude value can represent
any number of different points on the earth's surface, depending on which
projection has been used.

A projection is a way of representing the curved surface of the earth in two
dimensions. We will look at projections in more detail in Chapter 2, GIS, but
for now just keep in mind that every piece of geospatial data has a projection
associated with it. To compare or combine two sets of geospatial data, it is
often necessary to convert the data from one projection to another.

Latitude and longitude values are sometimes referred to
as unprojected coordinates. We'll learn more about this
in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Development Using Python

[12]

In addition to the prosaic tasks of importing geospatial data from various external
file formats and translating data from one projection to another, geospatial data
can also be manipulated to solve various interesting problems. Obvious examples
include the task of calculating the distance between two points, or calculating the
length of a road, or finding all data points within a given radius of a selected point.
We will be using Python libraries to solve all of these problems, and more.

Finally, geospatial data by itself is not very interesting. A long list of coordinates
tells you almost nothing; it isn't until those numbers are used to draw a picture
that you can make sense of it. Drawing maps, placing data points onto a map,
and allowing users to interact with maps are all important aspects of geospatial
development. We will be looking at all of these in later chapters.

Applications of geospatial development
Let's take a brief look at some of the more common geospatial development tasks
you might encounter.

Analyzing geospatial data
Imagine that you have a database containing a range of geospatial data for San
Francisco. This database might include geographical features, roads, the location
of prominent buildings, and other man-made features such as bridges, airports,
and so on.

Such a database can be a valuable resource for answering various questions.
For example:

•	 What's the longest road in Sausalito?
•	 How many bridges are there in Oakland?
•	 What is the total area of the Golden Gate Park?
•	 How far is it from the Pier 39 to the Moscone Center?

Many of these types of problems can be solved using tools such as the PostGIS
spatially-enabled database. For example, to calculate the total area of the Golden
Gate Park, you might use the following SQL query:

select ST_Area(geometry) from features
 where name = "Golden Gate Park";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

To calculate the distance between two places, you first have to geocode the locations
to obtain their latitude and longitude. There are various ways to do this; one simple
approach is to use a free geocoding web service, such as this:

http://nominatim.openstreetmap.org/search?q=Pier 39, San Francisco,CA

This returns a latitude value of 37.82 and a longitude value of -122.42.

These latitude and longitude values are in decimal degrees.
If you don't know what these are, don't worry; we'll talk
about decimal degrees in Chapter 2, GIS.

Similarly, we can find the location of the Moscone Center using this query:

http://nominatim.openstreetmap.org/search?q=Moscone Center, San
Francisco,CA

This returns a latitude value of 37.80 and a longitude value of -122.44.

Now that we have the coordinates for the two desired locations, we can calculate
the distance between them using the Proj Python library:

import pyproj

lat1,long1 = (37.82,-122.42)
lat2,long2 = (37.80,-122.44)

geod = pyproj.Geod(ellps="WGS84")
angle1,angle2,distance = geod.inv(long1, lat1, long2, lat2)

print "Distance is %0.2f meters" % distance

This prints the distance between the two points:

Distance is 2833.64 meters

Don't worry about the "WGS84" reference at this stage;
we'll look at what this means in Chapter 2, GIS.

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Development Using Python

[14]

Of course, you wouldn't normally do this sort of analysis on a one-off basis like
this—it's much more common to create a Python program that will answer these
sorts of questions for any desired set of data. You might, for example, create a web
application that displays a menu of available calculations. One of the options in
this menu might be to calculate the distance between two points; when this option
is selected, the web application would prompt the user to enter the two locations,
attempt to geocode them by calling an appropriate web service (and display an error
message if a location couldn't be geocoded), then calculate the distance between the
two points using Proj, and finally display the results to the user.

Alternatively, if you have a database containing useful geospatial data, you
could let the user select the two locations from the database rather than typing
in arbitrary location names or street addresses.

However you choose to structure it, performing calculations like this will usually be
a major part of your geospatial application.

Visualizing geospatial data
Imagine that you wanted to see which areas of a city are typically covered by a taxi
during an average working day. You might place a GPS recorder into a taxi and
leave it to record the taxi's position over several days. The results would be a series
of timestamps, latitude and longitude values as follows:

2010-03-21 9:15:23 -38.16614499 176.2336626
2010-03-21 9:15:27 -38.16608632 176.2335635
2010-03-21 9:15:34 -38.16604198 176.2334771
2010-03-21 9:15:39 -38.16601507 176.2333958
...

By themselves, these raw numbers tell you almost nothing. But when you display
this data visually, the numbers start to make sense:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

You can immediately see that the taxi tends to go along the same streets again and
again. And if you draw this data as an overlay on top of a street map, you can see
exactly where the taxi has been:

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Development Using Python

[16]

(Street map courtesy of http://openstreetmap.org).

While this is a very simple example, visualization is a crucial aspect of working with
geospatial data. How data is displayed visually, how different data sets are overlaid,
and how the user can manipulate data directly in a visual format are all going to be
major topics of this book.

Creating a geospatial mash-up
The concept of a "mash-up" has become popular in recent years. Mash-ups are
applications that combine data and functionality from more than one source.
For example, a typical mash-up may combine details of houses for rent in a
given city, and plot the location of each rental on a map, as follows:

This example comes from http://housingmaps.com.

The Google Maps API has been immensely popular in creating these types
of mash-ups. However, Google Maps has some serious licensing and other
limitations—as does Google's main competitor, Bing. Fortunately, these are
not the only options; tools such as Mapnik, Openlayers, and MapServer, to
name a few, also allow you to create mash-ups that overlay your own data
onto a map.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Most of these mash-ups run as web applications across the Internet, running on a
server that can be accessed by anyone who has a web browser. Sometimes the mash-
ups are private, requiring password access, but usually they are publicly available
and can be used by anyone. Indeed, many businesses (such as the housing maps site
shown in the previous image) are based on freely-available geospatial mash-ups.

Recent developments
A decade ago, geospatial development was vastly more limited than it is today.
Professional (and hugely expensive) Geographical Information Systems were the
norm for working with and visualizing geospatial data. Open source tools, where
they were available, were obscure and hard to use. What is more, everything ran
on the desktop—the concept of working with geospatial data across the Internet
was no more than a distant dream.

In 2005, Google released two products that completely changed the face of geospatial
development. Google Maps and Google Earth made it possible for anyone with a
web browser or a desktop computer to view and work with geospatial data. Instead
of requiring expert knowledge and years of practice, even a four-year old could
instantly view and manipulate interactive maps of the world.

Google's products are not perfect: the map projections are deliberately simplified,
leading to errors and problems with displaying overlays; these products are only free
for non-commercial use; and they include almost no ability to perform geospatial
analysis. Despite these limitations, they have had a huge effect on the field of
geospatial development. People became aware of what was possible, and the use of
maps and their underlying geospatial data has become so prevalent that even cell
phones now commonly include built-in mapping tools.

The Global Positioning System (GPS) has also had a major influence on geospatial
development. Geospatial data for streets and other man-made and natural features
used to be an expensive and tightly controlled resource, often created by scanning
aerial photographs and then manually drawing an outline of a street or coastline
over the top to digitize the required features. With the advent of cheap and readily-
available portable GPS units, anyone who wishes to can now capture their own
geospatial data. Indeed, many people have made a hobby of recording, editing, and
improving the accuracy of street and topological data, which are then freely shared
across the Internet. All this means that you're not limited to recording your own
data, or purchasing data from a commercial organization; volunteered information
is now often as accurate and useful as commercially-available data, and may well be
suitable for your geospatial application.

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Development Using Python

[18]

The open source software movement has also had a major influence on geospatial
development. Instead of relying on commercial toolsets, it is now possible to build
complex geospatial applications entirely out of freely-available tools and libraries.
Because the source code for these tools is often available, developers can improve
and extend these toolkits, fixing problems and adding new features for the benefit
of everyone. Tools such as PROJ.4, PostGIS, OGR, and GDAL are all excellent
geospatial toolkits which are benefactors of the open source movement. We will
be making use of all these tools throughout this book.

As well as standalone tools and libraries, a number of geospatial Application
Programming Interfaces (APIs) have become available. Google have provided a
number of APIs, which can be used to include maps and perform limited geospatial
analysis within a website. Other services, such as the OpenStreetMap geocoder we
used earlier, allow you to perform various geospatial tasks that would be difficult to
do if you were limited to using your own data and programming resources.

As more and more geospatial data becomes available, from an increasing number of
sources, and as the number of tools and systems which can work with this data also
increases, it has become increasingly important to define standards for geospatial
data. The Open Geospatial Consortium, often abbreviated to OGC (http://www.
opengeospatial.org) is an international standards organization which aims to do
precisely this: to provide a set of standard formats and protocols for sharing and
storing geospatial data. These standards, including GML, KML, GeoRSS, WMS, WFS,
and WCS, provide a shared "language" in which geospatial data can be expressed.
Tools such as commercial and open source GIS systems, Google Earth, web-based
APIs, and specialized geospatial toolkits such as OGR are all able to work with
these standards. Indeed, an important aspect of a geospatial toolkit is the ability to
understand and translate data between these various formats.

As GPS units have become more ubiquitous, it has become possible to record your
location data as you are performing another task. Geolocation, the act of recording
your location as you are doing something, is becoming increasingly common. The
Twitter social networking service, for example, now allows you to record and
display your current location as you enter a status update. As you approach your
office, sophisticated To-do list software can now automatically hide any tasks which
can't be done at that location. Your phone can also tell you which of your friends are
nearby, and search results can be filtered to only show nearby businesses.

All of this is simply the continuation of a trend that started when GIS systems
were housed on mainframe computers and operated by specialists who spent
years learning about them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Geospatial data and applications have been "democratized" over the years, making
them available in more places, to more people. What was possible only in a large
organization can now be done by anyone using a handheld device. As technology
continues to improve, and the tools become more powerful, this trend is sure
to continue.

Summary
In this chapter, we briefly introduced the Python programming language and the
main concepts behind geospatial development. We have seen:

•	 That Python is a very high-level language eminently suited to the task of
geospatial development.

•	 That there are a number of libraries which can be downloaded to make it
easier to perform geospatial development work in Python.

•	 That the term "geospatial data" refers to information that is located on the
earth's surface using coordinates.

•	 That the term "geospatial development" refers to the process of writing
computer programs that can access, manipulate, and display geospatial data.

•	 That the process of accessing geospatial data is non-trivial, thanks to differing
file formats and data standards.

•	 What types of questions can be answered by analyzing geospatial data.
•	 How geospatial data can be used for visualization.
•	 How mash-ups can be used to combine data (often geospatial data) in useful

and interesting ways.
•	 How Google Maps, Google Earth, and the development of cheap and

portable GPS units have "democratized" geospatial development.
•	 The influence the open source software movement has had on the availability

of high quality, freely-available tools for geospatial development.
•	 How various standards organizations have defined formats and protocols for

sharing and storing geospatial data.
•	 The increasing use of geolocation to capture and work with geospatial data

in surprising and useful ways.

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Development Using Python

[20]

In the next chapter, we will look in more detail at traditional GIS, including a
number of important concepts which you need to understand in order to work
with geospatial data. Different geospatial formats will be examined, and we will
finish by using Python to perform various calculations using geospatial data.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS
The term GIS generally refers to Geographical Information Systems, which are
complex computer systems for storing, manipulating, and displaying geospatial
data. GIS can also be used to refer to the more general Geographic Information
Sciences, which is the science surrounding the use of GIS systems.

In this chapter we will look at:

•	 The central GIS concepts you will have to become familiar with: location,
distance, units, projections, datums, coordinate systems, and shapes

•	 Some of the major data formats you are likely to encounter when working
with geospatial data

•	 Some of the processes involved in working directly with geospatial data

Core GIS concepts
Working with geospatial data is complicated because you are dealing with
mathematical models of the earth's surface. In many ways it is easy to think
of the earth as a sphere on which you can place your data. That might be easy,
but it isn't accurate—the earth is more like an oblate spheroid than a perfect
sphere. This difference, as well as other mathematical complexities we won't
get into here, means that representing points, lines, and areas on the surface
of the earth is a rather complicated process.

Let's take a look at some of the key GIS concepts you will have to become
familiar with as you work with geospatial data.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[22]

Location
Locations represent points on the surface of the earth. One of the most common
ways to measure location is through the use of latitude and longitude coordinates.
For example, my current location (as measured by a GPS receiver) is 38.167446
degrees south and 176.234436 degrees east. What do these numbers mean, and
how are they useful?

Think of the earth as a hollow sphere with an axis drawn through the middle:

For any given point on the earth's surface, you can draw a line that connects that
point with the centre of the earth, as shown in the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

The point's latitude is the angle that this line makes in the north-south direction,
relative to the equator:

In the same way, the point's longitude is the angle that this line makes in the east-
west direction, relative to an arbitrary starting point (typically the location of the
Royal Observatory in Greenwich, England):

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[24]

By convention, positive latitude values are in the northern hemisphere, while negative
latitude values are in the southern hemisphere. Similarly, positive longitude values
are east of Greenwich, and negative longitude values are west of Greenwich. Thus,
latitudes and longitudes cover the entire earth as shown in the following image:

The horizontal lines, representing points of equal latitude, are called parallels,
while the vertical lines, representing points of equal longitude, are called meridians.
The meridian at zero longitude is often called the prime meridian. By definition, the
parallel at zero latitude corresponds with the earth's equator.

There are two things to remember when working with latitude and longitude values:

1.	 Western longitudes are generally negative, but you may find situations
(particularly when dealing with US-specific data) where western longitudes
are given as positive values.

2.	 The longitude values wrap around at the ±180 degrees point. That is, as you
travel east, your longitude will go 177, 178, 179, 180, -179, -178, -177, and
so on. This can make basic distance calculations rather confusing if you are
doing them yourself rather than relying on a library to do the work for you.

A latitude and longitude value refers to what is called a geodetic location. A geodetic
location identifies a precise point on the earth's surface, regardless of what might be
at that location. While much of the data we will be working with involves geodetic
locations, there are other ways of describing a location which you may encounter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

For example, a civic location is simply a street address, which is another perfectly
valid (though scientifically less precise) way of defining a location. Similarly,
jurisdictional locations include information about which governmental boundary
(such as an electoral ward, borough, or city) the location is within, as this information
is important in some contexts.

Distance
The distance between two points on the earth's surface can be thought of in different
ways. For example:

•	 Angular distance: This is the angle between two rays going out from the
centre of the earth through the two points:

Angular distances are commonly used in seismology, and you may
encounter them when working with geospatial data.

•	 Linear distance: This is what people typically mean when they talk of
distance: how far apart two points on the earth's surface are:

This is often described as an "as the crow flies" distance. We'll discuss this
in more detail shortly, though be aware that linear distances aren't quite as
simple as they might appear.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[26]

•	 Traveling distance: Linear ("as the crow flies") distances are all very well, but
very few people can fly like crows. Another useful way of measuring distance
is to measure how far you would actually have to travel to get from one point
to another, typically following a road or other obvious route:

Most of the time, you will be dealing with linear distances. If the earth was flat,
linear distances would be trivial to calculate—you simply measure the length of
a line drawn between the two points. Of course, the earth is not flat, which means
that actual distance calculations are rather more complicated:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

Because we are working with distances between points on the earth's surface, rather
than points on a flat surface, we are actually using what is called the great circle
distance. The great circle distance is the length of a semicircle between two points
on the surface of the earth, where the semicircle is centered around the middle of
the earth:

It is relatively straightforward to calculate the great circle distance between any two
points if you assume that the earth is spherical; the Haversine formula is often used
for this. More complicated techniques which more accurately represent the shape of
the earth are available, though in many cases the Haversine formula is sufficient.

We will learn more about the Haversine formula later in this chapter.

Units
In September 1999, the Mars Climate Orbiter reached the outer edges of the Martian
atmosphere, after having traveled through space for 286 days and costing a total of
$327 million to create. As it approached its final orbit, a miscalculation caused it to
fly too low, and the Orbiter was destroyed. The reason? The spacecraft's thrusters
calculated force using imperial units, while the spacecraft's computer worked with
metric units. The result was a disaster for NASA, and a pointed reminder of just how
important it is to understand which units your data is in.

Geospatial data can come in a variety of different units. Distances can be measured
in metric and imperial, of course, but there are actually a lot of different ways in
which a given distance can be measured, including:

•	 Millimeters
•	 Centimeters

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[28]

•	 Inches
•	 International feet
•	 U.S. Survey feet
•	 Meters
•	 Yards
•	 Kilometers
•	 International miles
•	 U.S. survey (statute) miles
•	 Nautical miles

Whenever you are working with distance data, it is important that you know which
units those distances are in. You will also often find it necessary to convert data from
one unit of measurement to another.

Angular measurements can also be in different units: degrees or radians. Once again,
you will often have to convert from one to the other.

While these are not strictly speaking different units, you will often find yourself
dealing with different ways of representing longitude and latitude values.
Traditionally, longitude and latitude values have been written using degrees,
minutes, and seconds notation, as follows:

176° 14' 4''

Another possible way of writing these numbers is to use degrees and decimal
minutes notation:

176° 14.066'

Finally, there is the decimal degrees notation:

176.234436°

Decimal degrees are quite common now, mainly because these are simply floating-
point numbers you can put directly into your programs, but you may well need to
convert longitude and latitude values from other formats before you can use them.

Another possible issue with longitude and latitude values is that the quadrant (east,
west, north, south) can sometimes be given as a separate value rather than using
positive or negative values. For example:

176.234436° E

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Fortunately, all these conversions are relatively straightforward. But it is important
to know which units, and which format your data is in—your software may not
crash a spacecraft, but it will produce some very strange and incomprehensible
results if you aren't careful.

Projections
Creating a two-dimensional map from the three-dimensional shape of the earth
is a process known as projection. A projection is a mathematical transformation
that "unwraps" the three-dimensional shape of the earth and places it onto a two-
dimensional plane.

Hundreds of different projections have been developed, but none of them are perfect.
Indeed, it is mathematically impossible to represent the three-dimensional earth's
surface on a two-dimensional plane without introducing some sort of distortion; the
trick is to choose a projection where the distortion doesn't matter for your particular
use. For example, some projections represent certain areas of the earth's surface
accurately, while adding major distortion to other parts of the earth; these projections
are useful for maps in the accurate portion of the earth, but not elsewhere. Other
projections distort the shape of a country while maintaining its area, while yet other
projections do the opposite.

There are three main groups of projections: cylindrical, conical, and azimuthal. Let's
look at each of these briefly.

Cylindrical projections
An easy way to understand cylindrical projections is to imagine that the earth is like
a spherical Chinese lantern, with a candle in the middle:

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[30]

If you placed this lantern-earth inside a paper cylinder, the candle would "project"
the surface of the earth onto the inside of the cylinder:

You can then "unwrap" this cylinder to obtain a two-dimensional image of the earth:

Of course, this is a simplification—in reality, map projections don't actually use
light sources to project the earth's surface onto a plane, but instead use sophisticated
mathematical transformations to achieve the same effect.

Some of the main types of cylindrical projections include the Mercator Projection,
the Equal-Area Cylindrical Projection, and the Universal Transverse Mercator Projection.
The following map, taken from Wikipedia, is an example of a Mercator projection:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Conic projections
A conic projection is obtained by projecting the earth's surface onto a cone:

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[32]

The cone is then "unwrapped" to produce the final map. Some of the more
common types of conic projections include the Albers Equal-Area Projection, the
Lambert Conformal Conic Projection, and the Equidistant Projection. The following is
an example of a Lambert Conformal Conic Projection, again taken from Wikipedia:

Polar-aligned conic projections are particularly useful when displaying areas that
are wide but not very high, such as a map of Russia.

Azimuthal projections
An azimuthal projection involves projecting the earth's surface directly onto a
flat surface:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Azimuthal projections are centered around a single point, and don't generally show
the entire earth's surface. They do, however, emphasize the spherical nature of the
earth. In many ways, azimuthal projections depict the earth as it would be seen
from space.

Some of the main types of azimuthal projections include the Gnomonic Projection,
the Lambert Equal-Area Azimuthal Projection, and the Orthographic Projection. The
following example, taken from Wikipedia, shows a Gnomonic projection based
around the north pole:

The nature of map projections
As mentioned earlier, there is no such thing as a perfect projection—every projection
distorts the earth's surface in some way. Indeed, the mathematician Carl Gausse
proved that it is mathematically impossible to project a three-dimensional shape
such as a sphere onto a flat plane without introducing some sort of distortion. This
is why there are so many different types of projections: some projections are more
suited to a given purpose, but no projection can do everything.

Whenever you create or work with geospatial data, it is essential that you know
which projection has been used to create that data. Without knowing the projection,
you won't be able to plot data or perform accurate calculations.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[34]

Coordinate systems
Closely related to map projection is the concept of a coordinate system. There are two
types of coordinate systems you will need to be familiar with: projected coordinate
systems, and unprojected coordinate systems.

Latitude and longitude values are an example of an unprojected coordinate system.
These are coordinates that refer directly to a point on the earth's surface:

Unprojected coordinates are useful because they can accurately represent a desired
point on the earth's surface, but they also make it quite difficult to perform distance
and other geospatial calculations.

Projected coordinates, on the other hand, are coordinates which refer to a point on
a two-dimensional map that represents the surface of the earth:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

A projected coordinate system, as the name implies, makes use of a map projection
to first convert the earth into a two-dimensional Cartesian plane, and then places
points onto that plane. To work with a projected coordinate system, you need to
know which projection was used to create the underlying map.

For both projected and unprojected coordinates, the coordinate system also implies
a set of reference points that allow you to identify where a given point will be.
For example, the unprojected lat/long coordinate system represents the longitude
value of zero by a line running north-south through the Greenwich observatory in
England. Similarly, a latitude value of zero represents a line running around the
equator of the earth.

For projected coordinate systems, you typically define an origin and the map units.
Some coordinate systems also use false northing and false easting values to adjust the
position of the origin, as shown in the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[36]

To give a concrete example, the Universal Transverse Mercator (UTM) coordinate
system divides the world up into 60 different "zones", each zone using a different
map projection to minimize projection errors. Within a given zone, the coordinates
are measured as the number of meters away from the zone's origin, which is the
intersection of the equator and the central meridian for that zone. False northing
and false easting values are then added to the distance in meters away from this
reference point to avoid having to deal with negative numbers.

As you can imagine, working with projected coordinate systems like this can get
quite complicated. The big advantage of projected coordinates, however, is that it
is easy to perform geospatial calculations using these coordinates. For example, to
calculate the distance between two points that both use the same UTM coordinate
system, you simply calculate the length of the line between them, which is the
distance between the two points, in meters. This is ridiculously easy, compared
with the work required to calculate distances using unprojected coordinates.

Of course, this assumes that the two points are both in the same coordinate system.
Since projected coordinate systems are generally only accurate over a relatively small
area, you can get into trouble if the two points aren't both in the same coordinate
system (for example, if they are in two different UTM zones). This is where
unprojected coordinate systems have a big advantage: they cover the entire earth.

Datums
Roughly speaking, a datum is a mathematical model of the earth used to describe
locations on the earth's surface. A datum consists of a set of reference points, often
combined with a model of the shape of the earth. The reference points are used to
describe the location of other points on the earth's surface, while the model of the
earth's shape is used when projecting the earth's surface onto a two-dimensional
plane. Thus, datums are used by both map projections and coordinate systems.

While there are hundreds of different datums in use throughout the world, most
of these only apply to a localized area. There are three main reference datums
which cover larger areas, and which you are likely to encounter when working
with geospatial data:

•	 NAD 27: This is the North American Datum of 1927. It includes a definition
of the earth's shape (using a model called the Clarke Spheroid of 1866), and
a set of reference points centered around Meades Ranch in Kansas. NAD 27
can be thought of as a local datum covering North America.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

•	 NAD 83: The North American Datum of 1983. This datum makes use of
a more complex model of the earth's shape (the 1980 Geodetic Reference
System, GRS 80). NAD 83 can be thought of as a local datum covering the
United States, Canada, Mexico, and Central America.

•	 WGS 84: The World Geodetic System of 1984. This is a global datum covering
the entire earth. It makes use of yet another model of the earth's shape (the
Earth Gravitational Model of 1996, EGM 96) and uses reference points based
on the IERS International Reference Meridian. WGS 84 is a very popular
datum. When dealing with geospatial data covering the United States, WGS 84
is basically identical to NAD 83. WGS 84 also has the distinction of being used
by Global Positioning System satellites, so all data captured by GPS units will
use this datum.

While WGS 84 is the most common datum in use today, a lot of geospatial data
makes use of other datums. Whenever you are dealing with a coordinate value, it
is important to know which datum was used to calculate that coordinate. A given
point in NAD 27, for example, may be several hundred feet away from that same
coordinate expressed in WGS 84. Thus, it is vital that you know which datum is
being used for a given set of geospatial data, and convert to a different datum
where necessary.

Shapes
Geospatial data often represents shapes in the form of points, paths, and outlines:

A point, of course, is simply a coordinate, described by two or more numbers within
a projected or unprojected coordinate system.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[38]

A path is generally described using what is called a linestring:

A linestring represents a path as a connected series of line segments. A linestring
is a deliberate simplification of a path, a way of approximating the curving path
without having to deal with the complex maths required to draw and manipulate
curves. Linestrings are often used in geospatial data to represent roads, rivers,
contour lines, and so on.

Linestrings are also sometimes referred to as polylines. When
a linestring is closed (that is, the last line segment finishes at the
point where the first line segment starts), the linestring is often
referred to as a linear ring.

An outline is often represented in geospatial data using a polygon:

Polygons are commonly used in geospatial data to describe the outline of countries,
lakes, cities, and so on. A polygon has an exterior ring, defined by a closed linestring,
and may optionally have one or more interior rings within it, each also defined by
a closed linestring. The exterior ring represents the polygon's outline, while the
interior rings (if any) represent "holes" within the polygon:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

These holes are often used to depict interior features such as islands within a lake.

GIS data formats
A GIS data format specifies how geospatial data is stored in a file (or multiple files)
on disk. The format describes the logical structure used to store geospatial data
within the file(s).

While we talk about storing information on disk,
data formats can also be used to transmit geospatial
information between computer systems. For example,
a web service might provide map data on request,
transmitting that data in a particular format.

A GIS data format will typically support:

•	 Geospatial data describing geographical features.
•	 Additional metadata describing this data, including the datum and

projection used, the coordinate system and units that the data is in, the date
this file was last updated, and so on.

•	 Attributes providing additional information about the geographical features
that are being described. For example, a city feature may have attributes such
as "name", "population", "average temperature", and others.

•	 Display information such as the color or line style to use when a feature
is displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[40]

There are two main types of GIS data: raster format data, and vector format data.
Raster formats are generally used to store bitmapped images, such as scanned paper
maps or aerial photographs. Vector formats, on the other hand, represent spatial data
using points, lines, and polygons. Vector formats are the most common type used by
GIS applications as the data is smaller and easier to manipulate.

Some of the more common raster formats include:

•	 Digital Raster Graphic (DRG): This format is used to store digital scans
of paper maps

•	 Digital Elevation Model (DEM): Used by the US Geological Survey to
record elevation data

•	 Band Interleaved by Line, Band Interleaved by Pixel, Band Sequential
(BIL, BIP, BSQ): These data formats are typically used by remote sensing
systems

Some of the more common vector formats include:

•	 Shapefile: An open specification, developed by ESRI, for storing and
exchanging GIS data. A Shapefile actually consists of a collection of files,
all with the same base name, for example, hawaii.shp, hawaii.shx,
hawaii.dbf, and so on.

•	 Simple features: An OpenGIS standard for storing geographical data
(points, lines, polygons) along with associated attributes.

•	 TIGER/Line: A text-based format previously used by the US Census
Bureau to describe geographic features such as roads, buildings, rivers,
and coastlines. More recent data comes in the Shapefile format, so the
TIGER/Line format is only used for earlier Census Bureau datasets.

•	 Coverage: A proprietary data format used by ESRI's ARC/INFO system.

In addition to these "major" data formats, there are also so-called "micro-formats"
which are often used to represent individual pieces of geospatial data. These are
often used to represent shapes within a running program, or to transfer shapes from
one program to another, but aren't generally used to store data permanently. As you
work with geospatial data, you are likely to encounter the following micro-formats:

•	 Well-known Text (WKT): This is a simple text-based format for representing
a single geographic feature such as a polygon or linestring

•	 Well-known Binary (WKB): This alternative to WKT uses binary data rather
than text to represent a single geographic feature

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

•	 GeoJSON: An open format for encoding geographic data structures, based
on the JSON data interchange format

•	 Geography Markup Language (GML): An XML-based open standard for
exchanging GIS data

Whenever you work with geospatial data, you need to know which format the data
is in, so that you can extract the information you need from the file(s), and, where
necessary, transform the data from one format to another.

Working with GIS data manually
Let's take a brief look at the process of working with GIS data manually. Before we
can begin, there are two things you need to do:

•	 Obtain some GIS data
•	 Install the GDAL Python library so that you can read the necessary data files

Let's use the US Census Bureau's website to download a set of vector maps for the
various US states. The main site for obtaining GIS data from the US Census Bureau
can be found at:

http://www.census.gov/geo/www/tiger

To make things simpler though, let's bypass the website and directly download the
file we need from the following link:

http://www2.census.gov/geo/tiger/TIGER2012/STATE/tl_2012_us_state.zip

The resulting file, tl_2009_us_state.zip, should be a ZIP-format archive. After
uncompressing the archive, you should have the following files:

•	 tl_2012_us_state.dbf

•	 tl_2012_us_state.prj

•	 tl_2012_us_state.shp

•	 tl_2012_us_state.shp.xml

•	 tl_2012_us_state.shx

These files make up a Shapefile containing the outlines of all the US states.
Place these files together in a convenient directory.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[42]

We next have to download the GDAL Python library. The main website for GDAL
can be found at:

http://gdal.org

The easiest way to install GDAL onto a Windows or Unix machine is to use the
FWTools installer, which can be downloaded from the following site:

http://fwtools.maptools.org

If you are running Mac OS X, you can find a complete installer for GDAL at:

http://www.kyngchaos.com/software/frameworks

After installing GDAL, you can check that it works by typing import osgeo into
the Python command prompt; if the Python command prompt reappears with no
error message, GDAL was successfully installed and you are all set to go:

>>> import osgeo

>>>

Now that we have some data to work with, let's take a look at it. You can either type
the following directly into the command prompt, or else save it as a Python script so
that you can run it whenever you wish (let's call this analyze.py):

import osgeo.ogr

shapefile = osgeo.ogr.Open("tl_2012_us_state.shp")
numLayers = shapefile.GetLayerCount()

print "Shapefile contains %d layers" % numLayers
print

for layerNum in range(numLayers):
 layer = shapefile.GetLayer(layerNum)
 spatialRef = layer.GetSpatialRef().ExportToProj4()
 numFeatures = layer.GetFeatureCount()
 print "Layer %d has spatial reference %s" % (layerNum, spatialRef)
 print "Layer %d has %d features:" % (layerNum, numFeatures)
 print

 for featureNum in range(numFeatures):
 feature = layer.GetFeature(featureNum)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

 featureName = feature.GetField("NAME")

 print "Feature %d has name %s" % (featureNum, featureName)

The previous example assumes you've placed this script in
the same directory as the tl_2012_us_state.shp file. If
you've put it in a different directory, change the osgeo.ogr.
Open() command to include the path to your Shapefile. If you
are running MS Windows, don't forget to use double backslash
characters (\\) as directory separators.

This gives us a quick summary of how the Shapefile's data is structured:

Shapefile contains 1 layers

Layer 0 has spatial reference +proj=longlat +datum=NAD83 +no_defs

Layer 0 has 56 features:

Feature 0 has name Hawaii

Feature 1 has name Arkansas

Feature 2 has name New Mexico

Feature 3 has name Montana

...

Feature 53 has name Arizona

Feature 54 has name Nevada

Feature 55 has name California

This shows us that the data we downloaded consists of one layer, with 56 individual
features corresponding to the various states and protectorates in the USA. It also
tells us the "spatial reference" for this layer, which tells us that the coordinates are
projected as latitude and longitude values using the NAD 83 datum.

As you can see from the previous example, using GDAL to extract data from
Shapefiles is quite straightforward. Let's continue with another example.
This time, we'll look at the details for Feature 2, New Mexico:

import osgeo.ogr

shapefile = osgeo.ogr.Open("tl_2012_us_state.shp")

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[44]

layer = shapefile.GetLayer(0)
feature = layer.GetFeature(2)

print "Feature 2 has the following attributes:"
print

attributes = feature.items()

for key,value in attributes.items():
 print " %s = %s" % (key, value)

geometry = feature.GetGeometryRef()
geometryName = geometry.GetGeometryName()

print
print "Feature's geometry data consists of a %s" % geometryName

Running this produces the following:

Feature 2 has the following attributes:

 DIVISION = 8

 INTPTLAT = +34.4346843

 NAME = New Mexico

 STUSPS = NM

 FUNCSTAT = A

 REGION = 4

 LSAD = 00

 INTPTLON = -106.1316181

 AWATER = 756438507.0

 STATENS = 00897535

 MTFCC = G4000

 STATEFP = 35

 ALAND = 3.14161109357e+11

Feature's geometry data consists of a POLYGON

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

The meaning of the various attributes is described on the US Census Bureau's
website, but what interests us right now is the feature's geometry. A geometry object
is a complex structure that holds some geospatial data, often using nested geometry
objects to reflect the way the geospatial data is organized. So far, we've discovered
that New Mexico's geometry consists of a polygon. Let's now take a closer look at
this polygon:

import osgeo.ogr

def analyzeGeometry(geometry, indent=0):
 s = []
 s.append(" " * indent)
 s.append(geometry.GetGeometryName())
 if geometry.GetPointCount() > 0:
 s.append(" with %d data points" % geometry.GetPointCount())
 if geometry.GetGeometryCount() > 0:
 s.append(" containing:")

 print "".join(s)

 for i in range(geometry.GetGeometryCount()):
 analyzeGeometry(geometry.GetGeometryRef(i), indent+1)

shapefile = osgeo.ogr.Open("tl_2012_us_state.shp")
layer = shapefile.GetLayer(0)
feature = layer.GetFeature(2)
geometry = feature.GetGeometryRef()

analyzeGeometry(geometry)

The analyzeGeometry() function gives a useful idea of how the geometry has
been structured:

POLYGON containing:

 LINEARRING with 7550 data points

In GDAL (or more specifically the OGR Simple Feature library we are using here),
polygons are defined as a single outer "ring" with optional inner rings that define
"holes" in the polygon (for example, to show the outline of a lake).

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[46]

New Mexico is a relatively simple feature in that it consists of only one polygon.
If we ran the same program over California (feature 55 in our Shapefile), the output
would be somewhat more complicated:

MULTIPOLYGON containing:

 POLYGON containing:

 LINEARRING with 10105 data points

 POLYGON containing:

 LINEARRING with 392 data points

 POLYGON containing:

 LINEARRING with 152 data points

 POLYGON containing:

 LINEARRING with 191 data points

 POLYGON containing:

 LINEARRING with 121 data points

 POLYGON containing:

 LINEARRING with 93 data points

 POLYGON containing:

 LINEARRING with 77 data points

As you can see, California is made up of seven distinct polygons, each defined by a
single linear ring. This is because California is on the coast, and includes six outlying
islands as well as the main inland body of the state.

Let's finish this analysis of the US state Shapefile by answering a simple question:
what is the distance from the northernmost point to the southernmost point in
California? There are various ways we could answer this question, but for now
we'll do it by hand. Let's start by identifying the northernmost and southernmost
points in California:

import osgeo.ogr

def findPoints(geometry, results):
 for i in range(geometry.GetPointCount()):
 x,y,z = geometry.GetPoint(i)
 if results['north'] == None or results['north'][1] < y:
 results['north'] = (x,y)
 if results['south'] == None or results['south'][1] > y:
 results['south'] = (x,y)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

 for i in range(geometry.GetGeometryCount()):
 findPoints(geometry.GetGeometryRef(i), results)

shapefile = osgeo.ogr.Open("tl_2012_us_state.shp")
layer = shapefile.GetLayer(0)
feature = layer.GetFeature(55)
geometry = feature.GetGeometryRef()

results = {'north' : None,
 'south' : None}

findPoints(geometry, results)

print "Northernmost point is (%0.4f, %0.4f)" % results['north']
print "Southernmost point is (%0.4f, %0.4f)" % results['south']

The findPoints() function recursively scans through a geometry, extracting the
individual points and identifying the points with the highest and lowest y (latitude)
values, which are then stored in the results dictionary so that the main program
can use it.

As you can see, GDAL makes it easy to work with the complex geometry data
structure. The code does require recursion, but is still trivial compared with
trying to read the data directly. If you run the previous program, the following
will be displayed:

Northernmost point is (-122.3782, 42.0095)

Southernmost point is (-117.2049, 32.5288)

Now that we have these two points, we next want to calculate the distance between
them. As described earlier, we have to use a great circle distance calculation here
to allow for the curvature of the earth's surface. We'll do this manually, using the
Haversine formula:

import math

lat1 = 42.0095
long1 = -122.3782

lat2 = 32.5288
long2 = -117.2049

rLat1 = math.radians(lat1)

www.it-ebooks.info

http://www.it-ebooks.info/

GIS

[48]

rLong1 = math.radians(long1)
rLat2 = math.radians(lat2)
rLong2 = math.radians(long2)

dLat = rLat2 - rLat1
dLong = rLong2 - rLong1
a = math.sin(dLat/2)**2 + math.cos(rLat1) * math.cos(rLat2) \
 * math.sin(dLong/2)**2
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
distance = 6371 * c

print "Great circle distance is %0.0f kilometres" % distance

Don't worry about the complex maths involved here; basically, we are converting
the latitude and longitude values to radians, calculating the difference in latitude/
longitude values between the two points, and then passing the results through some
trigonometric functions to obtain the great circle distance. The value of 6371 is the
radius of the earth, in kilometers.

More details about the Haversine formula and how it is used in the previous example
can be found at http://mathforum.org/library/drmath/view/51879.html.

If you run the previous program, your computer will tell you the distance from the
northernmost point to the southernmost point in California:

Great circle distance is 1149 kilometres

There are, of course, other ways of calculating this. You wouldn't normally type the
Haversine formula directly into your program, as there are libraries which will do
this for you. But we deliberately did the calculation this way to show just how it can
be done.

If you would like to explore this further, you might like to try writing programs to
calculate the following:

•	 The easternmost and westernmost points in California.
•	 The midpoint in California. Hint: you can calculate the midpoint's longitude

by taking the average of the easternmost and westernmost longitude.
•	 The midpoint in Arizona.
•	 The distance between the middle of California and the middle of Arizona.

As you can see, working with GIS data manually isn't too onerous. While the data
structures and maths involved can be rather complex, using tools such as GDAL
makes your data accessible and easy to work with.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

Summary
In this chapter, we discussed many of the core concepts that underlie GIS
development, looked briefly at the history of GIS, examined some of the more
common GIS data formats, and got our hands dirty exploring US state maps
downloaded from the US Census Bureau website. We have learned the following:

•	 Locations are often, but not always, represented using coordinates
•	 Calculating the distance between two points requires you to take into

account the curvature of the earth's surface
•	 You must be aware of the units used in geospatial data
•	 Map projections represent the three-dimensional shape of the earth's

surface as a two-dimensional map
•	 There are three main classes of map projections: cylindrical, conic

and azimuthal
•	 Datums are mathematical models of the earth's shape
•	 The three most common datums in use are called NAD 27, NAD 83,

and WGS 84
•	 Coordinate systems describe how coordinates relate to a given point

on the earth's surface
•	 Unprojected coordinate systems directly represent points on the

earth's surface
•	 Projected coordinate systems use a map projection to represent the

earth as a two-dimensional Cartesian plane, onto which coordinates
are then placed

•	 Geospatial data can represent shapes in the form of points, linestrings,
and polygons

•	 There are a number of standard GIS data formats you might encounter.
Some data formats work with raster data, while others use vector data

•	 Using Python to manually perform various geospatial calculations on
Shapefile data

In the next chapter, we will look in more detail at the various Python libraries which
can be used for working with geospatial data.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for
Geospatial Development

This chapter examines a number of libraries and other tools which can be used for
geospatial development in Python.

More specifically, we will cover:

•	 Python libraries for reading and writing geospatial data
•	 Python libraries for dealing with map projections
•	 Libraries for analyzing and manipulating geospatial data directly

within your Python programs
•	 Tools for visualizing geospatial data

Note that there are two types of geospatial tools which are not discussed in this
chapter: geospatial databases and geospatial web toolkits. Both of these will be
examined in detail later in this book.

Reading and writing geospatial data
While you could in theory write your own parser to read a particular geospatial data
format, it is much easier to use an existing Python library to do this. We will look at
two popular libraries for reading and writing geospatial data: GDAL and OGR.

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[52]

GDAL/OGR
Unfortunately, the naming of these two libraries is rather confusing. Geospatial
Data Abstraction Library (GDAL), was originally just a library for working with
raster geospatial data, while the separate OGR library was intended to work with
vector data. However, the two libraries are now partially merged, and are generally
downloaded and installed together under the combined name of "GDAL". To avoid
confusion, we will call this combined library GDAL/OGR and use "GDAL" to refer
to just the raster translation library.

A default installation of GDAL supports reading 116 different raster file formats,
and writing to 58 different formats. OGR by default supports reading 56 different
vector file formats, and writing to 30 formats. This makes GDAL/OGR one of the
most powerful geospatial data translators available, and certainly the most useful
freely-available library for reading and writing geospatial data.

GDAL design
GDAL uses the following data model for describing raster geospatial data:

Let's take a look at the various parts of this model:

•	 A dataset holds all the raster data, in the form of a collection of raster
"bands", along with information that is common to all these bands.
A dataset normally represents the contents of a single file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

•	 A raster band represents a band, channel, or layer within the image.
For example, RGB image data would normally have separate bands
for the red, green, and blue components of the image.

•	 The raster size specifies the overall width and height of the image, in pixels.
•	 The georeferencing transform converts from (x, y) raster coordinates into

georeferenced coordinates—that is, coordinates on the surface of the earth.
There are two types of georeferencing transforms supported by GDAL: affine
transformations and ground control points.

°° An affine transformation is a mathematical formula allowing the
following operations to be applied to the raster data:

More than one of these operations can be applied at once; this allows
you to perform sophisticated transforms such as rotations.

Affine transformations are sometimes referred
to as linear transformations.

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[54]

°° Ground Control Points (GCPs) relate one or more positions within
the raster to their equivalent georeferenced coordinates, as shown in
the following figure:

Note that GDAL does not translate coordinates using GCPs—
that is left up to the application, and generally involves complex
mathematical functions to perform the transformation.

•	 The coordinate system describes the georeferenced coordinates produced by
the georeferencing transform. The coordinate system includes the projection
and datum, as well as the units and scale used by the raster data.

•	 The metadata contains additional information about the dataset as a whole.

Each raster band contains the following (among other things):

•	 The band raster size: This is the size (number of pixels across and number
of lines high) for the data within the band. This may be the same as the raster
size for the overall dataset, in which case the dataset is at full resolution,
or the band's data may need to be scaled to match the dataset.

•	 Some band metadata providing extra information specific to this band.
•	 A color table describing how pixel values are translated into colors.
•	 The raster data itself.

GDAL provides a number of drivers which allow you to read (and sometimes write)
various types of raster geospatial data. When reading a file, GDAL selects a suitable
driver automatically based on the type of data; when writing, you first select the
driver and then tell the driver to create the new dataset you want to write to.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

GDAL example code
A Digital Elevation Model (DEM) file contains height values. In the following
example program, we use GDAL to calculate the average of the height values
contained in a sample DEM file. In this case, we use a DEM file downloaded
from the GLOBE elevation dataset:

from osgeo import gdal,gdalconst
import struct

dataset = gdal.Open("data/e10g")
band = dataset.GetRasterBand(1)

fmt = "<" + ("h" * band.XSize)

totHeight = 0

for y in range(band.YSize):
 scanline = band.ReadRaster(0, y, band.XSize, 1,
 band.XSize, 1,
 band.DataType)
 values = struct.unpack(fmt, scanline)

 for value in values:
 if value == -500:
 # Special height value for the sea -> ignore.
 continue

 totHeight = totHeight + value

average = totHeight / (band.XSize * band.YSize)
print "Average height =", average

Please refer to Chapter 4, Sources of Geospatial Data,
for more information on the GLOBE dataset and
how to download the data used in this example.

As you can see, this program obtains the single raster band from the DEM file, and then
reads through it one scanline at a time. We then use the struct standard Python library
module to read the individual height values out of the scanline. Because the GLOBE
dataset uses a special height value of -500 to represent the ocean, we exclude these values
from our calculations. Finally, we use the remaining height values to calculate the average
height, in meters, over the entire DEM data file.

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[56]

OGR design
OGR uses the following model for working with vector-based geospatial data:

Let's take a look at this design in more detail:

•	 The data source represents the file you are working with—though it doesn't
have to be a file. It could just as easily be a URL or some other source of data.

•	 The data source has one or more layers, representing sets of related data. For
example, a single data source representing a country may contain a "terrain"
layer, a "contour lines" layer, a "roads" later, and a "city boundaries" layer.
Other data sources may consist of just one layer. Each layer has a spatial
reference and a list of features.

•	 The spatial reference specifies the projection and datum used by the
layer's data.

•	 A feature corresponds to some significant element within the layer.
For example, a feature might represent a state, a city, a road, an island,
and so on. Each feature has a list of attributes and a geometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

•	 The attributes provide additional meta-information about the feature.
For example, an attribute might provide the name for a city's feature,
its population, or the feature's unique ID used to retrieve additional
information about the feature from an external database.

•	 Finally, the geometry describes the physical shape or location of the
feature. Geometries are recursive data structures that can themselves
contain sub-geometries—for example, a "country" feature might consist
of a geometry that encompasses several islands, each represented by a
subgeometry within the main "country" geometry.

The geometry design within OGR is based on the Open Geospatial
Consortium's "Simple Features" model for representing geospatial
geometries. For more information, see http://www.opengeospatial.org/
standards/sfa.

Like GDAL, OGR also provides a number of drivers which allow you to read (and
sometimes write) various types of vector-based geospatial data. When reading a file,
OGR selects a suitable driver automatically; when writing, you first select the driver
and then tell the driver to create the new data source to write to.

OGR example code
The following example program uses OGR to read through the contents of
a shapefile, printing out the value of the NAME attribute for each feature along
with the geometry type:

from osgeo import ogr

shapefile = ogr.Open("TM_WORLD_BORDERS-0.3.shp")
layer = shapefile.GetLayer(0)

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 name = feature.GetField("NAME")
 geometry = feature.GetGeometryRef()
 print i, name, geometry.GetGeometryName()

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[58]

Documentation
GDAL and OGR are well documented, but with a catch for Python programmers. The
GDAL/OGR library and associated command-line tools are all written in C and C++.
Bindings are available which allow access from a variety of other languages, including
Python, but the documentation is all written for the C++ version of the libraries. This
can make reading the documentation rather challenging—not only are all the method
signatures written in C++, but the Python bindings have changed many of the method
and class names to make them more "pythonic".

Fortunately, the Python libraries are largely self-documenting, thanks to all the
docstrings embedded in the Python bindings themselves. This means you can
explore the documentation using tools such as Python's built-in pydoc utility,
which can be run from the command line like this:

% pydoc -g osgeo

This will open up a GUI window allowing you to read the documentation using a
web browser. Alternatively, if you want to find out about a single method or class,
you can use Python's built-in help() command from the Python command line, like
this:

>>> import osgeo.ogr

>>> help(osgeo.ogr.DataSource.CopyLayer)

Not all the methods are documented, so you may need to refer to the C++ docs on the
GDAL website for more information, and some of the docstrings are copied directly
from the C++ documentation—but in general the documentation for GDAL/OGR is
excellent, and should allow you to quickly come up to speed using this library.

Availability
GDAL/OGR runs on modern Unix machines, including Linux and Mac OS X,
as well as most versions of Microsoft Windows. The main website for GDAL
can be found at:

http://gdal.org

The main website for OGR is at:

http://gdal.org/ogr

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

To download GDAL/OGR, follow the Downloads link on the main GDAL website.
Windows users may find the FWTools package useful, as it provides a wide range
of geospatial software for win32 machines, including GDAL/OGR and its Python
bindings. FWTools can be found at:

http://fwtools.maptools.org

For those running Mac OS X, prebuilt binaries can be obtained from:

http://www.kyngchaos.com/software/frameworks

Make sure that you install GDAL Version 1.9 or later, as
you will need this version to work through the examples
in this book.

Being an open source package, the complete source code for GDAL/OGR is available
from the website, so you can compile it yourself. Most people, however, will simply
want to use a prebuilt binary version.

Dealing with projections
One of the challenges of working with geospatial data is that geodetic locations
(points on the Earth's surface) are mapped into a two-dimensional Cartesian plane
using a cartographic projection. We looked at projections in the previous chapter:
whenever you have some geospatial data, you need to know which projection that
data uses. You also need to know the datum (model of the Earth's shape) assumed
by the data.

A common challenge when dealing with geospatial data is that you have to convert
data from one projection/datum to another. Fortunately, there is a Python library
pyproj which makes this task easy.

pyproj
pyproj is a Python "wrapper" around another library called PROJ.4. "PROJ.4" is
an abbreviation for Version 4 of the PROJ library. PROJ was originally written by
the US Geological Survey for dealing with map projections, and has been widely
used in geospatial software for many years. The pyproj library makes it possible
to access the functionality of PROJ.4 from within your Python programs.

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[60]

Design
The pyproj library consists of the following pieces:

pyproj consists of just two classes: Proj and Geod. Proj converts from longitude
and latitude values to native map (x, y) coordinates, and vice versa. Geod performs
various Great Circle distance and angle calculations. Both are built on top of the
PROJ.4 library. Let's take a closer look at these two classes.

Proj
Proj is a cartographic transformation class, allowing you to convert geographic
coordinates (that is, latitude and longitude values) into cartographic coordinates
(x, y values, by default in meters) and vice versa.

When you create a new Proj instance, you specify the projection, datum,
and other values used to describe how the projection is to be done. For example,
to use the Transverse Mercator projection and the WGS84 ellipsoid, you would
do the following:

projection = pyproj.Proj(proj='tmerc', ellps='WGS84')

Once you have created a Proj instance, you can use it to convert a latitude and
longitude to an (x, y) coordinate using the given projection. You can also use it to
do an inverse projection—that is, converting from an (x, y) coordinate back into a
latitude and longitude value again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

The helpful transform() function can be used to directly convert coordinates from
one projection to another. You simply provide the starting coordinates, the Proj
object that describes the starting coordinates' projection, and the desired ending
projection. This can be very useful when converting coordinates, either singly or
en masse.

Geod
Geod is a geodetic computation class, which allows you to perform various Great
Circle calculations. We looked at Great Circle calculations earlier, when considering
how to accurately calculate the distance between two points on the Earth's surface.
The Geod class, however, can do more than this:

•	 The fwd() method takes a starting point, an azimuth (angular direction)
and a distance, and returns the ending point and the back azimuth (the angle
from the end point back to the start point again):

•	 The inv() method takes two coordinates and returns the forward and back
azimuth as well as the distance between them:

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[62]

•	 The npts() method calculates the coordinates of a number of points spaced
equidistantly along a geodesic line running from the start to the end point:

When you create a new Geod object, you specify the ellipsoid to use when
performing the geodetic calculations. The ellipsoid can be selected from a
number of predefined ellipsoids, or you can enter the parameters for the
ellipsoid (equatorial radius, polar radius, and so on) directly.

Example code
The following example starts with a location specified using UTM zone 17 coordinates.
Using two Proj objects to define the UTM Zone 17 and lat/long projections,
it translates this location's coordinates into latitude and longitude values:

import pyproj

UTM_X = 565718.5235
UTM_Y = 3980998.9244

srcProj = pyproj.Proj(proj="utm", zone="11", ellps="clrk66",
units="m")
dstProj = pyproj.Proj(proj="longlat", ellps="WGS84", datum="WGS84")

long,lat = pyproj.transform(srcProj, dstProj, UTM_X, UTM_Y)

print "UTM zone 11 coordinate (%0.4f, %0.4f) = %0.4f, %0.4f" \
 % (UTM_X, UTM_Y, lat, long)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

Continuing on with this example, let's take the calculated lat/long values and, using
a Geod object, calculate another point 10 kilometers northeast of that location:

angle = 315 # 315 degrees = northeast.
distance = 10000

geod = pyproj.Geod(ellps="WGS84")
long2,lat2,invAngle = geod.fwd(long, lat, angle, distance)

print "%0.4f, %0.4f is 10km northeast of %0.4f, %0.4f" \
 % (lat2, long2, lat, long)

Documentation
The documentation available on the pyproj website, and in the docs directory
provided with the source code, is excellent as far as it goes. It describes how to
use the various classes and methods, what they do and what parameters are
required. However, the documentation is rather sparse when it comes to the
parameters used when creating a new Proj object. As the documentation says:

A Proj class instance is initialized with proj map projection control parameter key/
value pairs. The key/value pairs can either be passed in a dictionary, or as keyword
arguments, or as a proj4 string (compatible with the proj command).

The documentation does provide a link to a website listing a number of standard
map projections and their associated parameters, but understanding what these
parameters mean generally requires you to delve into the PROJ documentation
itself. The documentation for PROJ is dense and confusing, even more so because
the main manual is written for PROJ Version 3, with addendums for later versions.
Attempting to make sense of all this can be quite challenging.

Fortunately, in most cases you won't need to refer to the PROJ documentation at
all. When working with geospatial data using GDAL or OGR, you can easily extract
the projection as a "proj4 string" which can be passed directly to the Proj initializer.
If you want to hardwire the projection, you can generally choose a projection and
ellipsoid using the proj="..." and ellps="..." parameters, respectively. If you
want to do more than this, though, you will need to refer to the PROJ documentation
for more details.

To find out more about PROJ, and to read the original documentation,
you can find everything you need at: http://trac.osgeo.org/proj

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[64]

Availability
Prebuild versions of pyproj are available for MS Windows, with source code
distributions for other platforms. The main web page for pyproj can be found at:

http://code.google.com/p/pyproj

How you go about installing it depends on which operating system you are running.

Make sure that you install Version 4.8.0 or later of the PROJ framework,
and Version 1.9.2 or later of the pyproj library. These versions are
required to follow the examples in this book.

•	 MS Windows
For computers running MS Windows, installation is easy: just go to the
downloads page at the website mentioned earlier and and choose the
appropriate installer for your version of Python. The installer includes
everything you need, including the PROJ framework.

•	 Linux
For computers running Linux, you have to download and install the PROJ
framework separately, before installing pyproj. For Linux machines, you
can generally obtain PROJ.4 as an RPM or source tarball which you can
then compile yourself. Once this has been done, you can download the
pyproj source code from the above website, and compile and install it
in the usual way:

python setup.py build

python setup.py install

•	 Macintosh
If your computer runs Mac OS X, you will also have to download and install
PROJ separately. You can install a compiled version of the PROJ framework
either as part of a "GDAL Complete" installation, or by just installing the
PROJ framework by itself. Either are available at:
http://www.kyngchaos.com/software/frameworks

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

Once you have installed PROJ.4, you will have to download and build your own
copy of the pyproj library. Before you can compile pyproj, you will need to have
Apple's developer tools installed. Doing this is a two-step process:

1.	 Download and install the latest version of XCode. XCode is available for free
from the App store, or if you are running an older version of OS X you can
download it from:
https://developer.apple.com/xcode

2.	 Run XCode, and choose the Preferences command. Within the Downloads
tab, click on the Install button beside the Command Line Tools item:

This installs the command-line tools you will need to compile pyproj.

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[66]

Once you have the developer tools installed, download the source code to pyproj
from the website mentioned earlier. Then open up a Terminal window and cd into
the main source code directory, then type the following commands:

python setup.py build

sudo python.setup.py install

The sudo command allows pyproj to install itself inside your
Python installation's site-packages directory. You'll be asked
to enter your password before this is done.

Once this has finished, you can check that it worked by running the Python
interpreter and typing the following command:

import pyproj

The Python prompt should reappear without any error messages being shown.

Analyzing and manipulating geospatial
data
Because geospatial data works with geometrical features such as points, lines, and
polygons, you often need to perform various calculations using these geometrical
features. Fortunately, there are some very powerful tools for doing exactly this.
For reasons we will describe shortly, the library of choice for performing this type
of computational geometry in Python is Shapely.

Shapely
Shapely is a Python package for the manipulation and analysis of two-dimensional
geospatial geometries. Shapely is based on the GEOS library, which implements
a wide range of geospatial data manipulations in C++. GEOS is itself based on a
library called the Java Topology Suite, which provides the same functionality for
Java programmers. Shapely provides a Pythonic interface to GEOS which makes
it easy to use these manipulations directly from your Python programs.

Design
The Shapely library is organized as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

All of Shapely's functionality is built on top of GEOS. Indeed, Shapely requires GEOS
to be installed before it can run.

Shapely itself consists of eight major classes, representing different types of
geometrical shapes:

•	 The Point class represents a single point in space. Points can be two-
dimensional (x, y), or three-dimensional (x, y, z).

•	 The LineString class represents a sequence of points joined together
to form a line. LineStrings can be simple (no crossing line segments)
or complex (where two line segments within the LineString cross).

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[68]

•	 The LinearRing class represents a line string which finishes at the starting
point. The line segments within a LinearRing cannot cross or touch.

•	 The Polygon class represents a filled area, optionally with one or more
"holes" inside it.

•	 The MultiPoint class represents a collection of Points.
•	 The MultiLineString class represents a collection of LineStrings.
•	 The MultiPolygon class represents a collection of Polygons.
•	 The GeometryCollection class represents a collection of any combination

of Points, LineStrings, LinearRings, and Polygons.

As well as being able to represent these various types of geometries, Shapely provides
a number of methods and attributes for manipulating and analyzing these geometries.
For example, the LineString class provides a length attribute that equals the length
of all the line segments that make up the LineString, and a crosses() method that
returns true if two LineStrings cross. Other methods allow you to calculate the
intersection of two polygons, dilate or erode geometries, simplify a geometry, calculate
the distance between two geometries, and build a polygon that encloses all the points
within a given list of geometries (called the convex_hull attribute).

Note that Shapely is a spatial manipulation library rather than a geospatial manipulation
library. It has no concept of geographical coordinates. Instead, it assumes that the
geospatial data has been projected onto a two-dimensional Cartesian plane before it
is manipulated, and the results can then be converted back into geographic coordinates
if desired.

Example code
The following program creates two Shapely geometry objects, a circle and a square,
and calculates their intersection:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

The intersection will be a polygon in the shape of a quarter circle , as indicated by the
dark grey portion of the preceding image:

import shapely.geometry

pt = shapely.geometry.Point(0, 0)
circle = pt.buffer(1.0)

square = shapely.geometry.Polygon([(0, 0), (1, 0),
 (1, 1), (0, 1),
 (0, 0)])

intersect = circle.intersection(square)

for x,y in intersect.exterior.coords:
 print x,y

Notice how the circle is constructed by taking a Point geometry and using the
buffer() method to create a Polygon representing the outline of a circle.

Documentation
Shapely comes with excellent documentation, with detailed descriptions, extended
code samples, and many illustrations that clearly show how the various classes,
methods, and attributes work.

The Shapely documentation is entirely self-contained; there is no need to refer to
the GEOS documentation, or to the Java Topology Suite it is based on, unless you
particularly want to see how things are done in these libraries. The only exception
is that you may need to refer to the GEOS documentation if you are compiling
GEOS from source and are having problems getting it to work.

Availability
Shapely will run on all major operating systems, including MS Windows, Mac OS X,
and Linux. Shapely's main website can be found at:

http://pypi.python.org/pypi/Shapely

The website has everything you need, including the documentation and downloads for
the Shapely library, in both source code form and prebuilt binaries for MS Windows.

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[70]

If you are installing Shapely on a Windows computer, the prebuilt binaries include
the GEOS library built-in. Otherwise, you will be responsible for installing GEOS
before you can use Shapely.

Make sure that you install Shapely Version 1.2 or later; you will
need this version to work through the examples in this book.

The GEOS library's website is at:
http://trac.osgeo.org/geos

To install GEOS in a Unix-based computer, you can either download the source code
from the GEOS website and compile it yourself, or you can install a suitable RPM
or APT package which includes GEOS. If you are running Mac OS X, you can either
try to download and build GEOS yourself, or you can install the prebuild GEOS
framework, which is available from the following website:

http://www.kyngchaos.com/software/frameworks

If you've installed the "GDAL Complete" package from the
above website, you'll already have GEOS installed on your
Mac OS X computer.

After installing GEOS, you need to download, compile, and install the Shapely
library. This can be slightly tricky on a Mac OS X computer, so you may find the
following blog post useful:

http://tumblr.pauladamsmith.com/post/17663153373

Visualizing geospatial data
It's very hard, if not impossible, to understand geospatial data unless it is turned
into a visual form—that is, until it is rendered as an image of some sort. Converting
geospatial data into images requires a suitable toolkit. While there are several such
toolkits available, we will look at one in particular: Mapnik.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

Mapnik
Mapnik is a freely-available toolkit for building mapping applications. It takes
geospatial data from a PostGIS database, shapefile, or any other format supported
by GDAL/OGR, and turns it into clearly-rendered, good-looking images.

There are a lot of complex issues involved in rendering maps well, and Mapnik does
a good job of allowing the application developer to control the rendering process.
Rules control which features should appear on the map, while "symbolizers" control
the visual appearance of these features.

Mapnik allows developers to create XML stylesheets that control the map-creation
process. Just as with CSS stylesheets, Mapnik's stylesheets allow you complete
control over the way geospatial data is rendered. Alternatively, you can create
your styles by hand if you prefer.

Mapnik itself is written in C++, though bindings are included which allow access
to almost all of the Mapnik functionality via Python. Because these bindings are
included in the main code base rather than being added by a third party developer,
support for Python is built right into Mapnik. This makes Python eminently suited
to developing Mapnik-based applications.

Mapnik is heavily used by OpenStreetMap (http://openstreetmap.org),
EveryBlock (http://everyblock.com), among others. Since the output of Mapnik
is simply an image, it is easy to include Mapnik as part of a web-based application,
or you can display the output directly in a window as part of a desktop-based
application. Mapnik works equally well on the desktop and on the web.

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[72]

Design
When using Mapnik, the main object you are dealing with is called the Map.
A Map object has the following parts:

When creating a Map object, you assign values for the following:

•	 The overall width and height of the map, in pixels.
•	 The spatial reference to use for the map.
•	 The background color to draw behind the contents of the map.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

You then define one or more Layers which hold the map's contents. Each Layer has
the following:

•	 A name.
•	 A Datasource object defining where to get the data for this layer from.

The Datasource can be a reference to a database, or it can be a shapefile
or other GDAL/OGR data source.

•	 A spatial reference to use for this layer. This can be different from the
spatial reference used by the map as a whole, if appropriate.

•	 A list of styles to apply to this layer. Each style is referred to by name,
since the styles are actually defined elsewhere (often in an XML stylesheet).

Finally, you define one or more Styles, which tell Mapnik how to draw the various
layers. Each Style has a name and of a list of Rules, which make up the main part
of the style's definition. Each Rule has:

•	 A minimum scale and maximum scale value (called the "scale denominator").
The Rule will only apply if the map's scale is within this range.

•	 A filter expression. The Rule will only apply to those features which match
this filter expression.

•	 A list of Symbolizers. These define how the matching features will be drawn
onto the map.

There are a number of different types of Symbolizers implemented by Mapnik:

•	 LineSymbolizer is used to draw a "stroke" along a line, a linear ring,
or around the outside of a polygon.

•	 LinePatternSymbolizer uses the contents of an image file (specified by
name) to draw the "stroke" along a line, a linear ring, or around the outside
of a polygon.

•	 PolygonSymbolizer is used to draw the interior of a polygon.
•	 PolygonPatternSymbolizer uses the contents of an image file (again

specified by name) to draw the interior of a polygon.
•	 PointSymbolizer uses the contents of an image file (specified by name)

to draw an image at a point.
•	 TextSymbolizer draws a feature's text. The text to be drawn is taken from

one of the feature's attributes, and there are numerous options to control
how the text is to be drawn.

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[74]

•	 RasterSymbolizer is used to draw raster data taken from any GDAL dataset.
•	 ShieldSymbolizer draws a textual label and a point together. This is similar

to the use of a PointSymbolizer to draw the image and a TextSymbolizer
to draw the label, except that it ensures that both the text and the image are
drawn together.

•	 BuildingSymbolizer uses a pseudo-3D effect to draw a polygon, to make it
appear that the polygon is a three-dimensional building.

•	 MarkersSymbolizer draws blue directional arrows or SVG markers
following the direction of polygon and line geometries.

When you instantiate a Symbolizer and add it to a style (either directly in code,
or via an XML stylesheet), you provide a number of parameters which define how
the Symbolizer should work. For example, when using the PolygonSymbolizer,
you can specify the fill color, the opacity, and a "gamma" value that helps draw
adjacent polygons of the same color without the boundary being shown:

p = mapnik.PolygonSymbolizer(mapnik.Color(127, 127, 0))
p.fill_opacity = 0.8
p.gamma = 0.65

If the Rule that uses this Symbolizer matches one or more polygons, those polygons
will be drawn using the given color, opacity, and gamma value.

Different rules can, of course, have different Symbolizers, as well as different filter
values. For example, you might set up rules which draw countries in different colors
depending on their population.

Example code
The following example program displays a simple world map using Mapnik:

import mapnik

symbolizer = mapnik.PolygonSymbolizer(
 mapnik.Color("darkgreen"))

rule = mapnik.Rule()
rule.symbols.append(symbolizer)

style = mapnik.Style()
style.rules.append(rule)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

layer = mapnik.Layer("mapLayer")
layer.datasource = mapnik.Shapefile(file="TM_WORLD_BORDERS-0.3.shp")
layer.styles.append("mapStyle")

map = mapnik.Map(800, 400)
map.background = mapnik.Color("steelblue")
map.append_style("mapStyle", style)
map.layers.append(layer)

map.zoom_all()
mapnik.render_to_file(map, "map.png", "png")

If you are running Mapnik Version 2.0, you should replace
the import mapnik statement in the first line of this
program with import mapnik2 as mapnik.

Notice that this program creates a PolygonSymbolizer to display the country
polygons, and then attaches the symbolizer to a Mapnik Rule object. The Rule
then becomes part of a Mapnik Style object. We then create a Mapnik Layer object,
reading the layer's map data from a shapefile data source. Finally, a Mapnik Map
object is created, the layer is attached, and the resulting map is rendered to a
PNG-format image file:

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[76]

Documentation
Mapnik's has reasonable documentation for an open source project: there are good
installation guides and some excellent tutorials, but the API documentation is often
confusing. The Python documentation is derived from the C++ documentation, and
concentrates on describing how the Python bindings are implemented rather than
how an end user would work with Mapnik using Python—there's a lot of technical
details that aren't relevant to the Python programmer, and many Python-specific
descriptions are missing.

The best way to get started with Mapnik is to follow the installation instructions,
and then to work your way through the supplied Python-specific tutorial. You can
then check out the Learning Mapnik page on the Mapnik Wiki:

http://trac.mapnik.org/wiki/LearningMapnik

It is well worth spending some time reading through the Mapnik Wiki, even
though not all of it is Python-specific. It is also a good idea to look at the Python API
documentation, despite its limitations. The main page lists the various classes, which
are available and a number of useful functions, many of which are documented. The
classes themselves list the methods and properties (attributes) you can access, and
even though many of these lack Python-specific documentation, you can generally
guess what they do.

Chapter 8, Using Python and Mapnik to Produce Maps, of this book
includes a comprehensive description of Mapnik and how to use
it from Python; you may find this more useful than the Python
API documentation on the Mapnik website.

Availability
Mapnik runs on all major operating systems, including MS Windows, Mac OS X,
and Linux. The main Mapnik website can be found at:

http://mapnik.org

Download links are provided for downloading the Mapnik source code, which
can be readily compiled if you are running on a Unix machine, and you can also
download prebuilt binaries for Windows and Mac OS X.

Make sure that you install Mapnik Version 2.0 or later; you will need
to use this version as you work through the examples in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

Summary
In this chapter, we looked at a number of important libraries for developing
geospatial applications using Python. We learned the following:

•	 GDAL is a C++ library for reading (and sometimes writing) raster-based
geospatial data.

•	 OGR is a C++ library for reading (and sometimes writing) vector-based
geospatial data.

•	 GDAL and OGR include Python bindings that are easy to use, and support
a large number of data formats.

•	 The PROJ.4 library, and its Pythonic pyproj wrapper, allow you to
convert between geographic coordinates (points on the Earth's surface)
and cartographic coordinates (x,y coordinates on a two-dimensional plane)
using any desired map projection and ellipsoid.

•	 The pyproj Geod class allows you to perform various geodetic calculations
based on points on the Earth's surface, a given distance, and a given
angle (azimuth).

•	 A geospatial data manipulation library called the Java Topology Suite was
originally developed for Java. This was then rewritten in C++ under the
name GEOS, and there is now a Python interface to GEOS called Shapely.

•	 Shapely makes it easy to represent geospatial data in the form of Points,
LineStrings, LinearRings, Polygons, MultiPoints, MultiLineStrings,
MultiPolygons, and GeometryCollections.

•	 As well as representing geospatial data, these classes allow you to perform
a variety of geospatial calculations.

•	 Mapnik is a tool for producing good-looking maps based on geospatial data.
•	 Mapnik can use an XML stylesheet to control the elements that appear on

the map, and how they are formatted. Styles can also be created by hand
if you prefer.

•	 Each Mapnik style has a list of Rules which are used to identify features to
draw onto the map.

•	 Each Mapnik rule has a list of Symbolizers that control how the selected
features are drawn.

www.it-ebooks.info

http://www.it-ebooks.info/

Python Libraries for Geospatial Development

[78]

While these tools are very powerful, you can't do anything with them until you
have some geospatial data to work with. Unless you are lucky enough to have
access to your own source of data, or are willing to pay large sums to purchase
data commercially, your only choice is to make use of the geospatial data which is
freely available on the Internet. These freely-available sources of geospatial
data are the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data
When creating a geospatial application, the data you use will be just as important
as the code you write. High-quality geospatial data, and in particular base maps and
imagery, will be the cornerstone of your application. If your maps don't look good,
then your application will be treated as the work of an amateur, no matter how well
you write the rest of your program.

Traditionally, geospatial data has been treated as a valuable and scarce resource,
being sold commercially for many thousands of dollars and with strict licensing
constraints. Fortunately, as with the trend towards "democratizing" geospatial tools,
geospatial data is now becoming increasingly available for free and with little or no
restriction on its use. There are still situations where you may have to pay for data,
for example, to guarantee the quality of the data, or if you need something that isn't
available elsewhere, but it is now usually just a case of downloading the data you
need, for free, from a suitable server.

This chapter provides an overview of some of these major sources of freely-available
geospatial data. This is not intended to be an exhaustive list, but rather to provide
information on the sources which are likely to be most useful to the Python
geospatial developer.

In this chapter, we will cover:

•	 Some of the major freely-available sources of vector-format geospatial data
•	 Some of the main freely-available sources of raster geospatial data
•	 Sources of other types of freely-available geospatial data, concentrating on

databases of city and other place names

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[80]

Sources of geospatial data in vector
format
Vector-based geospatial data represents physical features as collections of points,
lines, and polygons. Often, these features will have metadata associated with them.
In this section, we will look at some of the major sources of free vector-format
geospatial data.

OpenStreetMap
OpenStreetMap (http://openstreetmap.org) is a website where people can
collaborate to create and edit geospatial data. It describes itself as a "free editable
map of the whole world made by people like you."

The following screenshot shows a portion of a street map for Onchan, Isle of Man,
based on data from OpenStreetMap:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

Data format
OpenStreetMap does not use a standard format such as shapefiles to store its data.
Instead, it has developed its own XML-based format for representing geospatial
data in the form of nodes (single points), ways (sequences of points that define a
line), areas (closed ways that represent polygons), and relations (collections of
other elements). Any element (node, way, or relation) can have a number of tags
associated with it that provide additional information about the element.

Following is an example of how the OpenStreetMap XML data looks:

<osm>
 <node id="603279517" lat="-38.1456457"
 lon="176.2441646".../>
 <node id="603279518" lat="-38.1456583"
 lon="176.2406726".../>
 <node id="603279519" lat="-38.1456540"
 lon="176.2380553".../>
 ...
 <way id="47390936"...>
 <nd ref="603279517"/>
 <nd ref="603279518"/>
 <nd ref="603279519"/>
 <tag k="highway" v="residential"/>
 <tag k="name" v="York Street"/>
 </way>
 ...
 <relation id="126207"...>
 <member type="way" ref="22930719" role=""/>
 <member type="way" ref="23963573" role=""/>
 <member type="way" ref="28562757" role=""/>
 <member type="way" ref="23963609" role=""/>
 <member type="way" ref="47475844" role=""/>
 <tag k="name" v="State Highway 30A"/>
 <tag k="ref" v="30A"/>
 <tag k="route" v="road"/>
 <tag k="type" v="route"/>
 </relation>
</osm>

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[82]

Obtaining and using OpenStreetMap data
You can obtain geospatial data from OpenStreetMap in one of following three ways:

•	 You can use the OpenStreetMap API to download a subset of the data you
are interested in.

•	 You can download the entire OpenStreetMap database, called Planet.osm,
and process it locally. Note that this is a multi-gigabyte download.

•	 You can make use of one of the mirror sites that provide OpenStreetMap
data nicely packaged into smaller chunks and converted into other data
formats. For example, you can download the data for North America on a
state-by-state basis, in one of several available formats, including shapefiles.

Let's take a closer look at each of these three options.

The OpenStreetMap API
Using the OpenStreetMap API (http://wiki.openstreetmap.org/wiki/API), you
can download selected data from the OpenStreetMap database in one of following
three ways:

•	 You can specify a bounding box defining the minimum and maximum
longitude and latitude values, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

The API will return all of the elements (nodes, ways, and relations),
which are completely or partially inside the specified bounding box.

•	 You can ask for a set of changesets which have been applied to the map.
This returns all the changes made over a given time period, either for the
entire map or just for the elements within a given bounding box.

•	 You can download a specific element by ID, or all the elements which are
associated with a specified element (for example, all elements belonging
to a given relation).

OpenStreetMap provides a Python module called OsmApi, which makes it easy
to access the OpenStreetMap API. More information about this module can be
found at http://wiki.openstreetmap.org/wiki/PythonOsmApi.

Planet.osm
If you choose to download the entire OpenStreetMap database for processing
on your local computer, you will first need to download the entire Planet.osm
database. This database is available in two formats: a compressed XML-format file
containing all the nodes, ways, and relations in the OpenStreetMap database, or a
special binary format called PBF that contains the same information but is smaller
and faster to read.

PBF is replacing XML as the preferred data format; libraries
for reading and writing PBF files are available for various
languages, including Python.

The Planet.osm database is currently 23 GB in size if you download it in
XML format, or 18 GB if you download it in PBF format. Both formats can
be downloaded from http://planet.openstreetmap.org.

The entire dump of the Planet.osm database is updated weekly, but regular "diffs"
are produced which you can use to update your local copy of the Planet.osm
database without having to download the entire database each time. The daily diffs
are approximately 40 MB when they have been compressed.

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[84]

Mirror sites and extracts
Because of the size of the downloads, Planet.osm recommends that you use a
mirror site rather than downloading it directly from their servers. Extracts are also
provided, which allow you to download the data for a given area rather than the
entire world. These mirror sites and extracts are maintained by third parties; for
a list of the URLs, see http://wiki.openstreetmap.org/wiki/Planet.osm.

Note that these extracts are often made available in alternative formats on the mirror
sites, including shapefiles and direct database dumps.

Working with OpenStreetMap data
When you download Planet.osm, you will end up with an enormous file on your
hard disk—currently it would be 250 GB if you downloaded the data in XML format.
You have two main options for processing this file using Python:

•	 You could use a library such as imposm (http://dev.omniscale.net/
imposm.parser) to read through the file and extract the information
you want

•	 You could import the data into a database, and then access that database
from Python

In most cases, you will want to import the data into a database before you
attempt to work with it. To do this, use the excellent osm2pgsql tool, which is
available at http://wiki.openstreetmap.org/wiki/Osm2pgsql. osm2pgsql
was created to import the entire Planet.osm data into a PostgreSQL database,
and so is highly optimized.

Once you have imported the Planet.osm data into your local database, you can
use the psycopg2 library, as described in Chapter 6, GIS in the Database, to access
the OpenStreetMap data from your Python programs.

TIGER
The United States Census Bureau have made available a large amount of geospatial
data under the name TIGER (Topologically Integrated Geographic Encoding and
Referencing System). The TIGER data includes information on streets, railways,
rivers, lakes, geographic boundaries, and legal and statistical areas such as school
districts, and urban regions. Separate cartographic boundary and demographic files
are also available for download.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

The following screenshot shows state and urban area outlines for California, based
on data downloaded from the TIGER website:

Because it is produced by the US government, TIGER only includes information for
the United States and its protectorates (Puerto Rico, American Samoa, the Northern
Mariana Islands, Guam, and the US Virgin Islands). For these areas, TIGER is an
excellent source of geospatial data.

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[86]

Data format
Up until 2006, the US Census Bureau provided the TIGER data in a custom
text-based format called TIGER/Line. TIGER/Line files stored each type of
record in a separate file, and required custom tools to process. Fortunately,
OGR supports TIGER/Line files should you need to read them.

Since 2007, all TIGER data has been produced in the form of shapefiles,
which are (somewhat confusingly) called TIGER/Line shapefiles.

You can download up-to-date shapefiles containing geospatial data such as
street address ranges, landmarks, census blocks, metropolitan statistical areas,
and school districts. For example, the "Core Based Statistical Area" shapefile
contains the outline of each statistical area:

This particular feature has the following metadata associated with it:

ALAND 2606489666.0
AWATER 578526971.0
CBSAFP 18860
CSAFP None
FUNCSTAT S
INTPTLAT +41.7499033
INTPTLON -123.9809983
LSAD M2
MEMI 2
MTFCC G3110
NAME Crescent City, CA
NAMELSAD Crescent City, CA Micropolitan Statistical Area
PARTFLG N

Information on these various attributes can be found in the extensive documentation
available at the TIGER website.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

You can also download shapefiles which include demographic data such as
population, number of houses, median age, and racial breakdown. For example,
the following map tints each metropolitan area in California according to its
total population:

Obtaining and using TIGER data
The TIGER datafiles can be downloaded from:

http://www.census.gov/geo/www/tiger/index.html

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[88]

Make sure that you download the technical documentation, as it describes the
various files you can download, and all of the attributes associated with each feature.
For example, if you want to download a current set of urban areas for the US, the
shapefile you are looking for is called tl_2012_us_uac10.shp and it includes
information such as the city or town name and the size in square meters.

Natural Earth
Natural Earth (http://www.naturalearthdata.com) is a website that provides
public domain vector and raster map data at high, medium, and low resolutions.
Two types of vector map data are provided:

•	 Cultural map data: This includes polygons for country, state or province,
urban area, and park outlines, as well as point and line data for populated
places, roads, and railways:

•	 Physical map data: This includes polygons and linestrings for land masses,
coastlines, oceans, minor islands, reefs, rivers, lakes, and so on:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

All of this can be downloaded and used freely in your geospatial programs, making
the Natural Earth site an excellent source of data for your application.

Data format
All the vector-format data on the Natural Earth website is provided in the form
of shapefiles. All the data is in geographic (latitude and longitude) coordinates,
using the standard WGS84 datum, making it very easy to use these files in your
own application.

Obtaining and using Natural Earth vector data
The Natural Earth site is uniformly excellent, and downloading the files you want is
easy; simply click on the Get the Data link on the main page. You can then choose the
resolution and the type of data you are looking for, and you can choose to download
either a single shapefile, or a number of shapefiles bundled together. Once they are
downloaded, you can use the Python libraries discussed in the previous chapter to
work with the contents of these shapefiles.

The Natural Earth website is very comprehensive; it includes detailed information
about the geospatial data you can download, and a forum where you can ask
questions and discuss any problems you may have.

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[90]

Global, self-consistent, hierarchical,
high-resolution shoreline database (GSHHS)
The US National Geophysical Data Center (part of the NOAA) have been working
on a project to produce high-quality vector shoreline data for the entire world. The
resulting database, called the Global self-consistent, hierarchical, high-resolution
shoreline database (GSHHS), includes detailed vector data for shorelines, lakes,
and rivers at five different resolutions. The data has been broken out into four
different "levels": ocean boundaries, lake boundaries, island-in-lake boundaries,
and pond-on-island-in-lake boundaries.

The following screenshot shows European shorelines, lakes, and islands, taken from
the GSHHS database:

The GSHHS has been constructed out of two public-domain geospatial databases:
the World Data Bank II includes data on coastlines, lakes, and rivers, while the World
Vector Shoreline only provides coastline data. Because the World Vector Shoreline
database has more accurate data, but lacks information on rivers and lakes, the two
databases were combined to provide the most accurate information possible. After
merging the databases, the author then manually edited the data to make it consistent
and to remove a number of errors. The result is a high-quality database of land and
water boundaries worldwide.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

More information about the process used to create the GSHHS
database can be found at: http://www.soest.hawaii.edu/
pwessel/papers/1996/JGR_96/jgr_96.html

Data format
The GSHHS database is available in two different formats: a binary data format
specific to the Generic Mapping Tools (http://gmt.soest.hawaii.edu), and
as a series of shapefiles.

Generic Mapping Tools (GMT) is a collection of tools for working
with geospatial data. Because they don't have Python bindings, we
won't be working with GMT in this book.

If you download the data in shapefile format, you will end up with a total of twenty
separate shapefiles, one for every combination of resolution and level:

•	 The resolution represents the amount of detail in the map:

Resolution Code Resolution Includes
c Crude Features greater than 500

sq.km.
l Low Features greater than 100

sq.km.
i Intermediate Features greater than 20 sq.km.
h High Features greater than 1 sq.km.
f Full Every feature

•	 The level indicates the type of boundaries that are included in the shapefile:

Level Code Includes
1 Ocean boundaries
2 Lake boundaries
3 Island-in-lake boundaries
4 Pond-on-island-in-lake boundaries

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[92]

The name of the shapefile tells you the resolution and level of the included data.
For example, the shapefile for ocean boundaries at full resolution would be named
GSHHS_f_L1.shp.

Each shapefile consists of a single layer containing the various polygon features
making up the given type of boundary.

Obtaining the GSHHS database
The main GSHHS website can be found at:

http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html

The files are available in both GMT and shapefile format—unless you particularly
want to use the Generic Mapping Tools, you will most likely want to download the
shapefile version. Once you have downloaded the data, you can use OGR to read
the files and extract the data from them in the usual way.

World Borders Dataset
Many of the data sources we have examined so far are rather complex. If all you are
looking for is some simple vector data covering the entire world, the World Borders
Dataset may be all you need. While some of the country borders are apparently
disputed, the simplicity of the World Borders Dataset makes it an attractive choice
for many basic geospatial applications.

The following map was generated using the World Borders Dataset:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

The World Borders Dataset will be used extensively throughout this book.
Indeed, you have already seen an example program in Chapter 3, Python Libraries
for Geospatial Development, where we used Mapnik to generate a world map using
the World Borders Dataset shapefile.

Data format
The World Borders Dataset is available in the form of a shapefile with a single layer
and one feature for each country. For each country, the feature has one or more
polygons that define the country's boundary, along with useful attributes including
the name of the country or area, various ISO, FIPS, and UN codes identifying the
country, a region and subregion classification, the country's population, land area,
and latitude/longitude.

The various codes make it easy to match the features against your own country-
specific data, and you can also use information such as the population and area to
highlight different countries on the map. For example, the preceding screenshot
uses the "region" field to draw each geographic region using a different color.

Obtaining World Borders Dataset
The World Borders Dataset can be downloaded from:

http://thematicmapping.org/downloads/world_borders.php

This website also provides further details on the contents of the dataset, including links
to the United Nations' website where the region and subregion codes are listed.

Sources of geospatial data in raster
format
One of the most enthralling aspects of programs such as Google Earth is the ability
to "see" the Earth as you appear to fly above it. This is achieved by displaying
satellite and aerial photographs carefully stitched together to provide the illusion
that you are viewing the Earth's surface from above.

While writing your own version of Google Earth would be an almost impossible
task, it is possible to obtain free satellite imagery in the form of raster format
geospatial data, which you can then use in your own geospatial applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[94]

Raster data is not just limited to images of the Earth's surface however; other useful
information can be found in raster format—for example, digital elevation maps
(DEM) contain the height of each point on the Earth's surface, which can then be
used to calculate the elevation of any desired point. DEM data can also be used to
generate two-dimensional images that represent different heights using different
shades or colors, or to simulate the shading effect of hills using a technique called
shaded relief imagery.

In this section, we will look at an extremely comprehensive source of satellite
imagery, the raster-format data available on the Natural Earth site, and some
freely-available sources of digital elevation data.

Landsat
Landsat is an ongoing effort to collect images of the Earth's surface. The name is
derived from land and satellite. A group of dedicated satellites have been continuously
gathering images since 1972. Landsat imagery includes black and white, traditional
red/green/blue (RGB) color images, as well as infrared and thermal imaging. The
color images are typically at a resolution of 30 meters per pixel, while the black and
white images from Landsat 7 are at a resolution of 15 meters per pixel.

The following screenshot shows color-corrected Landsat satellite imagery for the city
of Rotorua, New Zealand. The city itself is on the southern (bottom) edge of a lake:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

Data format
Landsat images are typically available in the form of GeoTIFF files. GeoTIFF is a
geospatially tagged TIFF image file format, allowing images to be georeferenced
onto the Earth's surface. Most GIS software and tools, including GDAL, are able
to read GeoTIFF formatted files.

Because the images come directly from a satellite, the files you can download
typically store separate bands of data in separate files. Depending on the satellite
the data came from, there can be up to eight different bands of data—for example,
Landsat 7 generates separate red, green, and blue bands, as well as three different
infrared bands, a thermal band, and a high-resolution "panchromatic" (black-and-
white) band.

To understand how this works, let's take a closer look at the process required to create
the preceding screenshot. The raw satellite data consists of eight separate GeoTIFF
files, one for each band. Band 1 contains the blue color data, band 2 contains the green
color data, and band 3 contains the red color data. These separate files can then be
combined using GDAL to produce a single color image as follows:

Another complication with the Landsat data is that the images produced by the
satellites are distorted by various factors, including the ellipsoid shape of the
Earth, the elevation of the terrain being photographed, and the orientation of the
satellite as the image is taken. The raw data is therefore not a completely accurate
representation of the features being photographed. Fortunately a process known
as orthorectification can be used to correct these distortions. In most cases,
orthorectified versions of the satellite images can be downloaded directly.

Obtaining Landsat imagery
The easiest way to access Landsat imagery is to make use of the University of
Maryland's Global Land Cover Facility website:

http://glcf.umiacs.umd.edu/data/landsat

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[96]

Click on the Download via Search and Preview Tool link, and then click on Map
Search. Select ETM+ from the Landsat Imagery list, and if you zoom in on the
desired part of the Earth you will see the areas covered by various Landsat images:

If you choose the selection tool (), you will be able to click on a desired area, then
select Preview & Download to choose the image to download.

Alternatively, if you know the path and row number of the desired area of the earth,
you can directly access the files via FTP. The path and row number (as well as the
world reference system (WRS) used by the data) can be found on the Preview &
Download page:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

If you want to download the image files via FTP, the main FTP site is at:

ftp://ftp.glcf.umd.edu/glcf/Landsat

The directories and files have complex names which include the WRS, the path and
row number, the satellite number, the date at which the image was taken, and the
band number. For example, a file named p091r089_7t20001123_z55_nn10.tif.
gz refers to path 091 and row 089, which happens to be the portion of Tasmania
highlighted in the preceding screenshot. The 7 refers to the number of the Landsat
satellite that took the image, and 20001123 is a datestamp indicating when the image
was taken. The final part of the filename, nn10, tells us that the file is for band 1.

By interpreting the filename in this way, you can download the correct files, and
match the files against the desired bands. For more information on what all these
different satellites and bands mean, refer to the documentation links in the upper
right-hand corner of the Global Land Cover Facility website:

http://glcf.umiacs.umd.edu/data/landsat

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[98]

Natural Earth
In addition to providing vector map data, the Natural Earth website (http://www.
naturalearthdata.com) makes available five different types of raster maps at both
1:10 million and 1:50 million scale:

•	 The rather esoterically-named Cross-Blended Hypsometric Tints provide
visualizations where the color is selected based on both elevation and
climate. These images are then often combined with shaded relief images
to make a realistic-looking view of the Earth's surface.

•	 Natural Earth 1 and Natural Earth 2 are more idealized views of the
Earth's surface, using a light palette and softly-blended colors, providing
an excellent backdrop for drawing your own geospatial data.

•	 The Ocean Bottom dataset uses a combination of shaded relief imagery
and depth-based coloring to provide a visualization of the ocean floor.

•	 The Shaded Relief imagery uses greyscale to "shade" the surface of the
Earth based on high-resolution elevation data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

One additional raster dataset is available that provides bathymetry (underwater
depth) visualizations at 1:50 million scale. The following screenshot is an example
of the bathymetry data for the oceans surrounding New Zealand:

Data format
Most of the raster-format data on the Natural Earth site is in the standard TIFF image
format. The one exception is the bathymetry data, which is provided in the form of
a layered Adobe Photoshop file with differing shades of blue associated with each
depth band.

In all cases, the raster data is in geographic (latitude/longitude) projection, and
uses the standard WGS84 datum, making it easy to translate between latitude
and longitude coordinates and pixel coordinates within the raster image.

Obtaining and using Natural Earth raster data
As with the vector data, the raster-format data on the Natural Earth site is easy to
download; simply go to the site and follow the Get the Data link to download the
raster-format data. You can choose to download the data at either 1:10 million scale,
or 1:50 million scale, and you can also choose to download the large or small size
of each file.

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[100]

Once you have downloaded the TIFF format data, you can open the file in an image
editor, or use a standard command-line utility such as gdal_translate to manipulate
the image. For the bathymetry data, you can open the file directly in Adobe Photoshop,
or use a cheaper alternative such as the GIMP or Flying Meat's Acorn. Each depth band
is a separate layer in the file, and by default is associated with a specific shade of blue.
You can choose different colors if you prefer, and can select which layers to show or
hide. When you are finished, you can then flatten the image and save it as a TIFF file
for use in your programs.

Global Land One-kilometer Base Elevation
(GLOBE)
GLOBE is an international effort to produce high-quality, medium-resolution digital
elevation (DEM) data for the entire world. The result is a set of freely-available DEM
files, which can be used for many types of geospatial analysis and development.

The following screenshot shows GLOBE DEM data for northern Chile, converted to
a grayscale image:

Data format
Like all DEM data, GLOBE uses raster values to represent the elevation at a given point
on the Earth's surface. In the case of GLOBE, this data consists of 32-bit signed integers
representing the height above (or below) sea level, in meters. Each cell or "pixel" within
the raster data represents the elevation of a square on the Earth's surface which is 30
arc-seconds of longitude wide, and 30 arc-seconds of latitude high:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

Note that 30 arc-seconds equals approximately 0.00833 degrees of latitude
or longitude, which equates to a square roughly one kilometer wide and
one kilometer high.

The raw GLOBE data is simply a long list of 32-bit integers in big-endian format,
where the cells are read left-to-right and then top-to-bottom, like this:

x=0, y=0 x=1, y=0 … x=10800, y=0
x=0, y=1 x=1, y=1 … x=10800, y=1
… … … …
x=0, y=6000 x=1, y=6000 … x=10800,y=6000

A separate header (.hdr) file provides more detailed information about the DEM
data, including the width and height and its georeferenced location. Tools such as
GDAL are able to read the raw data as long as the header file is provided.

Obtaining and using GLOBE data
The main website for the GLOBE project can be found at:

http://www.ngdc.noaa.gov/mgg/topo/globe.html

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[102]

For detailed documentation of the GLOBE data, you can follow the Get Data
Online link to download precalculated sets of data or to choose a given area
to download DEM data for.

If you download one of the premade tiles, you will need to also download the
associated .hdr file so that the data can be georeferenced and processed using
GDAL. If you choose a custom area to download, a suitable .hdr file will be
created for you—just make sure you choose an export type of ESRI ArcView
so that the header is created in the format expected by GDAL.

If you download a premade tile, the header files can be quite hard to find.
Suitable header files in ESRI format can be downloaded from:

http://www.ngdc.noaa.gov/mgg/topo/elev/esri/hdr

Once you have downloaded the data, simply place the raw DEM file into the
same directory as the .hdr file. You can then open the file directly using GDAL,
like this:

import osgeo.gdal
dataset = osgeo.gdal.Open("j10g.bil")

The dataset will consist of a single band of raster data, which you can then translate,
read or process using the GDAL library and related tools.

To see an example of using GDAL to process DEM
data, please refer to the GDAL section in Chapter 3,
Python Libraries for Geospatial Development.

National Elevation Dataset (NED)
The National Elevation Dataset (NED) is a high-resolution digital elevation dataset
provided by the US Geological Survey. It covers the Continental United States, Alaska,
Hawaii, and other US territories. Most of the United States is covered by elevation
data at 30 meters/pixel or 10 meters/pixel resolution, with selected areas available
at 3 meters/pixel. Alaska is generally only available at 60 meters/pixel resolution.

The following shaded relief screenshot was generated using NED elevation data for
the Marin Headlands, San Francisco:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

Data format
The NED data can be downloaded in various formats including GeoTIFF and
ArcGRID, both of which can be processed using GDAL.

As with other DEM data, each "pixel" in the raster image represents the height of a
given area on the Earth's surface. For NED data, the height is in meters above or below
a reference height known as the North American Vertical Datum of 1988. This roughly
equates to the height above or below sea level, allowing for tidal and other variations.

Obtaining and using NED data
The main website for the National Elevation Dataset can be found at:

http://ned.usgs.gov

This site describes the NED dataset; to download the data you'll have to use the
National Map Viewer, which is available at:

http://viewer.nationalmap.gov/viewer/

To use the viewer, zoom in to the area you want, and then click on the Download
Data option at the top of the page:

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[104]

Click on this option to download by the current map extent, and select Elevation
as the data you want to download. You can choose from a variety of data formats;
GeoTIFF is a good option to use. A window then appears to show the various sets
of elevation data you can download:

Downloading data from the National Map Viewer is a bit like buying something
online: you add the desired item to your "cart", then you "checkout" your order
and enter your e-mail address. Once you "place your order", you'll be sent an
e-mail with links to where you can download the data you need.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

Unfortunately, the National Map Viewer is quite slow to make the data available;
expect to spend several minutes waiting for the data to start downloading.

You will receive a compressed .zip format file containing the data you want,
along with a large number of metadata files and documentation about the
National Elevation Dataset.

Note that you might need to rename the files to remove
the backslashes before you can open them; GDAL can
get confused by filenames with backslashes.

Once you have downloaded the desired GeoTIFF files, you can open them in GDAL
just as you would open any other raster dataset:

import osgeo.gdal
dataset = osgeo.gdal.Open("dem.tif")

Finally, if you are working with DEM data you might like to check out the gdaldem
utility, which is included as part of the GDAL download. This program makes it easy
to view and manipulate DEM raster data. The preceding shaded relief screenshot
was created using this utility, like this:

gdaldem hillshade dem.tif image.tiff

Sources of other types of geospatial data
The vector and raster geospatial data we have looked at so far is generally used to
provide images or information about the Earth itself. However, geospatial applications
often have to place data onto the surface of the Earth—that is, georeference something
such as a place or event. In this section, we will look at two additional sources of
geospatial data; in this case databases that place cities, towns, natural features, and
points of interest onto the surface of the Earth.

This data can be used in two important ways. First, it can be used to label features—
for example, to place the label "London" onto a georeferenced image of southern
England. Secondly, this data can be used to locate something by name, for example
by allowing the user to choose a city from a drop-down list and then draw a map
centered around that city.

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[106]

GEOnet Names Server
The GEOnet Names Server provides a large database of place names. It is an
official repository of non-American place names, as decided by the US Board
on geographic names.

The following screenshot is an extract from the GEOnet Names Server database:

As you can see from this example, this database includes longitude and latitude values,
as well as codes indicating the type of place (populated place, administrative district,
natural feature, and so on), the elevation (where relevant), and a code indicating the
type of name (official, conventional, historical, and so on).

The GEOnet Names Server database contains approximately 5 million features,
with 8 million names. It includes every country other than the US and Antarctica.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

Data format
The GEOnet Names Server's data is provided as a simple tab-delimited text
file, where the first row in the file contains the field names and the subsequent
rows contains the various features, one per row. Importing this name data into
a spreadsheet or database is trivial.

For more information on the supplied fields and what the various codes mean,
please refer to:

http://earth-info.nga.mil/gns/html/gis_countryfiles.html

Obtaining and using GEOnet Names Server data
The main website for the GEOnet Names Server is:

http://earth-info.nga.mil/gns/html

The main interface to the GEOnet Names Server is through various search tools
that provide filtered views onto the data. To download the data directly rather
than through searching, go to:

http://earth-info.nga.mil/gns/html/namefiles.htm

Each country is listed; simply click on the hyperlink for the country you want data
on and your browser will download a .zip file containing the tab-delimited text file
containing all the features within that country. There is also an option to download
all the countries in one file, which is a 370 MB download.

Once you have downloaded the file and decompressed it, you can load the file
directly into a spreadsheet or database for further processing. By filtering on the
Feature Classification (FC), Feature Designation Code (DSG), and other fields,
you can select the particular set of place names you want, and then use this data
directly in your application.

Geographic Names Information System
(GNIS)
The Geographic Names Information System (GNIS) is the US equivalent of the
GEOnet Names Server—it contains name information for the United States.

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[108]

The following screenshot is an extract from the GNIS database:

GNIS includes natural, physical, and cultural features, though it does not include
road or highway names.

As with the GEOnames database, the GNIS database contains the official names
used by the US Government, as decided by the US Board on Geographic Names.
GEOnames is run by the US Geological Survey, and currently contains over 2.2
million features.

Data format
GNIS names are available for download as "pipe-delimited" compressed text files.
This format uses the "pipe" character (|) to separate the various fields:

FEATURE_ID|FEATURE_NAME|FEATURE_CLASS|...
1397658|Ester|Populated Place|...
1397926|Afognak|Populated Place|...

The first line contains the field names, and subsequent lines contain the various
features. The available information includes the name of the feature, its type, elevation,
the county and state the feature is in, the latitude/longitude coordinate of the feature
itself, and the latitude/longitude coordinate for the "source" of the feature (for streams,
valleys, and so on).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

Obtaining and using GNIS Data
The main GNIS website can be found at:

http://geonames.usgs.gov/domestic

Click on the Download Domestic Names hyperlink, and you will be given options
to download all the GNIS data on a state-by-state basis, or all the features in a single
large download. You can also download "topical gazetteers" that include selected
subsets of the data—all populated places, all historical places, and so on.

If you click on one of the file format hyperlinks, a pop-up window will appear
describing the structure of the files in more detail.

Once you have downloaded the data you want, you can simply import the file into
a database or spreadsheet. To import into a spreadsheet, use the "Delimited" format
and enter | as the custom delimiter character. You can then sort or filter the data in
whatever way you want so that you can use it in your application.

Choosing your geospatial data source
If you need to obtain map data, images, elevations, or place names for use in your
geospatial applications, the sources we have covered should give you everything
you need. Of course, this is not an exhaustive list—other sources of data are available,
and can be found online using a search engine or sites such as http://freegis.org.

The following table lists the various requirements you may have for geospatial data
in your application development, and which data source(s) may be most appropriate
in each case:

Requirement Suitable data sources
Simple base map World Borders Dataset
Shaded relief (pseudo-3D) maps GLOBE or NED data processed

using gdaldem; Natural Earth
raster images

Street map OpenStreetMap
City outlines TIGER (US); Natural Earth

urban areas
Detailed country outlines GSHHS Level 1
Photorealistic images of the Earth Landsat
City and place names GNIS (US) or Geonet Names

Server (elsewhere)

www.it-ebooks.info

http://www.it-ebooks.info/

Sources of Geospatial Data

[110]

Summary
In this chapter, we have surveyed a number of sources of freely-available geospatial
data. We have learned that:

•	 OpenStreetMap is a collaborative website where people can create and edit
vector maps worldwide.

•	 TIGER is a service of the US Geological Survey providing geospatial data
on streets, railways, rivers, lakes, geographic boundaries, and legal and
statistical entities such as school districts and urban regions.

•	 Natural Earth Data is an excellent source for physical and cultural
boundaries in vector format, as well as various raster-format visualizations
of the Earth.

•	 GSHHS is a high-resolution shoreline database containing detailed vector
data for shorelines, lakes, and rivers worldwide.

•	 The World Borders Dataset is a simple vector data source containing
country borders and related data for the entire world bundled into one
convenient package.

•	 Landsat provides detailed raster satellite imagery of all land masses on
the Earth.

•	 GLOBE provides medium-resolution digital elevation (DEM) data for the
entire world.

•	 The National Elevation Dataset includes high-resolution digital elevation
(DEM) data for the Continental United States, Alaska, Hawaii, and other
US territories.

•	 The GEOnet Names Server provides information on official place names
for every country other than the US and Antarctica.

•	 GNIS provides official place names for the United States.

In the next chapter, we will use the Python toolkits described in Chapter 3, Python
Libraries for Geospatial Development, to work with some of this geospatial data in
interesting and useful ways.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial
Data in Python

In this chapter, we combine the Python libraries and geospatial data covered earlier
to accomplish a variety of tasks. These tasks have been chosen to demonstrate various
techniques for working with geospatial data in your Python programs; while in some
cases there are quicker and easier ways to achieve these results (for example, using
command-line utilities), we will create these solutions in Python so you can learn
how to work with geospatial data in your own Python programs.

This chapter will cover:

•	 Reading and writing geospatial data in both vector and raster format
•	 Changing the datums and projections used by geospatial data
•	 Representing and storing geospatial data within your Python programs
•	 Performing geospatial calculations on points, lines, and polygons
•	 Converting and standardizing units of geometry and distance

This chapter is formatted like a cookbook, detailing various real-world tasks you
might want to perform and providing "recipes" for accomplishing them.

Pre-requisites
If you want to follow through the examples in this chapter, make sure you have
the following Python libraries installed on your computer:

•	 GDAL/OGR Version 1.9 or later (http://gdal.org)
•	 pyproj Version 1.9.2 or later (http://code.google.com/p/pyproj)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[112]

•	 Shapely Version 1.2 or later (http://trac.gispython.org/lab/wiki/
Shapely)

For more information about these libraries and how to use them, including
references to the API documentation for each library, please refer to Chapter 3,
Python Libraries for Geospatial Development.

Reading and writing geospatial data
In this section, we will look at some examples of tasks you might want to perform
which involve reading and writing geospatial data in both vector and raster format.

Task – calculate the bounding box for each
country in the world
In this slightly contrived example, we will make use of a shapefile to calculate the
minimum and maximum latitude/longitude values for each country in the world.
This "bounding box" can be used, among other things, to generate a map of a
particular country. For example, the bounding box for Turkey would look like this:

Start by downloading the World Borders Dataset from:

http://thematicmapping.org/downloads/world_borders.php

Decompress the .zip archive and place the various files that make up the shapefile
(the .dbf, .prj, .shp, and .shx files) together in a suitable directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

Next, we need to create a Python program which can read the borders for each country.
Fortunately, using OGR to read through the contents of a shapefile is trivial:

from osgeo import ogr

shapefile = ogr.Open("TM_WORLD_BORDERS-0.3.shp")
layer = shapefile.GetLayer(0)

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)

The feature consists of a geometry and a set of fields. For this data, the geometry is a
polygon that defines the outline of the country, while the fields contain various pieces
of information about the country. According to the Readme.txt file, the fields in this
shapefile include the ISO-3166 three-letter code for the country (in a field named ISO3)
as well as the name for the country (in a field named NAME). This allows us to obtain the
country code and name like this:

countryCode = feature.GetField("ISO3")
countryName = feature.GetField("NAME")

We can also obtain the country's border polygon using:

geometry = feature.GetGeometryRef()

There are all sorts of things we can do with this geometry. For example, we could
calculate the geometry's centroid, test if a point lies within the polygon, or convert
the polygon to WKT format. In this case, however, we want to obtain the bounding
box or envelope for the polygon. We can do this in the following way:

minLong,maxLong,minLat,maxLat = geometry.GetEnvelope()

Let's put all this together into a complete working program:

calcBoundingBoxes.py

from osgeo import ogr

shapefile = ogr.Open("TM_WORLD_BORDERS-0.3.shp")
layer = shapefile.GetLayer(0)

countries = [] # List of (code,name,minLat,maxLat,
 # minLong,maxLong) tuples.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[114]

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 countryCode = feature.GetField("ISO3")
 countryName = feature.GetField("NAME")
 geometry = feature.GetGeometryRef()
 minLong,maxLong,minLat,maxLat = geometry.GetEnvelope()

 countries.append((countryName, countryCode,
 minLat, maxLat, minLong, maxLong))

countries.sort()

for name,code,minLat,maxLat,minLong,maxLong in countries:
 print "%s (%s) lat=%0.4f..%0.4f, long=%0.4f..%0.4f" \
 % (name, code,minLat, maxLat,minLong, maxLong)

If you aren't storing the TM_WORLD_BORDERS-0.3.shp shapefile in
the same directory as the script itself, you will need to add the directory
where the shapefile is stored to your ogr.Open() call. You can also
store the boundingBoxes.shp shapefile in a different directory if you
prefer, by changing the path where this shapefile is created.

Running this program produces the following output:

% python calcBoundingBoxes.py
Afghanistan (AFG) lat=29.4061..38.4721, long=60.5042..74.9157
Albania (ALB) lat=39.6447..42.6619, long=19.2825..21.0542
Algeria (DZA) lat=18.9764..37.0914, long=-8.6672..11.9865

Task – save the country bounding boxes into
a shapefile
While the previous example simply printed out the latitude and longitude values, it
might be more useful to draw the bounding boxes onto a map. To do this, we have to
convert the bounding boxes into polygons, and save these polygons into a shapefile.

Creating a shapefile involves the following steps:

1.	 Define the spatial reference used by the shapefile's data. In this case, we'll use
the WGS84 datum and unprojected geographic coordinates (that is latitude
and longitude values). You can define this spatial reference using OGR in the
following way:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

from osgeo import osr

spatialReference = osr.SpatialReference()
spatialReference.SetWellKnownGeogCS('WGS84')

2.	 We can now create the shapefile itself using this spatial reference:
from osgeo import ogr

driver = ogr.GetDriverByName("ESRI Shapefile")
dstFile = driver.CreateDataSource("boundingBoxes.shp"))
dstLayer = dstFile.CreateLayer("layer", spatialReference)

3.	 After creating the shapefile, you next define the various fields which
will hold the metadata for each feature. In this case, let's add two fields,
to store the country name and ISO-3166 code for each country:
fieldDef = ogr.FieldDefn("COUNTRY", ogr.OFTString)
fieldDef.SetWidth(50)
dstLayer.CreateField(fieldDef)

fieldDef = ogr.FieldDefn("CODE", ogr.OFTString)
fieldDef.SetWidth(3)
dstLayer.CreateField(fieldDef)

4.	 We now need to create the geometry for each feature—in this case, a polygon
defining the country's bounding box. A polygon consists of one or more linear
rings; the first linear ring defines the exterior of the polygon, while additional
rings define "holes" inside the polygon. In this case, we want a simple polygon
with a rectangular exterior and no holes:
linearRing = ogr.Geometry(ogr.wkbLinearRing)
linearRing.AddPoint(minLong, minLat)
linearRing.AddPoint(maxLong, minLat)
linearRing.AddPoint(maxLong, maxLat)
linearRing.AddPoint(minLong, maxLat)
linearRing.AddPoint(minLong, minLat)

polygon = ogr.Geometry(ogr.wkbPolygon)
polygon.AddGeometry(linearRing)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[116]

You may have noticed that the coordinate (minLong,
minLat) was added to the linear ring twice. This is
because we are defining line segments rather than
just points—the first call to AddPoint() defines
the starting point, and each subsequent call to
AddPoint() adds a new line segment to the linear
ring. In this case, we start in the lower-left corner and
move counter-clockwise around the bounding box
until we reach the lower-left corner again:

5.	 Once we have the polygon, we can use it to create a feature:
feature = ogr.Feature(dstLayer.GetLayerDefn())
feature.SetGeometry(polygon)
feature.SetField("COUNTRY", countryName)
feature.SetField("CODE", countryCode)
dstLayer.CreateFeature(feature)
feature.Destroy()

Notice how we use the setField() method to store the feature's metadata.
We also have to call the Destroy() method to close the feature once we have
finished with it; this ensures that the feature is saved into the shapefile.

6.	 Finally, we call the output shapefile's Destroy() method to close the file:
dstFile.Destroy()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

Putting all this together, and combining it with the code from the previous recipe
to calculate the bounding boxes for each country in the World Borders Dataset
shapefile, we end up with the following complete program:

boundingBoxesToShapefile.py

import os, os.path, shutil

from osgeo import ogr
from osgeo import osr

Open the source shapefile.

srcFile = ogr.Open("TM_WORLD_BORDERS-0.3.shp")
srcLayer = srcFile.GetLayer(0)

Open the output shapefile.

if os.path.exists("bounding-boxes"):
 shutil.rmtree("bounding-boxes")
os.mkdir("bounding-boxes")

spatialReference = osr.SpatialReference()
spatialReference.SetWellKnownGeogCS('WGS84')

driver = ogr.GetDriverByName("ESRI Shapefile")
dstPath = os.path.join("bounding-boxes", "boundingBoxes.shp")
dstFile = driver.CreateDataSource(dstPath)
dstLayer = dstFile.CreateLayer("layer", spatialReference)

fieldDef = ogr.FieldDefn("COUNTRY", ogr.OFTString)
fieldDef.SetWidth(50)
dstLayer.CreateField(fieldDef)

fieldDef = ogr.FieldDefn("CODE", ogr.OFTString)
fieldDef.SetWidth(3)
dstLayer.CreateField(fieldDef)

Read the country features from the source shapefile.

for i in range(srcLayer.GetFeatureCount()):
 feature = srcLayer.GetFeature(i)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[118]

 countryCode = feature.GetField("ISO3")
 countryName = feature.GetField("NAME")
 geometry = feature.GetGeometryRef()
 minLong,maxLong,minLat,maxLat = geometry.GetEnvelope()

 # Save the bounding box as a feature in the output
 # shapefile.

 linearRing = ogr.Geometry(ogr.wkbLinearRing)
 linearRing.AddPoint(minLong, minLat)
 linearRing.AddPoint(maxLong, minLat)
 linearRing.AddPoint(maxLong, maxLat)
 linearRing.AddPoint(minLong, maxLat)
 linearRing.AddPoint(minLong, minLat)

 polygon = ogr.Geometry(ogr.wkbPolygon)
 polygon.AddGeometry(linearRing)

 feature = ogr.Feature(dstLayer.GetLayerDefn())
 feature.SetGeometry(polygon)
 feature.SetField("COUNTRY", countryName)
 feature.SetField("CODE", countryCode)
 dstLayer.CreateFeature(feature)
 feature.Destroy()

All done.

srcFile.Destroy()
dstFile.Destroy()

The only unexpected twist in this program is the use of a subdirectory called
bounding-boxes that is used to store the output shapefile. Because a shapefile is
actually made up of multiple files on disk (a .dbf file, a .prj file, a .shp file, and
a .shx file), it is easier to place these together in a subdirectory. We use the Python
Standard Library module shutil to delete the previous contents of this directory,
and then os.mkdir() to create it again.

Running this program creates the bounding box shapefile, which we can then draw
onto a map. For example, here is the outline of Thailand along with a bounding box
taken from the boundingBox.shp shapefile:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

We will be looking at how to draw maps like this in Chapter 8, Using Python and
Mapnik to Generate Maps.

Task – analyze height data using a digital
elevation map
A Digital Elevation Map (DEM) is a raster geospatial data format where each pixel
value represents the height of a point on the Earth's surface. We encountered DEM
files in the previous chapter, where we saw two examples of data sources that supply
this type of information: the National Elevation Dataset covering the United States,
and GLOBE which provides DEM files covering the entire Earth.

Because a DEM file contains height data, it can be interesting to analyze the height
values for a given area. For example, we could draw a histogram showing how
much of a country's area is at a certain elevation. Let's take some DEM data from
the GLOBE dataset, and calculate a height histogram using that data.

To keep things simple, we will choose a small country surrounded by ocean:
New Zealand.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[120]

We're using a small country so that we don't have too much data
to work with, and we're using a country surrounded by ocean
so that we can check all the points within a bounding box, rather
than having to use a polygon to exclude points outside of the
country's boundaries.

To download the DEM data, go to the GLOBE website (http://www.ngdc.noaa.
gov/mgg/topo/globe.html) and click on the Get Data Online hyperlink. We're
going to use the data already calculated for this area of the world, so click on the
Any or all 16 "tiles" hyperlink. New Zealand is in tile L, so click on the hyperlink
for this tile to download it.

The file you download will be called l10g.zip (or l10g.gz if you chose to download
the tile in GZIP format). If you decompress it, you will end up with a single file called
l10g containing the raw elevation data.

By itself, this file isn't very useful—it needs to be georeferenced onto the Earth's
surface so that you can match up each height value with its position on the Earth.
To do this, you need to download the associated header file. Unfortunately, the
GLOBE website makes this rather difficult; the header files for the premade tiles
can be found at:

http://www.ngdc.noaa.gov/mgg/topo/elev/esri/hdr

Download the file named l10g.hdr and place it into the same directory as the l10g
file you downloaded earlier. You can then read the DEM file using GDAL:

from osgeo import gdal

dataset = gdal.Open("l10g")

As you must have noticed when you downloaded the l10g tile that this tile covers
much more than just New Zealand—all of Australia is included, as well as Malaysia,
Papua New Guinea, and several other East-Asian countries. To work with the height
data for just New Zealand, we have to be able to identify the relevant portion of the
raster DEM—that is, the range of x and y coordinates which cover New Zealand.
We start by looking at a map and identifying the minimum and maximum latitude/
longitude values which enclose all of New Zealand, but no other country:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

Rounded to the nearest whole degree, we get a longitude/latitude bounding box of
(165, -48)…(179, -33). This is the area we want to scan to cover all of New Zealand.

There is, however, a problem: the raster data consists of pixels or "cells" identified
by x and y coordinates, not longitude and latitude values. We have to convert from
longitudes and latitudes into x and y coordinates. To do this, we need to make use
of the raster DEM's affine transformation.

If you remember, back in Chapter 3, Python Libraries for Geospatial Development, we
discussed that an affine transformation is a complex system for mapping geographic
coordinates (latitude and longitude values) into raster (x, y) coordinates. Fortunately
we don't have to deal with these formulas directly, as GDAL will do it for us. We
start by obtaining our dataset's affine transformation:

t = dataset.GetGeoTransform()

Using this transformation, we can convert an (x, y) coordinate into its associated
latitude and longitude value. In this case, however, we want to do the opposite—we
want to take a latitude and longitude, and calculate the associated x and y coordinate.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[122]

To do this, we have to invert the affine transformation. Once again, GDAL will do
this for us:

success,tInverse = gdal.InvGeoTransform(t)
if not success:
 print "Failed!"
 sys.exit(1)

There are some cases where an affine transformation can't be
inverted. This is why gdal.InvGeoTransform() returns a
success flag as well as the inverted transformation. With this
particular set of DEM data, however, the affine transformation
should always be invertible.

Now that we have the inverse affine transformation, it is possible to convert from a
latitude and longitude into an x and y coordinate, like this:

x,y = gdal.ApplyGeoTransform(tInverse, longitude, latitude)

Using this, we can finally identify the minimum and maximum (x, y) coordinates
that cover the area we are interested in:

x1,y1 = gdal.ApplyGeoTransform(tInverse, minLong, minLat)
x2,y2 = gdal.ApplyGeoTransform(tInverse, maxLong, maxLat)

minX = int(min(x1, x2))
maxX = int(max(x1, x2))
minY = int(min(y1, y2))
maxY = int(max(y1, y2))

Now that we know the x and y coordinates for the portion of the DEM that we're
interested in, we can use GDAL to read in the individual height values. We start
by obtaining the raster band that contains the DEM data:

band = dataset.GetRasterBand(1)

GDAL band numbers start at one. There is only one raster band
in the DEM data we're using.

Now that we have the raster band, we can use the band.ReadRaster() method to
read the raw DEM data. This is what the ReadRaster() method looks like:

band.ReadRaster(x, y, width, height, dWidth, dHeight, pixelType)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

This method takes the following parameters:

•	 x is the number of pixels from the left-hand side of the raster band to the
left-hand side of the portion of the band to read from

•	 y is the number of pixels from the top of the raster band to the top of the
portion of the band to read from

•	 width is the number of pixels across to read
•	 height is the number of pixels down to read
•	 dWidth is the width of the resulting data
•	 dHeight is the height of the resulting data
•	 pixelType is a constant defining how many bytes of data there are for each

pixel value, and how that data is to be interpreted

Normally, you would set dWidth and dHeight to the same
value as width and height; if you don't do this, the raster
data will be scaled up or down when it is read.

The ReadRaster() method returns a string containing the raster data as a raw
sequence of bytes. You can then read the individual integer height values from
this string using the struct standard library module:

values = struct.unpack("<" + ("h" * width), data)

Notice that we use the h format code to read through the
data, treating each pair of bytes as a signed 16-bit integer.
The < format code forces the use of little-endian byte
order. This matches the format used by the DEM file.

Putting all this together, we can use GDAL to open the raster data file and read all
the pixel values within the bounding box surrounding New Zealand:

histogram.py

import sys, struct
from osgeo import gdal
from osgeo import gdalconst

minLat = -48
maxLat = -33

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[124]

minLong = 165
maxLong = 179

dataset = gdal.Open("l10g")
band = dataset.GetRasterBand(1)

t = dataset.GetGeoTransform()
success,tInverse = gdal.InvGeoTransform(t)
if not success:
 print "Failed!"
 sys.exit(1)

x1,y1 = gdal.ApplyGeoTransform(tInverse, minLong, minLat)
x2,y2 = gdal.ApplyGeoTransform(tInverse, maxLong, maxLat)

minX = int(min(x1, x2))
maxX = int(max(x1, x2))
minY = int(min(y1, y2))
maxY = int(max(y1, y2))

width = (maxX - minX) + 1
fmt = "<" + ("h" * width)

for y in range(minY, maxY+1):
 scanline = band.ReadRaster(minX, y,width, 1,
 width, 1,
 gdalconst.GDT_Int16)
 values = struct.unpack(fmt, scanline)

 for value in values:

Don't forget to add a directory path to the gdal.Open() statement
if you placed the l10g file in a different directory.

Let's finish this example by using these height values to calculate a histogram:

width = (maxX - minX) + 1
fmt = "<" + ("h" * width)

histogram = {} # Maps height to # pixels with that height.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

for y in range(minY, maxY+1):
 scanline = band.ReadRaster(minX, y,width, 1,
 width, 1,
 gdalconst.GDT_Int16)
 values = struct.unpack(fmt, scanline)

 for value in values:
 try:
 histogram[value] += 1
 except KeyError:
 histogram[value] = 1

for height in sorted(histogram.keys()):
 print height,histogram[height]

If you run this, you will see a list of heights (in meters) and how many pixels there
are at that height:

-500 2607581
1 6641
2 909
3 1628
...
3097 1
3119 2
3173 1

This reveals one final problem: there are a large number of pixels with a value of
-500. What is going on here? Clearly -500 is not a valid height value. The GLOBE
documentation explains this as follows:

"Every tile contains values of -500 for oceans, with no values between -500 and the
minimum value for land noted here."

So all those points with a value of -500 represents pixels over the ocean. Fortunately,
it is easy to exclude these; every raster file includes the concept of a no data value,
which is used for pixels without valid data. GDAL includes the GetNoDataValue()
method that allows us to exclude these pixels:

for value in values:
 if value != band.GetNoDataValue():
 try:
 histogram[value] += 1
 except KeyError:
 histogram[value] = 1

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[126]

This finally gives us a histogram of the heights across New Zealand. You could
create a graph using this data if you wished. For example, the following chart
shows the total number of pixels at or below a given height:

Changing datums and projections
If you remember, in Chapter 2, GIS, we discussed that a datum is a mathematical model
of the Earth's shape, while a projection is a way of translating points on the Earth's
surface into points on a two-dimensional map. There are a large number of available
datums and projections—whenever you are working with geospatial data, you must
know which datum and which projection (if any) your data uses. If you are combining
data from multiple sources, you will often have to change your geospatial data from
one datum to another, or from one projection to another.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

Task – change projections to combine
shapefiles using geographic and UTM
coordinates
In this recipe, we will work with two shapefiles that have different projections.
We haven't yet encountered any geospatial data that uses a projection—all the data
we've seen so far uses geographic (unprojected) latitude and longitude values. So
let's start by downloading some geospatial data in Universal Transverse Mercator
(UTM) projection.

The WebGIS website (http://webgis.com) provides shapefiles describing land-
use and land-cover, called LULC datafiles. For this example, we will download
a shapefile for southern Florida (Dade County, to be exact), which uses the
Universal Transverse Mercator projection.

You can download this shapefile from the following URL:

http://webgis.com/MAPS/fl/lulcutm/miami.zip

The decompressed directory contains the shapefile, called miami.shp, along with
a datum_reference.txt file describing the shapefile's coordinate system. This file
tells us the following:

The LULC shape file was generated from the original USGS GIRAS LULC
file by Lakes Environmental Software.
Datum: NAD83
Projection: UTM
Zone: 17
Data collection date by U.S.G.S.: 1972
Reference: http://edcwww.cr.usgs.gov/products/landcover/lulc.html

So this particular shapefile uses UTM Zone 17 projection, and a datum of NAD83.

Let's take a second shapefile, this time in geographic coordinates. We'll use
the GSHHS shoreline database, which uses the WGS84 datum and geographic
(latitude/longitude) coordinates.

You don't need to download the GSHHS database for this
example; while we will display a map overlaying the LULC
data on top of the GSHHS data, you only need the LULC
shapefile to complete this recipe. Drawing maps such as the
one shown in this recipe will be covered in Chapter 8, Using
Python and Mapnik to Produce Maps.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[128]

We can't directly compare the coordinates in these two shapefiles; the LULC
shapefile has coordinates measured in UTM (that is, in meters from a given
reference line), while the GSHHS shapefile has coordinates in latitude and
longitude values (in decimal degrees):

LULC: x=485719.47, y=2783420.62
 x=485779.49, y=2783380.63
 x=486129.65, y=2783010.66
 ...

GSHHS: x=180.0000, y=68.9938
 x=180.0000, y=65.0338
 x=179.9984, y=65.0337

Before we can combine these two shapefiles, we first have to convert them to use
the same projection. We'll do this by converting the LULC shapefile from UTM-17
to geographic (latitude/longitude) coordinates. Doing this requires us to define
a coordinate transformation and then apply that transformation to each of the
features in the shapefile.

Here is how you can define a coordinate transformation using OGR:

from osgeo import osr

srcProjection = osr.SpatialReference()
srcProjection.SetUTM(17)

dstProjection = osr.SpatialReference()
dstProjection.SetWellKnownGeogCS('WGS84') # Lat/long.

transform = osr.CoordinateTransformation(srcProjection,
 dstProjection)

Using this transformation, we can transform each of the features in the shapefile
from UTM projection back into geographic coordinates:

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 geometry = feature.GetGeometryRef()
 geometry.Transform(transform)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

Putting all this together with the techniques we explored earlier for copying
the features from one shapefile to another, we end up with the following
complete program:

changeProjection.py

import os, os.path, shutil
from osgeo import ogr
from osgeo import osr
from osgeo import gdal

Define the source and destination projections, and a
transformation object to convert from one to the other.

srcProjection = osr.SpatialReference()
srcProjection.SetUTM(17)

dstProjection = osr.SpatialReference()
dstProjection.SetWellKnownGeogCS('WGS84') # Lat/long.

transform = osr.CoordinateTransformation(srcProjection,
 dstProjection)

Open the source shapefile.

srcFile = ogr.Open("miami/miami.shp")
srcLayer = srcFile.GetLayer(0)

Create the dest shapefile, and give it the new projection.

if os.path.exists("miami-reprojected"):
 shutil.rmtree("miami-reprojected")
os.mkdir("miami-reprojected")

driver = ogr.GetDriverByName("ESRI Shapefile")
dstPath = os.path.join("miami-reprojected", "miami.shp")
dstFile = driver.CreateDataSource(dstPath)
dstLayer = dstFile.CreateLayer("layer", dstProjection)

Reproject each feature in turn.

for i in range(srcLayer.GetFeatureCount()):

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[130]

 feature = srcLayer.GetFeature(i)
 geometry = feature.GetGeometryRef()

 newGeometry = geometry.Clone()
 newGeometry.Transform(transform)

 feature = ogr.Feature(dstLayer.GetLayerDefn())
 feature.SetGeometry(newGeometry)
 dstLayer.CreateFeature(feature)
 feature.Destroy()

All done.

srcFile.Destroy()
dstFile.Destroy()

Note that this example doesn't copy field values into the new
shapefile; if your shapefile has metadata, you will want to
copy the fields across as you create each new feature. Also, the
preceding code assumes that the miami.shp shapefile has
been placed into a miami sub-directory; you'll need to change
the ogr.Open() statement to use the appropriate path name
if you've stored this shapefile in a different place.

After running this program over the miami.shp shapefile, the coordinates for
all the features in the shapefile will have been converted from UTM-17 into
geographic coordinates:

Before reprojection: x=485719.47, y=2783420.62
 x=485779.49, y=2783380.63
 x=486129.65, y=2783010.66
 ...

 After reprojection: x=-81.1417, y=25.1668
 x=-81.1411, y=25.1664
 x=-81.1376, y=25.1631

To see whether this worked, let's draw a map showing the reprojected LULC data
overlaid on the GSHHS shoreline data:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

The light gray outlines show the various polygons within the LULC shapefile, while
the black outline shows the shoreline as defined by the GLOBE shapefile. Both of
these shapefiles now use geographic coordinates, and as you can see the coastlines
match exactly.

If you have been watching closely, you may have noticed that
the LULC data is using the NAD83 datum, while the GSHHS
data and our reprojected version of the LULC data both use the
WGS84 datum. We can do this without error because the two
datums are identical for points within North America.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[132]

Task – change datums to allow older and
newer TIGER data to be combined
For this example, we will need to obtain some geospatial data that uses the
NAD27 datum. This datum dates back to 1927, and was commonly used for
North American geospatial analysis up until the 1980s when it was replaced
by NAD83.

ESRI makes available a set of TIGER/Line files from the 2000 US census,
converted into shapefile format. These files can be downloaded from:

http://esri.com/data/download/census2000-tigerline/index.html

For the 2000 census data, the TIGER/Line files were all in NAD83, with the
exception of Alaska which used the older NAD27 datum. So we can use the
preceding site to download a shapefile containing features in NAD27. Go to
the site, click on the Preview and Download hyperlink, and then choose
Alaska from the drop-down menu. Select the Line Features - Roads layer,
then click on the Submit Selection button.

This data is divided up into individual counties. Click on the checkbox beside
Anchorage, then click on the Proceed to Download button to download the
shapefile containing road details in Anchorage. The resulting shapefile will
be named tgr02020lkA.shp, and will be in a directory called lkA02020.

As described on the website, this data uses the NAD27 datum. If we were to assume
this shapefile used the WSG83 datum, all the features would be in the wrong place:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

To make the features appear in the correct place, and to be able to combine these
features with other data that uses the WGS84 datum, we need to convert the
shapefile to use WGS84. Changing a shapefile from one datum to another requires
the same basic process we used earlier to change a shapefile from one projection to
another: first you choose the source and destination datums, and define a coordinate
transformation to convert from one to the other:

srcDatum = osr.SpatialReference()
srcDatum.SetWellKnownGeogCS('NAD27')

dstDatum = osr.SpatialReference()
dstDatum.SetWellKnownGeogCS('WGS84')

transform = osr.CoordinateTransformation(srcDatum, dstDatum)

You then process each feature in the shapefile, transforming the feature's geometry
using the coordinate transformation:

for i in range(srcLayer.GetFeatureCount()):
 feature = srcLayer.GetFeature(i)
 geometry = feature.GetGeometryRef()
 geometry.Transform(transform)

Here is the complete Python program to convert the lkA02020 shapefile from the
NAD27 datum to WGS84:

changeDatum.py

import os, os.path, shutil
from osgeo import ogr
from osgeo import osr
from osgeo import gdal

Define the source and destination datums, and a
transformation object to convert from one to the other.

srcDatum = osr.SpatialReference()
srcDatum.SetWellKnownGeogCS('NAD27')

dstDatum = osr.SpatialReference()
dstDatum.SetWellKnownGeogCS('WGS84')

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[134]

transform = osr.CoordinateTransformation(srcDatum, dstDatum)

Open the source shapefile.

srcFile = ogr.Open("lkA02020/tgr02020lkA.shp")
srcLayer = srcFile.GetLayer(0)

Create the dest shapefile, and give it the new projection.

if os.path.exists("lkA-reprojected"):
 shutil.rmtree("lkA-reprojected")
os.mkdir("lkA-reprojected")

driver = ogr.GetDriverByName("ESRI Shapefile")
dstPath = os.path.join("lkA-reprojected", "lkA02020.shp")
dstFile = driver.CreateDataSource(dstPath)
dstLayer = dstFile.CreateLayer("layer", dstDatum)

Reproject each feature in turn.

for i in range(srcLayer.GetFeatureCount()):
 feature = srcLayer.GetFeature(i)
 geometry = feature.GetGeometryRef()

 newGeometry = geometry.Clone()
 newGeometry.Transform(transform)

 feature = ogr.Feature(dstLayer.GetLayerDefn())
 feature.SetGeometry(newGeometry)
 dstLayer.CreateFeature(feature)
 feature.Destroy()

All done.

srcFile.Destroy()
dstFile.Destroy()

The preceding code assumes that the lkA02020 folder is in the same directory as
the Python script itself. If you've placed this folder somewhere else, you'll need to
change the ogr.Open() statement to use the appropriate directory path.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

If we now plot the reprojected features using the WGS84 datum, the features will
appear in the correct place:

Representing and storing geospatial data
While geospatial data is often supplied in the form of vector-format files such as
shapefiles, there are situations where shapefiles are unsuitable or inefficient. One
such situation is where you need to take geospatial data from one library and use it
in a different library. For example, imagine that you have read a set of geometries
out of a shapefile and want to store them in a database, or work with them using
the shapely library. Because all the different Python libraries use their own private
classes to represent geospatial data, you can't just take an OGR Geometry object and
pass it to shapely, or use a GDAL SpatialReference object to define the datum
and projection to use for data stored in a database.

In these situations, you need to have an independent format for representing and
storing geospatial data that isn't limited to just one particular Python library. This
format, the lingua franca for vector-format geospatial data, is called Well-Known
Text (WKT).

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[136]

WKT is a compact text-based description of a geospatial object such as a point,
a line or a polygon. For example, here is the geometry defining the boundary
of the Vatican City in the World Borders Dataset, converted into a WKT string:

POLYGON ((12.445090330888604 41.90311752178485,
12.451653339580503 41.907989033391232,
12.456660170953796 41.901426024699163,
12.445090330888604 41.90311752178485))

As you can see, the WKT string contain a straightforward textual description of a
geometry—in this case, a polygon consisting of four x and y coordinates. Obviously,
WKT text strings can be far more complex than this, containing many thousands of
points and storing multipolygons and collections of different geometries. No matter
how complex the geometry is, however, it can still be represented as a simple text
string.

There is an equivalent binary format called Well-Known Binary
(WKB), which stores the same information as binary data. WKB
is often used to store geospatial data within a database.

WKT strings can also be used to represent a spatial reference encompassing a
projection, a datum and/or a coordinate system. For example, here is an osr.
SpatialReference object representing a geographic coordinate system using
the WGS84 datum, converted into a WKT string:

GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS
84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],TOWGS84[0,0,0,0,
0,0,0],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EP
SG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9108"]
],AUTHORITY["EPSG","4326"]]

As with geometry representations, spatial references in WKT format can be used to
pass a spatial reference from one Python library to another.

Task – define the border between Thailand
and Myanmar
In this recipe, we will make use of the World Borders Dataset to obtain polygons
defining the borders of Thailand and Myanmar. We will then transfer these polygons
into Shapely, and use Shapely's capabilities to calculate the common border between
these two countries.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

If you haven't already done so, download the World Borders Dataset from the
Thematic Mapping website:

http://thematicmapping.org/downloads/world_borders.php

The World Borders Dataset conveniently includes ISO 3166 two-character country
codes for each feature, so we can identify the features corresponding to Thailand
and Myanmar as we read through the shapefile:

from osgeo import ogr

shapefile = ogr.Open("TM_WORLD_BORDERS-0.3.shp")
layer = shapefile.GetLayer(0)

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 if feature.GetField("ISO2") == "TH":
 ...
 elif feature.GetField("ISO2") == "MM":
...

As usual, this code assumes that you have placed the TM_WORLD_
BORDERS-0.3.shp shapefile in the same directory as the Python
script. If you've placed it into a different directory, you'll need to
adjust the ogr.Open() statement to match.

Once we have identified the features we want, it is easy to extract the features'
geometries as WKT strings:

geometry = feature.GetGeometryRef()
wkt = geometry.ExportToWkt()

We can then convert these to Shapely geometry objects using the shapely.wkt
module:

import shapely.wkt
...
border = shapely.wkt.loads(wkt)

Now that we have the country outlines in Shapely, we can use Shapely's
computational geometry capabilities to calculate the common border between
these two countries:

commonBorder = thailandBorder.intersection(myanmarBorder)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[138]

The result will be a LineString (or a MultiLineString if the border is broken up into
more than one part). If we wanted to, we could then convert this Shapely object back
into a OGR geometry, and save it into a shapefile again:

wkt = shapely.wkt.dumps(commonBorder)

feature = ogr.Feature(dstLayer.GetLayerDefn())
feature.SetGeometry(ogr.CreateGeometryFromWkt(wkt))
dstLayer.CreateFeature(feature)
feature.Destroy()

With the common border saved into a shapefile, we can finally display the results as
a map:

The contents of the common-border/border.shp shapefile is represented by the
heavy line along the countries' common border.

Here is the entire program used to calculate this common border:

calcCommonBorders.py

import os,os.path,shutil

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[139]

from osgeo import ogr
import shapely.wkt

Load the thai and myanmar polygons from the world borders
dataset.

shapefile = ogr.Open("TM_WORLD_BORDERS-0.3.shp")
layer = shapefile.GetLayer(0)

thailand = None
myanmar = None

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 if feature.GetField("ISO2") == "TH":
 geometry = feature.GetGeometryRef()
 thailand = shapely.wkt.loads(geometry.ExportToWkt())
 elif feature.GetField("ISO2") == "MM":
 geometry = feature.GetGeometryRef()
 myanmar = shapely.wkt.loads(geometry.ExportToWkt())

Calculate the common border.

commonBorder = thailand.intersection(myanmar)

Save the common border into a new shapefile.

if os.path.exists("common-border"):
 shutil.rmtree("common-border")
os.mkdir("common-border")

spatialReference = osr.SpatialReference()
spatialReference.SetWellKnownGeogCS('WGS84')

driver = ogr.GetDriverByName("ESRI Shapefile")
dstPath = os.path.join("common-border", "border.shp")
dstFile = driver.CreateDataSource(dstPath)
dstLayer = dstFile.CreateLayer("layer", spatialReference)

wkt = shapely.wkt.dumps(commonBorder)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[140]

feature = ogr.Feature(dstLayer.GetLayerDefn())
feature.SetGeometry(ogr.CreateGeometryFromWkt(wkt))
dstLayer.CreateFeature(feature)
feature.Destroy()

dstFile.Destroy()

If you've placed your TM_WORLD_BORDERS-0.3.shp shapefile
into a different directory, change the ogr.Open() statement to
include the correct directory path.

We will use this shapefile later in this chapter to calculate the length of the
Thailand – Myanmar border, so make sure you generate and keep a copy
of the common-borders/border.shp shapefile.

Task – save geometries into a text file
WKT is not only useful for transferring geometries from one Python library to
another. It can also be a useful way of storing geospatial data without having
to deal with the complexity and constraints imposed by using shapefiles.

In this example, we will read a set of polygons from the World Borders Dataset,
convert them to WKT format, and save them as text files:

saveAsText.py

import os,os.path,shutil

from osgeo import ogr

if os.path.exists("country-wkt-files"):
 shutil.rmtree("country-wkt-files")
os.mkdir("country-wkt-files")

shapefile = ogr.Open("TM_WORLD_BORDERS-0.3.shp")
layer = shapefile.GetLayer(0)

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 name = feature.GetField("NAME")
 geometry = feature.GetGeometryRef()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[141]

 f = file(os.path.join("country-wkt-files",
 name + ".txt"), "w")
 f.write(geometry.ExportToWkt())
 f.close()

As usual, you'll need to change the ogr.Open() statement to include a directory
path if you've stored the shapefile in a different directory.

You might be wondering why you want to do this, rather than creating a shapefile
to store your geospatial data. Well, shapefiles are limited, in that all the features
in a single shapefile must have the same geometry type. Also, the complexity of
setting up metadata and saving geometries can be overkill for some applications.
Sometimes, dealing with plain text is just easier.

Performing geospatial calculations
Shapely is a very capable library for performing various calculations on geospatial
data. Let's put it through its paces with a complex, real-world problem.

Task – identify parks in or near urban areas
The US Census Bureau make available a shapefile containing something called Core
Based Statistical Areas (CBSAs), which are polygons defining urban areas with a
population of 10,000 or more. At the same time, the GNIS website provides lists of
place names and other details. Using these two data sources, we will identify any
parks within or close to an urban area.

Because of the volume of data we are dealing with, we will limit our search to
California. It would take a very long time to check all the CBSA polygon/place name
combinations for the entire United States; it's possible to optimize the program to do
this quickly, but this would make the example too complex for our current purposes.

Let's start by downloading the necessary data. Go to the TIGER website:

http://census.gov/geo/www/tiger

Click on the TIGER/Line Shapefiles link, then follow the Download option for
the latest version of the TIGER/Link shapefiles (as of this writing, this is the 2012
version). Select the Web Interface option, and choose Core Based Statistical Areas
from the pop-up menu. The shapefile you want is called Metropolitan/Micropolitan
Statistical Area; click on this button to download the CBSA data for the entire USA.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[142]

The file you download will have a name similar to tl_XXXX_us_cbsa.zip, where
XXXX is the year of the data you've downloaded. Once the file has downloaded,
decompress it and place the resulting shapefile into a convenient location so that
you can work with it.

You now need to download the GNIS place name data. Go to the GNIS website:

http://geonames.usgs.gov/domestic

Click on the Download Domestic Names hyperlink, and then choose the option
download all national features in one .zip file. The resulting file will be named
NationalFile_XXX.zip, where XXX is a date stamp. Decompress the ZIP archive,
and place the resulting .txt file in a convenient place.

We're now ready to write the code. Let's start by reading through the CBSA
urban area shapefile and extracting the polygons that define the boundary of
each urban area:

shapefile = ogr.Open("tl_2009_06_cbsa.shp")
layer = shapefile.GetLayer(0)

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 geometry = feature.GetGeometryRef()

Using what we learned in the previous section, we can convert this geometry into
a Shapely object so that we can work with it:

wkt = geometry.ExportToWkt()
shape = shapely.wkt.loads(wkt)

Next, we need to scan through the NationalFile_XXX.txt file to identify the
features marked as a park. As we mentioned earlier, this file is too large for us
to process in its entirety; instead we'll just extract the features for California.
For each of these features, we want to extract the name of the feature and its
associated latitude and longitude. Here's how we might do this:

f = file("NationalFile_XXX.txt", "r")
for line in f.readlines():
 chunks = line.rstrip().split("|")
 if chunks[2] == "Park" and chunks[3] == "CA":
 name = chunks[1]
 latitude = float(chunks[9])
 longitude = float(chunks[10])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[143]

Remember that the GNIS place name database is a "pipe-delimited" text file.
That's why we have to split the line up using line.rstrip().split("|").

Now comes the fun part: we need to figure out which parks are within or close to
each urban area. There are two ways we could do this, either of which will work:

•	 We could use the shape.distance() method to calculate the distance
between the shape and a Point object representing the park's location:

•	 We could dilate the polygon using the shape.buffer() method, and then
see if the resulting polygon contained the desired point:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[144]

The second option is faster when dealing with a large number of points, as we can
precalculate the dilated polygons and then use them to compare against each point
in turn. Let's take this option:

findNearbyParks.py

from osgeo import ogr
import shapely.geometry
import shapely.wkt

MAX_DISTANCE = 0.1 # Angular distance; approx 10 km.

print "Loading urban areas..."

urbanAreas = {} # Maps area name to Shapely polygon.

shapefile = ogr.Open("tl_2012_us_cbsa.shp")
layer = shapefile.GetLayer(0)

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 name = feature.GetField("NAME")
 geometry = feature.GetGeometryRef()
 shape = shapely.wkt.loads(geometry.ExportToWkt())
 dilatedShape = shape.buffer(MAX_DISTANCE)
 urbanAreas[name] = dilatedShape

print "Checking parks..."

f = file("NationalFile_XXX.txt", "r")
for line in f.readlines():
 chunks = line.rstrip().split("|")
 if chunks[2] == "Park" and chunks[3] == "CA":
 parkName = chunks[1]
 latitude = float(chunks[9])
 longitude = float(chunks[10])

 pt = shapely.geometry.Point(longitude, latitude)

 for urbanName,urbanArea in urbanAreas.items():
 if urbanArea.contains(pt):
 print parkName + " is in or near " + urbanName
f.close()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[145]

Don't forget to change the name of the NationalFile_XXX.txt
file to match the actual name of the file you downloaded. You may
also add a path of the references to tl_2012_us_cbsa.shp and
NationalFile_XXX.txt in your program if you placed these in
a different directory.

If you run this program, you will get a complete list of all the parks that are in or
close to an urban area:

% python findNearbyParks.py
Loading urban areas...
Checking parks...
Imperial National Wildlife Refuge is in or near El Centro, CA
TwinLakesStateBeach is in or near Santa Cruz-Watsonville, CA
AdmiralWilliamStandleyState Recreation Area is in or near Ukiah, CA
Agate Beach County Park is in or near San Francisco-Oakland-Fremont,
CA

Note that our program uses angular distances to decide if a park is in or near a given
urban area. As we mentioned in Chapter 2, GIS, an angular distance is the angle
between two lines going out from the center of the Earth to the Earth's surface:

Because we are dealing with data for California, where one degree of angular
measurement roughly equals 100 kilometers on the Earth's surface, an angular
measurement of 0.1 roughly equals a real distance of 10 km.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[146]

Using angular measurements makes the distance calculation easy and quick to
calculate, though it doesn't give an exact distance on the Earth's surface. If your
application requires exact distances, you could start by using an angular distance
to filter out the features obviously too far away, and then obtain an exact result for
the remaining features by calculating the point on the polygon's boundary that is
closest to the desired point, and then calculating the linear distance between the
two points. You would then discard the points that exceed your desired exact
linear distance. Implementing this would be an interesting challenge, though
not one we will examine in this book.

Converting and standardizing units of
geometry and distance
Imagine that you have two points on the Earth's surface, with a straight line
drawn between them:

Each of these points can be described as a coordinate using some arbitrary coordinate
system (for example, using latitude and longitude values), while the length of the
straight line could be described as the "distance" between the two points.

Of course, because the Earth's surface is not flat, we aren't really
dealing with straight lines at all. Rather, we are calculating geodetic
or Great Circle distances across the surface of the Earth.

Given any two coordinates, it is possible to calculate the distance between them.
Conversely, you can start with one coordinate, a desired distance and a direction,
and then calculate the coordinates for the other point.

The pyproj Python library allows you to perform these types of calculations for any
given datum. You can also use pyproj to convert from projected coordinates back
to geographic coordinates, and vice versa, allowing you to perform these sorts of
calculations for any desired datum, coordinate system and projection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[147]

Ultimately, a geometry such as a line or a polygon consists of nothing more than a
list of connected points. This means that, using the process mentioned earlier, you
can calculate the geodetic distance between each of the points in any polygon and
total the results to get the actual length for any geometry. Let's use this knowledge
to solve a real-world problem.

Task – calculate the length of the Thai-
Myanmar border
To solve this problem, we will make use of the common-border/border.shp
shapefile we created earlier. This shapefile contains a single feature, which is a
LineString defining the border between the two countries. Let's start by taking
a look at the individual line segments that make up this feature's geometry:

import os.path
from osgeo import ogr

def getLineSegmentsFromGeometry(geometry):
 segments = []
 if geometry.GetPointCount() > 0:
 segment = []
 for i in range(geometry.GetPointCount()):
 segment.append(geometry.GetPoint_2D(i))
 segments.append(segment)
 for i in range(geometry.GetGeometryCount()):
 subGeometry = geometry.GetGeometryRef(i)
 segments.extend(
 getLineSegmentsFromGeometry(subGeometry))
 return segments

filename = os.path.join("common-border", "border.shp")
shapefile = ogr.Open(filename)
layer = shapefile.GetLayer(0)
feature = layer.GetFeature(0)
geometry = feature.GetGeometryRef()

segments = getLineSegmentsFromGeometry(geometry)

print segments

Don't forget to change the os.path.join() statement to
match the location of your border.shp shapefile.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[148]

Note that we use a recursive function, getLineSegmentsFromGeometry(), to pull
the individual coordinates for each line segment out of the geometry. Because
geometries are recursive data structures, we have to pull out the individual line
segments before we can work with them.

Running this program produces a long list of points that make up the various line
segments defining the border between these two countries:

% python calcBorderLength.py
[[(100.08132200000006, 20.348840999999936),
(100.08943199999999, 20.347217999999941)],
[(100.08943199999999, 20.347217999999941),
(100.0913700000001, 20.348606000000075)], ...]

Each line segment consists of a list of points—in this case, you'll notice that each
segment has only two points—and if you look closely you will notice that each
segment starts at the same point as the previous segment ended. There are a total
of 459 segments defining the border between Thailand and Myanmar—that is,
459 point pairs that we can calculate the geodetic distance for.

Remember that a geodetic distance is a distance measured
on the surface of the Earth.

Let's see how we can use pyproj to calculate the geodetic distance between any two
points. We first create a Geod instance:

geod = pyproj.Geod(ellps='WGS84')

Geod is the pyproj class that performs geodetic calculations. Note that we have to
provide it with details of the datum used to describe the shape of the Earth. Once our
Geod instance has been set up, we can calculate the geodetic distance between any two
points by calling geod.inv(), the "inverse geodetic transformation" method:

angle1,angle2,distance = geod.inv(long1, lat1, long2, lat2)

angle1 will be the angle from the first point to the second, measured in decimal
degrees, angle2 will be the angle from the second point back to the first (again in
degrees), and distance will be the Great Circle distance between the two points,
in meters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[149]

Using this, we can iterate over the line segments, calculate the distance from one point
to another, and total up all the distances to obtain the total length of the border:

geod = pyproj.Geod(ellps='WGS84')

totLength = 0.0
for segment in segments:
 for i in range(len(segment)-1):
 pt1 = segment[i]
 pt2 = segment[i+1]

long1,lat1 = pt1
 long2,lat2 = pt2

 angle1,angle2,distance = geod.inv(long1, lat1,
long2, lat2)
 totLength += distance

Upon completion, totLength will be the total length of the border, in meters.

Putting all this together, we end up with a complete Python program to read the
border.shp shapefile, calculate and then display the total length of the common
border:

calcBorderLength.py

import os.path
from osgeo import ogr
import pyproj

def getLineSegmentsFromGeometry(geometry):
 segments = []
 if geometry.GetPointCount() > 0:
 segment = []
 for i in range(geometry.GetPointCount()):
 segment.append(geometry.GetPoint_2D(i))
 segments.append(segment)
 for i in range(geometry.GetGeometryCount()):
 subGeometry = geometry.GetGeometryRef(i)
 segments.extend(
 getLineSegmentsFromGeometry(subGeometry))
 return segments

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[150]

filename = os.path.join("common-border", "border.shp")
shapefile = ogr.Open(filename)
layer = shapefile.GetLayer(0)
feature = layer.GetFeature(0)
geometry = feature.GetGeometryRef()
segments = getLineSegmentsFromGeometry(geometry)

geod = pyproj.Geod(ellps='WGS84')

totLength = 0.0
for segment in segments:
 for i in range(len(segment)-1):
 pt1 = segment[i]
 pt2 = segment[i+1]

 long1,lat1 = pt1
 long2,lat2 = pt2

 angle1,angle2,distance = geod.inv(long1, lat1,
 long2, lat2)
 totLength += distance

print "Total border length = %0.2f km" % (totLength/1000)

Running this program tells us the total calculated length of the Thai-Myanmar
border:

% python calcBorderLength.py

Total border length = 1730.55 km

In this program, we have assumed that the shapefile is in geographic coordinates
using the WGS84 ellipsoid, and only contains a single feature. Let's extend our
program to deal with any supplied projection and datum, and at the same time
process all the features in the shapefile rather than just the first. This will make
our program more flexible, and allow it to work with any arbitrary shapefile
rather than just the common-border shapefile we created earlier.

Let's deal with the projection and datum first. We could change the projection
and datum for our shapefile before we process it, just as we did with the LULC
and lkA02020 shapefiles earlier in this chapter. That would work, but it would
require us to create a temporary shapefile just to calculate the length, which isn't
very efficient. Instead, let's make use of pyproj directly to reproject the shapefile
back into geographic coordinates if necessary. We can do this by querying the
shapefile's spatial reference:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[151]

shapefile = ogr.Open(filename)
layer = shapefile.GetLayer(0)
spatialRef = layer.GetSpatialRef()
if spatialRef == None:
 print "Shapefile has no spatial reference, using WGS84."
 spatialRef = osr.SpatialReference()
 spatialRef.SetWellKnownGeogCS('WGS84')

Once we have the spatial reference, we can see if the spatial reference is projected,
and if so use pyproj to turn the projected coordinates back into lat/long values
again, like this:

if spatialRef.IsProjected():
 # Convert projected coordinates back to lat/long values.
 srcProj = pyproj.Proj(spatialRef.ExportToProj4())
 dstProj = pyproj.Proj(proj='longlat', ellps='WGS84',
 datum='WGS84')
...
long,lat = pyproj.transform(srcProj, dstProj, x, y)

Using this, we can rewrite our program to accept data using any projection
and datum. At the same time, we'll change it to calculate the overall length of
every feature in the file, rather than just the first, and also to accept the name
of the shapefile from the command line. Finally, we'll add some error-checking.
Let's call our new program calcFeatureLengths.py.

We'll start by copying the getLineSegmentsFromGeometry() function we
used earlier:

import sys
from osgeo import ogr, osr
import pyproj

def getLineSegmentsFromGeometry(geometry):
 segments = []
 if geometry.GetPointCount() > 0:
 segment = []
 for i in range(geometry.GetPointCount()):
 segment.append(geometry.GetPoint_2D(i))
 segments.append(segment)
 for i in range(geometry.GetGeometryCount()):
 subGeometry = geometry.GetGeometryRef(i)
 segments.extend(

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[152]

 getLineSegmentsFromGeometry(subGeometry))
 return segments

Next, we'll get the name of the shapefile to open from the command line:

if len(sys.argv) != 2:
 print "Usage: calcFeatureLengths.py <shapefile>"
 sys.exit(1)

filename = sys.argv[1]

We'll then open the shapefile and obtain its spatial reference, using the code we
wrote earlier:

shapefile = ogr.Open(filename)
layer = shapefile.GetLayer(0)
spatialRef = layer.GetSpatialRef()
if spatialRef == None:
 print "Shapefile lacks a spatial reference, using WGS84."
 spatialRef = osr.SpatialReference()
 spatialRef.SetWellKnownGeogCS('WGS84')

We'll then get the source and destination projections, again using the code we wrote
earlier. Note that we only need to do this if we're using projected coordinates:

if spatialRef.IsProjected():
 srcProj = pyproj.Proj(spatialRef.ExportToProj4())
 dstProj = pyproj.Proj(proj='longlat', ellps='WGS84',
 datum='WGS84')

We are now ready to start processing the shapefile's features:

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)

Now that we have the feature, we can borrow the code we used earlier to calculate
the total length of that feature's line segments:

 geometry = feature.GetGeometryRef()
 segments = getLineSegmentsFromGeometry(geometry)

 geod = pyproj.Geod(ellps='WGS84')

 totLength = 0.0
 for segment in segments:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[153]

 for j in range(len(segment)-1):
 pt1 = segment[j]
 pt2 = segment[j+1]

 long1,lat1 = pt1
 long2,lat2 = pt2

The only difference is that we need to transform the coordinates back to WGS84 if we
are using a projected coordinate system:

 if spatialRef.IsProjected():
 long1,lat1 = pyproj.transform(srcProj,
 dstProj,
 long1, lat1)
 long2,lat2 = pyproj.transform(srcProj,
 dstProj,
 long2, lat2)

We can then use pyproj to calculate the distance between the two points, as we did
in our earlier example. This time, though, we'll wrap it in a try...except statement
so that any failure to calculate the distance won't crash the program:

 try:
 angle1,angle2,distance = geod.inv(long1, lat1,
 long2, lat2)
 except ValueError:
 print "Unable to calculate distance from " \
 + "%0.4f,%0.4f to %0.4f,%0.4f" \
 % (long1, lat1, long2, lat2)
 distance = 0.0
 totLength += distance

The geod.inv() call can raise a ValueError if the
two coordinates are in a place where an angle can't be
calculated—for example if the two points are at the poles.

And finally, we can print out the feature's total length, in kilometers:

 print "Total length of feature %d is %0.2f km" \
 % (i, totLength/1000)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[154]

This program can be run over any shapefile, regardless of the projection and datum.
For example, you could use it to calculate the border length for every country in the
world by running it over the World Borders Dataset:

% python calcFeatureLengths.py TM_WORLD_BORDERS-0.3.shp
Total length of feature 0 is 127.28 km
Total length of feature 1 is 7264.69 km
Total length of feature 2 is 2514.76 km
Total length of feature 3 is 968.86 km
Total length of feature 4 is 1158.92 km
Total length of feature 5 is 6549.53 km
Total length of feature 6 is 119.27 km

This program is an example of converting geometry coordinates into distances.
Let's take a look at the inverse calculation: using distances to calculate new
geometry coordinates.

Task – find a point 132.7 kilometers west of
Soshone, California
Using the NationalFile_XXX.txt file we downloaded earlier, it is possible to find
the latitude and longitude of Shoshone, a small town in California east of Las Vegas:

f = file("NationalFile_XXXX.txt", "r")
for line in f.readlines():
 chunks = line.rstrip().split("|")
 if chunks[1] == "Shoshone" and \
 chunks[2] == "Populated Place" and \
 chunks[3] == "CA":
 latitude = float(chunks[9])
 longitude = float(chunks[10])

Given this coordinate, we can use pyproj to calculate the coordinate of a point a
given distance away, at a given angle:

geod = pyproj.Geod(ellps="WGS84")
newLong,newLat,invAngle = geod.fwd(latitude, longitude,
 angle, distance)

For this task, we are given the desired distance and we know that the angle we want
is "due west". pyproj uses azimuth angles, which are measured clockwise from
North. Thus, due west would correspond to an angle of 270 degrees.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[155]

Putting all this together, we can calculate the coordinates of the desired point:

findShoshone.py

import pyproj

distance = 132.7 * 1000
angle = 270.0

f = file("NationalFile_XXX.txt", "r")
for line in f.readlines():
 chunks = line.rstrip().split("|")
 if chunks[1] == "Shoshone" and \
 chunks[2] == "Populated Place" and \
 chunks[3] == "CA":
 latitude = float(chunks[9])
 longitude = float(chunks[10])

 geod = pyproj.Geod(ellps='WGS84')
 newLong,newLat,invAngle = geod.fwd(longitude,
 latitude,
 angle, distance)

 print "Shoshone is at %0.4f,%0.4f" % (latitude,
 longitude)
 print "The point %0.2f km west of Shoshone " \
 % (distance/1000.0) \
 + "is at %0.4f, %0.4f" % (newLat, newLong)

f.close()

Running this program gives us the answer we want:

% python findShoshone.py

Shoshone is at 35.9730,-116.2711

The point 132.70 km west of Shoshone is at 35.9640,

-117.7423

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[156]

Exercises
If you are interested in exploring the techniques used in this chapter further, you
might like to challenge yourself with the following tasks:

•	 Change the "Calculate Bounding Box" calculation to exclude outlying islands.

Hint
You can split each country's MultiPolygon into individual
Polygon objects, and then check the area of each polygon to
exclude those which are smaller than a given total value.

•	 Use the World Borders Dataset to create a new shapefile, where each country
is represented by a single "Point" geometry containing the geographical
center of each country.

Hint
You can start with the country bounding boxes we calculated
earlier, and then calculate the midpoint using:

midLat = (minLat + maxLat) / 2
midLong = (minLong + maxLong) / 2

For an extra challenge, you could use Shapely's centroid()
method to calculate a more accurate representation of each
country's center. To do this, you would have to convert the
country's outline into a Shapely geometry, calculate the
centroid, and then convert the centroid back into an OGR
geometry before saving it into the output shapefile.

•	 Extend the preceding histogram example to only include height values that
fall inside a selected country's outline.

Hint
Implementing this in an efficient way can be difficult. A good
approach would be to identify the bounding box for each of the
polygons that make up the country's outline, and then iterate
over the DEM coordinates within that bounding box. You
could then check to see if a given coordinate is actually inside
the country's outline using polygon.contains(point),
and only add the height to the histogram if the point is indeed
within the country's outline.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[157]

•	 Optimize the "identify nearby parks" example given earlier so that it can
work quickly with larger data sets.

Hint
One possibility might be to calculate the rectangular
bounding box around each urban area, and then expand
that bounding box north, south, east, and west by the
desired angular distance. You could then quickly exclude all
the points which aren't in that bounding box before making
the time-consuming call to polygon.contains(point).

•	 Calculate the total length of the coastline of the United Kingdom.

Hint
Remember that a country outline is a MultiPolygon, where
each Polygon in the MultiPolygon represents a single island.
You will need to extract the exterior ring from each of these
individual island polygons, and calculate the total length
of the line segments within that exterior ring. You can then
total the length of each individual island to get the length of
the entire country's coastline.

•	 Design your own reusable library of geospatial functions which build on
OGR, GDAL, Shapely, and pyproj to perform common operations such
as those discussed in this chapter.

Hint
Writing your own reusable library modules is a common
programming tactic. Think about the various tasks we
have solved in this chapter, and how they can be turned
into generic library functions. For example, you might like
to write a function named calcLineStringLength()
which takes a LineString and returns the total length of
the LineString's segments, optionally transforming the
LineString's coordinates into lat/long values before calling
geod.inv().
You could then write a calcPolygonOutlineLength()
function which uses calcLineStringLength() to
calculate the length of a polygon's outer ring.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Geospatial Data in Python

[158]

Summary
In this chapter we have looked at various techniques for using OGR, GDAL, Shapely,
and pyproj within Python programs to solve real-world problems. We have learned
the following:

•	 Reading and writing to vector-format geospatial data in shapefiles
•	 Reading and analyzing raster-format geospatial data
•	 Changing the datum and projection used by a shapefile
•	 Using the Well-Known Text (WKT) format to represent geospatial features

and spatial references in plain text
•	 Using WKT to transfer geospatial data from one Python library to another
•	 Using WKT to store geospatial data in plain text format
•	 Using the Shapely library to perform various geospatial calculations on

geometries, including distance calculations, dilation, and intersections.
•	 Using the pyproj.Proj class to convert coordinates from one projection

and datum to another
•	 Using the pyproj.Geod class to convert from geometry coordinates to

distances, and vice versa

Up to now, we have written programs that work directly with shapefiles and other
data sources to load and then process geospatial data. In the next chapter, we will
look at ways in which databases can be used to store and work with geospatial data.
This is much faster and more scalable than storing geospatial data in files which have
to be imported each time they are used.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database
This chapter examines the various open source options for storing geospatial data in
a database. More specifically, we will cover:

•	 The concept of a spatially-enabled database
•	 Spatial indexes and how they work
•	 A summary of the major open-source spatial databases
•	 Recommended best practices for storing spatial data in a database
•	 Working with geospatial databases using Python

This chapter is intended to be an introduction to using databases in a geospatial
application; Chapter 7, Working with Spatial Data, will build on this to perform powerful
spatial queries that are not possible using shapefiles and other geospatial data files.

Spatially-enabled databases
In a sense, almost any database can be used to store geospatial data: simply convert
a geometry to WKT format and store the results in a text column. But while this
would allow you to store geospatial data in a database, it wouldn't let you query
it in any useful way. All you could do is retrieve the raw WKT text and convert it
back to a geometry object, one record at a time.

A spatially-enabled database, on the other hand, is aware of the notion of space,
and allows you to work with spatial objects and concepts directly. In particular,
a spatially-enabled database allows you to do the following:

•	 Store spatial datatypes (points, lines, polygons, and so on) directly
in the database, in the form of a geometry column.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[160]

•	 Perform spatial queries on your data. For example:
select all landmarks within 10 km of the city named "San Francisco"

•	 Perform spatial joins on your data. For example:
select all cities and their associated countries by joining cities
and countries on (city inside country).

•	 Create new spatial objects using various spatial functions. For example:
set "danger_zone" to the intersection of the "flooded_area" and
"urban_area" polygons.

As you can imagine, a spatially-enabled database is an extremely powerful tool for
working with geospatial data. By using spatial indexes and other optimizations,
spatial databases can quickly perform these types of operations, and can scale to
support vast amounts of data simply not feasible using other data-storage schemes.

Spatial indexes
One of the defining characteristics of a spatial database is the ability to create special
spatial indexes to speed up geometry-based searches. These indexes are used to
perform spatial operations such as identifying all the features that lie within a given
bounding box, identifying all the features within a certain distance of a given point,
or identifying all the features that intersect with a given polygon.

A spatial index is defined in the same way as you define an ordinary database index,
except that you add the SPATIAL keyword to identify the index as a spatial index.
For example:

CREATE TABLE cities (
 id INTEGER AUTO_INCREMENT PRIMARY KEY,
 name CHAR(255),
 geom POLYGON NOT NULL,

 INDEX (name),
 SPATIAL INDEX (geom))

All three open source spatial databases we will examine in this chapter implement
spatial indexes using R-Tree data structures.

PostGIS implements R-Trees using PostgreSQL's Generalized
Search Tree (GiST) index type. Even though you define your
spatial indexes in PostGIS using the GIST type, they are still
implemented as R-Trees internally.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[161]

R-Tree indexes are one of the most powerful features of spatial databases, and it is
worth spending a moment becoming familiar with how they work. R-Trees use the
minimum bounding rectangle for each geometry to allow the database to quickly
search through the geometries using their position in space:

These bounding boxes are grouped into a nested hierarchy based on how close
together they are:

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[162]

This hierarchy of nested bounding boxes is then represented using a tree-like
data structure:

The computer can quickly scan through this tree to find a particular geometry, or to
compare the positions or sizes of the various geometries. For example, imagine that
we want to find the polygon that intersects the following point:

The database can quickly find this geometry by traversing the tree and comparing the
bounding boxes at each level. The R-Tree will be searched in the following manner:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[163]

Using the R-Tree index, it took just three comparisons to find the desired polygon.

Because of the hierarchical nature of the tree structure, R-Tree indexes scale
extremely well, and can search through many tens of thousands of features using
only a handful of bounding box comparisons. And because every geometry is
reduced to a simple bounding box, R-Trees can support any type of geometry,
not just polygons.

R-Tree indexes are not limited to only searching for enclosed coordinates; they
can be used for all sorts of spatial comparisons, and for spatial joins. We will be
working with spatial indexes extensively in the next chapter.

Open source spatially-enabled databases
If you wish to use an open source database for your geospatial development work,
you currently have three main options: MySQL, PostGIS and SpatiaLite. Each has
its own advantages and disadvantages, and no one database is the ideal choice in
every situation. Let's take a closer look at each of these spatially-enabled databases.

MySQL
MySQL is the world's most popular open source database, and is generally
an extremely capable database. It is also spatially-enabled, though with some
limitations, which we will get to in a moment.

The MySQL database server can be downloaded from http://mysql.com/
downloads for a variety of operating systems, including MS Windows, Mac OS X,
and Linux. Click on the MySQL Community Server link to download the server.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[164]

Once downloaded, running the installer will set up everything you need, and you
can access MySQL directly from the command line:

% mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 14

Server version: 5.5.28 MySQL Community Server (GPL)

Copyright (c) 2000,2012, Oracle and/or its affiliates. All rights
reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql>

To access MySQL from your Python programs, you need the MySQL-Python driver,
which is available from http://sourceforge.net/projects/mysql-python. You
can download the driver in source code format for Mac OS X and Linux, as well as
MS Windows installers for Python version 2.7. If you need MS Windows installers
for earlier versions of Python, these are available at http://www.codegood.com.

The MySQL-Python driver acts as an interface between MySQL and your
Python programs:

MySQL

Database
MySQL-Python

Your Python

program

Once you have installed the MySQL-Python driver, it will be available as a module
named MySQLdb. Here is an example of how you might use this module from within
your Python programs:

import MySQLdb

connection = MySQLdb.connect(user="...", passwd="...")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[165]

cursor = connection.cursor()
cursor.execute("USE myDatabase")

The cursor.execute() method lets you execute any MySQL command, just as
if you were using the MySQL command-line client. MySQLdb is also completely
compatible with the Python Database API specification (http://www.python.org/
dev/peps/pep-0249) and allows you to access all of MySQL's features from within
your Python programs.

Learning how to use databases within Python is beyond the scope of this book.
If you haven't used a DB-API compatible database from Python before, you may
want to check out one of the many available tutorials on the subject, for example:
http://tutorialspoint.com/python/python_database_access.htm. Also,
the Python Database Programming Wiki page (http://wiki.python.org/moin/
DatabaseProgramming) and the users guide for MySQLdb (http://mysql-python.
sourceforge.net/MySQLdb.html) have useful information.

MySQL comes with spatial capabilities built in. For example, the following MySQL
command creates a new database table that contains a polygon:

CREATE TABLE cities (
 id INTEGER AUTO_INCREMENT PRIMARY KEY,
 name CHAR(255),
 outline POLYGON NOT NULL,

 INDEX (name),
 SPATIAL INDEX (outline)) ENGINE=MyISAM

Note that you have to specify the MyISAM storage engine
if you want to use spatial indexes. As of MySQL Version
5.5, the default storage engine changed from MyISAM to
InnoDB, so you now need to specify the engine when
creating your spatial database table.

Notice that POLYGON is a valid column type, and that you can directly create a spatial
index on a geometry. This allows you to issue queries such as:

SELECT name FROM cities WHERE MBRContains(outline, myLocation)

The preceding query will return all the cities where the MBRContains() function
determines that the given location is within the city's outline.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[166]

This brings us to the first big disadvantage with using MySQL as a spatial database:
the "MBR" at the start of the MBRContains() function stands for Minimum Bounding
Rectangle. The MBRContains() function doesn't actually determine if the point is
inside the polygon; rather, it determines if the point is inside the polygon's minimum
bounding rectangle:

As you can see, the dark points are inside the minimum bounding rectangle, while
the lighter points are outside this rectangle. This means that the MBRContains()
function returns false positives; that is, points that are inside the bounding rectangle,
but outside the polygon itself.

MySQL Version 5.6 will remove this limitation, though as of this writing Version 5.5
is the current stable release and Version 5.6 (and its associated Python drivers) may
not be available for some time.

Now, before you give up on MySQL completely, consider what this bounding-
rectangle calculation gives you. If you have a million points and need to quickly
determine which points are within a given polygon, the MBRContains() function
will reduce that down to the small number of points that might be inside the
polygon, by virtue of being in the polygon's bounding rectangle. You can then
extract the polygon from the database and use another function such as Shapely's
polygon.contains(point) method to do the final calculation on these few
remaining points, like this:

Fetch the polygon we want to compare against:

cursor.execute("SELECT AsText(outline) FROM cities WHERE...")
wkt = cursor.fetchone()[0]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[167]

polygon = shapely.wkt.loads(wkt)
pointsInPolygon = []

Search for coordinates within the polygon's bounding rectangle:

cursor.execute("SELECT X(coord),Y(coord) FROM coordinates " +
 "WHERE MBRContains(GEOMFromText(%s), coord)",
 (wkt,))
for x,y in cursor:

 # See if the polygon actually contains this coordinate.

 point = shapely.geometry.Point(x, y)
 if polygon.contains(point):
 pointsInPolygon.append(point)

As you can see, we first ask the database to find all points within the polygon's
minimum bounding rectangle, and then check each returned point to see if it is
actually inside the polygon. This approach is a bit more work, but it gets the job
done and (for typical polygon shapes) will be extremely efficient and scalable.

MySQL has other disadvantages as well—the range of spatial functions is more
limited, and performance can sometimes be a problem—but it does have two major
advantages which make it a serious contender for geospatial development:

•	 MySQL is extremely popular, so if you are using a hosted server or have a
computer set up for you, chances are that MySQL will already be installed.
Hosting providers in particular may be very reluctant to install a different
database server for you to use.

•	 MySQL is the easiest database to install, set up, and administer. Other
databases (in particular PostgreSQL) are often much more difficult to
set up and use correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[168]

PostGIS
PostGIS is an extension to the PostgreSQL database, allowing geospatial data to
be stored in a PostgreSQL database. To use PostGIS from a Python application, you
first have to install PostgreSQL, followed by the PostGIS extension, and finally the
Psycopg database adapter so you can access PostgreSQL from Python. All this can
get rather confusing:

Your Python

program
Psycopg

PostGIS

PostgreSQL

+

Installing and configuring PostGIS
Let's take a look at what is required to use PostGIS on your computer:

1.	 Install PostgreSQL:
You first have to download and install the PostgreSQL database server.
For MS Windows and Linux, installers can be found at:
http://postgresql.org/download

For Mac OS X, you should use the installer available at:
http://kyngchaos.com/software/postgres

Be warned that installing PostgreSQL can be complicated, and you may well
need to configure or debug the server before it will work. The PostgreSQL
documentation (http://postgresql.org/docs) can help, and remember
that Google is your friend if you encounter any problems.

Take note of where PostgreSQL has been installed
on your computer. You will need to refer to files
in the pgsql directory when you set up your
spatially-enabled database.

2.	 Install the PostGIS extension:
The PostGIS spatial extension to PostgreSQL, along with full documentation,
can be downloaded from:
http://postgis.refractions.net

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[169]

Make sure you install the correct version of PostGIS to match the version of
PostgreSQL you are using.

For Mac OS X, use the PostGIS installer available
from the KyngChaos site.

3.	 Install Psycopg:
Psycopg allows you to access PostgreSQL (and PostGIS) databases from
Python. The Psycopg database adapter can be found at:
http://initd.org/psycopg

Make sure you use Version 2 and not the outdated Version 1 of Psycopg.
For Windows, you can download a prebuilt version of Psycopg; for Linux
and Mac OS X, you need to download the source code and build it yourself
in the usual way:
% cd psycopg2
% python setup.py build
% python setup.py install

Mac OS X users: If you are building Psycopg to run
with the Kyngchaos version of PostgreSQL, type the
following into the terminal window before you attempt
to build Psycopg:
% export PATH="/usr/local/pgsql/bin:$PATH"
% export ARCHFLAGS="-arch i386"

4.	 Setting up a New PostgreSQL user and database:
Before you can use PostgreSQL, you need to have a user (sometimes called a
"role" in the PostgreSQL manuals) that owns the database you create. While
you might have a user account on your computer that you use for logging in
and out, the PostgreSQL user is completely separate from this account, and
is used only within PostgreSQL. You can set up a PostgreSQL user with the
same name as your computer username, or you can give it a different name
if you prefer.
To create a new PostgreSQL user, type the following command:
% pgsql/bin/createuser -s <username>

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[170]

Obviously, replace <username> with whatever name
you want to use for your new user. You may also need to
change the path to the createuser command, if your
PostgreSQL's bin directory isn't on your path. Finally, if
you're running on a Mac, add -U postgres to the end
of this command.

Once you have set up a new PostgreSQL user, you can create a new database
to work with:
% pgsql/bin/createdb -U <username> <dbname>

Once again, replace <username> and <dbname> with
the appropriate names for the user and database you
wish to set up, and change the path to the createdb
command if necessary.

Note that we are keeping this as simple as possible. Setting up and
administering a properly-configured PostgreSQL database is a major
undertaking, and is way beyond the scope of this book. The preceding
commands, however, should be enough to get you up and running.

5.	 Spatially enable your new database:
So far you have created a plain-vanilla PostgreSQL database. To turn this
into a spatially-enabled database, you will need to configure the database
to use PostGIS. Doing this is straightforward:
% pgsql/bin/psql -d <dbname> -c "CREATE EXTENSION postgis;"

After following these steps, you will have your own spatially-enabled
PostGIS database. Let's now see how you can access this database from
your Python programs.

Using PostGIS
Once you have installed the various pieces of software, and have set up a spatially-
enabled database, you can use the Psycopg database adapter in the same way to how
you would use MySQLdb to access a MySQL database:

import psycopg2

connection = psycopg2.connect("dbname=... user=...")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[171]

cursor = connection.cursor()
cursor.execute("SELECT id,name FROM cities WHERE pop>100000")
for row in cursor:
 print row[0],row[1]

Because Psycopg conforms to Python's DB-API specification, using PostgreSQL
from Python is relatively straightforward, especially if you have used databases
from Python before.

Here is how you might create a new spatially-enabled table using PostGIS:

import psycopg2

connection = psycopg2.connect("dbname=... user=...")
cursor = connection.cursor()

cursor.execute("DROP TABLE IF EXISTS cities")
cursor.execute("CREATE TABLE cities (id INTEGER," +
 "name VARCHAR(255), PRIMARY KEY (id))")
cursor.execute("SELECT AddGeometryColumn('cities', 'geom', " +
 "-1, 'POLYGON', 2)")
cursor.execute("CREATE INDEX cityIndex ON cities " +
 "USING GIST (geom)")
connection.commit()

Let's take a look at each of these steps in more detail. We first get a cursor object to
access the database, and then create the nonspatial parts of our table using standard
SQL statements:

connection = psycopg2.connect("dbname=... user=...")
cursor = connection.cursor()

cursor.execute("DROP TABLE IF EXISTS cities")
cursor.execute("CREATE TABLE cities (id INTEGER," +
 "name VARCHAR(255), PRIMARY KEY (id))")

Once the table itself has been created, we have to use a separate PostGIS function
called AddGeometryColumn() to define the spatial columns within our table:

cursor.execute("SELECT AddGeometryColumn('cities', 'geom', " +
 "-1, 'POLYGON', 2)")

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[172]

Recent versions of PostGIS support two distinct types of geospatial
data, called geometries and geographies. The geometry type (which
we are using here) uses Cartesian coordinates to place features onto a
plane, and all calculations are done using Cartesian (x, y) coordinates.
The geography type, on the other hand, identifies geospatial features
using angular coordinates (latitude and longitude values) positioning
the features onto a spheroid model of the Earth.
The geography type is relatively new, much slower to use, and doesn't
yet support all the functions that are available for the geometry type.
Despite having the advantages of being able to accurately calculate
distances which cover a large portion of the Earth and not requiring
knowledge of projections and spatial references, we will not be using
the geography type in this book.

Finally, we create a spatial index so that we can efficiently search using the new
geometry column:

cursor.execute("CREATE INDEX cityIndex ON cities " +
 "USING GIST (geom)")

Once you have created your database, you can insert geometry features into it using
the ST_GeomFromText() function, like this:

cursor.execute("INSERT INTO cities (name,geom) VALUES " +
 "(%s, ST_GeomFromText(%s)", (cityName, wkt))

Conversely, you can retrieve a geometry from the database in WKT format using the
ST_AsText() function:

cursor.execute("select name,ST_AsText(geom) FROM cities")
for name,wkt in cursor:

Documentation
Because PostGIS is an extension to PostgreSQL, and you use Psycopg to access it,
there are three separate sets of documentation that you will need to refer to:

•	 The PostgreSQL manual: http://postgresql.org/docs
•	 The PostGIS manual: http://postgis.refractions.net/docs
•	 The Psycopg documentation: http://initd.org/psycopg/docs

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[173]

Of these, the PostGIS manual is probably going to be the most useful, and you will also
need to refer to the Psycopg documentation to find out the details of using PostGIS
from Python. You will probably also need to refer to the PostgreSQL manual to learn
the nonspatial aspects of using PostGIS, though be aware that this manual is huge and
extremely complex, and reflects the complexity of PostgreSQL itself.

Advanced PostGIS features
PostGIS supports the following features that not available with MySQL:

•	 On-the-fly transformations of geometries from one spatial reference to another.
•	 The ability to edit geometries by adding, changing, and removing points, and

by rotating, scaling, and shifting entire geometries.
•	 The ability to read and write geometries in GeoJSON, GML, KML, and SVG

formats, in addition to WKT and WKB.
•	 A complete range of bounding-box comparisons, including A overlaps B,

A contains B, A is to the left of B, and so on. These comparison
operators make use of spatial indexes to identify matching features
extremely quickly.

•	 Proper spatial comparisons between geometries, including intersection,
containment, crossing, equality, overlap, touching, and so on. These
comparisons are done using the true geometry rather than just their
bounding boxes.

•	 Spatial functions to calculate information such as the area, centroid, closest
point, distance, length, perimeter, shortest connecting line, and so on. These
functions take into account the geometry's spatial reference, if known.

•	 Support for both vector and raster format geospatial data.
•	 An optional geocoder based on TIGER/Line data, allowing you to convert

from street addresses to a list of matching locations (US addresses only).

PostGIS has a reputation for being a geospatial powerhouse. While it is not
the only option for storing geospatial data, and is certainly the most complex
database discussed in this book, it is worth considering if you are looking for a
powerful spatially-enabled database to use from within your Python geospatial
programs and can deal with the complexity of setting up and administering a
PostgreSQL database.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[174]

SpatiaLite
As the name suggests, SpatiaLite is a "lightweight" spatial database, though the
performance is surprisingly good and it doesn't skimp on features. Just like PostGIS
is a spatial extension to PostgreSQL, SpatiaLite is a spatial extension to the serverless
SQLite database engine. To access SQLite (and SpatiaLite) from Python, you need to
use the pysqlite database adapter:

SpatiaLite

SQLite

pysqlite
Your Python

program
+

Installing SpatiaLite
Before you can use SpatiaLite in your Python programs, you need to install SQLite,
SpatiaLite, and pysqlite. How you do this depends on which operating system
your computer is running.

•	 Mac OS X
If you're using a Mac OS X-based system, you're in luck. The framework
build of sqlite3 can be downloaded from:
http://www.kyngchaos.com/software/frameworks

This will install everything you need, and you won't have to deal with
any configuration issues at all.

•	 MS Windows
For MS Windows based systems, you can download binary installers
from the following site:
http://gaia-gis.it/gaia-sins

Near the bottom of this page is the MS Windows Binaries section,
where you can download the appropriate installer.

•	 Linux
For Linux, you can download the source code to libspatialite from the
SpatiaLite website:
https://www.gaia-gis.it/fossil/libspatialite/index

You can then follow the build instructions to compile libspatialite yourself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[175]

Installing pysqlite
After installing the libspatialite library and its dependencies, you'll need to
make sure you have a workable version of pysqlite, the Python database adapter
for SQLite.

Mac users are once again in luck; the sqlite3 framework you
downloaded already includes a suitable version of pysqlite,
so you can ignore this section.

A version of pysqlite comes bundled with Python Version 2.5 and later, in the
form of a standard library module named sqlite3. This standard library module,
however, may not work with SpatiaLite. Because SpatiaLite is an extension to SQLite,
the pysqlite library must be able to load extensions—a feature that was only
introduced in pysqlite Version 2.5, and is often disabled by default. To see if your
version of Python includes a usable version of sqlite3, type the following into the
Python command line:

>>> import sqlite3
>>> conn = sqlite3.connect(":memory:")
>>> conn.enable_load_extension(True)

If you get an AttributeError, your built-in version of sqlite3 does not support
loading extensions, and you will have to download and install a different version.

The main website for pysqlite is:

http://code.google.com/p/pysqlite

You can download binary versions for MS Windows, and source code packages for
Linux, which you can compile yourself.

Accessing SpatiaLite from Python
Now that you have all the libraries installed, you are ready to start using pysqlite
to access and work with SpatiaLite databases. There is, however, one final thing to be
aware of; because pysqlite is a database adapter for SQLite rather than SpatiaLite,
you will need to load the libspatialite extension before you can use any of the
SpatiaLite functionality in your Python program.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[176]

Mac users don't need to do this, because the version of sqlite3
you downloaded comes with the libspatialite extension
built in.
If you are running on MS Windows, you may need to copy the
SpatiaLite DLLs into the SYSTEM32 folder, or add the folder
containing the SpatiaLite DLLs to the system path.

To load the libspatialite extension, add the following highlighted statements to
your Python program:

from pysqlite2 import dbapi as sqlite

conn = sqlite.connect("...")
conn.enable_load_extension(True)
conn.execute('SELECT load_extension("libspatialite-2.dll")')
curs = conn.cursor()

For Linux users, make sure you use the correct name for the libspatialite
extension. You may also need to change the name of the pysqlite2 module
you're importing depending on which version you downloaded.

Documentation
With all these different packages, it can be quite confusing knowing where to look
for more information. First off, you can learn more about the SQL syntax supported
by SQLite (and SpatiaLite) by looking at the SQL as Understood by SQLite page:

http://sqlite.org/lang.html

Then, to learn more about SpatiaLite itself, check out the main SpatiaLite web page:

https://www.gaia-gis.it/fossil/libspatialite/index

You can access the SpatiaLite online documentation, as well as read through various
tutorials, though these aren't Python-specific.

Finally, to learn more about using pysqlite to access SQLite and SpatiaLite from
Python, see:

http://pysqlite.googlecode.com/svn/doc/sqlite3.html

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[177]

Using SpatiaLite
In many ways, SpatiaLite has been modeled after PostGIS. Before using SpatiaLite for
your database, you need to initialize SpatiaLite's internal metadata tables. You also
need to explicitly define your spatial columns by calling the AddGeometryColumn()
function, just like you do in PostGIS. Let's see how all this works by creating a
SpatiaLite database and creating an example database table.

As described earlier, the first step in using SpatiaLite is to connect to the database
and load the SpatiaLite extension, like this:

from pysqlite2 import dbapi2 as sqlite

db = sqlite.connect("myDatabase.db")
db.enable_load_extension(True)
db.execute('SELECT load_extension("libspatialite.dll")')
cursor = db.cursor()

Note that because SQLite is a serverless database, the myDatabase.db database
is simply a file on your hard disk. Also, if you are running on Mac OS X, you can
skip the enable_load_extension/SELECT load_extension dance and remove
or comment out these two lines.

You next need to initialize the SpatiaLite metadata tables in your database.
In previous versions of SpatiaLite, you had to import these tables by hand.
It's now much easier—simply execute the following within your Python script:

cursor.execute('SELECT InitSpatialMetaData()')

If the metadata tables already exist, InitSpatialMetaData()
will do nothing. This means you can safely call this function
whenever you open the database, regardless of whether or not
the database has already been initialized.

After initializing the metadata, you can create your own database table to hold
your geospatial data. As with PostGIS, this is a two-step process; you first create
the nonspatial parts of your table using standard SQL statements:

cursor.execute("DROP TABLE IF EXISTS cities")
cursor.execute("CREATE TABLE cities (" +
 "id INTEGER PRIMARY KEY AUTOINCREMENT, " +
 "name CHAR(255))")

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[178]

You then use the SpatiaLite function AddGeometryColumn() to define the spatial
column(s) in your table:

cursor.execute("SELECT AddGeometryColumn('cities', 'geom', " +
 "4326, 'POLYGON', 2)")

The number 4326 is the spatial reference ID (SRID) used to
identify the spatial reference this column's features will use.
The SRID number 4326 refers to a spatial reference using
latitude and longitude values and the WGS84 datum; we
will look at SRID values in more detail in the Recommended
Best Practices section.

You can then create a spatial index on your geometries using the
CreateSpatialIndex() function, like this:

cursor.execute("SELECT CreateSpatialIndex('cities', 'geom')")

Now that you have set up your database table, you can insert geometry features into
it using the GeomFromText() function:

cursor.execute("INSERT INTO cities (name, geom)" +
 " VALUES (?, GeomFromText(?, 4326))",
 (city, wkt))

And you can retrieve geometries from the database in WKT format using the
AsText() function:

cursor.execute("SELECT name,AsText(geom) FROM cities")
for name,wkt in cursor:

SpatiaLite capabilities
Some highlights of SpatiaLite include:

•	 The ability to handle all the major geometry types, including Point,
LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon
and GeometryCollection.

•	 Experimental support for topology-based datatypes (nodes, edges, faces,
and so on) as an alternative to the above geometry types.

•	 Every geometry feature has a spatial reference identifier (SRID) which tells
you the spatial reference used by this feature.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[179]

•	 Geometry columns are constrained to a particular type of geometry and
a particular SRID. This prevents you from accidentally storing the wrong
type of geometry, or a geometry with the wrong spatial reference, in a
database table.

•	 Support for translating geometries to and from various microformats,
including WKT, WKB , GML, KML, and GeoJSON.

•	 Support for geometry functions to do things such as calculate the area of
a polygon, to simplify polygons and linestrings, to calculate the distance
between two geometries, to calculate intersections, differences, and buffers.

•	 Functions to transform geometries from one spatial reference to another,
and to shift, scale, and rotate geometries.

•	 Support for fast spatial relationship calculations using minimum bounding
rectangles.

•	 Support for complete spatial relationship calculations (equals, touches,
intersects, and so on) using the geometry itself rather than just the
bounding rectangle.

•	 The use of R-Tree indexes, which can (if you use them correctly) produce
impressive results when performing spatial queries. Calculating the
intersection of 500,000 linestrings with 380,000 polygons took just nine
seconds, according to one researcher.

•	 An alternative way of implementing spatial indexes, using in-memory
MBR caching. This can be an extremely fast way of indexing features using
minimum bounding rectangles, though it is limited by the amount of
available RAM and so isn't suitable for extremely large datasets.

While SpatiaLite is considered to be a lightweight database, it is indeed surprisingly
capable. Depending on your application, SpatiaLite may well be an excellent choice
for your Python geospatial programming needs.

Commercial Spatially-enabled databases
While we will be concentrating on the use of open source databases in this book,
it is worth spending a moment exploring the commercial alternatives. There are
two major commercial databases which support spatial operations: Oracle and
Microsoft's SQL Server.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[180]

Oracle
Oracle provides one of the world's most powerful and popular commercial database
systems. Spatial extensions to the Oracle database are available in two flavors. Oracle
Spatial provides a large range of geospatial database features, including spatial data
types, spatial indexes, the ability to perform spatial queries and joins, and a range
of spatial functions. Oracle Spatial also supports linear referencing systems, spatial
analysis, and data-mining functions, geocoding, and support for raster-format data.

While Oracle Spatial is only available for the Enterprise edition of the Oracle database,
it is one of the most powerful spatially-enabled databases available anywhere.

A subset of the Oracle Spatial functionality, called Oracle Locator, is available for the
Standard edition of the Oracle database. Oracle Locator does not support common
operations such as unions and buffers, intersections, area and length calculations. It
also excludes support for more advanced features such as linear referencing systems,
spatial analysis functions, geocoding, and raster format data.

While being extremely capable, Oracle does have the disadvantage of using a
somewhat non-standard syntax compared with other SQL databases. It also uses
non-standard function names for its spatial extensions, making it difficult to switch
database engines or use examples written for other databases.

MS SQL Server
Microsoft's SQL Server is another widely-used and powerful commercial database
system. SQL Server supports a full range of geospatial operations, including support
for both geometry and geography data types, and all of the standard geospatial
functions and operators.

Because Microsoft has followed the Open Geospatial Consortium's standards,
the data types and function names used by SQL Server match those used by the
open source databases we have already examined. The only difference stems from
SQL Server's own internal object oriented nature; for example, rather than ST_
Intersects(geom, pt), SQL Server uses geom.STIntersects(pt).

Unlike Oracle, all of Microsoft's spatial extensions are included in every edition of
the SQL Server; there is no need to obtain the Enterprise edition to get the full range
of spatial capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[181]

There are two limitations with MS SQL Server that may limit its usefulness as a
spatially-enabled database. Firstly, SQL Server only runs on Microsoft Windows based
computers. This limits the range of servers it can be installed on. Also, SQL Server does
not support transforming data from one spatial reference system to another.

Recommended best practices
In this section, we will look at a number of practical things you can do to ensure your
geospatial databases work as efficiently and effectively as possible.

Using the database to keep track of spatial
references
As we've seen in earlier chapters, different sets of geospatial data use different
coordinate systems, datums, and projections. Consider, for example, the following
two geometry objects:

The geometries are represented as a series of coordinates, which are nothing more
than numbers. By themselves, these numbers aren't particularly useful—you need
to position these coordinates onto the Earth's surface by identifying the spatial
reference (coordinate system, datum and projection) used by the geometry.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[182]

In this case, the POLYGON is using unprojected lat/long coordinates in the WGS84
datum, while the LINESTRING is using coordinates defined in meters using the
UTM Zone 12N projection. Once you know the spatial reference, you can place
the two geometries onto the Earth's surface. This reveals that the two geometries
actually overlap:

In all but the most trivial databases, it is recommended that you store the spatial
reference for each feature directly in the database itself. This makes it easy to keep
track of which spatial reference is used by each feature. It also allows the queries
and database commands you write to be aware of the spatial reference, and enables
you to transform geometries from one spatial reference to another as necessary in
your spatial queries.

Spatial references are generally referred to using a simple integer value called a
Spatial Reference Identifier (SRID). While you could choose arbitrary SRID values
to represent various spatial references, it is strongly recommended that you use the
European Petroleum Survey Group (EPSG) numbers as standard SRID values.
Using this internationally-recognized standard makes your data interchangeable
with other databases, and allows tools such as OGR and Mapnik to identify the
spatial reference used by your data.

To learn more about EPSG numbers, and SRID values in general, please refer to:

http://epsg-registry.org

You have seen SRID values before. For example, in the Using SpatiaLite section of
this chapter, we encountered the following SQL statement:

SELECT AddGeometryColumn('cities','geom',4326,'POLYGON',2)

The value 4326 is the SRID used to identify a particular spatial reference, in this
case the WGS84 Long Lat reference (unprojected lat/long coordinates using the
WGS84 datum).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[183]

Both PostGIS and SpatiaLite add a special table to your spatially-enabled database
called spatial_ref_sys. This table comes preloaded with a list of over 3,000
commonly-used spatial references, all identified by EPSG number. Because the SRID
value is the primary key into this table, tools that access the database can refer to this
table to perform on-the-fly coordinate transformations using the PROJ.4 library. Even
if you are using MySQL, which doesn't provide a spatial_ref_sys table or other
direct support for coordinate transformations, you should be using standard EPSG
numbers for your spatial references.

Note that all three open source spatial databases allow you to associate an SRID
value with a geometry when importing from WKT:

•	 MySQL: GeometryFromText(wkt, [srid])
•	 PostGIS: ST_GeometryFromText(wkt, [srid])
•	 SpatiaLite: GeometryFromText(wkt, [srid])

While the SRID value is optional, you should use this wherever possible to tell the
database which spatial reference your geometry is using. In fact, both PostGIS and
SpatiaLite require you to use the correct SRID value if a column has been set up
to use a particular SRID. This prevents you from using mixing spatial references
within a table.

Using the appropriate spatial reference for
your data
When you import spatial data into your database, it will be in a particular spatial
reference. This doesn't mean, though, that it has to stay in that spatial reference.
In many cases, it will be more efficient and accurate to transform your data into
the most appropriate spatial reference for your particular needs. Of course,
"appropriate" depends on what you want to achieve.

With the exception of PostGIS and its new geography type, all three spatial databases
assume that coordinates exist on a Cartesian plane—that is, that you are using
projected coordinates. If you store unprojected coordinates (latitude and longitude
values) in the database, you will be limited in what you can do. Certainly, you can
use unprojected geographic coordinates in a database to compare two features (for
example, to see if one feature intersects with another), and you will be able to store
and retrieve geospatial data quickly. However, any calculation that involves area
or distance will be all but meaningless.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[184]

Consider, for example, what would happen if you asked MySQL to calculate the
length of a LINESTRING geometry:

mysql> SELECT GLength(geom) FROM roads WHERE id=9513;
+-------------------+
| GLength(geom) |
+-------------------+
| 192.3644911426572 |
+-------------------+

If your data was in unprojected lat/long coordinates, the resulting "length" would be
a number in decimal degrees. Unfortunately, this number is not particularly useful.
You can't assume a simple relationship between the decimal degree "length" and
the actual length on the Earth's surface, for example multiplying by some constant
to yield the true length in meters. The only thing is that this so-called "length" value
could be used for is to give a very rough estimate of the true length, as we did in the
previous chapter to filter out features obviously too far away from a desired point.

If you do need to perform length and area calculations on your geospatial data (and
it is likely that you will need to do this at some stage), you have three options:

•	 Using a database that supports unprojected coordinates
•	 Transform the features into projected coordinates before performing the

length or distance calculation
•	 Store your geometries in projected coordinates from the outset

Let's consider each of these options in more detail.

Option 1 – using a database that supports
geographies
Of the open source databases we are considering, only PostGIS has the ability to
work directly with unprojected coordinates, through the use of the relatively-new
geography type. Unfortunately, the geography type has some major limitations
which make this a less than ideal solution:

•	 Performing calculations on unprojected coordinates takes approximately
an order of magnitude longer than performing the same calculations using
projected (Cartesian) coordinates

•	 The geography type only supports lat/long values on the WGS84 datum
(SRID 4326)

•	 Many of the functions available for projected coordinates are not yet
supported by the geography type

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[185]

For these reasons, as well as the fact that they are only supported by PostGIS,
we will not be using geography columns in this book.

Option 2 – transforming features as required
Another possibility is to store your data in unprojected lat/long coordinates, and
transform the coordinates into a projected coordinate system before you calculate
the distance or area. While this will work, and will give you accurate results, you
should beware of doing this because (a) you may well forget to transform into
a projected coordinate system before making the calculation, and (b) performing
on-the-fly transformations of large numbers of geometries is very time-consuming.

Despite these problems, there are situations where storing unprojected coordinates
makes sense. We will look at this shortly.

Option 3 – transforming features from the outset
Because transforming features from one spatial reference to another is rather time-
consuming, it often makes sense to do this once, at the time you import your data,
and store it in the database already converted to a projected coordinate system.

Doing this, you will be able to perform your desired spatial calculations quickly
and accurately. However, there are situations where this is not the best option,
as we will see in the next section.

When to use unprojected coordinates
As we saw in Chapter 2, GIS, projecting features from the three-dimensional surface
of the Earth onto a two-dimensional Cartesian plane can never be done perfectly.
It is a mathematical truism that there will always be errors in any projection.

Different map projections are generally chosen to preserve values such as distance
or area for a particular portion of the Earth's surface. For example, the Mercator
projection is accurate at the tropics but distorts features closer to the poles.

Because of this inevitable distortion, projected coordinates work best when your
geospatial data only covers a part of the Earth's surface. If you are only dealing
with data for Austria, then a projected coordinate system will work very well
indeed. But if your data includes features in both Austria and Australia, then
using the same projected coordinates for both sets of features will once again
produce inaccurate results.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[186]

For this reason, it is generally best to use a projected coordinate system for data that
covers only part of the Earth's surface, but unprojected coordinates will work best if
you need to store data covering large parts of the Earth.

Of course, using unprojected coordinates leads to problems of its own, as discussed
earlier. This is why it is recommended that you use the appropriate spatial reference
for your particular needs; what is appropriate for you depends on what data you
need to store and how you intend to use it.

The best way to find out what is appropriate would be to experiment; try importing
your data in both spatial references, and write some test programs to work with the
imported data. This will tell you which is the fastest and easiest spatial reference to
work with, rather than having to guess.

Avoiding on-the-fly transformations within a
query
Imagine that you have a cities table with a geom column containing POLYGON
geometries in UTM 12N projection (EPSG number 32612). Being a competent
geospatial developer, you have set up a spatial index on this column.

Now, imagine that you have a variable named pt that holds a POINT geometry in
unprojected WGS84 coordinates (EPSG number 4326). You might want to find the city
that contains this point, so you would issue the following reasonable-looking query:

SELECT * FROM cities WHERE

 Contains(Transform(geom, 4326), pt);

This would give you the right answer, but would take an extremely long time.
Why is it that? Because the Transform(geom, 4326) expression is converting every
geometry in the table from UTM 12N to WGS84 coordinates before the database
can check to see if the point is inside the geometry. The spatial index is completely
ignored, as it is in the wrong coordinate system.

Compare this with the following query:

SELECT * FROM cities WHERE

 Contains(geom, Transform(pt, 32612));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[187]

A very minor change, but a dramatically different result. Instead of taking hours, the
answer should come back almost immediately. Can you see why? The transformation
is being done on a variable that does not change from one record to the next, so the
Transform(pt, 32612) expression is being called just once, and the Contains() call
can make use of your spatial index to quickly find the matching city.

The lesson here is simple: be aware of what you are asking the database to do, and
make sure you structure your queries to avoid on-the-fly transformations of large
numbers of geometries.

Don't create geometries within a query
While we are discussing database queries that can cause the database to perform
a huge amount of work, consider the following (where poly is a polygon):

SELECT * FROM cities WHERE

 NOT ST_IsEmpty(ST_Intersection(outline, poly));

In a sense this is perfectly reasonable: identify all cities which have a nonempty
intersection between the city's outline and the given polygon. And the database
will indeed be able to answer this query—it will just take an extremely long time
to do so. Hopefully you can see why; the ST_Intersection() function creates
a new geometry out of two existing geometries. This means that for every row in
the database table, a new geometry is created, and is then passed to ST_IsEmpty().
As you can imagine, these types of operations are extremely inefficient. To avoid
creating a new geometry each time, you can rephrase your query like this:

SELECT * FROM cities WHERE ST_Intersects(outline, poly);

While this example may seem obvious, there are many cases where spatial
developers have forgotten this rule, and have wondered why their queries
were taking so long to complete. A common example is to use the ST_Buffer()
function to see if a point is within a given distance of a polygon, like this:

SELECT * FROM cities WHERE

 ST_Contains(ST_Buffer(outline, 100), pt);

Once again, this query will work, but will be painfully slow. A much better approach
would be to use the ST_DWithin() function:

SELECT * FROM cities WHERE ST_DWithin(outline, pt, 100);

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[188]

As a general rule, remember that you never want to call any function which
returns a Geometry object (or one of its subclasses) within the WHERE portion
of a SELECT statement.

Using spatial indexes appropriately
Just as ordinary database indexes can make an immense difference to the speed and
efficiency of your database, spatial indexes are also a very powerful tool for speeding
up your database queries. Like all powerful tools, though, they have their limits:

•	 If you don't explicitly define a spatial index, the database can't use it.
Conversely, if you have too many spatial indexes, the database will slow
down because each index needs to be updated every time a record is added,
updated or deleted. Thus, it is crucial that you define the right set of spatial
indexes: index the information you are going to search on, and nothing more.

•	 Because spatial indexes work on the geometries' bounding boxes, the index
itself can only tell you which bounding boxes actually overlap or intersect;
they can't tell you if the underlying points, lines, or polygons have this
relationship. Thus, they are really only the first step in searching for the
information you want. With PostGIS and SpatiaLite, the database itself can
further refine the search by comparing the individual geometries for you;
with MySQL, you have to do this yourself, as we saw earlier.

•	 Spatial indexes are most efficient when dealing with lots of relatively small
geometries. If your polygons cover a large area, the polygon bounding boxes
are going to be so large that they will intersect with many other geometries,
and the database will have to revert to doing full polygon calculations rather
than just the bounding box. Furthermore, if your geometries consist of many
thousands of vertices, these calculations can be very slow indeed—the entire
polygon will have to be loaded into memory and processed one vertex at
a time. If you have polygons that are both large and complex, your spatial
queries will be slow. If possible, it is generally better to split large and complex
polygons (and multipolygons) into smaller pieces so that the spatial index can
work with them more efficiently.

We will revisit this issue in Chapter 7, Working with
Spatial Data, where we'll split large polygons into
smaller ones to speed up our program.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[189]

Knowing the limits of your database's query
optimizer
When you send a query to the database, it automatically attempts to optimize the
query to avoid unnecessary calculations and to make use of any available indexes.
For example, if you issued the following (nonspatial) query:

SELECT * FROM people WHERE name=Concat("John ","Doe");

The database would know that Concat("John ","Doe") yields a constant, and
so would only calculate it once before issuing the query. It would also look for a
database index on the name column, and use it to speed up the operation.

This type of query optimization is very powerful, and the logic behind it is extremely
complex. In a similar way, spatial databases have a spatial query optimizer that looks
for ways to precalculate values and make use of spatial indexes to speed up the query.
For example, consider this spatial query from the previous section:

select * from cities where ST_DWithin(outline, pt, 12.5);

In this case, the PostGIS function ST_DWithin() is given one geometry taken from
a table (outline), and a second geometry that is specified as a fixed value (pt),
along with a desired distance (12.5 "units", whatever that means in the geometry's
spatial reference). The query optimizer knows how to handle this efficiently, by first
precalculating the bounding box for the fixed geometry plus the desired distance
(pt ±12.5), and then using a spatial index to quickly identify the records which
may have their outline geometry within that extended bounding box.

While there are times when the database's query optimizer seems to be capable of
magic, there are many other times when it is incredibly stupid. Part of the art of
being a good database developer is to have a keen sense of how your database's
query optimizer works, when it doesn't—and what to do about it.

Let's see how you can find out more about the query optimization process in each
of our three spatial databases.

MySQL
MySQL provides a command, EXPLAIN SELECT, that tells you how the query
optimizer will process your query. For example:

mysql> EXPLAIN SELECT * FROM cities
 WHERE MBRContains(geom,
 GeomFromText(pt))\G

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[190]

*********************** 1. row ***********************

 id: 1

 select_type: SIMPLE

 table: cities

 type: range

possible_keys: geom

 key: geom

 key_len: 34

 ref: NULL

 rows: 1

 Extra: Using where

1 row in set (0.00 sec)

Don't worry about the \G at the end of the command; this just
formats the output in a way which makes it easier to read.

This command tells you that this query involves a simple search against the cities
table, searching for a range of records using the geom spatial index to speed up the
results. The rows:1 tells you that the query optimizer thinks it only needs to read a
single row from the table to find the results.

This is good. Compare it with the following:

mysql> EXPLAIN SELECT * FROM cities

 WHERE MBRContains(Envelope(geom),

 GeomFromText(pt))\G

*********************** 1. row ***********************

 id: 1

 select_type: SIMPLE

 table: cities

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[191]

 rows: 34916

 Extra: Using where

1 row in set (0.00 sec)

This query uses the Envelope() function to create a new geometry, which is then
checked to see if it contains the given point. As explained in the Don't Create Geometries
Within a Query section, the database has to create a new geometry for every row in the
table. In this case the query optimizer cannot use an index, as shown by the NULL value
for possible_keys and key. It also tells you that it would have to scan through 34,916
records to find the matching points—not exactly an efficient query. Indeed, running
this query could take several minutes to complete.

PostGIS
MySQL uses a theoretical approach to query optimization, looking only at the query
itself to see how it could be optimized. PostGIS, on the other hand, takes into account
the amount of information in the database and how it is distributed. In order to
work well, the PostGIS query optimizer needs to have up-to-date statistics on the
database's contents. It then uses a sophisticated genetic algorithm to determine the
most effective way to run a particular query.

Because of this approach, you need to regularly run the VACUUM ANALYZE command,
which gather statistics on the database so that the query optimizer can work as
effectively as possible. If you don't run VACUUM ANALYZE, the optimizer simply
won't be able to work.

Here is how you can run the VACUUM ANALYZE command from Python:

import psycopg2

connection = psycopg2.connect("dbname=... user=...")
cursor = connection.cursor()

old_level = connection.isolation_level
connection.set_isolation_level(0)
cursor.execute("VACUUM ANALYZE")
connection.set_isolation_level(old_level)

Don't worry about the isolation_level logic here; that just allows you to
run the VACUUM ANALYZE command from Python using the transaction-based
psycopg2 adapter.

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[192]

It is possible to set up an autovacuum daemon that runs
automatically after a given period of time, or after a table's
contents has changed enough to warrant another vacuum.
Setting up an autovacuum daemon is beyond the scope of
this book.

Once you have run the VACUUM ANALYZE command, the query optimizer will be
able to start optimizing your queries. As with MySQL, you can see how the query
optimizer works using the EXPLAIN SELECT command:

psql> EXPLAIN SELECT * FROM cities

 WHERE ST_Contains(geom,pt);

 QUERY PLAN

--

 Seq Scan on cities (cost=0.00..7.51 rows=1 width=2619)

 Filter: ((geom &&
'010100000000000000000000000000000000000000'::geometry) AND _st_
contains(geom, '010100000000000000000000000000000000000000'::geometry))

(2 rows)

Don't worry about the Seq Scan part; there are only a few records in this table,
so PostGIS knows that it can scan the entire table faster than it can read through
an index. When the database gets bigger, it will automatically start using the
index to quickly identify the desired records.

The cost= part is an indication of how much this query will "cost", measured in
arbitrary units that by default are relative to how long it takes to read a page of data
from disk. The two numbers represent the "start up cost" (how long it takes before
the first row can be processed), and the estimated total cost (how long it would take
to process every record in the table). Since reading a page of data from disk is quite
fast, a total cost of 7.51 is very quick indeed.

The most interesting part of this explanation is the Filter. Let's take a closer look
at what the EXPLAIN SELECT command tells us about how PostGIS will filter this
query. The first part is given here:

(geom && '010100000000000000000000000000000000000000'::geometry)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[193]

This makes use of the && operator, which searches for matching records using the
bounding box defined in the spatial index. The second part of the filter condition is:

_st_contains(geom,
'010100000000000000000000000000000000000000'::geometry)

This uses the ST_Contains() function to identify the exact geometries which actually
contain the desired point. This two-step process (first filtering by bounding box, then
by the geometry itself) is exactly what we had to implement manually when using
MySQL. As you can see, PostGIS does this for us automatically, resulting in a quick
and accurate search for geometries that contain a given point.

SpatiaLite
One of the disadvantages of using a lightweight database such as SpatiaLite is that
the query optimizer is rather naive. In particular, the SpatiaLite query optimizer will
only make use of B*Tree indexes; you can create a spatial R-Tree index, but it won't
be used unless you explicitly include it in your query.

For example, consider the following SQL statements:

CREATE TABLE cities (id INTEGER PRIMARY KEY AUTOINCREMENT,
 name CHAR(255));
SELECT AddGeometryColumn('cities','geom',4326,'POLYGON',2);
INSERT INTO cities (name,geom)
 VALUES ('London', GeomFromText(wkt, 4326);

This creates a cities table, defines a spatial index and inserts a record into the table.
Because SpatiaLite uses triggers to automatically update the spatial index as records
are added, updated, or deleted, the preceding statements would correctly create the
spatial index and update it as the new record is inserted. However, if we then issue
the following query:

SELECT * FROM cities WHERE Contains(geom, pt);

The SpatiaLite query optimizer won't know about the spatial index, and so will
ignore it. We can confirm this using the EXPLAIN QUERY PLAN command, which
shows the indexes used by the query:

sqlite> EXPLAIN QUERY PLAN SELECT * FROM cities
 WHERE id < 100;

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[194]

0|0|0|SEARCH TABLE cities USING INTEGER PRIMARY KEY (rowid<?) (~250000
rows)

sqlite> EXPLAIN QUERY PLAN SELECT * FROM cities
 WHERE Contains(geom, pt);

0|0|0|SCAN TABLE cities

The first query (WHERE id < 100) makes use of a B*Tree index, and so the query
optimizer knows to use the primary key to index the query. The second query
(WHERE Contains(geom, pt)) uses the spatial index which the query optimizer
doesn't know about. In this case, the cities table will be scanned sequentially,
without any index at all. This will be acceptable for small numbers of records,
but for large databases this will be very slow indeed.

To use the spatial index, we have to include it directly in the query:

SELECT * FROM cities WHERE id IN
 (SELECT pkid FROM idx_cities_geom WHERE xmin <= X(pt)
 AND X(pt) <= xmax AND ymin <= Y(pt) AND Y(pt) <= ymax);

The EXPLAIN QUERY PLAN command tells us that this query would indeed use the
database indexes to speed up the query:

sqlite> EXPLAIN QUERY PLAN SELECT * FROM cities
 WHERE id IN (SELECT pkid FROM idx_cities_geom
 WHERE xmin <= X(pt) AND X(pt) <= xmax
 AND ymin <= Y(pt) AND Y(pt) <= ymax);

0|0|0|SEARCH TABLE cities USING INTEGER PRIMARY KEY (rowid=?) (~25
rows)
0|0|0|EXECUTE LIST SUBQUERY 1
1|0|0|SCAN TABLE idx_cities_geom VIRTUAL TABLE INDEX 2:BaDbBcDd (~0
rows)

This is an unfortunate consequence of using SpatiaLite: you have to include the
indexes explicitly in every spatial query you make, or they won't be used at all.
 This can make creating your spatial queries more complicated, though the
performance of the end result will be excellent.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[195]

Working with geospatial databases using
python
In this section, we will build on what we've learned so far by writing a short
program to (i) create a geospatial database, (ii) import data from a shapefile,
(iii) perform a spatial query on that data, and (iv) save the results in WKT format.
We will write the same program using each of the three databases we have explored
in this chapter, so that you can see the differences and issues involved with using
each particular database.

Prerequisites
Before you can run these examples, you will need to do the following:

1.	 If you haven't already done so, follow the instructions given earlier in this
chapter to install MySQL, PostGIS, and SpatiaLite onto your computer.

2.	 We will be working with the GSHHS shoreline dataset from Chapter 4,
Sources of Geospatial Data. If you haven't already downloaded this dataset,
you can download the shapefiles from:
http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html

3.	 Take a copy of the l (low-resolution) shapefiles from the GSHHS shoreline
dataset and place them in a convenient directory (we will call this directory
GSHHS_l in the code samples shown here).

We will use the low-resolution shapefiles to keep the amount
of data manageable, and to avoid problems with large polygons
triggering a "Got a packet bigger than max_allowed_packet
bytes" error in MySQL. Large polygons are certainly supported
by MySQL (by increasing the max_allowed_packet setting),
but doing so is beyond the scope of this chapter. We'll learn
more about this setting in the next chapter.

Working with MySQL
We have already seen how to connect to MySQL and create a database table:

import MySQLdb
connection = MySQLdb.connect(user="..." passwd="...")

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[196]

cursor = connection.cursor()

cursor.execute("DROP DATABASE IF EXISTS spatialTest")
cursor.execute("CREATE DATABASE spatialTest")
cursor.execute("USE spatialTest")

cursor.execute("""CREATE TABLE gshhs (
 id INTEGER AUTO_INCREMENT,
 level INTEGER,
 geom POLYGON NOT NULL,

 PRIMARY KEY (id)
 INDEX (level),
 SPATIAL INDEX (geom)) ENGINE=MyISAM
 """)
connection.commit()

We next need to read the features from the GSHHS shapefiles and insert them into
the database:

import os.path
from osgeo import ogr

for level in [1, 2, 3, 4]:
 fName = os.path.join("GSHHS_l",
 "GSHHS_l_L"+str(level)+".shp")
 shapefile = ogr.Open(fName)
 layer = shapefile.GetLayer(0)
 for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 geometry = feature.GetGeometryRef()
 wkt = geometry.ExportToWkt()

 cursor.execute("INSERT INTO gshhs (level, geom) " +
 "VALUES (%s, GeomFromText(%s, 4326))",
 (level, wkt))
 connection.commit()

Note that we are assigning an SRID value (4326) to the features
as we import them into the database. Even though we don't have
a spatial_ref_sys table in MySQL, we are following the best
practices by storing SRID values in the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[197]

We now want to query the database to find the shoreline information we want.
In this case, we'll take the coordinate for London and search for a level 1 (ocean
boundary) polygon that contains this point. This will give us the shoreline for the
United Kingdom:

import shapely.wkt

LONDON = 'POINT(-0.1263 51.4980)'

cursor.execute("SELECT id,AsText(geom) FROM gshhs " +
 "WHERE (level=%s) AND " +
 "(MBRContains(geom, GeomFromText(%s, 4326)))",
 (1, LONDON))

shoreline = None
for id,wkt in cursor:
 polygon = shapely.wkt.loads(wkt)
 point = shapely.wkt.loads(LONDON)
 if polygon.contains(point):
 shoreline = wkt

Remember that MySQL only supports bounding-rectangle
queries, so we have to use Shapely to identify if the point
is actually within the polygon, rather than just within its
minimum bounding rectangle.

To check that this query can be run efficiently, we will follow the recommended best
practice of asking the MySQL Query Optimizer what it will do with the query:

% /usr/local/mysql/bin/mysql

mysql> use myDatabase;

mysql> EXPLAIN SELECT id,AsText(geom) FROM gshhs

 WHERE (level=1) AND (MBRContains(geom,

 GeomFromText('POINT(-0.1263 51.4980)',

 4326)))\G

*********************** 1. row ***********************

 id: 1

 select_type: SIMPLE

 table: gshhs

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[198]

 type: range

possible_keys: level,geom

 key: geom

 key_len: 34

 ref: NULL

 rows: 1

 Extra: Using where

1 row in set (0.00 sec)

As you can see, we simply retyped the query, adding the word EXPLAIN to the front
and filling in the parameters to make a valid SQL statement. The result tells us that
the SELECT query is indeed using the indexed geom column, allowing it to quickly
find the desired feature.

Now that we have a working program that can quickly retrieve the desired
geometry, let's save the UK shoreline polygon to a text file:

f = file("uk-shoreline.wkt", "w")
f.write(shoreline)
f.close()

Running this program saves a low-resolution outline of the United Kingdom's
shoreline into the uk-shoreline.wkt file:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[199]

Working with PostGIS
Let's rewrite this program to use PostGIS. The first part, where we open the database
and define our gshhs table, is almost identical:

import psycopg2

connection = psycopg2.connect("dbname=... user=...")
cursor = connection.cursor()

cursor.execute("DROP TABLE IF EXISTS gshhs")
cursor.execute("""CREATE TABLE gshhs (
 id SERIAL,
 level INTEGER,

 PRIMARY KEY (id))
 """)
cursor.execute("CREATE INDEX levelIndex ON gshhs(level)")
cursor.execute("SELECT AddGeometryColumn('gshhs', " +
 "'geom', 4326, 'POLYGON', 2)")
cursor.execute("CREATE INDEX geomIndex ON gshhs " +
 "USING GIST (geom)")
connection.commit()

The only difference is that we have to use the psycopg2 database adapter, and the
fact that we have to create the geometry column (and spatial index) separately from
the CREATE TABLE statement itself.

The second part of this program where we import the data from the shapefile into
the database is once again almost identical to the MySQL version:

import os.path
from osgeo import ogr

for level in [1, 2, 3, 4]:
 fName = os.path.join("GSHHS_l",
 "GSHHS_l_L"+str(level)+".shp")
 shapefile = ogr.Open(fName)
 layer = shapefile.GetLayer(0)
 for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 geometry = feature.GetGeometryRef()
 wkt = geometry.ExportToWkt()

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[200]

 cursor.execute("INSERT INTO gshhs (level, geom) " +
 "VALUES (%s, ST_GeomFromText(%s, " +
 "4326))", (level, wkt))
 connection.commit()

Now that we have brought the shapefile's contents into the database, we need to do
something in PostGIS that isn't necessary with MySQL or SpatiaLite: we need to run
a VACUUM ANALYZE command so that PostGIS can gather statistics to help it optimize
our database queries:

old_level = connection.isolation_level
connection.set_isolation_level(0)
cursor.execute("VACUUM ANALYZE")
connection.set_isolation_level(old_level)

We next want to search for the UK shoreline based upon the coordinate for
London. This code is simpler than the MySQL version, thanks to the fact that
PostGIS automatically does the bounding box check followed by the full
polygon check, so we don't have to do this by hand:

LONDON = 'POINT(-0.1263 51.4980)'

cursor.execute("SELECT id,ST_AsText(geom) FROM gshhs " +
 "WHERE (level=%s) AND " +
 "(ST_Contains(geom, ST_GeomFromText(%s, 4326)))",
 (1, LONDON))

shoreline = None
for id,wkt in cursor:
 shoreline = wkt

Following the recommended best practices, we will ask PostGIS to tell us how it
thinks this query will be performed:

% usr/local/pgsql/bin/psql -U userName -d dbName
psql> EXPLAIN SELECT id,ST_AsText(geom) FROM gshhs
 WHERE (level=2) AND (ST_Contains(geom,
 ST_GeomFromText('POINT(-0.1263 51.4980)', 4326)));

 QUERY PLAN

 Index Scan using geomindex on gshhs (cost=0.00..8.53 rows=1
width=673)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[201]

 Index Cond: (geom && '0101000020E6100000ED0DBE30992AC0BF39B4C876BEB
F4940'::geometry)
 Filter: ((level = 2) AND _st_contains(geom, '0101000020E6100000ED0D
BE30992AC0BF39B4C876BEBF4940'::geometry))
(3 rows)

This tells us that PostGIS will answer this query by scanning through the geomindex
spatial index, first filtering by bounding box (using the && operator), and then calling
ST_Contains() to see if the polygon actually contains the desired point.

This is exactly what we were hoping to see; the database is processing this query as
quickly as possible while still giving us completely accurate results.

Now that we have the desired shoreline polygon, let's finish our program by saving
the polygon's WKT representation to disk:

f = file("uk-shoreline.wkt", "w")
f.write(shoreline)
f.close()

As with the MySQL version, running this program will create the uk-shoreline.wkt
file containing the same low-resolution outline of the United Kingdom's shoreline.

Working with SpatiaLite
Let's rewrite this program once more, this time to use SpatiaLite. As discussed
earlier, we will create a database file and then call the InitSpatialMetaData()
function. This will create and set up our spatial database.

import os, os.path
from pysqlite2 import dbapi2 as sqlite

if os.path.exists("gshhs-spatialite.db"):
 os.remove("gshhs-spatialite.db")

db = sqlite.connect("gshhs-spatialite.db")
db.enable_load_extension(True)
db.execute('SELECT load_extension("libspatialite.dll")')
cursor = db.cursor()

cursor.execute("SELECT InitSpatialMetaData()")

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[202]

If you are running on Mac OS X, you can skip
the db.enable_load_extension(...) and
db.execute('SELECT load_extension(...)')
statements.

We next need to create our database table. This is done in almost exactly the same
way as our PostGIS version:

cursor.execute("DROP TABLE IF EXISTS gshhs")
cursor.execute("CREATE TABLE gshhs (" +
 "id INTEGER PRIMARY KEY AUTOINCREMENT, " +
 "level INTEGER)")
cursor.execute("CREATE INDEX gshhs_level on gshhs(level)")
cursor.execute("SELECT AddGeometryColumn('gshhs', 'geom', " +
 "4326, 'POLYGON', 2)")
cursor.execute("SELECT CreateSpatialIndex('gshhs', 'geom')")
db.commit()

Loading the contents of the shapefile into the database is almost the same as the
other versions of our program:

import os.path
from osgeo import ogr

for level in [1, 2, 3, 4]:
 fName = os.path.join("GSHHS_l",
 "GSHHS_l_L"+str(level)+".shp")
 shapefile = ogr.Open(fName)
 layer = shapefile.GetLayer(0)
 for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 geometry = feature.GetGeometryRef()
 wkt = geometry.ExportToWkt()

 cursor.execute("INSERT INTO gshhs (level, geom) " +
 "VALUES (?, GeomFromText(?, 4326))",
 (level, wkt))
 db.commit()

We've now reached the point where we want to search through the database for the
desired polygon. Here is how we can do this in SpatiaLite:

import shapely.wkt

LONDON = 'POINT(-0.1263 51.4980)'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[203]

pt = shapely.wkt.loads(LONDON)

cursor.execute("SELECT id,level,AsText(geom) " +
 "FROM gshhs WHERE id IN " +
 "(SELECT pkid FROM idx_gshhs_geom" +
 " WHERE xmin <= ? AND ? <= xmax" +
 " AND ymin <= ? and ? <= ymax) " +
 "AND Contains(geom, GeomFromText(?, 4326))",
 (pt.x, pt.x, pt.y, pt.y, LONDON))

shoreline = None
for id,level,wkt in cursor:
 if level == 1:
 shoreline = wkt

Because SpatiaLite's query optimizer doesn't use spatial indexes by default, we have
to explicitly included the idx_gshhs_geom index in our query. Notice, however, that
this time we aren't using Shapely to extract the polygon to see if the point is within
it. Instead, we are using SpatiaLite's Contains() function directly to do the full
polygon check directly within the query itself, after doing the bounding-box check
using the spatial index.

This query is complex, but in theory should produce a fast and accurate result.
Following the recommended best practice, we want to check our query by asking
SpatiaLite's query optimizer how the query will be processed. This will tell us if
we have written the query correctly.

Unfortunately, depending on how your copy of SpatiaLite was installed, you may
not have access to the SQLite command line. So instead, let's call the EXPLAIN QUERY
PLAN command from Python:

cursor.execute("EXPLAIN QUERY PLAN " +
 "SELECT id,level,AsText(geom) " +
 "FROM gshhs WHERE id IN " +
 "(SELECT pkid FROM idx_gshhs_geom" +
 " WHERE xmin <= ? AND ? <= xmax" +
 " AND ymin <= ? and ? <= ymax) " +
 "AND Contains(geom, GeomFromText(?, 4326))",
 (pt.x, pt.x, pt.y, pt.y, LONDON))
for row in cursor:
 print row

www.it-ebooks.info

http://www.it-ebooks.info/

GIS in the Database

[204]

Running this tells us that the SpatiaLite query optimizer will use the spatial index
(along with the table's primary key) to quickly identify the features that match by
bounding box:

(0, 0, 0, 'SEARCH TABLE gshhs USING PRIMARY KEY (rowid=?) (~12 rows)')
(0, 0, 0, 'EXECUTE LIST SUBQUERY 1')
(1, 0, 0, 'SCAN TABLE idx_gshhs_geom VIRTUAL TABLE INDEX 2:BaDbBcDd (~0
rows)')

Note that there is a bug in SpatiaLite that prevents it from using both
a spatial index and an ordinary B*Tree index in the same query. This
is why our Python program asks SpatiaLite to return the level value,
and then checks for the level explicitly before identifying the shoreline,
rather than simply embedding AND (level=1) in the query itself.

Now that we have the shoreline, saving it to a text file is again trivial:

f = file("uk-shoreline.wkt", "w")
f.write(shoreline)
f.close()

Comparing the databases
Now that we have seen how our program is implemented using each of the
three open source spatial databases, we can start to draw some conclusions
about these databases:

•	 MySQL is easy to set up and use, is widely deployed, and can be used as a
capable spatial database, though it does suffer from some limitations which
require work-arounds.

•	 PostGIS is the workhorse of open-source geospatial databases. It is fast and
scales well, and has more capabilities than any of the other databases we
have examined. At the same time, PostGIS has a reputation for being hard to
set up and administer, and may be overkill for some applications.

•	 SpatiaLite is fast and capable, though it is tricky to use well and has its fair
share of quirks and bugs.

Which database you choose to use, of course, depends on what you are trying to
achieve, as well as factors such as which tools you have access to on your particular
server, and your personal preference for which of these databases you want to work
with. Whichever database you choose, you can be confident that it is more than
capable of meeting your spatial database needs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[205]

Summary
In this chapter, we have taken an in-depth look at the concept of storing spatial data
in a database, and examined three of the principal open source spatial databases.
We have seen the following:

•	 Spatial databases differ from ordinary relational databases as they directly
support spatial data types, spatial queries, and spatial joins

•	 Spatial indexes generally make use of R-Tree data structures to represent
nested hierarchies of bounding boxes

•	 Spatial indexes can be used to quickly find geometries based on their
position in space, as well as for performing spatial comparisons between
geometries based on their bounding boxes

•	 MySQL, the world's most popular open source database, has spatial
capabilities built in, though with some limitations

•	 PostGIS is considered to be the powerhouse of spatial databases, built on
top of the PostgreSQL open source database engine

•	 SpatiaLite is an extension to the SQLite serverless database, with a large
number of spatial capabilities built in

•	 Each database has a set of best practices for working with geospatial data
•	 MySQL is an adequate though limited spatial database, PostGIS is a complex

workhorse that scales well, and SpatiaLite is surprisingly capable but is
quirky and suffers from bugs

•	 All three spatial databases are powerful enough to use in complex, real-
world geospatial applications, and that the choice of which database to
use often comes down to personal preference and availability

In the next chapter, we will look at how we can use spatial databases to solve a variety
of geospatial problems while building a sophisticated geospatial application.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data
In this chapter we will apply and build on the knowledge we have gained
in previous chapters to create a hypothetical web application called DISTAL
(Distance-based Identification of Shorelines, Towns And Lakes). In the process
of building this application, we will learn the following:

•	 Working with substantial amounts of geospatial data stored
in a database

•	 Performing complex spatial database queries
•	 Dealing with accurate distance-based calculations and limiting

queries by distance
•	 Reviewing and improving a geospatial application's design and

implementation
•	 Handling usability, quality, and performance issues

About DISTAL
The DISTAL application will have the following basic workflow:

1.	 The user starts by selecting the country they wish to work with:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[208]

2.	 A simple map of the country is displayed:

3.	 The user selects a desired radius in miles, and clicks on a point within
the country:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[209]

4.	 The system identifies all of the cities and towns within the given radius of
that point:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[210]

5.	 Finally, the resulting features are displayed at a higher resolution for the user
to view or print:

While we haven't yet looked at the map-rendering and user-interface aspects
of geospatial applications, we do know enough to proceed with a very simple
implementation of the DISTAL system. In this implementation, we will make use
of basic CGI scripts and a "black box" map-generator module, while focusing on
the data storage and manipulation aspects of the DISTAL application.

Note that Chapter 8, Using Python and Mapnik to Produce Maps, will look at the details
of generating maps using the Mapnik map-rendering toolkit, while Chapter 9, Putting
It All Together – a Complete Mapping System, will look at the user-interface aspects
of building a sophisticated web-based geospatial application. If you wanted to,
you could rewrite the DISTAL implementation using the information in the next
two chapters to produce a more robust and fully-functional version of the DISTAL
application that could be deployed on the Internet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[211]

Designing and building the database
Let's start our design of the DISTAL application by thinking about the various pieces
of data it will require:

•	 A list of all the countries. Each country needs to include a simple boundary
map which can be displayed to the user.

•	 Detailed shoreline and lake boundaries worldwide.
•	 A list of all major cities and towns worldwide. For each city/town, we need

to have the name of the city/town and a point representing the location of
that town or city.

Fortunately, this data is readily available:

•	 The list of countries and their outlines are included in the World
Borders Dataset.

•	 Shoreline and lake boundaries (as well as other land-water boundaries
such as islands within lakes) are readily available using the GSHHS
shoreline database.
City and town data can be found in two places: The GNIS Database
(http://geonames.usgs.gov/domestic) provides official place-name data
for the United States, while the GEOnet Names Server (http://earth-info.
nga.mil/gns/html) provides similar data for the rest of the world.

Looking at these data sources, we can start to design the database schema for the
DISTAL system:

The level field in the shorelines table corresponds to the
level value in the GSHHS database: a value of 1 represents
a coastline, 2 represents a lake, 3 represents an island within
a lake, and 4 represents a pond on an island in a lake.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[212]

While this is very simple, it's enough to get us started. Let's use this schema to create
our database, firstly in MySQL:

import MySQLdb

connection = MySQLdb.connect(user="...", passwd="...")
cursor = connection.cursor()

cursor.execute("DROP DATABASE IF EXISTS distal")
cursor.execute("CREATE DATABASE distal")
cursor.execute("USE distal")

cursor.execute("""
 CREATE TABLE countries (
 id INTEGER AUTO_INCREMENT PRIMARY KEY,
 name CHAR(255) CHARACTER SET utf8 NOT NULL,
 outline GEOMETRY NOT NULL,

 SPATIAL INDEX (outline)) ENGINE=MyISAM
""")

cursor.execute("""
 CREATE TABLE shorelines (
 id INTEGER AUTO_INCREMENT PRIMARY KEY,
 level INTEGER NOT NULL,
 outline GEOMETRY NOT NULL,

 SPATIAL INDEX (outline)) ENGINE=MyISAM
""")

cursor.execute("""
 CREATE TABLE places (
 id INTEGER AUTO_INCREMENT PRIMARY KEY,
 name CHAR(255) CHARACTER SET utf8 NOT NULL,
 position POINT NOT NULL,

 SPATIAL INDEX (position)) ENGINE=MyISAM
""")

connection.commit()

Note that we define the countries and places name fields
to use UTF-8 character encoding. This allows us to store
non-English names into these fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[213]

The same code in PostGIS would look like this:

import psycopg2

connection = psycopg2.connect("dbname=... user=...")
cursor = connection.cursor()

cursor.execute("DROP TABLE IF EXISTS countries")
cursor.execute("""
 CREATE TABLE countries (
 id SERIAL,
 name VARCHAR(255),

 PRIMARY KEY (id))
""")
cursor.execute("""
 SELECT AddGeometryColumn('countries', 'outline',
 4326, 'GEOMETRY', 2)
""")
cursor.execute("""
 CREATE INDEX countryIndex ON countries
 USING GIST(outline)
""")

cursor.execute("DROP TABLE IF EXISTS shorelines")
cursor.execute("""
 CREATE TABLE shorelines (
 id SERIAL,
 level INTEGER,

 PRIMARY KEY (id))
""")
cursor.execute("""
 SELECT AddGeometryColumn('shorelines', 'outline',
 4326, 'GEOMETRY', 2)
""")
cursor.execute("""
 CREATE INDEX shorelineIndex ON shorelines
 USING GIST(outline)
""")

cursor.execute("DROP TABLE IF EXISTS places")

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[214]

cursor.execute("""
 CREATE TABLE places (
 id SERIAL,
 name VARCHAR(255),

 PRIMARY KEY (id))
""")
cursor.execute("""
 SELECT AddGeometryColumn('places', 'position',
 4326, 'POINT', 2)
""")
cursor.execute("""
 CREATE INDEX placeIndex ON places
 USING GIST(position)
""")

connection.commit()

Note how the PostGIS version allows us to specify the SRID value
for the geometry columns. We'll be using the WG84 datum and
unprojected lat/long coordinates for all our spatial data, which is
why we specified SRID 4326 when we created our geometries.

And finally, using SpatiaLite:

import os, os.path
from pysqlite2 import dbapi2 as sqlite

if os.path.exists("distal.db"):
 os.remove("distal.db")

db = sqlite.connect("distal.db")
db.enable_load_extension(True)
db.execute('SELECT load_extension("...")')
cursor = db.cursor()

Initialize the SpatiaLite meta-tables.

cursor.execute('SELECT InitSpatialMetaData()')

Create the database tables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[215]

cursor.execute("DROP TABLE IF EXISTS countries")
cursor.execute("""
 CREATE TABLE countries (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 name CHAR(255))
""")
cursor.execute("""
 SELECT AddGeometryColumn('countries', 'outline',
 4326, 'GEOMETRY', 2)
""")
cursor.execute("""
 SELECT CreateSpatialIndex('countries', 'outline')
""")

cursor.execute("DROP TABLE IF EXISTS shorelines")
cursor.execute("""
 CREATE TABLE shorelines (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 level INTEGER)
""")
cursor.execute("""
 SELECT AddGeometryColumn('shorelines', 'outline',
 4326, 'GEOMETRY', 2)
""")
cursor.execute("""
 SELECT CreateSpatialIndex('shorelines', 'outline')
""")

cursor.execute("DROP TABLE IF EXISTS places")
cursor.execute("""
 CREATE TABLE places (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 name CHAR(255))
""")
cursor.execute("""
 SELECT AddGeometryColumn('places', 'position',
 4326, 'POINT', 2)
""")
cursor.execute("""
 SELECT CreateSpatialIndex('places', 'position')
""")

db.commit()

Now that we've set up our database, let's get the data we need for the
DISTAL application.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[216]

Downloading the data
As mentioned in the previous section, the DISTAL application will make use of four
separate sets of freely-available geospatial data:

•	 The World Borders Dataset
•	 The high-resolution GSHHS shoreline database
•	 The GNIS Database of US place names
•	 The GEONet Names Server's list of non-US place names

For more information on these sources of data,
please refer to Chapter 4, Sources of Geospatial Data

To keep track of the data as we download it, create a directory named something
similar to DISTAL-data. Then it's time to download the information we need.

World Borders Dataset
If you haven't already done so, download the World Borders Dataset from:

http://thematicmapping.org/downloads/world_borders.php

When you decompress the TM_WORLD_BORDERS-0.3.zip archive, you will end up
with a folder containing the World Borders Dataset in shapefile format. Move this
folder into your DISTAL-data directory.

GSHHS
We next need to download the GSHHS shoreline database in shapefile format.
If you haven't already downloaded it, the database can be found at:

http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html

Decompress the .zip format archive and move the resulting GSHHS_shp folder
(which itself contains twenty separate shapefiles) into your DISTAL-data directory.

GNIS
For the database of US place names, go to:

http://geonames.usgs.gov/domestic

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[217]

Click on the Download Domestic Names hyperlink, and choose the Download
all national features in one .zip file option. This will download a file named
NationalFile_YYYYMMDD.zip, where YYYYMMDD is the datestamp identifying when
the file was last updated. Once again, decompress the resulting .zip format archive
and move the NationalFile_YYYYMMDD.txt file into your DISTAL-data directory.

GEOnet Names Server
Finally, to download the database of non-US place names, go to:

http://earth-info.nga.mil/gns/html/namefiles.htm

Click on the option to download a single compressed ZIP file that contains the entire
country files dataset. This is a large download (370 MB compressed) that contains
all the place name information we need worldwide. The resulting file will be named
geonames_dd_dms_date_YYYYMMDD.zip, where once again YYYMMDD is the datestamp
identifying when the file was last updated.

Don't get fooled by the confusing names here: we go to the Geonames
website to download a file named NationalFile, and to the GEOnet
Names Server to download a file named geonames. From now on,
we'll refer to the name of the file rather than the website it came from.

Decompress the .zip format archive, and move the resulting geonames_dd_dms_
date_YYYYMMDD.txt file into the DISTAL-data directory.

Importing the data
We are now ready to import our four sets of data into the DISTAL database. We
will be using the techniques discussed in Chapter 3, Python Libraries for Geospatial
Development, and Chapter 5, Working with Geospatial Data in Python, to read the data
from these data sets, and then insert them into the database using the techniques
we discussed in Chapter 6, GIS in the Database.

Let's work through each of the files in turn.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[218]

World Borders Dataset
The World Borders Dataset consists of a shapefile containing the outline of each
country along with a variety of metadata, including the country's name in Latin-1
character encoding. We can import this directly into our countries table using the
following Python code for MySQL:

import os.path
import MySQLdb
import osgeo.ogr

connection = MySQLdb.connect(user="...", passwd="...")
cursor = connection.cursor()

cursor.execute("USE distal")
cursor.execute("DELETE FROM countries")
cursor.execute("SET GLOBAL max_allowed_packet=52428800")

srcFile = os.path.join("DISTAL-data", "TM_WORLD_BORDERS-0.3",
 "TM_WORLD_BORDERS-0.3.shp")
shapefile = osgeo.ogr.Open(srcFile)
layer = shapefile.GetLayer(0)

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 name = feature.GetField("NAME").decode("Latin-1")
 wkt = feature.GetGeometryRef().ExportToWkt()

 cursor.execute("INSERT INTO countries (name,outline) " +
 "VALUES (%s, GeometryFromText(%s, 4326))",
 (name.encode("utf8"), wkt))

connection.commit()

The only unusual thing here is the SET GLOBAL max_allowed_packet instruction.
This command (which works with MySQL Versions 5.1 and later) allows us to insert
larger geometries into the database. If you are using an earlier version of MySQL,
you will have to edit the my.cnf file and set this variable manually before running
the program.

Note that you must set max_allowed_packet to be a
multiple of 1,024 bytes. In this example, we have set it
to 50 megabytes (50 x 1,024 x 1,024 = 52,428,800).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[219]

Note that we are following the recommended best practice of associating the spatial
reference with the polygon. In most cases we will be dealing with unprojected
coordinates on the WGS84 datum (SRID 4326), although stating this explicitly can save
us some trouble when we come to dealing with data that uses other spatial references.

Here is what the equivalent code would look like for PostGIS:

import os.path
import psycopg2
import osgeo.ogr

connection = psycopg2.connect("dbname=... user=...")
cursor = connection.cursor()

cursor.execute("DELETE FROM countries")

srcFile = os.path.join("DISTAL-data", "TM_WORLD_BORDERS-0.3",
 "TM_WORLD_BORDERS-0.3.shp")
shapefile = osgeo.ogr.Open(srcFile)
layer = shapefile.GetLayer(0)

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 name = feature.GetField("NAME").decode("Latin-1")
 wkt = feature.GetGeometryRef().ExportToWkt()

cursor.execute("INSERT INTO countries (name,outline) " +
 "VALUES (%s, ST_GeometryFromText(%s, " +
 "4326))", (name.encode("utf8"), wkt))

connection.commit()

The equivalent code for SpatiaLite would look like this:

import os, os.path
from pysqlite2 import dbapi2 as sqlite
import osgeo.ogr

db = sqlite.connect("distal.db")
db.enable_load_extension(True)
db.execute('SELECT load_extension("...")')
cursor = db.cursor()

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[220]

cursor.execute("DELETE FROM countries")

srcFile = os.path.join("DISTAL-data", "TM_WORLD_BORDERS-0.3",
 "TM_WORLD_BORDERS-0.3.shp")
shapefile = osgeo.ogr.Open(srcFile)
layer = shapefile.GetLayer(0)

for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 name = feature.GetField("NAME").decode("Latin-1")
 wkt = feature.GetGeometryRef().ExportToWkt()

 cursor.execute("INSERT INTO countries (name,outline) " +
 "VALUES (?, ST_GeometryFromText(?, " +
 "4326))", (name, wkt))

db.commit()

SpatiaLite doesn't know about UTF-8 encoding, so in this case
we store the country names directly as Unicode strings.

GSHHS
The GSHHS shoreline database consists of five separate shapefiles defining the land/
water boundary at five different resolutions. For the DISTAL application, we want
to import the four levels of GSHHS data (coastline, lake, island-in-lake, and pond-
in-island-in-lake) at full resolution. We can directly import these shapefiles into the
shorelines table within our DISTAL database.

For MySQL, we use the following code:

import os.path
import MySQLdb
import osgeo.ogr

connection = MySQLdb.connect(user="...", passwd="...")
cursor = connection.cursor()

cursor.execute("USE distal")
cursor.execute("DELETE FROM shorelines")
cursor.execute("SET GLOBAL max_allowed_packet=52428800")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[221]

for level in [1, 2, 3, 4]:
 srcFile = os.path.join("DISTAL-data", "GSHHS_shp", "f",
 "GSHHS_f_L" + str(level) + ".shp")
 shapefile = osgeo.ogr.Open(srcFile)
 layer = shapefile.GetLayer(0)

 for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 wkt = feature.GetGeometryRef().ExportToWkt()

 cursor.execute("INSERT INTO shorelines " +
 "(level,outline) VALUES " +
 "(%s, GeometryFromText(%s, 4326))",
 (level, wkt))

 connection.commit()

Note that this might take a minute or two to complete, as we are importing more
than 180,000 polygons into the database.

The equivalent code for PostGIS would look like this:

import os.path
import psycopg2
import osgeo.ogr

connection = psycopg2.connect("dbname=... user=...")
cursor = connection.cursor()

cursor.execute("DELETE FROM shorelines")

for level in [1, 2, 3, 4]:
 srcFile = os.path.join("DISTAL-data", "GSHHS_shp", "f",
 "GSHHS_f_L" + str(level) + ".shp")
 shapefile = osgeo.ogr.Open(srcFile)
 layer = shapefile.GetLayer(0)

 for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 wkt = feature.GetGeometryRef().ExportToWkt()

 cursor.execute("INSERT INTO shorelines " +
 "(level,outline) VALUES " +

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[222]

 "(%s, ST_GeometryFromText(%s, 4326))",
 (level, wkt))

 connection.commit()

The equivalent code using SpatiaLite would look like this:

import os.path
from pysqlite2 import dbapi2 as sqlite
import osgeo.ogr

db = sqlite.connect("distal.db")
db.enable_load_extension(True)
db.execute('SELECT load_extension("...")')
cursor = db.cursor()

cursor.execute("DELETE FROM shorelines")

for level in [1, 2, 3, 4]:
 srcFile = os.path.join("DISTAL-data", "GSHHS_shp", "f",
 "GSHHS_f_L" + str(level) + ".shp")
 shapefile = osgeo.ogr.Open(srcFile)
 layer = shapefile.GetLayer(0)

 for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 wkt = feature.GetGeometryRef().ExportToWkt()

 cursor.execute("INSERT INTO shorelines " +
 "(level,outline) VALUES " +
 "(?, ST_GeometryFromText(?, 4326))",
 (level, wkt))

 db.commit()

US place name data
The list of US place names is stored in the large text file you downloaded named
NationalFile_YYYYMMDD.txt (where YYYYMMDD is a timestamp). This is a pipe-
delimited file, meaning that each column is separated by a | character like this:

FEATURE_ID|FEATURE_NAME|FEATURE_CLASS|...|DATE_EDITED
399|Agua Sal Creek|Stream|AZ|...|02/08/1980
400|Agua Sal Wash|Valley|AZ|...|02/08/1980

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[223]

The first line contains the names of the various fields. While there are a lot of fields in
the file, there are four fields that we are particularly interested in:

•	 The FEATURE_NAME field contains the name of the location. Note that this field
uses UTF-8 character encoding.

•	 The FEATURE_CLASS field tells us what type of feature we are dealing with,
in this case a Stream or a Valley. There are a lot of features we don't need
for the DISTAL application, for example the names of bays, beaches, bridges,
oilfields, and so on. In fact, there is only one feature class we are interested
in: Populated Place.

•	 The PRIM_LONG_DEC and PRIM_LAT_DEC fields contain the longitude and
latitude of the location, in decimal degrees. According to the documentation,
these coordinates use the NAD83 datum rather than the WGS84 datum used
by the other data we are importing. Unprojected lat/long coordinates in the
NAD83 datum have an SRID value of 4269.

One way of approaching all this would be to create a temporary database table,
import the entire NationalFile_YYYYMMDD.txt file into it, extract the features with
our desired feature classes, translate them from NAD83 to WGS84, and finally insert
the features into our places table. However, this approach has two disadvantages:

•	 It would take a long time to insert more than two million features into the
database, when we only want a small percentage of these features in our
places table.

•	 MySQL doesn't support on-the-fly transformation of geometries, so we
would have to read the geometry from the database, convert it into an
OGR Geometry object, transform the geometry using OGR, and then
convert it back to WKT format for adding back into the database.

To avoid all this, we'll take a slightly different approach:

•	 Extract all the features from the file
•	 Ignore features with the wrong feature class
•	 Use pyproj to convert from NAD83 to WGS84
•	 Insert the resulting features directly into the places table

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[224]

With the exception of this final step, this approach is completely independent of the
database. This means that the same code can be used regardless of the database you
are using:

import os.path
import pyproj

srcProj = pyproj.Proj(proj='longlat', ellps='GRS80',
 datum='NAD83')
dstProj = pyproj.Proj(proj='longlat', ellps='WGS84',
 datum='WGS84')

f = file(os.path.join("DISTAL-data",
 "NationalFile_YYYYMMDD.txt"), "r")
heading = f.readline() # Ignore field names.
for line in f.readlines():
 parts = line.rstrip().split("|")
 featureName = parts[1]
 featureClass = parts[2]
 lat = float(parts[9])
 long = float(parts[10])

 if featureClass == "Populated Place":
 long,lat = pyproj.transform(srcProj, dstProj,
 long, lat)
 ...
f.close()

Make sure you use the correct name for the NationalFile_YYYYMMDD.txt file you
downloaded, allowing for the datestamp on the downloaded file.

Strictly speaking, the preceding code is being somewhat
pedantic. We are using pyproj to transform coordinates from
NAD83 to WGS84. However, the data we are importing is all
within the United States, and these two datums happen to be
identical for points within the United States. Because of this,
pyproj won't actually change the coordinates at all. But we
will do this anyway, following the recommended practice of
knowing the spatial reference for our data and transforming
when necessary—even if that transformation is a no-op at times.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[225]

We can now add the database-specific code to add the feature into our places table.
For MySQL, add the following code to the start of your program:

import MySQLdb

connection = MySQLdb.connect(user="USERNAME", passwd="PASSWORD")
cursor = connection.cursor()
cursor.execute("USE distal")
cursor.execute("DELETE FROM places")

num_inserted = 0

Next, replace the ... in the previous example with the following:

 cursor.execute("INSERT INTO places " +
 "(name, position) VALUES (%s, " +
 "GeomFromWKB(Point(%s, %s), 4326))",
 (featureName, long, lat))

 num_inserted += 1
 if num_inserted % 1000 == 0:
 connection.commit()

Finally, add the following line to the end:

connection.commit()

Note that we regularly call connection.commit() to commit
our changes to the database. This helps to speed up our program
when inserting many thousands of records.

As you can see, our INSERT statement creates a new Point object out of the
translated latitude and longitude values, and then uses GeomFromWKB() to
assign an SRID value to the geometry. The result is stored into the position
column within the places table.

The same code using PostGIS would look like this:

import psycopg2
connection = psycopg2.connect("dbname=DATABASE user=USER")
cursor = connection.cursor()
cursor.execute("SET NAMES 'utf8'")
cursor.execute("DELETE FROM places")

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[226]

num_inserted = 0
...
 cursor.execute("INSERT INTO places " +
 "(name, position) VALUES (%s, " +
 "ST_SetSRID(" +
 "ST_MakePoint(%s,%s), 4326))",
 (featureName, long, lat))

 num_inserted += 1
 if num_inserted % 1000 == 0:
 connection.commit()
...
connection.commit()

As with the MySQL example, place the first chunk of code at the
top of your program, the second replaces ..., and the commit()
statement goes at the end.

As with the MySQL example, we are creating a Point geometry and then assigning
an SRID value to it, all within the SQL INSERT statement.

Finally, the SpatiaLite version would look like this:

from pysqlite2 import dbapi2 as sqlite
db = sqlite.connect("distal.db")
db.enable_load_extension(True)
db.execute('SELECT load_extension("...")')
cursor = db.cursor()
cursor.execute("DELETE FROM places")

num_inserted = 0
...
cursor.execute("INSERT INTO places " +
 "(name, position) VALUES "
 "(?, MakePoint(?, ?, 4326))",
 (featureName.decode("utf-8"),
 long, lat))

 num_inserted += 1
 if num_inserted % 1000 == 0:
 db.commit()
...
db.commit()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[227]

Because SpatiaLite doesn't know about UTF-8 character
encoding, we convert the place name to a Unicode string
and store that directly into the database.

Worldwide place name data
The list of non-US place names is stored in the geonames_dd_dms_date_YYYYMMDD
file you downloaded earlier. This is a tab-delimited text file in UTF-8 character
encoding, and will look something like this:

RC UFI ... FULL_NAME_ND_RG NOTE MODIFY_DATE
1 -1307834 ... Pavia 1993-12-21
1 -1307889 ... Santa Anna gjgscript 1993-12-21

As with the US places' name data, there are many more features here than we need
for the DISTAL application. Since we are only interested in the official names for
towns and cities, we need to filter this data in the following way:

•	 The FC (Feature Classification) field tells us what type of feature we are
dealing with. We want features with an FC value of "P" (populated place).

•	 The NT (Name Type) field tells us the status of this feature's name.
We want names with an NT value of "N" (approved name).

•	 The DSG (Feature Designation Code) field tells us the type of feature, in
more detail than the FC field. A full list of all the feature designation codes
can be found at http://geonames.nga.mil/ggmagaz/feadesgsearchhtml.
asp. We are interested in features with a DSG value of "PPL" (populated
place), "PPLA" (administrative capital), or "PPLC" (capital city).

There are also several different versions of each place name; we want the full name
in normal reading order, which is in the field named FULL_NAME_RO. Knowing this,
we can write some Python code to extract the features we want from the file:

import os.path

f = file(os.path.join("DISTAL-data",
 "geonames_dd_dms_date_YYYYMMDD.txt"),
 "r")

heading = f.readline() # Ignore field names.

for line in f.readlines():
 parts = line.rstrip().split("\t")

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[228]

 lat = float(parts[3])
 long = float(parts[4])
 featureClass = parts[9]
 featureDesignation = parts[10]
 nameType = parts[17]
 featureName = parts[22]

 if (featureClass == "P" and nameType == "N" and
 featureDesignation in ["PPL", "PPLA", "PPLC"]):
 ...

f.close()

Now that we have the name, latitude, and longitude for each of the features we
want, we can re-use the code from the previous section to insert these features into
the database. For example, for MySQL we would add the following to the start of
our program:

import MySQLdb
connection = MySQLdb.connect(user="...", passwd="...")
cursor = connection.cursor()
cursor.execute("USE distal")

num_inserted = 0

We would then replace the ... with the following:

 cursor.execute("INSERT INTO places " +
 "(name, position) VALUES (%s, " +
 "GeomFromWKB(Point(%s, %s), 4326))",
 (featureName, long, lat))

 num_inserted += 1
 if num_inserted % 1000 == 0:
 connection.commit()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[229]

And finally, we would add the following code line to the end:

connection.commit()

Because we are dealing with worldwide data here, the lat/long
values already use the WGS84 datum, so there is no need to
translate the coordinates before adding them to the database.

If you are using PostGIS or SpatiaLite, simply copy the equivalent code from the
previous section. Note that, because there are over two million features we want to
add to the database, it can take a while for this program to complete.

Implementing the DISTAL application
Now that we have the data, we can start to implement the DISTAL application itself.
To keep things simple, we will use CGI scripts to implement the user interface.

CGI scripts aren't the only way we could implement the
DISTAL application. Other possible approaches include
using web application frameworks such as TurboGears
or Django, using AJAX to write your own dynamic web
application, using CherryPy (http://cherrypy.org)
or even using tools such as Pyjamas (http://pyjs.
org) to compile Python code into JavaScript. All of these
approaches, however, are more complicated than CGI,
and we will be making use of CGI scripts in this chapter
to keep the code as straightforward as possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[230]

Let's take a look at how our CGI scripts will implement the DISTAL application's
workflow:

As you can see, there are three separate CGI scripts, selectCountry.py,
selectArea.py, and showResults.py, each implementing a distinct part
of the DISTAL application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[231]

What is a CGI Script?
While the details of writing CGI scripts are beyond the scope of this
book, the basic concept is to print the raw HTML output to stdout,
and to process the incoming CGI parameters from the browser using
the built-in cgi module.
To run a Python program as a CGI script, you have to do two things:
first, you have to add a "shebang" line to the start of the script, like this:

#!/usr/bin/python

For MS Windows, add the following line:
#!C:\Python27\python.exe -U

The exact path you use will depend on where you have Python
installed on your computer.
The second thing you need to do, at least on Unix-like systems, is make
your script executable. For example:

chmod +x selectCountry.py

For more information, see one of the CGI tutorials commonly available
on the Internet, for example: http://wiki.python.org/moin/
CgiScripts.

Let's start by creating a simple web server capable of running our CGI scripts.
With Python this is easy; simply create the following program, which we will
call webServer.py:

import BaseHTTPServer
import CGIHTTPServer

address = ('', 8000)
handler = CGIHTTPServer.CGIHTTPRequestHandler
server = BaseHTTPServer.HTTPServer(address, handler)
server.serve_forever()

Next, create a subdirectory named cgi-bin within the same directory as your
webServer.py program. This subdirectory will hold the various CGI scripts
you create.

Running webServer.py will set up a web server at http://127.0.0.1:8000,
which will execute any CGI scripts you place into the cgi-bin subdirectory.
So, for example, to access the selectCountry.py script, you would enter the
following URL into your web browser:

http://127.0.0.1:8000/cgi-bin/selectCountry.py

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[232]

The shared "database" module
To make things easier, we'll put all the database-specific code into a separate module,
which we'll call database.py. Here is the basic structure for this module, along with
the implementation of the database.open() function, which we'll use
in our CGI scripts to open a connection to the database:

database.py

import os.path
import pyproj
from shapely.geometry import Polygon
import shapely.wkt

##
Edit these constants as necessary to match your setup.

MYSQL_DBNAME = "distal"
MYSQL_USERNAME = "XXX"
MYSQL_PASSWORD = "XXX"

POSTGIS_DBNAME = "distal"
POSTGIS_USERNAME = "XXX"
POSTGIS_PASSWORD = "XXX"

SPATIALITE_DB_PATH = os.path.join(os.path.dirname(__file__),
 "..", "distal.db")

DB_TYPE = "XXX"

###

def open():
 global _connection, _cursor

 if DB_TYPE == "MySQL":
 import MySQLdb
 _connection = MySQLdb.connect(user=MYSQL_USERNAME,
 passwd=MYSQL_PASSWORD)
 _cursor = _connection.cursor()
 _cursor.execute("USE "+MYSQL_DBNAME)
 elif DB_TYPE == "PostGIS":
 import psycopg2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[233]

 params = []
 params.append("dbname=" + POSTGIS_DBNAME)
 if POSTGIS_USERNAME != None:
 params.append("user=" + POSTGIS_USERNAME)
 if POSTGIS_PASSWORD != None:
 params.append("password=" + POSTGIS_PASSWORD)
 _connection = psycopg2.connect(" ".join(params))
 _cursor = _connection.cursor()
 elif DB_TYPE == "SpatiaLite":
 from pysqlite2 import dbapi2 as sqlite
 _connection = sqlite.connect(SPATIALITE_DBNAME)
 _connection.enable_load_extension(True)
 _connection.execute('SELECT load_extension("...")')
 _cursor = _connection.cursor()
 else:
 raise RuntimeError("Unknown database type: " +
 db_type)

Make sure you place this database.py module into the same directory as your
CGI scripts.

Don't forget to edit the constants at the top of the module to match your particular
setup, entering the appropriate database names, usernames and passwords, and
so on.

The SPATIALITE_DB_PATH constant is set to the absolute path to
our distal.db file. We use the Python's built-in __file__ global
to avoid having to hardwire paths into our module.

Note that we use private global variables (prefixed with an underscore character) to
store the database connection and cursor. This lets us access these variables later on,
as we add more functions to this module.

The "select country" script
The task of the selectCountry.py script is to display a list of countries to the
user, so that the user can choose a desired country which is then passed to the
selectArea.py script for further processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[234]

Here is what the selectCountry.py script's output will look like:

This CGI script is very basic: we simply print out the contents of the HTML page
which lets the user choose a country from a list of country names:

#!/usr/bin/python

import database
database.open()

print 'Content-Type: text/html; charset=UTF-8\n\n'
print '<html>'
print '<head><title>Select Country</title></head>'
print '<body>'
print '<form method="POST" action="selectArea.py">'
print '<select name="countryID" size="10">'

for id,name in database.list_countries():
 print '<option value="'+str(id)+'">'+name+'</option>'

print '</select>'
print '<p>'
print '<input type="submit" value="OK">'
print '</form>'
print '</body>'
print '</html>'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[235]

Understanding HTML Forms
If you haven't used HTML forms before, don't panic. They are quite
straightforward, and if you want you can just copy the code from
the examples given here. To learn more about HTML forms, check
out one of the many tutorials available online. A good example can
be found at http://www.pagetutor.com/form_tutor.

As you can see, we call the list_countries() function within the database module
to return a list of country record IDs and their associated names. The implementation
of this function is straightforward; simply add the following code to your database.
py module:

def list_countries():
 global _cursor
 results = []
 _cursor.execute("SELECT id,name FROM countries " +
 "ORDER BY name")
 for id,name in _cursor:
 results.append((id, name))
 return results

Unfortunately, there is a problem with this code: because SpatiaLite can't handle
UTF-8 character encoding, we have to manually convert the country name from
Unicode to UTF-8 before returning it. We can do this by adding the following
highlighted lines to our function:

 ...
 for id,name in _cursor:
 if DB_TYPE == "SpatiaLite":
 name = name.encode("utf-8")
 results.append((id, name))
 ...

This completes the "select country" script. You should now be able to run it by typing
the following URL in your web browser:

http://127.0.0.1:8000/cgi-bin/selectCountry.py

All going well, you should see the list of countries and be able to select one. If you
click on the OK button, you should see a 404 error, indicating that the selectArea.
py script doesn't exist yet—which is perfectly correct, as we haven't implemented
it yet.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[236]

The "select area" script
The next part of the DISTAL application is selectArea.py. This script generates
a web page that displays a simple map of the selected country. The user can enter
a desired search radius and click on the map to identify the starting point for the
DISTAL search:

For this script to work, we're going to need some way of generating a map. Map
generation using the Mapnik toolkit will be covered in detail in Chapter 8, Using
Python and Mapnik to Generate Maps; for now, we are going to create a standalone
mapGenerator.py module, which does the map rendering for us so that we can
focus on the other aspects of the DISTAL application.

Here is the full source code for the mapGenerator.py module, which should be
placed in your cgi-bin directory:

mapGenerator.py

import os, os.path, sys, tempfile

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[237]

import mapnik

def generateMap(datasource, minX, minY, maxX, maxY,
 mapWidth, mapHeight,
 hiliteExpr=None, background="#8080a0",
 hiliteLine="#000000", hiliteFill="#408000",
 normalLine="#404040", normalFill="#a0a0a0",
 points=None):
 srcType = datasource['type']
 del datasource['type']

 if srcType == "OGR":
 source = mapnik.Ogr(**datasource)
 elif srcType == "PostGIS":
 source = mapnik.PostGIS(**datasource)
 elif srcType == "SQLite":
 source = mapnik.SQLite(**datasource)

 layer = mapnik.Layer("Layer")
 layer.datasource = source

 map = mapnik.Map(mapWidth, mapHeight,
 '+proj=longlat +datum=WGS84')
 map.background = mapnik.Color(background)

 style = mapnik.Style()

 rule = mapnik.Rule()
 if hiliteExpr != None:
 rule.filter = mapnik.Filter(hiliteExpr)

 rule.symbols.append(mapnik.PolygonSymbolizer(
 mapnik.Color(hiliteFill)))
 rule.symbols.append(mapnik.LineSymbolizer(
 mapnik.Stroke(mapnik.Color(hiliteLine), 0.1)))

 style.rules.append(rule)

 rule = mapnik.Rule()
 rule.set_else(True)

 rule.symbols.append(mapnik.PolygonSymbolizer(
 mapnik.Color(normalFill)))

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[238]

 rule.symbols.append(mapnik.LineSymbolizer(
 mapnik.Stroke(mapnik.Color(normalLine), 0.1)))

 style.rules.append(rule)

 map.append_style("Map Style", style)
 layer.styles.append("Map Style")
 map.layers.append(layer)

 if points != None:
 memoryDatasource = mapnik.MemoryDatasource()
 context = mapnik.Context()
 context.push("name")
 next_id = 1
 for long,lat,name in points:
 wkt = "POINT (%0.8f %0.8f)" % (long,lat)
 feature = mapnik.Feature(context, next_id)
 feature['name'] = name
 feature.add_geometries_from_wkt(wkt)
 next_id = next_id + 1
 memoryDatasource.add_feature(feature)

 layer = mapnik.Layer("Points")
 layer.datasource = memoryDatasource

 style = mapnik.Style()
 rule = mapnik.Rule()

 pointImgFile = os.path.join(os.path.dirname(__file__),
 "point.png")

 shield = mapnik.ShieldSymbolizer(
 mapnik.Expression('[name]'),
 "DejaVu Sans Bold", 10,
 mapnik.Color("#000000"),
 mapnik.PathExpression(pointImgFile))
 shield.displacement(0, 7)
 shield.unlock_image = True
 rule.symbols.append(shield)

 style.rules.append(rule)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[239]

 map.append_style("Point Style", style)
 layer.styles.append("Point Style")

 map.layers.append(layer)

 map.zoom_to_box(mapnik.Envelope(minX, minY, maxX, maxY))

 scriptDir = os.path.dirname(__file__)
 cacheDir = os.path.join(scriptDir, "..", "mapCache")
 if not os.path.exists(cacheDir):
 os.mkdir(cacheDir)
 fd,filename = tempfile.mkstemp(".png", dir=cacheDir)
 os.close(fd)

 mapnik.render_to_file(map, filename, "png")

 return "../mapCache/" + os.path.basename(filename)

Don't worry too much about the details of this module; everything will be explained
in Chapter 8, Using Python and Mapnik to Generate Maps. In the meantime, just use this
module as written. There are just two things to be aware of:

•	 You need to have Mapnik installed on your computer for this module to
work. The Mapnik toolkit can be found at http://mapnik.org.

•	 This module requires a small image file that is used to mark place names
on the map. This 9 x 9 pixel image looks like this:

This preceding image is available as part of the example source code
that comes with this book. If you don't have access to the example code,
you can create or search for an image that looks like this; make sure the
image is named point.png and is placed into the same directory as the
mapGenerator.py module itself.

We're now ready to start looking at the selectArea.py script itself. We'll start with
our shebang line and import the various modules we'll need:

#!/usr/bin/python

import cgi, os.path, sys
import shapely.wkt

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[240]

import database
import mapGenerator

Next, we define some useful constants:

HEADER = "Content-Type: text/html; charset=UTF-8\n\n" \
 + "<html><head><title>Select Area</title>" \
 + "</head><body>"

FOOTER = "</body></html>"

MAX_WIDTH = 600
MAX_HEIGHT = 400

Then we open up the database:

database.open()

Our next task is to extract the ID of the country the user clicked on:

form = cgi.FieldStorage()
if not form.has_key("countryID"):
 print HEADER
 print 'Please select a country'
 print FOOTER
 sys.exit(0)

countryID = int(form['countryID'].value)

Now that we have the ID of the selected country, we're ready to start generating the
map. Doing this is a four-step process:

•	 Calculate the bounding box that defines the portion of the world to
be displayed

•	 Calculate the map's dimensions
•	 Set up the data source
•	 Render the map image

Let's look at each of these in turn.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[241]

Calculating the bounding box
Before we can show the selected country on a map, we need to calculate the bounding
box for that country—that is, the minimum and maximum latitude and longitude
values. Knowing the bounding box allows us to draw a map centered over the desired
country. If we didn't do this, the map would cover the entire world.

Let's start by adding a function to our database module to extract the information
we need about the selected country:

def get_country_details(country_id):
 global _cursor

 if DB_TYPE == "MySQL":
 _cursor.execute("SELECT name," +
 "AsText(Envelope(outline)) " +
 "FROM countries WHERE id=%s",
 (country_id,))
 elif DB_TYPE == "PostGIS":
 _cursor.execute("SELECT name," +
 "ST_AsText(ST_Envelope(outline)) " +
 "FROM countries WHERE id=%s",
 (country_id,))
 elif DB_TYPE == "SpatiaLite":
 _cursor.execute("SELECT name," +
 "ST_AsText(ST_Envelope(outline)) " +
 "FROM countries WHERE id=?",
 (country_id,))

 row = _cursor.fetchone()
 if row != None:
 return {'name' : row[0],
 'bounds_wkt' : row[1]}
 else:
 return None

This function returns the given country's name and its bounding box as a
WKT-format string. Note how we first calculate the envelope (or bounding box)
for the country's outline, and then convert that envelope into a WKT string using
the AsText function.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[242]

With this function in place, we can now add the necessary code to our selectArea.
py script to calculate the area of the world to display on our map; simply add the
following to the end of your CGI script:

details = database.get_country_details(countryID)

envelope = shapely.wkt.loads(details['bounds_wkt'])
minLong,minLat,maxLong,maxLat = envelope.bounds
minLong = minLong - 0.2
minLat = minLat - 0.2
maxLong = maxLong + 0.2
maxLat = maxLat + 0.2

As you can see, we use Shapely to extract the minimum and maximum latitude and
longitude values, and then increase these bounds slightly so that the country won't
butt up against the edge of the map.

There's just one problem with our code: if an invalid country ID was specified, our
program will crash. To get around this, add the following error-handling code to
the script, immediately below the call to database.get_country_details():

if details == None:
 print HEADER
 print 'Missing Country ' + repr(countryID) + ''
 print FOOTER
 sys.exit(0)

Calculating the map's dimensions
The bounding box isn't useful only to zoom in on the desired part of the map: it also
helps us to correctly define the map's dimensions. Note that the preceding map of
Albania shows the country as being taller than it is wide. If you were to naively
draw this map as a square image, Albania would end up looking like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[243]

Even worse, Chile would look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[244]

Rather than this:

This is a slight simplification; the mapping toolkits generally
do try to preserve the aspect ratio for a map, but their behavior
is unpredictable and means that you can't identify the lat/long
coordinates for a clicked-on point.

To display the country correctly, we need to calculate the country's aspect ratio
(its width as a proportion of its height) and then calculate the size of the map image
based on this aspect ratio, while limiting the overall size of the image so that it can
fit within a web page. Here's the necessary code, which you should add to the end
of your selectArea.py script:

width = float(maxLong - minLong)
height = float(maxLat - minLat)
aspectRatio = width/height

mapWidth = MAX_WIDTH
mapHeight = int(mapWidth / aspectRatio)

if mapHeight > MAX_HEIGHT:
 # Scale the map to fit.
 scaleFactor = float(MAX_HEIGHT) / float(mapHeight)
 mapWidth = int(mapWidth * scaleFactor)
 mapHeight = int(mapHeight * scaleFactor)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[245]

Doing this means that the map is correctly sized to reflect the dimensions of the
country we are displaying.

Setting up the data source
The data source tells the map generator how to access the underlying map data.
How data sources work is beyond the scope of this chapter; for now, we are simply
going to set up the required datasource dictionary and related files so that we can
generate our map. Note that the contents of this dictionary will vary depending on
which database you are using, as well as which table you are trying to access; in this
case, we are trying to display selected features from the countries table. To handle
this, we'll create a new function within our database module to set up the data
source for our particular database:

def get_country_datasource():
 if DB_TYPE == "MySQL":
 vrtFile = os.path.join(os.path.dirname(__file__),
 "countries.vrt")
 f = file(vrtFile, "w")
 f.write('<OGRVRTDataSource>\n')
 f.write(' <OGRVRTLayer name="countries">\n')
 f.write(' <SrcDataSource>MySQL:' + MYSQL_DBNAME)
 if MYSQL_USERNAME != None:
 f.write(",user=" + MYSQL_USERNAME)
 if MYSQL_PASSWORD != None:
 f.write(",passwd=" + MYSQL_PASSWORD)
 f.write('</SrcDataSource>\n')
 f.write(' <SrcSQL>SELECT id,outline ' +
 'FROM countries</SrcSQL>\n')
 f.write(' </OGRVRTLayer>\n')
 f.write('</OGRVRTDataSource>\n')
 f.close()

 return {'type' : "OGR",
 'file' : vrtFile,
 'layer' : "countries"}
 elif DB_TYPE == "PostGIS":
 return {'type' : "PostGIS",
 'dbname' : "distal",
 'table' : "countries",
 'user' : POSTGIS_USERNAME,
 'password' : POSTGIS_PASSWORD}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[246]

 elif DB_TYPE == "SpatiaLite":
 return {'type' : "SQLite",
 'file' : SPATIALITE_DBNAME,
 'table' : "countries",
 'geometry_field' : "outline",
 'key_field' : "id"}

MySQL uses what is called a "virtual datasource", which is a special file that
tells Mapnik how to access the data. We create this file as we need it, storing
the username and other details into the file as required.

Note that we are storing the countries.vrt file in the
same directory as our CGI scripts. This makes it easier to
access this file from Mapnik.

Now that we have written the get_datasource() function, it's time to use it.
Add the following line to the end of your selectArea.py script:

datasource = database.get_country_datasource()

Rendering the map image
With the bounding box, the map's dimensions and the data source all set up, we
are finally ready to render the map into an image file. This is done using a single
function call as follows:

imgFile = mapGenerator.generateMap(datasource,
 minLong, minLat,
 maxLong, maxLat,
 mapWidth, mapHeight,
 "[id] = "+str(countryID))

Note that our datasource has been set up to display features from the countries
table, and that the "[id] = "+str(countryID) is a "highlight expression" is used
to visually highlight the country with the given ID.

The mapGenerator.generateMap() function returns a reference to a PNG-format
image file containing the generated map. This image file is stored in a temporary
directory, and the file's relative pathname is returned to the caller. This allows us
to use the returned imgFile directly within our CGI script, like this:

print 'Content-Type: text/html; charset=UTF-8\n\n'
print '<html>'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[247]

print '<head><title>Select Area</title></head>'
print '<body>'
print '' + name + ''
print '<p>'
print '<form method="POST" action="showResults.py">'
print 'Select all features within'
print '<input type="text" name="radius" value="10" size="2">'
print 'miles of a point.'
print '<p>'
print 'Click on the map to identify your starting point:'
print '
'
print '<input type="image" src="' + imgFile + '" ismap>'
print '<input type="hidden" name="countryID"'
print ' value="' + str(countryID) + '">'
print '<input type="hidden" name="mapWidth"'
print ' value="' + str(mapWidth) + '">'
print '<input type="hidden" name="mapHeight"'
print ' value="' + str(mapHeight) + '">'
print '</form>'
print '</body></html>'

The <input type="hidden"> lines define "hidden form fields"
that pass information on to the next CGI script. We'll discuss how
this information is used in the next section.

The use of <input type="image" src="..." ismap> in this CGI script has the
interesting effect of making the map clickable: when the user clicks on the image, the
enclosing HTML form will be submitted with two extra parameters named x and y.
These contain the coordinate within the image that the user clicked on.

This completes the selectArea.py CGI script. Make sure you added an appropriate
"shebang" line to the start of your program and made it executable, as described
earlier, so that it can run as a CGI script.

All going well, you should be able to point your web browser to:

http://127.0.0.1:8000/cgi-bin/selectCountry.py

Choose a country, and see a map of that country displayed within your web browser.
If you click within the map, you'll get a 404 error, indicating that the final CGI script
hasn't been written yet.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[248]

The "show results" script
The final CGI script is where the real work is done. Start by creating your
showResults.py file, and type the following into this file:

#!/usr/bin/env python

import cgi
import pyproj

import database
import mapGenerator

##

MAX_WIDTH = 1000
MAX_HEIGHT = 800

METERS_PER_MILE = 1609.344

##

database.open()

Don't forget to mark this file as executable so that it can be run
as a CGI script. You can do this using the chmod command, as
described in the What is a CGI script? section earlier in this chapter.

In this script, we will take the (x, y) coordinate the user clicked on, along with the
entered search radius, convert the (x, y) coordinate into a longitude and latitude,
and identify all the place names within that search radius. We then generate a
high-resolution map showing the shorelines and place names within the search
radius, and display that map to the user.

Remember that x corresponds to a longitude value, and y
to a latitude value.
(x, y) equals (longitude, latitude), not (latitude, longitude).

Let's examine each of these steps in turn.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[249]

Identifying the clicked-on point
The selectArea.py script generates an HTML form that is submitted when the user
clicks on the low-resolution country map. The showResults.py script receives the
form parameters, including the x and y coordinates of the point the user clicked on.

By itself, this coordinate isn't very useful. It's simply the x and y offset, measured in
pixels, of the point the user clicked on. We need to translate the submitted (x, y) pixel
coordinate into a latitude and longitude value corresponding to the clicked-on point
on the Earth's surface.

To do this, we need to have the following information:

•	 The map's bounding box in geographic coordinates: minLong, minLat,
maxLong, and maxLat

•	 The map's size in pixels: mapWidth and mapHeight

These variables were all calculated in the previous section and passed to us using
hidden form variables, along with the country ID, the desired search radius, and
the (x, y) coordinate of the clicked on point. We can retrieve all of these using the
cgi module; add the following code to the end of your showResults.py file:

form = cgi.FieldStorage()

countryID = int(form['countryID'].value)
radius = int(form['radius'].value)
x = int(form['x'].value)
y = int(form['y'].value)
mapWidth = int(form['mapWidth'].value)
mapHeight = int(form['mapHeight'].value)

With this information, we can now calculate the latitude and longitude that the
user clicked on. To do this, we first have to calculate the bounds that were used
to generate the map that the user clicked on. Add the following code to the end
of your showResults.py file:

details = database.get_country_details(countryID)
envelope = shapely.wkt.loads(details['bounds_wkt'])

minLong,minLat,maxLong,maxLat = envelope.bounds
minLong = minLong - 0.2
minLat = minLat - 0.2
maxLong = maxLong + 0.2
maxLat = maxLat + 0.2

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[250]

We can now calculate the exact latitude and longitude the user clicked on. We start
by calculating how far across the image the user clicked, as a number in the range
from 0 to 1:

xFract = float(x)/float(mapWidth)

An xFract value of 0.0 corresponds to the left side of the image, while an xFract
value of 1.0 corresponds to the right side of the image. We then combine this with
the minimum and maximum longitude values to calculate the longitude of the
clicked-on point:

longitude = minLong + xFract * (maxLong-minLong)

We then do the same to convert the Y coordinate into a latitude value:

yFract = float(y)/float(mapHeight)
latitude = minLat + (1-yFract) * (maxLat-minLat)

Note that we are using (1-yFract) rather than yFract in the preceding calculation.
This is because the minLat value refers to the latitude of the bottom of the image, while
a yFract value of 0.0 corresponds to the top of the image. By using (1-yFract), we
flip the values vertically so that the latitude is calculated correctly.

Identifying features by distance
Let's review what we have achieved so far. The user has selected a country, viewed
a simple map of the country's outline, entered a desired search radius, and clicked on
a point on the map to identify the origin for the search. We have then converted this
clicked-on point into a latitude and longitude value.

All of this provides us with three numbers: the desired search radius, and the lat/
long coordinates for the point at which to start the search. Our task now is to identify
which features are within the given search radius of the clicked-on point:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[251]

Because the search radius is specified as an actual distance in miles, we need to be able
to calculate distances accurately. We looked at an approach to solving this problem in
Chapter 2, GIS, where we considered the concept of a great circle distance:

Given a start and end point, the great circle distance calculation tells us the distance
along the Earth's surface between the two points.

In order to identify the matching features, we need to somehow find all the
matching place names which have a great circle distance less than or equal to
the desired search radius. Let's look at some ways in which we could possibly
identify these features.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[252]

Calculating distances manually
As we saw in Chapter 5, Working with Geospatial Data in Python, pyproj allows us
to do accurate great circle distance calculations based on two lat/long coordinates,
like this:

geod = pyproj.Geod(ellps='WGS84')
angle1,angle2,distance = geod.inv(long1, lat1,
 long2, lat2)

The resulting distance is in meters, and we could easily convert this to miles
as follows:

miles = distance / 1609.344

Based on this, we could write some code to find the features within the desired
search radius:

geod = pyproj.Geod(ellps="WGS84")

cursor.execute("select id,X(position),Y(position) " +
 "from places")
for id,long,lat in cursor:
 angle1,angle2,distance = geod.inv(startLong, startLat,
 long, lat)
 if distance / 1609.344 <= searchRadius:
 ...

This would certainly work, and would return an accurate list of all features within
the given search radius. The problem is speed; because there are more than four
million features in our places table, this program would take several minutes to
identify all the matching place names. Obviously this isn't a very practical solution.

Using angular distances
We saw an alternative way of identifying features by distance in Chapter 5, Working
with Geospatial Data in Python, where we looked for all parks in or near an urban
area. In that chapter, we used an angular distance to estimate how far apart two
points were. An angular distance is a distance measured in degrees—technically,
it is the angle between two rays going out from the center of the Earth through the
two desired points on the Earth's surface. Because latitude and longitude values
are angular measurements, we can easily calculate an angular distance based on
two lat/long values like this:

distance = math.sqrt((long2-long1)**2) + (lat2-lat1)**2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[253]

This is a simple Cartesian distance calculation. We are naively treating lat/long
values as if they were Cartesian coordinates. This isn't right, but it does give us
a distance measurement of sorts.

So what does this angular distance measurement give us? We know that the bigger
the angular distance, the bigger the real (great circle) distance will be. In Chapter 5,
Working with Geospatial Data in Python, we used this to identify all parks in California
which where approximately within ten kilometers of an urban area. However, we
could get away with this in that chapter because we were only dealing with data for
California. In reality, the angular distance varies greatly depending on which latitude
you are dealing with; looking for points within ±1 degree of longitude of your current
location will include all points within 111 km if you are at the equator, 100 km if you
are at ±30 degree latitude, 55 km at ±60 degree, and zero km at the poles:

Because DISTAL includes data for the entire world, angular measurements would
be all but useless—we can't assume that a given difference in latitude and longitude
values would equal a given distance across the Earth's surface in any way which
would help us do the distance-based searching.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[254]

Using projected coordinates
Another way of finding all points within a given distance is to use a projected
coordinate system that accurately represents distance as differences between
coordinate values. For example, the Universal Transverse Mercator projection
defines Y coordinates as a number of meters north or south of the equator, and
X coordinates as a number of meters east or west of a given reference point.
Using the UTM projection, it would be easy to identify all points within a given
distance by using the Cartesian distance formula:

distance = math.sqrt((long2-long1)**2) + (lat2-lat1)**2)
if distance < searchRadius:

Unfortunately, projected coordinate systems such as UTM are only accurate for
data that covers a small portion of the Earth's surface. The UTM coordinate system
is actually a large number of different projections, dividing the world up into sixty
separate "zones" each six degrees of longitude wide. You need to use the correct
UTM zone for your particular data: California's coordinates belong in UTM zone
10, and attempting to project them into UTM zone 20 would cause your distance
measurements to be very inaccurate.

If you had data that covered only a small area of the Earth's surface, using
a projected coordinate system would have great advantages. Not only could
you calculate distances using Cartesian coordinates, you could also make use
of database functions such as PostGIS's ST_DWithin() function to quickly find
all points within a given physical distance of a central point.

Unfortunately, the DISTAL application makes use of data covering the entire Earth.
For this reason, we can't use projected coordinates for this application, and have to
find some other way of solving this problem.

Of course, the DISTAL application was deliberately designed to
include world-wide data, for precisely this reason. Being able to
use a single UTM zone for all the data would be too convenient.

Actually, there is a way in which DISTAL could use projected UTM coordinates,
but it's rather complicated. Because every feature in a given database table has to
have the same spatial reference, it isn't possible to have different features in a table
belonging to different UTM zones—the only way we could store worldwide data in
UTM projections would be to have a separate database table for each UTM zone.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[255]

This would require sixty separate database tables! To identify the points within
a given distance, you would first have to figure out which UTM zone the starting
point was in, and then check the features within that database table. You would also
have to deal with searches that extend out beyond the edge of a single UTM zone.

Needless to say, this approach is far too complex for us. It would work
(and would scale better than any of the alternatives) but we won't consider
it because of its complexity.

A hybrid approach
In Chapter 6, GIS in the Database, we looked at the process of identifying all points
within a given polygon. Because MySQL only handles bounding-box intersection
tests, we ended up having to write a program which asked the database to identify
all points within the bounding box, and then manually checked each point to see if
it was actually inside the polygon:

This suggests a way in which we can solve the distance-based-selection problem for
DISTAL: we can calculate a bounding box which encloses the desired search radius,
ask the database to identify all points within that bounding box, and then calculate
the great circle distance for all the returned points, selecting just those points that are
actually inside the search radius. Because a relatively small number of points will
be inside the bounding box, calculating the great circle distance for just these points
will be quick, allowing us to accurately find the matching points without a large
performance penalty.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[256]

Let's start by calculating the bounding box. We already know the coordinates for the
starting point and the desired search radius:

Using pyproj, we can calculate the lat/long coordinates for four points by traveling
radius meters directly north, south, east, and west of the starting point:

We then use these four points to define the bounding box that encloses the desired
search radius:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[257]

We're going to create a new function within our database module, which performs a
spatial search using this bounding box. Let's start by adding the following to the end
of your database.py module:

def find_places_within(startLat, startLong, searchRadius):
 global _cursor

 if DB_TYPE == "MySQL":
 ...
 elif DB_TYPE == "PostGIS":
 ...
 elif DB_TYPE == "SpatiaLite":
 ...

Note that, because we're using pyproj to do a forward geodetic calculation, we
can calculate the correct lat/long coordinates for the bounding box regardless of
the latitude of the starting point. The only place this will fail is if startLat is within
searchRadius meters of the North or South Pole—which is highly unlikely given
that we're searching for cities (and we could always add error-checking code to
catch this).

When it's finished, our find_places_within() function will return a list of
all the places within the given bounding box, as well as the calculated bounding
box. Because the spatial queries are different for each database, we'll look at each
one individually.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[258]

For MySQL, we'll create a Polygon out of the supplied bounding box, and then use
the MBRContains() function to search for places within that Polygon. To do this,
replace the first ... with the following code:

 p = Polygon([(minLong, minLat), (maxLong, minLat),
 (maxLong, maxLat), (minLong, maxLat),
 (minLong, minLat)])
 wkt = shapely.wkt.dumps(p)
 _cursor.execute("SELECT name," +
 "X(position),Y(position) " +
 "FROM places WHERE MBRContains(" +
 "GeomFromText(%s), position)", (wkt,))

PostGIS uses a similar approach, creating a Polygon and then using the
ST_CONTAINS() function to identify the matching places:

 p = Polygon([(minLong, minLat), (maxLong, minLat),
 (maxLong, maxLat), (minLong, maxLat),
 (minLong, minLat)])
 wkt = shapely.wkt.dumps(p)
 _cursor.execute("SELECT name," +
 "ST_X(position),ST_Y(position) " +
 "FROM places WHERE ST_CONTAINS(" +
 "ST_GeomFromText(%s, 4326), " +
 "position)", (wkt,))

You might be wondering why we don't use PostGIS's
ST_DWITHIN() function to identify the matching places. The
problem is that we are using unprojected coordinates, which
means that the "distance" supplied to ST_DWITHIN() would
have to be in measured in degrees rather than meters. This
is possible, but there are some tricky calculations required to
convert from meters to degrees. To keep things simple, we'll
use the ST_CONTAINS() function instead.

Finally, for SpatiaLite we have to do a bit more work. Remember that SpatiaLite
doesn't automatically use a spatial index for queries. To make this code efficient
in SpatiaLite, we have to check the spatial index directly:

 _cursor.execute("SELECT name," +
 "X(position),Y(position) " +
 "FROM places WHERE id in " +
 "(SELECT pkid " +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[259]

 "FROM idx_places_position " +
 "WHERE xmin >= ? AND xmax <= ? " +
 "AND ymin >= ? and ymax <= ?)",
 (minLong, maxLong, minLat, maxLat))

Now that we have executed an SQL query to identify all the points within the
bounding box, we can check the great circle distance and discard those points,
which are inside the bounding box, but outside the search radius. To do this,
add the following to the end of your find_places_within() function:

 places = [] # List of (long, lat, name) tuples.

 geod = pyproj.Geod(ellps="WGS84")

 for row in _cursor:
 name,long,lat = row
 angle1,angle2,distance = geod.inv(startLong, startLat,
 long, lat)
 if distance > searchRadius: continue

 places.append([long, lat, name])

 return {'places' : places,
 'minLat' : minLat,
 'minLong' : minLong,
 'maxLat' : maxLat,
 'maxLong' : maxLong}

As you can see, we return the list of matching places, along with the minimum and
maximum latitude and longitude values we calculated.

This completes our find_places_within() function, which achieves a 100 percent
accurate distance-based lookup on place names, with the results taking only a
fraction of a second to calculate.

Displaying the results
Now that we have calculated the list of place names within the desired search radius,
we can use the mapGenerator.py module to display them. Before we do so, though,
we'll have to set up a data source to display the high-resolution shorelines. Let's add
another function to our database.py module, which does this:

def get_shoreline_datasource():
 if DB_TYPE == "MySQL":

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[260]

 vrtFile = os.path.join(os.path.dirname(__file__),
 "shorelines.vrt")
 f = file(vrtFile, "w")
 f.write('<OGRVRTDataSource>\n')
 f.write(' <OGRVRTLayer name="shorelines">\n')
 f.write(' <SrcDataSource>MYSQL:' + MYSQL_DBNAME)
 if MYSQL_USERNAME not in ["", None]:
 f.write(",user=" + MYSQL_USERNAME)
 if MYSQL_PASSWORD not in ["", None]:
 f.write(",passwd=" + MYSQL_PASSWORD)
 f.write(',tables=shorelines</SrcDataSource>\n')
 f.write(' <SrcSQL>\n')
 f.write(' SELECT id,outline FROM shorelines ' +
 'WHERE level=1\n')
 f.write(' </SrcSQL>\n')
 f.write(' </OGRVRTLayer>\n')
 f.write('</OGRVRTDataSource>\n')
 f.close()

 return {'type' : "OGR",
 'file' : vrtFile,
 'layer' : "shorelines"}
 elif DB_TYPE == "PostGIS":
 return {'type' : "PostGIS",
 'dbname' : "distal",
 'table' : "shorelines",
 'user' : POSTGIS_USERNAME,
 'password' : POSTGIS_PASSWORD}
 elif DB_TYPE == "SpatiaLite":
 return {'type' : "SQLite",
 'file' : SPATIALITE_DBNAME,
 'table' : "shorelines",
 'geometry_field' : "outline",
 'key_field' : "id"}

As you can see, this is almost identical to our get_country_datasource() function,
except that it accesses a different database table to display the high-resolution
shoreline rather than the low-resolution country outlines.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[261]

Notice that the SrcSQL statement in our .VRT file only includes
shoreline data where level is equal 1. This means that we're only
displaying the coastlines, and not the lakes, islands-on-lakes, and so
on. Because the mapGenerator.py module doesn't support multiple
data sources, we aren't able to draw lakes in this version of the
DISTAL system. Extending mapGenerator.py to support multiple
data sources is possible, but is too complicated for this chapter. For
now we'll just have to live with this limitation.

With this in place, we can finally return to our showResults.py file and use it to
display our results:

results = database.find_places_within(latitude, longitude,
 radius)

imgFile = mapGenerator.generateMap(datasource,
 minLong, minLat,
 maxLong, maxLat,
 600, 600,
 points=results['places'])

When we called the map generator previously, we used a filter expression to
highlight particular features. In this case we don't need to highlight anything.
Instead, we pass it the list of place names to display on the map in the keyword
parameter named points.

The map generator creates a PNG-format file, and returns a reference to that file
which we can then display to the user:

print 'Content-Type: text/html; charset=UTF-8\n\n'
print '<html>'
print '<head><title>Search Results</title></head>'
print '<body>'
print '' + countryName + ''
print '<p>'
print ''
print '</body>'
print '</html>'

This completes our first version of the showResults.py CGI script.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[262]

Application review and improvements
At this stage, we have a complete implementation of the DISTAL system that works
as advertised: a user can choose a country, enter a search radius in miles, click on a
starting point, and see a high-resolution map showing all the place names within the
desired search radius. We have solved the distance problem, and have all the data
needed to search for place names anywhere in the world.

Of course, we aren't finished yet. There are several areas where our DISTAL
application doesn't work as it should, including the following:

•	 Usability
•	 Quality
•	 Performance

Let's take a look at each of these issues, and see how we could improve our design
and implementation of the DISTAL system.

Usability
If you explore the DISTAL application, you will soon discover a major usability
problem with some of the countries. For example, if you click on the United States in
the Select Country page, you will be presented with the following map to click on:

Accurately clicking on a desired point using this map would be almost impossible.

What has gone wrong? The problem here is twofold:

•	 The United States outline doesn't just cover the mainland US, but also
includes the outlying states of Alaska and Hawaii. This increases the
size of the map considerably.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[263]

•	 Alaska crosses the 180th meridian—the Alaska Peninsula extends beyond
180 degree west, and continues across the Aleutian Islands to finish at Attu
Island with a longitude of 172 degree east. Because it crosses the 180th
meridian, Alaska appears on both the left and right sides of the world map.

Because of this, the United States map goes from -180 degree to +180 degree longitude
and +18 degree to +72 degree latitude. This map is far too big to be usable.

Even for countries which aren't split into separate outlying states, and which don't
cross the 180th meridian, we can't be assured that the maps will be detailed enough
to click on accurately. For example, here is the map for Canada:

Because Canada is over 3,000 miles wide, accurately selecting a 10-mile search radius
by clicking on a point on this map would be an exercise in frustration.

An obvious solution to these usability issues would be to let the user "zoom in" on a
desired area of the large-scale map before clicking to select the starting point for the
search. Thus, for these larger countries, the user would select the country, choose
which portion of the country to search on, and then click on the desired starting point.

This doesn't solve the 180th meridian problem, which is somewhat more difficult.
Ideally, you would identify those countries which cross the 180th meridian and
reproject them into some other coordinate system that allows their polygons to
be drawn contiguously.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[264]

Quality
As you use the DISTAL system, you will quickly notice some quality issues related
to the underlying data that is being used. We are going to consider two such issues:
problems with the name data, and problems with the place name lat/long coordinates.

Place name issues
If you look through the list of place names, you'll notice that some of the names have
double parentheses around them, like this:

…
((Shinavlash))
((Pilur))
((Kaçarat))
((Kaçaj))
((Goricë))
((Lilaj))
…

These are names for places which are thought to no longer exist. Also, you will notice
that some names have the word "historical" in them, surrounded by either square
brackets or parentheses:

…
Fairbank (historical)
Kopiljača [historical]
Hardyville (historical)
Dorčol (historical)
Sotos Crossing (historical)
Dušanovac (historical)
…

Obviously, these should also be removed. Filtering out the names, which should
be excluded from the DISTAL database is relatively straightforward, and could be
added to our import logic as we read the NationalFile and Geonames files into
the database.

Lat/Long coordinate problems
Consider the following DISTAL map, covering a part of Netherlands:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[265]

The placement of the cities look suspiciously regular, as if the cities are neatly stacked
into rows and columns. Drawing a grid over this map confirms this suspicion:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[266]

The towns and cities themselves aren't as regularly spaced as this, of course—the
problem appears to be caused by inaccurately rounded lat/long coordinates within
the international place name data.

This doesn't affect the operation of the DISTAL application, but users may be
suspicious about the quality of the results when the place names are drawn so
regularly onto the map. The only solution to this problem would be to find a
source of more accurate coordinate data for international place names.

Performance
Our DISTAL application is certainly working, but its performance leaves something
to be desired. While the selectCountry.py and selectArea.py scripts run quickly,
it can take up to three seconds for showResults.py to complete. Clearly, this isn't
good enough: a delay like this is annoying to the user, and would be disastrous for
the server as soon as it receives more than twenty requests per minute, as it would
be receiving more requests than it could process.

Finding the problem
Let's take a look at what is going on here. It's easy to add some basic timing code to
showResults.py, like this:

import time
import logging
logger = logging.getLogger(...)

start_time = time.time()
...
end_time = time.time()
logger.debug("Operation took %0.4f seconds" % (end_time – start_time)

Note that this uses the logging Python standard module to save
the timing results. Because CGI scripts use stdout for the HTML
output, we can't use the print statement to print out the results.
If you want to time your own code, make sure you configure your
logger (for example, to use a logging.FileHandler) first.

Running this code reveals where the script is taking most of its time:

Calculating lat/long coordinate took 0.0110 seconds

Identifying place names took 0.0088 seconds

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[267]

Generating map took 3.0208 seconds

Building HTML page took 0.0000 seconds

Clearly the map-generation process is the bottleneck here. Since it only took a
fraction of a second to generate a map within the selectArea.py script, there's
nothing inherent in the map-generation process that causes this bottleneck.
So what has changed?

It could be that displaying the place names takes a while, but that's unlikely.
It's far more likely to be caused by the amount of map data that we are displaying:
the showResults.py script is using high-resolution shoreline outlines taken from
the GSHHS dataset, rather than the low-resolution country outline taken from the
World Borders Dataset. To test this theory, we can change the map data being used
to generate the map, altering showResults.py to use the low-resolution countries
table instead of the high-resolution shorelines table.

The result is a dramatic improvement in speed:

Generating map took 0.1729 seconds

So how can we make the map generation in showResults.py faster? The answer lies
in the nature of the shoreline data and how we are using it. Consider the situation
where you are identifying points within 10 miles of Le Havre in France:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[268]

The high-resolution shoreline image would look like this:

But this section of coastline is actually part of the following GSHHS shoreline feature:

This shoreline polygon is enormous, consisting of over 1.1 million points, and we're
only displaying a very small part of it.

Because these shoreline polygons are so big, the map generator needs to read in the
entire huge polygon and then discard 99 percent of it to get the desired section of
shoreline. Also, because the polygon bounding boxes are so large, many irrelevant
polygons are being processed (and then filtered out) when generating the map.
This is why showResults.py is so slow.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[269]

Improving performance
It is certainly possible to improve the performance of the showResults.py script.
As we mentioned in the best practices section of the previous chapter, spatial indexes
work best when working with relatively small geometries—and our shoreline
polygons are anything but small. However, because the DISTAL application only
shows points within a certain distance, we can split these enormous polygons into
"tiles" which are then precalculated and stored in the database.

Let's say that we're going to impose a limit of 100 miles to the search radius.
We'll also arbitrarily define the tiles to be one whole degree of latitude high,
and one whole degree of longitude wide:

Note that we could choose any tile size we like, but have selected
whole degrees of longitude and latitude to make it easy to
calculate which tile a given lat/long coordinate is inside. Each tile
will be given an integer latitude and longitude value, which we'll
call iLat and iLong. We can then calculate the tile to use for any
given latitude and longitude like this:

iLat = int(round(latitude))

iLong = int(round(longitude))

We can then simply look up the tile with the given iLat and
iLong value.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[270]

For each tile, we will use the same technique we used earlier to identify the bounding
box of the search radius, to define a rectangle 100 miles north, east, west, and south
of the tile:

Using the bounding box, we can calculate the intersection of the shoreline data with
this bounding box:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[271]

Any search done within the tile's boundary, up to a maximum of 100 miles in any
direction, will only display shorelines within this bounding box. We simply store
this intersected shoreline into the database, along with the lat/long coordinates for
the tile, and tell the map generator to use the appropriate tile's outline to display
the desired shoreline.

Calculating the tiled shorelines
Let's write the program that calculates these tiled shorelines. We'll store this program
as tileShorelines.py. Start by entering the following into this file:

import math

import pyproj
from shapely.geometry import Polygon
from shapely.ops import cascaded_union
import shapely.wkt

import database

##

MAX_DISTANCE = 100000 # Maximum search radius, in meters.

Note that we're importing the database.py module. Because
database.py is within the cgi-bin directory, you should
place your tileShorelines.py file in this directory.

We next need a function to calculate the tile bounding boxes. This function,
expandRect(), should take a rectangle defined using lat/long coordinates, and
expand it in each direction by a given number of meters. Using the techniques we
have learned, this is straightforward: we can use pyproj to perform an inverse great
circle calculation to calculate four points the given number of meters north, east,
south, and west of the starting point. This will give us the desired bounding box.
Here's what our function will look like:

def expandRect(minLat, minLong, maxLat, maxLong, distance):

 geod = pyproj.Geod(ellps="WGS84")
 midLat = (minLat + maxLat) / 2.0
 midLong = (minLong + maxLong) / 2.0

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[272]

 try:
 availDistance = geod.inv(midLong, maxLat, midLong,
 +90)[2]
 if availDistance >= distance:
 x,y,angle = geod.fwd(midLong, maxLat, 0, distance)
 maxLat = y
 else:
 maxLat = +90
 except:
 maxLat = +90 # Can't expand north.

 try:
 availDistance = geod.inv(maxLong, midLat, +180,
 midLat)[2]
 if availDistance >= distance:
 x,y,angle = geod.fwd(maxLong, midLat, 90,
 distance)
 maxLong = x
 else:
 maxLong = +180
 except:
 maxLong = +180 # Can't expand east.

 try:
 availDistance = geod.inv(midLong, minLat, midLong,
 -90)[2]
 if availDistance >= distance:
 x,y,angle = geod.fwd(midLong, minLat, 180,
 distance)
 minLat = y
 else:
 minLat = -90
 except:
 minLat = -90 # Can't expand south.

 try:
 availDistance = geod.inv(maxLong, midLat, -180,
 midLat)[2]
 if availDistance >= distance:
 x,y,angle = geod.fwd(minLong, midLat, 270,
 distance)
 minLong = x

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[273]

 else:
 minLong = -180
 except:
 minLong = -180 # Can't expand west.

 return (minLat, minLong, maxLat, maxLong)

Note that we've added error-checking here, to allow
rectangles close to the north or south pole.

Using this function, we will be able to calculate the bounding rectangle for a given
tile in the following way:

minLat,minLong,maxLat,maxLong = expandRect(iLat, iLong,
 iLat+1, iLong+1,
 MAX_DISTANCE)

Type the expandRect() function into your tileShorelines.py script, placing it
immediately below the last import statement. With this in place, we're now ready
to start creating the tiled shorelines.

As always, we'll be using the database.py module to handle the database-specific
portions of our program. We'll start with a function to load the shoreline polygons
into memory. Add the following to the end of your database.py module:

def load_shorelines():
 global _cursor

 shorelines = []

 if DB_TYPE == "MySQL":
 _cursor.execute("SELECT AsText(outline) " +
 "FROM shorelines WHERE level=1")
 elif DB_TYPE == "PostGIS":
 _cursor.execute("SELECT ST_AsText(outline) " +
 "FROM shorelines WHERE level=1")
 elif DB_TYPE == "SpatiaLite":
 _cursor.execute("SELECT ST_AsText(outline) " +
 "FROM shorelines WHERE level=1")

 for row in _cursor:
 outline = shapely.wkt.loads(row[0])

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[274]

 shorelines.append(outline)

 return shorelines

This implementation of the shoreline tiling algorithm uses a lot of
memory. If your computer has less than 2 gigabytes of RAM, you
may need to store temporary results in the database. Doing this
will of course slow down the tiling process, but it will still work.

We can now call this function from the tileShorelines.py script to load the
shoreline polygons into memory. Add the following lines to the end of your program:

database.open()
shorelines = database.load_shorelines()

Now that we've loaded the shoreline polygons, we can start calculating the contents
of each tile. Let's create a list-of-lists which will hold the (possibly clipped) polygons
that appear within each tile; add the following to the end of your tileShorelines.
py script:

tilePolys = []
for iLat in range(-90, +90):
 tilePolys.append([])
 for iLong in range(-180, +180):
 tilePolys[-1].append([])

For a given iLat/iLong combination, tilePolys[iLat][iLong] will contain a list
of the shoreline polygons which appear inside that tile.

We now want to fill the tilePolys array with the portions of the shorelines that
will appear within each tile. The obvious way to do this is to calculate the polygon
intersections, like this:

shorelineInTile = shoreline.intersection(tileBounds)

Unfortunately, this approach would take a very long time to calculate—just as the
map generation takes about 2-3 seconds to calculate the visible portion of a shoreline,
it takes about 2-3 seconds to perform this intersection on a huge shoreline polygon.
Because there are 360 x 180 = 64,800 tiles, it would take several days to complete this
calculation using this naive approach.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[275]

A much faster solution would be to "divide and conquer" the large polygons.
We first split the huge shoreline polygon into vertical strips, like this:

We then split each vertical strip horizontally to give us the individual parts of the
polygon, which can be merged into the individual tiles:

By dividing the huge polygons into strips, and then further dividing each strip,
the intersection process is much faster. Here is the code which performs this
intersection; we start by iterating over each shoreline polygon and calculating
the polygon's bounds:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[276]

For shoreline in shorelines:

 minLong,minLat,maxLong,maxLat = shoreline.bounds
 minLong = int(math.floor(minLong))
 minLat = int(math.floor(minLat))
 maxLong = int(math.ceil(maxLong))
 maxLat = int(math.ceil(maxLat))

We then split the polygon into vertical strips:

 vStrips = []
 for iLong in range(minLong, maxLong+1):

 stripMinLat = minLat
 stripMaxLat = maxLat
 stripMinLong = iLong
 stripMaxLong = iLong + 1

 bMinLat,bMinLong,bMaxLat,bMaxLong = \
 expandRect(stripMinLat, stripMinLong,
 stripMaxLat, stripMaxLong,
 MAX_DISTANCE)

 bounds = Polygon([(bMinLong, bMinLat),
 (bMinLong, bMaxLat),
 (bMaxLong, bMaxLat),
 (bMaxLong, bMinLat),
 (bMinLong, bMinLat)])

 strip = shoreline.intersection(bounds)
 vStrips.append(strip)

Next, we process each vertical strip, splitting the strip into tile-sized blocks and
storing it into tilePolys:

 stripNum = 0
 for iLong in range(minLong, maxLong+1):
 vStrip = vStrips[stripNum]
 stripNum = stripNum + 1

 for iLat in range(minLat, maxLat+1):
 bMinLat,bMinLong,bMaxLat,bMaxLong = \
 expandRect(iLat, iLong, iLat+1, iLong+1,
 MAX_DISTANCE)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[277]

 bounds = Polygon([(bMinLong, bMinLat),
 (bMinLong, bMaxLat),
 (bMaxLong, bMaxLat),
 (bMaxLong, bMinLat),
 (bMinLong, bMinLat)])

 polygon = vStrip.intersection(bounds)
 if not polygon.is_empty:
 tilePolys[iLat][iLong].append(polygon)

We're now ready to save the tiled shorelines back into the database. Before we can do
that, we have to create the appropriate database tables. To do this, add the following
function to your database.py module:

def create_tile_tables():
 global _cursor, _connection

 if DB_TYPE == "MySQL":
 _cursor.execute("""
 CREATE TABLE IF NOT EXISTS tiled_shorelines (
 intLat INTEGER,
 intLong INTEGER,
 outline GEOMETRY,

 PRIMARY KEY (intLat, intLong))
 """)
 elif DB_TYPE == "PostGIS":
 _cursor.execute("DROP TABLE IF EXISTS " +
 "tiled_shorelines")
 _cursor.execute("""
 CREATE TABLE tiled_shorelines (
 intLat INTEGER,
 intLong INTEGER,

 PRIMARY KEY (intLat, intLong))
 """)
 _cursor.execute("""
 SELECT AddGeometryColumn('tiled_shorelines',
 'outline', 4326,
 'GEOMETRY', 2)
 """)
 _cursor.execute("""

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[278]

 CREATE INDEX tiledShorelineIndex
 ON tiled_shorelines
 USING GIST(outline)
 """)
 elif DB_TYPE == "SpatiaLite":
 _cursor.execute("DROP TABLE IF EXISTS " +
 "tiled_shorelines")
 _cursor.execute("""
 CREATE TABLE tiled_shorelines (
 intLat INTEGER,
 intLong INTEGER,
 PRIMARY KEY (intLat, intLong))
 """)
 _cursor.execute("""
 SELECT AddGeometryColumn('tiled_shorelines',
 'outline', 4326,
 'GEOMETRY', 2)
 """)
 _cursor.execute("""
 SELECT CreateSpatialIndex('tiled_shorelines',
 'outline')
 """)

 _connection.commit()

We're using the same technique we used earlier to create the countries and
shorelines tables to create our new tiled_shorelines table. We can now
call this from our tileShorelines.py program:

database.create_tile_tables()

Because we'll be storing geometries (Polygons or MultiPolygons) into this
new table, we'll want to define a function to do this for each type of database.
Add the following to the end of your database.py module:

def save_tiled_shoreline(iLat, iLong, outline_wkt):
 global _cursor, _connection

 if DB_TYPE == "MySQL":
 _cursor.execute("INSERT INTO tiled_shorelines " +
 "(intLat, intLong, outline) " +
 "VALUES (%s, %s, GeomFromText(%s))",
 (iLat, iLong, outline_wkt))
 elif DB_TYPE == "PostGIS":
 _cursor.execute("INSERT INTO tiled_shorelines " +
 "(intLat, intLong, outline) " +
 "VALUES (%s, %s, " +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[279]

 "ST_GeomFromText(%s, 4326))",
 (iLat, iLong, outline_wkt))
 elif DB_TYPE == "SpatiaLite":
 _cursor.execute("INSERT INTO tiled_shorelines " +
 "(intLat, intLong, outline) " +
 "VALUES (?, ?, " +
 "ST_GeomFromText(%s, 4326))",
 (iLat, iLong, outline_wkt))

 _connection.commit()

Finally, we can combine the list of polygons within each tile into a single Geometry
object, and save the results into the database. Add the following to the end of
tileShorelines.py:

for iLat in range(-90, +90):
 for iLong in range(-180, +180):
 polygons = tilePolys[iLat][iLong]
 if len(polygons) == 0:
 outline = Polygon()
 else:
 outline = shapely.ops.cascaded_union(polygons)
 wkt = shapely.wkt.dumps(outline)

 database.save_tiled_shoreline(iLat, iLong, wkt)

This completes our program to tile the shorelines. You can run it by typing the
following command from the command line:

python tileShorelines.py

Note that it may take an hour or more to complete, because of all the shoreline data
that needs to be processed.

The first time you run the program, you might want to replace this line:
for shoreline in shorelines:

with the following line:
for shoreline in shorelines[1:2]:

This will let the program finish in only a few minutes so you can make
sure it's working, before removing the [1:2] and running it over the
entire shoreline database.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[280]

Using tiled shorelines
All this gives us a new database table, tiled_shorelines, which holds the shoreline
data split into partly-overlapping tiles:

Since we can guarantee that all the shoreline data for a given set of search results
will be within a single tiled_shoreline record, we can modify showResults.py
(and database.py) to use the tiled shoreline rather than the raw shoreline data.

To do this, we'll need to modify our datasource dictionary so that Mapnik will know
which of the shoreline tiles to use. Let's define a new version of the get_shoreline_
datasource() function which returns a data source which can handle our tiled
shorelines. Add the following to the end of your database.py module:

def get_tiled_shoreline_datasource(iLat, iLong):
 if DB_TYPE == "MySQL":
 vrtFile = os.path.join(os.path.dirname(__file__),
 "shorelines.vrt")
 f = file(vrtFile, "w")
 f.write('<OGRVRTDataSource>\n')
 f.write(' <OGRVRTLayer name="shorelines">\n')
 f.write(' <SrcDataSource>MYSQL:' + MYSQL_DBNAME)
 if MYSQL_USERNAME not in ["", None]:
 f.write(",user=" + MYSQL_USERNAME)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[281]

 if MYSQL_PASSWORD not in ["", None]:
 f.write(",passwd=" + MYSQL_PASSWORD)
 f.write(',tables=tiled_shorelines</SrcDataSource>\n')
 f.write(' <SrcSQL>\n')
 f.write(' SELECT outline ' +
 'FROM tiled_shorelines WHERE ' +
 '(intLat=%d) AND (intlong=%d)' %
 (iLat, iLong) + '\n')
 f.write(' </SrcSQL>\n')
 f.write(' </OGRVRTLayer>\n')
 f.write('</OGRVRTDataSource>\n')
 f.close()

 return {'type' : "OGR",
 'file' : vrtFile,
 'layer' : "shorelines"}
 elif DB_TYPE == "PostGIS":
 sql = "(SELECT outline FROM tiled_shorelines" \
 + " WHERE (intLat=%d) AND (intLong=%d)) " \
 % (iLat, iLong) + "AS shorelines"

 return {'type' : "PostGIS",
 'dbname' : "distal",
 'table' : sql,
 'extent_from_subquery' : True,
 'user' : POSTGIS_USERNAME,
 'password' : POSTGIS_PASSWORD}
 elif DB_TYPE == "SpatiaLite":
 sql = "(SELECT outline FROM tiled_shorelines" \
 + " WHERE (intLat=%d) AND (intLong=%d)) " \
 % (iLat, iLong) + "AS shorelines"

 return {'type' : "SQLite",
 'file' : SPATIALITE_DBNAME,
 'table' : sql,
 'geometry_field' : "outline",
 'key_field' : "id"}

We can now use this within our showResults.py script to use the tiled shorelines.
To do this, replace the line that says:

datasource = database.get_shoreline_datasource()

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[282]

with the following code:

iLat = int(round(latitude))
iLong = int(round(longitude))

datasource = database.get_tiled_shoreline_datasource(iLat, iLong)

With these changes, the showResults.py script will use the tiled shorelines rather
than the full shoreline data downloaded from GSHHS. Let's now take a look at how
much of a performance improvement these tiled shorelines give us.

Analyzing the performance improvement
As soon as you run this new version of the DISTAL application, you'll notice a
huge improvement in speed: showResults.py now seems to return its results
almost instantly. Where before the map generator was taking about 2-3 seconds
to generate the high-resolution maps, it's now only taking a fraction of a second:

Generating map took 0.1074 seconds

That's a dramatic improvement in performance: the map generator is now 15-20
times faster than it was, and the total time taken by the showResults.py script is
now less than a quarter of a second. That's not bad for a relatively simple change
to our underlying map data.

Summary
In this chapter, we have implemented, tested, and made improvements to a simple
web-based application which displays shorelines, towns, and lakes (DISTAL) within
a given radius of a starting point. This application was the impetus for exploring a
number of important concepts within geospatial application development, including
the following:

•	 The creation of a simple but complete web-based geospatial application
•	 Using databases to store and work with large amounts of geospatial data
•	 Using a "black-box" map rendering module to create maps using spatial

data selected from a database
•	 Examining the issues involved in identifying features based on their true

distance rather than using a lat/long approximation
•	 Learning how to use spatial joins effectively

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[283]

•	 Exploring usability issues in a prototype implementation
•	 Dealing with issues of data quality
•	 Learning how to precalculate data to improve performance

As a result of our development efforts, we have learned the following:

•	 Setting up a database and importing large quantities of data from shapefiles
and other data sources

•	 Designing and structuring a simple web-based application to display maps
and respond to user input

•	 There are three steps in displaying a map: calculating the lat/long bounding
box, calculating the pixel size of the map image, and telling the map renderer
which tables to get its data from

•	 Given the (x, y) coordinate of a point the user clicked on within a map, how
to translate this point into equivalent latitude and longitude value

•	 Various ways in which true distance calculations, and selection of features
by distance, can be performed

•	 Manually calculating distance for every point using the great circle distance
formula is accurate but very slow

•	 Angular distances (that is, differences in lat/long coordinates) is an easy
approximation of distance but doesn't relate in any useful way to true
distances across the Earth's surface

•	 Using projected coordinates makes true distance calculations easy, but is
limited to data covering only part of the Earth's surface

•	 Using a hybrid approach to accurately and quickly identify features by
distance, by calculating a lat/long bounding box to identify potential
features, and then doing a great circle distance calculation on these features
to weed out the false positives

•	 Setting up a datasource to access and retrieve data from MySQL, PostGIS
and SpatiaLite databases

•	 Displaying a country's outline and asking the user to click on a desired point
works when the country is relatively small and compact, but breaks down for
larger countries

•	 Learning how issues of data quality can affect the overall usefulness of your
geospatial application

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Data

[284]

•	 Learning how you cannot assume that geospatial data comes in the best form
for use in your application

•	 Very large polygons can degrade performance, and can often be split into
smaller subpolygons, resulting in dramatic improvements in performance

•	 A divide-and-conquer approach to splitting large polygons is much faster
than simply calculating the intersection using the full polygon each time

In the next chapter, we will explore the details of using the Mapnik library to convert
raw geospatial data into map images.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik
to Generate Maps

Because geospatial data is almost impossible to understand until it is displayed,
the creation of maps to visually represent spatial data is an extremely important
topic. In this chapter we will look at Mapnik, a powerful Python library for
generating maps out of geospatial data.

This chapter will cover the following:

•	 Underlying concepts used by Mapnik to generate maps
•	 Creating a simple map using the contents of a shapefile
•	 Different data sources that Mapnik supports
•	 Using rules, filters, and styles to control the map generation process
•	 Using "symbolizers" to draw lines, polygons, labels, points, and raster

images onto your map
•	 Defining the colors used on a map
•	 Working with maps and layers
•	 Setting your options for rendering a map image
•	 The mapGenerator.py module, introduced in the previous chapter,

uses Mapnik to generate maps
•	 Using map definition files to control and simplify the

map-generation process

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[286]

Introducing Mapnik
Mapnik is a powerful toolkit for using geospatial data to create maps. Mapnik can be
downloaded from:

http://mapnik.org

Mapnik is a complex library with many different parts, and it is easy to get confused
by the various names and concepts. Let's start our exploration of Mapnik by looking
at a simple map:

One thing that may not be immediately obvious is that the various elements within
the map are layered, like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[287]

To generate this map, you have to tell Mapnik to initially draw the background, then
the polygons, and finally the labels. This ensures that the polygons sit on top of the
background, and the labels appear in front of both the polygons and the background.

Strictly speaking, the background isn't a layer. It's simply
a color or image that Mapnik draws onto the map before
it starts drawing the first layer.

Mapnik allows you to control the order in which the map elements are drawn through
the use of Layer objects. A simple map may consist of just one layer, but most maps
have multiple layers. The layers are drawn in a strict back-to-front order, so the first
layer you define will appear at the back. In the preceding example, the "Polygons"
layer would be defined first, followed by the "Labels" layer, to ensure that the
labels appear in front of the polygons. This layering approach is called the painter's
algorithm because of its similarity to placing layers of paint onto an artist's canvas.

Each Layer has its own data source, which tells Mapnik where to load the data from.
A data source can refer to a shapefile, a spatial database, a raster image file, or any
number of other geospatial data sources. In most cases, setting up a Layer's data
source is very easy.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[288]

Within each Layer, the visual display of the geospatial data is controlled through
something called Symbolizer. While there are many different types of symbolizers
available within Mapnik, three symbolizers are of interest to us here:

•	 The PolygonSymbolizer is used to draw filled polygons:

•	 The LineSymbolizer is used to draw the outline of polygons, as well as
drawing LineStrings and other linear features, like this:

•	 The TextSymbolizer is used to draw labels and other text onto the map:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[289]

In many cases, these three symbolizers are enough to draw an entire map.
Indeed, almost all of the preceding example maps was produced using just
one PolygonSymbolizer, one LineSymbolizer, and one TextSymbolizer:

Within each layer, the symbolizers are processed using the same "painter's algorithm"
described earlier. In this case, the LineSymbolizer would be drawn on top of the
PolygonSymbolizer.

Note that the symbolizers aren't associated directly with a layer. Rather, there is an
indirect association of symbolizers with a layer through the use of styles and rules.
We'll look at styles in a minute, but for now let's take a closer look at the concept of
a Mapnik rule.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[290]

A rule allows a set of symbolizers to apply only when a given condition is met.
For example, the map at the start of this chapter displayed Angola in a different
color. This was done by defining two rules within the "Polygons" layer:

“Polygon” Layer

Rule #1

Rule #2

filter = mapnik.Filter(”[NAME] = ‘Angola’ “)

fill = mapnik.color(”#604040”)

filter = mapnik.Filter(” [NAME] != ‘Angola’ “)

fill = mapnik.Color(”#406040”)

PolygonSymbolizer

PolygonSymbolizer

The first rule has a filter that only applies to features that have a NAME attribute
equal to the string Angola. For features that match this filter condition, the rule's
PolygonSymbolizer will be used to draw the feature in dark red.

The second rule has a similar filter, this time checking for features that don't have a
NAME attribute equal to "Angola". These features are drawn using the second rule's
PolygonSymbolizer, which draws the features in dark green.

Obviously, rules can be very powerful in selectively changing the way features
are displayed on a map. We'll be looking at rules in much more detail in the
Rules, filters and styles section of this chapter.

When you define your symbolizers, you place them into rules. The rules themselves
are grouped into styles, which can be used to organize and keep track of your
various rules. Each map layer itself has a list of the styles which apply to that
particular layer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[291]

While this complex relationship between layers, styles, rules, filters, and symbolizers
can be confusing, it also provides much of Mapnik's power and flexibility. It is
important that you understand how these various classes work together:

Filter
(optional) Symbolizer

Rule

Style 3

Filter
(optional) Symbolizer

Rule

Style 2

Filter
(optional) Symbolizer

Rule

Style 1

Style 2

Style 3

Style 1

Style 2

Style References

Style Definitions

Map

Layer 1

Layer 2

Style References

As you can see, you define the styles within the map itself, while the various layers
refer to the styles that you have defined. This works in much the same way as a
stylesheet in a word processing document, where you define styles and use them
again and again. Note that the same style can be used in multiple layers.

Finally, instead of using Python code to create the various Mapnik objects by hand,
you can choose to use a Map Definition File. This is an XML-format file, which
defines all the symbolizers, filters, rules, styles, and layers within a map. Your
Python code then simply creates a new mapnik.Map object and tells Mapnik to
load the map's contents from the XML definition file. This allows you to define the
contents of your map separately from the Python code that does the map generation,
in much the same way as an HTML templating engine separates form and content
within a web application.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[292]

Creating an example map
To better understand how the various parts of Mapnik work together, let's write
a simple Python program, which generates the map shown at the start of this
chapter. This map makes use of the World Borders Dataset, which you downloaded
in an earlier chapter; copy the TM_WORLD_BORDERS-0.3 shapefile directory into a
convenient place, and create a new Python script in the same place. We'll call this
program createExampleMap.py.

Obviously, if you've gotten this far without downloading
and installing Mapnik, you need to do so now. Mapnik can
be found at http://mapnik.org..

We'll start by importing the Mapnik toolkit and defining some constants, which the
program will need:

import mapnik

MIN_LAT = -35
MAX_LAT = +35
MIN_LONG = -12
MAX_LONG = +50

MAP_WIDTH = 700
MAP_HEIGHT = 800

The MIN_LAT, MAX_LAT, MIN_LONG, and MAX_LONG constants define the lat/long
coordinates for the portion of the world to display on the map, while the MAP_WIDTH
and MAP_HEIGHT constants define the size of the generated map image, in pixels.
Obviously, you can change these if you want.

We're now ready to define the contents of the map. This map will have two layers,
one for drawing the polygons and another for drawing the labels. We'll define a
Mapnik Style object for each of these two layers. Let's start with the style for the
"Polygons" layer:

polygonStyle = mapnik.Style()

As we discussed in the previous section, a filter object lets you choose which
particular features a rule will apply to. In this case, we want to set up two rules,
one to draw Angola in dark red, and another to draw all the other countries in
dark green:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[293]

rule = mapnik.Rule()
rule.filter = mapnik.Filter("[NAME] = 'Angola'")
symbol = mapnik.PolygonSymbolizer(mapnik.Color("#604040"))
rule.symbols.append(symbol)

polygonStyle.rules.append(rule)

rule = mapnik.Rule()
rule.filter = mapnik.Filter("[NAME] != 'Angola'")
symbol = mapnik.PolygonSymbolizer(mapnik.Color("#406040"))
rule.symbols.append(symbol)

polygonStyle.rules.append(rule)

Note how we create a PolygonSymbolizer to fill the country polygon in an
appropriate color, and then add this symbolizer to our current rule. As we
define the rules, we add them to our polygon style.

Now that we've filled the country polygons, we'll define an additional rule to
draw the polygon outlines:

rule = mapnik.Rule()
symbol = mapnik.LineSymbolizer(mapnik.Color("#000000"), 0.1)
rule.symbols.append(symbol)

polygonStyle.rules.append(rule)

This is all that's required to display the country polygons onto the map. Let's now
go ahead and define a second Mapnik Style object for the "Labels" layer:

labelStyle = mapnik.Style()

rule = mapnik.Rule()
symbol = mapnik.TextSymbolizer(mapnik.Expression("[NAME]"),
 "DejaVu Sans Book", 12,
 mapnik.Color("#000000"))
rule.symbols.append(symbol)

labelStyle.rules.append(rule)

This style uses a TextSymbolizer to draw the labels onto the map. Note that we
create an Expression object to define the text to be displayed—in this case, we use the
attribute called NAME from the shapefile; this attribute contains the name of the country.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[294]

In this example, we are only using a single Mapnik style
for each layer. When generating a more complex map, you
will typically have a number of styles which can be applied
to each layer, and styles may be shared between layers as
appropriate. For this example, though, we are keeping the
map definition as simple as possible.

Now that we have set up our styles, we can start to define our map's layers.
Before we do this, though, we need to set up our data source:

datasource = mapnik.Shapefile(file="TM_WORLD_BORDERS-0.3/" +
 "TM_WORLD_BORDERS-0.3.shp")

We can then define the two layers used by our map:

polygonLayer = mapnik.Layer("Polygons")
polygonLayer.datasource = datasource
polygonLayer.styles.append("PolygonStyle")

labelLayer = mapnik.Layer("Labels")
labelLayer.datasource = datasource
labelLayer.styles.append("LabelStyle")

Note that we refer to styles by name, rather than inserting the
style directly. This allows us to re-use styles, or to define styles
in an XML definition file and then refer to them within our
Python code. We'll add the styles definitions to our map shortly.

We can now finally create our Map object. A Mapnik Map object has a size and
projection, a background color, a list of styles, and a list of the layers that make
up the map:

map = mapnik.Map(MAP_WIDTH, MAP_HEIGHT,
 "+proj=longlat +datum=WGS84")
map.background = mapnik.Color("#8080a0")

map.append_style("PolygonStyle", polygonStyle)
map.append_style("LabelStyle", labelStyle)

map.layers.append(polygonLayer)
map.layers.append(labelLayer)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[295]

The last thing we have to do is tell Mapnik to zoom in on the desired area of the
world, and then render the map into an image file:

map.zoom_to_box(mapnik.Box2d(MIN_LONG, MIN_LAT,
 MAX_LONG, MAX_LAT))
mapnik.render_to_file(map, "map.png")

If you run this program and open the map.png file, you will see the map you
have generated:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[296]

Obviously there's a lot more that you can do with Mapnik, but this example covers
the main points and should be enough to let you started for generating your own
maps. Make sure that you play with this example to become familiar with the way
Mapnik works. Here are some things you might like to try:

•	 Adjust the MIN_LAT, MIN_LONG, MAX_LAT, and MAX_LONG constants at the
start of the program to zoom in on the country where you reside

•	 Change the size of the generated image
•	 Alter the map's colors
•	 Add extra rules to display the country name in different font sizes and colors

based on the country's population

Hint
To do this, you'll need to define filters that look like this:
mapnik.Filter("[POP2005] > 1000000 and [POP2005] <= 2000000")

Mapnik in depth
In this section, we will examine the Python interface of the Mapnik toolkit in much
more detail. The Python documentation for Mapnik (http://media.mapnik.org/
api_docs/python) is confusing and incomplete, so you may find this section to be
a useful reference guide while writing your own Mapnik-based programs.

The Mapnik toolkit is written in C++, and provides bindings to let
you access it via Python. Not every feature implemented in Mapnik
is available from Python; only those features that are available and
relevant to the Python developer will be discussed here.

Data sources
Before you can access a given set of geospatial data within a map, you need to set
up a Mapnik Datasource object. This acts as a "bridge" between Mapnik and your
geospatial data:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[297]

Geospatial Data

Datasource

Mapnik

You typically create the data source using one of the convenience constructors
described here. Then you add that data source to any Mapnik Layer objects,
which will use that data:

layer.datasource = datasource

A single Datasource object can be shared by multiple layers, or it can be used by
just one layer.

There are many different types of data sources supported by Mapnik, some of
which are experimental or access data in commercial databases. Let's take a closer
look at the types of data sources you are likely to find useful.

Shapefile
It is easy to use a shapefile as a Mapnik data source. All you need to do is supply
the name and directory path for the desired shapefile to the mapnik.Shapefile()
convenience constructor:

import mapnik
...
datasource = mapnik.Shapefile(file="shapefile.shp")

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[298]

If the shapefile is in a different directory, you can use os.path.join() to define
the full path. For example, you can open a shapefile in a directory relative to your
Python program like this:

datasource = mapnik.Shapefile(file=os.path.join("..", "data",
 "shapes.shp"))

When you open a shapefile data source, the shapefile's attributes can be used within
a filter expression, and as fields to be displayed by a TextSymbolizer. By default, all
text within the shapefile will be assumed to be in UTF-8 character encoding; if you
need to use a different character encoding, you can use the encoding parameter,
as follows:

datasource = mapnik.Shapefile(file="shapefile.shp",
 encoding="latin1")

PostGIS
This data source allows you to use data from a PostGIS database on your map.
The basic usage of the PostGIS data source is like this:

import mapnik
...
datasource = mapnik.PostGIS(user="..." password="...",
 dbname="...", table="...")

You simply pass in the username and password used to access the PostGIS
database, the name of the database, and the name of the table that contains the
spatial data you want to include on your map. As with the shapefiles, the fields in
the database table can be used inside a filter expression, and fields to be displayed
using a TextSymbolizer.

There are some performance issues to be aware of when retrieving data from a
PostGIS database. Imagine that we're accessing a large database table, and use
the following to generate our map's layer:

datasource = mapnik.PostGIS(user="...", password="...",
 dbname="...", table="myBigTable")

layer = mapnik.Layer("myLayer")
layer.datasource = datasource
layer.styles.append("myLayerStyle")

symbol = mapnik.PolygonSymbolizer(mapnik.Color("#406080"))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[299]

rule = mapnik.Rule()
rule.filter = mapnik.Filter("[level] = 1")
rule.symbols.append(symbol)

style = mapnik.Style()
style.rules.append(rule)

map.append_style("myLayerStyle", style)

Note how the data source refers to the myBigTable table within the PostGIS
database, and we use a filter expression ([level] = 1) to select the particular
records within that database table to be displayed using our PolygonSymbolizer.

When rendering this map layer, Mapnik will scan through every record in
the table, apply the filter expression to each record in turn, and then use the
PolygonSymbolizer to draw the record's polygon if and only if the record matches
the filter expression. This is fine if there aren't many records in the table, or if most
of the records will match the filter expression. But imagine that the myBigTable table
contains a million records, with only 10,000 records having a level value of 1. In this
case, Mapnik will scan through the entire table and discard 99 percent of the records.
Only the remaining 1 percent will actually be drawn.

As you can imagine, this is extremely inefficient. Mapnik will waste a lot of time
filtering the records in the database when PostGIS itself is much better suited to the
task. In situations like this, you can make use of a subselect query so that the database
itself will do the filtering before the data is received by Mapnik. We actually used a
subselect query in the previous chapter, where we retrieved tiled shoreline data from
our PostGIS database, though we didn't explain how it worked in any depth.

To use a subselect query, you replace the table name with an SQL select statement
that does the filtering and returns the fields needed by Mapnik to generate the map's
layer. Here is an updated version of the preceding example that uses a subselect query:

query = "(select geom from myBigTable where level=1) as data"
datasource = mapnik.PostGIS(user="...", password="...",
 dbname="...", table=query)

layer = mapnik.Layer("myLayer")
layer.datasource = datasource
layer.styles.append("myLayerStyle")

symbol = mapnik.PolygonSymbolizer(mapnik.Color("#406080"))

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[300]

rule = mapnik.Rule()
rule.symbols.append(symbol)

style = mapnik.Style()
style.rules.append(rule)

map.append_style("myLayerStyle", style)

We've replaced the table name with a PostGIS subselect statement that filters out
all records with a level value not equal to 1 and returns just the geom field for the
matching records back to Mapnik. We've also removed the rule.filter = line in
our code, as the data source will only ever return records that already match the
filter expression.

Note that the subselect statement ends with ...as data. We have
to give the results of the subselect statement a name, even though
that name is ignored. In this case, we've called the results data,
though you can use any name you like.

If you use a subselect, it is important that you include all the fields used by your filter
expressions and symbolizers. If you don't include a field in the subselect statement,
it won't be available for Mapnik to use.

Gdal
The Gdal data source allows you to include any GDAL-compatible raster image data
file within your map. The Gdal data source is straightforward to use:

datasource = mapnik.Gdal(file="myRasterImage.tiff")

Once you have a Gdal data source, you need to use a RasterSymbolizer to draw it
onto the map:

layer = mapnik.Layer("myLayer")
layer.datasource = datasource
layer.styles.append("myLayerStyle")

symbol = mapnik.RasterSymbolizer()

rule = mapnik.Rule()
rule.symbols.append(symbol)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[301]

style = mapnik.Style()
style.rules.append(rule)

map.append_style("myLayerStyle", style)

Mapnik provides another way of reading TIFF-format raster
images, using the Raster data source. In general, using the Gdal
data source is more flexible and easier than using Raster.

Ogr
The Ogr data source lets you display any OGR-compatible vector data on your
map. The convenience constructor for an Ogr data source requires at least two
named parameters:

datasource = mapnik.Ogr(file="...", layer="...")

The file parameter is the name of an OGR-compatible data file, while layer is
the name of the desired layer within that data file. You could use this, for example,
to read a shapefile via the OGR driver:

datasource = mapnik.Ogr(file="shapefile.shp",
 layer="shapefile")

More usefully, you can use this to load data from any vector-format data file
supported by OGR. The various supported formats are listed on the following
web page:

http://www.gdal.org/ogr/ogr_formats.html

The Virtual Datasource (VRT) format is of particular interest to us. The VRT format
is an XML-formatted file that allows you to set up an OGR data source, which isn't
stored in a simple file on disk. We saw in the previous chapter how this can be used
to display data from a MySQL database on a map, despite the fact that Mapnik itself
does not implement a MySQL data source.

The VRT file format is relatively complex, though it is explained fully on the OGR
website. Here is an example of how you can use a VRT file to set up a MySQL virtual
data source:

<OGRVRTDataSource>
 <OGRVRTLayer name="myLayer">
 <SrcDataSource>MYSQL:mydb,user=user,password=pass,
 tables=myTable</SrcDataSource>

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[302]

 <SrcSQL>
 SELECT name,geom FROM myTable
 </SrcSQL>
 </OGRVRTLayer>
</OGRVRTDataSource>

The <SrcDataSource> element contains a string that sets up the OGR MySQL data
source. This string is of the following format:

MySQL:«dbName»,user=«username»,password=«pass»,tables=«tables»

You need to replace «dbName» with the name of your database, «username» and
«pass» with the username and password used to access your MySQL database,
and «tables» with a list of the database tables you want to retrieve your data from.
If you are retrieving data from multiple tables, you need to separate the table names
with a semicolon like this:

tables=lakes;rivers;coastlines

Note that all the text between <SrcDataSource> and </SrcDataSource> must be on
a single line.

The text inside the <SrcSQL> element should be a MySQL select statement that
retrieves the desired information from the database table(s). As with the PostGIS
data source, you can use this to filter out unwanted records before they are passed
to Mapnik, which will significantly improve performance.

The VRT file should be saved to disk. For example, the preceding virtual file
definition might be saved to a file named myLayer.vrt. You would then use
this file to define your Ogr data source like this:

datasource = mapnik.Ogr(file="myLayer.vrt", layer="myLayer")

SQLite
The SQLite data source allows you to include data from an SQLite (or SpatiaLite)
database on a map. The mapnik.SQLite() convenience constructor accepts a
number of keyword parameters; the ones most likely to be useful are:

•	 file="..."

The name and optional path to the SQLite database file.

•	 table="..."

The name of the desired table within this database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[303]

•	 geometry_field="..."

The name of a field within this table that holds the geometry to be displayed.

•	 key_field="..."

The name of the primary key field within the table.

For example, to access a table named countries in a SpatiaLite database named
mapData.db, you might use the following:

datasource = mapnik.SQLite(file="mapData.db",
 table="countries",
 geometry_field="outline",
 key_field="id")

All of the fields within the countries table will be available for use in Mapnik
filters and for display using a TextSymbolizer. The various symbolizers will use
the geometry stored in the outline field for drawing lines, polygons, and so on.

OSM
The OSM data source allows you to include OpenStreetMap data onto a map.
The OpenStreetMap data is stored in .osm format, which is an XML format
containing the underlying nodes, ways and relations used by OpenStreetMap.
The OpenStreetMap data format, and options for downloading .osm files,
can be found at:

http://wiki.openstreetmap.org/wiki/.osm

If you have downloaded a .osm file and want to access it locally, you can set up
your data source like this:

datasource = mapnik.OSM(file="myData.osm")

If you wish to use an OpenStreetMap API call to retrieve the OSM data on the fly,
you can do this by supplying a URL to read the data from, along with a bounding
box to identify which set of data you want to download. For example:

osmURL = "http://api.openstreetmap.org/api/0.6/map"
bounds = "176.193,-38.172,176.276,-38.108"
datasource = mapnik.OSM(url=osmURL, bbox=bounds)

The bounding box is a string containing the left, bottom, right, and top coordinates
for the desired bounding box, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[304]

MemoryDatasource
The MemoryDatasource allows you to manually define the geospatial data, which
appears on the map. To use a MemoryDatasource, you first create a mapnik.Context
object that defines the attributes you want to associate with each feature:

context = mapnik.Context()
context.push("NAME")
context.push("ELEVATION")

You then create a mapnik.Feature object for each of the features you want to
include on the map, like this:

feature = mapnik.Feature(context, id)

In the preceding feature, id is a unique integer ID value for this feature.

Once the feature has been created, you can define the feature's attributes as if it was
a Python dictionary:

feature['NAME'] = "Hawkins Hill"
feature['ELEVATION'] = 1624

These attributes can be used by rules to select which features to display, and they
can also be used by a TextSymbolizer to draw an attribute's value onto the map.

Each feature can have one or more geometries associated with it. The easiest way
to set the feature's geometry is to use the add_geometries_from_wkt() method,
like this:

feature.add_geometries_from_wkt("POINT (174.73 -41.33)")

Finally, you can add the feature to the MemoryDatasource using the
add_feature() method:

datasource = mapnik.MemoryDatasource()
datasource.add_feature(feature)

Rules, filters, and styles
As we saw earlier in this chapter, Mapnik uses rules to specify which particular
symbolizers will be used to render a given feature. Rules are grouped together
into a style, and the various styles are added to your map and then referred to by
name when you set up your layer. In this section, we will examine the relationship
between rules, filters and styles, and see just what can be done with these various
Mapnik classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[305]

Let's take a closer look at Mapnik's Rule class. A Mapnik rule has two parts: a set
of conditions, and a list of symbolizers. If the rule's conditions are met, then the
symbolizers will be used to draw the matching features onto the map.

There are four types of conditions supported by a rule:

•	 A mapnik filter can be used to specify an expression that must be met by
the feature if it is to be drawn.

•	 The rule itself can specify minimum and maximum scale denominators
which must apply. This can be used to set up rules that are only used if
the map is drawn at a given scale.

•	 The rule can have an else condition, which means that the rule will only
be applied if no other rule in the style has had its conditions met.

•	 The rule can have an also condition, which means that the rule will only
be applied if at least one other rule in the style has had its conditions met.

If all the conditions for a rule are met, then the associated list of symbolizers will
be used to render the feature onto the map.

Let's take a look at these conditions in more detail.

Filters
Mapnik's Filter() constructor takes a single parameter, a string defining an
expression which the feature must match if the rule is to apply. You then store
the returned Filter object into the rule's filter attribute:

rule.filter = mapnik.Filter("...")

Let's consider a very simple filter expression, comparing a field or attribute against
a specific value:

filter = mapnik.Filter("[level] = 1")

String values can be compared by putting single quote marks around the value,
like this:

filter = mapnik.Filter("[type] = 'CITY'")

Note that the field name and value are both case-sensitive, and that you must
surround the field or attribute name with square brackets.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[306]

Of course, simply comparing a field with a value is the most basic type of comparison
you can do. Filter expressions have their own powerful and flexible syntax for defining
conditions, similar in concept to an SQL where expression. The following syntax
diagram describes all the options for writing filter expression strings:

field-name

field-name)

value

true

false

.match string-constant(][

)(
][=

!=

<

>

<=

>=

not filter-expression

and/or

min

max

sqrt

sin

cos

field-name

value

(

(

(

(

(

value

value

value

value

value

)

)

)

,

,

value

value)

)

)value(

[]

*

/

+

-

%

constant

Filter expression:

Value:

Mapnik also allows you to filter on the type of geometry, using a special syntax:

filter = mapnik.Filter("[mapnik::geometry_type] = point")

The following geometry types are supported by this filter expression:

•	 point

•	 linestring

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[307]

•	 polygon

•	 collection

Scale denominators
Consider the following two maps:

Obviously, there's no point in drawing streets onto a map of the entire world.
Similarly, the country outlines shown on the world map are at too large a scale to
draw detailed coastlines for an individual city. But if your application allows the
user to zoom in from the world map right down to an individual street, you will
need to use a single set of Mapnik styles to generate the map regardless of the
scale at which you are drawing it.

Mapnik allows you to do this by selectively displaying features based on the map's
scale denominator. If you had a map printed on paper at 1:100,000 scale, then
the scale denominator would be the number after the colon (100,000 in this case).
Drawing maps digitally makes this a bit more complicated, but the idea remains
the same.

A Mapnik rule can have a minimum and maximum scale denominator value
associated with it:

rule.min_scale = 10000
rule.max_scale = 100000

If the minimum and maximum scale denominators are set, then the rule will only
apply if the map's scale denominator is within this range.

You can also apply minimum and maximum scale factors to an entire layer:

layer.minzoom = 1.0/100000
layer.maxzoom = 1.0/200000

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[308]

Note that rules use scale denominators while layers use scale factors.
This can be rather confusing, as the relationship between the two is
not straightforward. For more information on scale factors and scale
denominators, please refer to http://trac.mapnik.org/wiki/
ScaleAndPpi.

The whole layer will only be displayed when the map's current scale factor is within
this range. This is useful if you have a data source that should only be used when
displaying the map at a certain scale—for example, only using high-resolution
shoreline data when the user has zoomed in.

Scale denominators can be used intuitively, for example a scale denominator
value of 200,000 represents a map drawn at roughly 1:200,000 scale. But this is
only an approximation; the actual calculation of a scale denominator has to take
into account two important factors:

•	 Because Mapnik renders a map as a bitmapped image, the size of the
individual pixels within the image comes into play. Since bitmapped images
can be displayed on a variety of different computer screens with different
pixel sizes, Mapnik uses a "standardized rendering pixel size" as defined by
the Open Geospatial Consortium to define how big a pixel is going to be.
This value is 0.28 mm, and is approximately the size of a pixel on modern
video displays.

•	 The map projection being used can have a huge effect on the calculated scale
denominator. Map projections always distort true distances, and a projection
which is accurate at the equator may be wildly inaccurate closer to the poles.

Depending on the projection being used, the formula Mapnik uses to calculate
the scale denominator can get rather complicated. Rather than worrying about
the formulas, it is much easier just to ask Mapnik to calculate the scale denominator
and scale factor for us:

map = mapnik.Map(width, height, projection)
map.zoom_to_box(bounds)
print map.scale_denominator(), map.scale()

You can then zoom the map to your desired scale and see what the scale factor and
denominator are, which you can then plug into your styles to choose which features
should be displayed at a given scale denominator range.

Be careful if you are working with multiple projections. A scale
denominator that works for one projection may need to be adjusted
if you switch projections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[309]

"Else" rules
Imagine that you want to draw some features in one color, and all other features in
a different color. One way to achieve this is by using Mapnik rules, like this:

rule1.filter = mapnik.Filter("[level] = 1")
...
rule2.filter = mapnik.Filter("[level] != 1")

This is fine for simple filter expressions, but when the expressions get more
complicated it is a lot easier to use an "else" rule, like this:

rule1.filter = mapnik.Filter("[level] = 1")
...
rule2.set_else(True)

If you call set_else(True) for a rule, then this rule is to be used if and only if no
previous rule in the same style has had its filter conditions met.

Else rules are particularly useful if you have a number of filter conditions and
want to have a "catch-all" rule at the end, which will apply if no other rule has
been used to draw the feature. For example:

rule1.filter = mapnik.Filter("[type] = 'city'")
rule2.filter = mapnik.Filter("[type] = 'town'")
rule3.filter = mapnik.Filter("[type] = 'village'")
rule4.filter.set_else(True)

"Also" rules
Imagine that you've defined a series of rules to draw country polygons in different
colors depending on the UN region code:

rule1 = mapnik.Rule()
rule1.filter = mapnik.Filter("[region] = '002") # Africa.
rule1.symbols.append(mapnik.PolygonSymbolizer(color1))

rule2 = mapnik.Rule()
rule2.filter = mapnik.Filter("[region] = '019'") # Americas.
rule1.symbols.append(mapnik.PolygonSymbolizer(color2))

rule3 = mapnik.Rule()
rule3.filter = mapnik.Filter("[region] = '142'") # Asia.
rule3.symbols.append(mapnik.PolygonSymbolizer(color3))

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[310]

rule4 = mapnik.Rule()
rule4.filter = mapnik.Filter("[region] = '150'") # Europe.
rule4.symbols.append(mapnik.PolygonSymbolizer(color3))

rule5 = mapnik.Rule()
rule5.filter = mapnik.Filter("[region] = '009'") # Oceania.
rule5.symbols.append(mapnik.PolygonSymbolizer(color3))

Having filled these polygons, you now want to draw a black line around the polygon
boundary. There are two ways you could do this: you could add a LineSymbolizer to
each of your five rules, or you could use an also rule.

An also rule is basically the opposite of the else rule: the also rule only applies if at
least one other rule applies to the feature.

Here is how you could use an also rule to draw a border around all the filled polygons:

rule6 = mapnik.Rule()
rule6.set_also(True)
rule6.symbols.append(mapnik.LineSymbolizer(color6, 0.1))

This rule would apply if any of the other rules applied to the feature—that is, it
would draw a border around any polygon that gets filled in. But if any feature is
in a region not covered by the other rules, no border will be drawn.

Symbolizers
Symbolizers are used to draw features onto a map. In this section, we will look
at how you can use various types of symbolizers to draw lines, polygons, labels,
points, and images.

Drawing lines
There are two Mapnik symbolizers that can be used to draw lines onto a map:
LineSymbolizer and LinePatternSymbolizer. Let's looks at each of these in turn.

LineSymbolizer
The LineSymbolizer draws linear features and traces around the outline of
polygons, as shown in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[311]

The LineSymbolizer is one of the most useful of the Mapnik symbolizers. Here is
the Python code that created the LineSymbolizer used to draw the dashed line in
the preceding example:

stroke = mapnik.Stroke()
stroke.color = mapnik.Color("#008000")
stroke.width = 1.0
stroke.add_dash(5, 10)
symbolizer = mapnik.LineSymbolizer(stroke)

As you can see, the LineSymbolizer uses a Mapnik Stroke object to define how the
line will be drawn. To use a LineSymbolizer, you first create the Stroke object and
set the various options for how you want the line to be drawn. You then create your
LineSymbolizer, passing the stroke object to the LineSymbolizer's constructor:

symbolizer = mapnik.LineSymbolizer(stroke)

Let's take a closer look at the various line-drawing options provided by the
Stroke object.

Line color
By default, lines are drawn in black. You can change this by setting the stroke's
color attribute to a Mapnik Color object:

stroke.color = mapnik.Color("red")

For more information about the Mapnik Color object, and the various ways in which
you can specify a color, please refer to the Using Colors section later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[312]

Line width
The line drawn by a LineSymbolizer will be one pixel wide by default. To change
this, set the stroke's width attribute to the desired width, in pixels:

stroke.width = 1.5

Note that you can use fractional line widths for fine-grained control of your
line widths.

Opacity
You can change how opaque or transparent the line is by setting the stroke's
opacity attribute:

stroke.opacity = 0.8

The opacity can range from 0.0 (completely transparent) to 1.0 (completely opaque).
If the opacity is not specified, the line will be completely opaque.

Line caps
The line cap specifies how the ends of the line should be drawn. Mapnik supports
three standard line cap settings:

By default, the lines will use BUTT_CAP style, but you can change this by setting the
stroke's line_cap attribute, like this:

stroke1.line_cap = mapnik.line_cap.BUTT_CAP
stroke2.line_cap = mapnik.line_cap.ROUND_CAP
stroke3.line_cap = mapnik.line_cap.SQUARE_CAP

Line joins
When a line changes direction, the "corner" of the line can be drawn in one of three
standard ways:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[313]

The default behavior is to use MITER_JOIN, but you can change this by setting the
stroke's line_join attribute to a different value:

stroke1.line_join = mapnik.line_join.MITER_JOIN
stroke2.line_join = mapnik.line_join.ROUND_JOIN
stroke3.line_join = mapnik.line_join.BEVEL_JOIN

Dashed and dotted lines
You can add "breaks" to a line to make it appear dashed or dotted. To do this, you
add one or more dash segments to the stroke. Each dash segment defines a dash
length and a gap length; the line will be drawn for the given dash length, and will
then leave a gap of the specified length before continuing to draw the line:

You add a dash segment to a line by calling the stroke's add_dash() method, like this:

stroke.add_dash(5, 7)

This will give the line a five pixel dash followed by a seven pixel gap.

You aren't limited to just having a single dash segment; if you call add_dash()
multiple times, you will create a line with more than one segments. These dash
segments will be processed in turn, allowing you to create varying patterns of
dashes and dots. For example:

stroke.add_dash(10, 2)
stroke.add_dash(2, 2)
stroke.add_dash(2, 2)

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[314]

The preceding code would result in the following repeating line pattern:

You can control where the dashed line starts by using the dashoffset attribute.
For example, if you added the following to the preceding Stroke:

stroke.dashoffset = -5

Your line would now look like this:

As you can see, a negative dash offset shifts the line pattern to the left, while a
positive offset shifts the pattern to the right.

Drawing roads and other complex linear features
One thing that may not be immediately obvious is that you can draw a road onto a
map by overlying two LineSymbolizers; the first LineSymbolizer draws the edges of
the road, while the second LineSymbolizer draws the road's interior. For example:

stroke = mapnik.Stroke()
stroke.color = mapnik.Color("#bf7a3a")
stroke.width = 7.0
roadEdgeSymbolizer = mapnik.LineSymbolizer(stroke)

stroke = mapnik.Stroke()
stroke.color = mapnik.Color("#ffd3a9")
stroke.width = 6.0
roadInteriorSymbolizer = mapnik.LineSymbolizer(stroke)

This technique is commonly used for drawing street maps. The two symbolizers
defined above would then be overlaid to produce a road like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[315]

This technique can be used for more than just drawing roads; the creative use
of symbolizers is one of the main "tricks" to achieving complex visual effects
using Mapnik.

LinePatternSymbolizer
The LinePatternSymbolizer is used in situations where you want to draw a line that
can't be rendered using a simple Stroke object. The LinePatternSymbolizer accepts an
image file and draws that image repeatedly along the length of the line or around the
outline of a polygon. For example, using the following image file:

A LinePatternSymbolizer would draw lines and polygons in the following way:

Note that linear features and polygon boundaries have a direction—that is, the line
or polygon border moves from one point to the next, in the order in which the points
were defined when the geometry was created. For example, the points that make up
the line segment in the preceding example were defined from left to right—that is,
the leftmost point is defined first, then the center point, and then the rightmost point.

The direction of a feature is important as it affects the way the LinePatternSymbolizer
draws the image. If the preceding linestring was defined in the opposite direction,
the LinePatternSymbolizer would draw it like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[316]

As you can see, the LinePatternSymbolizer draws the image oriented towards the
left of the line, as it moves from one point to the next. To draw the image oriented
towards the right, you will have to reverse the order of the points within your feature.

To use a LinePatternSymbolizer within your Python code, you create a mapnik.
PathExpression object that refers to the image file you want to use. You then pass
this object to the LinePatternSymbolizer initializer, like this:

path = mapnik.PathExpression("path/to/image.png")
symbolizer = mapnik.LinePatternSymbolizer(path)

Drawing polygons
Just as there are two symbolizers to draw lines, there are two symbolizers to draw
the interior of a polygon: the PolygonSymbolizer and the PolygonPatternSymbolizer.
Let's take a closer look at each of these two symbolizers.

PolygonSymbolizer
A PolygonSymbolizer fills the interior of a polygon with a single color:

You create a PolygonSymbolizer like this:

symbolizer = mapnik.PolygonSymbolizer()

Let's take a closer look at the various options for controlling how the polygon will
be drawn.

Fill color
By default, a PolygonSymbolizer will draw the interior of the polygon in grey. To
change the color used to fill the polygon, set the PolygonSymbolizer's fill attribute
to the desired mapnik Color object:

symbolizer.fill = mapnik.Color("red")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[317]

For more information about creating Mapnik Color objects, please refer to the Using
Colors section later in this chapter.

Opacity
By default, the polygon will be completely opaque. You can change this by setting
the PolygonSymbolizer's opacity attribute, like this:

symbolizer.fill_opacity = 0.5

The opacity can range from 0.0 (completely transparent) to 1.0 (completely opaque).
In the preceding illustration, the left polygon had an opacity of 0.5.

Gamma correction
Gamma correction is an obscure concept, but can be very useful at times. If you
draw two polygons that touch with exactly the same fill color, you will still see
a line between the two:

This is because of the way Mapnik anti-aliases the edges of the polygons. If you want
these lines between adjacent polygons to disappear, you can add a gamma correction
factor, like this:

symbolizer.gamma = 0.63

This results in the two polygons appearing as one:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[318]

It may take some experimenting, but using a gamma value of around 0.5 to 0.7 will
generally remove the ghost lines between adjacent polygons. The default value of 1.0
will mean that no gamma correction will be performed at all.

PolygonPatternSymbolizer
The PolygonPatternSymbolizer fills the interior of a polygon using a supplied image
file, like this:

The image will be tiled—that is, drawn repeatedly to fill in the entire interior of
the polygon:

Because the right side of one tile will appear next to the left side of the adjacent tile,
and the bottom of the tile will appear immediately above the top of the tile below it
(and vice versa), you need to choose an appropriate image that will look good when
it is drawn in this way.

Using the PolygonPatternSymbolizer is easy; as with the LinePatternSymbolizer
you create a new instance and give it a reference to the image file in a mapnik.
PathExpression object:

path = mapnik.PathExpression("path/to/image.png")
symbolizer = mapnik.PolygonPatternSymbolizer(path)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[319]

Drawing labels
Textual labels are an important part of any map. In this section, we will explore the
TextSymbolizer, which draws text onto a map.

The ShieldSymbolizer also allows you to draw labels, combining
text with an image. We will look at the ShieldSymbolizer in the
section on drawing points.

TextSymbolizer
The TextSymbolizer allows you to draw text onto point, line and polygon features:

The basic usage of a TextSymbolizer is quite simple. For example, the polygon in the
preceding illustration was labeled using the following code:

symbolizer = mapnik.TextSymbolizer(
 mapnik.Expression("[label]"),
 "DejaVu Sans Book", 10,
 mapnik.Color("black"))

This symbolizer will display the value of the feature's label field using the given
font, font size and color. Whenever you create a TextSymbolizer object, you must
provide these four parameters.

Let's take a closer look at these parameters, as well as the other options you have
for controlling how the text will be displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[320]

Specifying the text to be displayed
You select the text to be displayed by passing a mapnik.Expression object as the
first parameter to the TextSymbolizer's constructor. When creating an Expression,
you specify the name of the field or attribute that you want to display. Note that
the text to be displayed will always be taken from the underlying data; there is no
option for hardwiring a label's text.

For many data sources the name is case-sensitive, so it is best to
ensure that you type in the name of the field or attribute exactly.
NAME is not the same as name.

Selecting a suitable font
The label will be drawn using a font and font size you specify when you create the
TextSymbolizer object. You have two options for selecting a font: you can use one
of the built-in fonts supplied by Mapnik, or you can install your own custom font.

To find out what fonts are available, run the following program:

import mapnik
for font in mapnik.FontEngine.face_names():
 print font

You can find out more about the process involved in installing a custom font on the
following web page:

http://trac.mapnik.org/wiki/UsingCustomFonts

Note that the font is specified by name, and that the font size is in points.

Drawing semi-transparent text
You can control how opaque or transparent the text is by setting the opacity
attribute, like this:

symbolizer.opacity = 0.5

The opacity ranges from 0.0 (completely transparent) to 1.0 (completely opaque).

Controlling text placement
There are two ways in which the TextSymbolizer places text onto the feature being
labeled. Using point placement (the default), Mapnik would draw labels on the
three features shown earlier in the following way:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[321]

As you can see, the labels are drawn at the center of each feature, and the labels are
drawn horizontally with no regard to the orientation of the line. The other option for
placing text onto the feature is to use line placement. Labeling the preceding features
using line placement would result in the following:

Note that the polygon's label is now drawn along the boundary of the polygon, and
the labels now follow the orientation of the line. The point feature isn't labeled at all,
since the point feature has no lines within it.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[322]

You control the placement of the text by setting the symbolizer's label_placement
attribute, like this:

sym1.label_placement = mapnik.label_placement.POINT_PLACEMENT
sym2.label_placement = mapnik.label_placement.LINE_PLACEMENT

Repeating labels
When labels are placed using LINE_PLACEMENT, Mapnik will by default draw the
label once, in the middle of the line. In many cases, however, it makes sense to have
the label repeated along the length of the line. To do this, you set the symbolizer's
label_spacing attribute, like this:

symbolizer.label_spacing = 30

Setting this attribute causes the labels to be repeated along the line or polygon
boundary. The value is the amount of space between each repeated label, in pixels.
Using the preceding label spacing, our line and polygon features would be displayed
in the following way:

There are several other attributes that can be used to fine-tune the way repeated
labels are displayed:

•	 symbolizer.force_odd_labels = True

This tells the TextSymbolizer to always draw an odd number of labels.
This can make the labels look better in some situations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[323]

•	 symbolizer.maximum_angle_char_delta = 45

This sets the maximum change in angle (measured in degrees) from one
character to the next. Using this can prevent Mapnik from drawing labels
around sharp corners. For example:

•	 symbolizer.minimum_distance = 40

The minimum distance between repeated labels, in pixels.

•	 symbolizer.label_position_tolerance = 20

This sets the maximum distance a label can move along the line to avoid
other labels and sharp corners. The value is in pixels, and defaults to
minimum_distance divided by 2.

Controlling text overlap
By default, Mapnik ensures that two labels will never intersect. If possible, it will
move the labels to avoid an overlap. If you look closely at the labels drawn around
the boundary of the following two polygons, you will see that the position of the
second polygon's labels has been adjusted to avoid an overlap:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[324]

If Mapnik decides that it can't move the label without completely misrepresenting
the position of the label, then it will hide the label completely. You can see this in
the following illustration, where the two polygons are moved so they overlap:

The allow_overlap attribute allows you to change this behavior:

symbolizer.allow_overlap = True

Instead of hiding the overlapping labels, Mapnik will simply draw them one on top
of the other:

Drawing text on a dark background
The TextSymbolizer will normally draw the text directly onto the map. This works well
when the text is placed over a lightly-colored area of the map, but if the underlying
area is dark the text can be hard to read or even invisible:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[325]

Of course, you could choose a light text color, but that requires you to know in
advance what the background is likely to be. A better solution is to draw a "halo"
around the text, like this:

The halo_fill and halo_radius attributes allow you to define the color and size
of the halo to draw around the text, like this:

symbolizer.halo_fill = mapnik.Color("white")
symbolizer.halo_radius = 1

The radius is specified in pixels; generally a small value such as 1 or 2 is enough
to ensure that the text is readable against a dark background.

Adjusting the position of the text
By default, Mapnik calculates the point at which the text should be displayed,
and then displays the text centered over that point, like this:

You can adjust this positioning in two ways: by changing the vertical alignment,
and by specifying a text displacement.

The vertical alignment can be controlled by changing the TextSymbolizer's
vertical_alignment attribute. There are three vertical alignment values
you can use:

sym1.vertical_alignment = mapnik.vertical_alignment.TOP
sym2.vertical_alignment = mapnik.vertical_alignment.MIDDLE
sym3.vertical_alignment = mapnik.vertical_alignment.BOTTOM

mapnik.vertical_alignment.MIDDLE is the default, and places the label centered
vertically over the point as shown earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[326]

If you change the vertical alignment to mapnik.vertical_alignment.TOP, the label
will be drawn above the point, like this:

Conversely, if you change the vertical alignment to mapnik.vertical_alignment.
BOTTOM, the label will be drawn below the point:

Your other option for adjusting text positioning is to use the displacement attribute
to displace the text by a given number of pixels. For example:

symbolizer.displacement = (5, 10)

This will shift the label five pixels to the right and ten pixels down from its normal
position:

Beware
Changing the vertical displacement of a label will also change the label's
default vertical_alignment value. This can result in your label being
moved in unexpected ways, because the vertical alignment of the label is
changed as a side-effect of setting the vertical displacement. To avoid this,
you should always set the vertical_alignment attribute explicitly
whenever you change the vertical displacement.

Splitting labels across multiple lines
Sometimes a label is too long to be displayed in the way that you might like:

In this case, you can use the wrap_width attribute to force the label to wrap across
multiple lines. For example:

symbolizer.wrap_width = 70

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[327]

This will cause the preceding label to be displayed like this:

The value you specify is the maximum width of each line of text, in pixels.

Controlling character and line spacing
You can add extra space between each character in a label by setting the
character_spacing attribute, like this:

symbolizer.character_spacing = 3

This results in our polygon being labeled like this:

You can also change the spacing between the various lines using the
line_spacing attribute:

symbolizer.line_spacing = 8

Our polygon will then look like this:

Both the character spacing and the line spacing values are in pixels.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[328]

Controlling capitalization
There are times when you might want to change the case of the text being displayed.
You can do this by setting the text_transform attribute, like this:

symbolizer1.text_transform = mapnik.text_transform.uppercase
symbolizer2.text_transform = mapnik.text_transform.lowercase

These two settings will result in the labels being displayed as follows:

Advanced text placement and formatting
If the preceding labeling options aren't enough, you can make use of some amazing
new features in Mapnik 2.1 that give you almost infinite control over how your labels
are placed and formatted. The symbolizer.placements.defaults.format_tree
attribute lets you define your own formatting options. For example:

format1 = mapnik.FormattingText("[name]")
format1.format.face_name = "DejaVu Sans Book"
format1.format.size = 10

format2 = mapnik.FormattingText("[abbreviation]")
format2.format.face_name = "DejaVu Sans Book"
format2.format.size = 9

formats = mapnik.FormattingList([format1, format2])
textSymbolizer.placements.defaults.format_tree = formats

This code sets up two separate formatters, one displaying the name attribute in 10
point text, while the second displays the abbreviation attribute in 9 point text.
When the text symbolizer is set up to use a FormattingList object, each of the
formats will be tried in turn until a format is found that fits in the available space.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[329]

This has the effect of displaying the name attribute if there is room, but switching
to the abbreviation attribute (in a smaller text size) if the name won't fit. The end
result would look something like this:

Formatting lists are only one possible way in which the format tree can be used. You
can even create your own custom subclass of mapnik.FormattingNode and manually
calculate the label (and its associated formatting) as each feature is rendered.

To see how these advanced formatting options can be used from within Python, check
out the tests/visual_tests/test_python.py file in the Mapnik source code.

Drawing points
There are two ways of drawing a point using Mapnik: the PointSymbolizer allows
you to draw an image at a given point, and the ShieldSymbolizer combines an image
with a textual label to produce a "shield".

Let's examine how each of these two symbolizers work.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[330]

PointSymbolizer
A PointSymbolizer draws an image at the point. The default constructor takes no
arguments and displays each point as a 4 x 4 pixel black square:

symbolizer = PointSymbolizer()

Alternatively, you can supply a path to an image file which the PointSymbolizer will
use to draw each point:

path = mapnik.PathExpression("path/to/image.png")
symbolizer = PointSymbolizer(path)

Be aware that the PointSymbolizer draws the image centered over
the desired point. You may have to add transparent space around
the image so that the desired part of the image appears over the
desired point. For example, if you wish to draw a pin at an exact
position, you might need to format the image like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[331]

The extra (transparent) whitespace ensures that the point of the
pin is in the center of the image, allowing the image to be drawn
exactly at the desired position on the map.

Whether you supply an image or not, the PointSymbolizer has some attributes,
which you can use to modify its behavior:

•	 symbolizer.allow_overlap = True

If you set this attribute to True, all points will be drawn even if the images
overlap. The default (False) means that points will only be drawn if they
don't overlap.

•	 symbolizer.opacity = 0.75

This attribute controls the amount of opaqueness or transparency used to draw
the image. A value of 0.0 will draw the image completely transparent, while a
value of 1.0 (the default) will draw the image completely opaque.

•	 symbolizer.transform = "..."

An SVG transformation expression which you can use to manipulate the
image to be displayed. For example, transform="rotate(45) scale(0.5,
0.5)" will rotate the image clockwise by 45 degrees and then scale it to 50
percent of its original size.

ShieldSymbolizer
A ShieldSymbolizer draws a textual label and an associated image:

The ShieldSymbolizer works in exactly the same way as having a TextSymbolizer
and a PointSymbolizer rendering the same data. The only difference is that the
ShieldSymbolizer ensures that the text and image are always displayed together;
you'll never get the text without the image, or vice versa.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[332]

When you create a ShieldSymbolizer, you have to provide a number of parameters:

symbolizer = mapnik.ShieldSymbolizer(fieldExpression,
 font, fontSize, color,
 imagePath)

Following are the components of the preceding code:

•	 fieldExpression is a Mapnik Expression object specifying the field or
attribute to display as the textual label

•	 font is the name of the font to use when drawing the text
•	 fontSize of the size of the text, in points
•	 color is a Mapnik Color object that defines the color to use for drawing

the text
•	 imagePath is a Mapnik PathExpression object that holds the path to the

desired image file

Because ShieldSymbolizer is a subclass of TextSymbolizer, all the positioning
and formatting options available for a TextSymbolizer can also be applied to a
ShieldSymbolizer. And because it also draws an image, a ShieldSymbolizer also
has the allow_overlap and opacity attributes of a PointSymbolizer.

To set the opacity of the ShieldSymbolizer's text, use the
text_opacity attribute.

Be aware that you will most probably need to set the ShieldSymbolizer's
displacement attribute to position the text correctly, as by default the text
appears directly over the point, at the center of the image.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[333]

Drawing raster images
The GDAL and Raster data sources allow you to include raster images within
a map. The RasterSymbolizer takes this raster data and displays it within a
map layer, like this:

Creating a RasterSymbolizer is very simple:

symbolizer = mapnik.RasterSymbolizer()

A RasterSymbolizer draws the contents of the layer's raster-format data source onto
the map. The RasterSymbolizer supports the following options for controlling how
the raster data is displayed:

•	 symbolizer.opacity = 0.5

This controls how opaque the raster image will be. A value of 0.0 makes the
image fully transparent, and a value of 1.0 makes it fully opaque. By default,
the raster image will be completely opaque.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[334]

•	 symbolizer.comp_op = mapnik.CompositeOp.hard_light

This attribute tells the RasterSymbolizer how to merge the raster data
with the previously-rendered map data beneath it. These "compositing"
operations are similar to the way layers are merged in image editing
programs such as Photoshop or the GIMP. The following compositing
operations are supported:

•	 symbolizer.scaling = mapnik.scaling_method.bilinear

This allows you to control the algorithm used to scale the raster image
data. The available options are: near (uses the nearest-neighbor algorithm),
bilinear (uses bilinear interpolation across all four color channels), and
bilinear8 (uses bilinear interpolation for just a single color channel).

•	 symbolizer.colorizer = myRasterColorizer

This lets you apply a custom palette to the raw raster data, for example to
change the coloring of a DEM file. For information on how to set up a raster
colorizer in Python, see the documentation for the RasterColorizer class
on the Mapnik website.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[335]

Note that Mapnik does not support on-the-fly reprojection of raster
data. If you need to generate a map using a projection that is different
from the raster data's projection, you will need to reproject the raster
data before it can be displayed, for example by using gdalwarp.

One of the main uses for a RasterSymbolizer is to display a shaded relief background
such as the one shown earlier. This gives the viewer a good impression of the
underlying terrain.

The preceding image was created using a Digital Elevation Map
(DEM-format) data file taken from the National Elevation Dataset.
This file was processed using the gdaldem utility with the hillshade
option to create a shaded relief grayscale image. This image was then
displayed using a RasterSymbolizer set to hard_light mode, laid
on top of a pale green background with the coastline defined from the
GSHHS shoreline database. You may find this process useful if you
want to display a shaded relief image as a background for your map.

Using colors
Many of the Mapnik symbolizers require you to supply a color value. These color
values are defined using the mapnik.Color class. Instances of mapnik.Color can
be created in one of four ways:

•	 mapnik.Color(r, g, b, a)

Creates a Color object by supplying separate red, green, blue, and alpha
(opacity) values. Each of these values should be in the range 0 to 255.

•	 mapnik.Color(r, g, b)

Creates a Color object by supplying red, green, and blue components. Each
value should be in the range 0 to 255. The resulting object will be completely
opaque.

•	 mapnik.Color(colorName)

Creates a Color object by specifying a standard CSS color name. A complete
list of the available color names can be found at: http://www.w3.org/TR/
css3-color/#svg-color.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[336]

•	 mapnik.Color(colorCode)

Creates a Color object using an HTML color code, for example "#806040"
is medium brown.

Maps and layers
Once you have set up your data sources, symbolizers, rules and styles, you can
combine them into Mapnik layers and place the various layers together onto a map.
To do this, you first create a mapnik.Map object to represent the map as a whole:

map = mapnik.Map(width, height, srs)

You supply the width and height of the map image you want to generate, in pixels,
and an optional Proj.4-format initialization string in srs. If you do not specify
a spatial reference system, the map will use "+proj=latlong +datum=WGS84"
(unprojected lat/long coordinates on the WGS84 datum).

After creating the map, you set the map's background color, and add your various
styles to the map by calling the map.append_style() method:

map.background_color = mapnik.Color('white')

map.append_style("countryStyle", countryStyle)
map.append_style("roadStyle", roadStyle)
map.append_style("pointStyle", pointStyle)
map.append_style("rasterStyle", rasterStyle)
...

As well as specifying the background color to use for your
map, you can also use a background image by setting the
map's background_image attribute. Note that this currently
accepts a string value, rather than a Mapnik PathExpression,
though this may change in the future.

You next need to create the various layers within the map. To do this, you create
a mapnik.Layer object to represent each map layer:

layer = mapnik.Layer(layerName, srs)

Each layer is given a unique name, and can optionally have a spatial reference
associated with it. The srs string is a Proj.4 format initialization string; if no
spatial reference is given, the layer will use "+proj=latlong +datum=WGS84".

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[337]

Once you have created your map layer, you assign it a datasource and choose the
style(s) which will apply to that layer, identifying each style by name:

layer.datasource = myDatasource

layer.styles.append("countryStyle")
layer.styles.append("rasterStyle")
...

Finally, you add your new layer to the map:

map.layers.append(layer)

Let's take a closer look at some of the optional methods and attributes of the Mapnik
Map and Layer objects. These can be useful when manipulating map layers, and for
setting up rules and layers which are selectively applied based on the map's current
scale factor.

Map attributes and methods
The mapnik.Map class provides several additional methods and attributes which you
may find useful:

•	 map.envelope()

This method returns a mapnik.Box2d object representing the area of the map
that is to be displayed. The mapnik.Box2d object supports a number of useful
methods and attributes, but most importantly includes minx, miny, maxx, and
maxy attributes. These define the map's bounding box in map coordinates.

•	 map.aspect_fix_mode = mapnik.aspect_fix.GROW_CANVAS

This controls how Mapnik adjusts the map if the aspect ratio of the map's
bounds does not match the aspect ratio of the rendered map image. The
following values are supported:

°° GROW_BBOX expands the map's bounding box to match the aspect ratio
of the generated image. This is the default behavior.

°° GROW_CANVAS expands the generated image to match the aspect ratio
of the bounding box.

°° SHRINK_BBOX shrinks the map's bounding box to match the aspect
ratio of the generated image.

°° SHRINK_CANVAS shrinks the generated image to match the aspect
ratio of the map's bounding box.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[338]

°° ADJUST_BBOX_HEIGHT expands or shrinks the height of the map's
bounding box, while keeping the width constant, to match the
aspect ratio of the generated image.

°° ADJUST_BBOX_WIDTH expands or shrinks the width of the map's
bounding box, while keeping the height constant, to match the
aspect ratio of the generated image.

°° ADJUST_CANVAS_HEIGHT expands or shrinks the height of the
generated image, while keeping the width constant, to match
the aspect ratio of the map's bounding box.

°° ADJUST_CANVAS_WIDTH expands or shrinks the width of the
generated image, while keeping the height constant, to match
the aspect ratio of the map's bounding box.

•	 map.scale_denominator()

Returns the current scale denominator used to generate the map.
The scale denominator depends on the map's bounds and the size
of the rendered image.

•	 map.scale()

Returns the current scale factor used by the map. The scale factor
depends on the map's bounds and the size of the rendered image.

•	 map.zoom_all()

Set the map's bounding box to encompass the bounding box of each of the
map's layers. This ensures that all the map data will appear on the map.

•	 map.zoom_to_box(mapnik.Box2d(minX, minY, maxX, maxY))

Set the map's bounding box to the given values. Note that minX, minY,
maxX, and maxY are all in the map's coordinate system.

Layer attributes and methods
The mapnik.Layer class has the following useful attributes and methods:

•	 layer.envelope()

This method returns a mapnik.Box2d object representing the rectangular
area of the map that encompasses all the layer's data. This object has minx,
miny, maxx, and maxy attributes that hold the coordinates for the layer's
bounding box.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[339]

•	 layer.active = False

This can be used to hide a layer within the map.

•	 layer.minzoom = 1.0/100000

This sets the minimum scale factor which must apply if the layer is
to appear within the map. If this is not set, the layer will not have a
minimum scale factor.

•	 layer.maxzoom = 1.0/10000

This sets the maximum scale factor that must apply if the layer is to be
drawn onto the map. If this is not set, the layer will not have a maximum
scale factor.

•	 layer.visible(1.0/50000)

This method returns true if this layer will appear on the map at the given
scale factor. The layer is visible if it is active and the given scale factor is
between the specified minimum and maximum values.

Map rendering
After creating your mapnik.Map object and setting up the various symbolizers, rules,
styles, data sources, and layers within it, you are finally ready to convert your map
into a rendered image.

Before rendering the map image, make sure that you have set the appropriate
bounding box for the map so that the map will show the area of the world you
are interested in. You can do this by either calling map.zoom_to_box() to explicitly
set the map's bounding box to a given set of coordinates, or you can call map.
zoom_all() to have the map automatically set its bounds based on the data to
be displayed.

Once you have set the bounding box, you can generate your map image by calling
the render_to_file() function, like this:

mapnik.render_to_file(map, 'map.png')

The parameters are the mapnik.Map object and the name of the image file to write the
map to. If you want more control over the format of the image, you can add an extra
parameter, which defines the image format, like this:

mapnik.render_to_file(map, 'map.png', 'png256')

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[340]

The supported image formats include the following:

Image format Description
png A 32-bit PNG format image
png256 An 8-bit PNG format image
jpeg A JPEG-format image
svc An SVG-format image
pdf A PDF file
ps A postscript format file

The render_to_file() function works well when you want to generate a single
image from your entire map. Another useful way of rendering maps is to generate
a number of "tiles" which can then be stitched together to display the map at a
higher resolution:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[341]

Mapnik provides a helpful function for creating tiles like this out of a single map:

def render_tile_to_file(map, xOffset, yOffset, width, height,
 fileName, format)

The parameters to this function are as follows:

•	 map is the mapnik.Map object containing the map data
•	 xOffset and yOffset define the top-left corner of the tile, in map coordinates
•	 width and height define the size of the tile, in map coordinates
•	 fileName is the name of the file to save the tiled image into
•	 format is the file format to use for saving this tile

You can simply call this function repeatedly to create the individual tiles for your
map. For example:

for x in range(NUM_TILES_ACROSS):
 for y in range(NUM_TILES_DOWN):
 xOffset = TILE_SIZE * x
 yOffset = TILE_SIZE * y
 tileName = "tile_%d_%d.png" % (x, y)
 mapnik.render_tile_to_file(map, xOffset, yOffset,
 TILE_SIZE, TILE_SIZE,
 tileName, "png")

Another way of rendering a map is to use a Mapnik.Image object to hold the
rendered map data in memory. You can then extract the raw image data from
the Image object, like this:

image = mapnik.Image(MAP_WIDTH, MAP_HEIGHT)
mapnik.render(map, image)
imageData = image.tostring('png')

MapGenerator revisited
Now that we have examined the Python interface to Mapnik, let's use this
knowledge to take a closer look at the mapGenerator.py module used in Chapter
7, Working with Spatial Data. As well as being a more comprehensive example of
creating maps programmatically, the mapGenerator.py module suggests ways in
which you can write your own wrapper around Mapnik to simplify the creation
of a map using Python code.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[342]

The MapGenerator interface
The mapGenerator.py module defines just one function, generateMap(), which
allows you to create a simple map which is stored in a temporary file on disk.
The method signature for the generateMap() function looks like this:

def generateMap(datasource, minX, minY, maxX, maxY,
 mapWidth, mapHeight,
 hiliteExpr=None, background="#8080a0",
 hiliteLine="#000000", hiliteFill="#408000",
 normalLine="#404040", normalFill="#a0a0a0",
 points=None)

The parameters are as follows:

•	 datasource is a dictionary defining the data source to use for this map.
This dictionary should have at least one entry, type, which defines the type
of data source. The following data source types are supported: "OGR",
"PostGIS" and "SQLite". Any additional entries in this dictionary will be
passed as keyword parameters to the data source initializer.

•	 minX, minY, maxX, and maxY define the bounding box for the area to display,
in map coordinates.

•	 mapWidth and mapHeight are the width and height of the image to generate,
in pixels.

•	 hiliteExpr is a Mapnik filter expression to use to identify the feature(s) to
be highlighted.

•	 background is the HTML color code to use for the background of the map.
•	 hiliteLine and hiliteFill are the HTML color codes to use for the line

and fill for the highlighted features.
•	 normalLine and normalFill are the HTML color codes to use for the line

and fill for the non-highlighted features.
•	 points, if defined, should be a list of (long, lat, name) tuples identifying

points to display on the map.

Because many of these keyword parameters have default values, creating a simple
map only requires the data source, bounding box, and map dimensions to be specified.
Everything else is optional.

The generateMap() function creates a new map based on the given parameters, and
stores the result as a PNG format image file in a temporary map cache directory. Upon
completion, it returns the name and relative path to the newly-rendered image file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[343]

So much for the public interface to the mapGenerator.py module. Let's take a look
inside to see how it works.

Creating the main map layer
The module starts by creating a mapnik.Map object to hold the generated map.
We set the background color at the same time:

map = mapnik.Map(mapWidth, mapHeight,
 '+proj=longlat +datum=WGS84')
map.background_color = mapnik.Color(background)

We next have to set up the Mapnik data source to load our map data from.
To simplify the job of accessing a data source, the datasource parameter includes
the type of data source, as well as any additional entries which are passed as
keyword parameters directly to the Mapnik data source initializer:

srcType = datasource['type']
del datasource['type']

if srcType == "OGR":
 source = mapnik.Ogr(**datasource)
elif srcType == "PostGIS":
 source = mapnik.PostGIS(**datasource)
elif srcType == "SQLite":
 source = mapnik.SQLite(**datasource)

We then create our Layer object, and start defining the style, which is used to draw
the map data onto the map:

layer = mapnik.Layer("Layer")
layer.datasource = source

style = mapnik.Style()

We next set up a rule that only applies to the highlighted features:

rule = mapnik.Rule()
if hiliteExpr != None:
 rule.filter = mapnik.Filter(hiliteExpr)

This rule will use the "highlight" line and fill colors:

rule.symbols.append(mapnik.PolygonSymbolizer(
 mapnik.Color(hiliteFill)))
rule.symbols.append(mapnik.LineSymbolizer(
 mapnik.Stroke(mapnik.Color(hiliteLine), 0.1)))

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[344]

We then add this rule to the style, and create another rule that only applies to the
non-highlighted features:

style.rules.append(rule)

rule = mapnik.Rule()
rule.set_else(True)

This rule will use the "normal" line and fill colors:

rule.symbols.append(mapnik.PolygonSymbolizer(
 mapnik.Color(normalFill)))
rule.symbols.append(mapnik.LineSymbolizer(
 mapnik.Stroke(mapnik.Color(normalLine), 0.1)))

We then add this rule to the style, and add the style to the map and layer:

style.rules.append(rule)

map.append_style("Map Style", style)
layer.styles.append("Map Style")

Finally, the layer is added to the map:

map.layers.append(layer)

Displaying points on the map
One of the features of the generateMap() function is that it can take a list of points
and display them directly onto the map without having to store those points into a
database. This is done through the use of a MemoryDataSource data source and a
ShieldSymbolizer to draw the points onto the map:

if points != None:
 memoryDatasource = mapnik.MemoryDatasource()
 context = mapnik.Context()
 context.push("name")
 next_id = 1
 for long,lat,name in points:
 wkt = "POINT (%0.8f %0.8f)" % (long,lat)
 feature = mapnik.Feature(context, next_id)
 feature['name'] = name
 feature.add_geometries_from_wkt(wkt)
 next_id = next_id + 1
 memoryDatasource.add_feature(feature)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[345]

 layer = mapnik.Layer("Points")
 layer.datasource = memoryDatasource

 style = mapnik.Style()
 rule = mapnik.Rule()

 pointImgFile = os.path.join(os.path.dirname(__file__),
 "point.png")

 shield = mapnik.ShieldSymbolizer(
 mapnik.Expression('[name]'),
 "DejaVu Sans Bold", 10,
 mapnik.Color("#000000"),
 mapnik.PathExpression(pointImgFile))
 shield.displacement = (0, 7)
 shield.unlock_image = True
 rule.symbols.append(shield)

 style.rules.append(rule)

 map.append_style("Point Style", style)
 layer.styles.append("Point Style")

 map.layers.append(layer)

Note that the path to the point.png file is calculated as an
absolute path, based on the location of the mapGenerator.py
module itself (via the __file__ global). This is done because
the module can be called as part of a CGI script, and CGI scripts
do not have a current working directory.

Rendering the map
Because the mapGenerator.py module is designed to be used within a CGI script,
the module makes use of a temporary map cache to hold the generated image files.
Before it can render the map image, the generateMap() function has to create the
map cache if it doesn't already exist, and create a temporary file within the cache
directory to hold the generated map:

scriptDir = os.path.dirname(__file__)
cacheDir = os.path.join(scriptDir, "..", "mapCache")

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[346]

if not os.path.exists(cacheDir):
 os.mkdir(cacheDir)
fd,filename = tempfile.mkstemp(".png", dir=cacheDir)
os.close(fd)

Finally, we are ready to render the map into an image file, and return back to the
caller the relative path to the generated map file:

map.zoom_to_box(mapnik.Box2d(minX, minY, maxX, maxY))
mapnik.render_to_file(map, filename, "png")

return "../mapCache/" + os.path.basename(filename)

What the map generator teaches us
While in many ways the mapGenerator.py module is quite simplistic and designed
specifically to meet the needs of the DISTAL application presented in the previous
chapter, it is worth examining this module in depth because it shows how the principle
of encapsulation can be used to hide Mapnik's complexity and simplify the process of
map generation. Using the generateMap() function is infinitely easier than creating
all the data sources, layers, symbolizers, rules, and styles each time a map has to
be generated.

It would be a relatively easy task to design a more generic map generator that could
handle a variety of data sources and map layers, as well as various ways of returning
the results, without having to exhaustively define every object by hand. Designing
and implementing such a module would be very worthwhile if you want to use
Mapnik extensively from your Python programs. Hopefully this section has given
you some ideas about how you can proceed with implementing your own high-level
Mapnik wrapper module.

Map definition files
There is one final approach to using Mapnik that is worth examining. In addition to
creating your symbolizers, rules, styles, and layers programmatically, Mapnik allows
you to store all of this information using a map definition file. This is an XML-format
file that defines the various Mapnik objects used to generate a map. For example,
consider the following Python program to create a simple world map using the
World Borders Dataset:

import mapnik

map = mapnik.Map(800, 400)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[347]

map.background = mapnik.Color("steelblue")

style = mapnik.Style()
rule = mapnik.Rule()
polySymbolizer = mapnik.PolygonSymbolizer()
polySymbolizer.fill = mapnik.Color("ghostwhite")

stroke = mapnik.Stroke()
stroke.color = mapnik.Color("gray")
stroke.width = 0.1
lineSymbolizer = mapnik.LineSymbolizer(stroke)

rule.symbols.append(polySymbolizer)
rule.symbols.append(lineSymbolizer)
style.rules.append(rule)
map.append_style("My Style", style)

datasource = mapnik.Shapefile(file="TM_WORLD_BORDERS-0.3/" +
 "TM_WORLD_BORDERS-0.3.shp")

layer = mapnik.Layer("layer")
layer.datasource = datasource
layer.styles.append("My Style")

map.layers.append(layer)

map.zoom_to_box(mapnik.Box2d(-180, -90, +180, +90))
mapnik.render_to_file(map, "map.png")

As you can see, this program creates a single rule containing two symbolizers:
a PolygonSymbolizer to draw the interior of the country in the color named
"ghostwhite", and a LineSymbolizer to draw the outlines in gray. This rule is
added to a style named "My Style", and a single layer is created loading the data
from the World Borders Dataset shapefile. Finally, the map is rendered to a file
named map.png.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[348]

Here is what the resulting map looks like:

This program was written entirely using Python code. Now, consider the following
map definition file, which creates exactly the same map using an XML stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE Map>

<Map background-color="steelblue"
 srs="+proj=latlong +datum=WGS84">
 <Style name="My Style">
 <Rule>
 <PolygonSymbolizer fill="ghostwhite"/>
 <LineSymbolizer stroke="gray" stroke-width="0.1"/>
 </Rule>
 </Style>

 <Layer name="world" srs="+proj=latlong +datum=WGS84">
 <StyleName>My Style</StyleName>
 <Datasource>
 <Parameter name="type">shape</Parameter>
 <Parameter name="file">TM_WORLD_BORDERS-0.3/ TM_WORLD_BORDERS-
0.3.shp</Parameter>
 </Datasource>
 </Layer>
</Map>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[349]

To use this stylesheet, you call the load_map() function to load the contents of the
map definition file into a mapnik Map object before rendering it, like this:

map = mapnik.Map(800, 400)
mapnik.load_map(map, "mapDefinition.xml")
map.zoom_to_box(mapnik.Box2d(-180, -90, +180, +90))
mapnik.render_to_file(map, "map.png")

Which approach you take is up to you. You may prefer to do all your coding in
Python (with or without a wrapper module), or you might like the more compact
XML stylesheet definition. With only a few exceptions, anything you can do in
Python can be done with the XML stylesheets, and vice versa.

Unlike the Python bindings, the format for the XML definition file is thoroughly
documented. More information on the syntax of the map definition file can be
found at:

http://trac.mapnik.org/wiki/XMLConfigReference

You don't have to choose between doing all your map definition in XML or doing it
all in Python; Mapnik supports a hybrid approach where you can define as much or
as little in the XML file, and use Python to do the rest. For example, you might like to
define your Mapnik styles in the XML file, and use Python to define the data sources
and map layers. To do this, you would set up your map definition file like this:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE Map>

<Map background-color="steelblue"
 srs="+proj=latlong +datum=WGS84">
 <Style name="My Style">
 <Rule>
 <PolygonSymbolizer fill="ghostwhite"/>
 <LineSymbolizer stroke="gray" stroke-width="0.1"/>
 </Rule>
 </Style>
</Map>

Your Python code would then look like this:

import mapnik

map = mapnik.Map(800, 400)
mapnik.load_map(map, "sampleXMLStylesheet.xml")

www.it-ebooks.info

http://www.it-ebooks.info/

Using Python and Mapnik to Generate Maps

[350]

datasource = mapnik.Shapefile(file="TM_WORLD_BORDERS-0.3/" +
 "TM_WORLD_BORDERS-0.3.shp")

layer = mapnik.Layer("layer")
layer.datasource = datasource
layer.styles.append("My Style")

map.layers.append(layer)

map.zoom_to_box(mapnik.Box2d(-180, -90, +180, +90))
mapnik.render_to_file(map, "map.png")

Note how we simply exclude the <Style> section from the XML file, and then create
our map layers using Python.

This hybrid approach has the advantage of separating out the visual representation
of the map from the code used to generate it. The XML file defines the various styles
to use for rendering the map but doesn't include any map-generation logic itself.
Indeed, you can completely change the appearance of the map just by changing the
XML stylesheet, without having to change a single line of code in your program.
This is very similar to the way HTML templating engines separate form and function
within a web application.

Summary
In this chapter, we have explored the Mapnik map-generation toolkit in depth.
We learned the following:

•	 Mapnik is a powerful and flexible toolkit for generating a variety
of maps

•	 Mapnik uses the painter's algorithm to draw the various parts of
a map in the correct order

•	 A map is made up of multiple layers
•	 Map rendering is controlled using styles
•	 Styles are defined within the map and are referred to by the layers,

allowing styles to be shared between map layers
•	 Each style consists of one or more rules

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[351]

•	 Each rule has a list of symbolizers, telling Mapnik how to draw the layer's
features onto the map, and an optional filter which selects the features the
rule applies to

•	 You can use a map definition file as a simpler way of creating maps without
having to define all the symbolizers, filters, rules, styles, and layers in Python

•	 You can use a map definition file as a stylesheet, separating the logic of
building a map from the way it is formatted, in the same way that an HTML
templating engine separates form and content in a web application

In the next chapter, we will start to build a complete mapping application using
PostGIS, Mapnik, and GeoDjango.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a
Complete Mapping System

In the final three chapters of this book, we will bring together all the topics discussed
in previous chapters to implement a sophisticated web-based mapping application
called ShapeEditor.

In this chapter, we will cover the following:

•	 Designing a geospatial system, and then translating that design
into code

•	 Structuring of Django-based web applications
•	 Setting up a new Django project and its applications
•	 Learn how Django represents data structures as objects
•	 Using GeoDjango's built-in "admin" application to view and

edit geospatial data

About ShapeEditor
As we have seen, shapefiles are commonly used to store, make available, and
transfer geospatial data. We have worked with shapefiles extensively in this book,
obtaining freely-available geospatial data in shapefile format, writing programs to
load data from a shapefile, and creating shapefiles programmatically.

While it is easy enough to edit the attributes associated with a shapefile's features,
editing the features themselves is a lot more complicated. One approach would be
to install a GIS system and use it to import the data, make changes, and then export
the data into another shapefile. While this works, it is hardly convenient if all you
want to do is make a few changes to a shapefile's features. It would be much easier
if we had a web application specifically designed for editing shapefiles.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[354]

This is precisely what we are going to implement: a web-based shapefile editor.
Rather unimaginatively, we'll call this program ShapeEditor.

The following flowchart depicts the ShapeEditor's basic workflow:

Start

Import Shapefile

View Shapefile’s features

Select a feature

Edit selected feature

Done?

Export Shapefile

Finish

No

Yes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[355]

The user starts by importing a shapefile using the ShapeEditor's web interface:

Our ShapeEditor implementation wasn't chosen for its good
looks; instead, it concentrates on getting the features working.
It would be easy to add stylesheets and edit the HTML
templates to improve the appearance of the application, but
doing so would make the code harder to understand. This
is why we've taken such a minimalist approach to the user
interface. Making it pretty is an exercise left to the reader.

Once the shapefile has been imported, the user can view the shapefile's features on
a map, and can select a feature by clicking on it. In this case, we have imported the
World Borders Dataset used several times throughout this book:

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[356]

The user can then edit the selected feature's geometry, as well as see a list of the
attributes associated with that feature:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[357]

Once the user has finished making changes to the shapefile, he or she can export
the shapefile again by clicking on the Export hyperlink on the main page:

That pretty much covers the ShapeEditor's functionality. It's a comparatively simple
system, but it can be very useful if you need to work with geospatial data in shapefile
format. And, of course, through the process of implementing the ShapeEditor you will
learn how to go about implementing your own complex geospatial web applications
using GeoDjango.

Designing ShapeEditor
Let's take a closer look at the various parts of the ShapeEditor, to see what's involved
in implementing it. The ShapeEditor is going to support the following activities:

•	 Importing the geometrical features and attributes from a shapefile
•	 Allowing the user to select a feature to be edited
•	 Displaying the appropriate type of editor to allow the user to edit the

feature's geometry
•	 Exporting the geometrical features and attributes back into a shapefile

Let's take a closer look at each of these user activities, to see how they will be
implemented within the ShapeEditor system.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[358]

Importing a shapefile
When the user imports a shapefile, we have to store the contents of that shapefile
in the database so that GeoDjango can work with it. Because we don't know in
advance what types of geometries the shapefile will contain, or what attributes
might be associated with each feature, we need to have a generic representation
of a shapefile's contents in the database rather than defining separate fields in
the database for each of the shapefile's attributes.To support this, we'll use the
following collection of database objects:

Shapefiles

Features

Attribute Values

Attributes

Each imported shapefile will be represented by a single Shapefile object in the
database. Each Shapefile object will have a set of Attribute objects, which define
the name and data type for each attribute within the shapefile. The Shapefile object
will also have a set of Feature objects, one for each imported feature. The Feature
object will hold the feature's geometry, and will in turn have a set of AttributeValue
objects, holding the value of each attribute for that feature.

To see how this works, let's imagine that we import the World Borders Dataset into
the ShapeEditor. The contents of this shapefile would be stored in the database in
the following way:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[359]

We will use a Shapefile object to represent the uploaded shapefile. This object
will have a number of Attribute objects associated with it, one for each of the
shapefile's attributes. There are also a number of Feature objects associated with
the shapefile; the MultiPolygon geometry for each feature will be stored in the
Feature object itself, while the attributes for each feature will be stored in a
series of AttributeValue objects.

While this is a somewhat roundabout way of storing shapefile data in a database
(it would be more common to use the ogrinspect management command to create
a static GeoDjango model out of the shapefile's features and attributes), we have to
do it this way because we don't know the shapefile's structure ahead of time, and
don't want to have to define a new database table whenever a shapefile is imported.

With this basic model in place to represent a shapefile's data in the database, we can
continue designing the rest of the "Import Shapefile" logic.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[360]

Because shapefiles are represented on disk by a number of separate files, we will
expect the user to create a ZIP archive out of the shapefile and upload the zipped
shapefile. This saves us having to handle multiple file uploads for a single shapefile,
and makes things more convenient for the user as shapefiles often come in ZIP
format already.

Once the ZIP archive has been uploaded, our code will need to decompress the
archive and extract the individual files that make up the shapefile. We'll then
have to read through the shapefile to find its attributes, create the appropriate
Attribute objects, and then process the shapefile's features one at a time,
creating Feature and AttributeValue objects as we go. All of this will be
quite straightforward to implement.

Selecting a feature
Before the user can edit a feature, we have to let the user select that feature.
Unfortunately, GeoDjango's build-in slippy map interface won't allow us to select a
feature by clicking on it. This is because GeoDjango can only display a single feature
on a map at once, thanks to the way GeoDjango's geometry fields are implemented.

The usual way a GeoDjango application allows you to select a feature is by
displaying a list of attributes (for example, city names) and then allowing the user to
choose a feature from that list. Unfortunately, that won't work for us either. Because
the ShapeEditor allows the user to import any shapefile, there's no guarantee that the
shapefile's attribute values can be used to select a feature. It may be that a shapefile
has no attributes at all, or has attributes that mean nothing to the end user—or,
conversely has dozens of attributes. There is no way of knowing which attribute to
display, or even if there is a suitable attribute that can be used to select a feature.
Because of this, we really can't use attributes when selecting the feature to edit.

We're going to take a completely different approach. We will bypass GeoDjango's
built-in editor and instead use OpenLayers directly to display a map showing all
the features in the imported shapefile. We'll then let the user click on a feature
within the map to select it for editing.

Here is how we'll implement this particular feature:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[361]

OpenLayers needs to have a source of map tiles to display, so we'll create our own
simple Tile Map Server (TMS) built on top of a Mapnik-based map renderer to
display the shapefile's features stored in the database. We'll also write a simple "click
handler" in JavaScript that intercepts clicks on the map and sends off an AJAX request
to the server to see which feature the user clicked on. If the user does click on a feature
(rather than just clicking on the map's background), the user's web browser will be
redirected to the "Edit Feature" page so that the user can edit the clicked-on feature.

There's a lot here, requiring a fair amount of custom coding, but the end result is
a friendly interface to the ShapeEditor, allowing the user to simply point-and-click
at a desired feature to edit it. In the process of building all this, we'll also learn how
to use OpenLayers directly within a GeoDjango application, and how to implement
our own Tile Map Server built on top of Mapnik.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[362]

Editing a feature
To let the user edit the feature, we'll use GeoDjango's built-in geometry editing
widget. There is a slight amount of work required here, because we want to use
this widget outside of GeoDjango's admin interface and will need to customize
the interface slightly.

The only other issue that needs to be dealt with is the fact that we don't know
in advance what type of feature we'll be editing. Shapefiles can hold any type
of geometry, from Points and LineStrings through to MultiPolygons and
GeometryCollections. Fortunately, all the features in a shapefile have to have
the same geometry type, so we can store the geometry type in the Shapefile
object, and use it to select the appropriate type of editor when editing that
shapefile's features.

Exporting a shapefile
Exporting a shapefile involves the reverse of the "Import Shapefile" process: we have
to create a new shapefile on disk, define the various attributes that will be stored
in the shapefile, and then process all the features and their attributes, writing them
out to the shapefile. Once this has been done, we can create a ZIP archive from the
contents of the shapefile, and tell the user's web browser to download that ZIP
archive to the user's hard disk.

Prerequisites
Before you can build the ShapeEditor application, make sure that you have installed
the following libraries and tools introduced in Chapter 3, Python Libraries for Geospatial
Development and Chapter 6, GIS in the Database:

•	 OGR
•	 Mapnik
•	 PROJ.4
•	 pyproj
•	 PostgreSQL
•	 PostGIS
•	 psycopg2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[363]

You will also need to download and install Django. Django (https://djangoproject.
com) comes with GeoDjango built-in, so once you've installed Django itself you're all
set to go. Click on the Download link on the Django website and download the latest
official version of the Django software. We'll be using Django 1.4 for the ShapeEditor.

If your computer runs Microsoft Windows, you may need to download a utility to
decompress the .tar.gz file before you can use it.

Once you have downloaded it, you can install Django by following the instructions
in the Django Installation Guide. This can be found at:

https://docs.djangoproject.com/en/dev/topics/install

Once you have installed it, you may want to run through the GeoDjango tutorial
(available at https://docs.djangoproject.com/en/dev/ref/contrib/gis),
though this isn't required to build the ShapeEditor application.

The structure of a Django application
While a complete tutorial on Django is beyond the scope of this book, it is worth
spending a few minutes becoming familiar with how Django works. In Django,
you start by building a project that contains one or more applications. Each
project has a single database that is shared by the applications within it:

Applications

Project

Database

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[364]

Django comes with a large number of built-in applications that you can include as
part of your project, including the following:

•	 An authentication system supporting user accounts, groups, permissions,
and authenticated sessions

•	 An admin interface, allowing the user to view and edit data
•	 A markup application supporting lightweight text markup languages

including RestructuredText and Markdown
•	 A messages framework for sending and receiving messages
•	 A sessions system for keeping track of anonymous (non-authenticated)

sessions
•	 A sitemaps framework for generating site maps
•	 A syndication system for generating RSS and ATOM feeds

The GeoDjango extension is implemented as yet another application within Django
that you install when you wish to use it.

Note that applications in Django tend to be fairly small and
discrete. Often, an application will implement just one aspect
of your system. For example, a complex project may have a
shared application that defines the shared database tables
and commonly-used modules, an editor application that
allows users to edit data, an importExport application that
handles importing and exporting, and a report application
for generating reports. These applications work together to
implement the project—for example, the report application
may make use of data stored in the shared application's
database models, and the editor application may redirect
the user to an importExport view when they click on the
Import Data hyperlink.

The project has a settings file, which you to use to configure the project as
a whole. These settings include a list of the applications you want to include
in the project, which database to use, as well as various other project- and
application-specific settings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[365]

As we saw in the previous chapter, a Django application has three main components:

View

Model Template

The models define your application's data structures, the views contain your
application's business logic, and the templates are used to control how information
is presented to the user. These correspond to the data, application, and presentation
tiers within a traditional web application stack. Let's take a closer look at each of
these in turn.

Models
Because Django provides an object-relational mapper on top of the database, you don't
have to deal with SQL directly. Instead, you define a model that describes the data you
want to store, and Django will automatically map that model onto the database:

Database

Object-Relational Mapper

Models

The rest of your

application

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[366]

This high-level interface to the database is a major reason why working in Django is
so efficient.

In the ShapeEditor, the database objects we looked at earlier
(Shapefile, Attribute, Feature, and AttributeValue)
are all models, and will be defined in a file named models.py
that holds the ShapeEditor's models.

Views
In Django, a view is a Python function which responds when a given URL is called.
For example, the ShapeEditor application will respond to the /editFeature URL by
allowing the user to edit a feature; the function which handles this URL is called the
"edit feature" view, and will be defined like this:

def editFeature(request, shapefile_id, feature_id):

In general, an application's views will be defined in a Python module named,
as you might expect, views.py. Not all of the application's views have to be
defined in this file, but it is common to use this file (or a Python package) to
hold your application's views.

At its simplest, a view might return the HTML text to be displayed, like this:

def myView(request):
 return HttpResponse("Hello World")

Of course, views will generally be a lot more complicated, dealing with database
objects and returning very sophisticated HTML pages. Views can also return other
types of data, for example to display an image or download a file, or to respond to
an incoming AJAX request.

URL dispatching
When an incoming HTTP request is sent to a URL within the web application, that
request is forwarded to the view in the following way:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[367]

Web Browser

Request

Response

Web Server

URLConf

View

The web server receives the request and passes it on to a URL dispatcher,
which in Django parlance is called a URLConf. This is a Python module that
maps incoming URLs to views. The view function then processes the request
and returns a response, which is passed back to the web server so that it can
be sent back to the user's web browser.

The URLConf module is normally named urls.py, and consists of a list of regular
expression patterns along with the views these patterns map to. For example,
here is a copy of part of the ShapeEditor's urls.py file:

from django.conf.urls.defaults import *

urlpatterns = patterns('geodjango.shapeEditor.views',
 (r'^shape-editor$',
 'listShapefiles'),
 ...
)

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[368]

This tells Django that any URL which matches the pattern ^shape-editor$ (that is, a
URL consisting only of the text shape-editor) will be mapped to the listShapefiles
function, which can be found in the geodjango.shapeEditor.views module.

This is a slight simplification: the geodjango.shapeEditor.
views entry in the preceding code example is actually a prefix,
which is applied to the view name. Prefixes can be anything
you like, so long as the prefix plus a period plus the view name
yields a fully-qualified reference to your view function.

As well as simply mapping URLs to view functions, the URLConf module also lets
you define parameters to be passed to the view. Take, for example, the following
URL mapping:

 (r'^shape-editor/edit/(?P<shapefile_id>\d+)$',
 'editShapefile'),

The syntax is a bit complicated, thanks to the use of regular expression patterns,
but the basic idea is that this entry in the URLConf will match any URL of the
following form:

shape-editor/edit/NNNN

In this URL, NNNN is a sequence of one or more digits. The actual text used for
NNNN will be passed to the editShapefile() view function as an extra keyword
parameter named shapefile_id. This means that the view function would be
defined like this:

def editShapefile(request, shapefile_id):

While the URL mapping does require you to be familiar with regular expressions,
it is extremely flexible, and allows you to define exactly which view will be called
for any given incoming URL, as well as allowing you to include parts of the URL
as parameters to the view function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[369]

Remember that Django allows multiple applications to exist within
a single project. Because of this, the URLConf module belongs to the
project, and contains mappings for all the project's applications in one
place. Applications often define their own URLConf modules, which
are then imported by the project's URLConf to insert them into the
overall system. For example, you might have an application called
"editor" that defines its own URLs (/add, /delete, and so on). The
project's URLConf might include the editor application's URLs using
the /editor prefix. This would have the effect of associating the
editor's add() view function with the overall URL /editor/add.
Notice how the editor application only defines its own URLs—it
doesn't know about the /editor prefix—and the project then
includes all those URLs under the appropriate prefix. This allows
different applications to coexist within a single project, without
interfering with (or even knowing about) each other's URLs.

Templates
To simplify the creation of complex HTML pages, Django provides a sophisticated
templating system. A template is a text file that is processed to generate a web
page by taking variables from the view and processing them to generate the page
dynamically. For example, here is a snippet from the listShapefiles.html
template used by the ShapeEditor:

Available Shapefiles:
<table>
 {% for shapefile in shapefiles %}
 <tr>
 <td>{{ shapefile.filename }}</td>
 ...
 </tr>
 {% endfor %}
</table>

As you can see, most of the template is simply HTML, with a few programming
constructs added. In this case, we loop through the shapefiles list, creating a table
row for each shapefile, and display (among other things) the shapefile's filename.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[370]

To use this template, the view function might look something like this:

def myView(request):
 shapefiles = ...
 return render_to_response("listShapefiles.html",
 {'shapefiles' : shapefiles})

As you can see, the render_to_response() function takes the name of the template,
and a dictionary containing the variables to use when processing the template. The
result is an HTML page, which will be displayed to the end user.

All of the templates for an application are generally stored in a
directory named templates within the application's directory.

Django also includes a library for working with data-entry forms. A form is defined
as a Python class defining the various fields to be entered, along with data validation
and other behaviors associated with the form. For example, here is the "import
shapefile" form used by the ShapeEditor:

class ImportShapefileForm(forms.Form):
 import_file = forms.FileField(label="Select a Shapefile")
 character_encoding = forms.ChoiceField(...)

forms.FileField is a standard Django form field for handling file uploads, while
forms.ChoiceField is a standard form field for displaying a drop-down menu of
available choices. It's easy to use a form within a Django view; for example:

def importShapefile(request):
 if request.method == "GET":
 form = ImportShapefileForm()
 return render_to_response("importShapefile.html",
 {'form' : form})
 elif request.method == "POST":
 form = ImportShapefileForm(request.POST,
 request.FILES)
 if form.is_valid():
 shapefile = request.FILES['import_file']
 encoding = request.POST['character_encoding']
 ...
 else:
 return render_to_response("importShapefile.html",
 {'form' : form})

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[371]

If the user is submitting the form (request.method == "POST"), we check that the
form's contents are valid and process them. Otherwise, we build a new form from
scratch. Notice that the render_to_response() function is called with the form
object as a parameter to be passed to the template. This template will look something
like the following:

<html>
 <head>
 <title>ShapeEditor</title>
 </head>
 <body>
 <h1>Import Shapefile</h1>
 <form enctype="multipart/form-data" method="post"
 action="import">
 {{ form.as_p }}
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

The {{ form.as_p }} instruction renders the form in HTML format (embedded
within a <p> tag) and includes it in the template at that point.

Forms are especially important when working with GeoDjango, because the map
editor widgets are implemented as part of a form.

This completes our whirlwind tour of Django. It's certainly not comprehensive, and
you are encouraged to follow the tutorials on the Django website to learn more, but
we have covered enough of the core concepts for you to understand what is going
on as we implement the ShapeEditor. Without further ado, let's start implementing
the ShapeEditor by setting up a PostGIS database for our application to use.

Setting up the database
Assuming you have created a PostgreSQL template for PostGIS as described in
the Prerequisites section of this chapter, setting up the PostGIS database for the
ShapeEditor is trivial—simply type the following at the command prompt:

% createdb shapeeditor

If you don't have PostgreSQL's createdb command on your path,
you will need to prefix this command with the directory where
PostgreSQL's command-line tools are stored.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[372]

If your PostgreSQL installation requires you to supply a username when creating
a database, you can do this by adding the -U command-line option, like this:

% createdb shapeeditor -U <username>

You will be prompted to enter the user's password, if it has one.

This will create a new database named shapeeditor, which we will use to hold
the data for our ShapeEditor project.

All going well, you should now have a database named shapeeditor on your
computer. Open up a command-line client to this database by typing:

% psql shapeeditor

You'll need to add a -U command-line option if your
PostgreSQL installation requires it.

You should see the PostgreSQL command line prompt:

psql (9.1.6)

Type "help" for help.

shapeeditor=#

We now need to spatially-enable this database, by installing the PostGIS extension.
To do this, type:

CREATE EXENSION postgis;

If you then type \d and press Return, you should see a list of the tables in your new
PostGIS database:

List of relations

 Schema | Name | Type | Owner

--------+-------------------+----------+-------

 public | geography_columns | view | user

 public | geometry_columns | view | user

 public | raster_columns | view | user

 public | raster_overviews | view | user

 public | spatial_ref_sys | table | user

(5 rows)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[373]

These five tables are installed automatically by the PostGIS extension. To leave the
PostgreSQL command-line client, type \q and then press Return:

geodjango=# \q

%

Congratulations! You have just set up a PostGIS database for the ShapeEditor
application to use.

Setting up the ShapeEditor project
We now have to create the Django project which will hold the ShapeEditor system.
To do this, cd into the directory where you want the project's directory to be placed,
and type:

% django-admin.py startproject shapeEditor

When you installed Django, it should have placed the django-admin.py program
onto your path, so you shouldn't need to tell the computer where this script resides.

All going well, Django will create a directory named shapeEditor, which contains
a python program named manage.py. You will use this program to start, stop, and
configure your project, and another directory (also called shapeEditor) that holds
the files that make up your project. Let's take a closer look at these files:

•	 __init__.py

You should be familiar with this type of file; it simply tells Python that this
directory holds a Python package.

•	 settings.py

This Python module contains various settings for our shapeEditor project.
These settings include options for turning debugging on or off, information
about which database the Django project will use, where to find the project's
URLConf module, and a list of the applications which should be included in
the project.

•	 urls.py

This is the URLConf module for the project. It maps incoming URLs to views
within the project's applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[374]

•	 wsgi.py

This module makes it possible to run your application using the Web Server
Gateway Interface (WSGI) protocol. You'll use this when deploying your
application to a production server.

Now that the project has been created, we next need to configure it. To do this,
edit the settings.py file. We want to make the following changes to this file:

•	 Tell Django to use the PostGIS database we set up earlier for this project
•	 Add the GeoDjango application to the project, to enable the GeoDjango

functionality

To tell Django to use PostGIS, edit the DATABASES variable to look like the following:

DATABASES = {
 'default': {
 'ENGINE' : 'django.contrib.gis.db.backends.postgis',
 'NAME' : 'geodjango',
 'USER' : '...',
 'PASSWORD' : '...'
 }
}

Make sure you enter the username and password used to access your particular
PostgreSQL database.

To enable the GeoDjango functionality, add the following line to the INSTALLED_
APPS variable at the bottom of the file:

'django.contrib.gis'

While we're editing the settings.py file, let's make one more change that will
save us some trouble down the track. Go to the MIDDLEWARE_CLASSES setting, and
comment out the django.middleware.csrf.CsrfViewMiddleware line. This entry
causes the addition of extra error checking when processing forms to prevent cross-
site request forgery. Implementing CSRF support requires adding extra code to our
form templates, which we won't be doing here to keep things simple.

If you deploy your own applications on the Internet, you should
read the CSRF documentation on the Django website and enable
CSRF support. Otherwise you may find your application subjected
to cross-site request forgery attacks.

This completes the configuration of our ShapeEditor project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[375]

Defining the ShapeEditor's applications
We now have a Django project for our overall ShapeEditor system. We next need to
break down our project into several related applications, following Django's design
philosophy of having applications be small and relatively self-contained. Looking
back at our design for the overall project, we can see several possible candidates for
breaking the functionality into separate applications:

•	 Importing and exporting shapefiles
•	 Selecting features
•	 Editing features
•	 The Tile Map Server

Let's choose some names for our applications, keeping them short and to the point:

•	 importer

•	 exporter

•	 selector

•	 editor

•	 tms

We will define one more application, which we'll called shared, to hold the
database models and Python modules that are shared across these applications.
 For example, we might have a module named attributeReader.py that is needed
by the importer and editor applications. We'll place this into the shared application
to make it clear that this code is designed to be used elsewhere in the system.

Creating the shared application
The shapeEditor.shared application will hold the core database tables and python
modules we use throughout the system. Let's go ahead and create this application
now. cd into the shapeEditor project directory and type the following:

python manage.py startapp shapeEditor

This will create a directory within the shapeEditor project directory named shared.
This application directory will contain various files Django needs in order to run.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[376]

Note that, by default, a new application is placed in the topmost shapeEditor
directory. This means you can import this application into your Python program
like this:

import shared

Django's conventions say that applications in the topmost directory (or somewhere
else on your Python path) are intended to be reusable—that is, you can take that
application and use it in a different project. The applications we're defining here
aren't like that; they can only work as part of the shapeEditor project, and so we
need to move the newly-created shared directory inside the shapeEditor project's
sub-directory, like this:

This means we can import our shared application like this:

import shapeEditor.shared

or:

from shapeEditor import shared

In other words, the shared application isn't reusable; it only makes sense within the
context of the shapeEditor application.

Unfortunately, Django doesn't currently make it easy for you
to create non-reusable applications. You have to create the
application first, and then move the directory into the project
directory to make it non-reusable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[377]

Let's now take a look at what is inside our shapeEditor.shared directory:

•	 __init__.py

This is another Python package initialization file, telling Python that this
directory holds a Python package.

•	 models.py

This Python module will hold the shared application's data models.

•	 tests.py

This Python module holds various unit tests for your application.
We won't be using this, so you can delete this file if you wish.

•	 views.py

This Python module will hold various views for the shared application.
Once again, we won't be using this, and you can delete this file if you want.

Now that we have created the application itself, let's add it to our project. Edit the
settings.py file again, and add the following entry to the INSTALLED_APPS list:

'shapeEditor.shared'

Now that we have our shared application, let's start to put some useful things into it.

Defining the data models
We already know which database objects we are going to need to store the
uploaded shapefiles:

•	 The Shapefile object will represent a single uploaded shapefile.
•	 Each shapefile will have a number of Attribute objects, giving the name,

data type, and other information about each attribute within the shapefile.
•	 Each shapefile will have a number of Feature objects, which hold the

geometry for each of the shapefile's features.
•	 Each feature will have a set of AttributeValue objects, which hold the

value for each of the feature's attributes.

Let's look at each of these in more detail, and think about exactly what information
will need to be stored in each object.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[378]

Shapefile
When we import a shapefile, there are a few things we need to remember:

•	 The original name of the uploaded file. We will display this in the "list
shapefiles" view, so that the user can identify the shapefile within this list.

•	 The spatial reference system used by the shapefile's data is present. When
we import the shapefile, we will convert it to use latitude and longitude
coordinates using the WGS84 datum (EPSG 4326), but we need to remember
the shapefile's original spatial reference system so that we can use it again
when exporting the features. For simplicity, we're going to store the spatial
reference system in WKT format.

•	 What type of geometry was stored in the shapefile. We'll need this to know
which field in the Feature object holds the geometry.

•	 The character encoding used for the shapefile's attributes. Shapefiles don't
always come in UTF-8 character encoding, and while we'll convert the
attribute values to Unicode when importing the data, we do need to know
which character encoding the file was in, so we'll store this information in
the shapefile as well. This allows us to use the same character encoding
when exporting the shapefile again.

Attribute
When we export a shapefile, it has to have the same attributes as the original
imported file. Because of this, we have to remember the shapefile's attributes.
This is what the Attribute object does. We will need to remember the following
information for each attribute:

•	 The shapefile the attribute belongs to
•	 The name of the attribute
•	 The type of data stored in this attribute (string, floating-point number,

and so on)
•	 The field width of the attribute, in characters
•	 For floating-point attributes, the number of digits to display after the

decimal point

All of this information comes directly from the shapefile's layer definition.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[379]

Feature
Each feature in the imported shapefile will need to be stored in the database. Because
PostGIS (and GeoDjango) uses different field types for different types of geometries,
we need to define separate fields for each geometry type. Because of this, the
Feature object will need to store the following information:

•	 The shapefile the feature belongs to
•	 The Point geometry, if the shapefile stores this type of geometry
•	 The MultiPoint geometry, if the shapefile stores this type of geometry
•	 The MultLineString geometry, if the shapefile stores this type of geometry
•	 The MultiPolygon geometry, if the shapefile stores this type of geometry
•	 The GeometryCollection geometry, if the shapefile stores this type of geometry

Isn't something missing?
If you've been paying attention, you've probably noticed that some of
the geometry types are missing. What about Polygons or LineStrings?
Because of the way data is stored in a shapefile, it is impossible to know
in advance whether a shapefile holds Polygons or MultiPolygons, and
similarly if it holds LineStrings or MultiLineStrings. The shapefile's
internal structure makes no distinction between these geometry types.
Because of this, a shapefile may claim to store Polygons when it really
contains MultiPolygons, and similarly for LineString geometries.
For more information, see http://code.djangoproject.com/
ticket/7218.
To work around this limitation, we store all Polygons as MultiPolygons,
and all LineStrings as MultiLineStrings. This is why we don't need
Polygon or LineString fields in the Feature object.

AttributeValue
The AttributeValue object holds the value for each of the feature's attributes.
This object is quite straightforward, storing the following information:

•	 The feature the attribute value is for
•	 The attribute this value is for
•	 The attribute's value, as a string

For simplicity, we'll be storing all attribute values as strings.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[380]

The models.py file
Now that we know what information we want to store in our database, it's easy
to define our various model objects. To do this, edit the models.py file in the
shapeEditor.shared directory, and make sure it looks like this:

from django.contrib.gis.db import models

class Shapefile(models.Model):
 filename = models.CharField(max_length=255)
 srs_wkt = models.CharField(max_length=255)
 geom_type = models.CharField(max_length=50)
 encoding = models.CharField(max_length=20)

class Attribute(models.Model):
 shapefile = models.ForeignKey(Shapefile)
 name = models.CharField(max_length=255)
 type = models.IntegerField()
 width = models.IntegerField()
 precision = models.IntegerField()

class Feature(models.Model):
 shapefile = models.ForeignKey(Shapefile)
 geom_point = models.PointField(srid=4326,
 blank=True, null=True)
 geom_multipoint = \
 models.MultiPointField(srid=4326,
 blank=True, null=True)
 geom_multilinestring = \
 models.MultiLineStringField(srid=4326,
 blank=True, null=True)
 geom_multipolygon = \
 models.MultiPolygonField(srid=4326,
 blank=True, null=True)
 geom_geometrycollection = \
 models.GeometryCollectionField(srid=4326,
 blank=True,
 null=True)

 objects = models.GeoManager()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[381]

class AttributeValue(models.Model):
 feature = models.ForeignKey(Feature)
 attribute = models.ForeignKey(Attribute)
 value = models.CharField(max_length=255,
 blank=True, null=True)

There are a few things to be aware of here:

•	 Note that the from...import statement at the top has changed. We're
importing the GeoDjango models, rather than the standard Django ones.

•	 We use models.CharField objects to represent character data, and models.
IntegerField objects to represent integer values. Django provides a whole
raft of field types for you to use. GeoDjango also adds its own field types to
store geometry fields, as you can see from the definition of the Feature object.

•	 To represent relations between two objects, we use a models.ForeignKey
object.

•	 Because the Feature object will store geometry data, we want to allow
GeoDjango to perform spatial queries on this data. To enable this, we define
a GeoManager() instance for the Feature class.

•	 Note that several fields (in particular, the geom_XXX fields in the Feature
object) have both blank=True and null=True. These are actually quite
distinct: blank=True means that the admin interface allows the user to leave
the field blank, while null=True tells the database that these fields can be set
to NULL in the database. For the Feature object, we'll need both so that we
don't get validation errors when entering geometries via the admin interface.

That's all we need to do (for now) to define our database model. After you've made
these changes, save the file, cd into the topmost project directory, and type:

python manage.py syncdb

This command tells Django to check the models and create new database tables as
required. Because the default settings for a new project automatically include the
auth application, you will also be asked if you want to create a superuser account.
Go ahead and create one; we'll need a superuser for the next section, where we
explore GeoDjango's built-in admin interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[382]

There is bug in Django 1.4, which means that geospatial fields aren't
created automatically. Instead, you'll see the following error message:
Failed to install index for shared.Feature model:
operator class "gist_geometry_ops" does not exist for
access method "gist"

Don't worry; if you see this error, you just need to create the spatial
fields by hand. We are about to see how to do this.

You should now have a spatial database set up with the various database tables you
have created. Let's take a closer look at this database by typing:

psql geodjango

When you type \d and press Return, you should see a list of all the database tables
that have been created:

 List of relations

 Schema | Name | Type | Owner

--------+-----------------------------------+----------+-------

 public | auth_group | table | user

 public | auth_group_id_seq | sequence | user

 public | auth_group_permissions | table | user

 public | auth_group_permissions_id_seq | sequence | user

 public | auth_message | table | user

 public | auth_message_id_seq | sequence | user

 public | auth_permission | table | user

 public | auth_permission_id_seq | sequence | user

 public | auth_user | table | user

 public | auth_user_groups | table | user

 public | auth_user_groups_id_seq | sequence | user

 public | auth_user_id_seq | sequence | user

 public | auth_user_user_permissions | table | user

 public | auth_user_user_permissions_id_seq | sequence | user

 public | django_content_type | table | user

 public | django_content_type_id_seq | sequence | user

 public | django_session | table | user

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[383]

 public | django_site | table | user

 public | django_site_id_seq | sequence | user

 public | geography_columns | view | user

 public | geometry_columns | view | user

 public | raster_columns | view | user

 public | raster_overviews | view | user

 public | shared_attribute | table | user

 public | shared_attribute_id_seq | sequence | user

 public | shared_attributevalue | table | user

 public | shared_attributevalue_id_seq | sequence | user

 public | shared_feature | table | user

 public | shared_feature_id_seq | sequence | user

 public | shared_shapefile | table | user

 public | shared_shapefile_id_seq | sequence | user

 public | spatial_ref_sys | table | user

(30 rows)

To make sure that each application's database tables are unique, Django adds the
application name to the start of the table name. This means that the table names
for the models we have created are actually called shared_shapefile, shared_
feature, and so on. We'll be working with these database tables directly later on,
when we want to use Mapnik to generate maps using the imported Shapefile data.

If you ran into the bug that prevents Django from creating the spatial
fields, you can create them yourself by typing the following commands
into pgsql:
ALTER TABLE shared_feature ADD COLUMN geom_point
geometry(Point, 4326);

ALTER TABLE shared_feature ADD COLUMN geom_multipoint
geometry(MultiPoint, 4326);

ALTER TABLE shared_feature ADD COLUMN geom_
multilinestring geometry(MultiLineString, 4326);

ALTER TABLE shared_feature ADD COLUMN geom_multipolygon
geometry(MultiPolygon, 4326);

ALTER TABLE shared_feature ADD COLUMN geom_
geometrycollection geometry(GeometryCollection, 4326);

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[384]

Playing with the admin system
Before we can use the built-in admin application, we will need to enable it.
This involves adding the admin application to the project, syncing the database,
telling the admin application about our database objects, and adding the admin
URLs to our urls.py file. Let's work through each of these in turn:

•	 Adding the admin application to the project:
Edit your settings.py file and uncomment the 'django.contrib.admin'
line within the INSTALLED_APPS list:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.messages',
 # Uncomment the next line to enable the admin:
 'django.contrib.admin',
 'django.contrib.gis',
 'shapeEditor'
)

•	 Resynchronizing the database:
From the command line, cd into your GeoDjango project directory
and type the following:
python manage.py syncdb

This will add the admin application's tables to your database.

•	 Adding our database objects to the admin interface:
Next, we need to tell the Admin interface about the various database objects
we want to work with. To do this, create a new file in the shapeEditor.
shared directory named admin.py, and enter the following into this file:
from django.contrib.gis import admin
from models import Shapefile, Feature, \
 Attribute, AttributeValue

admin.site.register(Shapefile, admin.ModelAdmin)
admin.site.register(Feature, admin.GeoModelAdmin)
admin.site.register(Attribute, admin.ModelAdmin)
admin.site.register(AttributeValue, admin.ModelAdmin)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[385]

This tells Django how to display the various objects in the admin interface.
If you want, you can subclass admin.ModelAdmin (or admin.GeoModelAdmin)
and customize how it works. For now, we'll just accept the defaults.

Note that we use an admin.GeoModelAdmin object for
the Feature class. This is because the Feature objects
include geometries that we want to edit using a slippy
map. We'll see how this works shortly.

•	 Adding the admin URLs to the project:
Edit the urls.py file (in the shapeEditor project directory) and uncomment
the lines that refer to the admin application. Then change the from django.
contrib import admin line to read:
from django.contrib.gis import admin

The following listing shows how this file should end up, with the three lines
you need to change highlighted:

from django.conf.urls.defaults import *

Uncomment the next two lines to enable the admin:
from django.contrib.gis import admin
admin.autodiscover()

urlpatterns = patterns('',
 # Example:
 # (r'^geodjango/', include('geodjango.foo.urls')),

 # Uncomment the admin/doc line below and add 'django.contrib.
admindocs'
 # to INSTALLED_APPS to enable admin documentation:
 # (r'^admin/doc/', include('django.contrib.admindocs.urls')),

 # Uncomment the next line to enable the admin:
 (r'^admin/', include(admin.site.urls)),
)

When this is done, it is time to run the application. cd into the main GeoDjango
project directory and type:

python manage.py runserver

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[386]

This will start up the Django server for your project. Open a web browser
and navigate to the following URL:

http://127.0.0.1:8000/admin/shared

You should see the Django administration Log in page as shown in the
following screenshot:

Enter the username and password for the superuser you created earlier, and you will
see the main admin interface for the ShapeEditor.shared application as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[387]

Let's use this admin interface to create a dummy shapefile. Click on the Add link on
the Shapefiles row, and you will be presented with a basic input screen for entering
a new shapefile:

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[388]

Enter some dummy values into the various fields (it doesn't matter what you enter),
and click on the Save button to save the new Shapefile object into the database.
A list of the shapefiles that are present in the database will be shown. At the moment,
there is only the shapefile you just created:

As you can see, the new shapefile object has been given a rather unhelpful label:
Shapefile object. This is because we haven't yet told Django what textual label
to use for a shapefile (or any of our other database objects). To fix this, edit the
shared.models file and add the following method to the end of the Shapefile
class definition:

def __unicode__(self):
 return self.filename

The __unicode__ method returns a human-readable summary of the Shapefile
object's contents. In this case, we are showing the filename associated with the
shapefile. If you then reload the web page, you can see that the shapefile now
has a useful label:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[389]

Go ahead and add the __unicode__ methods to the other model objects as well:

class Attribute(models.Model):
 ...
 def __unicode__(self):
 return self.name

class Feature(models.Model):
 ...
 def __unicode__(self):
 return str(self.id)

class AttributeValue(models.Model):
 ...
 def __unicode__(self):
 return self.value

While this may seem like busywork, it's actually quite useful to have your database
objects able to describe themselves. If you wanted to, you could further customize
the admin interface, for example by showing the attributes and features associated
with the selected shapefile. For now, though, let's take a look at GeoDjango's built-in
geometry editors.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[390]

Go back to the shared application's administration page (by clicking on the Shared
hyperlink near the top of the window), and click on the Add button in the Features
row. As with the shapefile, you will be asked to enter the details for a new feature.
This time, however, the admin interface will use a slippy map to enter each of the
different geometry types supported by the Feature object:

Obviously, having multiple slippy maps like this isn't quite what we want, and if we
wanted we could set up a custom GeoModelAdmin subclass to avoid this, but that's
not important right now. Instead, try selecting the shapefile with which you want to
associate this feature by choosing your shapefile from the pop-up menu, and then
scroll down to the Geom Multipolygon field and try adding a couple of polygons to
the map.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[391]

To do this, click on the map to add points to the current polygon, or hold down the
Shift key and click to finish the current polygon. The interface can be a bit confusing
at first, but it's certainly usable. We'll look at the various options for editing polygons
later. For now, just click on Save to save your new feature. If you edit it again, you'll
see your saved geometry (or geometries) once again on the slippy maps.

Make sure you add at least two polygons. The built-in admin view will show an
error if you try to save a single polygon into a MultiPolygon field. Note that this is
only a problem with the built-in admin view; when we write the editing code for
the ShapeEditor, this limitation won't apply.

That completes our tour of the admin interface. We won't be using this for end users,
as we don't want to require users to log in before making changes to the shapefile
data. We will, however, be borrowing some code from the admin application so that
end users can edit their shapefile features using a slippy map.

Summary
You have now finished implementing the first part of the ShapeEditor application.
Even at this early stage, you have made good progress, learning how GeoDjango
works, designing the application, and laying the foundations for the functionality
you will implement in the next two chapters.

In this chapter, you have learned the following:

•	 The GeoDjango extension to Django can be used to build sophisticated
geospatial web applications

•	 A Django project consists of a single database and multiple Django applications
•	 Breaking a complex project into a number of smaller applications and

making them all work together
•	 Django uses objects to represent records in the database
•	 A Django view is a Python function, which responds when a given

URL is called
•	 The mapping from URLs to views is controlled by a URLConf module

named urls.py defined at the project level
•	 Django uses a powerful templating system to simplify the creation of

complex HTML pages

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together – a Complete Mapping System

[392]

•	 Django allows you to define forms for handling the input of data
•	 Django form fields make it easy to accept and validate a variety of

different types of data
•	 GeoDjango provides its own set of form fields for editing geospatial data
•	 An application's data objects are defined in a file called models.py
•	 GeoDjango's built-in "admin" system allows you to view and edit geospatial

data using slippy maps

In Chapter 10, ShapeEditor – Implementing List View, Import, and Export, we will
implement a view to show the available shapefiles, as well as write rather complex
code for importing and exporting shapefiles.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing
List View, Import, and Export

In this chapter we continue our implementation of the ShapeEditor application.
We will start by implementing a "list" view to show the available shapefiles, and then
work through the details of importing and exporting shapefiles via a web interface.

In this chapter, we will learn the following:

•	 Displaying a list of records using a Django template
•	 Dealing with the complexities of shapefile data, including issues with

geometries and attribute data types
•	 Importing a shapefile's data using a web interface
•	 Exporting a shapefile using a web interface

Let's start by implementing the view the user will see when they start running
the ShapeEditor.

Implementing the "list shapefiles" view
When the user first opens the ShapeEditor application, we want them to see a list
of the previously-uploaded shapefiles, with "import", "edit", "export", and "delete"
options. Let's build this list view, which acts as the starting point for the entire
ShapeEditor application.

This view is going to be part of the "editor" application, so we first need to create
this application within our Django project. To do this, cd into the shapeEditor
project directory and type the following:

python manage.py startapp editor

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[394]

As usual, Django places the application in the top-level directory, making it
a reusable application. We need to move it into our shapeEditor directory
so that it becomes specific to our project. Either move the directory manually,
or use the following terminal command:

mv editor shapeEditor

We now need to add our new application to the project. Edit the settings.py
module, and add the following line to the end of the INSTALLED_APPS list:

 'shapeEditor.editor',

Because the editor is going to support various URLs, we will want to give the editor
its own URLConf module. To do this, create a new file in the shapeEditor/editor
directory named urls.py, and enter the following into this file:

URLConf for the shapeEditor.editor application.

from django.conf.urls import patterns, url

urlpatterns = patterns('shapeEditor.editor.views',
 url(r'^$', 'list_shapefiles'),
)

This URLConf is going to handle all the URLs for the editor application. At present
we have just one entry, that maps the top-level URL (defined using the r'^$'
regular expression, which matches an empty string) to the list_shapefiles()
view function.

We next need to edit the top-level urls.py module so that the editor application's
URLs will be included in the project. Change the top-level urls.py module (at
shapeEditor/urls.py) to look like this:

from django.conf.urls.defaults import patterns, include, url
from django.contrib.gis import admin
admin.autodiscover()

urlpatterns = patterns('',
 url(r'^editor/', include('shapeEditor.editor.urls')),
)

urlpatterns += patterns('',
 url(r'^admin/', include(admin.site.urls)),
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[395]

Notice that we've now got two separate sets of URL patterns, one that places all
of the shapeEditor.editor application's views into the editor URL, and another
that places the django.contrib.gis.admin application's views into the admin
URL. This is a very convenient way of splitting up a project's URLs, so that each
application has its own section within the URL namespace.

Now that we've set up our URL, let's write the view to go with it. We'll start by
creating a very simple implementation of the list_shapefiles() view, just to
 make sure it works. Open the views.py module in the editor directory and
change this file to look like this:

from django.http import HttpResponse

def list_shapefiles(request):
 return HttpResponse("in list_shapefiles")

If it isn't already running, start up the GeoDjango web server. To do this,
open a command-line window, cd into the geodjango project directory,
and type the following:

python manage.py runserver

Then open your web browser and navigate to the following URL:

http://127.0.0.1:8000/editor

All going well, you should see in list_shapefiles appear on the web page. This tells
you that you've successfully created the list_shapefiles() view function and
have correctly set up the URLConf mappings to point to this view.

We now want to create the view which will display the list of shapefiles. To do so,
we'll make use of a Django template. Edit the views.py module again, and change
this module's contents to look like this:

from django.http import HttpResponse
from django.shortcuts import render
from shapeEditor.shared.models import Shapefile

def list_shapefiles(request):
 shapefiles = Shapefile.objects.all().order_by("filename")
 return render(request, "list_shapefiles.html",
 {'shapefiles' : shapefiles})

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[396]

The list_shapefiles() view function now does two things:

•	 It loads the list of all Shapefile objects from the database into memory,
sorted by filename

•	 It passes this list to a Django template (in the file list_shapefiles.html),
which is rendered into an HTML web page and returned back to the caller

Let's go ahead and create the list_shapefiles.html template. Create a directory
called templates within the editor directory, and create a new file in this directory
named list_shapefiles.html. This file should have the following contents:

<html>
 <head>
 <title>ShapeEditor</title>
 </head>
 <body>
 <h1>ShapeEditor</h1>
{% if shapefiles %}
 Available Shapefiles:
 <table border="0" cellspacing="0" cellpadding="5"
 style="padding-left:20px">
 {% for shapefile in shapefiles %}
 <tr>
 <td>
 {{ shapefile.filename
}}
 </td>
 <td> </td>
 <td>

 Edit

 </td>
 <td> </td>
 <td>

 Export

 </td>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[397]

 <td> </td>
 <td>

 Delete

 </td>
 </tr>
 {% endfor %}
 </table>
{% endif %}
 <button type="button"
 onClick='window.location="/editor/import";'>
 Import New Shapefile
 </button>
 </body>
</html>

This template works as follows:

•	 If the shapefiles list is not empty, it creates an HTML table to display
the list of shapefiles

•	 For each entry in the shapefiles list, a new row in the table is created
•	 Each table row consists of the shapefile's filename (in monospaced text),

along with Edit, Export, and Delete hyperlinks
•	 Finally, an Import New Shapefile button is displayed at the bottom

We'll look at the hyperlinks used in this template shortly, but for now just create
the file, make sure the Django server is running, and reload your web browser.
You should see the following page:

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[398]

As you can see, the shapefile we created earlier in the admin interface is
shown, along with the relevant hyperlinks and buttons to access the rest
of the ShapeEditor's functionality:

•	 The Edit hyperlink will take the user to the /editor/edit/1 URL,
which will let the user edit the shapefile with the given record ID

•	 The Export hyperlink will take the user to the /exporter/export/1 URL,
which will let the user download a copy of the shapefile from the server

•	 The Delete hyperlink will take the user to the /editor/delete/1 URL,
which will let the user delete the given shapefile

•	 The Import New Shapefile button will take the user to the /importer/
import URL, which will let the user upload a new shapefile to the server

You can explore these URLs by clicking on them if you want—they won't do
anything other than display an error page, but you can see how the URLs link the
various parts of the ShapeEditor's functionality together. You can also take a detailed
look at the Django error page, which can be quite helpful in tracking down bugs.

Now that we have a working first page, let's start implementing the core
functionality of the ShapeEditor application. We'll start with the logic required
to import a shapefile.

Importing shapefiles
The process of importing a shapefile involves the following steps:

1.	 Displaying a form prompting the user to upload the shapefile's ZIP archive.
2.	 Decompressing the ZIP file to extract the uploaded shapefile.
3.	 Opening the shapefile and reading the data out of it into the database.
4.	 Deleting the temporary files that we have created.

Because of the complexity of this process, we'll use a separate application called
shapefileIO to handle the behind-the-scenes logic of importing (and later, exporting)
the shapefile's contents. This allows us to implement the user interface for importing
shapefiles, without having to worry about these behind-the-scenes details.

Let's start by creating the basic framework for the shapefileIO application. Using a
terminal window, cd into the top-level directory and type the following:

python manage.py startapp shapefileIO

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[399]

Then move the shapefileIO directory into the shapeEditor sub-directory, like this:

mv shapefileIO shapeEditor

While shapefileIO is a standard Django application, it won't have a user interface.
Instead, it just defines various modules to be used by other parts of the system. For
this reason, you can delete the views.py module from this application's directory.
You can also delete the tests.py module, since we won't be defining any unit tests
for this application.

A Django application must have a models.py file and an __init__.py
file. The models.py module can be empty if you don't define any database
tables for the module, but it must exist or Django won't recognize the
package as being an application. The application also needs to be listed in
INSTALLED_APPS within the project's settings module.

Next, we need to add the shapefileIO application to the project. Edit the settings.
py module, and add the following line to the end of the INSTALLED_APPS list:

 'shapeEditor.shapefileIO',

Within the shapefileIO directory, create a new module named importer.py,
and enter the following into this file:

def import_data(shapefile, character_encoding):
 return "More to come..."

This function will attempt to import the contents of the compressed ZIP archive
defined by the shapefile parameter, using the given character encoding. If the
process fails, this function will return a suitable error message explaining what
went wrong. If it succeeds, the import_data() function will return None.

Now that we've defined the interface to our behind-the-scenes shapefile importer,
we can start to implement the user-interface aspects of importing a shapefile.
We'll start by defining a view function, and an associated Django form, to let the
user import a shapefile.

The "import shapefile" view function
Let's start by creating a placeholder for this view. Edit the editor application's urls.
py module and add a second entry to the shapeEditor.editor.views pattern list:

urlpatterns = patterns('shapeEditor.editor.views',
 (r'^$', 'list_shapefiles'),
 (r'^import$', 'import_shapefile'),
)

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[400]

Then edit the editor application's views.py module and add a dummy import_
shapefile() view function to respond to this URL:

def import_shapefile(request):
 return HttpResponse("More to come")

You can test this if you want: run the Django server, go to the main page and click
on the Import New Shapefile button. You should see the More to come message.

To let the user enter data, we're going to use a Django form. Forms are custom
classes that define the various fields, which will appear on the web page. In this
case, our form will have two fields: one to accept the uploaded file, and other to
select the character encoding from a pop-up menu. We're going to store this form
in a file named forms.py in the editor directory; go ahead and create this file,
and then edit it to look like this:

from django import forms

CHARACTER_ENCODINGS = [("ascii", "ASCII"),
 ("latin1", "Latin-1"),
 ("utf8", "UTF-8")]

class ImportShapefileForm(forms.Form):
 import_file = forms.FileField(label="Select a Zipped Shapefile")
 character_encoding = forms.ChoiceField(choices=CHARACTER_
ENCODINGS, initial="utf8")

Our form will contain two fields. The first field is a FileField, which accepts
uploaded files. We give this field a custom label which will be displayed in the
web page. For the second field we'll use a ChoiceField, which displays a pop-up
menu. Note that the CHARACTER_ENCODINGS list shows the various choices to display
in the pop-up list; each entry in this list is a (value, label) tuple, where label is
the string to be displayed and value is the actual value to be used for that field
when the user chooses this item from the list.

Now that we have created the form, go back to the editor application's views.py
module, and replace the implementation of the import_shapefile() view function
with the following:

def import_shapefile(request):
 if request.method == "GET":
 form = ImportShapefileForm()
 return render(request, "import_shapefile.html",
 {'form' : form,
 'err_msg' : None})

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[401]

 elif request.method == "POST":
 form = ImportShapefileForm(request.POST,
 request.FILES)
 if form.is_valid():
 shapefile = request.FILES['import_file']
 encoding = request.POST['character_encoding']

 err_msg = importer.import_shapefile(shapefile,
 encoding)

 if err_msg == None:
 return HttpResponseRedirect("/shape-editor")

 else:
 err_msg = None

 return render(request, "import_shapefile.html",
 {'form' : form,
 'err_msg' : err_msg})

Also, add the following import statements to the top of the module:

from django.http import HttpResponseRedirect
from shapeEditor.editor.forms import ImportShapefileForm
from shapeEditor.shapefileIO import importer

Let's take a look at what is happening here. The import_shapefile() function
will initially be called with an HTTP GET request; this will cause the function to
create a new ImportShapefileForm object, and then call the render() function
to display that form to the user. When the form is submitted, the import_
shapefile() function will be called with an HTTP POST request. In this case, the
ImportShapefileForm will be created with the submitted data (request.POST and
request.FILES), and the form will be checked to see that the entered data is valid.
If so, we extract the uploaded shapefile and the selected character encoding.

We then ask the shapefile importer to import the shapefile's data. This will return
an error message if something goes wrong. If there is no error, we redirect the user
back to the main /editor page so that the newly-imported shapefile can be shown.

If the form was not valid, or if the import process failed for some reason, we once
again call the render() function to display the form to the user, this time with an
appropriate error message. Note that Django will automatically display an error
message if there is a problem with the form.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[402]

To display the form to the user, we'll use a Django template and pass the form
object as a parameter. Let's create that template now; add a new file named
import_shapefile.html in the editor application's templates directory
and enter the following text into this file:

<html>
 <head>
 <title>ShapeEditor</title>
 </head>
 <body>
 <h1>Import Shapefile</h1>
{% if err_msg %}
 <i>{{ err_msg }}</i>
{% endif %}
 <form enctype="multipart/form-data" method="post"
 action="import">
 {{ form.as_p }}
 <input type="submit" value="Submit"/>
 <button type="button"
 onClick='window.location="/editor";'>
 Cancel
 </button>
 </form>
 </body>
</html>

As you can see, this template defines an HTML <form> and adds Submit and Cancel
buttons. The body of the form is not specified. Instead, we use {{ form.as_p }} to
render the form object as a series of <p> (paragraph) elements. Near the top of the
page, we also display the error message if there is one.

Let's test this out. Start up the Django web server if it is not already running,
open a web browser and navigate to the http://127.0.0.1:8000/editor URL.
Then click on the Import New Shapefile button. All going well, you should see
the following page:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[403]

If you attempt to submit the form without uploading anything, an error message
will appear saying that the import_file field is required. This is the default
error-handling for any form; by default, all fields are required. If you do select
a file for uploading, the importer will return the string More to come..., so this
message should appear near the top of the page.

Now that we've implemented the form itself, let's return to our shapefileIO
application and implement the logic needed to process the uploaded shapefile.

Extracting the uploaded shapefile
It is now time for us to write the body of our import_data() function. Go back
to the importer.py module within the shapefileIO application, and delete the
dummy return statement we added earlier.

When we use a form that includes a FileField, Django returns to us an
UploadedFile object representing the uploaded file. Our first task is to read the
contents of the UploadedFile object and store it in a temporary file on disk so
that we can work with it. Add the following lines to your import_data() function:

 fd,fname = tempfile.mkstemp(suffix=".zip")
 os.close(fd)

 f = open(fname, "wb")
 for chunk in shapefile.chunks():
 f.write(chunk)
 f.close()

As you can see, we use the tempfile module from the Python standard library to
create a temporary file, and then copy the contents of the shapefile object into it.

Because tempfile.mkstemp() returns both a file descriptor and a filename, we call
os.close(fd) to close the file descriptor. This allows us to reopen the file using
open() and write to it in the normal way.

We're now ready to open the temporary file and check that it is indeed a ZIP archive
containing the files which make up a shapefile. Here is how we can do this:

 if not zipfile.is_zipfile(fname):
 os.remove(fname)
 return "Not a valid zip archive."

 zip = zipfile.ZipFile(fname)

 required_suffixes = [".shp", ".shx", ".dbf", ".prj"]

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[404]

 has_suffix = {}
 for suffix in required_suffixes:
 has_suffix[suffix] = False

 for info in zip.infolist():
 extension = os.path.splitext(info.filename)[1].lower()
 if extension in required_suffixes:
 has_suffix[extension] = True

 for suffix in required_suffixes:
 if not has_suffix[suffix]:
 zip.close()
 os.remove(fname)
 return "Archive missing required "+suffix+" file."

Note that we use the Python standard library's zipfile module to check the
contents of the uploaded ZIP archive, and return a suitable error message
if something is wrong. We also delete the temporary file before returning
an error message, so that we don't leave temporary files lying around.

Finally, now that we know that the uploaded file is a valid ZIP archive containing
the files that make up a shapefile, we can extract these files and store them into a
temporary directory:

 shapefile_name = None
 dst_dir = tempfile.mkdtemp()
 for info in zip.infolist():
 if info.filename.endswith(".shp"):
 shapefile_name = info.filename

 dst_file = os.path.join(dst_dir, info.filename)
 f = open(dst_file, "wb")
 f.write(zip.read(info.filename))
 f.close()
 zip.close()

Note that we create a temporary directory to hold the extracted files before copying
the files into this directory. At the same time, we remember the name of the main
.shp file from the archive, as we'll need to use this name when we open the
shapefile.

Because we've used some of the Python standard library modules in this code,
you'll also need to add the following to the top of the module:

import os, os.path, tempfile, zipfile

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[405]

Importing the shapefile's contents
Now that we've extracted the shapefile's files out of the ZIP archive, we are ready to
import the data from the uploaded shapefile. The process of importing the shapefile's
contents involves the following steps:

1.	 Opening the shapefile.
2.	 Adding the Shapefile object to the database.
3.	 Defining the shapefile's attributes.
4.	 Storing the shapefile's features.
5.	 Storing the shapefile's attributes.

Let's work through these steps one at a time.

Open the shapefile
We will use the OGR library to open the shapefile:

 try:
 datasource = ogr.Open(os.path.join(dst_dir,
 shapefileName))
 layer = datasource.GetLayer(0)
 shapefileOK = True
 except:
 traceback.print_exc()
 shapefileOK = False

 if not shapefileOK:
 os.remove(fname)
 shutil.rmtree(dst_dir)
 return "Not a valid shapefile."

Once again, if something goes wrong we clean up our temporary files and return a
suitable error message. We're also using the traceback library module to display
debugging information in the web server's log, while returning a friendly error
message that will be shown to the user.

In this program, we will be using OGR directly to read and
write shapefiles. GeoDjango provides its own Python interface
to OGR in the contrib.gis.gdal package, but unfortunately
GeoDjango's version doesn't implement writing to shapefiles.
Because of this, we will use the OGR Python bindings directly,
and require you to install OGR separately.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[406]

Because this code uses a couple of standard library modules, as well as the OGR
library, we'll have to add the following import statements to the top of the
importer.py module:

import shutil, traceback
from osgeo import ogr

Add the Shapefile object to the database
Now that we've successfully opened the shapefile, we are ready to read the data out
of it. First off, we'll create the Shapefile object to represent this imported shapefile:

 src_spatial_ref = layer.GetSpatialRef()
 shapefile = Shapefile(filename=shapefile_name,
 srs_wkt=
 src_spatial_ref.ExportToWkt(),
 geom_type="...",
 encoding=character_encoding)
 shapefile.save()

As you can see, we get the spatial reference from the shapefile's layer, and then store
the shapefile's name, spatial reference, and encoding into a Shapefile object, which
we then save into the database. There's only one glitch: what value are we going to
store into the geom_type field?

The geom_type field is supposed to hold the name of the geometry type that this
shapefile holds. While the OGR shapefile is able to tell us the geometry type as a
numeric constant, the OGRGeometryTypeToName() function in OGR is not exposed by
the Python bindings, so we can't get the name of the geometry directly using OGR.

To work around this, we'll implement our own version of
OGRGeometryTypeToName(). Because we're going to have a several of these
functions, we'll store this in a separate module, which we'll call utils.py. Go into
the shared application directory and create a new file called utils.py. Edit this file,
and add the following to it:

from osgeo import ogr

def ogr_type_to_geometry_mname(ogr_type):
 return {ogr.wkbUnknown : 'Unknown',
 ogr.wkbPoint : 'Point',
 ogr.wkbLineString : 'LineString',
 ogr.wkbPolygon : 'Polygon',
 ogr.wkbMultiPoint : 'MultiPoint',
 ogr.wkbMultiLineString : 'MultiLineString',
 ogr.wkbMultiPolygon : 'MultiPolygon',
 ogr.wkbGeometryCollection : 'GeometryCollection',

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[407]

 ogr.wkbNone : 'None',
 ogr.wkbLinearRing : 'LinearRing'}.get(ogr_type)

Every self-respecting Python program should have a utils.py
module; it's about time we added one in the ShapeEditor.

Now that we have our own version of OGRGeometryTypeToName(), we can use this
to set the geom_type field in the Shapefile object. Go back to the importer.py
module and make the following changes to the end of your import_data() function:

 src_spatial_ref = layer.GetSpatialRef()

 geometry_type = layer.GetLayerDefn().GetGeomType()
 geometry_name = \
 utils.ogr_type_to_geometry_name(geometry_type)

 shapefile = Shapefile(filename=shapefileName,
 srs_wkt=
 src_spatial_ref.ExportToWkt(),
 geom_type=geometry_name,
 encoding=character_encoding)
 shapefile.save()

To make this code work, we'll have to add the following import statements to the
top of the importer.py module:

from shapeEditor.shared.models import Shapefile
from shapeEditor.shared import utils

Define the shapefile's attributes
Now that we've created the Shapefile object to represent the imported shapefile,
our next task is to create Attribute objects describing the shapefile's attributes. We
can do this by querying the OGR shapefile; add the following code to the end of the
import_data() function:

 attributes = []
 layer_def = layer.GetLayerDefn()
 for i in range(layer_def.GetFieldCount()):
 field_def = layer_def.GetFieldDefn(i)
 attr = Attribute(shapefile=shapefile,
 name=field_def.GetName(),
 type=field_def.GetType(),
 width=field_def.GetWidth(),
 precision=field_def.GetPrecision())
 attr.save()
 attributes.append(attr)

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[408]

Note that, as well as saving the Attribute objects into a database, we also create a
separate list of these attributes in a variable named attributes. We'll use this later
on, when we import the attribute values for each feature.

Don't forget to add the following import statement to the top of the module:

from geodjango.shapeEditor.models import Attribute

Store the shapefile's features
Our next task is to extract the shapefile's features and store them as Feature objects
in the database. Because the shapefile's features can be in any spatial reference,
we need to transform them into our internal spatial reference system (EPSG 4326,
unprojected latitude, and longitude values) before we can store them. To do this,
we'll use an OGR CoordinateTransformation() object.

Here is how we're going to scan through the shapefile's features, extract the geometry
from each feature, transform it into the EPSG 4326 spatial reference, and convert it into
a GeoDjango GEOS geometry object so that we can store it into the database:

 dst_spatial_ref = osr.SpatialReference()
 dst_spatial_ref.ImportFromEPSG(4326)

 coord_transform = osr.CoordinateTransformation(src_spatial_ref,
 dst_spatial_ref)

 for i in range(layer.GetFeatureCount()):
 src_feature = layer.GetFeature(i)
 src_geometry = src_feature.GetGeometryRef()
 src_geometry.Transform(coord_transform)
 geometry = GEOSGeometry(src_geometry.ExportToWkt())

So far so good; we now have a GEOS geometry object which we can store into the
Feature object. Unfortunately, we are now faced with a couple of problems. First,
the inability of Shapefiles to distinguish between Polygons and MultiPolygons (and
between LineStrings and MultiLineStrings) as described in the previous chapter means
that we have to wrap a Polygon geometry inside a MultiPolygon, and a LineString
geometry inside a MultiLineString, so that all the features in the shapefile will have the
same geometry type. This is kind of messy, so we'll write a utils.py function to do
this. Add the following line to the end of your import_data() function (along with
the code above, if you haven't already typed this in) to wrap the geometry:

 geometry = utils.wrap_geos_geometry(geometry)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[409]

The second problem we have is that we need to decide which particular field within
the Feature object will hold our geometry. When we defined the Feature object, we
had to create separate geometry fields for each of the geometry types; we now need
to decide which of these fields will be used to store a given type of geometry.

Because we sometimes have to wrap up geometries, we can't simply use the
geometry name to identify the field. This is another messy function that we'll
implement in utils.py. For now, just add the following line to the end of your
import_data() function:

 geometry_field = utils.calc_geometry_field(
 geometry_name)

Now that we've sorted out these problems, we're finally ready to store the feature's
geometry into a Feature object within the database:

 args = {}
 args['shapefile'] = shapefile
 args[geometry_field] = geometry
 feature = Feature(**args)
 feature.save()

Note that we use keyword arguments (**args) to create the Feature object. This lets
us store the geometry into the correct field of the Feature object with a minimum
of fuss. The alternative, using a series of if...elif...elif statements would have
been much more tedious.

Before we move on, we'd better implement those two extra functions in the utils.
py module. Here is the implementation for the wrap_geos_geometry() function:

def wrap_geos_Geometry(geometry):
 if geometry.geom_type == "Polygon":
 return MultiPolygon(geometry)
 elif geometry.geom_type == "LineString":
 return MultiLineString(geometry)
 else:
 return geometry

Here is the implementation for the calc_geometry_field() function:

def calc_geometry_field(geometry_type):
 if geometry_type == "Polygon":
 return "geom_multipolygon"
 elif geometry_type == "LineString":
 return "geom_multilinestring"
 else:
 return "geom_" + geometry_type.lower()

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[410]

You're also going to have to add the following import statement to the top
of the utils.py module:

from django.contrib.gis.geos.collections \
 import MultiPolygon, MultiLineString

Finally, in the importer.py module, you'll have to add the following
import statements:

from django.contrib.gis.geos.geometry import GEOSGeometry
from osgeo import osr
from geodjango.shapeEditor.models import Feature

Store the shapefile's attributes
Now that we've dealt with the feature's geometry, we can now look at importing the
feature's attributes. The basic process involves iterating over the attributes, extracting
the attribute value from the OGR feature, creating an AttributeValue object to store
the value, and then saving it into the database:

 for attr in attributes:
 value = ...
 attr_value = AttributeValue(feature=feature,
 attribute=attr,
 value=value)
 attr_value.save()

The challenge is to extract the attribute value from the feature. Because the OGR
Feature object has different methods to extract different types of field values,
we are going to have to check for the different field types, call the appropriate
GetFieldAs() method, convert the resulting value to a string, and then store this
string into the AttributeValue object. NULL values will also have to be handled
appropriately. In addition, we have to deal with character encoding; any string
values will have to be converted from the shapefile's character encoding into
Unicode text so that they can be saved into the database. Because of this complexity,
we'll define a new utils.py function to do the hard work, and simply call that
function from import_data().

Note that, because the user might have selected the wrong character encoding for
the shapefile, the process of extracting the attribute value can actually fail. Because
of this, we have to add error-handling to our code. To support error-handling, our
utility function, get_ogr_feature_attribute(), will return a (success, result)
tuple, where success will be true if and only if the attribute was successfully
extracted, and result will either be the extracted attribute value (as a string),
or an error message explaining why the operation failed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[411]

Let's add the necessary code to our import_data() function to store the
attribute values into the database and gracefully handle any conversion
errors that might occur:

 for attr in attributes:
 success,result = utils.getOGRFeatureAttribute(
 attr, srcFeature,
 character_encoding)
 if not success:
 os.remove(fname)
 shutil.rmtree(dst_dir)
 shapefile.delete()
 return result

 attr_value = AttributeValue(feature=feature,
 attribute=attr,
 value=result)
 attr_value.save()

Note that we pass the Attribute object, the OGR feature, and the character encoding
to the get_ogr_feature_attribute() function. If an error occurs, we clean up the
temporary files, delete the shapefile we created earlier, and return the error message
back to the caller. If the attribute was successfully extracted, we create a new
AttributeValue object with the attribute's value, and save it into the database.

Note that we use shapefile.delete() to remove the partially-
imported shapefile from the database. By default, Django will also
automatically delete any records that are related to the record being
deleted through a ForeignKey field. This means that the Shapefile
object will be deleted, along with all the related Attribute,
Feature, and AttributeValue objects. With one line of code, we
can completely remove all references to the shapefile's data.

Now let's implement that get_ogr_feature_attribute() function. Add the
following to utils.py:

def getOGRFeatureAttribute(attr, feature, encoding):
 attr_name = str(attr.name)

 if not feature.IsFieldSet(attr_name):
 return (True, None)

 needs_encoding = False
 if attr.type == ogr.OFTInteger:
 value = str(feature.GetFieldAsInteger(attr_name))

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[412]

 elif attr.type == ogr.OFTIntegerList:
 value = repr(feature.GetFieldAsIntegerList(attr_name))
 elif attr.type == ogr.OFTReal:
 value = feature.GetFieldAsDouble(attr_name)
 value = "%*.*f" % (attr.width, attr.precision, value)
 elif attr.type == ogr.OFTRealList:
 values = feature.GetFieldAsDoubleList(attr_name)
 str_values = []
 for value in values:
 str_values.append("%*.*f" % (attr.width,
 attr.precision,
 value))
 value = repr(str_Values)
 elif attr.type == ogr.OFTString:
 value = feature.GetFieldAsString(attr_name)
 needs_encoding = True
 elif attr.type == ogr.OFTStringList:
 value = repr(feature.GetFieldAsStringList(attr_name))
 needs_encoding = True
 elif attr.type == ogr.OFTDate:
 parts = feature.GetFieldAsDateTime(attr_name)
 year,month,day,hour,minute,second,tzone = parts
 value = "%d,%d,%d,%d" % (year,month,day,tzone)
 elif attr.type == ogr.OFTTime:
 parts = feature.GetFieldAsDateTime(attr_name)
 year,month,day,hour,minute,second,tzone = parts
 value = "%d,%d,%d,%d" % (hour,minute,second,tzone)
 elif attr.type == ogr.OFTDateTime:
 parts = feature.GetFieldAsDateTime(attr_name)
 year,month,day,hour,minute,second,tzone = parts
 value = "%d,%d,%d,%d,%d,%d,%d,%d" % (year,month,day,
 hour,minute,
 second,tzone)
 else:
 return (False, "Unsupported attribute type: " +
 str(attr.type))

 if needs_encoding:
 try:
 value = value.decode(encoding)
 except UnicodeDecodeError:
 return (False, "Unable to decode value in " +
 repr(attr_name) + " attribute. " +
 "Are you sure you're using the right " +
 "character encoding?")

 return (True, value)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[413]

There's a lot of ugly code here, relating to the extraction of different field types from
the OGR feature. Don't worry too much about these details; the basic concept is that
we extract the attribute's value, convert it to a string, and perform character encoding
on the string if necessary.

Finally, we'll have to add the following import statement to the top of the
importer.py module:

from geodjango.shapeEditor.models import AttributeValue

Cleaning up
Now that we've imported the shapefile's data, all that's left is to clean up our
temporary files and tell the caller that the import succeeded. To do this, simply
add the following lines to the end of your import_data() function:

 os.remove(fname)
 shutil.rmtree(dst_dir)
 return None

That's it!

To test all this out, grab a copy of the TM_WORLD_BORDERS-0.3 shapefile in ZIP file
format. You can either use the original ZIP archive that you downloaded from the
World Borders Dataset website, or you can recompress the shapefile into a new ZIP
archive. Then run the ShapeEditor, click on the Import New Shapefile button, click
on Browse... and select the ZIP archive you want to import.

Because the World Borders Dataset's features use the Latin1 character encoding, you
need to make sure that this encoding is selected from the popup menu. Then click on
Submit, and wait a few seconds for the shapefile to be imported. All going well, the
world borders dataset will appear in the list of imported shapefiles:

If a problem occurs, check the error message to see what might be wrong.
Also, go back and make sure you have typed the code in exactly as described.
If it works, congratulations! You have just implemented the most difficult part
of the ShapeEditor. It gets easier from here.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[414]

Exporting shapefiles
Next, we need to implement the ability to export a shapefile. The process of
exporting a shapefile is basically the reverse of the "import" logic, and involves
the following steps:

1.	 Create an OGR shapefile to receive the exported data.
2.	 Save the features into the shapefile.
3.	 Save the attributes into the shapefile.
4.	 Compress the shapefile into a ZIP archive.
5.	 Delete our temporary files.
6.	 Send the ZIP file back to the user's web browser.

All this work will take place in the shapefileIO application, with help from some
utils.py functions. Before we begin, let's create an exporter module to handle the
exporting process. Go to the shapefileIO directory, and create a new module named
exporter.py. Initially, we're just going to add a dummy function to this module:

def export_data(shapefile):
 return "More to come..."

This function will take a desired Shapefile object, and return an HttpResponse
that can be returned by the view function. This HttpResponse object will send the
contents of the exported shapefile back to the user's web browser, where it can be
saved to disk.

Now let's create the view function that will call the exporter and return the HTTP
response back to the caller. Go to the editor application's views.py module, and
add the following new function:

def export_shapefile(request, shapefile_id):
 try:
 shapefile = Shapefile.objects.get(id=shapefile_id)
 except Shapefile.DoesNotExist:
 return HttpResponseNotFound()

 return exporter.export_data(shapefile)

This view function takes the record ID of the desired shapefile, loads the Shapefile
object into memory, and passes it to the export_data() function for processing. The
resulting HttpResponse object is then returned to the caller, allowing the exported
file to be downloaded to the user's computer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[415]

While we are editing this file, add the following additional import statements
to the top:

from django.http import HttpResponseNotFound
from shapeEditor.shapefileIO import exporter

Note that the export_shapefile() view function takes an additional parameter,
named shapefile_id. This parameter will be taken from the URL used to access
the view, so that for example if the user accesses the URL http://127.0.0.1:8000/
editor/export/1, the shapefile_id parameter will be set to the value 1.

This is done by adding a special type of entry to the editor applications urls.py
module. Edit this file, and add the following entry to the urlpatterns list:

url(r'^export/(?P<shapefile_id>\d+)$', 'export_shapefile'),

Our list_shapefiles.html template already makes use of this URL, adding the
shapefile's record ID to the URL when the user clicks on the Export hyperlink:

 Export

Now that we've written our view function, we can start to implement the
behind-the-scenes logic required to export and download the shapefile.
All of this will be implemented in the exporter.py module.

Defining the OGR shapefile
We'll use OGR to create the new shapefile that will hold the exported features.
Let's start by creating a temporary directory to hold the shapefile's contents;
replace your placeholder version of export_data() with the following:

def exportData(shapefile):
 dst_dir = tempfile.mkdtemp()
 dst_file = str(os.path.join(dst_dir, shapefile.filename))

Now that we've got somewhere to store the shapefile (and a filename for it),
we'll create a spatial reference for the shapefile to use, and set up the shapefile's
datasource and layer:

 dst_spatial_ref = osr.SpatialReference()
 dst_spatial_ref.ImportFromWkt(shapefile.srs_wkt)

 driver = ogr.GetDriverByName("ESRI Shapefile")
 datasource = driver.CreateDataSource(dst_file)
 layer = datasource.CreateLayer(str(shapefile.filename),
 dst_spatial_ref)

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[416]

Note that we're using str() to convert the shapefile's filename to
an ASCII string. This is because Django uses Unicode strings, but
OGR can't handle unicode filenames. We'll need to do the same
thing for the attribute names.

Now that we've created the shapefile itself, we next need to define the various fields
which will hold the shapefile's attributes:

 for attr in shapefile.attribute_set.all():
 field = ogr.FieldDefn(str(attr.name), attr.type)
 field.SetWidth(attr.width)
 field.SetPrecision(attr.precision)
 layer.CreateField(field)

Note how the information needed to define the field is taken directly from the
Attribute object; Django makes iterating over the shapefile's attributes easy.

That completes the definition of the shapefile. We're now ready to start saving
data into the newly-created shapefile.

Saving the features into the shapefile
Because the shapefile can use any valid spatial reference, we'll need to transform
the shapefile's features from the spatial reference used internally (EPSG 4326) into
the shapefile's own spatial reference. Before we can do this, we'll need to set up an
osr.CoordinateTransformation object to do the transformation:

 src_spatial_ref = osr.SpatialReference()
 src_spatial_ref.ImportFromEPSG(4326)

 coord_transform = osr.CoordinateTransformation(
 src_spatial_ref, dst_spatial_ref)

We'll also need to know which geometry field in the Feature object holds the
feature's geometry data:

 geom_field = \
 utils.calc_geometry_field(shapefile.geom_type)

With this information, we're ready to start exporting the shapefile's features:

 for feature in shapefile.feature_set.all():
 geometry = getattr(feature, geom_field)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[417]

Right away, however, we encounter a problem. If you remember when we
imported the shapefile, we had to "wrap" a Polygon or a LineString geometry into
a MultiPolygon or MultiLineString so that the geometry types would be consistent
in the database. Now that we're exporting the shapefile, we need to unwrap
the geometry so that features that have only one Polygon or LineString in their
geometries are saved as Polygons and LineStrings rather than MultiPolygons and
MultiLineStrings. We'll use a utils.py function to do this unwrapping:

 geometry = utils.unwrap_geos_geometry(geometry)

We'll implement this utils.py function shortly.

Now that we've unwrapped the feature's geometry, we can go ahead and convert
it back into an OGR geometry again, transform it into the shapefile's own spatial
reference system, and create an OGR feature using that geometry:

 dst_geometry = ogr.CreateGeometryFromWkt(geometry.wkt)
 dst_geometry.Transform(coord_transform)

 dst_feature = ogr.Feature(layer.GetLayerDefn())
 dst_feature.SetGeometry(dst_geometry)

Finally, we need to add the feature to the layer and call the Destroy() method to
save the feature (and then the layer) into the shapefile:

 layer.CreateFeature(dst_feature)
 dst_feature.Destroy()

 datasource.Destroy()

Before we move on, let's add our new unwrap_geos_geometry() function to utils.
py. This code is quite straightforward, pulling a single Polygon or LineString object
out of a MultiPolygon or MultiLineString if they contain only one geometry:

def unwrap_geos_geometry(geometry):
 if geometry.geom_type in ["MultiPolygon",
 "MultiLineString"]:
 if len(geometry) == 1:
 geometry = geometry[0]

 return geometry

So far so good; we've created the OGR feature, unwrapped the feature's geometry,
and stored everything into the shapefile. Now we're ready to save the feature's
attribute values.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[418]

Saving the attributes into the shapefile
Our next task is to save the attribute values associated with each feature. When we
imported the shapefile, we extracted the attribute values from the various OGR data
types and converted them into strings so they could be stored into the database. This
was done using the utils.get_ogr_feature_attribute() function. We now have
to do the opposite: storing the string value into the OGR attribute field. As before,
we'll use a utils.py function to do the hard work; add the following highlighted
lines to the bottom of your export_data() function:

 ...

 dst_feature = ogr.Feature(layer.GetLayerDefn())
 dst_feature.SetGeometry(dst_geometry)

 for attr_value in feature.attributevalue_set.all():
 utils.set_ogr_feature_attribute(
 attr_value.attribute,
 attr_value.value,
 dst_feature,
 shapefile.encoding)

 layer.CreateFeature(dst_feature)
 dst_feature.Destroy()

 datasource.Destroy()

You may be wondering what feature.attributevalue_set.
all() does. Because the AttributeValue object includes a foreign
key linking each attribute value to the associated Feature object, the
Feature object can refer to the set of attribute values that link back
to it, using attributevalue_set. Using this technique, we can
scan through the list of attribute values for a feature using feature.
attributevalue_set.all().
If you want to learn more about these "reverse" foreign key lookups,
see https://docs.djangoproject.com/en/dev/topics/db/
queries/#related-objects.

Now let's implement the set_ogr_feature_attribute() function within utils.
py. As with the get_ogr_feature_attribute() function, set_ogr_feature_
attribute() is rather tedious but straightforward: we have to deal with each OGR
data type in turn, processing the string representation of the attribute value and calling
the appropriate SetField() method to set the field's value. Here is the relevant code:

def set_ogr_feature_attribute(attr, value, feature, encoding):
 attr_name = str(attr.name)
 if value == None:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[419]

 feature.UnsetField(attr_name)
 return

 if attr.type == ogr.OFTInteger:
 feature.SetField(attr_name, int(value))
 elif attr.type == ogr.OFTIntegerList:
 integers = eval(value)
 feature.SetFieldIntegerList(attr_name, integers)
 elif attr.type == ogr.OFTReal:
 feature.SetField(attr_name, float(value))
 elif attr.type == ogr.OFTRealList:
 floats = []
 for s in eval(value):
 floats.append(eval(s))
 feature.SetFieldDoubleList(attr_name, floats)
 elif attr.type == ogr.OFTString:
 feature.SetField(attr_name, value.encode(encoding))
 elif attr.type == ogr.OFTStringList:
 strings = []
 for s in eval(value):
 strings.append(s.encode(encoding))
 feature.SetFieldStringList(attr_name, strings)
 elif attr.type == ogr.OFTDate:
 parts = value.split(",")
 year = int(parts[0])
 month = int(parts[1])
 day = int(parts[2])
 tzone = int(parts[3])
 feature.SetField(attr_name, year, month, day,
 0, 0, 0, tzone)
 elif attr.type == ogr.OFTTime:
 parts = value.split(",")
 hour = int(parts[0])
 minute = int(parts[1])
 second = int(parts[2])
 tzone = int(parts[3])
 feature.SetField(attr_name, 0, 0, 0,
 hour, minute, second, tzone)
 elif attr.type == ogr.OFTDateTime:
 parts = value.split(",")
 year = int(parts[0])
 month = int(parts[1])
 day = int(parts[2])
 hour = int(parts[3])
 minute = int(parts[4])
 second = int(parts[5])
 tzone = int(parts[6])
 feature.SetField(attr_name, year, month, day,
 hour, minute, second, tzone)

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[420]

Compressing the shapefile
Now that we've exported the desired data into an OGR shapefile, we can compress
it into a ZIP archive. Go back to the exporter.py module and add the following to
the end of your export_data() function:

 temp = tempfile.TemporaryFile()
 zip = zipfile.ZipFile(temp, 'w', zipfile.ZIP_DEFLATED)

 shapefile_base = os.path.splitext(dstFile)[0]
 shapefile_name = os.path.splitext(shapefile.filename)[0]

 for fName in os.listdir(dst_dir):
 zip.write(os.path.join(dst_dir, fName), fName)

 zip.close()

Note that we use a temporary file, named temp, to store the ZIP archive's
contents. We'll be returning temp to the user's web browser once the export
process has finished.

Deleting temporary files
We next have to clean up after ourselves by deleting the shapefile that we
created earlier:

 shutil.rmtree(dst_dir)

Note that we don't have to remove the temporary ZIP archive, as that's done
automatically for us by the tempfile module when the file is closed.

Returning the ZIP archive to the user
The last step in exporting the shapefile is to send the ZIP archive to the user's web
browser so that it can be downloaded onto the user's computer. To do this, we'll
create an HttpResponse object which includes a Django FileWrapper object to
attach the ZIP archive to the HTTP response:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[421]

 f = FileWrapper(temp)
 response = HttpResponse(f, content_type="application/zip")
 response['Content-Disposition'] = \
 "attachment; filename=" + shapefileName + ".zip"
 response['Content-Length'] = temp.tell()
 temp.seek(0)
 return response

As you can see, we set up the HTTP response to indicate that we're returning a
file attachment. This forces the user's browser to download the file rather than
trying to display it. We also use the original shapefile's name as the name of the
downloaded file.

This completes the definition of the export_data() function. There's only one
more thing to do: add the following import statements to the top of the exporter.
py module:

from django.http import HttpResponse
from django.core.servers.basehttp import FileWrapper

We've finally finished implementing the "Export Shapefile" feature. Test it out
by running the server and clicking on the Export hyperlink beside one of your
shapefiles. All going well, there'll be a slight pause and you'll be prompted to
save your shapefile's ZIP archive to disk:

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Implementing List View, Import, and Export

[422]

Summary
In this chapter, we continued our implementation of the ShapeEditor by adding three
important functions: the "list" view, and the ability to import and export shapefiles.
While these aren't very exciting features, they are a crucial part of the ShapeEditor.

In the process of implementing these features, we have learned the following:

•	 Using Django's templating language to display a list of records within
a web page.

•	 Using the zipfile standard library module to extract the contents of an
uploaded shapefile before opening that shapefile using OGR.

•	 You will need to "wrap" Polygon and LineString geometries when importing
data from a shapefile into a PostGIS database, to avoid problems caused by a
shapefile's inability to distinguish between Polygons and MultiPolygons, and
between LineStrings and MultiLineStrings.

•	 When you call the object.delete() method, Django automatically deletes
all the linked records for you, simplifying the process of removing a record
and all its associated data.

•	 You can use OGR to create a new shapefile, and the zipfile library module to
compress it, so that you can export geospatial data using a web interface.

With this functionality out of the way, we can now turn our attention to the most
interesting parts of the ShapeEditor: the code that displays and lets the user edit
geometries using a slippy map interface. This will be the main focus for the final
chapter of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and
Editing Features

In this final chapter, we will implement the remaining features of the ShapeEditor
application. A large part of this chapter will involve the use of OpenLayers and the
creation of a Tile Map Server so that we can display a map with all the shapefile's
features on it, and allow the user to click on a feature to select it. We'll also implement
the ability to add, edit, and delete features, and conclude with a exploration of how
the ShapeEditor can be used to work with geospatial data, and how it can serve as
the springboard for your own geospatial development efforts.

In this chapter, we will learn:

•	 How to implement a Tile Map Server using Mapnik and GeoDjango
•	 How to use OpenLayers to display a slippy map on a web page
•	 How to write a custom click-handler for OpenLayers
•	 How to use AJAX requests within OpenLayers
•	 How to perform spatial queries using GeoDjango
•	 How to use GeoDjango's built-in editing widgets in your own application
•	 How to edit geospatial data using GeoDjango's built-in editing widgets
•	 How to customize the interface for GeoDjango's editing widgets
•	 How to add and delete records in a Django web application

Let's get started with the code that lets the user select the feature to be edited.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[424]

Selecting a feature to edit
As we discussed in the section on designing the ShapeEditor, GeoDjango's built-in
map widgets can only display a single feature at a time. In order to display a map
with all the shapefile's features on it, we will have to use OpenLayers directly, along
with a Tile Map Server and a custom AJAX-based click handler. The basic workflow
will look like this:

Let's start by implementing the Tile Map Server, and then see what's involved in
using OpenLayers, along with a custom click-handler and some server-side AJAX
code, to respond when the user clicks on the map.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[425]

Implementing Tile Map Server
As we discussed in Bonus chapter, Web Frameworks for Python Geospatial Development
(Download link available in preface) the Tile Map Server Protocol is a simple
RESTful protocol for serving map tiles. The TMS protocol includes calls to identify
the various maps which can be displayed, along with information about the available
map tiles, as well as providing access to the map tile images themselves.

Let's briefly review the terminology used by the TMS protocol:

•	 A Tile Map Server is the overall web server which is implementing the
TMS protocol.

•	 A Tile Map Service provides access to a particular set of maps. There can
be multiple Tile Map Services hosted by a single Tile Map Server.

•	 A Tile Map is a complete map of all or part of the Earth's surface,
displaying a particular set of features or styled in a particular way.
A Tile Map Service can provide access to more than one Tile Map.

•	 A Tile Set is a collection of tiles displaying a given Tile Map at a given
zoom level.

•	 A Tile is a single map image representing a small portion of the map being
displayed by the Tile Set.

This may sound confusing, but it's actually not too bad. We'll be implementing a Tile
Map Server with just one Tile Map Service, which we'll call the "ShapeEditor Tile Map
Service". There will be one Tile Map for each shapefile that has been uploaded, and
we'll support Tile Sets for a standard range of zoom levels. Finally, we'll use Mapnik
to render the individual Tiles within the Tile Set.

Following the Django principle of breaking a large and complex system down
into separate self-contained applications, we will implement the Tile Map Server
as a separate application within the shapeEditor project. Start by cd'ing into the
shapeEditor project directory and type the following:

python manage.py startapp tms

This creates our tms application in the top-level directory, making it a reusable
application. Move the newly-created directory into the shapeEditor sub-directory,
either using the mouse or by typing the following command:

mv tms shapeEditor

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[426]

This makes the Tile Map Server specific to our project. We then have to enable the
application by editing our project's settings.py module and adding the following
entry to the end of the INSTALLED_APPS list:

 'shapeEditor.tms',

Next, we want to make our Tile Map Server's URLs available as part of the
shapeEditor project. To do this, edit the global urls.py module (located inside
the main shapeEditor directory), and add the following highlighted line to the
first urlpatterns = ... statement:

urlpatterns = patterns('',
 url(r'^editor/', include('shapeEditor.editor.urls')),
 url(r'^tms/', include('shapeEditor.tms.urls')),
)

We now want to define the individual URLs provided by our Tile Map Server
application. To do this, create a new module named urls.py inside the tms
directory, and enter the following into this module:

URLConf for the shapeEditor.tms application.

from django.conf.urls import patterns, url

urlpatterns = patterns('shapeEditor.tms.views',
 url(r'^$',
 'root'), # "/tms" calls root()
 url(r'^(?P<version>[0-9.]+)$',
 'service'), # eg, "/tms/1.0" calls service(version="1.0")
 url(r'^(?P<version>[0-9.]+)/' +
 r'(?P<shapefile_id>\d+)$',
 'tileMap'), # eg, "/tms/1.0/2" calls
 # tileMap(version="1.0", shapefile_id=2)
 url(r'^(?P<version>[0-9.]+)/' +
 r'(?P<shapefile_id>\d+)/(?P<zoom>\d+)/' +
 r'(?P<x>\d+)/(?P<y>\d+)\.png$',
 'tile'), # eg, "/tms/1.0/2/3/4/5" calls
 # tile(version="1.0", shapefile_id=2, zoom=3, x=4,
y=5)
)

These URL patterns are more complicated than those we've used in the past,
because we're now extracting parameters from the URL. For example, consider
the following URL:

http://127.0.0.1:8000/tms/1.0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[427]

This will be matched by the second regular expression in our tms application's
urls.py module:

^(?P<version>[0-9.]+)$

This regular expression will extract the 1.0 portion of the URL and assign it to a
parameter named version. This parameter is then passed on to the view function
associated with this URL pattern, as follows:

tileMap(version="1.0")

In this way, each of our URL patterns maps an incoming RESTful URL to the
appropriate view function within our tms application. The included comments
give examples of how the regular expressions will map to the view functions.

Let's now set up these view functions. Edit the views.py module inside the tms
directory, and add the following to this module:

from django.http import HttpResponse

def root(request):
 return HttpResponse("Tile Map Server")

def service(request, version):
 return HttpResponse("Tile Map Service")

def tileMap(request, version, shapefile_id):
 return HttpResponse("Tile Map")

def tile(request, version, shapefile_id, zoom, x, y):
 return HttpResponse("Tile")

Obviously these are only placeholder view functions, but they give us the basic
structure for our Tile Map Server.

To test that this works, launch the ShapeEditor server by running the
python manage.py runserver command, and point your web browser to
http://127.0.0.1:8000/tms. You should see the text you entered into your
placeholder root() view function.

Let's make that top-level view function do something useful. Go back to the tms
application's views.py module, and change the root() function to look as follows:

def root(request):
 try:
 baseURL = request.build_absolute_uri()

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[428]

 xml = []
 xml.append('<?xml version="1.0" encoding="utf-8" ?>')
 xml.append('<Services>')
 xml.append(' <TileMapService ' +
 'title="ShapeEditor Tile Map Service" ' +
 'version="1.0" href="' + baseURL + '/1.0"/>')
 xml.append('</Services>')
 return HttpResponse("\n".join(xml), mimetype="text/xml")
 except:
 traceback.print_exc()
 return HttpResponse("Error")

You'll also need to add the following import statement to the top of the module:

import traceback

This view function returns an XML-format response describing the one-and-only Tile
Map Service supported by our TMS server. This Tile Map Service is identified by a
version number, 1.0 (Tile Map Services are typically identified by version number).
If you now go to http://127.0.0.1:8000/tms, you'll see the TMS response
displayed in your web browser:

As you can see, this provides a list of the Tile Map Services which this TMS server
provides. OpenLayers will use this to access our Tile Map Service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[429]

Error handling
Notice that we've wrapped our TMS view function in a try...
except statement, and used the traceback standard library
module to print out the exception if anything goes wrong.
We're doing this because our code will be called directly by
OpenLayers using AJAX; Django helpfully handles exceptions
and returns an HTML error page to the caller, but in this case
OpenLayers won't display that page if there is an error in your
code. Instead, all you'll see are broken image icons instead of a
map, and the error itself will remain a mystery.
By wrapping our Python code in a try...except statement,
we can catch any exceptions in our Python code and print them
out. This will cause the error to appear in Django's web server
log, so we can see what went wrong. This is a useful technique
to use whenever you write AJAX request handlers in Python.

We're now ready to implement the Tile Map Service itself. Edit the view.py module
again, and change the service() function to look like this:

def service(request, version):
 try:
 if version != "1.0":
 raise Http404

 baseURL = request.build_absolute_uri()
 xml = []
 xml.append('<?xml version="1.0" encoding="utf-8" ?>')
 xml.append('<TileMapService version="1.0" services="' +
 baseURL + '">')
 xml.append(' <Title>ShapeEditor Tile Map Service' +
 '</Title>')
 xml.append(' <Abstract></Abstract>')
 xml.append(' <TileMaps>')
 for shapefile in Shapefile.objects.all():
 id = str(shapefile.id)
 xml.append(' <TileMap title="' +
 shapefile.filename + '"')
 xml.append(' srs="EPSG:4326"')
 xml.append(' href="'+baseURL+'/'+id+'"/>')
 xml.append(' </TileMaps>')
 xml.append('</TileMapService>')

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[430]

 return HttpResponse("\n".join(xml), mimetype="text/xml")
 except:
 traceback.print_exc()
 return HttpResponse("Error")

You'll also need to add the following import statements to the top of the module:

from django.http import Http404
from geodjango.shapeEditor.models import Shapefile

Notice that this function raises an Http404 exception if the version number is wrong.
This exception tells Django to return a HTTP 404 error, which is the standard error
response when an incorrect URL has been used.

Assuming the version number is correct, we iterate over the various Shapefile
objects in the database, listing each uploaded shapefile as a Tile Map.

If you save this file and enter http://127.0.0.1:8000/tms/1.0 into your web
browser, you should see a list of the available tile maps, in XML format:

We next need to implement the tileMap() function to display the various Tile Sets
available for a given Tile Map. Before we can do this, though, we're going to have to
learn a bit about the notion of zoom levels.

As we have seen, a slippy map lets the user zoom in and out to view the map's
contents. This zooming is done by controlling the map's zoom level. Typically,
a zoom level is specified as a simple number: zoom level zero is when the map
is fully zoomed out, zoom level 1 is when the map is zoomed in once, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[431]

Let's start by considering the map when it is zoomed out completely (in other words,
zoom level 0). In this case, we want the entire Earth's surface to be covered by just
two map tiles:

Each map tile at this zoom level would cover 180 degrees of latitude and longitude.
If each tile was 256 pixels square, this would mean that each pixel would cover 180
/ 256 = 0.703125 map units, where in this case a "map unit" is a degree of latitude or
longitude. This number is going to be very important when it comes to calculating
the Tile Maps.

Now, whenever we zoom in (for example by going from zoom level 0 to zoom level
1), the width and height of the visible area is halved. For example, at zoom level 1
the Earth's surface would be displayed as the following series of eight tiles:

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[432]

Following this pattern, we can calculate the number of map units covered by a single
pixel on the map, for a given zoom level, using the following formula:

Since we'll be using this formula in our TMS server, let's go ahead and add the
following code to the end of our tms.py module:

def _unitsPerPixel(zoomLevel):
 return 0.703125 / math.pow(2, zoomLevel)

Notice that we start the function name with an underscore;
this is a standard Python convention for naming "private"
functions within a module.

You'll also need to add an import math statement to the top of the file.

Next, we need to add some constants to the top of the module to define the size of
each map tile, and how many zoom levels we support:

MAX_ZOOM_LEVEL = 10
TILE_WIDTH = 256
TILE_HEIGHT = 256

With all this, we're finally ready to implement the tileMap() function to return
information about the available Tile Sets for a given shapefile's Tile Map. Edit this
function to look as follows:

def tileMap(request, version, shapefile_id):
 if version != "1.0":
 raise Http404

 try:
 shapefile = Shapefile.objects.get(id=shapefile_id)
 except Shapefile.DoesNotExist:
 raise Http404

 try:
 baseURL = request.build_absolute_uri()
 xml = []

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[433]

 xml.append('<?xml version="1.0" encoding="utf-8" ?>')
 xml.append('<TileMap version="1.0" ' +
 'tilemapservice="' + baseURL + '">')
 xml.append(' <Title>' + shapefile.filename + '</Title>')
 xml.append(' <Abstract></Abstract>')
 xml.append(' <SRS>EPSG:4326</SRS>')
 xml.append(' <BoundingBox minx="-180" miny="-90" ' +
 'maxx="180" maxy="90"/>')
 xml.append(' <Origin x="-180" y="-90"/>')
 xml.append(' <TileFormat width="' + str(TILE_WIDTH) +
 '" height="' + str(TILE_HEIGHT) + '" ' +
 'mime-type="image/png" extension="png"/>')
 xml.append(' <TileSets profile="global-geodetic">')
 for zoomLevel in range(0, MAX_ZOOM_LEVEL+1):
 unitsPerPixel = _unitsPerPixel(zoomLevel)
 xml.append(' <TileSet href="' +
 baseURL + '/' + str(zoomLevel) +
 '" units-per-pixel="'+str(unitsPerPixel) +
 '" order="' + str(zoomLevel) + '"/>')
 xml.append(' </TileSets>')
 xml.append('</TileMap>')
 return HttpResponse("\n".join(xml), mimetype="text/xml")
 except:
 traceback.print_exc()
 return HttpResponse("Error")

As you can see, we start with some basic error checking on the version and shapefile
ID, and then iterate through the available zoom levels to provide information about
the available Tile Sets.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[434]

If you save your changes and enter http://127.0.0.1:8000/tms/1.0/2 into your
web browser, you should see the following information about the Tile Map for the
shapefile object with record ID 2:

Notice that we provide a total of eleven zoom levels, from zero to ten, with an
appropriately-calculated units-per-pixel value for each zoom level.

We have now implemented three of the four view functions required to implement
our own Tile Map Server. For the final function, tile(), we are going to write
our own tile renderer. The tile() function accepts a Tile Map Service version,
a shapefile ID, a zoom level, and the X and Y coordinates for the desired tile:

def tile(request, version, shapefile_id, zoom, x, y):
 ...

This function needs to generate the appropriate map tile and return the rendered
image back to the caller. Before we implement this function, let's take a step back
and think about what the map rendering should look like.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[435]

We want the map to include the outline of the various features within the given
shapefile. However, by themselves these features won't look very meaningful:

It isn't until these features are shown in context, by displaying a base map behind the
features, that we can see what they are supposed to represent:

Because of this, we're going to have to display a base map on which the features
themselves are drawn. Let's build that base map, and then we can use this, along
with the shapefile's features, to render the map tiles.

Setting up the base map
For our base map, we're going to use the World Borders Dataset we've used several
times throughout this book. While this dataset doesn't look great when zoomed right
in, it works well as a base map on which we can draw the shapefile's features.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[436]

We'll start by creating a database model to hold the base map's data. Because the
base map will be specific to our Tile Map Server application, we want to add a
database table specific to this application. To do this, edit the models.py module
inside the tms application directory, and change this file to look like the following:

from django.contrib.gis.db import models

class BaseMap(models.Model):
 name = models.CharField(max_length=50)
 geometry = models.MultiPolygonField(srid=4326)

 objects = models.GeoManager()

 def __unicode__(self):
 return self.name

Don't forget to change the import statement at the top of the file.

As you can see, we're storing the country names as well as their geometries, which
happen to be MultiPolygons. Now from the command line, cd into your project
directory and type:

% python manage.py syncdb

This will create the database table used by the BaseMap object.

Remember that there's a bug in Django 1.4 that prevents the
geospatial fields from being created automatically. To fix this,
run the Postgresql command-line client:

$ psql shapeeditor

You can then manually add the missing geometry field and its
associated spatial index by typing in the following commands:
ALTER TABLE tms_basemap ADD COLUMN geometry
geometry(MultiPolygon, 4326);

CREATE INDEX tms_basemap_geometry_id ON tms_
basemap USING GIST(geometry);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[437]

Now that we have somewhere to store the base map, let's import the data. Place
a copy of the World Borders Dataset shapefile somewhere convenient, open up a
command line window, and cd into your shapeEditor project directory. Then type:

% python manage.py shell

This runs a Python interactive shell with your project's settings and paths installed.
Now create the following variable, replacing the text with the absolute path to the
World Borders Dataset's shapefile:

>>> shapefile = "/path/to/TM_WORLD_BORDERS-0.3.shp"

Then type the following:

>>> from django.contrib.gis.utils import LayerMapping

>>> from shapeEditor.tms.models import BaseMap

>>> mapping = LayerMapping(BaseMap, shapefile, {'name' : "NAME",
'geometry' : "MULTIPOLYGON"}, transform=False, encoding="iso-8859-1")

>>> mapping.save(strict=True, verbose=True)

We're using GeoDjango's LayerMapping module to import the data from this
shapefile into our database. The various countries will be displayed as they are
imported, which will take a few seconds.

Once this has been done, you can check the imported data by typing commands
into the interactive shell, for example:

>>> print BaseMap.objects.count()

246

>>> print BaseMap.objects.all()

[<BaseMap: Antigua and Barbuda>, <BaseMap: Algeria>, <BaseMap:
Azerbaijan>, <BaseMap: Albania>, <BaseMap: Armenia>, <BaseMap: Angola>,
<BaseMap: American Samoa>, <BaseMap: Argentina>, <BaseMap: Australia>,
<BaseMap: Bahrain>, <BaseMap: Barbados>, <BaseMap: Bermuda>, <BaseMap:
Bahamas>, <BaseMap: Bangladesh>, <BaseMap: Belize>, <BaseMap: Bosnia and
Herzegovina>, <BaseMap: Bolivia>, <BaseMap: Burma>, <BaseMap: Benin>,
<BaseMap: Solomon Islands>, '...(remaining elements truncated)...']

Feel free to play some more if you want; the Django tutorial includes several
examples of exploring your data objects using the interactive shell.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[438]

Because this base map is going to be part of the ShapeEditor project itself (the
application won't run without it), it would be good if Django could treat that
data as part of the project's source code. That way, if we ever had to rebuild the
database from scratch, the base map would be reinstalled automatically.

Django allows you to do this by creating a fixture. A fixture is a set of data that can
be loaded into the database on demand, either manually, or automatically when the
database is initialized. We'll save our base map data into a fixture so that Django
can reload that data as required.

Create a directory named fixtures within the tms application directory. Then, in a
terminal window, cd into the shapeEditor project directory and type:

% python manage.py dumpdata tms > shapeEditor/tms/fixtures/initial_data.
json

This will create a fixture named initial_data.json for the tms application. As the
name suggests, the contents of this fixture will be loaded automatically if Django
ever has to re-initialize the database.

Now that we have a base map, let's use it to implement our tile rendering code.

Tile rendering
Using our knowledge of Mapnik, we're going to implement the TMS server's tile()
function. Our generated map will consist of two layers: a base layer showing the base
map, and a feature layer showing the features in the imported shapefile. Since all our
data is stored in a PostGIS database, we'll be using a mapnik.PostGIS datasource for
both layers.

Our tile() function will involve five steps:

1.	 Parse the query parameters.
2.	 Set up the map.
3.	 Define the base layer.
4.	 Define the feature layer.
5.	 Render the map.

Let's work through each of these in turn.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[439]

Parsing the query parameters
Edit the tms application's views.py module, and delete the dummy code we had
in the tile() function. We'll add our parsing code one step at a time, starting with
some basic error-checking code to ensure the version number is correct and that the
shapefile exists, and once again wrapping our code in a try...except statement to
catch typos and other errors:

try:
 if version != "1.0":
 raise Http404

 try:
 shapefile = Shapefile.objects.get(id=shapefile_id)
 except Shapefile.DoesNotExist:
 raise Http404

We now need to convert the query parameters (which Django passes to us as strings)
into integers so that we can work with them:

 zoom = int(zoom)
 x = int(x)
 y = int(y)

We can now check that the zoom level is correct:

 if zoom < 0 or zoom > MAX_ZOOM_LEVEL:
 raise Http404

Our next step is to convert the supplied x and y parameters into the minimum and
maximum latitude and longitude values covered by the tile. This requires us to use
the _unitsPerPixel() function we defined earlier to calculate the amount of the
Earth's surface covered by the tile for the current zoom level:

 xExtent = _unitsPerPixel(zoom) * TILE_WIDTH
 yExtent = _unitsPerPixel(zoom) * TILE_HEIGHT

 minLong = x * xExtent - 180.0
 minLat = y * yExtent - 90.0
 maxLong = minLong + xExtent
 maxLat = minLat + yExtent

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[440]

Finally, we can add some rudimentary error checking to ensure that the tile's
coordinates are valid:

 if (minLong < -180 or maxLong > 180 or
 minLat < -90 or maxLat > 90):
 raise Http404

Setting up the map
We're now ready to create the mapnik.Map object to represent the map. This is trivial:

 map = mapnik.Map(TILE_WIDTH, TILE_HEIGHT,
 "+proj=longlat +datum=WGS84")
 map.background = mapnik.Color("#7391ad")

Defining the base layer
We now want to define the layer which draws our base map. To do this, we have to
set up a mapnik.PostGIS datasource for the layer:

 dbSettings = settings.DATABASES['default']
 datasource = \
 mapnik.PostGIS(user=dbSettings['USER'],
 password=dbSettings['PASSWORD'],
 dbname=dbSettings['NAME'],
 table='tms_basemap',
 srid=4326,
 geometry_field="geometry",
 geometry_table='tms_basemap')

As you can see, we get the name of the database, the username, and the password
from our project's settings module. We then create a PostGIS datasource using
these settings. With this data source, we can now create the base layer itself:

 baseLayer = mapnik.Layer("baseLayer")
 baseLayer.datasource = datasource
 baseLayer.styles.append("baseLayerStyle")

We now need to set up the layer's style. In this case, we'll use a single rule with
two symbolizers: a PolygonSymbolizer which draws the interior of the base map's
polygons, and a LineSymbolizer to draw the polygon outlines:

 rule = mapnik.Rule()

 rule.symbols.append(

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[441]

 mapnik.PolygonSymbolizer(mapnik.Color("#b5d19c")))
 rule.symbols.append(
 mapnik.LineSymbolizer(mapnik.Color("#404040"), 0.2))

 style = mapnik.Style()
 style.rules.append(rule)

Finally, we can add the base layer and its style to the map:

 map.append_style("baseLayerStyle", style)
 map.layers.append(baseLayer)

Defining the feature layer
Our next task is to add another layer to draw the shapefile's features onto the map.
Once again, we'll set up a mapnik.PostGIS datasource for the new layer:

 geometry_field = utils.calc_geometry_field(shapefile.geom_type)

 query = '(select ' + geometry_field \
 + ' from "shared_feature" where' \
 + ' shapefile_id=' + str(shapefile.id) + ') as geom'

 datasource = \
 mapnik.PostGIS(user=dbSettings['USER'],
 password=dbSettings['PASSWORD'],
 dbname=dbSettings['NAME'],
 table=query,
 srid=4326,
 geometry_field=geometryField,
 geometry_table='shared_feature')

In this case, we are calling utils.calc_geometry_field() to see which field in the
shared_feature table contains the geometry we're going to display.

We're now ready to create the new layer itself:

 featureLayer = mapnik.Layer("featureLayer")
 featureLayer.datasource = datasource
 featureLayer.styles.append("featureLayerStyle")

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[442]

Next, we want to define the styles used by the feature layer. As before, we'll have just
a single rule, but in this case we'll use different symbolizers depending on the type of
feature we are displaying:

 rule = mapnik.Rule()

 if shapefile.geom_type in ["Point", "MultiPoint"]:
 rule.symbols.append(mapnik.PointSymbolizer())
 elif shapefile.geom_type in ["LineString", "MultiLineString"]:
 rule.symbols.append(
 mapnik.LineSymbolizer(mapnik.Color("#000000"), 0.5))
 elif shapefile.geom_type in ["Polygon", "MultiPolygon"]:
 rule.symbols.append(
 mapnik.PolygonSymbolizer(mapnik.Color("#f7edee")))
 rule.symbols.append(
 mapnik.LineSymbolizer(mapnik.Color("#000000"), 0.5))

 style = mapnik.Style()
 style.rules.append(rule)

Finally, we can add our new feature layer to the map:

 map.append_style("featureLayerStyle", style)
 map.layers.append(featureLayer)

Rendering the map tile
We looked at using Mapnik to render map images in Bonus Chapter, Web Frameworks
for Python Geospatial Development. The basic process of rendering a map tile is the
same, except that we won't be storing the results into an image file on disk. Instead,
we'll create a mapnik.Image object, convert it into raw image data in PNG format,
and return that data back to the caller using an HttpResponse object:

 map.zoom_to_box(mapnik.Box2d(minLong, minLat,
 maxLong, maxLat))
 image = mapnik.Image(TILE_WIDTH, TILE_HEIGHT)
 mapnik.render(map, image)
 imageData = image.tostring('png')

 return HttpResponse(imageData, mimetype="image/png")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[443]

All that's left now is to add our error-catching code to the end of the function:

except:
 traceback.print_exc()
 return HttpResponse("Error")

That completes the implementation of our Tile Map Server's tile() function. Let's
tidy up and do some testing.

Completing the Tile Map Server
Because we've referred to some new modules in our views.py module, we'll have to
add some extra import statements to the top of the file:

from django.conf import settings
import mapnik
import utils

In theory, our Tile Map Server should now be ready to go. Let's test it out. If you
don't currently have the Django web server running, cd into the shapeEditor project
directory and type:

% python manage.py runserver

Start up your web browser and enter the following URL into your browser's
address bar:

http://127.0.0.1:8000/tms/1.0/2/0/0/0.png

All going well, you should see a 256 x 256 pixel map tile appear in your web browser:

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[444]

Problems?
If an error occurs, there are two likely causes: you might have made
a mistake typing in the code, or you might have the record ID of the
shapefile wrong. Check the web server log in the terminal window
you used to run the python manage.py runserver command;
when a Python exception occurs, the traceback will be printed out
in this window. This will tell you if you have a syntax error, some
other error, or if an Http404 exception was raised.
If you do get an Http404 exception, it's most likely because you're
using the wrong record ID for the shapefile. The URL is structured
like this:
http://path/to/tms/<version>/<shapefile_
id>/<zoom>/<x>/<y>.png

If you've been working through this chapter in order, the record ID
of the World Borders Dataset shapefile you imported earlier should
be 2, but if you've imported other shapefiles in the meantime,
or created more shapefile records while playing with the admin
interface, you may need to use a different record ID. To see what
record ID a given shapefile has, go to http://127.0.0.1:8000/
editor and click on the Edit hyperlink for the desired shapefile.
You'll see a Page Not Found error, but the final part of the
hyperlink will be the record ID of the shapefile. Replace the record
ID in the previous URL with the correct ID, and the map tile should
appear.

Once you've reached the point of seeing the previous image in your web browser,
you deserve a pat on the back: congratulations, you have just implemented your
own working Tile Map Server!

Using OpenLayers to display the map
Now that we have our TMS server up and running, we can use the OpenLayers
library to display the rendered map tiles within a slippy map. This slippy map
will be used within our edit shapefile view function to display all the shapefile's
features, allowing the user to select a feature within the shapefile to edit.

Let's implement this edit shapefile view. Edit the urls.py module within the
editor application, and add the following highlighted entry to this file:

urlpatterns = patterns('shapeEditor.editor.views',
 url(r'^$', 'list_shapefiles'),
 url(r'^import$', 'import_shapefile'),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[445]

 url(r'^export/(?P<shapefile_id>\d+)$', 'export_shapefile'),
 url(r'^edit/(?P<shapefile_id>\d+)$',
'edit_shapefile'),
)

This will pass any incoming URLs of the form /editor/edit/N to the
edit_shapefile() view function.

Let's implement that function. Edit the editor application's views.py module
and add the following code:

def edit_shapefile(request, shapefile_id):
 try:
 shapefile = Shapefile.objects.get(id=shapefile_id)
 except Shapefile.DoesNotExist:
 return HttpResponseNotFound()

 tms_url = "http://"+request.get_host()+"/tms/"

 return render(request, "select_feature.html",
 {'shapefile' : shapefile,
 'tms_url' : tms_url})

As you can see, we obtain the desired Shapefile object, calculate the URL used to
access our TMS server, and pass both on to a template called select_feature.html.
That template is where all the hard work will take place.

Now we need to write the template. Start by creating a new file named select_
feature.html in the editor application's templates directory, and enter the
following into this file:

<html>
 <head>
 <title>ShapeEditor</title>
 <style type="text/css">
 div#map {
 width: 600px;
 height: 400px;
 border: 1px solid #ccc;
 }
 </style>
 </head>
 <body>
 <h1>Edit Shapefile</h1>

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[446]

 Please choose a feature to edit

 <div id="map" class="map"></div>

 <div style="margin-left:20px">
 <button type="button"
 onClick='window.location="/editor";'>
 Cancel
 </button>
 </div>
 </body>
</html>

This is only the basic outline for this template, but it gives us something to work with.
With the Django development server running (python manage.py runserver in a
terminal window), go to http://127.0.0.1:8000/editor click on the Edit hyperlink
for a shapefile. You should see the basic outline for the select feature page:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[447]

Notice that we created a <div> element to hold the OpenLayers map, and we use
a CSS stylesheet to give the map a fixed size and border. The map itself isn't being
displayed yet, because we haven't written the JavaScript code needed to launch
OpenLayers. Let's do that now.

Add the following <script> tags to the <head> section of your template:

<script src="http://openlayers.org/api/OpenLayers.js">
</script>
<script type="text/javascript">
 function init() {}
</script>

Also, change the <body> tag definition to look like this:

<body onload="init()">

Notice that there are two <script> tags: the first loads the OpenLayers.js library
from the http://openlayers.org website, while the second will hold the JavaScript
code that we'll write to create the map. We've also defined a JavaScript function
called init() which will be called when the page is loaded.

Let's implement that initialization function. Replace the line which says function
init() {} with the following:

 function init() {
 map = new OpenLayers.Map('map',
 {maxResolution: 0.703125,
 numZoomLevels: 11});
 layer = new OpenLayers.Layer.TMS('TMS',
 "{{ tms_url }}",
 {serviceVersion: "1.0",
 layername: "{{ shapefile.id }}",
 type: 'png'});
 map.addLayer(layer);
 map.zoomToMaxExtent();
 }

Even if you haven't used JavaScript before, this code should be quite straightforward:
the first instruction creates an OpenLayers.Map object representing the slippy map.
We then create an OpenLayers.Layer.TMS object to represent a map layer that takes
data from a TMS server. Then we add the layer to the map, and zoom the map out as
far as possible so that the user sees the entire world when the map is first displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[448]

Notice that the Map object accepts the ID of the <div> tag in which to place the map,
along with a dictionary of options. The maxResolution option defines the maximum
resolution to use for the map, and the numZoomLevels option tells OpenLayers how
many zoom levels the map should support.

For the Layer.TMS object, we pass in the URL used to access the Tile Map Server
(which is a parameter passed to the template from our Python view), along with the
version of the Tile Map Service to use and the name of the layer—which in our Tile
Map Server is the record ID of the shapefile to display the features for.

That's all we need to do to get a basic slippy map working with OpenLayers. Save
your changes, start up the Django web server if it isn't already running, and point
your web browser to http://127.0.0.1:8000/editor. Click on the Edit hyperlink
for the shapefile you imported, and you should see the working slippy map:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[449]

You can zoom in and out, pan around, and click to your heart's content. Of course,
nothing actually works yet (apart from the Cancel button), but we have got a slippy
map working with our Tile Map Server and the OpenLayers JavaScript widget.
That's quite an achievement!

What if it doesn't work?
If the map isn't being shown for some reason, there are several
possible causes. First, check the Django web server log, as we
are printing any Python exceptions there. If that doesn't reveal
the problem, look at your web browser's error console window
to see if there are any errors at the JavaScript level. Because we
are now writing JavaScript code, error messages will appear
within the web browser rather than in Django's server log. In
Firefox, you can view JavaScript errors by selecting the Error
Console item from the Tools menu. Other browsers have
similar windows for showing JavaScript errors.
JavaScript debugging can be quite tricky, even for people
experienced with developing web-based applications. If you do
get stuck, you may find the following article helpful: http://
www.webmonkey.com/2010/02/javascript_debugging_
for_beginners

Intercepting mouse clicks
When the user clicks on the map, we want to intercept that mouse click, identify
the map coordinate that the user clicked on, and then ask the server to identify the
clicked-on feature (if any). To intercept mouse clicks, we will need to create a custom
OpenLayers.Control subclass. We'll follow the OpenLayers convention of adding
the subclass to the OpenLayers namespace, by calling our new control OpenLayers.
Control.Click. Once we've defined our new control, we can create an instance of
the control and add it to the map so that the control can respond to mouse clicks.

All of this has to be done in JavaScript. The code can be a bit confusing, so let's take
this one step at a time. Edit your selectFeature.html file and add the following
code to the <script> tag, immediately before your init() function:

OpenLayers.Control.Click = OpenLayers.Class(
 OpenLayers.Control, {
 defaultHandlerOptions: {
 'single' : true,
 'double' : false,

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[450]

 'pixelTolerance' : 0,
 'stopSingle' : false,
 'stopDouble' : false
 },

 initialize: function(options) {
 this.handlerOptions = OpenLayers.Util.extend(
 {}, this.defaultHandlerOptions);
 OpenLayers.Control.prototype.initialize.apply(
 this, arguments);
 this.handler = new OpenLayers.Handler.Click(
 this, {'click' : this.onClick}, this.handlerOptions);
 },

 onClick: function(e) {
 alert("click")
 }
 }
);

Don't worry too much about the details here—the initialize() function is
a bit of black magic that creates a new OpenLayers.Control.Click instance
and sets it up to run as an OpenLayers control. What is interesting to us is the
defaultHandlerOptions dictionary, and the onClick() function.

The defaultHandlerOptions dictionary tells OpenLayers how you want the
click handler to respond to mouse clicks. In this case, we want to respond to single
clicks, but not double clicks (as these are used to zoom further in to the map).

The onClick() function is actually a JavaScript method for our OpenLayers.
Control.Click class. This method will be called when the user clicks on the
map—at the moment, all we're doing is displaying an alert box with the message
Click, but that's enough to ensure that the click control is working.

Now that we've defined our new click control, let's add it to the map. Add the
following lines immediately before the closing } for the init() function:

var click = new OpenLayers.Control.Click();
map.addControl(click);
click.activate();

As you can see, we create a new instance of our OpenLayers.Control.Click class,
add it to the map, and activate it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[451]

With all this code written, we can now reload the Select Feature web page and see
what happens when the user clicks on a map:

So far so good. Notice that our click handler only intercepts single clicks; if you
double-click on the map, it will still zoom in.

If your map isn't working, you may have made a
mistake typing in the JavaScript code. Open your
browser's JavaScript console or log window, and
reload the page. An error message will appear
in this window if there is a problem with your
JavaScript code.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[452]

Let's now implement the real onClick() function to respond to the user's mouse-
click. When the user clicks on the map, we're going to send the clicked-on latitude
and longitude value to the server using an AJAX request. The server will return
the URL of the edit feature page for the clicked-on feature, or an empty string if no
feature was clicked on. If a URL was returned, we'll then redirect the user's web
browser to that URL.

To make the AJAX call, we're going to use the OpenLayers.Request.GET function,
passing in a callback function which will be called when a response is received back
from the server. Let's start by writing the AJAX call.

Replace our dummy onClick() function with the following:

onClick: function(e) {
 var coord = map.getLonLatFromViewPortPx(e.xy);
 var request = OpenLayers.Request.GET({
 url : "{{ find_feature_url }}",
 params : {shapefile_id : {{ shapefile.id }},
 latitude : coord.lat,
 longitude : coord.lon},
 callback : this.handleResponse
 });
}

This function does two things: it obtains the map coordinate that corresponds to
the clicked-on point (by calling the map.getLonLatFromViewPortPx() method),
and then it creates an OpenLayers.Request.GET object to send the AJAX request
to the server and call the handleResponse() callback function when the response
is received.

Notice that the OpenLayers.Request.GET() function accepts a set of query
parameters (in the params entry), as well as a URL to send the request to (in the url
entry) and a callback function to call when the response is received (in the callback
entry). We're using a template parameter, {{ find_feature_url }}, to select
the URL to send the request to. This will be provided by our edit_shapeFile()
view function when the template is loaded. When we make the request, the query
parameters will consist of the record ID of the shapefile and the clicked-on latitude
and longitude values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[453]

While we're editing the select_feature.html template, let's go ahead and
implement the callback function. Add the following function to the end of the
OpenLayers.Control.Click class definition (immediately below the closing }
for the onClick() function):

handleResponse: function(request) {
 if (request.status != 200) {
 alert("Server returned a "+request.status+" error");
 return;
 };
 if (request.responseText != "") {
 window.location.href = request.responseText;
 };
}

Make sure you add a comma after the onClick() function's
closing parenthesis, or you'll get a JavaScript error. Just as
with Python, you need to add commas to separate dictionary
entries in JavaScript.

Even if you're not familiar with JavaScript, this function should be easy to
understand: if the response didn't have a status value of 200, an error message is
displayed. Otherwise, we check that the response text is not blank, and if so we
redirect the user's web browser to that URL.

Now that we've implemented our callback function, let's go back to our view module
and define the find_feature_url parameter which will get passed to the template
we've created. Edit the view.py module to add the following highlighted lines to the
edit_shapefile() function:

def edit_shapefile(request, shapefile_id):
 try:
 shapefile = Shapefile.objects.get(id=shapefile_id)
 except Shapefile.DoesNotExist:
 return HttpResponseNotFound()

 tms_url = "http://"+request.get_host()+"/tms/"
 find_feature_url = "http://" + request.get_host() \
 + "/editor/find_feature"

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[454]

 return render(request, "select_feature.html",
 {'shapefile' : shapefile,
 'find_feature_url' : find_feature_url,
 'tms_url' : tms_url})

The find_feature_url template parameter will contain the URL the click handler
will send its AJAX request to. This URL will look like the following:

http://127.0.0.1:8000/editor/find_feature

Our onClick() function will add shapefile_id, latitude and longitude
query parameters to this request, so the AJAX request sent to the server will
look like the following:

http://127.0.0.1:8000/editor/find_feature?shapefile_id=1

&latitude=-38.1674&longitude=176.2344

With our click handler up and running, we're now ready to start implementing the
find_feature() view function to respond to these AJAX requests.

Implementing the find feature view
We now need to write the view function which receives the AJAX request, checks
to see which feature was clicked on (if any), and returns a suitable URL to use to
redirect the user's web browser to the "edit" page for that clicked-on feature. To
implement this, we're going to make use of GeoDjango's spatial query functions.

Let's start by adding the find_feature view itself. To do this, edit views.py again
and add the following placeholder code:

def find_feature(request):
 return HttpResponse("")

Returning an empty string tells our AJAX callback function that no feature was
clicked on. We'll replace this with some proper spatial queries shortly. First, though,
we need to add a URL pattern so that incoming requests will get forwarded to the
find_feature() view function. Open up the editor application's urls.py module
and add the following entry to the URL pattern list:

 url(r'^find_feature$', 'find_feature'),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[455]

You should now be able to run the ShapeEditor, click on the Edit hyperlink for an
uploaded shapefile, see a map showing the various features within the shapefile, and
click somewhere on the map. In response, the system should do—absolutely nothing!
This is because our find_feature() function is returning an empty string, so the
system thinks that the user didn't click on a feature and so ignores the mouse-click.

In this case, "absolutely nothing" is good news. As long as no
error messages are being displayed, either at the Python or
JavaScript level, this tells us that the AJAX code is running
correctly. So go ahead and try this, even though nothing
happens, just to make sure that you haven't got any bugs
in your code. You should see the AJAX calls in the list of
incoming HTTP requests being received by the server.

Before we implement the find_feature() function, let's take a step back and
think what it means for the user to "click on" a feature's geometry. The shapeEditor
supports a complete range of possible geometry types: Point, LineString, Polygon,
MultiPoint, MultiLineString, MultiPolygon, and GeometryCollection. Identifying if
the user clicked on a Polygon or MultiPolygon feature is straightforward enough: we
simply see if the clicked-on point is inside the polygon's bounds. But because lines
and points have no interior (their area will always be zero), a given coordinate could
never be "inside" a Point or a LineString geometry. It might get infinitely close, but
the user can never actually click inside a Point or a LineString.

This means that a spatial query of the form:

SELECT * FROM features WHERE ST_Contains(feature.geometry,
clickPt)

This is not going to work, because the click point can never be inside a Point or
a LineString geometry. Instead, we have to allow for the user clicking close to the
feature rather than within it. To do this, we'll calculate a search radius, in map
units, and then use the DWithin() spatial query function to find all features
within the given search radius of the clicked-on point.

Let's start by calculating the search radius. We know that the user might click
anywhere on the Earth's surface, and that we are storing all our features in lat
/long coordinates. We also know that the relationship between map coordinates
(latitude/longitude values) and actual distances on the Earth's surface varies
widely depending on whereabouts on the Earth you are: a degree at the equator
equals a distance of 111 kilometers, while a degree in Sweden is only half that far.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[456]

To allow for a consistent search radius everywhere in the world, we will use the
PROJ.4 library to calculate the distance in map units given the clicked-on location
and a desired linear distance. Let's add this function to our shared.utils module:

def calc_search_radius(latitude, longitude, distance):
 geod = pyproj.Geod(ellps="WGS84")

 x,y,angle = geod.fwd(longitude, latitude, 0, distance)
 radius = y-latitude

 x,y,angle = geod.fwd(longitude, latitude, 90, distance)
 radius = max(radius, x-longitude)

 x,y,angle = geod.fwd(longitude, latitude, 180, distance)
 radius = max(radius, latitude-y)

 x,y,angle = geod.fwd(longitude, latitude, 270, distance)
 radius = max(radius, longitude-x)

 return radius

This function calculates the distance, in map units, of a given linear distance
measured in meters. It calculates the lat/long coordinates for four points directly
north, south, east, and west of the starting location and the given number of meters
away from that point. It then calculates the difference in latitude or longitude
between the starting location and the end point:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[457]

Finally, it takes the largest of these differences and returns it as the search radius,
which is measured in degrees of latitude or longitude.

Because our utils.py module is now using pyproj, add the following import
statement to the top of this module:

import pyproj

With the calc_search_radius() function written, we can now use the DWithin()
spatial query to identify all features close to the clicked-on location. The general
process of doing this in GeoDjango is to use the filter() function to create a
spatial query, as follows:

query = Feature.objects.filter(geometry__dwithin=(pt, radius))

This creates a query set that returns only the Feature objects which match the given
criteria. GeoDjango cleverly adds support for spatial queries to Django's built-in
filtering capabilities; in this case, the geometry__dwithin=(pt, radius) parameter
tells GeoDjango to perform the dwithin() spatial query using the two supplied
parameters on the field named geometry within the Feature object. Thus, this
statement will be translated by GeoDjango into a spatial database query which looks
something as follows:

SELECT * from feature WHERE ST_DWithin(geometry, pt, radius)

Note that the geometry__dwithin keyword parameter includes
two underscore characters; Django uses a double-underscore to
separate the field name from the filter function's name.

Knowing this, and having the utils.calc_search_radius() function implemented,
we can finally implement our find_feature() view function. Edit views.py and
replace the body of the find_feature() function with the following:

def find_feature(request):
 try:
 shapefile_id = int(request.GET['shapefile_id'])
 latitude = float(request.GET['latitude'])
 longitude = float(request.GET['longitude'])

 shapefile = Shapefile.objects.get(id=shapefile_id)
 pt = Point(longitude, latitude)
 radius = utils.calc_search_radius(latitude, longitude, 100)

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[458]

 if shapefile.geom_type == "Point":
 query = Feature.objects.filter(
 geom_point__dwithin=(pt, radius))
 elif shapefile.geom_type in ["LineString", "MultiLineString"]:
 query = Feature.objects.filter(
 geom_multilinestring__dwithin=(pt, radius))
 elif shapefile.geom_type in ["Polygon", "MultiPolygon"]:
 query = Feature.objects.filter(
 geom_multipolygon__dwithin=(pt, radius))
 elif shapefile.geom_type == "MultiPoint":
 query = Feature.objects.filter(
 geom_multipoint__dwithin=(pt, radius))
 elif shapefile.geom_type == "GeometryCollection":
 query = feature.objects.filter(
 geom_geometrycollection__dwithin=(pt, radius))
 else:
 print "Unsupported geometry: " + shapefile.geom_type
 return HttpResponse("")

 if query.count() != 1:
 return HttpResponse("")

 feature = query[0]
 return HttpResponse("/editor/edit_feature/" +
 str(shapefile_id)+"/"+str(feature.id))
 except:
 traceback.print_exc()
 return HttpResponse("")

There's a lot here, so let's take this one step at a time. First off, we've wrapped all our
code inside a try...except statement:

def find_feature(request):
 try:
 ...
 except:
 traceback.print_exc()
 return HttpResponse("")

This is the same technique we used when implementing the Tile Map Server; it
means that any Python errors in your code will be displayed in the web server's
log, and the AJAX function will return gracefully rather than crashing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[459]

We then extract the supplied query parameters, converting them from strings to
numbers, load the desired Shapefile object, create a GeoDjango Point object out
of the clicked-on coordinates, and calculate the search radius in degrees:

 shapefile_id = int(request.GET['shapefile_id'])
 latitude = float(request.GET['latitude'])
 longitude = float(request.GET['longitude'])

 shapefile = Shapefile.objects.get(id=shapefile_id)
 pt = Point(longitude, latitude)
 radius = utils.calc_search_radius(latitude, longitude, 100)

Note that we use a hardwired search radius of 100 meters; this is enough to let the
user select a point or line feature by clicking close to it, without being so large that
the user might accidentally click on the wrong feature.

With this done, we're now ready to perform the spatial query. Because our Feature
object has separate fields to hold each different type of geometry, we have to build
the query based on the geometry's type:

 if shapefile.geom_type == "Point":
 query = Feature.objects.filter(
 geom_point__dwithin=(pt, radius))
 elif shapefile.geom_type in ["LineString", "MultiLineString"]:
 query = Feature.objects.filter(
 geom_multilinestring__dwithin=(pt, radius))
 elif shapefile.geom_type in ["Polygon", "MultiPolygon"]:
query = Feature.objects.filter(
 geom_multipolygon__dwithin=(pt, radius))
 elif shapefile.geom_type == "MultiPoint":
 query = Feature.objects.filter(
 geom_multipoint__dwithin=(pt, radius))
 elif shapefile.geom_type == "GeometryCollection":
 query = feature.objects.filter(
 geom_geometrycollection__dwithin=(pt, radius))
 else:
 print "Unsupported geometry: " + shapefile.geom_type
 return HttpResponse("")

In each case, we choose the appropriate geometry field, and use __dwithin to
perform a spatial query on the appropriate field in the Feature object.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[460]

Once we've created the appropriate spatial query, we simply check to see if the query
returned exactly one Feature. If not, we return an empty string back to the AJAX
handler's callback function, to tell it that the user did not click on a feature:

 if query.count() != 1:
 return HttpResponse("")

If there was exactly one matching feature, we get the clicked-on feature and use it
to build a URL redirecting the user's web browser to the "edit feature" URL for the
clicked-on feature:

 feature = query[0]
 return HttpResponse("/shape-editor/editFeature/" +
 str(shapefile_id)+"/"+str(feature.id))

After typing in the previous code, add the following import statements to the top
of the views.py module:

import traceback
from django.contrib.gis.geos import Point
from shapeEditor.shared.models import Feature
from shapeEditor.shared import utils

This completes the find_feature() view function. Save your changes, run the
Django web server if it is not already running, and try clicking on a shapefile's
features. If you click on the ocean, nothing should happen—but if you click on
a feature, you should see your web browser redirected to a URL of the form:

http://127.0.0.1:8000/shape-editor/editFeature/X/Y

where X is the record ID of the shapefile, and Y is the record ID of the clicked-on
feature. Of course, at this stage you'll get a Page Not Found error, because you haven't
written that page yet. But at least you can click on a feature to select it, which is a major
milestone in the development of the ShapeEditor application. Congratulations!

Editing features
Now that we know which feature the user wants to edit, our next task is to
implement the edit feature page itself. To do this, we are going to have to create a
custom form with a single input field, named geometry, that uses a map-editing
widget for editing the feature's geometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[461]

To create this form, we're going to borrow elements from GeoDjango's built-in
"admin" interface, in particular the django.contrib.gis.admin.GeoModelAdmin
class. This class provides a method named get_map_widget() which returns an
editing widget which we can then include in a custom-generated form.

The process of building this form is a bit involved, thanks to the fact that we have
to create a new django.forms.Form subclass on-the-fly to be handle the different
types of geometries which can be edited. Let's put this complexity into a new
function within the shared.utils module, which we'll call get_map_form().

Edit the utils.py module and type in the following code:

def get_map_form(shapefile):
 geometry_field = calc_geometry_field(shapefile.geom_type)
 admin_instance = admin.GeoModelAdmin(Feature, admin.site)
 field = Feature._meta.get_field(geometry_field)
 widget_type = admin_instance.get_map_widget(field)

 class MapForm(forms.Form):
 geometry = forms.CharField(widget=widget_type(),
 label="")

 return MapForm

You'll also need to add the following import statements to the top of the file:

from django import forms
from django.contrib.gis import admin
from shapeEditor.shared.models import Feature

The get_map_form() function makes use of a GeoModelAdmin instance. We met
GeoModelAdmin earlier in this chapter when we explored GeoDjango's built-in
admin interface; here we are using it to generate an appropriate map widget for
editing the type of geometry stored in the current shapefile.

Using the GeoModelAdmin instance, the get_map_form() function creates and
returns a new django.forms.Form subclass with the appropriate widget type used
to edit this particular shapefile's features. Note that the get_map_form() function
returns the MapForm class, rather than an instance of that class; we'll use the returned
class to create the appropriate MapForm instances as we need them.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[462]

With this function behind us, we can now implement the rest of the edit feature
view. Let's start by setting up the view's URL; open the editor application's urls.
py module and add the following to the list of URL patterns:

 url(r'^edit_feature/(?P<shapefile_id>\d+)/' +
 r'(?P<feature_id>\d+)$', 'edit_feature'),

We're now ready to implement the view function itself. Edit the views.py module
and start defining the edit_feature() function:

def edit_feature(request, shapefile_id, feature_id):
 try:
 shapefile = Shapefile.objects.get(id=shapefile_id)
 except ShapeFile.DoesNotExist:
 return HttpResponseNotFound()

 try:
 feature = Feature.objects.get(id=feature_id)
 except Feature.DoesNotExist:
 return HttpResponseNotFound()

So far this is quite straightforward: we load the Shapefile object for the current
shapefile, and the Feature object for the feature we are editing. We next want to load
into memory a list of that feature's attributes, so these can be displayed to the user:

 attributes = []
 for attr_value in feature.attributevalue_set.all():
 attributes.append([attr_value.attribute.name,
 attr_value.value])
 attributes.sort()

This is where things get interesting. We need to create a Django Form object
(actually, an instance of the MapForm class created dynamically by the get_map_
form() function we wrote earlier), and use this form instance to display the feature
to be edited. When the form is submitted, we'll extract the updated geometry and
save it back into the Feature object again, before redirecting the user back to the
edit shapefile page to select another feature.

As we saw when we created the import shapefile form, the basic Django idiom
for processing a form is as follows:

if request.method == "GET":
 form = MyForm()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[463]

 return render(request, "template.html",
 {'form' : form})
elif request.method == "POST":
 form = MyForm(request.POST)
 if form.is_valid():
 # Extract and save the form's contents here...
 return HttpResponseRedirect("/somewhere/else")
 return render(request, "template.html",
 {'form' : form})

When the form is to be displayed for the first time, request.method will be set to
GET. In this case, we create a new form object and display the form as part of an
HTML template. When the form is submitted by the user, request.method will be
set to POST. In this case, a new form object is created that is bound to the submitted
POST arguments. The form's contents are then checked, and if they are valid they are
saved and the user is redirected back to some other page. If the form is not valid, it
will be displayed again along with a suitable error message.

Let's see how this idiom is used by the edit feature view. Add the following to
the end of your new view function:

 geometry_field = \
 utils.calc_geometry_field(shapefile.geom_type)
 form_class = utils.get_map_form(shapefile)

 if request.method == "GET":
 wkt = getattr(feature, geometry_field)
 form = form_class({'geometry' : wkt})

 return render(request, "edit_feature.html",
 {'shapefile' : shapefile,
 'form' : form,
 'attributes' : attributes})
 elif request.method == "POST":
 form = form_class(request.POST)
 try:
 if form.is_valid():
 wkt = form.cleaned_data['geometry']
 setattr(feature, geometry_field, wkt)
 feature.save()

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[464]

 return HttpResponseRedirect("/editor/edit/" +
 shapefile_id)
 except ValueError:
 pass

 return render(request, "edit_feature.html",
 {'shapefile' : shapefile,
 'form' : form,
 'attributes' : attributes})

As you can see, we call utils.get_map_form() to create a new django.forms.Form
subclass which will be used to edit the feature's geometry. We also call utils.calc_
geometry_field() to see which field in the Feature object should be edited.

The rest of this function pretty much follows the Django idiom for form-processing.
The only interesting thing to note is that we get and set the geometry field (using the
getattr() and setattr() functions, respectively) in WKT format. GeoDjango treats
geometry fields as if they were character fields which hold the geometry in WKT
format. The GeoDjango JavaScript code then takes that WKT data (which is stored
in a hidden form field named geometry) and passes it to OpenLayers for display as
a vector geometry. OpenLayers allows the user to edit that vector geometry, and the
updated geometry is stored back into the hidden geometry field as WKT data. We
then extract that updated geometry's WKT text, and store it back into the Feature
object again.

So much for the edit_feature() view function. Let's now create the template
used by this view. Create a new file named edit_feature.html within the editor
application's templates directory, and enter the following text into this file:

<html>
 <head>
 <title>ShapeEditor</title>
 <script src="http://openlayers.org/api/OpenLayers.js">
 </script>
 </head>
 <body>
 <h1>Edit Feature</h1>
 <form method="POST" action="">
 <table>
 {{ form.as_table }}
 <tr>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[465]

 <td></td>
 <td align="right">
 <table>
{% for attr in attributes %}
 <tr>
 <td>{{ attr.0 }}</td>
 <td>{{ attr.1 }}</td>
 </tr>
{% endfor %}
 </table>
 </td>
 </tr>
 <tr>
 <td></td>
 <td align="center">
 <input type="submit" value="Save"/>

 <button type="button" onClick='window.location="/editor/
edit/{{ shapefile.id }}";'>
 Cancel
 </button>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

This template uses an HTML table to display the form, and uses the form.as_table
template function call to render the form as HTML table rows. We then display the
list of feature attributes within a sub-table, and finally include Save and Cancel
buttons at the bottom.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[466]

With all this code written, we are finally able to edit features within the ShapeEditor:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[467]

Within this editor, you can make use of a number of GeoDjango's built-in features to
edit the geometry:

•	 You can click on the Edit Geometry tool () to select a feature for editing.
•	 You can click on the Add Geometry tool () to start drawing a new geometry.
•	 When a geometry is selected, you can click on a dark circle and drag it to

move the endpoints of a line segment.
•	 When a geometry is selected, you can click on a light circle to split an existing

line segment in two, making a new point which can then be dragged.
•	 If you hold the mouse down over a dark circle, you can press the Delete key

(or type D) to delete that point. Note that this only works if the geometry has
more than three points.

•	 You can click on the Delete all Features hyperlink to delete the current
feature's geometries. We'll look at this hyperlink in more detail shortly.

Once you have finished editing the feature, you can click on the Save button to save
the edited features, or the Cancel button to abandon the changes.

While this is all working well, there is one rather annoying quirk: GeoDjango lets
the user remove the geometries from a map by using a hyperlink named Delete
all Features. Since we're currently editing a single feature, this hyperlink is rather
confusingly named: what it actually does is delete the geometries for this feature, not the
feature itself. Let's change the text of this hyperlink to something more meaningful.

Go to the copy of Django that you downloaded, and navigate to the contrib/gis/
templates/gis/admin directory. In this directory is a file named openlayers.
html. Take a copy of this file, and move it into your editor application's templates
directory, renaming it to openlayers-custom.html.

Open your copy of this file, and look near the bottom for the text Delete all
Features. Change this to Clear Feature's Geometry, and save your changes.

So far so good. Now we need to tell the GeoDjango editing widget to use our custom
version of the openlayers.html file. To do this, edit your utils.py module and
find your definition of the get_map_form() function. Replace the line which defines
the admin_instance variable with the following highlighted lines:

def get_map_form(shapefile):
 geometry_field = calc_geometry_field(shapefile.geom_type)

 class CustomGeoModelAdmin(admin.GeoModelAdmin):
 map_template = "openlayers-custom.html"

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[468]

 adminInstance = CustomGeoModelAdmin(Feature, admin.site)
 field = Feature._meta.get_field(geometry_field)
 widget_type = admin_instance.get_map_widget(field)

 class MapForm(forms.Form):
 geometry = forms.CharField(widget=widget_type(),
 label="")

 return MapForm

If you then try editing a feature, you'll see that your customized version of the
openlayers.html file is being used:

By replacing the template, and by creating your own custom subclass of
GeoModelAdmin, you can make various changes to the appearance and functionality
of the built-in editing widget. If you want to see what is possible, take a look at the
modules in the django.contrib.gis.admin directory.

Adding features
We'll next implement the ability to add a new feature. To do this, we'll put an Add
Feature button onto the edit shapefile view. Clicking on this button will call the
"edit feature" URL, but without a feature ID. We'll then modify the edit feature
view so that if no feature ID is given a new Feature object is created.

Open the editor application's views.py module, find the edit_shapefile()
function, and add the following highlighted lines to this function:

def editshapefile(request, shapefile_id):
 try:
 shapefile = Shapefile.objects.get(id=shapefile_id)
 except Shapefile.DoesNotExist:
 raise Http404

 tms_url = "http://"+request.get_host()+"/tms/"
 find_feature_url = "http://" + request.get_host() \
 + "/editor/find_feature"
 add_feature_url = "http://" + request.get_host() \
 + "/editor/edit_feature/" \
 + str(shapefile_id)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[469]

 return render(request, "select_feature.html",
 {'shapefile' : shapefile,
 'find_feature_url' : find_feature_url,
 'add_feature_url' : add_feature_url,
 'tms_url' : tms_url})

Then edit the select_feature.html template and add the following highlighted
lines to the body of this template:

<body onload="init()">
 <h1>Edit Shapefile</h1>
 Please choose a feature to edit

 <div id="map" class="map"></div>

 <div style="margin-left:20px">
 <button type="button"
 onClick='window.location="{{ add_feature_url }}";'>
 Add Feature
 </button>
 <button type="button"
 onClick='window.location="/shape-editor";'>
 Cancel
 </button>
 </div>
</body>

This will place an Add Feature button onto the "select feature" page. Clicking on that
button will call the URL http://127.0.0.1:8000/editor/edit_feature/N (where
N is the record ID of the current shapefile).

We next need to add a URL pattern to support this URL. Open the editor
application's urls.py module and add the following entry to the URL pattern list:

 url(r'^edit_feature/(?P<shapefile_id>\d+)$',
 'edit_feature'), # feature_id = None -> add.

Then go back to views.py and edit the function definition for the edit_feature()
function. Change the function definition to look as follows:

def editFeature(request, shapefile_id, feature_id=None):

Notice that the feature_id parameter is now optional. Now find the following
block of code:

 try:
 feature = Feature.objects.get(id=feature_id)

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[470]

 except Feature.DoesNotExist:
 return HttpResponseNotFound()

You need to replace this block of code with the following:

 if feature_id == None:
 feature = Feature(shapefile=shapefile)
 else:
 try:
 feature = Feature.objects.get(id=feature_id)
 except Feature.DoesNotExist:
 return HttpResponseNotFound()

This will create a new Feature object if the feature_id is not specified, but still
fail if an invalid feature ID was specified.

With these changes, you should be able to add a new feature to the shapefile.
Go ahead and try it out: run the Django web server if it's not already running
and click on the Edit hyperlink for your imported shapefile. Then click on the
Add New Feature hyperlink, and try creating a new feature. The new feature
should appear on the Select Feature view:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[471]

Deleting features
We next want to let the user delete an existing feature. To do this, we'll add a Delete
Feature button to the edit feature view. Clicking on this button will redirect the
user to the delete feature view for that feature.

Edit the edit_feature.html template, and add the following highlighted lines to
the <form> section of the template:

 <form method="POST" action="">
 <table>
 <tr>
 <td></td>
 <td align="right">
 <input type="submit" name="delete"
 value="Delete Feature"/>
 </td>
 </tr>
 {{ form.as_table }}
 ...

Notice that we've used <input type="submit"> for this button. This will submit
the form, with an extra POST parameter named delete. Now go back to the editor
application's views.py module again, and add the following to the top of the edit_
feature() function:

 if request.method == "POST" and "delete" in request.POST:
 return HttpResponseRedirect("/editor/delete_feature/" +
 shapefile_id+"/"+feature_id)

We next want to create the delete feature view. Open the editor application's
urls.py and add the following to the list of URL patterns:

 url(r'^delete_feature/(?P<shapefile_id>\d+)/' +
 r'(?P<feature_id>\d+)$', 'delete_feature'),

Next, create a new file named delete_feature.html in the templates directory, and
enter the following text into this file:

<html>
 <head>
 <title>ShapeEditor</title>
 </head>
 <body>

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[472]

 <h1>Delete Feature</h1>
 <form method="POST">
 Are you sure you want to delete this feature?
 <p/>
 <button type="submit" name="confirm"
 value="1">Delete</button>

 <button type="submit" name="confirm"
 value="0">Cancel</button>
 </form>
 </body>
</html>

This is a simple HTML form that confirms the deletion. When the form is submitted,
the POST parameter named confirm will be set to 1 if the user wishes to delete the
feature. Let's now implement the view which uses this template. Open the editor
application's views.py and add the following new view function:

def delete_feature(request, shapefile_id, feature_id):
 try:
 feature = Feature.objects.get(id=feature_id)
 except Feature.DoesNotExist:
 return HttpResponseNotFound()

 if request.method == "POST":
 if request.POST['confirm'] == "1":
 feature.delete()
 return HttpResponseRedirect("/editor/edit/" +
 shapefile_id)

 return render(request, "delete_feature.html")

As you can see, deleting features is quite straightforward.

Deleting shapefiles
The final piece of functionality we'll need to implement is the Delete shapefile
view. This will let the user delete an entire uploaded shapefile. The process is
basically the same as for deleting features; we've already got a Delete hyperlink
on the main page, so all we have to do is implement the underlying view.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[473]

Go to the editor application's urls.py module and add the following entry to the
URL pattern list:

 url(r'^delete/(?P<shapefile_id>\d+)$', 'delete_shapefile'),

Then edit views.py and add the following new view function:

def delete_shapefile(request, shapefile_id):
 try:
 shapefile = Shapefile.objects.get(id=shapefile_id)
 except Shapefile.DoesNotExist:
 return HttpResponseNotFound()

 if request.method == "GET":
 return render(request, "delete_shapefile.html",
 {'shapefile' : shapefile})
 elif request.method == "POST":
 if request.POST['confirm'] == "1":
 shapefile.delete()
 return HttpResponseRedirect("/editor")

Notice that we're passing the Shapefile object to the template. This is because we
want to display some information about the shapefile on the confirmation page.

Remember that shapefile.delete()doesn't just delete the
Shapefile object itself; it also deletes all the objects associated
with the Shapefile through ForeignKey fields. This means
that the one call to shapefile.delete() will also delete
all the Attribute, Feature, and AttributeValue objects
associated with that shapefile.

Finally, create a new template named delete_shapefile.html, and enter the
following text into this file:

<html>
 <head>
 <title>ShapeEditor</title>
 </head>
 <body>
 <h1>Delete Shapefile</h1>
 <form method="POST">
 Are you sure you want to delete the

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[474]

 "{{ shapefile.filename }}" shapefile?
 <p/>
 <button type="submit" name="confirm"
 value="1">Delete</button>

 <button type="submit" name="confirm"
 value="0">Cancel</button>
 </form>
 </body>
</html>

You should now be able to click on the Delete hyperlink to delete a shapefile. Go
ahead and try it; you can always re-import your shapefile if you need it.

Using ShapeEditor
Congratulations! You have just finished implementing the last of the ShapeEditor's
features, and you now have a complete working geospatial application built using
GeoDjango. Using the ShapeEditor, you can import shapefiles, view their features
and the feature attributes, make changes to the feature geometries, add and delete
features, and then export the shapefile again.

This is certainly a useful application. Even if you don't have a full-blown GIS system
installed, you can now make quick and easy changes to a shapefile's contents using
the ShapeEditor. And, of course, the ShapeEditor is a great starting point for the
development of your own geospatial applications.

Further improvements and
enhancements
As with any new application, there are a number of ways in which the ShapeEditor
could be improved. For example:

•	 Adding user signup and login, so that each user has his or her own private
set of shapefiles, rather than every user seeing the entire list of all the
uploaded shapefiles.

•	 Adding the ability to edit a feature's attribute values.
•	 Using a higher resolution base map. An obvious candidate for this would

be the GSHHS high-resolution shoreline database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[475]

•	 Adding a tile cache for our TMS server.
•	 Using JavaScript to add a please wait pop-up message while a shapefile is

being imported or exported.
•	 Improving the reusability of the ShapeEditor's codebase. We've concentrated

on learning how to use GeoDjango to build a working system, but with a
suitable redesign the code could be made much more generic so that it could
be used in other applications as well.

Feel free to make these improvements; you will learn a lot more about GeoDjango,
and about geospatial development in general. As you work with the ShapeEditor,
you'll probably come up with your own list of things you'd like to improve.

Summary
In this chapter, we finished implementing a sophisticated geospatial web application
using GeoDjango, Mapnik, PostGIS, OGR, and pyproj. This application is useful
in its own right, as well as being a springboard to developing your own geospatial
web applications.

We have learned:

•	 That we can easily create our own Tile Map Server using Mapnik
and GeoDjango.

•	 That we can include OpenLayers on our own web pages, independent
of GeoDjango, and display map data from our Tile Map Server.

•	 How to create a custom "click handler" to respond to mouse-clicks within
an OpenLayers map.

•	 That we can use AJAX calls to have the server respond to events within
the web browser.

•	 That GeoDjango provides a powerful query language for performing
spatial queries without writing a single line of SQL.

•	 How to "borrow" geometry editing widgets from GeoDjango and use
them within your own web application.

•	 That you can create your own GeoModelAdmin subclass to change the
appearance and functionality of GeoDjango's geometry editing widgets.

•	 That you can use a simple HTML form to confirm the deletion of a record.

www.it-ebooks.info

http://www.it-ebooks.info/

ShapeEditor – Selecting and Editing Features

[476]

This completes our exploration of GeoDjango, and also completes this book.
Hopefully you have learned a lot about geospatial development, and how to
create geospatial applications using Python. With these tools at your disposal,
you are now ready to start developing your own complex geospatial systems.
Have fun!

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
__unicode__ method 388

A
add_dash() method 313
AddGeometryColumn() function 177
AddPoint() 116
admin interface, Django application 364
admin system, Django application

about 384
adding 384
admin URLs, adding 385
database objects, adding 384
database, resynchronizing 384
working with 386-391

affine transformation, DEM 121
also rules 309, 310
angular distance 252 25
Application Programming Interfaces

(APIs) 18
application review

about 262
performance 266
performance improvement, analyzing 282
performance, improving 269-271
problem, searching 266-268
quality 264
tiled shorelines, calculating 271-279
tiled shorelines, using 280-282
usability 262, 263

aspect ratio 244
AsText() function 178
attributes 10

authentication system, Django
application 364

azimuthal projection 32

B
Band Interleaved by Line (BIL) format 40
Band Interleaved by Pixel (BIP) format 40
band.ReadRaster() method 122
Band Sequential (BSQ) format 40
base layer 438
base map

setting up 435, 437
best practices, geospatial databases

about 181
appropriate spatial reference, using 183
databases, using supporting geographies

184
features, transforming 185
features, transforming outset 185
limits, spatial query optimizer 189
on-the-fly transformations, avoiding within

query 186, 187
spatial indexes, using 188
spatial references, monitoring 181, 182
unprojected coordinates, using 185

Bing 16
bounding 82

C
calc_search_radius() function 457
changesets 83
civic location 25
colors

using 335, 336

www.it-ebooks.info

http://www.it-ebooks.info/

[478]

common spatially-enabled databases
about 179
MS SQL Server 180
Oracle 180

conditions, rules 305
conic projection 31, 32
coordinates 10
coordinate system

about 34
projected coordinate systems 34
unprojected coordinate systems 34

coordinate transformation 128
Core Based Statistical Areas (CBSAs) 141
country bounding boxes, geospatial data

calculating 112-114
saving, into shapefile 114-118

coverage format 40
CreateSpatialIndex() function 178
crosses() method 68
cursor.execute() method 165
cylindrical projections 29, 30

D
dash segments 313
data

downloading 216
GEOnet Names Server 217
GNIS 216, 217
GSHHS 216, 220, 221
importing 217
places' name data 222-227
World Borders Dataset 216-220
worldwide places' name data 227-229

data models
attribute 378
AttributeValue object 379
defining 377
feature 379
models.py file 380, 381
shapefile, importing 378

Datasource object 73
datasources

Gdal 300
MemoryDatasource 304
Org 301, 302
OSM 303

PostGIS 298, 299
shapefile 297
setting up 245
SQLite 302, 303

datum
about 36, 126
changing 132-134
NAD 27 36
NAD 83 37
reference points 36
WGS 84 37

decimal degrees 13
defaultHandlerOptions dictionary 450
design, Mapnik

Layers 73
Styles 73
Symbolizers 73

Destroy() method 116, 417
digital elevation maps (DEM) 94

about 119
affine transformation 121
used, for analyzing height data 119-121

Digital Elevation Model (DEM) format 40
Digital Raster Graphic (DRG) format 40
DISTAL

about 207
basic workflow 207-210
database, building 211
database, designing 211

DISTAL application
about 229
implementing 229-235
select area script 236
select country script 233-235
shared database module 232, 233
show result script 248

DISTAL database
designing 211-215

distance
about 25
angular distance 25
linear distance 25
travelling distance 26

Distance-based Identification of Shorelines,
Towns And Lakes. See DISTAL

distance features
angular distance, using 253

www.it-ebooks.info

http://www.it-ebooks.info/

[479]

hybrid approach 255-259
identifying, manually 252
projected coordinates, using 254
result, displaying 259-261

Django administration
working with 386-391

Django application
admin interface 364
authentication system 364
data-entry forms 370
downloading 363
markup application 364
messages framework 364
model 365
sessions system 364
settings file 364
sitemaps framework 364
structure 363
syndication system 364
templates 365, 369-371
URL dispatching 366-368
view 365, 366

DSG (Feature Designation Code) field 227

E
edit_feature() function 462
edit_shapefile() function 453
edit_shapeFile() view function 452
else rules 309
envelope 113
ESRI format 102
European Petroleum Survey Group (EPSG)

182
EveryBlock

URL 71
example map, Mapnik

creating 292-296
expandRect() function 273
export_data() function 414, 418
export_shapefile() view function 415

F
FC (Feature Classification) field 227
Feature Classification (FC) 107
Feature Designation Code (DSG) 107
feature layer 438

features
adding 468-470
deleting 471, 472
editing 460-468

fields 113
filter 290
Filter() constructor 305
filters, Mapnik

about 305, 306
scale denominators 307, 308

find_feature() function 455
find_feature_url parameter 453
find feature view

implementing 454-460
find_places_within() function 257, 259
findPoints() function 47
fixture 438
form.as_table template function 465
forms 400
FWTools installer

URL 42

G
gamma correction 317
GDAL 18, 102, 333
Gdal data source 300
gdaldem utility 105
GDAL design

about 52
affine transformation 53
band metadata 54
band raster size 54
color table 54
coordinate system 54
dataset 52
drivers 54
georeferencing transform 53
Ground Control Points (GCPs) 54
metadata 54
raster band 53
raster data 54
raster size 53

GDAL example code 55
GDAL, for Mac OS X 42
GDAL/OGR

about 52

www.it-ebooks.info

http://www.it-ebooks.info/

[480]

availability 58
documentation 58

GDAL Python library
downloading 42

Generalized Search Tree (GiST) 160
generateMap() function 345 342
Generic Mapping Tools (GMT)

about 91
URL 91

geocode 13
geocoder 173
Geod

about 61
fwd() method 61
inv() method 61
npts() method 62

geodetic location 24
GeoDjango 363
Geographical Information System (GIS)

vendors 11
Geographic Names Information System.

See GNIS
geographies 172
Geography Markup Language (GML)

format 41
GeoJSON format 41
Geolocation 18
geometries 172
geometry 113
GeometryCollection class 68
geometry types

GeometryCollection 455
LineString 455
MultiLineString 455
MultiPoint 455
MultiPolygon 455
Point 455
Polygon 455

geometry units
converting 146
Shoshone latitude, calculating 154, 155
Shoshone longitude, calculating 154, 155
standardizing 146
Thai-Myanmar border length, calculating

147-154
GEOnet Names Server

about 106, 211, 217

data format 107
obtaining 107
screenshot 106
using 107

GeoRSS 18
geospatial 9
geospatial calculations

parks, identifying in or near urban areas
141-145

performing 141
geospatial data

about 10
analyzing 12-14, 66
attributes 10
coordinates 10
country bounding boxes,

calculating 112-114
country bounding boxes, saving into

shapefile 114-118
GDAL 52
GDAL design 52
GDAL example code 55
geometries, saving into text file 140, 141
height data, analyzing with DEM 119-125
manipulating 66
OGR 52
OGR design 56
OGR example code 57
pre-requisites 111, 112
reading 112
representing 135
sources 105
storing 135, 136
Thailand and Myanmar border, calculating

136-140
visualizing 14-70
writing 112

Geospatial Data Abstraction Library.
See GDAL

geospatial databases
best practices 181

geospatial databases, Python used
comparing 204
MySQL, working with 195-198
PostGIS, working with 199, 200
prerequisites 195
SpatiaLite, working with 201-204

www.it-ebooks.info

http://www.it-ebooks.info/

[481]

geospatial data source. See sources,
geospatial data

geospatial development
about 10
overview 17

geospatial development applications
geospatial data, analyzing 12-14
geospatial data, visualizing 14-16
geospatial mash-up, creating 16, 17

geospatial mash-up
creating 16

GeoTIFF files 105
getattr() function 464
get_country_datasource() function 260
get_datasource() function 246
get_map_form() function 461
get_map_widget() 461
GetNoDataValue() method 125
get_ogr_feature_attribute() function 418
get_shoreline_datasource() function 280
GIS

common spatially-enabled databases 179
open source spatially-enabled databases

163
spatial indexes 160
spatially-enabled databases 159

GIS concepts
about 21
coordinate system 34
datums 36
distance 25
location 22
projection 29
shapes 37
units 27

GIS data
working manually 41-48

GIS data format
about 39
micro-formats 40
raster format data 40
vector format data 40

Global Land Cover Facility 97
Global Land One-kilometer Base Elevation.

See GLOBE
Global Positioning System (GPS) 17
Global self-consistent, hierarchical,

high-resolution shoreline database.
See GSHHS

GLOBE
about 100
data format 100
data, obtaining 101, 102

GLOBE DEM data 100
GML 18
GNIS

about 107, 216
data format 108
obtaining 109
screenshot 108
using 109

GNIS Database 211
Google Earth 17, 18
Google Maps 17
Google Maps API 16
great circle distance calculation 47
GSHHS

about 90, 216
data format 91, 92
obtaining 92
screenshot 90

H
handleResponse() callback function 452
Haversine formula

URL 48
height data, geospatial data

analyzing, DEM used 119-125
HTML Forms 235

I
import_data() function 399, 403
import shapefile view function 399-403
imposm

URL 84

J
jurisdictional locations 25

K
KML 18

www.it-ebooks.info

http://www.it-ebooks.info/

[482]

L
labels

drawing 319
Landsat

about 94
data format 95

Landsat imagery
obtaining 95-97

Layer objects 287
layers 336
Layers, Mapnik 73
libspatialite extension

loading 176
linear distance 25
linear ring 38
LinearRing class 68
line-drawing options

dashed and dotted lines 313
line caps 312
line color 311
line joins 312
line width 312
opacity 312

LinePatternSymbolizer 315
lines

drawing, onto map 310
linestring 38
LineString class 67
LineSymbolizer

about 288, 310
using 311

Linux
SpatiaLite, installing 174

list_countries() function 235
list shapefiles view

implementing 393-397
list_shapefiles() view function 394-396
locations

about 22
measuring 22-24

LULC datafiles 127

M
Mac OS X

SpatiaLite, installing 174

map definition file 346-350
Map Definition File 291
MapGenerator

about 341
interface 342
main map layer, creating 343, 344
map, rendering 345
points, displaying on map 344, 345

mapGenerator.generateMap() function 246
mapGenerator.py module 342
Mapnik

about 16, 71, 285, 286
availability 76
data sources 296, 297
design 72
documentation 76
example code 74, 75
example map, creating 292-296
features 71, 287
filters 304
layers 336
map, generating 287
map rendering 339, 341
maps 336
Polygons layer 290
Python documentation 296
rules 304
styles 304
symbolizers 310
URL 76, 286

Mapnik Datasource object
setting up 296, 297

mapnik.Layer class
methods 338

mapnik.Map class
attributes 337, 338
methods 337, 338

mapnik.Shapefile() function 297
mapnik.SQLite() function 302
Mapnik Wiki

URL 76
map rendering 339
maps 336
MapServer 16
markup application, Django application

364
MBRContains() function 165

www.it-ebooks.info

http://www.it-ebooks.info/

[483]

MemoryDatasource 304
meridians 24
messages framework, Django

application 364
micro-formats

Geography Markup Language (GML) 41
GeoJSON 41
Well-known Binary (WKB) 40
Well-known Text (WKT) 40

minimum bounding rectangle 161, 166
models, Django 365
models.py file

editing 380, 381
mouse clicks, ShapeEditor application

intercepting 449-453
MS SQL Server 180
MS Windows

SpatiaLite, installing 174
MultiLineString class 68
MultiPoint class 68
MultiPolygon class 68
MySQL

about 163-166
accessing, from Python programs 164
disadvantages 167
downloading 163

MySQLdb
URL 165

MySQL-Python driver 164 164
MySQL query optimizer 189

N
NAD 27 36
NAD 83 37
National Elevation Dataset. See NED
National Map Viewer 103, 104
Natural Earth, raster-format data

about 98
data format 99
obtaining 99, 100
raster maps 98
using 100

Natural Earth, vector-format data
about 88
cultural map data 88
data format 89

data, obtaining 89
data, using 89
physical map data 88, 89
URL 88

nature of map projections 33
NED

about 102
data format 103
data, obtaining 103
data, using 104, 105

no data value 125
NT (Name Type) field 227

O
OGR 18
Ogr data source 301, 302
OGR design

about 56
attributes 57
data source 56
feature 56
geometry 57
layers 56
spatial reference 56

OGR example code 57
OGR Shapefile

defining 415
onClick() function 450
Open Geospatial Consortium

about 18
URL 18

OpenLayers
used, for displaying map 444-449

OpenLayers.Control.Click class 450
OpenLayers.Request.GET function 452
open source spatially-enabled databases

about 163
MySQL 163
PostGIS 168
SpatiaLite 174

OpenStreetMap
about 80
data format 81
data, working with 84
geospatial data, obtaining 82
geospatial data, using 82

www.it-ebooks.info

http://www.it-ebooks.info/

[484]

screenshot 80
URL 71, 80

OpenStreetMap API 82, 83
OpenStreetMap geocoder 18
Oracle 180
Oracle Locator 180
Oracle Spatial 180
orthorectification 95
osm2pgsql tool 84
OsmApi 83
OSM data source 303
os.path.join() function 298
overlay 15

P
painters algorithm 287
parallels 24
parameters 368
Planet.osm

about 83
extracts 84
mirror site 84

point 37
Point class 67
points

drawing 329
PointSymbolizer 330, 331
polygon 38
Polygon class 68
polygon.contains(point) method 166
polygon-drawing options

attribute 317
fill color 316
gamma correction 317

PolygonPatternSymbolizer 318
polygons

drawing 316
PolygonSymbolizer 288, 316
polylines 38
PostGIS

about 12, 18, 168
configuring 169, 170
documentation 172, 173
downloading 168
features 173
installing 168

using 170, 171
PostGIS database

setting up, for ShapeEditor application 371,
372

PostGIS datasource 298
PostGIS manual

URL 172
PostGIS query optimizer 191
PostgreSQL database 168
PostgreSQL manual

URL 172
prime meridian 24
Proj 60
PROJ.4 18, 65
projected coordinate system 35
projection

about 11, 29, 126
availability 64
azimuthal projection 32
changing 127-131
conic projection 31
cylindrical projections 29
dealing with 59
design 60
documentation 63
example code 62
nature of map projections 33
pyproj 59

Proj Python library 13
Psycopg

installing 169
Psycopg database 168
Psycopg documentation

URL 172
pyproj library

about 60
for Linux 64
for Macintosh 64
for MS Windows 64
Geod 61, 62
Proj 60

pysqlite
installing 175
URL 175

Python
about 7
features 7, 8

www.it-ebooks.info

http://www.it-ebooks.info/

[485]

URL 7
Python Database API 165
Python Database Programming Wiki page

URL 165
Python Package Index

about 9
geospatial development 9
URL 9

Python Standard Libraries 8

Q
quality

Lat/Long coordinate problems 264-266
place name issues 264

query optimization process
MySQL 189, 190
PostGIS 191, 192
SpatiaLite 193

R
raster format data

about 40
BIL 40
BIP 40
BSQ 40
Digital Elevation Model (DEM) 40
Digital Raster Graphic (DRG) 40

raster images
drawing 333, 335

raster maps
about 98
Cross-Blended Hypsometric Tints 98
Natural Earth 1 98
Natural Earth 2 98
Ocean Bottom dataset 98
Shaded Relief imagery 98

RasterSymbolizer
about 333
uses 335

ReadRaster() method 122, 123
reference points 35
roads

drawing 314
root() function 427
R-Tree data structures 160-163
R-Tree indexes 161

rule 290
rules, Mapnik

also rules 309, 310
conditions 305
else rules 309
symbolizers 305

S
scale denominators 307, 308
select area script

about 236-240
bounding box, calculating 241
data source, setting up 245, 246
map image, rendering 246, 247
map's dimension, calculating 242-244

select country script 233-235
select_feature.html template 469
service() function 429
sessions system, Django application 364
setattr() function 464
SetField() method 418
set_ogr_feature_attribute() function 418
shaded relief imagery 94
ShapeEditor application

about 353
admin system 384-388
building 353
database, setting up 371, 372
data models, defining 377
defining 375
designing 357
enhancements 474
feature, editing 362
features 356, 357
features, adding 468
features, deleting 471, 472
features, editing 460
feature, selecting 360, 361
feature, selecting for edit 424
list shapefiles view, implementing 393, 394
mouse clicks, intercepting 449-453
prerequisites 362
setting up 373, 374
shapefile, exporting 362, 414
shapefile, importing 355-398
shapefiles, deleting 472

www.it-ebooks.info

http://www.it-ebooks.info/

[486]

shared application, creating 375-377
Tile Map Server, implementing 425
using 474
web interface 355
workflow 354, 424

shapefile datasource 297
Shapefile format 40
Shapefile object

adding, to database 406
shapefiles

attributes, defining 407
attributes, storing 410-413
cleaning up 413
contents, importing 405
deleting 472, 473
features, storing 408, 409
importing 398, 399
opening 405

shapefiles, exporting
about 414
attributes, saving into shapefile 418
features, saving into shapefile 416, 417
OGR Shapefile, defining 415
shapefile, compressing 420
temporary files, deleting 420
ZIP archive, returning to user 420

Shapely
about 66
availability 69
design 66, 67
documentation 69
example code 68, 69
GeometryCollection class 68
LinearRing class 68
LineString class 67
MultiLineString class 68
MultiPoint class 68
MultiPolygon class 68
Point class 67
Polygon class 68

shapes
about 37
linestring 38
point 37
polygon 38

shared database module 232, 233
shared.utils module 456

ShieldSymbolizer 331, 332
show result script

about 248
clicked-on point, identifying 249, 250
distance features, identifying 250, 251

showResults.py script 282
simple features format 40
sitemaps framework, Django

application 364
source code format, Linux 164
source code format, Mac OS X 164
sources, geospatial data

about 105
GEOnet Names Server 106
GNIS 107
selecting 109

sources, raster-format geospatial data
about 93
GLOBE 100
Landsat 94
National Elevation Dataset (NED) 102
Natural Earth 98

sources, vector-format geospatial data
GSHHS 90
Natural Earth 88
OpenStreetMap 80
TIGER 84
World Borders Dataset 92

spatial datatypes 159
spatial functions 160
spatial indexes

about 160
R-Tree indexes 161

SpatiaLite
about 174
accessing, from Python 175
capabilities 178, 179
documentation 176
installing 174
installing, on Linux 174
installing, on Mac OS X 174
installing, on MS Windows 174
online documentation 176
pysqlite, installing 175
URL 176
using 177, 178

SpatiaLite query optimizer 193

www.it-ebooks.info

http://www.it-ebooks.info/

[487]

spatial joins 160
spatially-enabled databases

about 159, 160
functioning 159

spatial queries 160
spatial query functions 454
spatial reference 73, 114, 136, 181
Spatial Reference Identifier (SRID) 182
SQLite data source 302, 303
ST_AsText() function 172
ST_CONTAINS() function 258
ST_DWITHIN() function 258
ST_GeomFromText() function 172
Styles, Mapnik 73, 290
subselect query

about 299
using 299

Symbolizers, Mapnik
about 73, 288
labels, drawing 319
lines, drawing 310
LineSymbolizer 288
points, drawing 329
polygons, drawing 316
PolygonSymbolizer 288
TextSymbolizer 288

syndication system, Django application 364

T
template, Django 369-371
terminology, TMS protocol

Tile 425
Tile Map 425
Tile Map Server 425
Tile Map Service 425
Tile Set 425

TextSymbolizer
about 288, 319
advanced text placement and formatting

328, 329
capitalization, controlling 328
character spacing, controlling 327
font, selecting 320
labels, repeating 322, 323
labels, splitting across multiple lines 326
line spacing, controlling 327

position, adjusting of text 325
semi-transparent text, drawing 320
text, drawing on dark background 324, 325
text overlap, controlling 323, 324
text placement, controlling 320, 321
text, selecting for display 320

TIGER
about 84, 85
data format 86
data, obtaining 87
data, using 88

TIGER/Line format 40
Tile 425
Tile Map 425
tileMap() function 430 432
Tile Map Server

completing 443, 444
Tile Map Server (TMS) 361
Tile Map Service 425
tilePolys array 274
tile rendering

about 438
base layer, defining 440, 441
feature layer, defining 441, 442
map, setting up 440
map tile, rendering 442
query parameters, parsing 439, 440

Tile Set 425
TMS protocol

about 425
base map, setting up 435-438
error handling 429
implementing 425-434
map, displaying with OpenLayers 444-449
terminology 425
tile, rendering 438

Topologically Integrated Geographic
Encoding and Referencing System.
See TIGER

travelling distance 26, 27
triggers 193

U
units 27, 28
Universal Transverse Mercator (UTM)

coordinate system 36

www.it-ebooks.info

http://www.it-ebooks.info/

[488]

Universal Transverse Mercator (UTM)
projection 127

unprojected coordinates 11
unprojected coordinate system 34
unwrap_geos_geometry() function 417
uploaded shapefile

extracting 403, 404
URLConf 367
URL dispatching, Django 366, 367
usability 262
US Census Bureau

URL 41
utils.calc_geometry_field() 464
utils.get_map_form() 464
utils.get_ogr_feature_attribute() function

418

V
vector format data

about 40
coverage 40
shapefile 40
simple features 40
TIGER/Line 40

vector-format geospatial data
about 80
sources 80

view, Django 366
Virtual Datasource (VRT) format 301

W
WCS 18
WebGIS website

URL 127
Well-known Binary (WKB) format 40, 136
Well-known Text (WKT) format 40, 135
WFS 18
WGS 84 37
WMS 18
World Borders Dataset

about 92, 93, 216, 218
data format 93
downloading 112
obtaining 93

World Data Bank II 90
world reference system (WRS) 96
World Vector Shoreline 90

X
XCode

about 65
installing 65

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Python Geospatial Development: Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one
of our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but
no writing experience, our experienced editors can help you develop a writing career,
or simply get some additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Python Geospatial Development
ISBN: 978-1-849511-54-4 Paperback: 508 pages

Build a complete and sophisticated mapping
application from scratch using Python tools
for GIS development

1.	 Build applications for GIS development
using Python

2.	 Analyze and visualize Geo-Spatial data

3.	 Comprehensive coverage of key GIS concepts

4.	 Recommended best practices for storing spatial
data in a database

Programming ArcGIS 10.1 with
Python Cookbook
ISBN: 978-1-849694-44-5 Paperback: 304 pages

Over 75 recipes to help you automate geoprocessing
tasks, create solutions, and solve problems for ArcGIS
with Python

1.	 Learn how to create geoprocessing scripts
with ArcPy

2.	 Customize and modify ArcGIS with Python

3.	 Create time-saving tools and scripts for ArcGIS

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStreetMap
ISBN: 978-1-847197-50-4 Paperback: 252 pages

Be your own Cartographer

1.	 Collect data for the area you want to map with
this OpenStreetMap book and eBook

2.	 Create your own custom maps to print or use
online following our proven tutorials

3.	 Collaborate with other OpenStreetMap
contributors to improve the map data

GeoServer Beginner’s Guide
ISBN: 978-1-849516-68-6 Paperback: 350 pages

Share and edit geospatial data with this open source
software server

1.	 Learn free and open source geospatial mapping
without prior GIS experience

2.	 Share real-time maps quickly

3.	 Learn step-by-step with ample amounts of
illustrations and usable code/list

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Geospatial Development Using Python
	Python
	Geospatial development
	Applications of geospatial development
	Analyzing geospatial data
	Visualizing geospatial data
	Creating a geospatial mash-up

	Recent developments
	Summary

	Chapter 2: GIS
	Core GIS concepts
	Location
	Distance
	Units
	Projections
	Cylindrical projections
	Conic projections
	Azimuthal projections
	The nature of map projections

	Coordinate systems
	Datums
	Shapes

	GIS data formats
	Working with GIS data manually
	Summary

	Chapter 3: Python Libraries for Geospatial Development
	Reading and writing geospatial data
	GDAL/OGR
	GDAL design
	GDAL example code
	OGR design
	OGR example code

	Documentation
	Availability

	Dealing with projections
	pyproj
	Design
	Proj
	Geod

	Example code
	Documentation
	Availability

	Analyzing and manipulating geospatial Data
	Shapely
	Design
	Example code
	Documentation
	Availability

	Visualizing geospatial data
	Mapnik
	Design
	Example code
	Documentation
	Availability

	Summary

	Chapter 4: Sources of Geospatial Data
	Sources of geospatial data in vector format
	OpenStreetMap
	Data Format
	Obtaining and using OpenStreetMap data

	TIGER
	Data format
	Obtaining and Using TIGER Data

	Natural Earth
	Data format
	Obtaining and using Natural Earth vector data

	Global self-consistent, hierarchical,
high-resolution shoreline database (GSHHS)
	Data format
	Obtaining the GSHHS database

	World Borders Dataset
	Data format
	Obtaining the World Borders Dataset

	Sources of geospatial data in raster format
	Landsat
	Data format
	Obtaining Landsat imagery

	Natural Earth
	Data format
	Obtaining and using Natural Earth raster data

	Global Land One-kilometer Base Elevation (GLOBE)
	Data format
	Obtaining and using GLOBE data

	National Elevation Dataset (NED)
	Data format
	Obtaining and using NED data

	Sources of other types of geospatial data
	GEOnet Names Server
	Data format
	Obtaining and using GEOnet Names Server data

	Geographic Names Information System (GNIS)
	Data format
	Obtaining and using GNIS Data

	Choosing your geospatial data source
	Summary

	Chapter 5: Working with Geospatial
Data in Python
	Pre-requisites
	Reading and writing geospatial data
	Task – calculate the bounding box for each country in the world
	Task – save the country bounding boxes into a shapefile
	Task – analyze height data using a digital elevation map

	Changing datums and projections
	Task – change projections to combine shapefiles using geographic and UTM coordinates
	Task – change the datums to allow older and newer TIGER data to be combined

	Representing and storing geospatial data
	Task – calculate the border between Thailand and Myanmar
	Task – save geometries into a text file

	Performing geospatial calculations
	Task – identify parks in or near urban areas

	Converting and standardizing units of geometry and distance
	Task – calculate the length of the Thai-Myanmar border
	Task – find a point 132.7 kilometers west of Soshone, California

	Exercises
	Summary

	Chapter 6: GIS in the Database
	Spatially-enabled databases
	Spatial indexes
	Open source spatially-enabled databases
	MySQL
	PostGIS
	Installing and configuring PostGIS
	Using PostGIS
	Documentation
	Advanced PostGIS Features

	SpatiaLite
	Installing SpatiaLite
	Installing pysqlite
	Accessing SpatiaLite from Python
	Documentation
	Using SpatiaLite
	SpatiaLite capabilities

	Commercial Spatially-Enabled Databases
	Oracle
	MS SQL Server

	Recommended best practices
	Using the database to keep track of spatial references
	Using the appropriate spatial reference for your data
	Option 1 – Using a database that supports geographies
	Option 2 – transform features as required
	Option 3 – transform features from the outset
	When to use unprojected coordinates

	Avoiding on-the-fly transformations within a query
	Don't create geometries within a query
	Using spatial indexes appropriately

	Knowing the limits of your database's query optimizer
	MySQL
	PostGIS
	SpatiaLite

	Working with geospatial databases using python
	Prerequisites
	Working with MySQL
	Working with PostGIS
	Working with SpatiaLite
	Comparing the databases

	Summary

	Chapter 7: Working with Spatial Data
	About DISTAL
	Designing and building the database
	Downloading the data
	World Borders Dataset
	GSHHS
	GNIS
	GEOnet Names Server

	Importing the data
	World Borders Dataset
	GSHHS
	US places' name data
	Worldwide places' name data

	Implementing the DISTAL application
	The shared "database" module
	The "select country" script
	The "select area" script
	Calculating the bounding box
	Calculating the map's dimensions
	Setting up the data source
	Rendering the map image

	The "show results" script
	Identifying the clicked-on point
	Identifying features by distance
	Displaying the results

	Application review and improvements
	Usability
	Quality
	Place name issues
	Lat/Long coordinate problems

	Performance
	Finding the problem
	Improving performance
	Calculating the tiled shorelines
	Using the tiled shorelines
	Analyzing the performance improvement

	Summary

	Chapter 8: Using Python and Mapnik
to Generate Maps
	Introducing Mapnik
	Creating an example map
	Mapnik in Depth
	Data sources
	Shapefile
	PostGIS
	Gdal
	Ogr
	SQLite
	OSM
	MemoryDatasource

	Rules, filters, and styles
	Filters
	Scale denominators
	"Else" rules
	"Also" rules

	Symbolizers
	Drawing lines
	Drawing polygons
	Drawing labels
	Drawing points
	Drawing raster images
	Using colors

	Maps and layers
	Map attributes and methods
	Layer attributes and methods

	Map rendering

	MapGenerator revisited
	The MapGenerator's interface
	Creating the main map layer
	Displaying points on the map
	Rendering the map
	What the map generator teaches us

	Map definition files
	Summary

	Chapter 9: Putting It All Together – a Complete Mapping System
	About the ShapeEditor
	Designing the ShapeEditor
	Importing a shapefile
	Selecting a feature
	Editing a feature
	Exporting a shapefile

	Prerequisites
	The structure of a Django application
	Models
	Views
	URL dispatching
	Templates

	Setting up the database
	Setting up the ShapeEditor project
	Defining the ShapeEditor's applications
	Creating the shared application
	Defining the data models
	Shapefile
	Attribute
	Feature
	AttributeValue
	The models.py file

	Playing with the admin system
	Summary

	Chapter 10: ShapeEditor – Implementing List View, Import, and Export
	Implementing the "list shapefiles" view
	Importing shapefiles
	The "import shapefile" view function
	Extracting the uploaded shapefile
	Importing the shapefile's contents
	Open the shapefile
	Add the Shapefile object to the database
	Define the shapefile's attributes
	Store the shapefile's features
	Store the shapefile's attributes

	Cleaning up

	Exporting Shapefiles
	Define the OGR Shapefile
	Saving the features into the shapefile
	Saving the attributes into the shapefile
	Compressing the shapefile
	Deleting temporary files
	Returning the ZIP archive to the user

	Summary

	Chapter 11: ShapeEditor – Selecting and Editing Features
	Selecting a feature to edit
	Implementing the Tile Map Server
	Setting up the Base Map
	Tile rendering

	Using OpenLayers to display the map
	Intercepting mouse clicks
	Implementing the find feature view

	Editing features
	Adding features
	Deleting features
	Deleting shapefiles
	Using ShapeEditor
	Further improvements and enhancements
	Summary

	Index

