THE EXPERT’S VOICE®IN ORACLE

Oracle PL/SQL
Recipes

A Problem-Solution Approach

Quick and reliable solutions for developers
and database administrators

Josh Juneau and Matt Arena

Apress’

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle and PL/SQL

Recipes
A Problem-Solution Approach

Josh Juneau
Matt Arena

Apress*

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle and PL/SQL Recipes: A Problem-Solution Approach
Copyright © 2010 by Josh Juneau and Matt Arena

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3207-0
ISBN-13 (electronic): 978-1-4302-3208-7
Printed and bound in the United States of America987654321

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Jonathan Gennick

Development Editor: Jonathan Gennick

Technical Reviewer: Bob Bryla

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,
Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath

Copy Editor: Kim Wimpsett

Compositor: Bytheway Publishing Services

Indexer: BIM Indexing & Proofreading Services

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales—eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://www.it-ebooks.info/

Contents at a Glance

About the AUhOrS.........ccuvsmimimmmemmssmmsmsessa s XXXiv
About the Technical RVIEWETcucusmmsesmssmmssmsssmsssmsssmssssssssssssssssssssssssssnsnsanas XXXV
Acknowledgmentscommmmmme s ———————— XXXVi
Introduction ... —————— XXXviil
Chapter 1: PL/SQL Fundamentalsccccmvsmmsmsmmsssmssssmssssmssssssssmsssssssssssssssassnsnsnnas 1
Chapter 2: Essential SQL..........ccccumsesmmsmsmssmmsssmmsssmsssmsssssssssssssnsssssssssssssnssssnsnsnansas 15
Chapter 3: Looping and LOGICcceuurrrrmmssssssssssnssmsssssssssssssssssssssssssssssnnsnsssssssssnnnns 43
Chapter 4: Functions, Packages, and Procedurescccusmmmussmsmsssnsssssnssssssssssnns 63
Chapter 5: Trigyers .uueurusemmmssmmssssnsssssnsssssnsssssnsessansesssnsesssnnesssnsesssnnesssnnssssnnssssnns 93
Chapter 6: Type CONVEISiONcccuiserrrsssnssssanssssansssssnsessansesssnsessansesssnnesssnnssssnnssssns 119
Chapter 7: Numbers, Strings, and Datesccccusemmmmmssseennmmmssessnnsssssssnssssssnsnns 133
Chapter 8: Dynamic SQALcuurummmmemmmmmmmmmsssssssssmsmmsmmsssssssssssssssssssssnssnssssnssssssnns 155
Chapter 9: EXCEPlioNS.......uuuuuiummmssssesssmmmmmmssnsssssssssssns 187
Chapter 10: PL/SQL Collections and Recordscoussmsmmmssmsssmssssassssssssssssssnnssns 215
Chapter 11: Automating Routine Tasksccseesssssmsssmsssssssssmssssssnssssnsssassssasssans 233
Chapter 12: Oracle SQL DeVvelOPerccccuumissemsmmssssnnssssssssnnsssssssnssssssssnnsssssnnnnsnss 247
Chapter 13: Analyzing and Improving Performance.........cccccussseesmmsssssnnsnsssssnsnnss 281
Chapter 14: Using PL/SQL on the Webccccemmmmmmmmmmmsssssssssssssnssssssssssssssssssnssnsss 291
Chapter 15: Java in the Database............cosussmissmmssmmssmmssmms s ——— 319
Chapter 16: Accessing PL/SQL from JDBC, HTTP, Groovy, and Jython............... 345
Chapter 17: Unit Testing With utPLSQL..........cccccvnnmmmmmmsssmmnmmsssssssnsssssssssesssssnssnss 361
INAEX certiiisnnnnnnssssnnnnnsssssnnnnssssnnsnnssssnnnnssssssnsnnsssssnsnssssssnsnssssssnsnnsssssnnnnsssssnnnsssssnnnnnss 391

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the AUhOrS.........ccouvmmmssmis s ——————— XXXiv
About the Technical REVIEWETccsssssmsssmsssmssssmssssmssssssssssssssssssssssnssssnsmsnnnnss XXXV
Acknowledgmentsccuusemmsemmmsmmmsnmssasmssssssssssassssnnsssnssssssssnsssansssassssnsssansnsans XXXVi
Introduction ..o ————————————— XXXViil
Chapter 1: PL/SQL Fundamentalsccccmmsmmmssmmsssmmssssssssmsssmmssssssssnssssssssssassnsnsnnas 1
1-1. Creating @ BIOCK Of COTE.........cccccrermriririnerirne s 1
g (010 P 1
£ 0] o] T 1
g (0 L 0] 4 T 2
1-2. Executing a Block of Code in SAL*PIUSc.cccerrrererncrereseress e 2
L] (0] 11T 2
S T0] 110 o RS YOSTOTRSSRR 2
HOW HEWOPKS ... 2
1-3. Storing Code in @ SCIIPL ...ccvecvieercre s 3
PrODIBIM . e 3
S T0] 110 o RS YOSTOTRSSRR 3
L0 4
1-4. Executing @ Stored SCript.......ccovrrrriernrr e e 4
] 1001 o 4
L3101 (o] PSPPSR 4
HOW HEWOTKS ... e s s a e s s na s s s sa s sae e sns s s s ssssesasnesssnsnnes 5
1-5. Accepting User Input from the Keyboardccccevrvevcrinninsnnces e 5
g (010 PP 5

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

£ 0] o] 5
HOW IEWOKKS ...t s s s s sa s s s sa s s s sn e sas e sas s s e nnsnesasnenssnennes 5
1-6. Displaying Results in SAL*PIUScccvreerrerinriiennsesress e ssesnssessssssnsssssens 7
o (014 P 7
30 o] TP 7
g (0 L 0] T 8
1-7. Commenting YOUr COE.........cccerierermrernncse s s sse s s e s e s ssesesnssssnens 8
L] (0] 11T 8
S T0] 110 o RS YOSTOTRSSRR 8
HOW HEWOPKS ... 9
1-8. Referencing @ BIOCK 0f COUEoveeererenerncnerrsese e snenes 9
PrODIBIM . 9
L3101 (o] PSPPSR 9
3 L0 o 10
1-9. Referring to Variables from Nested BIOCKScccornnnnnscnnnninesesssseens 10
0 1001 o 10
RS0] o] 10
HOW IEWOPKS ...t s e sn s sss s s s sa s s s sas e sas e sse s s sas s sasnnsssnsssssssnsnsnnsnns 11
1-10. Ignoring Substitution Variablesc.ccourreiinernnncnnessssssesssese s 12
o (011 1 PP 12
SOMUTION FH1 o 12
SOIULION H2 ... e e s R R R R e R nRnRnnnranas 12
3 L0 o 12
1-11. Changing the Substitution Variable Characterc.ccccvevererircscrceece e, 13
0 1001 o 13
RS0] o] 13
HOW IEWOTKS ...t sss e s s s s sn s s ss s s s e s sessessssesasesasnsssssssssssssssssnsnns 14
1-12. Creating a Variable to Match a Database Column Typeccccevvvvrevereveseesennns 14
\4

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

PrODIBIM . 14
£ T0] o] PP 14
HOW IEWOPKS ...t ss s s s s s se s sn s s nansnas 14
Chapter 2: Essential SQL..........cccusmnsmmssmssmsnsssssmssssssssmssssssssssssssssnsssssssnsssnssasssnnas 15
2-1. Retrieving a Single Row from the Database..........c.ccccceerrrrrrrcrcrcrcecece e, 15
o (011 1 PP 15
SOMULION F1 o 15
SOIULION H2 ... e e R R R R R R e R e R nrnnnnanas 16
HOW IEWOPKS ...t ss s s s s s se s sn s s nansnas 17
2-2. Qualifying Column and Variable Names..........ccccceeeeererenenese s e sns s snenas 18
L (0] 01T 1 OSSO 18
ST 0] 1110 o TSP 19
HOW TEWOPKS ..ot 19
2-3. Declaring Variable Types That Match Column TYPesS........ccceevvernnrresnsessessssessnnens 20
o (011 1 PR 20
S T0] 11110 o TSRS 20
g (0 1 0] 5 21
2-4. Returning Queried Data into a PL/SQL ReCOrd...........cooeererenmresensesnessnsessssessessnsenns 21
L (0] 11T O 21
£ T0] (o] PP 21
HOW HEWOIKS ... 22
2-5. Creating Your Own Records to Receive Query ReSUltsc.cccccvrenerncncrenescnennenes 22
PrODIBIM . 22
S T0] 1] 10 o YRS 22
HOW IEWOPKS ...t ss s s s s s se s sn s s nansnas 23
2-6. Looping Through ROWS from @ QUETYccccceveerrcresnesnc e snsens 24
0 1001 o 24
RST8] (0] 2 PP 24

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

SOMULION H2 .o bR 24
HOW IEWOKKS ... sss e s s s s sssas s s s s s s e snssessessssesasssasnssssssssssssssnssnsnns 25
2-7. Obtaining Environment and Session Information...........ccccerinnninnnscnnsscnennnnes 25
o (011 1 PR 25
RS0] o] PP 25
g (0 1 0] 5 26
2-8. Formatting Query RESUILS..........ccoceererercrerescrerecs e 29
L (0] 01T 29
£ T0] (o] PP 29
g (0 0] 5 OO 30
2-9. Updating Rows Returned by @ QUETY.........coccevrricrnnienennseres s sessssesessnses 31
PrODIBIM . A
EST0] o] PSPPSR 3
HOW IEWOPKS ...t ss s s s s s se s sn s s nansnas 32
2-10. Updating Rows Returned by @ CUISOFccoeeeeeeereene e sns e s s s e 33
Lo (0] 01T 1 OSSR 33
ST 0] 1110 o OO 33
g 0 0] N 33
2-11. Deleting Rows Returned by @ CUISOFccoccevierrenrssessssssesssse s ssssessessssssssens 34
PrODIBIM ... s 34
ST 0] 1110 o OO 34
g (0 1 0] 5 35
2-12. Performing @ TranSacCtioN..........ccccocvereerersnmsessese s s 35
L (0] 11T O 35
RS0] o] PP 35
HOW HEWOIKS ... 36
2-13. Ensuring That Multiple Queries “See” the Same Data.............cocooerererercrerescrernenes 37
PrODIBIM . 37
vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

RS0 1o 37
HOW IEWOKKS ... sss e s s s s sssas s s s s s s e snssessessssesasssasnssssssssssssssnssnsnns 37
2-14. Executing One Transaction from Within Another ... 38
o (011 1 PR 38
RS0] o] PP 38
g (0 1 0] 5 39
2-15. Finding and Removing Duplicate Table ROWS........ccccvvverrrnrnnnssss e seeens 40
L (0] 01T 40
£ T0] (o] PP 40
g (0 0] 5 OO 41
Chapter 3: Looping and LOYICcuurseerrrssssnnsssssssssssssssssnssssssssnssssssssnsssssssnnsssssssnnnnnss 43
3-1. Choosing When to Execute Code............vrmmminnninnssssssss s 43
0 1001 o 43
RS0] o] 43
HOW IEWOPKS ...t s e sn s sss s s s sa s s s sas e sas e sse s s sas s sasnnsssnsssssssnsnsnnsnns 43
3-2. Choosing Between Two Mutually Exclusive Conditionsc.cocveevernenennscsesennenes 44
o (011 1 PP 44
RS0] o] PP 44
g (0 1 0] 5 45
3-3. Evaluating Multiple Mutually Exclusive Conditionsc.ccoeevevevesesesensessessensensens 45
L (0] 11T 45
RS T0] (0] 1 PP 45
SOMULION H#2 ..o bbb 46
HOW IEWOTKS ...t ss s sss e sn s ss s s s s s s s s s e sas e sse s ssesasesasnsssssssssssnnssssnsnns 47
3-4. Driving from an Expression Having Multiple OutCOmesccceevrerernserennesesenenns 48
o (011 1 PP 48
RS0] o] PP 48
g (0 1 0] 5 49

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

3-5. Looping Until a Specified Condition IS Met..........ccoeeereeeeece e 49
0 1001 o 49
ST 0] 0] o TR 50
HOW TEWOPKS ..ot 50
3-6. Iterating Cursor Results Until All Rows Have Been Returned............c.coocecnrncnernnes 51
o (011 1 PR 51
RS0] o] PP 51
g (0 0] 5 N 52
3-7. Iterating Until a Condition Evaluates t0 FALSE............ccccoovreeriennsenesssesessessesessenns 52
L (0] 11T O 52
S T0] 1] 10 o YRS 52
HOW HEWOIKS ... 53
3-8. Bypassing the Current Loop Ieration...........ccccevcvenrcrnccnesnsc e 53
PrODIBIM . 53
EST0] o] PSPPSR 53
g L0 o 54
3-9. Iterating a Fixed Number of TIMeS.........ccorrrnnn s 95
0 1001 o 55
RST8] (o] PSPPSR 55
HOW IEWOTKS ...t ss s sss e sn s ss s s s s s s s s s e sas e sse s ssesasesasnsssssssssssnnssssnsnns 55
3-10. Iterating Backward Through @ Range...........ccceceeverrrrscesnssessesses s senens 56
o (011 1 PP 56
RS0] o 56
g (0 1 0] 5 56
3-11. lterating in Increments Other Than ONe ... 57
L (0] 11T 57
RS0] o] PP 57
HOW HEWOIKS ... 57

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

3-12. Stepping Through a Loop Based on Odd-Numbered Increments............cccecueunee. 58
[0 1011] 1< 1 58
RS0 o] 58
HOW IEWOPKS . ..o sese e sse e s s e e s s s s s s sas e sas e s sansesassssnsnsssnsnsansnnas 58

3-13. Exiting an Outer Loop Prematurely.cccoeeererererere e ssennens 59
PPODIIM . cevorvvuereeeseesseessseeessesssssnssssnesssnesssessssesssseessssessssesssssessssessssesssssnssssessssnsssssessssmsssssassssmsssssessssnsssns 59
ST 11 PR 59
HOW HEWOPKS . .ttt s se s r s s s p s e e e s s g s enennnenn 59

3-14. Jumping to a Designated Location in Code.ccevrrrerrrrerrersnrenser s sessessessenns 60
g (011 1 PSPPSR 60
£ T0] 110 o RSP SSTYSRSSSRR 60
3 010 61

O Chapter 4: Functions, Packages, and Procedures.cccumsssmnnsmssssssnsssssssnsnsssss 63

4-1. Creating @ Stored FUNCLION.ccccvcrcercrcrr e 63
o (011] (=T 1 PR 63
SOIUTION .« e e R e E e A e e R e R e R e R e e R Re e e e R e e nnan 64
HOW IEWOTKS . «.vveveeeeseessseeesssessnessssssssssssssssssessssssssssesssssssssessssessssmsssssessssessssnsssssessssnsssssssssmsssssnssssnssses 65

4-2. Executing a Stored Function from @ QUErY. ... 67
PIODIBIM . cevorvveveeeeseesseessseesssesssssesssseesssnsssssessssesssseessssessssnssssssssssesssseesssnssssessssnsssssessssnsssssassssmsssssessansssns 67
RS0] 67
HOW IEWOPKS . ..ttt sa s s r s s e s e s ae e s e s e snsnnnnns 67

4-3. Optimizing a Function That Will Always Return the Same Result for a

GIVEN INPUL. ...t n e s e n e e n e 68
PrODIBIM . oot 68
RST8] o] 68
HOW HEWOIKS . ..o s 69

4-4. Creating @ Stored ProCedure. ... 69
PrODIBIM . . s 69
3011110 69

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

HOW HEWOPKS ...ttt a st st e e s e e e e e s p e e n e e nnis 70
4-5. Executing @ Stored ProCeAUIE............coveeerererensesse s sesse s e sss e sse s e ssesessessssesnsssnnens /Al
PrODIBIM . V4l
S T0] 1] 110 o RSOSSN Yl
g L0 o 72
4-6. Creating Functions Within a Procedure or Code BIOCK...........cccooererrercrericscrencnennns 73
0 1001 o 73
£ 0] o] PP PTTPTT 73
HOW T WOTKS ...veveveeeesseesseesssessssnessssnssssssssssessssesssssesssssssssssssssssssesssssssssessssnssssesssssssssnssssnnssssmnsssnnssssnes 74
4-7. Passing Parameters by Name ... sn e sn e 74
o (011 1 PR 74
RS0] o] 74
g (0 1 0] 5 75
4-8. Setting Default Parameter Values ... 75
L (0] 11T O 75
RS0] o] PP 75
HOW HEWOIKS ... 76
4-9. Collecting Related Routines into a Single Unit.........cccocevvvvvrvnvrrnrssesses s 76
L (0] 11T 76
S T0] 1] 10 o YRS 76
HOW HEWOIKS ... 78
4-10. Writing Initialization Code for @ Packageccceevrererrsernsnnessnsesesesessssessesensens 79
PrODIBIM . 79
EST0] o] PSPPSR 79
3 L0 o 80
4-11. Granting the Ability to Create and Execute Stored Programs............ccccceeeveercernnene 80
0 1001 o 80
RS0 o] 81
Xi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Xii

HOW HEWOPKS ... s 81
4-12. Executing Packaged Procedures and FUNCHIONSccccovcevecerennncseseseses e 81
o (011] 1T 1 OO 81
S T0] 1] 110 o RSOSSN 81
HOW HEWOPKS ...ttt sae e e sas e se s se s s s e e e a e st ae e s s se e e s ae e ae e s ae e s e sae e naenenans 81
4-13. Creating a Public Name for a Stored Programcceccvvevnineenscnesesesesscsesennens 82
0 1001 o 82
EST0] o] PSPPSR 82
HOW IEWOKKS ...t sss e s s s s ss s s sa s sssse s e sssss s sae s sasnsssssssnssssnssssnsnnes 83
4-14. Executing Package Programs in SEQUENCE.........ccccveereerrerressessnssns s sssssesnssnessessenns 83
o (011 1 PR 83
ST 0] 1110 o OO 84
HOW HEWOTKS ...ttt e a e e s s s e et s p e n e e b e n e nnnnnnas 85
4-15. Implementing @ Failure FIag.........c.ccoreeriernnerienencsesssessssessssssessssesessssssssssssssssens 85
Lo (0]1] [T 1 PSS PSR S TR SRS 85
£ 11 O 85
HOW HEWOTKS ...ttt st et s s e s e b s e e b s s e e e ne e nns 87
4-16. Forcing Data Access to Go Through Packages........c.ccvvverrerrerrensessessessessessessessenses 87
L (0] 11T 87
S T0] 1] 10 o YRS 87
HOW HEWOIKS ... 88
4-17. Executing Stored Code Under Your Own Privilege Set.........ccoeerrrencreriescresenenenns 88
PrODIBIM . 88
EST0] o] PSPPSR 88
3 L0 o 89
4-18. Accepting Multiple Parameter Sets in One Function..........cccoeeveeeecececscescennene 89
0 1001 o 89
RS0 o] 89

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

HOW HEWOPKS ... 90
4-19. Listing the Functions, Procedures, and Packages in a Schema............cccceveevuenene 90
PrODIBIM . 90
S T0] 1] 110 o RSOSSN 90
HOW IEWOPKS ...ttt ss s a s s s s se s nansnnes 91
4-20. Viewing Source Code for Stored Programs............ccceevverieensesesensesssesesessessssensens 91
0 1001 o 91
EST0] o] PSPPSR 91
HOW IEWOKKS ...t sss e s s s s ss s s sa s sssse s e sssss s sae s sasnsssssssnssssnssssnsnnes 92
Chapter 5: Triggers ...cuuurrmuismsmmmmmssssnmmssssssnmmsssssssnmsssssnssnssssnnnnsssssnnnnsssssnnnnsssssnnnnss 93
5-1. Automatically Generating Column VaIUESc.ccoverrrernnmsennsesssssessssesssssssesssenns 93
Lo (0]1] [T 1 PSPPSR 93
S T0] 11110 o TSRS 93
HOW HEWOTKS ...ttt et e e e e e b e e e b e e e n e e nnis 94
5-2. Keeping Related Values in SYNC........ccccvvvererernernerresses s ses e e e e e sessessessens 95
PrODIBIM . 95
S T0] 1] 10 o YRS 95
g L0 o 96
5-3. Responding to an Update of a Specific Table Columnccceecvvevvrrvrveresensennns 97
PrODIBIM . 97
EST0] o] PSPPSR 97
3 L0 o 97
5-4. Making a View Updatable............cccceoeeeienerereresese e e sse e e ssssne s snenas 98
0 1001 o 98
RS0] o] 98
HOW IEWOKKS ... e e ss s s s se s ns s s sae e sas s sas s ssssnssessnsesssnnsnsnsnnens 100
5-5. Altering the Functionality of Applications...........cccouevernienennnesnssesssese s 101
g (010 1 ST 101

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

RS0 o] 101
HOW IEWOKKS ...t e ss s sn s s s se s s s sne e san e s sssnnssensssesnsnnsnnnsnnnns 102
5-6. Validating Input Data..........c.ccccvrrinnnnin s 103
g (010 1 PSP 103
L0 1o PP 103
o (0T L 0] O 104
5-7. Scrubbing INPut Data..........ccoceevierernie e s 104
L] (0] 01T 104
S T0] 1] 110 o OO RST TR 104
HOW HEWOPKS ... 104
5-8. Replacing @ Column’s ValUE.........ccovereericnssinerncre s ssse s 105
PrODIBIM . 105
RST8] (o] SRS 105
00 o 106
5-9. Triggering on a System EVENt ..ot 107
] 1001 o 107
RS0 1o 107
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 108
5-10. Triggering on a Schema-Related Event............ccccocveevrenninesssessssssesessessesessens 109
g (010 1 PSP 109
RS0 o] 110
o (0T 0] 4 110
5-11. Firing Two Triggers on the Same Event............ccocvenincsnensssssesssese s 111
L] (0] 11T 111
L0 1o PP 111
HOW HEWOPKS ... 112
5-12. Creating a Trigger That Fires on Multiple Events.........ccocvvvevevrvevevnvensennennnens 113
PrODIBIM . 113

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

RS0 1] 113
HOW IEWOKKS ...t e ss s sn s s s se s s s sne e san e s sssnnssensssesnsnnsnnnsnnnns 114
5-13. Creating a Trigger in a Disabled Statecccocvvrrennrcrnsnsesnsrese e 115
g (010 1 PSP 115
ST 0] 11110 o PRSPPI 116
HOW HEWOTKS ...ttt s s e b st b et p s n et n e e ne e e nennnnnns 116
Chapter 6: Type CONVersioncuuusssssssssmmssmsmssnnnnsssssnss 119
6-1. Converting a String 10 @ NUMDET ..o 119
g (0] 01T S 119
£ T0] 10 OO ORT 119
HOW HEWOLKS ...ttt se e sa s s e s se s e s s e e e e e ae e sae e s aenae e s ae e saenesaeananns 120
6-2. Converting a Stringto @ Dateccccocvcrcrcrcr s 121
] 1001 o 121
RS0 o] 121
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 121
6-3. Converting @ Number t0 @ String.........cccorvnriernseresnnesnssse s 123
g (010 1 PSP 123
L0 1o PP 123
o 0 L 0] 123
6-4. Converting a Date 10 @ StriNgcccocvvrvrrrrrrr s 124
L] (0] 01T 124
L0 1o PP 124
HOW HEWOPKS ... 125
6-5. Converting Strings 10 TIMeEStaAMPS.......cccocrvrrrirrrrr e 127
PrODIBIM .t 127
0] 1110 o RO RRSO TR 127
00 o 128
6-6. Writing ANSI-Compliant CONVEISIONSccceerrerreniniesnsese s se e sss e ssssens 129
XV

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

XVi

PrODIBIM . 129
0] 1110 o OO STSRS 129
HOW HEWOPKS ... e 130
6-7. Implicitly Converting Between PLS_INTEGER and NUMBERccccecvrerecernne 131
] 0] 0] 1 o 131
RST8] (o] TP TSPSTPTR 131
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 131
Chapter 7: Numbers, Strings, and Dates..........ccccvunummmmmmsssesnmmmsssssnmmssssssnsssssassnns 133
7-1. Concatenating StringsS.......cccovrernnmrennsernseness e ens 133
L] (0] 01T 133
L0 1o PP 133
HOW HEWOPKS ... 134
7-2. Adding Some Number of Days to a Date.........ccccvvrvrrrrrcrsrser s 134
PrODIBIM . 134
S T0] 1] 110 o OO RST TR 134
00 o 134
7-3. Adding a Number of Months to a Date. ... 135
] 1001 o 135
RST8] (o] SRS 135
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 136
7-4. Adding Years to @ Date..........c.covvevrncnnnsnnssss s 137
] 10101 o 137
RS0 o] 137
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 137
7-5. Determining the Interval Between Two Dates............cocvovnrcnnsnnnsscnensscsennes 138
g (010 1 PSS 138
L0 1o PP 139
o 0 L 0] 139

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

7-6. Adding Hours, Minutes, Seconds, or Days to a Given Date...........ccccververrceriennnnne
Lo (0] 01T 1 TSP
3T 0] 1110 o RS
HOW IEWOKKS ...t sn s sn s s s se s ss s s s sne e sas s sns s ssssassesssssssssssnsnsnnnns 141
7-7. Returning the First Day of a Given Monthcococoveninennsenssscsese s
PrODIBIM ...
ST 0] 11110 o TSRS
o (0T 0]

7-9. Rounding @ NUMDEK ..ot

140
140
140
141
142
142
142
143
143
143
144
144
144
PrODIBIM . 144
301110 144
0] o 145
7-10. Rounding a Datetime ValUE..........cocuccrncnnncsinnissse s 145
] 10101 o 145
RST8] (o] TSRS 145
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 145
7-11. Tracking Time to @ MilliISECONd ... 146
g (010 1 PSP 146
RS0 o] 146

o 0 L 0] 147
7-12. Associating a Time Zone with a Date and TiMeccccovennnnncnssncnesssesenenes 147
L] (0] 11T O 147

L0 1o PP 147
148

HOW HEWOPKS ... 148

Xvii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Xviii

7-13. Finding a Pattern Within @ Stringcccoeeeerecece e 148
] 10101 o 148
RS0 o 148
HOW IEWOKKS ...t sn s sn s s s se s ss s s s sne e sas s sns s ssssassesssssssssssnsnsnnnns 149

7-14. Determining the Position of a Pattern Within a String.........c.ccooeevvenninicsiicsnnene 150
g (010 1 PSP 150
L0 1o PP 150
o (0T 0] 151

7-15. Finding and Replacing Text Within @ Stringcccocvvvvrvnvnvnrnssses e 151
L] (0] 11T 151
S T0] 1] 110 o OO RST TR 151
HOW HEWOPKS ... 152

Chapter 8: Dynamic SQLcocccmrismmmmsmmmsssssssssssssssssssssssssssansesssnsesssnsesssnsesssnnesss 155

8-1. Executing a Single Row Query That Is Unknown at Compile Time..........cccceeuvuneee. 155
] 10101 o 155
SOMUTION FH1 . 155
SOIULION H2 ...t e e R e e R R R R R e e e R e R s 156
3 L0 3o 158
HOW [EWOPKS #2 ...t 158

8-2. Executing a Multiple Row Query That Is Unknown at Compile Time............cccuuc... 159
L] (0] 01T 159
RS 0] L0 1 PR 159
SOIULION H2 ..o 160
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 161

8-3. Writing a Dynamic INSERT Statement...........cccccreniiennnnesnnesssesesssse s ssssessens 161
g (010 1 PSS 161
L0 1o PP 161
10 (0] I 2SS 163

www.it-ebooks.info

http://www.it-ebooks.info/

5 (01 T L 0] € SR

8-4. Writing a Dynamic Update Statement...........cccevrennene

[(0] 0111 1 [
S0 1110
L (0L T LR 0] €

8-5. Writing a Dynamic Delete Statement...........ccocvvvvrvenene.

o (0] 0] 1= 1
Y] (110 SRS
HOW [T WOTKS ... res e s sseses e ssssss s sassas s ssaessassas s ssssasssassasesassnsssnsesansnsesnnesansnsnsnnesansssesanennns

8-6. Returning Data from a Dynamic Query into a Record

o (0] 0] < 1
0] (110 SRS SR
o L0 R0 €

8-9. Altering a Table at Runtime..........cccoovvvvrvrrevereserceecene

o (0] 0] = 1
L0 10
5 (01T L 0] € S

8-10. Finding All Tables That Include a Specific Column Value

[(0] 0111 1 [

www.it-ebooks.info

CONTENTS

http://www.it-ebooks.info/

CONTENTS

RS0 o 176
HOW IEWOPKS . .t ss s s se s s s s ss s e s s s snn e sas e sae s ssessssesnsnsssssanaes 178
8-11 Storing Dynamic SQL in Large ODJEcCtS.ccovrerrerniernnssesssesssssesss e s 179
o (011 1 P 179
SOIULION #1 .« e 180
SOIULION H2 . .t e e e R e n s 180
HOW IEWOPKS . .o ss s s s s s sns s s sss s e sas e sas e s sns e sas s sae s s e ssssesnsnnssssanaes 180
8-12. Passing NULL Values to Dynamic SQL.ccccerrrinniennneniennsesesesesessessesessesens 181
0] T TN 181
RS0 o 181
HOW IEWOPKSt 182
8-13. Switching Between DBMS_SQL and Native Dynamic SQL.ccorvverrrcnennne 182
PrODIBM . . 182
RS0 o] OO 182

g LT 0] 184
8-14. Guarding Against SQL Injection AHACKS.cccervrrrrernreressssersse e sesse s 185
] 0]] [T 3 185

£ T0] 1110 o TSRS ST SRSST 185
HOW HEWOEKS . .. 186

O Chapter 9: EXCEPRIONS. .uccuruimmrsssensssssnmssssnsssssssssssnsesssnsssssnsssssnsssssnnesssnnssssnnssssnnsss 187
9-1. Trapping an EXCEPLION.ccovrvercerre e sn e sa e s sa e s 187
o0 100] 1< 3 TP 187
RS0 o 187
HOW IEWOTKS . +.vvvvesreeesssesssssssssssssssesesssessssssssssssessssssesssssssssssssssssssssssssesessssesssssmssssessssssesmsssssssssssnsnses 189
9-2. Catching Unknown EXCEPLIONS.ccccvveeerrsr s sn e e 192
0] T TN 192
RS0 o] 192

L 0 0] 194

[

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

9-3. Creating and Raising Named Programmer-Defined Exceptions........c..cccecereerennen. 194
] 10101 o 194
RS0 o 195
HOW IEWOKKS ...t sn s sn s s s se s ss s s s sne e sas s sns s ssssassesssssssssssnsnsnnnns 196

9-4. Determining Which Error Occurred Inside the OTHERS Handlercccceeurueee. 197
g (010 1 PSP 197
ST 11§ R 197
HOW HEWOTKS ...t sa s s st b et n e p s n et n e e ne e nne e nnnns 198

9-5. Raising User-Defined Exceptions Without an Exception Handler............ccceeuvnunen. 200
[(0]0] 1T 1 SRRSO 200
S T0] 1] 110 o OO RST TR 200
HOW HEWOTKS ...ttt et sttt e b s e s e a e n et s ae e anns 201

9-6. Redirecting Control After an Exception Is Raised..........c.ccoceervernsricensennscnecenens 202
Lo (011] 12T 1 OO RSRRR 202
£ T0] 10 OO ORT 203
HOW HEWOTKS ...ttt se e sa s s s e se s e s sa e s e e e ae e sae s e s e nae e ae e saenenanananes 204

9-7. Raising Exceptions and Continuing ProCessingccceeverversessessessessessnssessensenens 204
] 10101 o 204
RST8] (o] TSRS 204
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 205

9-8. Associating Error Numbers with Exceptions That Have No Name 206
g (010 1 PSP 206
SOIUTION .t e s e AR e E R A e R e R e e e e e e e e Renrnnn 206
HOW HEWOTKS ...ttt e sn s s b st st n s n e p e e ne e nnn e nnnns 206

9-9. Tracing an Exception to ItS Originccoververnnenenrnsesssene s 207
L] (0] 11T O 207
L0 1o PP 207
HOW HEWOPKS ... 210

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

xxii

9-10. Displaying PL/SQL Compiler Warnings.........cccueeeevsressessessessessessessessessessessessessens 211
] 10101 o 211
RS0 o 211
HOW IEWOKKS ...t sn s sn s s s se s ss s s s sne e sas s sns s ssssassesssssssssssnsnsnnnns 212

Chapter 10: PL/SQL Collections and Recordscouasmsmmsmmmssmmssmsssssassssssssssnnnsns 215

10-1. Creating and Accessing @ VARRAYcccrvrrrrerrensensessessessessessessessessesssssssssssenns 215
L] (0] 01T 215
S T0] 1] 110 o OO RST TR 215
HOW TEWOPKS ...ttt 216

10-2. Creating and Accessing an Indexed Tableccoeervrerriennsnnesssess e 216
PrODIBIM . s 216
RST8] (o] SRS 216
HOW HEWOLKS ...ttt ae e sa s s s e se s e s s e e e sesae e s ae e s aenae e ae e enenesanananns 217

10-3. Creating Simple RECOIS.........ccucrierierieriersirses s e s snssnssnsnnsnns 217
] 10101 o 217
RS0 1o 217
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 217

10-4. Creating and Accessing Record ColleCtions..........c.ccevverrenesiesessesessssessnsessessssennes 218
g (010 1 ST 218
RS0 o 218
o (0T 0] 218

10-5. Creating and Accessing Hash Array Collections.........cccccueevnneresensesnnesesessessnens 219
L] (0] 11T O 219
ST 11§ R 219
HOW HEWOTKS ...ttt et sttt e b s e s e a e n et s ae e anns 220

10-6. Creating and Accessing Complex Collectionsccccvververrerversensensessessessessenenne 220
PrODIBIM . 220
0] 1110 o RO RRSO TR 220

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

o 0 0] OSSP S 222
10-7. Passing a Collection As a Parameter.............cccervrerennseresessesssesesessessesessessssesnes 223
PrODIBIM . 223
0] 1110 o OO STSRS 223
HOW IEWOPKS ... ss s s a s sp s ne s s s s e s nsnsnas 224
10-8. Returning a Collection As @ Parameterccooeernenennneserssesessssesesessesesensenens 224
] 0] 0] 1< o 224
RST8] (o] SRS 224
HOW IEWOKKS ...t sn s sn s s s se s ss s s s sne e sas s sns s ssssassesssssssssssnsnsnnnns 225
10-9. Counting the Members in @ Collection ... 226
g (010 1 PSP 226
RS0 o] 226
o (0T 0] 226
10-10. Deleting a Record from @ ColleCtion...........ccuceeeeerrernseresnssesssssesesse e sesessssesnes 227
L] (0] 11T 227
ST 0] 11110 o TSRS 227
HOW TEWOPKS ...ttt et e s 228
10-11. Checking Whether an Element EXiSts..........cccoeevierninesnsessss s 228
L] (0] 11T O 228
S T0] 1110 o OO SRSTSRS 228
o 0 0] P 229
10-12. Increasing the Size of @ COlIECLION..........ccocvveeerriererrere e 229
g (0] 01T S 229
RST8] (o] SRS 229
HOW IEWOPKS ...ttt ss s a s ss s nn s sn s s nsnsnas 230
10-13. Navigating ColleClions...........ccccvvrirrrinirirsr s 230
] 0] 0] 1< o 230
RS0 o] 230

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

XXiv

HOW HEWOPKS ... s 231
10-14. Trimming @ COHECHONcoucerrerecrreee e 232
Lo (011] 12T 1 OO RSRRR 232
0] 1110 o OO STSRS 232
HOW HEWOLKS ...ttt ae e sa s s s e se s e s s e e e sesae e s ae e s aenae e ae e enenesanananns 232
Chapter 11: Automating Routine TaskKScccuusessmmsssssnnsssssssnssssssssssssssssssnssssssnnnns 233
11-1. Scheduling ReCUrring JODScccvercrieriersersen s 233
g (010 1 PSP 233
RS0 o] 233
o (0T 0] 233
11-2. E-mailing Output from a Scheduled JOb ... 234
Lo (010] 1T 1 SRRSO 234
ST 0] 11110 o TSRS 234
HOW HEWOTKS ...ttt et sttt e b s e s e a e n et s ae e anns 235
11-3. Using E-mail for Job Status Notificationcccceeeerrrerricnnsrecsce e 235
PrODIBIM .t 235
S T0] 1] 110 o OO RST TR 235
0] o 235
11-4. Refreshing a Materialized View on a Timed Interval..........c.ccccoervrcrcercercesseninnne 236
Lo (011] 12T 1 OO RSRRR 236
£ T0] 10 OO ORT 236
HOW HEWOLKS ...ttt se e sa s s e s se s e s s e e e e e ae e sae e s aenae e s ae e saenesaeananns 238
11-5. Synchronizing Data with a Remote Data Source..........c.cceevererrrcercssensessessennens 238
] 0] 0] 1< o 238
RS0 1o 239
HOW IEWOKKS ... e e ss s s s se s ns s s sae e sas s sas s ssssnssessnsesssnnsnsnsnnens 240
11-6. Scheduling @ JOb Chain...........ccoiinincn s 240
g (010 1 ST 240

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

RS0 o] 241
HOW IEWOKKS ...t e ss s sn s s s se s s s sne e san e s sssnnssensssesnsnnsnnnsnnnns 243
Chapter 12: Oracle SQL DeVelOPerccuusseerrrssssnsnmsssssnnsssssssnnnssssssnnnsssssssnnsssssnnnns 247
12-1. Creating Standard and Privileged Database Connections...........ccccverververierieninnne 247
L] (0] 11T 247
0] 1110 o RO RRSO TR 247
HOW HEWOPKS ... 248
12-2. Obtaining Information About TabIES..........cccecerrriicrrrserree e 249
PrODIBIM . 249
RST8] (o] SRS 249
00 o 250
12-3. Enabling Output to Be Displayed..........cccoervrirrerrrsessesses s sessennns 251
] 1001 o 251
RS0 o] 252
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 252
12-4. Writing and Executing PL/SQL..........ccoovveeierennnscsnnssesssssess s sessssssenens 253
g (010 1 PSP 253
ST 11§ R 253
HOW HEWOTKS ...ttt e sn s s b st st n s n e p e e ne e nnn e nnnns 254
12-5. Creating and Executing @ SCript.......ccovvrrrirnnrn s seneens 256
L] (0] 01T 256
L0 1o PP 256
HOW HEWOPKS ... 257
12-6. Accepting User Input for Substitution Variables...........cccvvrvrvrvrrersrsensensensenienne 258
PrODIBIM .t 258
0] 1110 o RO RRSO TR 258
00 o 258
12-7. Saving Pieces of Code for QUICK ACCESSccorrrermrrmseneresseserrssesessssesesssesesessenens 259
XXV

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

PrODIBIM . 259
SOIULION ottt 259
HOW HEWOPKS ... e 259
12-8. Creating @ FUNCTION ..ot 261
] 0] 0] 1 o 261
RST8] (o] TP TSPSTPTR 261
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 262
12-9. Creating a Stored ProCedure.............cocvrerenernennsesssessessse s snas 265
g (010 1 PSP 265
RS0 o] 265
o 0 0] 266
12-10. Creating a Package Header and Body...........ccccocverrimrennnesnsesesessessssesessssennes 268
L] (0] 01T 268
L0 1o PP 268
HOW HEWOPKS ... 269
12-11. Creating @ THPQEN ...c.ccvververrerierrererserses s s e s e e se e sa s s e sa s e s saesaesassaesaesassaesnens 272
PrODIBIM . 272
S T0] 1] 110 o OO RST TR 272
00 o 273
12-12. Debugging Stored COdecccereierricrcrrserr e e 276
PrODIBIM . 276
RST8] 1 (o] ST 276
00 o 276
12-13. Compiling Code Within the Navigator.............cccveeereriscscs e seeenens 278
] 10101 o 278
RS0 o] 279
HOW IEWOKKS ... e e ss s s s se s ns s s sae e sas s sas s ssssnssessnsesssnnsnsnsnnens 279

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 13: Analyzing and Improving Performance.........occeeemmrsnssssssssnssnsnssssssas 281
13-1. Installing DBMS_PROFILERc.ccccvrerrrerererereenerererersesesesassessesessessssessesassesaes 281
g (010 1 PSP 281
L0 1o PP 281
o (0T L 0] O 282
13-2. Identifying BotIenecks.........ccocvververierirrrerrer st 283
L] (0] 01T 283
£ 10 o] PP 283
HOW HEWOPKS ... 284
13-3. Speeding Up Read/Write LOOPS.......ccucvrvereneriernnsere s ssssessessssesnes 285
PrODIBIM . s 285
RST8] (o] SRS 285
0] o 286
13-4. Passing Large or Complex Collections as OUT Parametersccccceeervercerrennnen 287
] 10101 o 287
RS0 1o 287
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 288
13-5. Optimizing Computationally Intensive Code............ccovrerrenriersnessesnsesesesesensennns 288
g (010 1 ST 288
RS0 o 288
o (0T 0] 289
13-6. Improving Initial Execution RUnNing TIMe........ccccoviernnmnesnsesesssesessesesesessssesnes 290
L] (0] 11T O 290
L0 1o PP 290
HOW HEWOPKS ... 290
Chapter 14: Using PL/SQL on the Webcccusmmmemmsnmmsasmssnssssnsssssssssssssnsssasssses 291
14-1. Running a PL/SQL Procedure on the Web ... 291
] 0] 0] 1< o 291
i

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

XXVill

RS0 o] 291
HOW IEWOKKS ...t e ss s sn s s s se s s s sne e san e s sssnnssensssesnsnnsnnnsnnnns 292
14-2. Creating a Common Set of HTML Page Generation Procedures...........cccoceruruenne. 292
PrODIBIM ... s 293
ST 0] 11110 o PRSPPI 293
o (0T L 0] O 294
14-3 Creating an INPUL FOIM ..o 295
L] (0] 01T 295
S T0] 1] 110 o OO RST TR 295
HOW HEWOPKS ... 297
14-4. Creating a Web—based Report Using PL/SQL Procedures..........cccecvverrrererenennes 299
PrODIBIM . 299
RST8] (o] SRS 299
00 o 301
14-5. Displaying Data from TabIesccccvvrrrcrsnsn s srenens 302
] 1001 o 302
RS0 1o 302
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 303
14-6. Creating a Web Form Dropdown List from a Database Query............cceeviernrnnnen 303
PrODIBIM ... s 303
ST 0] 1110 o PR 303
o (0T 0] 4 305
14-7. Creating a Sortable Web Report............ccornnrennnssrscssse s 305
L] (0] 11T 305
L0 1o PP 305
HOW HEWOPKS ... 307
14-8. Passing Data Between Web Pages..........cccvvrvrvrininnennensensen e sessesenns 308
PrODIBIM . 308

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

RS0 o] 308
HOW IEWOKKS ...t e ss s sn s s s se s s s sne e san e s sssnnssensssesnsnnsnnnsnnnns 309
14-9. Viewing Errors for Debugg@ing Web AppPScccovcerrnminennnennsssesesessesessessssessenens 310
g (010 1 PSP 310
ST 0] 11110 o PRSPPI 310
o (0T L 0] O 310
14-10. Generating JavaScript via PL/SQL.........cccooeorriicnrrrcrrsese e 311
L] (0] 01T 3
S T0] 1] 110 o OO RST TR 3
HOW HEWOPKS ... 313
14-11. Generating XML QUEPUL ..o sn e 314
PrODIBIM . 314
RST8] (o] SRS 314
HOW IEWOPKS ...ttt ss s a s ss s nn s sn s s nsnsnas 315
14-12. Creating an Input Form with AJAX ... 315
] 1001 o 315
RS0 1o 315
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 317
Chapter 15: Java in the Database..........covussemmmssasmmsssnsssssnsssssnnssssnsssssnsssssnsssssnnsnss 319
15-1. Creating a Java Database Class..........cccvreemrrereneresnsessessssessssesseses e sss s sennas 319
L] (0] 01T 319
L0 1o PP 319
HOW HEWOPKS ... 320
15-2. Loading a Java Database Class into a Database...........ccccoevveerereriernsesesessessenennes 321
g (0] 01T S 321
0 0 0] 323
15-3. Loading a Compiled Java Class Into the Database..............cocoovvenrricrrnicnerincnens 323
g (010 1 ST 323
XXix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

RS0 o 324
HOW IEWOPKS . .t ss s s se s s s s ss s e s s s snn e sas e sae s ssessssesnsnsssssanaes 324
15-4. Exposing a Java Class As a Stored Procedure.c.covrenernsneressssesesssesennenes 325
o (011 1 P 325
S0 1110 o PO RTPRST 325
HOW [EWOPKS . oot 325
15-5. Executing a Java Stored ProCedurecocceveeerersesnsesssessessssessessssessesessessssenns 325
PrODIBM . . e 325
£ T0] 110 o TSRS SR SRR 326
3 01T T 326
15-6. Calling a Java Stored Procedure from PL/SQL.covreerreicnrsnerereceseeeens 326
o0 100] [T 326
RST8] (o] PP PO PO 327
HOW HEWOEKS 328
15-7. Passing Parameters Between PL/SQL and Java.ccocvennnnnnnnccscsnnnnnnnns 328
] 0]] 1< 3 328
SOIULON . oo b e s 328
HOW I WOTKS . +.vveveeeseresseessseesssesesssssssessssssssssnssssssssssnsssssssssnsssssssssessssnsssssnssssessssssssssessssssssssnsssssssssnnes 329
15-8. Creating and Calling a Java Database Function.ccocevvvevececrcecececeeceene, 330
ProBIBM . .o ———————————— 330
SOIULON . oot s 331
L 0 0] 332
15-9. Creating a Java Database TrHQgQer.cccoeeerererene e sne e 332
PrODIBM . .o 332
RS0 o] 332
L (0 0] TP 333
15-10. Passing Data Objects from PL/SQL t0 JaVa.cccovvrerennscnssessessssessesesessnenns 334
L (0] 01T PP 334

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

RS0 o] 334
HOW IEWOKKS ...t e ss s sn s s s se s s s sne e san e s sssnnssensssesnsnnsnnnsnnnns 336
15-11. Embedding a Java Class Into @ PL/SQL Packagececureeerrrserrnsesesensessnsennes 336
g (010 1 PSP 336
ST 0] 11110 o PRSPPI 336
o (0T L 0] O 338
15-12. Loading Java Libraries Into the Database...........c.ccocvvererriennsesesessesssesesenennas 338
L] (0] 01T 338
S T0] 1] 110 o OO RST TR 338
HOW HEWOPKS ... 340
15-13. ReMOoViNg @ JAVA ClaSScccevrrriererrnierrrnesesssesesssse s s ssssssessssenens 340
PrODIBIM . 340
RST8] (o] SRS 341
HOW IEWOPKS ...ttt ss s a s ss s nn s sn s s nsnsnas kLA
15-14. Retrieving Database Metadata with Java............c.coccenniinnninnnncnnnins 34
] 1001 o kLA
RS0 1o k73
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 342
15-15. Querying the Database to Help Resolve Java Compilation Issuesc.c....... 343
PrODIBIM ... s 343
RS0 o] 343
Chapter 16: Accessing PL/SQL from JDBC, HTTP, Groovy, and Jython............... 345
16-1. Accessing a PL/SQL Stored Procedure via JDBCc.coconiimninsnesesssessssenens 345
] 0] 0] 1< o 345
RS0 1o 345
HOW IEWOKKS ... e e ss s s s se s ns s s sae e sas s sas s ssssnssessnsesssnnsnsnsnnens 347
16-2. Accessing a PL/SQL Stored Function from JDBCccooeerrienernienennienesnseens 348
g (010 1 ST 348
xxxi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Xxxii

RS0 o] 348
HOW IEWOKKS ...t e ss s sn s s s se s s s sne e san e s sssnnssensssesnsnnsnnnsnnnns 349
16-3. Accessing PL/SQL Web Procedures With HTTP ... 350
PrODIBIM ... s 350
ST 0] 11110 o PRSPPI 350
o (0T L 0] O 354
16-4. Accessing PL/SQL from JYthonccovcieenicrcsine s sessessesesnes 355
L] (0] 01T 355
HOW IEWOKKS ...t sn s sn s s s se s ss s s s sne e sas s sns s ssssassesssssssssssnsnsnnnns 357
16-5. Accessing PL/SQL from GrOOVYccccverrersersessessessessessessessessessessessessesssssssssssenns 358
PrODIBIM ... 358
ST 0] 1110 o PR 358
o (0T 0] 359
Chapter 17: Unit Testing With utPLSQL............cccnsmmismmmssmmsmmmsssmssssssssssssssssnsnnns 361
17-1. Testing Stored PL/SQL Code Without Unit TESEScccerererereserensserereseresneenens 361
PrODIBIM .t 361
S T0] 1] 110 o OO RST TR 361
0] o 363
17-2. Installing the utPLSQL Unit Testing Framework............ccceeovveensrennscnesessesensennes 363
PrODIBIM . 363
RST8] (o] SRS 364
00 o 364
17-3. Building a utPLSQL TeSt PACKAQJEccccecerverierierrirser s sss s snssnesnesnesnesnens 365
] 0] 0] 1< o 365
RS0 1o 365
HOW IEWOKKS ... e e ss s s s se s ns s s sae e sas s sas s ssssnssessnsesssnnsnsnsnnens 366
17-4. Writing a utPLSQL Unit TeSt ProCedure..........cocovvermrerienesssesssssssse e 367
g (010 1 ST 367

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

RS0 o] 367
HOW IEWOKKS ...t e ss s sn s s s se s s s sne e san e s sssnnssensssesnsnnsnnnsnnnns 368
17-5. Running @ UtPLSQL TeSt........cooceirrirrrci s 369
g (010 1 PSP 369
ST 0] 11110 o PRSPPI 370
0L 0] 373
17-6. Building @ UPLSQL TeSt SUIE.......cceecrerererere e senens 373
L] (0] 01T 373
S T0] 1] 110 o OO RST TR 373
HOW HEWOPKS ... 373
17-7. Running @ utPLSQL TeSt SUItE.........ccorrriererrererreserese e 374
PrODIBIM . 374
RST8] (o] SRS 374
HOW IEWOPKS ...ttt ss s a s ss s nn s sn s s nsnsnas 381
17-8. Reconfiguring utPLSQL Parameters........c.cccvvrvrircrcssesses s ses s 381
] 1001 o 381
RS0 1o 381
HOW IEWOLKS ...t sn s sn s s s s se s ns s s s sae e san s sas s ssssnssessssnsnsnssnsnsnnnns 381
17-9. Redirecting upPLSQL Test Results t0 @ Filecccocvvrennccnsnienssesesesesesennes 384
PrODIBIM . ————————————————— 384
RS0 o] 384
0L 0] 385
17-10. Automating Unit Tests for PL/SQL and Java Stored Procedures Using Ant........ 385
PrODIBIM . ————————————————— 385
L0 1o PP 386
HOW HEWOPKS ... 388
INA@X weriieeiiinrsnsnismsssn s —————————————— 391

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Josh Juneau has been developing software since the mid-1990s. Database
application programming has been the focus of his career since the beginning.
He became an Oracle Database administrator and adopted the PL/SQL
language for performing administrative tasks and developing applications for
Oracle Database. As his skills evolved, he began to incorporate Java into his
PL/SQL applications and later began to develop stand-alone applications in
Java. During his tenure as a developer, he has combined his knowledge of
PL/SQL and Java to develop robust Oracle Database applications that harness
the great features offered by both technologies. He has extended his knowledge
of the JVM by learning and developing applications with other JVM languages
such as Jython and Groovy. His interest in learning new languages that run on
the JVM led to his interest in Jython. Since 2006, Josh has been the editor and publisher for the Jython
Monthly newsletter. In late 2008, he began a podcast dedicated to the Jython programming language.
Josh was the lead author for The Definitive Guide to Jython, which was published in early 2010 by Apress.
He has most recently become the lead for the Django-Jython project
(http://code.google.com/p/django-jython/), after developing the project’s implementation for the
Oracle Database. To hear more from Josh, follow his blog at http://jj-blogger.blogspot.com. You can
also follow him on Twitter via @javajuneau.

i Matt Arena has been developing Oracle Database applications for 25
BaeeRth.i years. He's focused on web-based applications since the Web was first
2I%AR developed. Matt has worked in every phase of the project development life
! cycle but enjoys database modeling and programming the most.

XXXiV

www.it-ebooks.info

http://code.google.com/p/django-jython
http://jj-blogger.blogspot.com
http://www.it-ebooks.info/

About the Technical Reviewer

Bob Bryla is an Oracle 9i, 10g, and 11g Certified Professional with more than
20 years of experience in database design, database application development,
training, and database administration. He is an Internet database analyst and
Oracle DBA at Lands’ End, Inc., in Dodgeville, Wisconsin. He is the author of
several other Oracle DBA books for both novice and seasoned professionals.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

This book is dedicated to my wife and kids...we made it through another one. I would like to thank my
wife Angela for always being so great, even when there were days that I had to work on it instead of
spending time with my family. Happy anniversary, Angela; this has been the best ten years of my life,
and I look forward to growing old with you and watching our children grow up.

Thank you to my children, Kaitlyn, Jacob, Matthew, and Zachary, for understanding when I needed
to work on this book. There were many times throughout the production of this book that I had to work
late on Saturday mornings or take time out of the day to read and write for the book. Thanks for being
patient with me; I hope that you will read this book someday and understand why my eyes were
plastered to the computer screen for many hours on end. I know that at least two of you will follow in my
footsteps and become developers!

I want to thank my family for supporting me throughout my career and for taking an interest in my
work. I hope that you will enjoy reading it, and maybe you can learn why I am such an Oracle and Java
enthusiast. I also want to thank my friends and co-workers for their support, especially Roger Slisz and
Kent Collins, for trusting me to be the brains behind application development for our section.

I owe the Jython and Java communities a huge thanks for keeping me involved. Even when times are
slow, the community keeps me moving forward to learn new and useful things. A big thank-you to Jim
Baker who was responsible for getting me started in the field of writing books.

Thanks to Jonathan Gennick for providing me with the opportunity to write this book. I look forward
to working with you again on future projects. I also thank Bob Bryla, John Osborne, and Adam Heath for
the useful feedback they provided throughout the authoring of this book. I especially want to thank my
coauthor, Matt Arena, for stepping in and lending me a hand with the book; your material is excellent.
Matt, you showed me the ropes in PL/SQL, and it has been a privilege to work with you on authoring this
book. I hope to work on many more projects together.

Lastly, thanks to the Oracle community and readers of this book. We enjoy the privilege of working
with the number-one database. This book is my contribution to the community, and I hope it inspires
many to utilize PL/SQL and Oracle to its full potential.

- Josh Juneau

Prayerful thanks to God for all the blessings He has given me in life, especially Pat, my loving wife. I want
to thank Michael, my terrific son, for whom this book is dedicated, for being an amazing person and for
giving me a sweet daughter-in-law Anna and wonderful grandchildren, Michael and Kyra (and for the
future grandchildren). I also thank my parents, John and Jane, and my siblings John, Mark, Kathi and
Cindy for many sacrifices, wisdom and support throughout my life.

Josh Juneau, respected friend, colleague and lead author of this book, my sincere thanks for giving
me the opportunity to contribute to your work. It has been a great pleasure and I hope to work with you
again.

XXXVi

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

I thank Jonathan Gennick, Adam Heath, Bob Bryla, John Osborn and the entire editorial staff at
Apress for their guidance and support throughout the process of writing this book.

I'd like to Dr. Paul Kaiser, Dr. Steven Berger and Brother Joseph Ninh of Lewis University for
teaching me the foundations of computer programming and instilling in me the passion to learn.

Finally, to KLN angel in Heaven ~ I will always remember you.

- Matt Arena

. . XXXVii
www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Oracle Database is one of the most advanced relational databases available. It includes technologies that
empower you to work with your data in ways that no other database offers. In the early days of Oracle
Database, Structured Query Language (SQL) was used to work directly with the data, but as time went
on, people turned to other languages outside the database for performing more sophisticated tasks with
data. Although these procedural languages offered a powerful way to harness data, developers and
database administrators wanted a language that was easier to use and bound more closely to the data.
Oracle Corporation addressed that need by introducing Procedural Language/Structured Query
Language (PL/SQL) into Oracle Database in release 7. This language offered the best of both worlds,
allowing developers and database administrators to work directly with data via SQL and perform routine
programming tasks within the database.

The PL/SQL programming language was influenced by the Ada programming language. In fact, the
syntax is much the same as Ada. When PL/SQL was originated, it contained many constructs that are
available in other languages, including variables and arrays. In Oracle Database 8, the language began to
take on more of an object-oriented dialect, allowing developers to create types and develop applications
in a way that was more in tune with other modern-day languages. The language continues to grow,
adding new features with each release of Oracle Database and making PL/SQL an essential tool for
anyone programming against an Oracle Database.

PL/SQL can be quite powerful for performing routine database tasks such as creating, returning,
updating, and deleting records. However, its capabilities go far beyond performing the routine tasks.
Database administrators can use PL/SQL to create powerful database procedures and queries among
other things, and developers can use it for developing sophisticated web-based applications, working
with stored Java classes, and much more.

The Recipe Approach

Although plenty of PL/SQL references are available today, this book takes a different approach. You'll
find an example-based approach in which each chapter is built of sections containing solutions to
specific, real-life programming problems. When faced with a problem, you can turn to the section for
that problem and find a proven solution that you can modify and implement.

Each recipe contains a problem statement, a solution, and a detailed explanation of how the
solution works. Some of the recipes contain more than one solution, and many of those recipes will also
contain more than one section explaining how the solutions work.

The problem statements have been written so that you can easily identify with the topics. We've
tried to make it obvious from the titles exactly what recipe you need to look at in order to get the job at
hand completed.

The chapters have been organized in a fashion that allow for concepts to build upon each other as
the book progresses. Yet we've taken care to write the recipes without assuming that you have read all
the preceding content in the book. We’ve designed the book so that you can “dip in” randomly to
whatever recipe addresses the problem you are facing at a given moment.

xxxviii

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

Many of the examples have been written and tested using Oracle’s SQL*Plus environment, but the
examples can also be ported to other environments such as Oracle SQL Developer and Oracle
Application Express. In fact, Chapter 12 is devoted to learning the concepts and strategies behind using
Oracle SQL Developer for working with PL/SQL.

We have been using PL/SQL for several years, and over that time we have watched the language
mature. We think PL/SQL is the best language to use for working directly with Oracle Database. We also
think it can be advantageous when used in combination with other languages such as Java to develop
applications that take advantage of the strengths offered by each technology.

Many of the recipes in this book focus on learning how to use the language features in a way that
applies each feature to a particular problem scenario. Other recipes in this book contain solutions that
we used to resolve many of the problems that we have encountered over the years.

We have used the PL/SQL language for running database administrative tasks, writing entire web
applications, developing web services, working in conjunction with Java and other languages, and much
more. This book will provide you with the knowledge that we have picked up along the way in using the
language for different solutions.

We hope that you will enjoy this book and that you will embrace the power of PL/SQL and learn to
take full advantage of what Oracle Database has to offer. We have had a great time writing this book, and
we look forward to updating it as the technology changes and new recipes are formed. We encourage
you to post suggestions or feedback for this book at Apress.com. Thanks for reading this book. We hope
you will enjoy using PL/SQL and find it to be as powerful as we do.

Audience

This book is intended for all audiences, beginners and advanced developers alike. We cover a wide
gamut of problems and solutions. Beginners will find solutions to some of the most common PL/SQL
programming tasks, such as trapping errors, writing loops, and retrieving data. Intermediate and
advanced users will find solutions to more advanced problems such as those encountered when
developing web applications and working with dynamic languages.

Example Code

Source code is available for many of the examples shown in this book. You can download that source
code from the book’s catalog page on the Apress web site. Here is the URL for that page:

http://apress.com/book/view/1430232072

Once there, look under the book’s cover image for the catalog page section entitled Book Resources.
You'll see a Source Code link. Click that link to download a zip archive containing the example code for
this book.

To get started with the source code, please install the HR tables using the scripts that are contained
within the hr folder in the source download. These tables can be added to the schema of your choice.
Once you have added these tables, then you will be ready to run the examples provided with the book.

XXXiX

www.it-ebooks.info

http://apress.com/book/view/1430232072
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

PL/SQL Fundamentals

The Oracle PL/SQL language is important for database administrators and developers of Oracle
Database products. Developing PL/SQL code requires a fundamental knowledge of the database, but
there are also some key components that each program will need to use. This chapter embarks on a
short journey through some recipes to get you better acquainted with those fundamental components.

This chapter is targeted as a starting point for those who are new to PL/SQL. However, those who
are very familiar with the language may also want to glance through these recipes as a refresher. Who
knows, you may even find a solution or two that you haven’t ever seen before!

As stated in the introduction, this book focuses on Oracle Database 11g Release 2. However, many of
the recipes will work in other versions of Oracle Database without any changes. All the recipes in this
particular chapter are fundamental and should work unchanged in any version of Oracle Database that
you're likely to encounter.

1-1. Creating a Block of Code

Problem
You are interested in creating an executable block of PL/SQL code.

Solution

Write the keywords BEGIN and END. Place your lines of code between those two keywords. Here’s an
example:

BEGIN
Executable statements go here..
END;

If you want to introduce variables for your PL/SQL block, you must precede your block with a
DECLARE section. Here’s an example:

DECLARE

One or more variable declarations
BEGIN

One or more PL/SQL statements
END;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

How It Works

A block of code is an executable program that performs a unit of work. The minimum executable block
of code starts with the keyword BEGIN and ends with the keyword END. In between those two keywords
there should be one or more PL/SQL statements that comprise your code block.

In practice, you'll find that you most often want to work with variables. That’s why you need the
DECLARE..BEGIN..END pattern in the solution’s second example. One or more variable or constant
declarations can be made within the declaration section, and they will then be available for use within
your code block.

A PL/SQL application may consist of one or more code blocks, and some of them may even be
recursively nested within each other. Variables that are defined within the DECLARE section can be used
by the code block(s) immediately following, until the outer END keyword is reached.

1-2. Executing a Block of Code in SQL*Plus

Problem
You want to execute a block of PL/SQL code within the SQL*Plus command-line utility.

Solution

The solution to this recipe is multitiered, in that executing a block of code in SQL*Plus incorporates at
least two steps:

Enter the PL/SQL code into the SQL*Plus utility.

Execute the code block by simply placing a backslash (/) as the last line of code, and then
press the Enter key.

The following is an example displaying a code block that has been typed into SQL*Plus:

SOL> BEGIN
2 DBMS_OUTPUT.PUT_LINE('HELLO WORLD');
3 END;
4 /

How It Works

To execute code within SQL*Plus, you simply type the executable block and place a forward slash (/)
after the closing END. The code will be executed by the SQL*Plus interpreter when the slash is
encountered. Once the code has been executed, control will be returned to the user at the SQL*Plus
prompt. This differs from the execution of a query within SQL*Plus because when you write a SELECT
statement, it can be executed by simply placing a semicolon at the end and hitting the Enter key.

Note Be sure to put the forward slash on a line by itself and to make it the first character on that line.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

If the code you are executing contains a DECLARE section, then its execution will resemble the
following:

SQL> DECLARE

2 -- Some cursor and variable declarations
3 BEGIN

4 DBMS_OUTPUT.PUT_LINE('Hello World");

5 END;

6 /

Hello World
PL/SQL procedure successfully completed.

You also follow a similar syntax when creating stored procedures, packages, and functions. To
create or replace stored code, write a CREATE statement and use a trailing slash, followed by pressing the
Enter key. For example, then you can use the following code to create a simple stored procedure that
prints a line of text. Notice how it contains a trailing slash character.

SOL> CREATE OR REPLACE PROCEDURE hello world AS
2 BEGIN
3 DBMS_OUTPUT.PUT_LINE('Hello World');
4 END;
5 /

Procedure created.

Most likely, you will use SQL*Plus for much of your development life cycle. It is easy to execute code
blocks and create stored code using the syntax discussed in this recipe. The same syntax can also be
carried over to the Oracle Application Express environment. The Oracle Application Express
environment contains an embedded SQL*Plus interpreter that can be used for performing the same
tasks that you would perform using the standard client. For more information about using Oracle
Application Express for building and maintaining web applications, please see the online Oracle
documentation at http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11946/toc.htm.

1-3. Storing Code in a Script

Problem

Rather than typing your PL/SQL code into the SQL*Plus utility each time you want to run it, you want to
store the code in an executable script.

Solution

Open your favorite text editor or development environment; type the PL/SQL code into a new file, and
save the file using the .sql extension. The script can contain any number of PL/SQL statements, but the
last line of the script must be a forward slash (/).

For example, you could place the following lines into a file named count_down.sql:

SET SERVEROUTPUT ON;
DECLARE

www.it-ebooks.info

http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11946/toc.htm
http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

counter NUMBER;
BEGIN
FOR counter IN REVERSE 0..10 LOOP
DBMS_OUTPUT.PUT LINE (counter);
END LOOP;
END;

Now you have a file that you can execute from SQL*Plus any time you want to count down from ten
to zero.

How It Works

You can basically use any text editor or development environment to create and save your script. The
key is to ensure that the file extension on the saved script is .sql so that SQL development environments
and other developers recognize it as a stored SQL script. SQL Developer supports a number of additional
extensions for more specific types of PL/SQL. To learn more about using SQL Developer, please see
Chapter 12. Once the script has been stored, it can be executed within SQL*Plus. See the next recipe for
details on doing that.

Note The line SET SERVEROUTPUT ON at the beginning of the script is an important detail. That command
instructs SQL*PIlus to look for and display any output from DBMS_OUTPUT.PUT LINE. A common mistake is to omit
the SET SERVEROUTPUT ON command and then be left wondering why you don’t see any output.

1-4. Executing a Stored Script

Problem
You have stored an SQL script to your file system and want to execute it in SQL*Plus.

Solution

Assume you have a stored script named my_stored_script.sql and that it is saved within a directory
named /Oracle/scripts/. You can execute that script using any one of the following approaches:

e Traverse into the directory containing the script, then connect to a database via
SQL*Plus, and finally issue the following command:
@my_stored script.sql

e Open the command line or terminal, connect to the database via SQL*Plus, and
issue the following command:
@/0racle/scripts/my_stored script.sql

e Open command line or terminal, and issue the following command:
sqlplus username/password@database my stored script.sql

www.it-ebooks.info

mailto:@my_stored_script.sql
http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

How It Works

Notice that the first two solutions involved an @ symbol before the script’s file name. If you are already
connected and have an open SQL*Plus session, then you must place an @ symbol before the path/script
name in order for the script to be executed. Otherwise, if you are invoking both SQL*Plus and the script
from the operating-system command line, then you do not need the leading @ command. The @
command is a SQL*Plus command that tells the interpreter to execute the code contained in the
specified SQL file.

Oftentimes, database administrators will create one or more stored scripts to be executed to
complete a task. An administrator will then set up a separate script containing the database connection
information followed by one or more scripts to be executed. Such a script can then be executed by the
operating system to invoke SQL*Plus, which in turn executes the scripts that contain the actual code to
perform the work. If there is only one script to be executed, then an administrator will usually opt to use
the third option from the solution to connect and execute a script. We will learn more about configuring
PL/SQL jobs in Chapter 11.

1-5. Accepting User Input from the Keyboard

Problem

You want to write a script that prompts the user for some input. You want your PL/SQL code to then use
that input to generate some results.

Solution

SQL*Plus provides a facility to accept user input. Use ampersand (&) character to indicate that a
particular value should be entered from the keyboard. Here’s an example:

DECLARE

emp_count NUMBER;
BEGIN

SELECT count(*)

INTO emp count

FROM employees

WHERE department_id = &department_id;
END;

If the previous block is executed from SQL*Plus, you will see the following text, which prompts you
to enter a department ID. In this case, the department ID of 40 is used.

Enter value for department id: 40
old 7: WHERE department_id = &department_id;
new 7: WHERE department_id = 40;

How It Works

SQL*Plus uses the ampersand (&) character to indicate a value should be prompted for at the command
line or terminal and assigned to the variable name immediately following the ampersand. The text
immediately following the ampersand is the variable to which the input will be assigned, and it will be
displayed as the prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

The variable following the & character is known as a substitution variable. It is important to note that a
substitution variable is meaningful to SQL*Plus. Substitution variables are not “seen” by the database
engine. SQL*Plus actually replaces the variable reference with the text that the user entered. As far as the
database is concerned, the solution code contains the following WHERE clause:

WHERE department_id = 40;

If you want to reference the same substitution variable at a different point in your code, you can
place two ampersands in front of the first to tell SQL*Plus that you want to retain that value for use at a
later time. For instance, the following code block first obtains the value from the keyboard using
&&variable name, and then it prints that value out using &variable name:

DECLARE
emp_count NUMBER;
BEGIN
SELECT count(*)
INTO emp_count
FROM employees
WHERE department_id = &&department_id;

DBMS_OUTPUT.PUT _LINE('The employee count is: ' || emp_count ||
' for the department with an ID of: ' || &department id);
END;

You can also use substitution variables in the DECLARE section of an anonymous code block to
immediately assign an initial value to a variable. An anonymous code block is a block of code that is not
stored in the database. It cannot be called by name, and it is executed only once unless it is stored into a
script. Placing substitution variables into the DECLARE section may be useful if a particular variable will be
used more than once throughout a code block. Here’s an example:

DECLARE
dept_id var NUMBER(4) := &department id;
dept_name VARCHAR2(30);
emp_count NUMBER ;
BEGIN
SELECT count(*)
INTO emp_count
FROM employees
WHERE department_id = dept_id var;

SELECT department_name

INTO dept name

FROM departments

WHERE department_id = dept_id var;

DBMS_OUTPUT.PUT _LINE('There are ' || emp _count || ' employees ' ||
'in the ' || dept_name || ' department.');
END;

In this example, the substitution variable department_id will be assigned to the variable dept_id var,
at which point dept_id var can be used anywhere in the code block.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

When using substitution variables, it is imperative to pay attention to the type of value the user will
be entering at the keyboard. If a value will be a variable character (VARCHAR2) type, then the substitution
variable must be surrounded by single quotes, or you will receive an error when the input is processed.
Similarly, if a value should be a numeric (NUMBER) type, then there should not be single quotes placed
around the substitution variable. Here’s an example:

DECLARE
first varchar2(20);
last varchar2(25);
emp_last VARCHAR2(25) := '&last name';
emp_count NUMBER;
BEGIN
SELECT count(*)
INTO emp_count
FROM employees
WHERE last_name = emp_last;

IF emp_count > 1 THEN

DBMS_OUTPUT.PUT_LINE('More than 1 employee exists with that name.');
ELSE

SELECT first _name, last_name

INTO first, last

FROM employees

WHERE last name = emp_last;

DBMS_OUTPUT.PUT_LINE('The matching employee is: ' ||
first || ' ' || last);
END IF;
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE('Please enter a different last name.');
END;

Of course, the previous assumes that there is only one person in the EMPLOYEES table that will match
the provided last_name. If there were possibly more than one person with a given age, then we would
have to begin looping through rows from a query. See Recipe 2-2 for an example of such looping. For
now, we simply print out a message if more than one employee with the same last name exists.

1-6. Displaying Results in SQL*Plus

Problem
You want to display query results at the SQL*Plus prompt.

Solution

Use the DBMS_OUTPUT package to assist in displaying query results or lines of text. The following example
depicts both of these use cases:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

DECLARE
first VARCHAR2(20);
last VARCHAR2(25);

BEGIN

SELECT first name, last_name

INTO first, last

FROM employees

WHERE email = 'VIONES';

DBMS_OUTPUT.PUT_LINE('The following employee matches your query:');
DBMS OUTPUT.PUT LINE(first || " ' || last);

END;

The previous example uses DBMS_OUTPUT.PUT_LINE to print a line of text as well as the values of the
variables first and last.

How It Works

The DBMS_OUTPUT package contains several useful procedures. By far, the most widely used is PUT_LINE for
the purposes noted in the solution to this recipe. As you’ve seen, you can use the DBMS_OUTPUT.PUT_LINE
procedure to display the contents of a stored variable or any arbitrary text. Before any lines of output will
be displayed in SQL*Plus, you must first tell SQL*Plus to display server output by issuing this command:

SET SERVEROUTPUT ON;

Once issued, any lines of output created by DBMS_OUTPUT.PUT_LINE will be displayed. In a similar
fashion, the interpreter will no longer display output once the following command is issued:

SET SERVEROUTPUT OFF;

One important note to remember is that if you plan to print many lines, it may be a good idea to
resize the print buffer. When SET SERVEROUTPUT ON is issued, then the default buffer size is 20,000 bytes.
Any content that surpasses that size will be cut off. To increase the buffer, simply set the size of buffer
you’d like to use when turning the SERVEROUTPUT on:

SET SERVEROUTPUT ON SIZE 1000000,
The DBMS_OUTPUT package also has a buffer size limit. The buffer can be set from 2,000 to 1,000,000

bytes in size. The buffer can be set by passing the size to DBMS_ENABLE. If you attempt to exceed the size,
then an Oracle exception will be raised.

1-7. Commenting Your Code

Problem

You want to document your code with inline and multiline comments.
Solution

Place two dashes before any text to create a one-line comment. For example, in the following code there
is a comment placed before the query to describe its functionality:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

-- The following query obtains a count of rows from the employees table
SELECT COUNT(*)
FROM EMPLOYEES;

Multiline comments can be created beginning with a slash and asterisk (/*) and ending with an
asterisk and slash (*/). The following lines depict a multiple-line comment for a given code block:

/* This comment describes the functionality
in the following code block. */

How It Works

Comments play a crucial role in code development. Not only are they useful for commenting inline code
to tip off future developers who may see the code, but they can also be useful to you when trying to
debug some code you authored several years ago. It can be useful to place comments before any lines of
code that may require some interpretation, and in some cases it is useful to place comments on the
same line as code itself. The double dashes can be placed at any position in a line of code, and any text
following the dashes becomes a comment. Here’s an example:

DECLARE
emp_count NUMBER ;
BEGIN
SELECT COUNT(*)
INTO emp count -- Local variable
FROM EMPLOYEES;
END;

When PL/SQL sees a double dash, it ignores any text that follows for the remainder of the line.
Similarly, when a /* sequence is encountered, the interpreter ignores any lines of text until it encounters
a closing */.

1-8. Referencing a Block of Code

Problem

You want to reference a block of code within a code segment later in your program.

Solution

Assign a label to the block of code that you want to reference. A PL/SQL label consists of a unique
identifier surrounded by double angle brackets. For example, in the following code, you see that the
block has been labeled dept_block:

<«dept_block>>
DECLARE
dept_name varchar2(30);
BEGIN
SELECT department_name
INTO dept_name
FROM departments

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

10

WHERE department_id = 230;
DBMS_OUTPUT.PUT_LINE(dept_name);
END;

This code block can now be referenced by the label dept_block. See Recipe 1-9 for one example of
code block labels.

How It Works

Any block of code can be labeled with a unique identifier for readability purposes or for referencing
at a later point. The label can appear at the beginning of the code block and again at the end. The
following code is a representation of the same block that was listed in the solution, but the label has
been placed at the end as well.

<<dept_block>>
DECLARE
dept_name varchar2(30);
BEGIN
SELECT department_name
INTO dept_name
FROM departments
WHERE department_id = 230;
DBMS_OUTPUT.PUT_LINE(dept name);
END dept_block;

Labeling can be useful for a variety of reasons. It is often useful to place a label on a block for
documentation and readability purposes. Furthermore, a label can be useful for referencing variables
that are part of a particular code block from outside the block, elsewhere in the program. The labeling
technique is useful for referencing variables from within nested loops. Labels can also assist in program
control by referencing blocks of code with such keywords as GOTO and EXIT.

1-9. Referring to Variables from Nested Blocks

Problem

A variable that is defined in an outer code block needs to be used within an inner block. However, there
is also a variable of the same name within the inner block. Thus, two variables with the same name are in
scope, and you need a mechanism for differentiating between them.

Solution

Label the code blocks, and use the labels to qualify the variable references. For instance, if a variable
dept_name is defined in an outer code block, which is labeled outer_block, then you can use the fully
qualified name outer_block.dept_name to reference that variable. Let’s take a look at an example:

<<outer_block>>

DECLARE
mgr id NUMBER(6) := '8current manager id';
dept_count number := 0;

BEGIN

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

SELECT count(*)
INTO dept_count
FROM departments
WHERE manager_id = outer_block.mgr_id;

IF dept_count > 0 THEN
<<inner_block>>
DECLARE
dept_name VARCHAR2(30);
mgr_id NUMBER(6):= '&new_manager id';
BEGIN
SELECT department_name
INTO dept_name
FROM departments
WHERE manager id = outer block.mgr_id;

UPDATE departments
SET manager_id = inner_block.mgr id
WHERE manager id = outer block.mgr id;
DBMS_OUTPUT.PUT LINE
('Department manager ID has been changed for

|| dept_name);

END inner_block;
ELSE
DBMS_OUTPUT.PUT LINE('There are no departments listed for the manager');
END IF;
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE('There are no departments listed for the manager');
END outer_block;

When the previous example is executed, SQL*Plus will prompt you for the current_manager_id and
new_manager_id values before execution begins. The database is then queried for the supplied
current_manager_id. If the manager_id is a valid department manager for a department contained within
the DEPARTMENTS table, then it is changed to match the value provided by new_manager_id.

How It Works

As you can see from the example, blocks can be nested within one another. An identifier can be used
within the block of code that defines it. If a block of code is nested within another block, those identifiers
that are declared within the outer block are visible from within the inner block. On the other hand, any
identifier declared within the inner block is not visible from the outer block. As you can see, nested
blocks are a great way to control the scope of identifier use.

Although it is not recommended that you use the same name for variables contained within
different blocks of code, labels can be very useful in the event that such name conflicts occur. If the
solution hadn’t contained block labels, then the outer block variable mgr _id identifier would not have
been accessible from within the inner block, since the inner block also contains an identifier by the same
name. Of course, the cleanest way to write code such as this is to use different identifier names for all the
variables. In that case, the outer block variable would be visible within the inner block without fully
qualifying the name, and block labels would not be required.

www.it-ebooks.info

11

http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

12

1-10. Ignoring Substitution Variables

Problem

You want to execute a script in SQL*Plus that contains elements that appear to be substitution variables,
but you do not intend them to be substitution variables. You want the interpreter to ignore them instead
of prompting the user for input.

Solution #1

One solution is to precede the & character with an escape character. The escape character tells SQL*Plus
that what follows is not intended to be a variable reference.

In the following code, an escape character is used to tell SQL*Plus to ignore the & character when it
is encountered and to treat “& Receiving” as simple text within a string:

SQL> SET ESCAPE '\'

SQL> INSERT INTO DEPARTMENTS VALUES(
2 departments_seq.nextval,
3 'Shipping \& Receiving',
4 null,
5 null);

1 row created.

Solution #2

Another solution is to completely disable the substitution variable feature. The next example uses the
SET DEFINE OFF command to tell SQL*Plus that it should ignore all substitution variables:

SQL> SET DEFINE OFF

INSERT INTO DEPARTMENTS VALUES(
departments_seq.nextval,
"Importing & Exporting',

null,

null);

1 row created.

How It Works

Oftentimes you will encounter a situation where you need to tell SQL*Plus to ignore substitution
variables for processing. As shown in the examples, there are a couple of different solutions in these
cases. It is up to you to decide which method works best for you. Usually the method that is chosen
depends upon the scenario.

Setting up an escape character via the SET ESCAPE command actually tells SQL*Plus to treat the
designated character as the escape character for all scenarios, so whenever that character is
encountered, then the character immediately following it should be ignored by the interpreter. By
“ignored,” I mean that the character will not trigger the normal functionality that you would expect, such
as prompting a user for input.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

Using the SET DEFINE OFF method will cause all substitution variables to be ignored. In effect, this
solution will affect only substitution variables and does not cause the interpreter to escape in any other
scenario. Since this method only escapes substitution variables, it is better suited for use when running
scripts. For instance, suppose you have a script named display department_info.sql that contains the
following SQL:

SELECT department_id
FROM departments
WHERE department_name = 'Importing & Exporting';

If you execute the script via SQL*Plus without using one of the solutions provided in this recipe, you

will see the following message:

SOL> @display department_id.sql
Enter value for exporting:

The reason this message occurs is because SQL*Plus is treating the ampersand in “Importing &
Exporting” as a substitution variable, which prompts the user to enter text. Now, try executing the same
script again, and this time issue the SET DEFINE OFF command first:

SQL> SET DEFINE OFF
SOL> @display department_id.sql

DEPARTMENT_ID

Using SET DEFINE OFF gives you the expected results.

1-11. Changing the Substitution Variable Character

Problem
You are interested in changing the substitution variable from & to some other character.

Solution

Issue the SET DEFINE command to set the new character. For example, say you want the substitution
character to be a caret (). To that end, you can issue the SET DEFINE command shown in the following
example:

SOL> SET DEFINE "
SQL> SELECT department_name
2 FROM departments
3 WHERE department_id = ~dept_id;
Enter value for dept_id: 150
old 3: where department_id
new 3: where department_id

“dept_id
150

DEPARTMENT _NAME

Shareholder Services

www.it-ebooks.info

13

mailto:@display_department_id.sql
mailto:@display_department_id.sql
http://www.it-ebooks.info/

CHAPTER 1 = PL/SQL FUNDAMENTALS

14

As shown in the example, the substitution variable dept_id is prefaced with the * symbol. That
works, since the SET DEFINE command specifies that symbol as the one to use.

How It Works

Issue the SET DEFINE command when you want to change the substitution variable character recognized
by SQL*Plus. The syntax for using the SET DEFINE command is as follows:

SET DEFINE character

The character can be any valid character. Any statement within the same SQL*Plus session will
utilize that character to denote a substitution variable after this command is issued.

The solution in this recipe can be most useful if you are working with a piece of code that contains
many occurrences of the default DEFINE character (8) in various string literals.

1-12. Creating a Variable to Match a Database Column Type

Problem

You are querying the database for a particular column, and you are interested in saving the column’s
value into a local variable. In doing so, you want to create the local variable with the same type as the
column being queried.

Solution

Make use of the %¥TYPE attribute of the column name in order to create the new variable. In the following
example, you will see that the dept_name variable is given the same type as the department_name database
table column.

DECLARE
dept_name departments.department_name%TYPE;
dept_id NUMBER(6) := &department id;
BEGIN

SELECT department_name

INTO dept_name

FROM departments

WHERE department_id = dept_id;

DBMS_OUTPUT.PUT_LINE('The department with the given ID is: ' || dept_name);
EXCEPTION

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT LINE('No department for the given ID');

END;

How It Works

The %TYPE attribute of a database column returns the column’s datatype. That type can then be used to
declare a variable, therefore providing a nice way to declare variables in your programs that are
consistent with the columns in your database.

The advantage of declaring variables using #TYPE is that if the original database column type is ever
modified, then all the variables that rely on that column will also change type accordingly. Hence, code
will be easier to maintain.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Essential SQL

SQL is an essential part of any database application. From queries to update statements to inserts and
deletes, database transactions consume much of a database application developer’s time. The PL/SQL
language is unmatched by any other in providing seamless integration between SQL and procedural
language for the Oracle Database. PL/SQL is based around database transactions, so the seamless
language characteristics help to provide ease of use and increased developer productivity.

This chapter will focus on some of the more widely used PL/SQL techniques for working directly
with the database. If you are looking for some great ways to insert, update, create, or delete records with
your application, then this is the chapter that you’ll want to read. The recipes will begin with showing
how to retrieve data and work with it. After that, you will find some recipes for updating data, deleting
rows, and more advanced topics such as removing duplicate rows from the database.

2-1. Retrieving a Single Row from the Database

Problem

You are interested in returning one row from a database table via a query that searches for an exact
match.

Solution #1

Use the SELECT..INTO syntax in order to retrieve the row from the database. You can choose to retrieve
one or more columns of data from the matching row. The following example depicts a scenario in which
atable is queried to return multiple columns from a single row:

DECLARE
first VARCHAR2(20);
last VARCHAR2(25);
email VARCHAR2(25);
BEGIN
SELECT first name, last name, email
INTO first, last, email
FROM employees
WHERE employee id = 100;

DBMS_OUTPUT.PUT_LINE(
"Employee Information for ID: ' || first || * ' || last || ' - ' || email);
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE('No employee matches the given ID');

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ™ ESSENTIAL SQL

16

WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE('More than one employee matches the given ID');
END;

The example in this solution shows how you can retrieve a row from the database when given an
employee ID. Once the data is retrieved, then some formatted information regarding that employee is
printed to the command line via DBMS_OUTPUT. The following result shows what the response will look like
if a user enters an employee ID of 100:

Employee Information for ID: Steven King - SKING
PL/SQOL procedure successfully completed.

As you can see, the employee Steven King has an employee ID of 100. You could modify this
example to retrieve any data columns from the EMPLOYEES table. For instance, if you wanted to return the
column HIRE_DATE, then you could do so by declaring one more variable and adjusting the SELECT INTO
statement accordingly.

Solution #2

It is also possible to use a cursor for selecting a single row from the database, although this technique is
not used quite as often as SELECT INTO. One particular use case for retrieving a single row via a cursor
would be if you were working with a dynamic query where the query string stored in a variable may
change. You will learn more about dynamic queries in Chapter 8. In the meantime, the following
example shows the use of a cursor that is expected to retrieve a single row of data with an explicit SELECT
statement:

DECLARE

CURSOR emp_cursor IS

SELECT first_name, last_name, email
FROM employees

WHERE employee id = &emp_id;

first VARCHAR2(20);
last VARCHAR2(25);
email VARCHAR2(25);

BEGIN
OPEN emp_cursor;
FETCH emp_cursor INTO first, last, email;
IF emp_cursor%NOTFOUND THEN
RAISE NO_DATA FOUND;
ELSE
-- Perform second fetch to see if more than one row is returned
FETCH emp _cursor INTO first, last, email;
IF emp_cursor%FOUND THEN
RAISE TOO_MANY_ROWS;
ELSE
DBMS_OUTPUT.PUT LINE(
'Employee Information for ID: ' || first || ' ' || last || ' - ' || email);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

END IF;
END IF;

CLOSE emp_cursor;

EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE('No employee matches the given ID');
WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE('More than one employee matches the given ID');
END;

How It Works

There are two possible solutions to the problem in this recipe. One is to issue a SELECT..INTO statement,
which is a statement designed to return just one row. The other approach is to open a cursor, fetch the
one row, and close the cursor. Some argue that a cursor-based approach is always better. We keep a
more open mind on that point. Either approach is acceptable. If your application is predicated on
exactly one row being returned, it is actually easier to trap the exceptions of zero or multiple rows being
returned when using SELECT..INTO. Ultimately, the approach to use comes down to your own preference
and possibly to the question of which approach you are most familiar with.

Comments on Solution #1

The SELECT..INTO statement is a convenient way to return a single row from the database. It allows the
database to be queried and then returns values into local variables based upon a single-row query. The
format for using SELECT..INTO is as follows:

SELECT column_1, column_2
INTO variable 1, variable2
FROM table_name

WHERE filters;

The solution to this recipe queries the database using a SELECT..INTO statement in order to obtain
some information on a particular employee from the EMPLOYEES database table. The results are stored
into local variables and then printed out using DBMS_OUTPUT.PUT_LINE. There can be one or more
columns queried, and their values will be returned into the local variables that are listed within the INTO
clause in sequential order.

To provide an informative message to the end user when no data is found or if more than one row of
data is found, you can use an exception handler. Exception handlers allow you to recover from fatal
errors so that an application can continue to run as expected but provide meaningful details to the user
of the application. PL/SQL will immediately transfer control of execution to the exception block when an
exception is raised. Therefore, if the SELECT statement fails to find a row, then control is passed to the
exception block, and the NO_DATA_FOUND exception is raised. Similarly, PL/SQL throws the TO0_MANY_ROWS
exception when the query results in more than one row being returned.

www.it-ebooks.info

17

http://www.it-ebooks.info/

CHAPTER 2 ™ ESSENTIAL SQL

18

Note Chapter 9 gives more details on exception handling, including showing you how to create your own
exceptions.

A well-formulated application will be coded to ensure that corner cases and unexpected conditions
do not result in the application failing in front of the user. Proper exception handling is thus
instrumental to the success of an application in the real world. While retrieving rows from the database,
always ensure that you have provided proper handling for any possible outcome.

Comments on Solution #2

Some would suggest that the cursor approach is best, because it will not return an error in the event that
the SELECT statement returns multiple rows. We keep an open mind on that point. Consider that if you
are expecting exactly one row to be returned, getting multiple rows back represents an exception case
that you must somehow deal with. The cursor-based solution makes it easy to simply ignore that
exception case, but ignoring a condition that you do not expect to occur does not change the fact that it
has occurred.

Although a cursor is used, the cases where no data is returned or where too many rows are returned
given the user-supplied EMPLOYEE_ID still remain a reality. However, since cursors are specifically
designed to deal with zero rows or more than one row coming back from a query, no exceptions will be
raised if these situations occur. For this reason, Solution #2 contains some conditional logic that is used
to manually raise the desired exceptions. In the event that the user supplies the block with an invalid
EMPLOYEE_ID, the cursor will not fetch any data. The %NOTFOUND attribute of the cursor will be checked to
see whether the cursor successfully fetched data. If not, then the NO_DATA_FOUND exception is raised. If the
cursor is successful in retrieving data, then a second FETCH statement is issued to see whether more than
one row will be returned. If more than one row is returned, then the TOO_MANY_ROWS exception is raised;
otherwise, the expected output is displayed. In any event, the output that is displayed using either of the
solutions will be the same whether successful or not.

2-2. Qualifying Column and Variable Names

Problem

You have a variable and a column sharing the same name. You want to refer to both in the same SQL
statement.

For example, you decide that you’d like to search for records where LAST_NAME is not equal to a last
name that is provided by a user via an argument to a procedure call. Suppose you have declared a
variable LAST_NAME, and you want to alter the query to read as follows:

SELECT first_name, last_name, email
INTO first, last, email

FROM employees

WHERE last_name = last_name;

How does PL/SQL know which LAST_NAME you are referring to since both the table column name and
the variable name are the same? You need a way to differentiate your references.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

Solution

You can use the dot notation to fully qualify the local variable name with the procedure name so that
PL/SQL can differentiate between the two. The altered query, including the fully qualified
procedure name.variable solution, would read as follows:

CREATE OR REPLACE PROCEDURE retrieve emp_info(last_name IN VARCHAR2) AS
first VARCHAR2(20);
last VARCHAR2(25);
email VARCHAR2(25);

BEGIN
SELECT first_name, last_name, email
INTO first, last, email
FROM employees
WHERE last_name = retrieve_emp_info.last_name;

DBMS_OUTPUT.PUT_LINE(

"Employee Information for ID: ' || first || ' ' || last_name || ' - ' || email);
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT _LINE('No employee matches the last name ' || last name);
END;
How It Works

PL/SQL name resolution becomes very important in circumstances such as these, and by fully qualifying
the names, you can be sure that your code will work as expected. The solution used dot notation to fully
qualify the variable name.

The column name could have been qualified with the table name, as in EMPLOYEES.LAST_NAME.
However, there’s no need to qualify the column name in this case. Because the reference occurs within a
SELECT, the closest resolution for LAST_NAME becomes the table column of that name. So, in this particular
case, it is necessary only to qualify references to variable names in the enclosing PL/SQL block.

If you are executing a simple BEGIN..END block, then you also have the option of fully qualifying the
variable using the dot notation along with the block label. For the purposes of this demonstration, let’s
say that the code block shown in the solution was labeled <<emp_info>>. You could then fully qualify a
variable named description as follows:

<<emp_info>>
DECLARE
last name VARCHAR2(25) := 'Fay';
first VARCHAR2(20);
last VARCHAR2(25);
email VARCHAR2(25);
BEGIN
SELECT first name, last_name, email
INTO first, last, email
FROM employees
WHERE last_name = emp_info.last_name;
END;

www.it-ebooks.info

19

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

In this example, the LAST_NAME that is declared in the code block is used within the SELECT. . INTO
query, and it is fully qualified with the code block label.

2-3. Declaring Variable Types That Match Column Types

Problem

You want to declare some variables in your code block that match the same datatypes as some columns
in a particular table. If the datatype on one of those columns changes, you'd like the code block to
automatically update the variable type to match that of the updated column.

Note Sharp-eyed readers will notice that we cover this problem redundantly in Chapter 1. We cover this
problem here as well, because the solution is fundamental to working in PL/SQL, especially to working with SQL in
PL/SQL. We don’t want you to miss what we discuss in this recipe. It is that important.

Solution

Use the %TYPE attribute on table columns to identify the types of data that will be returned into your
local variables. Instead of providing a hard-coded datatype for a variable, append %TYPE to the database
column name. Doing so will apply the datatype from the specified column to the variable you are
declaring.

In the following example, the same SELECT INTO query is issued, as in the previous problem, to
retrieve an employee record from the database. However, in this case, the variables are declared using
the %ZTYPE attribute rather than designating a specified datatype for each.

DECLARE
first employees.first name%TYPE;
last employees.last name%TYPE;
email employees.email%TYPE;
BEGIN

SELECT first name, last_name, email
INTO first, last, email
FROM employees
WHERE employee id = &emp_id;
DBMS_OUTPUT.PUT_LINE('Employee Information for ID: ' ||
first || * " || last || ' - ' || email);
EXCEPTION
WHEN NO_DATA FOUND THEN
DBMS_OUTPUT.PUT_LINE('No matching employee was found, please try again.');
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('An unknown error has occured, please try again.');
END;

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

As you can see from the solution, the code block looks essentially the same as the one in the
previous recipe. The only difference is that here the %TYPE attribute of each database column is being
used in order to declare your local variable types.

How It Works

The %TYPE attribute can become a significant time-saver and savior for declaring variable types,
especially if the underlying database column types are subject to change. This attribute enables the local
variable to assume the same datatype of its corresponding database column type at runtime. Retrieving
several columns into local application variables can become tedious if you need to continually verify
that the datatypes of each variable are the same as those of the columns whose data they will consume.

The %TYPE attribute can be used when defining variables, constants, fields, and parameters. Using
%TYPE assures that the variables you declare will always remain synchronized with the datatypes of their
corresponding columns.

2-4. Returning Queried Data into a PL/SQL Record

Problem

Instead of retrieving only a select few columns via a database query, you'd rather return the entire
matching row. It can be a time-consuming task to replicate each of the table's columns in your
application by creating a local variable for each along with selecting the correct datatypes. Although you
can certainly make use of the %TYPE attribute while declaring the variables, you'd rather retrieve the
entire row into a single object. Furthermore, you'd like the object that the data is going to be stored into
to have the ability to assume the same datatypes for each of the columns being returned just as you
would by using the %TYPE attribute.

Solution

Make use of the %RONTYPE attribute for the particular database table that you are querying. The %ROWTYPE
attribute returns a record type that represents a database row from the specified table. For instance, the

following example demonstrates how the %RONTYPE attribute can store an entire employee table row for a
cursor:

DECLARE
CURSOR emp_cur IS
SELECT *
FROM employees
WHERE employee id = &emp_id;
-- Declaring a local variable using the ROWTYPE attribute
-- of the employees table
emp_rec employees%ROWTYPE;
BEGIN
OPEN emp_cur;
FETCH emp_cur INTO emp_rec;
IF emp_cur%FOUND THEN

DBMS_OUTPUT.PUT_LINE('Employee Information for ID: ' || emp rec.first name || ' ' ||

emp_rec.last name || ' - ' || emp_rec.email);
ELSE

www.it-ebooks.info

21

http://www.it-ebooks.info/

CHAPTER 2 ™ ESSENTIAL SQL

DBMS_OUTPUT.PUT_LINE('No matching employee for the given ID');
END IF;
CLOSE emp_cur;
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE('No employee matches the given emp ID’);
END;

If the employee ID that is provided to the program in the example correlates to an employee record
in the database, then the cursor is able to FETCH the entire row into the emp_rec record type.

How It Works

The %ROWTYPE attribute represents an entire database table row as a record type. Each of the
corresponding table columns is represented within the record as a variable, and each variable in the
record inherits its type from the respective table column.

Using the %ROWTYPE attribute offers several advantages to declaring each variable individually. For
starters, declaring a single record type is much more productive than declaring several local variables to
correspond to each of the columns of a table. Also, if any of the table columns’ datatypes is ever
adjusted, then your code will not break because the %RONTYPE attribute works in much the same manner
as the %TYPE attribute of a column in that it will automatically maintain the same datatypes as the
corresponding table columns. Therefore, if a column with a type of VARCHAR2(10) is changed to
VARCHAR2(100), that change will ripple through into your record definition.

Using %ROWTYPE also makes your code much easier to read because you are not littering local
variables throughout. Instead, you can use the dot notation to reference each of the different columns
that the record type returned by %ROWTYPE consists of. For instance, in the solution, the first_name,
last_name, and email columns are referenced from the emp_rec record type.

2-5. Creating Your Own Records to Receive Query Results

Problem

You want to query the database, return several columns from one or more tables, and store them into
local variables of a code block for processing. Rather than placing the values of the columns into
separate variables, you want to create a single variable that contains all the values.

Solution

Create a database RECORD containing variables to hold the data you want to retrieve from the database.
Since a RECORD can hold multiple variables of different datatypes, they work nicely for grouping data that
has been retrieved as a result of a query.

In the following example, the database is queried for the name and position of a player. The data
that is returned is used to populate a PL/SQL RECORD containing three separate variables: first name, last
name, and position.

DECLARE
TYPE emp_info IS RECORD(first employees.first _name%TYPE,

last employees.last_name%TYPE,
email employees.email%TYPE);

22

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

emp_info_rec emp_info;
BEGIN
SELECT first name, last name, email
INTO emp_info_rec
FROM employees
WHERE last_name = 'Vargas';

DBMS_OUTPUT.PUT _LINE('The queried employee''s email address is ' || emp_info _rec.email);
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE('No employee matches the last name provided');
END;

As you can see, the record is defined as its own TYPE, and then a variable named emp_info_rec is
declared using the record type. The queried data is then assigned to emp_info_rec, and its individual
values can later be accessed using the dot notation.

How It Works

Records are useful for passing similar data around within an application, but they are also quite useful
for simply retrieving data and organizing it nicely as is the case with the solution to this recipe. To create
arecord, you first declare a record TYPE. This declaration can consist of one or more different datatypes
that represent columns of one or more database tables. Once the record type is declared, you create a
variable and define it as an instance of the record type. This variable is then used to populate and work
with the data stored in the record.

Note It is possible to create a record that matches the columns of a particular table exactly by using the
%ROWTYPE attribute of a database table. See the preceding Recipe 2-4 for details on doing that.

Cursors work very well with records of data. When declaring a cursor, you can select particular
columns of data to return into your record. The record variable then takes on the type of cursor%ROWTYPE.
In the following example, a cursor is used to determine which fields you want to return from EMPLOYEES.
That cursor’s %ROWTYPE attribute is then used to define a record variable that is used for holding the
queried data.

DECLARE
CURSOR emp_cur IS
SELECT first_name, last_name, email
FROM employees
WHERE employee id = 100;

emp_rec emp_cur%ROWTYPE;
BEGIN
OPEN emp_cur;
FETCH emp_cur INTO emp_rec;
IF emp_cur %FOUND THEN
CLOSE emp_cur;

www.it-ebooks.info

23

http://www.it-ebooks.info/

CHAPTER 2 ™ ESSENTIAL SQL

DBMS_OUTPUT.PUT LINE(emp rec.first name || ' ' || emp_rec.last name ||
""'s email is ' || emp_rec.email);
ELSE
DBMS_OUTPUT.PUT_LINE('No employee matches the provided ID number');
END IF;
EXCEPTION

WHEN NO_DATA FOUND THEN
DBMS_OUTPUT.PUT_LINE('No employee matches the last name provided');
END;

As you can see in this example, the cursor %ROWTYPE attribute creates a record type using the
columns that are queried by the cursor. The result is easy-to-read code that gains all the positive effects
of declaring record types via the %ROWTYPE attribute.

2-6. Looping Through Rows from a Query

Problem

A query that you are issuing to the database will return many rows. You want to loop through those rows
and process them accordingly.

Solution #1

There are a couple of different solutions for looping through rows from a query. One is to work directly
with a SELECT statement and use a FOR loop along with it. In the following example, you will see this
technique in action:

SET SERVEROUTPUT ON;
BEGIN
FOR emp IN

SELECT first_name, last_name, email
FROM employees
WHERE commission_pct is not NULL

LOOP
DBMS_OUTPUT.PUT LINE(emp.first name || ' ' || emp.last name || ' - ' || emp.email);
END LOOP;
END;

Solution #2

Similarly, you can choose to use a FOR loop along with a cursor. Here’s an example:

SET SERVEROUTPUT ON;
DECLARE
CURSOR emp_cur IS
SELECT first_name, last_name, email
FROM employees
WHERE commission_pct is not NULL;

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

emp_rec emp_cur%ROWTYPE;
BEGIN
FOR emp_rec IN emp_cur LOOP
DBMS_OUTPUT.PUT_LINE(
emp_rec.first name || ' ' || emp_rec.last name || ' - ' || emp_rec.email);
END LOOP;
END;

Either of the two solutions demonstrated in this recipe will work fine. However, the second
technique using the cursor allows for more reusable code and is the more standard technique.

How It Works

The loop that is used in the first solution is also known as an implicit cursor FOR loop. No variables need
to be explicitly defined in that solution, because the FOR loop will automatically create a record using the
results of the query. That record will take the name provided in the FOR variable_name IN clause. That
record variable can then be used to reference the different columns that are returned by the query.

As demonstrated in the second solution to this recipe, a cursor is also a very useful way to loop
through the results of a query. This technique is also known as an explicit cursor FOR loop. This technique
is very similar to looping through the results of an explicitly listed query.

Neither solution requires you to explicitly open and close a cursor. In both cases, the opening and
closing is done on your behalf by the FOR loop processing.

As you can see, the FOR loop with the SELECT query in the first example is a bit more concise, and
there are fewer lines of code. The first example also contains no declarations. In the second example,
with the cursor, there are two declarations that account for more lines of code. However, using the
cursor is a standard technique that provides for more reusable code. For instance, you can elect to use
the cursor any number of times, and you’ll need to write the query only once when declaring the cursor.
On the contrary, if you wanted to reuse the query in the first example, then you would have to rewrite it,
and having to write the same query multiple times opens the door to errors and inconsistencies. We
recommend Solution #2.

2-7. Obtaining Environment and Session Information

Problem

You want to obtain environment and session information such as the name and IP address of the
current user so that the values can be stored into local variables for logging purposes.

Solution

Make use of the SYS_CONTEXT built-in function to query the database for the user’s information. Once you
have obtained the information, then store it into a local variable. At that point, you can do whatever
you’d like with it, such as save it in a logging table. The following code block demonstrates this
technique:

<<obtain_user_info>>

DECLARE
username varchar2(100);
ip_address varchar2(100);

www.it-ebooks.info

25

http://www.it-ebooks.info/

CHAPTER 2 ™ ESSENTIAL SQL

26

BEGIN
SELECT SYS_CONTEXT('USERENV','SESSION USER'), SYS CONTEXT('USERENV','IP ADDRESS")
INTO username, ip address

FROM DUAL;
DBMS_OUTPUT.PUT LINE('The connected user is: ' || username || ', and the IP address+
is ' ||
ip_address);
END;

Once this code block has been run, then the user’s information should be stored into the local
variables that have been declared within it.

How It Works

You can use the SYS_CONTEXT function to obtain important information regarding the current user’s
environment, among other things. It is oftentimes used for auditing purposes so that a particular code
block can grab important information about the connected user such as you've seen in the solution to
this recipe. The SYS_CONTEXT function allows you to define a namespace and then place parameters
within it so that they can be retrieved for use at a later time. The general syntax for the use of
SYS_CONTEXT is as follows:

SYS_CONTEXT('namespace', 'parameter'[,length])

A namespace can be any valid SQL identifier, and it must be created using the CREATE_CONTEXT
statement. The parameter must be a string or evaluate to a string, and it must be set using the
DBMS_SESSION.SET_CONTEXT procedure. The call to SYS_CONTEXT with a valid namespace and parameter
will result in the return of a value that has a VARCHAR2 datatype. The default maximum length of the
returned value is 256 bytes. However, this default maximum length can be overridden by specifying the
length when calling SYS_CONTEXT. The length is an optional parameter. The range of values for the length
is 1 to 4000, and if you specify an invalid value, then the default of 256 will be used.

The USERENV namespace is automatically available for use because it is a built-in namespace
provided by Oracle. The USERENV namespace contains session information for the current user. Table 2-1
lists the parameters that are available to use with the USERENV namespace.

Table 2-1. USERENV Parameter Listing

Parameter Description

ACTION Identifies the position in the application name.
AUDITED_CURSORID Returns the cursor ID of the SQL that triggered the audit.
AUTHENTICATED DATA Returns the data being used to authenticate the user.

AUTHENTICATION_TYPE Identifies how the user was authenticated.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

Parameter

Description

BG_JOB_ID

CLIENT_IDENTIFIER

CLIENT_INFO

CURRENT_SCHEMA
CURRENT_SCHEMAID
CURRENT_SOL
DB_DOMAIN
DB_NAME
DB_UNIQUE_NAME
ENTRYID
EXTERNAL_NAME

FG_JOB_ID

GLOBAL_CONTEXT_MEMORY

HOST
INSTANCE
IP_ADDRESS
ISDBA

LANG

LANGUAGE

If an Oracle Database background process was used to establish the
connection, then this returns the job ID of the current session. If no
background process was established, then NULL is returned.

Returns identifier that is set by the application.

Returns up to 64 bytes of user session information that can be stored by an
application using the DBMS_APPLICATION_INFO package.

Returns the current session’s default schema.

Returns the current schema’s identifier.

Returns the first 4KB of the triggering SQL.

Returns the value specified in the DB_DOMAIN parameter.
Returns the value specified in the DB_NAME parameter.
Returns the value specified in the DB_UNIQUE_NAME parameter.
Returns the current audit entry number.

Returns the external name of the database user.

If an Oracle Database foreground process was used to establish the
connection, then this returns the job ID of the current session. If no
foreground process was established, then NULL is returned.

Returns the number being used by the globally accessed context in the
System Global Area.

Returns the host name of the machine from which the client has connected.
Returns the instance ID number of the current instance.

Returns the IP address of the machine from which the client has connected.
Returns TRUE if the user was authenticated as a DBA.

Returns the ISO abbreviation of the language name.

Returns the language and territory used by the session, along with the
character set.

www.it-ebooks.info

27

http://www.it-ebooks.info/

CHAPTER 2 ™ ESSENTIAL SQL

28

Parameter

Description

MODULE

NETWORK_PROTOCOL
NLS_CALENDAR
NLS_CURRENCY

NLS_DATE_FORMAT

NLS_DATE_LANGUAGE

NLS_SORT
NLS_TERRITORY

0S_USER

PROXY_USER

PROXY_USERID

SERVICE_NAME

SESSION_USER

SESSION_USERID

SESSIONID
STATEMENTID

TERMINAL

Returns the application name. This name has to be set via the
DBMS_APPLICATION_INFO package.

Returns the network protocol being used for communication.
Returns the current calendar of the current session.

Returns the currency of the current session.

Returns the date format for the session.

Returns the language being used for expressing dates.
Returns the BINARY or linguistic sort basis.

Returns the territory of the current session.

Returns the operating system user name of the client that initiated the
session.

Returns the name of the database that opened the current session on behalf
of SESSION_USER.

Returns the identifier of the database user who opened the current session on
behalf of the SESSION_USER.

Returns the name of the service to which a given session is connected.

Returns the database user name through which the current user is
authenticated.

Returns the identifier of the database user name by which the current user is
authenticated.

Returns the auditing session identifier.
Returns the auditing statement identifier.

Returns the operating system identifier for the client of the current session.

When SYS_CONTEXT is used within any query, it is most commonly issued against the DUAL table. The
DUAL table is installed along with the data dictionary when the Oracle Database is created. This table is
really a dummy table that contains one column that is appropriately named DUMMY. This column contains

the value X.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

SQL> desc dual;
Name Null? Type

DUMMY VARCHAR2 (1)

Among other things, DUAL is useful for obtaining values from the database when no actual table is
needed. Our solution case is such a situation.

2-8. Formatting Query Results

Problem

Your boss asks you to print the results from a couple of queries in a nicely formatted manner.

Solution

Use a combination of different built-in formatting functions along with the concatenation operator (ll)
to create a nice-looking basic report. The RPAD and LPAD functions along with the concatenation operator
are used together in the following example that displays a list of employees from a company:

DECLARE
CURSOR emp_cur IS
SELECT first name, last_name, phone_number
FROM employees;

emp_rec employees%ROWTYPE;

BEGIN
FOR emp_rec IN emp_cur LOOP
IF emp_rec.phone_number IS NOT NULL THEN
DBMS_OUTPUT.PUT_LINE(RPAD(emp rec.first name || ' ' || emp_rec.last name, 35,'.") ||
emp_rec.phone_number);

ELSE
DBMS_OUTPUT.PUT LINE(emp rec.first name || ' ' || emp_rec.last name ||
' does not have a phone number.');
END IF;
END LOOP;
END;

The following is another variant of the same report, but this time dashes are used instead of using
dots to space out the report:

DECLARE
CURSOR emp_cur IS
SELECT first name, last_name, phone_number
FROM employees;

emp_rec employees%ROWTYPE;

BEGIN
FOR emp_rec IN emp_cur LOOP

www.it-ebooks.info

29

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

IF emp_rec.phone_number IS NOT NULL THEN
-- CHECK FOR INTERNATIONAL PHONE NUMBERS
IF length(emp_rec.phone_number) > 12 THEN
DBMS_OUTPUT.PUT_LINE(RPAD(emp rec.first name || ' ' || emp_rec.last name, 20)]|
" - " || LPAD(emp_rec.phone_number,18));

ELSE
DBMS_OUTPUT.PUT LINE(RPAD(emp rec.first name || ' ' || emp rec.last name, 20)]|
" - " || LPAD(emp_rec.phone_number,12));
END IF;
ELSE
DBMS_OUTPUT.PUT LINE(emp rec.first name || ' ' || emp_rec.last name ||
' does not have a phone number.');
END IF;
END LOOP;
END;
How It Works

The RPAD and LPAD functions are used to return the data in a formatted manner. The RPAD function takes a
string of text and pads it on the right by the number of spaces provided by the second parameter. The
syntax for the RPAD function is as follows:

RPAD(input_text, n, character)

In this syntax, n is the number of spaces used to pad. Similarly, the LPAD function pads on the left of
the provided string. The syntax is exactly the same as RPAD; the only difference is the direction of the
padding. The combination of these two functions, along with the concatenation operator (| |), provides
for some excellent formatting options.

Itis important to look at the data being returned before you try to format it, especially to consider
what formatting options will look best when generating output for presentation. In the case of the
examples in this recipe, the latter example would be the most reasonable choice of formatting for the
data being returned, since the phone number includes dots in it. The first example uses dots to space out
the report, so too many dots may make the output difficult to read. Know your data, and then choose the
appropriate PL/SQL built-ins to format accordingly.

Note When using DBMS_OUTPUT to display data, please be sure to pay attention to the size of the buffer. You can
set the buffer size from 2,000 to 1,000,000 bytes by passing the size you desire to the DBMS_OUTPUT. ENABLE
procedure. If you attempt to display content over this size limit, then Oracle will raise an exception.

Oracle provides a number of built-in functions to use when formatting strings. Two others that are
especially useful are LTRIM(<string>) and RTRIM(<string>). These remove leading and trailing spaces,
respectively. See your Oracle SQL Reference manual for a complete list of available string functions.

30

www.it-ebooks.info

http://www.it-ebooks.info/

2-9. Updating Rows Returned by a Query

Problem

CHAPTER 2 = ESSENTIAL SQL

You've queried the database and retrieved a row into a variable. You want to update some values

contained in the row and commit them to the database.

Solution

First, retrieve the database row that you want to update. Second, update the values in the row that need
to be changed, and then issue an UPDATE statement to modify the database with the updated values. In
the following example, a procedure is created that queries a table of employees for a particular
employee. The resulting employee’s department ID is then updated with the new one unless the

employee is already a member of the given department.

CREATE OR REPLACE PROCEDURE change emp dept(emp_id IN NUMBER,
dept_id IN NUMBER) AS
emp_row employees%ROWTYPE ;
dept departments.department name%TYPE;
rec_count number := 0;
BEGIN
SELECT count(*)
INTO rec_count
FROM employees
WHERE employee_id = emp_id;
IF rec_count = 1 THEN
SELECT *
INTO emp_row
FROM employees
WHERE employee id = emp_id;
IF emp_row.department_id != dept_id THEN
emp_row.department _id := dept id;
UPDATE employees SET ROW = emp_row
WHERE employee id = emp_id;
SELECT department name
INTO dept
from departments
WHERE department id = dept id;
DBMS_OUTPUT.PUT LINE('The employee ' || emp row.first name || ' '
emp_row.last name || ' is now in department: ' || dept);

ELSE

DBMS_OUTPUT.PUT LINE('The employee is already in that department...no change');

END IF;
ELSIF rec_count > 1 THEN

www.it-ebooks.info

31

http://www.it-ebooks.info/

CHAPTER 2 ™ ESSENTIAL SQL

DBMS_OUTPUT.PUT_LINE('The employee ID you entered is not unique');
ELSE
DBMS_OUTPUT.PUT_LINE('No employee records match the given employee ID');
END IF;
EXCEPTION
WHEN NO_DATA FOUND THEN
DBMS_OUTPUT.PUT_LINE('Invalid employee or department ID, try again');
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('Unsuccessful change, please check ID numbers and try again');
END;

As you can see, the example queries the database into a record declared using the %ROWTYPE
attribute. The value that needs to be updated is then modified using the data contained in the record.
Lastly, using the SET ROW clause updates the table with the modified record.

How It Works

As you've seen in the solution to the recipe, it is possible to update the values of a row returned by a
query using the UPDATE. . .SET ROW syntax. In many cases, using a single UPDATE statement can solve this
type of transaction. However, in some scenarios where you need to evaluate the current value of a
particular column, then this solution is the correct choice.

Using the UPDATE ROW statement, you can update entire database rows with a single variable of either
the %ROWTYPE or RECORD type. The UPDATE statement also allows you to return values after the update by
adding the RETURNING clause to the end of the statement followed by the column names to return and the
variables that will receive their values. Take a look at this next example:

DECLARE
first employees.first name%TYPE;
last employees.last name%TYPE;
new_salary employees.salary%TYPE;
BEGIN

UPDATE employees

SET salary = salary + (salary * .03)

WHERE employee id = 100

RETURNING first _name, last _name,salary INTO first, last, new_salary;

DBMS_OUTPUT.PUT LINE('The employee ' || first || ' ' || last || ' now has a salary of:
" || new_salary);
END;
As you can see, the example outputs the new values that are the result of the update statement.

Using the RETURNING clause saves a step in that you are not required to requery the table after the update
in order to display the updated results.

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

2-10. Updating Rows Returned by a Cursor

Problem

You've created a cursor to use for querying your data. You want to loop through the results using a
cursor for loop and update the data as needed.

Solution

Use the WHERE_CURRENT_OF clause within your loop to update the current data row in the iteration. In the
following example, the EMPLOYEES table is queried for all employees in a particular department. The
results of the query are then iterated using a FOR loop, and the salary is increased for each employee
record that is returned.

DECLARE
CURSOR emp_sal cur IS
SELECT *
FROM employees
WHERE department_id = 60
FOR UPDATE;

emp_sal rec emp_sal cur%ROWTYPE;

BEGIN
FOR emp_sal rec IN emp_sal cur LOOP
DBMS_OUTPUT.PUT_LINE('0ld Salary: ' || emp_sal rec.last name ||
" - " || emp_sal rec.salary);

UPDATE employees
SET salary = salary + (salary * .025)
WHERE CURRENT OF emp_sal cur;

END LOOP;

-- Display the updated salaries
FOR emp_sal rec IN emp_sal cur LOOP
DBMS_OUTPUT.PUT LINE('New Salary: ' || emp_sal rec.last name ||
" - " || emp_sal rec.salary);
END LOOP;
END;

An update on the EMPLOYEES table occurs with each iteration of the loop. The second loop in this
example simply displays the new salary result for each employee that was returned by the cursor query.

How It Works

Updating values when iterating a cursor can be handy, especially when working with a number of rows.
There is one main difference between a cursor that allows updating and one that does not. That
difference is the addition of the FOR UPDATE clause in the cursor declaration. By using the FOR UPDATE
clause of the SELECT statement, you are causing the database to lock the rows that have been read by the

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ™ ESSENTIAL SQL

34

query. This lock is to ensure that nobody else can modify the rows while you are working with them. The
lock creates a read-only block on the table rows so that if someone else attempts to modify them while
you have them locked, then they will have to wait until you have performed either a COMMIT or a ROLLBACK.

The FOR UPDATE clause has an optional NOWAIT keyword. By including this keyword, you will ensure
that your query does not block your transaction if someone else already has the rows that you are
querying blocked. The NOWAIT keyword tells Oracle not to wait if the requested rows are already locked,
and control is immediately passed back to your program so that it can continue to run. If the NOWAIT
keyword is omitted and the rows are already locked, then your program will stop and wait until the lock
has been released.

You can use the cursor with any style of loop, as you've seen in previous recipes. No matter which
type of loop you choose, the UPDATE must be coded using the WHERE CURRENT OF clause to update the
current row in the cursor iteration. You will need to be sure to commit the changes after this block has
been run, and in many circumstances the COMMIT statement can be coded into this block once it has been
tested and verified to work correctly. As with any UPDATE statement, if you fail to COMMIT your changes,
then the UPDATE will not save any changes to the database, and the updated data will be visible to your
schema only until you disconnect. Issuing a COMMIT after your UPDATE statements have been issued is also
a good practice in this case because it will release the lock on the rows you had queried via the cursor so
that someone else can update them if needed. If you determine the data that was updated by the code
block is incorrect, then a ROLLBACK will also release the lock.

2-11. Deleting Rows Returned by a Cursor

Problem

There are a series of database rows that you'd like to delete. You've created a cursor FOR LOOP, and you
want to delete some or all rows that have been queried with the cursor.

Solution

Use a DELETE statement within a FOR loop to delete the rows that are retrieved by the cursor. If you create
a cursor using the FOR UPDATE clause, then you will be able to use the WHERE CURRENT OF clause along with
the DELETE statement to eliminate the current row within each iteration of the cursor. The following
example shows how this can be done to remove all job history for a given department ID:

CREATE OR REPLACE PROCEDURE remove job history(dept id IN NUMBER) AS
CURSOR job_history cur IS
SELECT *
FROM job_history
WHERE department_id = dept_id
FOR UPDATE;

job_history rec job_history cur%ROWTYPE;
BEGIN
FOR job_history rec IN job_history cur LOOP

DELETE FROM job_history
WHERE CURRENT OF job_history cur;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

DBMS_OUTPUT.PUT _LINE('Job history removed for department ' ||
dept_id);
END LOOP;
END;

Using this technique, the job history for the department with the given ID will be removed from the
JOB_HISTORY table.

How It Works

Much like updating rows using a cursor, the deletion of rows uses the WHERE CURRENT OF clause within
the DELETE statement to remove each row. The cursor query must contain the FOR UPDATE clause in order
to lock the rows that you are reading until a COMMIT or ROLLBACK has been issued. As mentioned in the
previous recipe, the NOWAIT keyword is optional, and it can be used to allow control to be immediately
returned to your program if someone else already has locks on the rows that you are interested in
updating.

In each iteration of the loop, the DELETE statement is used along with the WHERE CURRENT OF clause to
remove the current cursor record from the database. Once the loop has been completed, then all the
rows that had been queried via the cursor should have been deleted. This technique is especially useful if
you are going to be performing some further processing on each of the records and then deleting them.
One such case would be if you wanted to write each of the records to a history table prior to deleting
them. In any case, the cursor FOR loop deletion technique is a great way to remove rows from the
database and work with the data along the way.

2-12. Performing a Transaction

Problem

You need to complete a series of INSERT or UPDATE statements in order to process a complete transaction.
In doing so, you need to ensure that if one of the statements fails, that all of the statements are canceled
so that the transaction is not partially processed.

Solution

Use the transaction control mechanisms that are part of PL/SQL, as well as SQL itself, in order to control
your transactions. When all your statements have been completed successfully, issue a COMMIT to make
them final. On the other hand, if one of the statements does not complete successfully, then perform a
ROLLBACK to undo all the other changes that have been made and bring the database back to the state
that it was in prior to the transaction occurring.

In the following example, the code block entails the body of a script that is to be executed in order to
create a new department and add some employees to it. The department change involves an INSERT and
UPDATE statement to complete.

DECLARE

-- Query all programmers who make more than 4000

-- as they will be moved to the new 'Web Development' department
CURSOR new_dept_cur IS

SELECT *

FROM employees

www.it-ebooks.info

35

http://www.it-ebooks.info/

CHAPTER 2 ™ ESSENTIAL SQL

36

WHERE job_id = 'IT_PROG'
AND salary > 4000
FOR UPDATE;

new_dept rec new_dept cur%ROWTYPE;
current_department departments.department_id%TYPE;

BEGIN

-- Create a new department
INSERT INTO departments values(

DEPARTMENTS_SEQ.nextval, -- Department ID (sequence value)
'Web Development', -- Department Title

103 -- Manager ID

1700); -- Location ID

-- Obtain the current department ID..the new department ID
SELECT DEPARTMENTS_SEQ.currval

INTO current department

FROM DUAL;

-- Assign all employees to the new department
FOR new_dept_rec IN new_dept cur LOOP

UPDATE employees
SET department_id = current_department
WHERE CURRENT OF new_dept cur;

END LOOP;

COMMIT;
DBMS_OUTPUT.PUT_LINE('The transaction has been successfully completed.');

END;

As you can see, a transaction was performed in this block of code. It is important to roll back

changes if errors occur along the way so that the transaction is not partially completed.

How It Works

Transaction control is built into the Oracle Database. Any database changes that are made within a code
block are visible to the current session only until a COMMIT has been made. The changes that have been
made by the statements can be rolled back via the ROLLBACK command up until the point that a COMMIT is
issued. Oracle uses table and row locks to ensure that data that has been updated in one session cannot
be seen in another session until a COMMIT occurs.

A transaction is started when the first statement after the last COMMIT or ROLLBACK is processed or

when a session is created. It ends when a COMMIT or ROLLBACK occurs. A transaction is not bound to a
single code block, and any code block may contain one or more transactions. Oracle provides a
SAVEPOINT command, which places a marker at the current database state so as to allow you to roll back
to that point in time in a transaction. Oracle Database automatically issues a SAVEPOINT prior to
processing the first statement in any transaction.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

As a rule of thumb, it is always a good idea to have exception handling in place in case an exception
occurs. However, if an unhandled exception occurs, then the database will roll back the statement that
caused the exception, not the entire transaction. Therefore, it is up to the program to handle exceptions
and issue the ROLLBACK command if the entire transaction should be undone. If a database crashes and
goes down during a transaction, then when the database is restarted, all uncommitted statements are
rolled back. All transactions are completed when a COMMIT or ROLLBACK is issued.

2-13. Ensuring That Multiple Queries “See” the Same Data

Problem

You are issuing a set of queries against the database, and you need to ensure that none of the table rows
change throughout the course of the queries being made.

Solution

Set up a read-only transaction in which the current transaction will see the data only as an unchanged
snapshot in time. To do so, use the SET TRANSACTION statement to begin a read-only transaction and
establish a snapshot of the data so it will be consistent and unchanged from all other updates being
made. For instance, the following example displays a block that sets up read-only queries against the
database for dollar values from a bank account:

DECLARE
daily atm total NUMBER(12,2);
weekly atm total NUMBER(12,2);
BEGIN
COMMIT; -- ends previous transaction
SET TRANSACTION READ ONLY NAME 'ATM Weekly Summary';
SELECT SUM (wd_amt) INTO daily atm total FROM atm withdrawals
WHERE to_char(wd_date, 'MM-DD-YYYY') = to_char(SYSDATE, 'MM-DD-YYYY');
SELECT SUM (weekly total) INTO weekly atm total FROM atm withdrawals
WHERE to_char(wd date, 'MM-DD-YYYY') = to_char(SYSDATE - 7, 'MM-DD-YYYY');
DBMS_OUTPUT.PUT LINE(daily atm total || ' - ' || weekly atm total);
COMMIT; -- ends read-only transaction

END;

Querying the database using read-only transactions will ensure that someone will see the correct
values in a situation such as the one depicted in this example.

How It Works

Oftentimes there are situations when you need to ensure that the data being queried throughout a
transaction’s life cycle is unchanged by other users’ updates. The classic case is when someone goes to
withdraw money from the bank and their spouse is at an ATM machine depositing into the account at
the same time. If read consistency were not in place, the individual may view their account balance and
see that there was plenty of money to withdraw, and then they’d go to take the money out and receive an
error because the spouse had canceled the deposit instead. A read-only transaction allows for read
consistency until a COMMIT has been issued. If the spouse had confirmed the deposit, then the next query

www.it-ebooks.info

37

http://www.it-ebooks.info/

CHAPTER 2 ™ ESSENTIAL SQL

on the account would reflect the additional funds (assuming that the bank were to release them to the
account in real time).

Situations such as these require that you provide an environment that is essentially isolated from
the outside world. You can use the SET TRANSACTION command to start a read-only transaction, set an
isolation level, and assign the current transaction to a rollback segment. The SET TRANSACTION statement
must be the first statement in a read-only transaction, and it can appear only once in the transaction.
Note that there are some statement restrictions when using a read-only transaction. Only SELECT INTO,
OPEN, FETCH, CLOSE, LOCK TABLE, COMMIT, and ROLLBACK statements can be used; other statements are not
allowed.

2-14. Executing One Transaction from Within Another

Problem

You are executing a transaction, and you are faced with the need to suspend your current work, issue a
completely separate transaction, and then pick up your current work. For example, say you want to log
entries into a log table. The log entries should be persisted separately from the current transaction such
that if the transaction fails or is rolled back, the log entries will still be completed.

Solution

Start an autonomous transaction to make the log entry. This will ensure that the log entry is performed
separately from the current transaction. In the following example, an employee is deleted from the
EMPLOYEES table. Hence, a job is ended, and the job history must be recorded into the JOB_HISTORY table.
In the case that something fails within the transaction, the log entry into the JOB_HISTORY table must be
intact. This log entry cannot be rolled back because it is performed using an autonomous transaction.

The code to encapsulate the autonomous transaction needs to be placed into a named block that
can be called when the logging needs to be performed. The following piece of code creates a PL/SQL
procedure that performs the log entry using an autonomous transaction. (You will learn more about
procedures in Chapter 4.) Specifically notice the declaration of PRAGMA AUTONOMOUS TRANSACTION. That
pragma specifies that the procedure executes as a separate transaction, independent of any calling
transaction.

CREATE OR REPLACE PROCEDURE log_job_history (emp_id IN
employees.employee id%TYPE,
Job_id IN jobs.job_ id%TYPE,
Department_id IN employees.department_ id%TYPE,
employee start IN DATE) AS
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
INSERT INTO job_history
VALUES (emp_id,
employee start,
sysdate,
job_id,
department_id);
COMMIT;
END;

38

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

The LOG_JOB_HISTORY procedure inserts an entry into the log table separately from the transaction
that is taking place in the calling code block. The following code performs the job termination, and it
calls the log_substitution procedure to record the history:

DECLARE
CURSOR dept_removal cur IS
SELECT *
FROM employees
WHERE department_id = 10
FOR UPDATE;

dept_removal rec dept_removal cur%ROWTYPE;

BEGIN
-- Delete all employees from the database who reside in department 10
FOR dept_removal_rec IN dept_removal cur LOOP
DBMS_OUTPUT.PUT_LINE('DELETING RECORD NOW');
DELETE FROM employees
WHERE CURRENT OF dept_removal cur;

-- Log the termination

log_job_history(dept_removal rec.employee id,
dept_removal_rec.job _id,
dept_removal rec.department_id,
dept_removal rec.hire date);

END LOOP;

DBMS_OUTPUT.PUT LINE('The transaction has been successfully completed.');

EXCEPTION
-- Handles all errors
WHEN NO_DATA FOUND THEN
DBMS_OUTPUT.PUT_LINE
('The transaction has been rolled back due to errors, please try again.');

ROLLBACK;
END;

If this code block is executed and then rolled back, the entry into the job history table remains,
because it is performed as a separate, autonomous transaction.

How It Works

An autonomous transaction is a transaction that is called by another transaction and that runs
separately from the calling transaction. Autonomous transactions commit or roll back without affecting
the calling transaction. They also have the full functionality of regular transactions; they merely run
separately from the main transaction. They allow parallel activity to occur. Even if the main transaction
fails or is rolled back, the autonomous transaction can be committed or rolled back independently of
any other transactions in progress.

www.it-ebooks.info

39

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

An autonomous transaction must be created with a top-level code block, trigger, procedure,
function, or stand-alone named piece of code. In the solution, you saw that a procedure was created to
run as an autonomous transaction. That is because it is not possible to create an autonomous
transaction within a nested code block. To name a transaction as autonomous, you must place the
statement PRAGMA AUTONOMOUS_TRANSACTION within the declaration section of a block encompassing the
transaction. To end the transaction, perform a COMMIT or ROLLBACK.

2-15. Finding and Removing Duplicate Table Rows

Problem

You have found that for some reason your database contains a table that has duplicate records. You are
working with a database that unfortunately does not use primary key values, so you must manually
enforce data integrity. You need a way to remove the duplicate records. However, any query you write to
remove one record will also remove its duplicate.

Solution

The solution to this issue involves two steps. First you need to query the database to find all duplicate
rows, and then you need to run a statement to delete one of each duplicate record that is found.

The following code block queries the EMPLOYEES table for duplicate rows. When a duplicate is found,
it is returned along with a count of duplicates found.

<<duplicate_emp_gry>>
DECLARE
CURSOR emp_cur IS
SELECT *
FROM employees
ORDER BY employee id;

emp_count number := 0;
total count number := 0;
BEGIN

DBMS_OUTPUT.PUT LINE('You will see each duplicated employee listed more ');
DBMS_OUTPUT.PUT LINE('than once in the list below. This will allow you to ');
DBMS_OUTPUT.PUT LINE('review the list and ensure that indeed...there are more ');
DBMS_OUTPUT.PUT LINE('than one of these employee records in the table.');

DBMS_OUTPUT.PUT LINE('Duplicated Employees: ');

-- Loop through each player in the table
FOR emp_rec IN emp_cur LOOP

-- Select the number of records in the table that have the same ID as the current record
SELECT count(*)
INTO emp_count
FROM employees
WHERE employee id = emp rec.employee id;

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ESSENTIAL SQL

-- If the count is greater than one then a duplicate has been found, so print it out.
IF emp_count > 1 THEN

DBMS_OUTPUT.PUT LINE(emp rec.employee id || ' - ' || emp_rec.first name ||
" '|| emp_rec.last name || ' - ' || emp_count);
total count := total count + 1;
END IF;
END LOOP;

END;
If the table includes a duplicate, then it is printed out as follows:

You will see each duplicated employee listed more

than once in the list below. This will allow you to
review the list and ensure that indeed...there are more
than one of these employees in the table.

Duplicated Employees:

100 - Steven King - 2

100 - Steven King - 2

PL/SQL procedure successfully completed.

Next, you need to delete the duplicated rows that have been found. The following DELETE statement
will ensure that one of the duplicates is removed:

DELETE FROM employees A WHERE ROWID > (
SELECT min(rowid) FROM employees B
WHERE A.employee_id = B.employee_id);

How It Works

Usually using primary keys prohibits the entry of duplicate rows into a database table. However, many
legacy databases still in use today do not include such constraints. In rare situations, a duplicate key and
values are entered into the database that can cause issues when querying data or assigning values. The
method shown in the solution for finding duplicate rows is very basic. The solution loops through each
record in the table, and during each pass, it queries the table for the number of records found that match
the current record’s EMPLOYEE_ID. If the number found is greater than one, then you know that you have
found a duplicate.

The solution presented here for finding duplicates will work on any table provided that you have a
column of data that should contain logically unique values. In the example, each record should contain a
different EMPLOYEE_ID, so if there is more than one record with the same EMPLOYEE_ID value, then a
duplicate is found. If the table you are working with does not contain any unique columns, then you can
concatenate a number of columns in order to obtain a unique combination. For instance, if EMPLOYEES
did not contain an EMPLOYEE_ID column, then you could concatenate the FIRST_NAME, LAST_NAME, and
EMAIL columns to obtain a unique combination. More likely than not, there will not be two employees in
the table with the same name and e-mail address.

The second part of the solution involves removing one or more duplicate records from the set. To do
so, you have to look at a pseudocolumn known as the ROWID. The ROWID is a pseudocolumn (invisible
column) that is found in each table in an Oracle Database that uniquely identifies each row. By
comparing these unique ROWID values, you can delete just one of the records, not both. The DELETE
statement actually finds the rows that contain the same uniquely identified column(s) and then removes
the row with the larger ROWID value.

41

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Looping and Logic

Any substantial program always contains some conditional logic or looping. Oftentimes, both looping
and logic are combined to make powerful solutions. The recipes in this chapter will show you some
examples using basic conditional logic. Once you've mastered the art of conditional logic, then you will
learn how to perform all the loop types that are available in PL/SQL. Lastly, you will see some useful
examples that put these concepts into action.

For the purposes of this chapter, it is important to note that a condition is any variable or expression
that evaluates to a boolean. Conditions can contain one or more variables or expressions, but they must
always evaluate to either TRUE, FALSE, or NULL.

3-1. Choosing When to Execute Code

Problem

Your code contains a condition, and you are interested in executing code to perform specific actions if
the condition evaluates to TRUE, FALSE, or NULL.

Solution

Use an IF-THEN statement to evaluate an expression (or condition) and determine which code to execute
as a result.

The following example depicts a very simple IF-THEN statement that evaluates one variable to see
whether it contains a larger value than another variable. If so, then the statements contained within the
IF-THEN statement are executed; otherwise, they are ignored.

DECLARE

value one NUMBER :

value two NUMBER :
BEGIN

IF value one > value two THEN

DBMS_OUTPUT.PUT_LINE('value one is greater than value two');

END IF;
END;

&value_one;
&value_two;

As you can see from the example, if value_one is greater than value_two, a line of output will be
printed stating so. Otherwise, the IF statement is bypassed, and processing continues.

How It Works

As shown in the solution, the general format for the IF-THEN statement is as follows:

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

44

IF condition THEN
Statements to be executed

END IF;

The IF-THEN statement is one of the most frequently used conditional statements. If a given
condition evaluates to TRUE, then the code contained within the IF-THEN statement is executed. If the
condition evaluates to FALSE or NULL, then the statement is exited. However, it is possible to incorporate a
different set of statements if the condition is not satisfied. Please see Recipe 3-2 for an example.

Any number of IF-THEN statements can be nested within one another. The statements within the IF-
THEN will be executed if the condition that is specified evaluates to TRUE.

3-2. Choosing Between Two Mutually Exclusive Conditions

Problem

You have two conditions that are mutually exclusive. You want to execute one set of statements if the
first condition evaluates to TRUE. Otherwise, if the first condition is FALSE or NULL, then execute a different
set of statements.

Solution

Use an IF-ELSE statement to evaluate the condition and execute the statements that correspond to it if
the condition evaluates to TRUE. In the following example, a given employee ID is used to query the
EMPLOYEES table. If that employee exists, then the employee record will be retrieved. If not found, then a
message will be displayed stating that no match was found.

DECLARE
employee employees%ROWTYPE;
emp_count number := 0;

BEGIN

SELECT count(*)
INTO emp_count
FROM employees
WHERE employee id = 100;

IF emp_count > 0 THEN
SELECT *
INTO employee
FROM employees
WHERE employee id = 100;

IF employee.manager _id IS NOT NULL THEN
DBMS_OUTPUT.PUT LINE(employee.first name || ' ' || employee.last name ||
' has an assigned manager.');

ELSE
DBMS_OUTPUT.PUT LINE(employee.first name || ' ' || employee.last name ||
' does not have an assigned manager.');
END IF;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

ELSE
DBMS_OUTPUT.PUT_LINE('The given employee ID does not match any records, '||
' please try again');
END IF;
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT LINE('Try another employee ID.');
END;

Here are the results:
Steven King does not have an assigned manager.
PL/SQOL procedure successfully completed.

In the real world, the employee ID would not be hard-coded into the example. However, this
example provides a good scenario for evaluating mutually exclusive conditions and also nesting IF
statements.

How It Works

The IF-ELSE statement syntax is basically the same as the IF-THEN syntax, except that a different set of
statements is executed in the ELSE clause when the condition evaluates to FALSE or NULL. Therefore, if the
first condition is FALSE or NULL, then the control automatically drops down into the statements contained
within the ELSE clause and executes them.

3-3. Evaluating Multiple Mutually Exclusive Conditions

Problem

Your application has multiple conditions to evaluate, and each of them is mutually exclusive. If one of
the conditions evaluates to FALSE, you'd like to evaluate the next one. You want that process to continue
until there are no more conditions.

Two solutions are possible: one using IF and the other using CASE.

Solution #1

Use an IF-ELSIF-ELSE statement to perform an evaluation of all mutually exclusive conditions. The
following example is a SQL*Plus script that queries how many countries are in a specified region.

Note The following example uses SQL*Plus substitution variables. Be sure to execute the example from an
environment such as SQL*Plus or SQL Developer that recognizes such variables.

www.it-ebooks.info

45

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

If the region that is typed as input when the following example executes matches any of the regions
specified by the conditions in the IF statement, then subsequent statements are executed. However, a
default message is displayed if the input does not match any region.

DECLARE
Region regions.region_name%TYPE := '®ion’;
country_count number := 0;

BEGIN

IF upper(region) = 'EUROPE' THEN
SELECT count(*)
INTO country count
FROM countries
WHERE region_id = 1;

DBMS_OUTPUT.PUT LINE('There are ' || country count || ' countries in ' ||
"the Europe region.');
ELSIF upper(region) = 'AMERICAS' THEN
SELECT count(*)
INTO country_count
FROM countries
WHERE region_id = 2;

DBMS_OUTPUT.PUT LINE('There are ' || country count || ' countries in ' ||
"the Americas region.');
ELSIF upper(region) = 'ASIA' THEN
SELECT count(*)
INTO country count
FROM countries
WHERE region_id = 3;

DBMS_OUTPUT.PUT LINE('There are ' || country count || ' countries in ' ||
"the Asia region.');
ELSIF upper(region) = 'MIDDLE EAST AND AFRICA' THEN
SELECT count(*)
INTO country count
FROM countries
WHERE region_id = 4;

DBMS_OUTPUT.PUT LINE('There are ' || country count || ' countries in ' ||
"the Middle East and Africa region.');
ELSE
DBMS_OUTPUT.PUT_LINE('You have entered an invaid region, please try again');
END IF;
END;
Solution #2

You can use the searched CASE statement to evaluate a boolean expression to determine which
statements to execute among multiple, mutually exclusive conditions. The next example is a SQL*Plus
script that performs the same tasks as Solution #1 but this time using a searched CASE statement:

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

DECLARE
region regions.region_name%TYPE := '®ion’;
country count number := 0;

BEGIN
CASE

WHEN upper(region) = 'EUROPE' THEN

SELECT count(*)

INTO country count
FROM countries
WHERE region_id = 1;

DBMS_OUTPUT.PUT LINE('There are ' || country count || ' countries
"the Europe region.');

WHEN upper(region) = 'AMERICAS' THEN

SELECT count(*)

INTO country_count
FROM countries
WHERE region_id = 2;

DBMS_OUTPUT.PUT LINE('There are ' || country count || ' countries
"the Americas region.');

WHEN upper(region) = "ASIA' THEN

SELECT count(*)

INTO country count
FROM countries
WHERE region_id = 3;

DBMS_OUTPUT.PUT LINE('There are ' || country count || ' countries
"the Asia region.');

WHEN upper(region) = "MIDDLE EAST AND AFRICA' THEN

ELSE

SELECT count(*)

INTO country count
FROM countries
WHERE region_id = 4;

DBMS_OUTPUT.PUT LINE('There are ' || country count || ' countries
"the Middle East and Africa region.');

in

in

in

in

DBMS_OUTPUT.PUT_LINE('You have entered an invaid region, please try again');
END CASE;

END;

How It Works

IF-ELSIF-ELSE can be used to evaluate any number of conditions. It functions such that if the first
condition in the IF-ELSIF-ELSE statement evaluates to TRUE, then the statements within its block are
executed, and all others are bypassed. Similarly, if the first condition evaluates to FALSE and the second
condition evaluates to TRUE, then the second condition’s statements will be executed, others will be
ignored, and so on.

www.it-ebooks.info

LOOPING AND LOGIC

47

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

Like the IF-ELSE statement, you can include an ELSE clause that will cause a set of statements to be
executed if none of the conditions is met. If you do not include an ELSE clause on your IF statement and
none of the conditions is met, then the entire statement will be completely bypassed.

The second solution to this recipe entails the use of a searched CASE statement. Technically, the
searched CASE has the same functionality of an IF-ELSIF-ELSE statement, but it is oftentimes easier to
follow. The format for a searched CASE statement is as follows:

CASE
WHEN <<boolean_expression>> THEN <<statements>>
[ELSE statements];

In this statement, a boolean expression is evaluated, and if the result is TRUE, then the statements
following THEN will be executed. Otherwise, execution will continue to the next WHEN clause in the
statement. If there are no boolean expressions within the CASE statement that evaluate to TRUE, then the
statements contained within the optional ELSE clause are executed.

3-4. Driving from an Expression Having Multiple Outcomes

Problem

You have a single expression that yields multiple outcomes. You are interested in evaluating the
expression and performing a different set of statements depending upon the outcome.

Solution

Use a CASE statement to evaluate your expression, and decide which set of statements to execute
depending upon the outcome. In the following example, a SQL*Plus script accepts a region entry, which
is being evaluated to determine the set of statements to be executed. Based upon the value of the region,
the corresponding set of statements is executed, and once those statements have been executed, then
the control is passed to the statement immediately following the CASE statement.

DECLARE
region regions.region_name%TYPE := '®ion';
country_count number := 0;

BEGIN

CASE upper(region)
WHEN 'EUROPE' THEN
SELECT count(*)
INTO country count
FROM countries
WHERE region_id = 1;

DBMS_OUTPUT.PUT LINE('There are ' || country count || ' countries in ' ||
"the Europe region.');
WHEN 'AMERICAS' THEN
SELECT count(*)
INTO country count
FROM countries
WHERE region_id = 2;

48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

DBMS_OUTPUT.PUT_LINE('There are ' || country count || ' countries in ' ||
"the Americas region.');
WHEN "'ASIA' THEN
SELECT count(*)
INTO country count
FROM countries
WHERE region_id = 3;

DBMS_OUTPUT.PUT LINE('There are ' || country count || ' countries in ' ||
"the Asia region.');
WHEN 'MIDDLE EAST AND AFRICA' THEN
SELECT count(*)
INTO country count
FROM countries
WHERE region_id = 4;

DBMS_OUTPUT.PUT LINE('There are ' || country count || ' countries in ' ||
"the Middle East and Africa region.');
ELSE
DBMS_OUTPUT.PUT_LINE('You have entered an invaid region, please try again');
END CASE;

END;

How It Works

There are two different types of CASE statements that can be used—those being the searched CASE and
the simple CASE statement. The solution to this recipe demonstrates the simple CASE. For an example of a
searched CASE statement, please see Recipe 3-3.

The simple CASE statement begins with the keyword CASE followed by a single expression called a
selector. The selector is evaluated one time, and it can evaluate to any PL/SQL type other than BLOB,
BFILE, an object type, a record, or a collection type. The selector is followed by a series of WHEN clauses.
The WHEN clauses are evaluated sequentially to determine whether the value of the selector equals the
result from any of the WHEN clause expressions. If a match is found, then the corresponding WHEN clause is
executed.

The CASE statement can include any number of WHEN clauses, and much like an IF statement, it can
be followed with a trailing ELSE clause that will be executed if none of the WHEN expressions matches. If
the ELSE clause is omitted, a predefined exception will be raised if the CASE statement does not match
any of the WHEN clauses. The END CASE keywords end the statement.

3-5. Looping Until a Specified Condition Is Met

Problem

You want to loop through a set of statements until a specified condition evaluates to true.

www.it-ebooks.info

49

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

50

Solution

Use a simple LOOP statement along with an EXIT clause to define a condition that will end the iteration.
The following example shows a simple LOOP that will print out each employee with a department_id equal
to 90:

DECLARE
CURSOR emp_cur IS
SELECT *
FROM employees
WHERE department_id = 90;
emp_rec employees%ROWTYPE;
BEGIN
OPEN emp_cur;
Loop
FETCH emp_cur into emp_rec;
IF emp_cur%FOUND THEN
DBMS_OUTPUT.PUT LINE(emp rec.first name || ' ' || emp_rec.last name |
" - " || emp_rec.email);
ELSE
EXIT;
END IF;
END LOOP;
CLOSE emp_cur;
END;

As you can see from the example, the cursor is opened prior to the start of the loop. Inside the loop,
the cursor is fetched into emp_rec, and emp_rec is evaluated to see whether it contains anything using the
cursor %FOUND attribute. If emp_cur%FOUND is FALSE, then the loop is exited using the EXIT keyword.

How It Works

The simple LOOP structure is very easy to use for generating a loop in your code. The LOOP keyword is used
to start the loop, and the END LOOP keywords are used to terminate it. Every simple loop must contain an
EXIT or GOTO statement; otherwise, the loop will become infinite and run indefinitely.

You can use a couple of different styles for the EXIT. When used alone, the EXIT keyword causes a
loop to be terminated immediately, and control is passed to the first statement following the loop. You
can use the EXIT-WHEN statement to terminate the loop based upon the evaluation of a condition after the
WHEN statement. If the condition evaluates to TRUE, then the loop is terminated; otherwise, it will
continue.

The following example shows the same LOOP as the example in the solution, but instead of using an
IF statement to evaluate the content of emp_rec, the EXIT-WHEN statement is used:

DECLARE

CURSOR emp_cur IS

SELECT *

FROM employees

WHERE department_id = 90;

emp_rec employees%ROWTYPE;
BEGIN

OPEN emp_cur;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

LOOP
FETCH emp_cur into emp_rec;
EXIT WHEN emp_cur%NOTFOUND;
DBMS_OUTPUT.PUT LINE(emp rec.first name || ' ' || emp_rec.last name ||

"= ' || emp_rec.email);
END LOOP;
CLOSE emp_cur;
END;

You can use a loop to iterate over any number of things including cursors or collections of data. As
you will see in some of the coming recipes, different forms of loops work better in different
circumstances.

3-6. Iterating Cursor Results Until All Rows Have Been Returned

Problem

You have created a cursor and retrieved a number of rows from the database. As a result, you want to
loop through the results and do some processing on them.

Solution

Use a standard FOR loop to iterate through the records. Within each iteration of the loop, process the
current record. The following code shows the use of a FOR loop to iterate through the records retrieved
from the cursor and display each employee name and e-mail. Each iteration of the loop returns an
employee with the job_id of 'ST_MAN', and the loop will continue to execute until the cursor has been
exhausted.

DECLARE
CURSOR emp_cur IS
SELECT *
FROM employees
WHERE job_id = 'ST MAN';
emp_rec employees%ROWTYPE;
BEGIN
FOR emp_rec IN emp_cur LOOP
DBMS_OUTPUT.PUT_LINE(emp rec.first name || ' ' || emp_rec.last name |
" - ' || emp_rec.email);
END LOOP;
END;

Here are the results:
Matthew Weiss - MWEISS
Adam Fripp - AFRIPP
Payam Kaufling - PKAUFLIN
Shanta Vollman - SVOLLMAN
Kevin Mourgos - KMOURGOS

PL/SQL procedure successfully completed.

www.it-ebooks.info

51

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

52

As you can see, the employee records that meet the specified criteria are displayed.

How It Works

The FOR. . .INloop works by iterating over a collection of data such as a cursor. The loop begins with the
FOR keyword followed by a variable that will be used to contain the current value or values from the
collection of data you are iterating. In this case, the variable is a record that will contain the current row.
Next, the IN collection clause is used to denote the collection of data being iterated. The loop is
terminated just like all other PL/SQL loops, using the END LOOP keywords. There is no need to evaluate a
condition in a FOR loop because the collection or range that is used to define the loop determines its
scope. However, it is possible to use the EXIT keyword to escape from a loop prematurely. For more
information regarding the use of EXIT, please see Recipe 3-5.

The benefit of using a FOR loop is decreased lines of code and better readability. Rather than opening
the cursor prior to the loop, fetching a row into a record with each iteration, and then closing the cursor
after the loop, you simply fetch the row into the record within the LOOP definition itself.

3-7. Iterating Until a Condition Evaluates to FALSE

Problem

You want to iterate over a series of statements until a specified condition no longer evaluates to TRUE.

Solution

Use a WHILE statement to test the condition, and execute the series of statements if the condition
evaluates to TRUE; otherwise, skip the statements completely. The following example shows a WHILE
statement evaluating the current value of a variable and looping through until the value of the variable
reaches ten. Within the loop, this variable is being multiplied by two and printing out its current value.

DECLARE
myValue NUMBER := 1;
BEGIN
WHILE myValue < 10 LOOP
DBMS_OUTPUT.PUT LINE('The current value is: ' || myValue);
myValue := myValue * 2;
END LOOP;
END;

Here are the results:

The current value is:
The current value is:
The current value is:
The current value is:

0N

PL/SQOL procedure successfully completed.

The important thing to note in this example is that the value of myValue is increased with each
iteration of the loop as to eventually meet the condition specified in the WHILE loop.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

How It Works

The WHILE loop tests a condition at the top of the loop, and if it evaluates to TRUE, then the statements
within the loop are executed, and control is returned to the start of the loop where the condition is tested
again. If the condition does not evaluate to TRUE, the loop is bypassed, and control goes to the next
statement after the END LOOP. If the condition never fails, then an infinite loop is formed, so it is
important to ensure that the condition will eventually evaluate to FALSE.

It is important to note that the statements in the loop will never be executed if the condition
evaluates to FALSE during the first pass. This situation is different from the simple loop that always
iterates at least once because the EXIT condition is usually evaluated elsewhere in the loop.

To ensure that a WHILE loop is always executed at least one time, you must ensure that the condition
evaluates to TRUE at least once. One way to do this is to use a flag variable that is evaluated with each
iteration of the loop. Set the flag equal to FALSE prior to starting the loop, and then set it to TRUE when a
certain condition is met inside the loop. The following pseudocode depicts such a solution:

BEGIN
flag = FALSE;
WHILE flag = TRUE LOOP
Perform statements
flag = Boolean expression;
END LOOP;
END;

As mentioned previously, the boolean expression that is assigned to the flag in this case must
eventually evaluate to FALSE; otherwise, an infinite loop will occur.

3-8. Bypassing the Current Loop Iteration

Problem

If a specified conditional statement evaluates to TRUE, you want to terminate the current loop iteration of
the loop early and start the next iteration immediately.

Solution

Use a CONTINUE statement along with a condition to end the current iteration.

In the following example, a loop is used to iterate through the records in the employees table. The
primary reason for the loop is to print out a list of employees who receive a salary greater than 15,000. If
an employee does not receive more than 15,000, then nothing is printed out, and the loop continues to
the next iteration.

DECLARE

CURSOR emp_cur is

SELECT *

FROM employees;

emp_rec emp_cur%ROWTYPE;
BEGIN

DBMS_OUTPUT.PUT LINE('Employees with salary > 15000: ');

www.it-ebooks.info

53

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

OPEN emp_cur;
LOOP
FETCH emp_cur INTO emp_rec;
EXIT WHEN emp_cur%NOTFOUND;
IF emp_rec.salary < 15000 THEN
CONTINUE;
ELSE
DBMS_OUTPUT.PUT LINE('Employee: ' || emp_rec.first name || ' ' ||
emp_rec.last_name);
END IF;

END LOOP;
CLOSE emp_cur;

END;
Here are some sample results:

Employees with salary > 15000:
Employee: Steven King
Employee: Neena Kochhar
Employee: Lex De Haan

PL/SOL procedure successfully completed.

How It Works

You can use the CONTINUE statement in any loop to unconditionally halt execution of the current iteration
of the loop and move to the next. As shown in the solution, the CONTINUE statement is usually
encompassed within some conditional statement so that it is invoked only when that certain condition
is met.

You can use the CONTINUE statement along with a label in order to jump to a specified point in the
program. Rather than merely using CONTINUE to bypass the current loop iteration, specifying a label will
allow you to resume programming in an outer loop. For more information regarding the use of the
CONTINUE statement along with labels in nested loops, please see Recipe 3-13.

As an alternative to specifying CONTINUE from within an IF statement, you can choose to write a
CONTINUE WHEN statement. For example, the following two approaches yield identical results:

IF team rec.total points < 10 THEN
CONTINUE;

or
CONTINUE WHEN rec.total points < 10;

Using the CONTINUE WHEN format, the loop will stop its current iteration if the condition in the WHEN
clause is met. Otherwise, the iteration will ignore the statement altogether.

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

3-9. Iterating a Fixed Number of Times

Problem

You are interested in executing the contents of a loop a specified number of times. For example, you are
interested in executing a loop ten times, and you need to number each line of output in the range by the
current loop index.

Solution

Write a FOR loop. Use a variable to store the current index of the loop while looping through a range of
numbers from one to ten in ascending order. The following lines of code will iterate ten times through a
loop and print out the current index in each pass:

BEGIN
FOR idx IN 1..10 LOOP
DBMS_OUTPUT.PUT LINE('The current index is: ' || idx);
END LOOP;
END;

Here is the result:

The current index is:
The current index is:
The current index is:
The current index is:
The current index is:
The current index is:
The current index is:
The current index is:
The current index is:
The current index is:

RPrOoo~NOUVITSWNR

(0]

PL/SQL procedure successfully completed.

How It Works

The FOR loop will increment by one through the given range for each iteration until it reaches the end.
The loop is opened using the keyword FOR, followed by a variable that will be used as the index for the
loop. Following the index variable is the IN keyword, which is used to signify that the index variable
should increment one by one through the given range, which is listed after the IN keyword. The loop is
terminated using the END LOOP keywords.

Each statement contained within the loop is executed once for each iteration of the loop. The index
variable can be used within the loop, but it cannot be changed. As shown in the solution, you may use
the index for printing purposes, and it is oftentimes used in calculations as well.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

3-10. Iterating Backward Through a Range

Problem

You are working with a range of numbers and want to iterate backward through the range, from the
upper bound to the lower bound.

Solution

Use a FOR loop along with the REVERSE keyword to iterate backward through the range. In this example,
the same solution that was shown in Recipe 3-9 has been modified to iterate backward through the
range of numbers.

BEGIN
FOR idx IN REVERSE 1..10 LOOP
DBMS_OUTPUT.PUT LINE('The current index is: ' || idx);
END LOOP;
END;

Here is the result:

o

The current index is:
The current index is:
The current index is:
The current index is:
The current index is:
The current index is:
The current index is:
The current index is:
The current index is:
The current index is:

P NWRARUION 0O R

PL/SQL procedure successfully completed.

How It Works

The REVERSE keyword causes a FOR loop to iterate backward through the specified range of numbers. This
is the only way to loop backward through a sequence of numbers because it is not possible to simply list
the numbers in a different order to loop a different direction.

For example, the following loop would never be executed since the lower bound and upper bound
values have been swapped:

BEGIN
FOR idx IN 10..1 LOOP
--These statements will never be executed
END LOOP;

END;

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

The REVERSE keyword should be placed directly after the IN keyword and before the range that you
specify. The REVERSE keyword has no effect when working with cursors. If you need to iterate through
cursor results in a specific order, then specify an ORDER BY clause in your SELECT statement.

3-11. lterating in Increments Other Than One

Problem

Rather than iterating through a range of numbers one at a time, you want to increment by some other
value. For example, you might want to increment through even values such as 2, 4, 6, and so forth.

Solution

Multiply the loop index by two (or by whatever other multiplier you need) to achieve the effect of
incrementing through all even numbers. As you can see in the following example, an even number is
always generated when the index is multiplied by two:

BEGIN
FOR idx IN 1..5 LOOP
DBMS_OUTPUT.PUT LINE('The current index is: ' || idx*2);
END LOOP;
END;

Here is the result:

The current index is:
The current index is:
The current index is:
The current index is:
The current index is:

B oo~ N

0

PL/SQOL procedure successfully completed.

How It Works

Unlike some other languages, PL/SQL does not include a STEP clause that can be used while looping. To
work around that limitation, you will need to write your own stepping algorithm. In the solution to this
recipe, you can see that the algorithm was quite easy; you simply multiply the index by two to achieve
the desired result. In this solution, assigning the range of 1..5 as the index produces the effect of iterating
through all even numbers from 2..10 when the current index is multiplied by two.

Using similar techniques, you can increment through ranges of numbers in various intervals.
However, sometimes this can become troublesome if you are attempting to step by anything other than
even numbers. You can see an example of this in the next recipe.

www.it-ebooks.info

57

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

3-12. Stepping Through a Loop Based on 0dd-Numbered Increments

Problem

Rather than iterating through a range of numbers by even increments, you prefer to loop through the
range using odd increments.

Solution

Use the built-in MOD function to determine whether the current index is odd. If it is odd, then print out
the value; otherwise, continue to the next iteration. The following example shows how to implement this
solution:

BEGIN
FOR idx IN 1..10 LOOP
IF MOD(idx,2) != O THEN
DBMS_OUTPUT.PUT LINE('The current index is: ' || idx);
END IF;
END LOOP;
END;

Results:

The current index is:
The current index is:
The current index is:
The current index is:
The current index is:

O NuUT W

PL/SQOL procedure successfully completed.

How It Works

The solution depicts one possible workaround for a STEP replacement. Using the MOD function to
determine whether a number is odd works quite well. The MOD function, otherwise known as the modulus
function, is used to return the remainder from the division of the two numbers that are passed into the
function. Therefore, this function is useful for determining even or odd numbers. In this case, if any
value is returned from MOD, then the number is assumed to be odd, and the statements within the IF
statement will be executed.

Such a technique may be useful in the case of iterating through a collection of data such as a table. If
you want to grab every other record from the collection, then performing a stepping solution such as this
or the solution from Recipe 3-11 will allow you to achieve the desired result. You could easily use the
resulting index from this technique as the index for a collection.

58

www.it-ebooks.info

http://www.it-ebooks.info/

3-13. Exiting an Outer Loop Prematurely

Problem

CHAPTER 3

LOOPING AND LOGIC

Your code contains a nested loop, and you want the inner loop to have the ability to exit from both loops

and stop iteration completely.

Solution

Use loop labels for both loops and then reference either loop within an EXIT statement by following the
EXIT keyword with a loop label. The following example prints out a series of numbers. During each
iteration, the inner loop will increment until it reaches an odd number. At that point, it will pass control
to the outer loop again. The outer loop will be exited when the index for the inner loop is greater than or

equal to the number ten.

BEGIN

<<outer>> for idx1 in 1 ..

<<inner>> for idx2 in 1 ..

dbms_output.put(idx2)
exit inner when idx2
exit outer when idx2
END LOOP;
DBMS_OUTPUT.NEW_LINE;
END LOOP;
DBMS_OUTPUT.NEW_LINE;
END;

Results:

123

12345
1234567
123456789
12345678910

5
>

10 loop

idx1a * 2;
10;

10 loop

PL/SQL procedure successfully completed.

How It Works

Any loop in PL/SQL can be labeled using a similar style to labels for code blocks. The label can be any
valid identifier surrounded by angle brackets before the loop, and optionally the identifier can be placed
at the end after the END LOOP clause. The result of such a labeling mechanism is that you will have a

distinct start and end to the loops and more control over loop execution.

In the solution to this recipe, the label helps identify the outer loop so that it can be terminated with
the EXIT clause. Without a label, the EXIT will terminate the innermost FOR loop. However, the label can
also be used to help identify the loop’s index. In the solution, this is not necessary because the outer loop
index was named differently than the inner loop index. If both indexes were named the same, then you
could use the loop label along with the index name to fully qualify the index. The following example

demonstrates this technique:

www.it-ebooks.info

59

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

60

BEGIN
<<outer>> FOR idx IN 1 .. 10 LOOP
<<inner>> FOR idx IN 1 .. 10 LOOP
DBMS_OUTPUT.PUT(inner.idx);
EXIT inner WHEN inner.idx > outer.idx * 2;
EXIT outer WHEN inner.idx = 10;
END LOOP;
DBMS_OUTPUT.NEW_LINE;
END LOOP;
DBMS_OUTPUT.NEW_LINE;
END;

This code will display the same results as the example given in the solution to this recipe. The only
difference is that in this example the index name is the same in both the inner and outer loops. An
alternative technique to end the current iteration of an inner loop is to use the CONTINUE statement. A
CONTINUE statement can reference the label of a loop that is within the same scope. Therefore, an inner
loop can exit its current iteration and proceed to an outer loop, as the following example demonstrates:

BEGIN
<<outer>> for idx1 in 1 .. 10 loop
<<inner>> for idx2 in 1 .. 10 loop
dbms_output.put(idx2);
exit inner when idx2 > idx1 * 2;
exit outer when idx2 = 10;
END LOOP;
CONTINUE outer;
END LOOP;
DBMS_OUTPUT.NEW_LINE;
END;

In this example, the same code that is used in the solution to this recipe is rewritten to incorporate a
CONTINUE statement. This statement is used to move control of execution back to the outer loop. When
the CONTINUE statement is reached, execution of the current loop is immediately halted, and processing
continues to the loop designated by the label.

3-14. Jumping to a Designated Location in Code

Problem
You want your code to stop executing and jump to a different, designated location.

Solution

Use a GOTO statement along with a label name to cause code execution to jump into the position where
the label is located.

The following example shows the GOTO statement in action. The user is prompted to enter a numeric
value, and that value is then evaluated to determine whether it is greater than ten. In either case, a
message is printed, and then the code jumps to the end_msg label. If the number entered is a negative
number, then the code jumps to the bad_input label where an error message is printed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ™ LOOPING AND LOGIC

DECLARE
in_number number := 0;
BEGIN
in_number := '&input_number';

IF in_number > 10 THEN
DBMS_OUTPUT.PUT _LINE('The number you entered is greater than ten');
GOTO end_msg;
ELSIF in_number <= 10 and in_number > O THEN
DBMS_OUTPUT.PUT_LINE('The number you entered is less than or equal to ten');
GOTO end_msg;
ELSE
-- Entered a negative number
GOTO bad_input;
END IF;

<< bad_input >>
DBMS_OUTPUT.PUT LINE('Invalid input. No negatives allowed.');

<< end_msg >>
DBMS_OUTPUT.PUT_LINE('Thank you for playing..');

END;

How It Works

The GOTO statement is used to branch code unconditionally. Code can be branched to any label within
the same scope as the GOTO. In the solution, the GOTO statement causes the code to branch to a parent
code block. You could just as easily branch to a loop within the current or outer block. However, you
cannot branch to a label within a subblock, IF statement, or LOOP.

You should use this statement sparingly because arbitrary branching makes code difficult to read. Use
conditional statements to branch whenever possible, because that’s why they were put into the
language. As you can see from the solution, the same code could have been written printing the “Invalid
number” message within the ELSE clause. There are usually better alternatives to using GOTO.

www.it-ebooks.info

61

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Functions, Packages,
and Procedures

PL/SQL applications are composed of functions, procedures, and packages. Functions are PL/SQL
programs that accept zero or more parameters and always return a result. Procedures are similar to
functions, but they are not required to return a result. Packages are a combination of related functions,
procedures, types, and variables. Each of these PL/SQL components helps formulate the basis for small
and large applications alike. They differ from anonymous blocks that have been covered in previous
recipes because they are all named routines that are stored within the database. Together, they provide
the advantage of reusable code that can be called from any schema in the database to which you've
granted the appropriate access.

Let’s say you have a few lines of code that perform some calculations on a number and return a
result. Will these calculations help you anywhere else? If so, then you should probably encapsulate this
code in a function. Maybe you have a nightly script that you use as a batch job to load and execute.
Perhaps this script can be turned into a stored procedure and Oracle Scheduler can kick it off each night.
What about tasks that use more than one procedure or function? Can these be combined at all? A
PL/SQL package would probably be a good choice in this case. After reading through the recipes in this
chapter, you should be able to answer these questions at the drop of a hat.

Note We mention job scheduling in our introduction to this chapter. However, we actually address that topic in
Chapter 11, which is an entire chapter dedicated to running PL/SQL jobs, whether for application purposes or for
database maintenance.

4-1. Creating a Stored Function

Problem

One of your programs is using a few lines of code repeatedly for performing a calculation. Rather than
using the same lines of code numerous times throughout your application, it makes more sense to
encapsulate the functionality into a common routine that can be called and reused time and time again.

www.it-ebooks.info

63

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

Solution

Create a stored function to encapsulate your code, and save it into the database. Once stored in the
database, any user with execution privileges can invoke the function. Let’s take a look at a function to
give you an idea of how they work.

In this example, the function is used to round a given number to the nearest quarter. This function
works well for accepting a decimal value for labor hours and rounding to the nearest quarter hour.

CREATE OR REPLACE FUNCTION CALC_QUARTER HOUR(HOURS IN NUMBER) RETURN NUMBER AS
CALCULATED_HOURS NUMBER := 0;
BEGIN

-- if HOURS is greater than one, then calculate the decimal portion
e -- based upon quarterly hours
IF HOURS > 1 THEN
-- calculate the modulus of the HOURS variable and compare it to e
-- fractional values
IF MOD(HOURS, 1) <=.125 THEN
CALCULATED_HOURS := substr(to_char(HOURS),0,1);
ELSIF MOD(HOURS, 1) > .125 AND MOD(HOURS,1) <= .375 THEN
CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.25,1);
ELSIF MOD(HOURS, 1) > .375 AND MOD(HOURS,1) <= .625 THEN
CALCULATED _HOURS := substr(to_char(HOURS),0,1) + MOD(.50,1);
ELSIF MOD(HOURS, 1) > .63 AND MOD(HOURS,1) <= .825 THEN
CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.75,1);
ELSE
CALCULATED_HOURS := ROUND(HOURS,1);

END IF;

ELSE

-- if HOURS is less than one, then calculate the entire valuee

-- based upon quarterly hours

IF HOURS > 0 AND HOURS <=.375 THEN
CALCULATED_HOURS := .25;

ELSIF HOURS > .375 AND HOURS <= .625 THEN
CALCULATED_HOURS := .5;

ELSIF HOURS > .625 AND HOURS <= .825 THEN
CALCULATED_HOURS := .75;

ELSE
CALCULATED _HOURS := ROUND(HOURS,1);

END IF;

END IF;
RETURN CALCULATED_HOURS;
END CALC_QUARTER_HOUR;

This function accepts one value as input, a decimal value representing a number of hours worked.
The function then checks to see whether the value is greater than one, and if so, it performs a series of

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

manipulations to round the value to the nearest quarter hour. If the value is not greater than one, then
the function rounds the given fraction to the nearest quarter.

Note See Recipe 4-2 for an example showing the execution of this function.

How It Works

A function is a named body of code that is stored within the database and returns a value. Functions are
often used to encapsulate logic so that it can be reused. A function can accept zero or more parameters
and always returns a value. A function is comprised of a header, an execution section containing
statements, and an optional exception block.

For example, the header for our solution function is as follows:

CREATE OR REPLACE FUNCTION CALC_QUARTER_HOUR(HOURS IN NUMBER) RETURN NUMBER AS

The OR REPLACE clause is optional, but in practice it is something you’ll most always want. Specifying
OR REPLACE will replace a function that is already under the same name in the same schema. (A function
name must be unique within its schema.)

Functions can take zero or more parameters, which can be any datatype including collections. You
will learn more about collections in Chapter 10. Our example function takes one parameter, a NUMBER
representing some number of hours.

The parameters that can be passed to a function can be declared in three different ways, namely, as
IN, OUT, and IN OUT. The difference between these three declaration types is that parameters declared as
IN are basically read-only, OUT parameters are write-only, and IN OUT parameters are read-write. The
value of an OUT parameter is initially NULL but can contain a value after the function has returned.
Similarly, the value of an IN OUT can be modified within the function, but IN parameters cannot.

Note Typically you want only IN parameters for a function. If you find yourself creating a function with ouT or IN
OUT parameters, then reconsider and think about creating a stored procedure instead. This is not a hard-and-fast
requirement, but it is generally good practice for a function to return only one value.

The declaration section of the function begins directly after the header, and unlike the anonymous
block, you do not include the DECLARE keyword at the top of this section. Just like the anonymous block,
the declaration section is where you will declare any variables, types, or cursors for your function. Our
declaration section defines a single variable:

CALCULATED_HOURS NUMBER := 0;
Following the declaration is the executable section, which is laid out exactly like that of an
anonymous block. The only difference with a function is that it always includes a RETURN statement. It

can return a value of any datatype as long as it is the same datatype specified in the RETURN clause of the
header.

www.it-ebooks.info

65

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

Following the return clause can be an optional EXCEPTION block to handle any errors that were
encountered in the function. The following example is the same function that was demonstrated in the
solution to this recipe, except that it has an added EXCEPTION block.

CREATE OR REPLACE FUNCTION CALC_QUARTER_HOUR(HOURS IN NUMBER)
RETURN NUMBER AS

CALCULATED_HOURS NUMBER := 0;
BEGIN

-- if HOURS is greater than one, then calculate the decimal portion

-- based upon quarterly hours
IF HOURS > 1 THEN
-- calculate the modulus of the HOURS variable and compare it to

-- fractional values
IF MOD(HOURS, 1) <=.125 THEN
CALCULATED_HOURS := substr(to_char(HOURS),0,1);
ELSIF MOD(HOURS, 1) > .125 AND MOD(HOURS,1) <= .375 THEN
CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.25,1);
ELSIF MOD(HOURS, 1) > .375 AND MOD(HOURS,1) <= .625 THEN
CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.50,1);
ELSIF MOD(HOURS, 1) > .63 AND MOD(HOURS,1) <= .825 THEN
CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.75,1);
ELSE
CALCULATED _HOURS := ROUND(HOURS,1);

END IF;

ELSE
-- if HOURS is less than one, then calculate the entire value

-- based upon quarterly hours

IF HOURS > 0 AND HOURS <=.375 THEN
CALCULATED_HOURS := .25;

ELSIF HOURS > .375 AND HOURS <= .625 THEN
CALCULATED_HOURS := .5;

ELSIF HOURS > .625 AND HOURS <= .825 THEN
CALCULATED_HOURS := .75;

ELSE
CALCULATED _HOURS := ROUND(HOURS,1);

END IF;

END IF;
RETURN CALCULATED HOURS;
EXCEPTION
WHEN VALUE_ERROR THEN
DBMS_OUTPUT.PUT LINE('VALUE ERROR RAISED, TRY AGAIN');

RETURN -1;
WHEN OTHERS THEN

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

DBMS_OUTPUT.PUT_LINE('UNK ERROR RAISED, TRY AGAIN');
RETURN -1;
END CALC_QUARTER_HOUR;

Again, don’t fret if you are unfamiliar with how to handle exceptions, because they will be discussed
in detail later in the book. At this point, it is important to know that you have the ability to declare
exceptions that can be caught by code so that your program can process abnormalities or errors
accordingly.

Functions are important not only for encapsulation but also for reuse. As a matter of fact, the
function defined within the solution uses other built-in PL/SQL functions within them. There are entire
libraries that consist of functions that are helpful for performing various transactions. Functions are a
fundamental part of PL/SQL programming, just as they are in any other language. It is up to you to
ensure that your database is stocked with plenty of useful functions that can be used in your current and
future applications.

4-2. Executing a Stored Function from a Query

Problem

You want to invoke a function from an SQL query. For example, you want to take the quarter-hour
rounding function from Recipe 4-1 and invoke it on hourly values in a database table.

Solution

Write a query and invoke the function on values returned by the SELECT statement. In the following lines,
the function that was written in the previous recipe will be called. The results of calling the function from
within a query are as follows:

SQL> select calc_quarter hour(.17) from dual;

CALC_QUARTER_HOUR(.17)

SOL> select calc_quarter hour(1.3) from dual;

CALC_QUARTER_HOUR(1.3)

How It Works

There are a few ways in which a function can be called, one of which is via a query. A function can be
executed inline via a SELECT statement, as was the case with the solution to this recipe. A function can
also be executed by assigning it to a variable within an anonymous block or another function/procedure.
Since all functions return a value, this works quite well. For instance, the following QTR_HOUR variable can
be assigned the value that is returned from the function:

www.it-ebooks.info

67

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

DECLARE
gtr_hour NUMBER;
BEGIN
qtr_hour := calc_quarter hour(1.3);
DBMS_OUTPUT.PUT_LINE(qtr_hour);
END;

You can also execute a function as part of an expression. In the following statement, you can see
that TOTAL_HOURS is calculated by adding the bill total to the value returned from the function:

DECLARE
total_hours NUMBER;
hours NUMBER := 8;
BEGIN

total_hours := hours + calc_quarter_hour(3.2);
DBMS_OUTPUT.PUT_LINE(total hours);
END;

The way in which your program calls a function depends on its needs. If you need to simply return
some results from the database and apply a function to each of the results, then use a query. You may
have an application that needs to pass a value to a function and use the result at some later point, in
which case assigning the function to a variable would be a good choice for this case. Whatever the case
may be, functions provide convenient calling mechanisms to cover most use cases.

4-3. Optimizing a Function That Will Always Return the Same Result
for a Given Input

Problem

You want to create a function that will return the same result whenever a given input, or set of inputs, is
presented to it. You want the database to optimize based upon that deterministic nature.

Solution

Specify the DETERMINISTIC keyword when creating the function to indicate that the function will always
return the same result for a given input. For instance, you want to return a specific manager name based
upon a given manager ID. Furthermore, you want to optimize for the fact that any given input will
always return the same result. The following example demonstrates a function that does so by specifying
the DETERMINISTIC keyword:

CREATE OR REPLACE FUNCTION manager_name(mgr_id IN NUMBER)
RETURN VARCHAR2
DETERMINISTIC IS

first _name employees.first _name%TYPE;
last_name employees.last name%TYPE;
BEGIN

IF mgr_id IS NOT NULL THEN
SELECT first_name, last_name
INTO first name, last_name

68

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

FROM EMPLOYEES
WHERE employee id = mgr_id;

RETURN first name || ' ' || last_name;
ELSE
RETURN 'N/A‘;
END IF;
EXCEPTION
WHEN NO_DATA_FOUND THEN
RETURN 'N/A';
END;

This function will return the manager name for a matching EMPLOYEE_ID. If there are no matches for
the EMPLOYEE_ID found, then N/A will be returned.

How It Works

A deterministic function is one that always returns the same resulting value as long as the parameters
that are passed in are the same. This type of function can be useful for improving performance. The
function will be executed only once for any given set of parameters. This means that if the same
parameters are passed to this function in subsequent calls, then the function will be bypassed and return
the cached value from the last execution using those parameters. This can really help in cases where
calculations are being performed and repeated calls to the function may take a toll on performance.

The DETERMINISTIC clause is required in a couple of cases. In the event that you are calling a function
in an expression of a function-based index, you need to write the function as DETERMINISTIC, or you will
receive errors. Similarly, a function must be made DETERMINISTIC if it is being called in an expression of a
materialized view query or if the view is marked as ENABLE QUERY REWRITE or REFRESH FAST.

4-4. Creating a Stored Procedure

Problem

There is a database task that you are performing on a regular basis. Rather than executing a script that
contains lines of PL/SQL code each time you execute the task, you want to store the code in the database
so that you can simply execute the task by name or so that you can schedule it to execute routinely via
Oracle Scheduler.

Note See Chapter 11 for information on scheduling PL/SQL jobs using Oracle Scheduler.

Solution

Place the code that is used to perform your task within a stored procedure. The following example
creates a procedure named INCREASE_WAGE to update the employee table by giving a designated
employee a pay increase. Of course, you will need to execute this procedure for each eligible employee
in your department. Storing the code in a procedure makes the task easier to perform.

www.it-ebooks.info

69

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

CREATE OR REPLACE PROCEDURE INCREASE WAGE (empno_in IN NUMBER,
pct_increase IN NUMBER,
upper_bound IN NUMBER) AS

emp_count NUMBER := 0;
emp_sal employees.salary%TYPE;

Results VARCHAR2(50);
BEGIN

SELECT salary

INTO emp sal

FROM employees

WHERE employee id = empno_in;

IF emp_sal < upper_bound
AND round(emp sal + (emp_sal * pct increase), 2) < upper bound THEN

UPDATE employees
SET salary = round(salary + (salary * pct increase),2)
WHERE employee id = empno_in;

results := 'SUCCESSFUL INCREASE';
ELSE

results := 'EMPLOYEE MAKES TOO MUCH, DECREASE RAISE PERCENTAGE';
END IF;

DBMS_OUTPUT.PUT_LINE(results);
EXCEPTION
WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR(-20001, 'No employee match for the given ID');
END;

The following are the results from executing the procedure for employee number 198. In the
example, the employee is being given a 3 percent increase and an upper bound of $5,000.

BEGIN
increase_wage(198,.03,5000);
END;

SUCCESSFUL INCREASE
Statement processed.

How It Works

In the example, the procedure accepts three parameters: the employee number, the percent of increase
they will receive, and an upper salary bound. You can then invoke the procedure by name, passing in the
required parameters.

The procedure first searches the database for the provided employee number. If a record for that
employee is found, then the employee record is queried for the current salary. If the salary is less than
the upper bound and the resulting new salary will still be less than the upper bound, then the increase

70

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

will be applied via an UPDATE statement. If the employee is not found, then an alert message will be
displayed. As you can see, this procedure can be called for any individual employee, and it will increase
their wage accordingly as long as the increase stays within the bound.

Stored procedures can be used to encapsulate functionality and store code in the database data
dictionary. Much like a function, they can accept zero or more values as parameters, including
collections. A stored procedure is structured in much the same way as a function in that it includes a
header, an executable section, and an optional exception-handling block. However, a procedure cannot
include a RETURN clause in the header, and it does not return a value.

For example, in the solution to this recipe, the procedure contains the following header:

CREATE OR REPLACE PROCEDURE INCREASE WAGE (empno_in IN NUMBER,
pct_increase IN NUMBER,
upper_bound IN NUMBER) AS

The header uses the OR REPLACE clause to indicate that this procedure should replace any procedure
with the same name that already exists. The procedure accepts three parameters, and although all of
them are NUMBER type, any datatype can be accepted as a parameter. The declaration section comes after
the header, and any cursors, variables, or exceptions that need to be declared should be taken care of in
that section. Next, the actual work that the procedure will do takes place between the BEGIN and END
keywords. Note that the header does not contain a RETURNS clause since procedures cannot return any
values.

The advantage of using procedures is that code can be encapsulated into a callable named routine
in the data dictionary and can be called by many users. To create a procedure in your schema, you must
have the CREATE PROCEDURE system privilege. You can create a stored procedure in another schema if you
have the CREATE ANY PROCEDURE system privilege.

4-5. Executing a Stored Procedure

Problem
You want to execute a stored procedure from SQL*Plus.

Solution

Open SQL*Plus, and connect to the database schema that contains the procedure you are interested in
executing. Execute the procedure by issuing the following command:

EXEC procedure name([parami, param2,...]);

For instance, to execute the procedure that was created in Recipe 4-3, you would issue the following
command:

EXEC increase wage(198, .03, 5000);
This would invoke the INCREASE_WAGE procedure, passing three parameters: EMPLOYEE_ID, a
percentage of increase, and an upper salary bound.

You can also execute a stored procedure by creating a simple anonymous block that contains the
procedure call, as depicted in the following code:

www.it-ebooks.info

71

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

72

BEGIN
procedure_name([parami, param2,..]);
END;

Using this technique, invoking the stored procedure that was created in Recipe 4-3 would resemble
the following:

BEGIN
increase wage(198,.03,5000);
END;

Both techniques work equally well, but the latter would be better to use if you wanted to execute
more than one procedure or follow up with more PL/SQL statements. If you are running a single
procedure from SQL*Plus, then using EXEC is certainly a good choice.

How It Works

A stored procedure can be executed using the EXEC keyword. You can also type EXECUTE entirely. Both the
long and shortened versions will work.

It is also possible to execute a procedure that is contained within other schemas, if the current user
has execute privileges on that procedure. In such a scenario, use dot notation to qualify the procedure
name. Here’s an example:

EXEC different schema.increase wage(emp_rec.employee id, pct increase, upper bound);

Note To learn more about privileges regarding stored programs, please take a look at Recipe 4-11.

A procedure can also be invoked from within another procedure by simply typing the name and
placing the parameters inside parentheses, if there are any. For instance, the following lines of code
demonstrate calling a procedure from within another procedure. The procedure in this example invokes
the procedure that was shown in Recipe 4-3.

CREATE OR REPLACE PROCEDURE grant_raises (pct_increase IN NUMBER,

upper_bound IN NUMBER) as
CURSOR emp_cur is
SELECT employee id, first name, last name
FROM employees;
BEGIN
-- loop through each record in the employees table
FOR emp_rec IN emp_cur LOOP

DBMS_OUTPUT.PUT LINE(emp rec.first name || ' ' || emp_rec.last name);
increase wage(emp_rec.employee id, pct increase, upper bound);
END LOOP;

END;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

The procedure GRANT_RAISES applies an increase across the board to all employees. It loops through
all employee records, and the INCREASE_WAGE procedure is called with each iteration. The procedure is
called without the use of the EXEC keyword since it is being invoked by another procedure rather than
directly from the SQL*Plus command line.

4-6. Creating Functions Within a Procedure or Code Block

Problem

You want to create some functions within a stored procedure. You want the functions to be local to the
procedure, available only from the procedure’s code block.

Solution

Create a stored procedure, and then create functions within the declaration section. The internal
functions will accept parameters and return values just as an ordinary stored function would, except that
the scope of the functions will be constrained to the outer code block or to the procedure. The procedure
that is demonstrated in this solution embodies two functions. One of the functions is used to calculate
the federal tax for an employee paycheck, while the other calculates the state tax.

CREATE OR REPLACE PROCEDURE calc_employee_paycheck(emp_id IN NUMBER) as
emp_rec employees%ROWTYPE;
paycheck _total NUMBER;

-- function for state tax
FUNCTION calc state (sal IN NUMBER)
RETURN NUMBER IS
BEGIN
RETURN sal * .08;
END;

-- function for federal tax
FUNCTION calc federal (sal IN NUMBER)
RETURN NUMBER IS
BEGIN
RETURN sal * .12;
END;

BEGIN
DBMS_OUTPUT.PUT LINE('Calculating paycheck with taxes');
SELECT *
INTO emp_rec
FROM employees
WHERE employee id = emp_id;

paycheck total := emp rec.salary - calc_state(emp_rec.salary) -
calc federal(emp rec.salary);

DBMS_OUTPUT.PUT LINE('The paycheck total for ' || emp_rec.last name ||
"'is ' || paycheck total);

www.it-ebooks.info

73

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

74

EXCEPTION
WHEN NO_DATA _FOUND THEN
RAISE_APPLICATION_ERROR(-20001,
'No matching employee for the given ID');
END;

How It Works

Functions—and procedures too—can be contained within other bodies of code. Creating a function
within a declaration section will make the function accessible to the block that contains it. The
declaration of the function is the same as when you are creating a stored function, with the exception of
the CREATE OR REPLACE keywords. Any variables that are declared inside the function will be accessible
only to that function, not to the containing object.

Creating a function or procedure inside a PL/SQL code block can be useful when you want to make
a function that is only to be used by the containing object. However, if you find that the body of the
embedded function may change frequently, then coding a separate stored function may prove to be
more efficient.

4-7. Passing Parameters by Name

Problem

You have a procedure in your database that accepts a large number of parameters. When calling the
procedure, you would rather not worry that the positioning of the parameters is correct.

Solution

Rather than trying to pass all the parameters to the procedure in the correct order, you can pass them by
name. The code in this solution calls a procedure that accepts six parameters, and it passes the
parameters by name rather than in order.

Procedure Declaration:

PROCEDURE process_emp_paycheck(EMP_ID IN NUMBER,
PAY_CODE IN NUMBER,
SICK_USED IN NUMBER,
VACATION_USED IN NUMBER,
FEDERAL_TAX IN NUMBER,
STATE_TAX IN NUMBER);

Procedure Execution:

EXEC process_emp_paycheck(EMP_ID=>10,
PAY_CODE=>10,
VACATION_USED=>8.0,
SICK_USED=>8.0,
STATE_TAX=>.06,
FEDERAL_TAX=>.08);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

As you can see, by passing the parameters by name, they do not need to follow the same positional
ordering as they do within the declaration of the procedure.

How It Works

To pass a parameter by name, you list the parameter name followed by an arrow (consisting of an equal
sign and a greater-than symbol) pointing to the value you are passing. The following pseudocode depicts
this technique:

procedure_name(parameter=>value);

Although it can be more verbose to use named parameters, passing parameters by name can be very
handy when there are several parameters to pass because you do not need to worry about passing them
in the correct order. It is also helpful because it increases readability.

Both procedures and functions can accept positional and named parameters. Neither notation is
superior to the other, so which one you choose to use is completely dependant upon the procedure or
function that is currently being called. However, named parameters are a safe choice if trying to
maintain consistency with procedure calls throughout your application or your organization.

Although not recommended, you can use both positional and named notation when passing
parameters within the same call. When doing so, you need to place the parameters that you want to pass
using positional notation first, followed by the parameters that you want to pass using named notation.
The following execution illustrates using both positional and named notation while passing parameters
to the PROCESS_EMP_PAYCHECK procedure:

EXEC process_emp_paycheck(198, 10, 0,
SICK_USED=>4.0,
STATE_TAX=>.05,
FEDERAL_TAX=> .04);

This particular call passed both of the first parameters by position, those being EMP_ID and PAY_CODE.
The last three parameters are passed by named notation.

4-8. Setting Default Parameter Values

Problem

You want to create a procedure that accepts several parameters. However, some of those parameters
should be made optional and contain default values.

Solution

You can allow the procedure caller to omit the parameters if default values are declared for the variables
within the procedure. The following example shows a procedure declaration that contains default
values:

PROCEDURE process_emp_paycheck(EMP_ID IN NUMBER,
PAY_CODE IN NUMBER,
SICK_USED IN NUMBER,
VACATION_USED IN NUMBER,
FEDERAL_TAX IN NUMBER DEFAULT .08,

www.it-ebooks.info

75

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

76

STATE_TAX IN NUMBER DEFAULT .035);
And here is an example execution:

EXEC process_emp_paycheck(EMP_ID=>10,
PAY_CODE=>10,
VACATION USED=>8.0,
SICK USED=>8.0);

Since the procedure contains default values, the parameters can be omitted when the procedure is
called.

How It Works

The ability to provide a default value for a variable declaration is optional. To do so, you must provide
the declaration of the variable with the keyword DEFAULT followed by the value, as shown in the solution
to this recipe. If a default value is declared, then you needn’t specify a value for the parameter when the
function or procedure is called. If you do specify a value for a parameter that has a default value, the
specified value overrides the default.

4-9. Collecting Related Routines into a Single Unit

Problem

You have a number of procedures and functions that formulate an entire application when used
together. Rather than defining each subprogram individually, you prefer to combine all of them into a
single, logically related entity.

Solution

Create a PL/SQL package that in turn declares and defines each of the procedures together as an
organized entity. You declare each of the subprograms in the package specification (otherwise known as
a header) and define them in the package body.

The following example shows the creation of a PL/SQL package containing two procedures and a
variable.

First, you create the package specification:

CREATE OR REPLACE PACKAGE process_employee time IS
total_employee_salary NUMBER;
PROCEDURE grant raises(pct_increase IN NUMBER,
upper_bound IN NUMBER);
PROCEDURE increase wage (empno_in IN NUMBER,
pct_increase IN NUMBER,
upper_bound IN NUMBER) ;
END;

The specification lists the procedures, functions, and variables that you want to be visible from

outside the package. Think of the specification as the external interface to your package.
Next, create the package body:

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE OR REPLACE PACKAGE BODY process_employee time IS

PROCEDURE grant raises (pct_increase IN NUMBER,
upper_bound IN NUMBER) as

CURSOR emp_cur is

SELECT employee id, first name, last name

FROM employees;

BEGIN
-- loop through each record in the employees table
FOR emp_rec IN emp_cur LOOP

CHAPTER 4

FUNCTIONS, PACKAGES, AND PROCEDURES

DBMS_OUTPUT.PUT LINE(emp rec.first name || ' ' || emp_rec.last name);
increase wage(emp_rec.employee id, pct_increase, upper bound);
END LOOP;
END;

PROCEDURE INCREASE WAGE (empno_in IN NUMBER,
pct_increase IN NUMBER,
upper_bound IN NUMBER) AS

emp_count NUMBER := 0;
emp_sal employees.salary%TYPE;

Results VARCHAR2(50);
BEGIN

SELECT count(*)
INTO emp_count
FROM employees
WHERE employee id = empno_in;

IF emp_count > 0 THEN
-- IF EMPLOYEE FOUND, THEN OBTAIN RECORD
SELECT salary
INTO emp_sal
FROM employees
WHERE employee id = empno_in;

IF emp_sal < upper bound AND round(emp sal + (emp_sal * pct_increase), 2) <+~

upper_bound THEN

UPDATE employees

SET salary = round(salary + (salary * pct increase),2)

WHERE employee id = empno_in;

results := "SUCCESSFUL INCREASE';
ELSE
results := 'EMPLOYEE MAKES TOO MUCH, DECREASE RAISE PERCENTAGE';
END IF;
ELSE
Results := 'NO EMPLOYEE FOUND';
END IF;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

78

DBMS_OUTPUT.PUT LINE(results);

END;
END;

The package in this example declares a global variable and two procedures within the package
specification. The package body then defines both of the procedures and assigns a value to the variable
that was declared in the specification. Procedures defined within the package body are defined in the
same manner as they would be if they were stand-alone procedures. The difference is that now these two
procedures are contained in a single package entity and are therefore related to each other and can
share variables declared globally within the package.

How It Works

A PL/SQL package can be useful for organizing code into a single construct. Usually the code consists of
a grouping of variables, types, cursors, functions, and procedures that perform actions that are logically
related to one another. Packages consist of a specification and a body, both of which are stored
separately in the data dictionary. The specification contains the declarations for each of the variables,
types, subprograms, and so on, that are defined in the package. The body contains the implementations
for each of the subprograms and cursors that are included in the specification, and it can also include
implementations for other functions and procedures that are not in the specification. You'll learn more
about this in other recipes.

Most packages contain both a specification and a body, and in these cases the specification acts as
the interface to the constructs implemented within the body. The items that are included in the
specification are available to the public and can be used outside the package. Not all packages contain a
body. If there are only declarations of variables or constants in the package, then there is no need for a
body to implement anything. Other PL/SQL objects outside the package can reference any variables that
are declared in the specification. In other words, declaring a variable within a PL/SQL package
specification essentially creates a global variable.

Note Global variables should be used wisely. The use of global variables can complicate matters when tracking
down problems or debugging your code. If global variables are used, then it can be hard to determine where
values have been set and where initialization of such variables occurs. Following the rules of encapsulation and
using local variables where possible can make your life easier.

Procedures and functions defined within the package body may call each other, and they can be
defined in any order as long as they have been declared within the package specification. If any of the
procedures or functions have not been declared in the specification, then they must be defined in the
package body prior to being called by any of the other procedures or functions.

You can change any implementations within a package body without recompiling the specification.
This becomes very important when you have other objects in the database that depend on a particular
package because it is probably not a good idea to change a package specification during normal business
hours when a package is in use by others. Doing so may result in unusable objects, and the package
users could begin to see errors. However, if changes need to be made to the code within the package
body, then you can change that code without affecting public-facing constructs of a package.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

Packages are one of the most important constructs that you can create in PL/SQL. You will use
packages to combine common code objects for almost any significant application that you write. It is
possible to create entire applications without the use of a package, but doing so can create a
maintenance nightmare because you will begin to see a pool of procedures and functions being created
within your database, and it will be difficult to remember which constructs are used for different tasks.
Packages are especially handy when writing PL/SQL web applications, and you will learn all about doing
this in Chapter 14.

4-10. Writing Initialization Code for a Package

Problem

You want to execute some code each time a particular PL/SQL package is instantiated in a session.

Solution

Create an initialization block for the package in question. By doing so, you will have the ability to execute
code each time the package is initialized. The following example shows the same package that was
constructed in Recipe 4-7. However, this time the package contains an initialization block.

CREATE OR REPLACE PACKAGE BODY process_employee time IS

PROCEDURE grant_raises (pct_increase IN NUMBER,
upper_bound IN NUMBER) as

CURSOR emp_cur is

SELECT employee id, first name, last_name

FROM employees;

BEGIN

-- loop through each record in the employees table

FOR emp_rec IN emp_cur LOOP

DBMS_OUTPUT.PUT_LINE(emp rec.first name || ' ' || emp_rec.last name);
increase wage(emp_rec.employee id, pct_increase, upper_ bound);
END LOOP;

END grant_raises;

PROCEDURE increase_wage (empno_in IN NUMBER,
pct_increase IN NUMBER,
upper_bound IN NUMBER) AS

emp_count NUMBER := 0;

emp_sal employees.salary%TYPE;

Results VARCHAR2(50);
BEGIN

SELECT count(*)

INTO emp_count

FROM employees
WHERE employee_id = empno_in;

www.it-ebooks.info

79

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

80

IF emp_count > 0 THEN
-- IF EMPLOYEE FOUND, THEN OBTAIN RECORD
SELECT salary
INTO emp_sal
FROM employees
WHERE employee id = empno_in;

IF emp_sal < upper_bound AND round(emp sal + (emp_sal * pct_increase), 2) <«
upper_bound THEN

UPDATE employees
SET salary = round(salary + (salary * pct_increase),2)
WHERE employee id = empno_in;

results :
ELSE

results := "EMPLOYEE MAKES TOO MUCH, DECREASE RAISE PERCENTAGE';
END IF;

"SUCCESSFUL INCREASE';

ELSE
Results := '"NO EMPLOYEE FOUND';
END IF;

DBMS_OUTPUT.PUT LINE(results);

END increase_wage;

BEGIN
DBMS_OUTPUT.PUT_LINE('EXECUTING THE INITIALIZATION BLOCK');
END;

The initialization block in this example is the last code block within the package body. In this case,
that block lies in the final three lines.

How It Works

The initialization block for the package in the solution displays a line of text to indicate that the
initialization block has been executed. The initialization block will execute once per session, the first
time the package is used in that session. If you were to create this package in your session and invoke
one of its members, you would see the message print. Although an initialization message is not very
useful, there are several good reasons to use an initialization block. One such reason is to perform a
query to obtain some data for the session.

4-11. Granting the Ability to Create and Execute Stored Programs

Problem
You want to grant someone the ability to create and execute stored programs.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

Solution

To grant the ability for a user to create a procedure, function, or package, you must log in to the database
with a privileged account and grant the CREATE PROCEDURE privilege to the user. Here’s an example:

GRANT CREATE PROCEDURE TO user;

Similarly, to grant permissions for execution of a procedure, package, or function, you must log in
with a privileged account and grant the user EXECUTE permissions on a particular procedure, function, or
package. Here’s an example:

GRANT EXECUTE ON schema_name.program_name TO schema;

How It Works

Before a user can create stored code, the user must be given permission to do so. The solution shows the
straightforward approach. The database administrator logs in and grants CREATE PROCEDURE to the
schema owner. The schema owner can then log in and create stored code in their schema.

A schema owner can always execute stored code in the schema. However, application users do not
generally log in as schema owners because of the security risks inherent in doing so. Thus, you will
commonly be faced with the need to grant other users execute access on stored code. You do that by
granting EXECUTE privileges, as shown in the second solution example.

4-12. Executing Packaged Procedures and Functions

Problem

You want to execute one of the procedures or functions contained within a package.

Solution

Use the package _name.object_name notation to execute a particular code object within a package. For
instance, the following block of code executes the GRANT_RAISES procedure that is contained within the
PROCESS_EMPLOYEE_TIME package.

BEGIN
process_employee_time.grant raises(.03,4000);
END;

The previous code block executes the GRANT_RAISES function, passing .03 for the percentage of
increase and 4000 for the upper bound.

How It Works

Dot notation is used for accessing members of a package. Similar to other languages such as Java, dot
notation can be used to access any publically accessible member of the package. Any variable, function,
or procedure that is contained in the package specification can be accessed using the dot notation.
Therefore, if your package contained a constant variable within its specification that you wanted to
access, it would be possible to do so from outside the package.

www.it-ebooks.info

81

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

82

For a schema to access and execute package members, it must have the appropriate permissions. To
grant EXECUTE permission on a package that you own, use the following syntax:

GRANT EXECUTE ON package name TO user_name;

Dot notation works from within other procedures or functions. It can also be used from the
SQL*Plus command line using the EXEC command.

Note In most cases, if a package is being used by another schema, then it is a good idea to create a public
synonym for that package within the database. This will help decrease issues while attempting to reference the
package and its programs from the different schema because you will not need to specify the schema name in
order to qualify the call. Please see Recipe 4-13 for more information regarding public synonyms.

4-13. Creating a Public Name for a Stored Program

Problem

You want to allow for any schema to have the ability to reference a particular stored program that is
contained within your schema. For instance, the CALC_EMPLOYEE_PAYCHECK procedure should be
executable for any of the administrative users of the database. You want these users to have the ability to
simply call the procedure rather than preceding the procedure name with the schema using the dot
notation.

Solution

Create a public synonym for the function, procedure, or package. This will allow any user that has
EXECUTE privileges on the stored program to call it without specifying the schema name first. Instead, the
invoker need only reference the synonym.

In the following example, the user AdminUser does not have direct access to the
CALC_EMPLOYEE_PAYCHECK procedure, so they must fully qualify the name of the package using the schema
name for which the procedure resides.

SQL> exec application_account.calc_employee paycheck(200);
Calculating paycheck with taxes

The paycheck total for Whalen is 5200.8

PL/SQOL procedure successfully completed.

Next, the database administrator will create a public synonym for the procedure:

SOL> CREATE PUBLIC SYNONYM calc_employee_paycheck
FOR application_user.calc_employee_paycheck;

Now any user with execute privileges on the procedure can invoke it without fully qualifying the
name since a public synonym named CALC_EMPLOYEE_PAYCHECK has been created. This is demonstrated in

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

the next lines of code. Again, the user AdminUser is now logged into the system and executes the
procedure.

SQL> exec calc_employee paycheck(206);
Calculating paycheck with taxes
The paycheck total for Gietz is 6640.8

PL/SQL procedure successfully completed.

As you can see, the procedure name no longer requires the schema name to fully qualify it before
being invoked.

How It Works

Creating public synonyms is a useful technique for allowing any user to have access to a stored piece of
code without knowing which schema the code belongs to. Any user who has EXECUTE privileges on the
code can invoke it without fully qualifying the name. Instead, the invoker specifies the synonym name.

An account must be granted the CREATE PUBLIC SYNONYM privilege in order to create a public
synonym. It’s actually common for database administrators to take care of creating such synonyms.

To create a synonym, execute the following statement, replacing the PUB_SYNONYM NAME identifier
with the name of your choice and replacing SCHEMA.STORED_PROGRAM with the schema name and program
that you want to make publically accessible:

CREATE PUBLIC SYNONYM pub_synonym name FOR schema.stored program;

The public synonym name does not have to be the same as the actual stored program name, but it is
conventional to keep them the same, and it makes things consistent and the names easier to remember.
If you begin to have synonym names that differ from the actual program names, then confusion will
eventually set in.

Note Creating a synonym does not give execute access. Creating a public synonym provides only a global name
that avoids the need for dot notation. Invokers of a procedure or function still must be granted EXECUTE access, as
shown in Recipe 4-11.

4-14. Executing Package Programs in Sequence

Problem

You have created a package that contains all the necessary procedures and functions for your program.
Although you can invoke each of these subprograms individually using the

package name.subprogram name notation, it would be beneficial to execute all of them at the same time
by issuing a single statement.

www.it-ebooks.info

83

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

Solution

Create a driver procedure within your PL/SQL package that will be used to initiate all the subprograms in
turn, and run your entire program. In the following example, a procedure named driver is created inside
a package, and it will invoke all the other package subprograms in turn:

First, create the specification:

CREATE OR REPLACE PACKAGE synchronize data IS
PROCEDURE driver;
END;

Then, create the body:

CREATE OR REPLACE PACKAGE BODY synchronize data IS
PROCEDURE query remote data IS
BEGIN
--statements go here
DBMS_OUTPUT.PUT_LINE('QUERYING REMOTE DATA');
END query remote data;

PROCEDURE obtain_new_record list IS
BEGIN
--statements go here
DBMS_OUTPUT.PUT LINE('NEW RECORD LIST');
END obtain new record list;

PROCEDURE obtain updated record list IS
BEGIN
--statements go here
DBMS_OUTPUT.PUT LINE('UPDATED RECORD LIST');
END obtain_updated record list;

PROCEDURE sync_local_data IS
BEGIN
--statements go here
DBMS_OUTPUT.PUT_LINE('SYNC LOCAL DATA');
END sync_local data;

PROCEDURE driver IS

BEGIN
query remote data;
obtain_new record list;
obtain_updated_record list;
sync_local data;

END driver;

END synchronize data;

The driver procedure initiates all the other procedures in the order that they should be executed. To
initiate the packaged program, you now make a call to the driver procedure as follows:

BEGIN
synchronize data.driver;

84

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

END;

One statement invokes the driver procedure. That procedure in turn invokes the other procedures
in the proper sequence.

How It Works

By creating a single procedure that can be called in order to execute all the other subprograms in turn,
you eliminate the potential for calling subprograms in the incorrect order. This will also allow you the
convenience of making one call as opposed to numerous calls each time you want to execute the task(s)
involved. And, if you create the other subprograms as private procedures and functions, then you
eliminate the risk of a developer invoking them out of order. That’s because you only make the driver
procedure public, and you know that the driver invokes in the correct sequence.

Oftentimes, packages are used to hold all the database constructs that make up an entire process. In
the solution to this recipe, the package entails a database synchronization process, and each procedure
within performs a separate piece of the synchronization. When executed in the correct order, the
procedures together perform the complete synchronization task.

One could just as easily create a script or manually invoke each package program separately just as
the driver procedure does in this case. However, you open the door to error when you write the logic of
invoking the sequence of procedures from multiple places. Another important factor is that the driver
can also be used to perform any additional initialization that must be done prior to executing each
procedure. Similarly, additional processing can be done in between each procedure call, such as
printing out the current status of the program. The driver procedure essentially provides another layer
of abstraction that you can take advantage of. The package can be initialized using the default package
initialization; then additional initialization or statements can be provided within the driver procedure,
and the program caller doesn’t need to know about them.

4-15. Implementing a Failure Flag

Problem

You want to create a boolean variable to determine whether one of the subprograms in the package has
generated an error. If an error has been generated by one of the subprograms, then the variable will be
set to TRUE. This flag will be evaluated in the driver procedure to determine whether the updates
performed by the package should be committed or rolled back.

Solution

Declare a global variable at the package level, and it will be accessible to all objects within. You can do
this by declaring the variable within the package body. The following package illustrates such a variable,
where the variable has been declared within the package body so that it is available for all objects in the
package only.

CREATE OR REPLACE PACKAGE synchronize data
PROCEDURE driver;
END;

CREATE OR REPLACE PACKAGE BODY synchronize data IS
error_flag BOOLEAN := FALSE;

www.it-ebooks.info

85

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

PROCEDURE query remote data is
Cursor remote db_query is
SELECT *

FROM my_remote_data@remote_db;

remote_db_rec employees%ROWTYPE;

BEGIN
OPEN remote_db_query;
LooP
FETCH remote_db_query INTO remote db_rec;
EXIT WHEN remote_db_queryZNOTFOUND;
IF remote_db_query%NOTFOUND THEN
error_flag := TRUE;
ELSE
-- PERFORM PROCESSING
DBMS_OUTPUT.PUT LINE('QUERY REMOTE DATA');
END IF;
END LOOP;
CLOSE remote db_query;
END query_remote_data;

PROCEDURE obtain_new_record list IS
BEGIN
--statements go here
DBMS_OUTPUT.PUT _LINE('NEW RECORD LIST');
END obtain _new_record list;

PROCEDURE obtain_updated record list IS
BEGIN
--statements go here
DBMS_OUTPUT.PUT_LINE('UPDATED RECORD LIST');
END obtain_updated record list;

PROCEDURE sync_local data IS
BEGIN
--statements go here
DBMS_OUTPUT.PUT_LINE('SYNC LOCAL DATA');
END sync_local data;

PROCEDURE driver IS
BEGIN
query remote_data;
IF error_flag = TRUE THEN
GOTO error_check;
END IF;

obtain _new record list;
IF error_flag = TRUE THEN

GOTO error check;
END IF;

86

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

obtain_updated record list;

IF error flag = TRUE THEN
GOTO error_check;

END IF;

sync_local_data;

-- If any errors were found then roll back all updates
<cerror_check>>
DBMS_OUTPUT.PUT_LINE('Checking transaction status');
IF error_flag = TRUE THEN

ROLLBACK;

DBMS_OUTPUT.PUT _LINE('The transaction has been rolled back.');
ELSE

COMMIT;

DBMS_OUTPUT.PUT LINE('The transaction has been processed.');
END IF;

END driver;
END;

How It Works

Declaring variables in the package body outside any procedures or functions allows them to become
accessible to all subprograms within the package. If one or more of the subprograms changes such a
variable’s value, then the changed value will be seen throughout the entire package.

As depicted in the example, you can see that the variable is referenced several times throughout the
package. If you had a requirement to make a variable global to all PL/SQL objects outside the package as
well, then you can declare the variable within the package specification. As mentioned in Recipe 4-8,
anything declared in the package specification is publically available to any PL/SQL object outside as
well as within the package body.

4-16. Forcing Data Access to Go Through Packages

Problem

You have defined all subprograms and packages for a particular application, and you want to allow other
users to access these constructs and execute the program but not have access to any data tables directly.

Solution

Define all the packages, procedures, and functions for your program within a single schema that has
access to all the data. All user access should be made from separate schemas, and they should be granted
execute privileges on the PL/SQL objects but not access to the tables themselves.

For instance, if you want to control access to a package named PROCESS EMPLOYEE_TIME, that package
along with all required tables, types, and sequences should be loaded into an application schema that
has the appropriate permissions required to access the data. For the purposes of this recipe, the
application schema name is EMP.

www.it-ebooks.info

87

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

Next, create a role by which to manage the privileges needed to invoke the package’s procedures
and functions. Grant EXECUTE privileges to that role. Grant that role to application users.

Your application users will now be able to execute the procedures and functions within the package.
Those procedures and functions can in turn update the database tables in the package’s schema.
However, users will not have direct access to those tables. All updates must flow through the package.

How It Works

To control an application’s data, it is important to restrict access to the tables. The solution in this recipe
shows how to create a package in the same schema that contains the application tables. The package
thus has access to those tables. Users, however, do not have table-level access.

After creating the package, you can grant EXECUTE access on the package to application users. Users
can then invoke packaged procedures and functions, and those procedures and functions in turn can
modify the data in the tables. However, users have no direct access to the tables.

By forcing users to go through packaged procedures and functions, you limit users to using a
defined interface that remains under your control. You now have some amount of freedom to modify the
underlying tables. So long as you do not change the package interface, you can make changes to the
underlying tables without disrupting the application.

4-17. Executing Stored Code Under Your Own Privilege Set

Problem

You have loaded all of an application’s objects into a single application schema. However, you do not
want packages, procedures, and functions to execute as the schema owner. Instead, you want stored
code to execute with the privileges and access of the user who is invoking that code.

Solution

Use invoker’s rights by providing the AUTHID property within the declaration of your program. If the
AUTHID property is specified when defining a package, procedure, or function, then you have the ability
to specify whether the program should be invoked using the CURRENT_USER privileges or the DEFINER
privileges. In the case of this solution, you would rather use the CURRENT_USER privileges to ensure that
the user does not have the same level of access as the schema owner. The default is DEFINER.

The following code shows how to create a procedure for changing a password, and it uses the AUTHID
property to ensure that the procedure will be run using the CURRENT_USER’s privilege set. This particular
procedure uses dynamic SQL to create a SQL statement. To learn more about using dynamic SQL, please
see Chapter 8.

CREATE OR REPLACE PROCEDURE change password(username IN VARCHAR2,

new_password IN VARCHAR2)
AUTHID CURRENT_USER IS

sql_stmt VARCHAR2(100);

BEGIN
sql stmt := 'ALTER USER ' || username || ' IDENTIFIED BY ' || new_password;

EXECUTE IMMEDIATE sql stmt;

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

END;

When the user executes this procedure, it will be executed using their own set of permissions. This
will prevent them from changing anyone else’s password unless they have the ability to do so under their
allotted permission set.

How It Works

Invoker’s rights are a great way to secure your application if you are planning to limit access to the
CURRENT_USER’s privilege set. To allow for invoker’s rights to be set into place, the AUTHID property must
be used with the CURRENT_USER keyword in the definition of a stored PL/SQL unit. This property affects
the name resolution and privilege set for that unit. You can find the value of the AUTHID property if you
take a look at the USER_PROCEDURES data dictionary view.

Using the invoker’s rights methodology is a great way to protect a program as long as the users
access the program with their own database account. If each user within the database has their own
account, then they can be granted the required level of access via database roles. The AUTHID property
can constrain the execution of code to the current user’s privilege set. Because of that, if a user does not
have the privileges that are required to execute a particular program, then they will not have access.
Simply put, invoker’s rights are a good means of securing your code as long as the approach is used
correctly.

4-18. Accepting Multiple Parameter Sets in One Function

Problem

You want to give a function the ability to accept multiple parameter types instead of being constrained
to a particular datatype or number of parameters. For example, you want to create a single function that
can accept either one or two parameters and that will perform a slightly different action depending upon
the number of parameters you pass it.

Solution

Use overloading to create multiple functions that are named the same and perform similar functionality
but accept a different number of parameters, different ordering of parameters, or parameters of different
types. In this recipe, you will see a function named squared that takes a number and returns its value
squared. Similarly, there is another function also named squared that accepts two numbers instead of
one. This second function is the overloaded version of the original squared. Here is the code for the two
functions:

-- Returns the square of the number passed in
CREATE OR REPLACE FUNCTION squared (in_num IN NUMBER)
RETURN NUMBER AS
BEGIN
RETURN in_num * in_num;
END;

-- Returns the squared sum of two numbers
CREATE OR REPLACE FUNCTION squared (in_num IN NUMBER,
in_num_two IN NUMBER)
RETURN NUMBER AS

www.it-ebooks.info

89

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

90

BEGIN
RETURN (in_num + in_num two) * (in_num + in_num_two);
END;

You can see that each of the previous functions accepts a different number of parameters, but they
both perform similar tasks. This is a good illustration for using function overloading because someone
using this function would expect a similar result to be returned whether calling the function with one
parameter or two.

How It Works

Like many other programming languages, PL/SQL offers an overloading of functions. This makes it
possible to name more than one function by the same name but give each of them different parameter
types, different parameter ordering, or a different number of parameters. This is also known as changing
the function signature. A signature for a function consists of the object name and its parameter list. By
overloading, you have the ability to allow more flexibility to those using the function. For instance, if you
place both of the squared functions into a package named MATH_API, then someone using this package
can simply call the function passing whatever they require and still receive a usable result without
actually knowing the implementation details.

Using overloading to create multiple functions or procedures by the same name can become
troublesome if overused. Be careful that your package is not littered with too many overloaded
procedures or functions because maintenance on such a code base can become a nightmare.
Overloading has its good use cases, but if it can be avoided by using technique that is easier to follow,
then it is a good idea to go the simpler route.

4-19. Listing the Functions, Procedures, and Packages in a Schema

Problem

Your team has defined a number of functions, procedures, and packages within a schema. You want to
generate a listing of all functions, procedures, and packages at the end of each day to evaluate
productivity.

Solution

Use the USER_OBJECTS table to return the program list and prefix packages, procedures, and functions for
the same program with the same first word to make them easier to find.

This first example will return a list of all procedure names that reside within the EMP schema and that
have a name that is prefixed with EMPTIME:

SELECT OBJECT_NAME

FROM USER_OBJECTS

WHERE OBJECT TYPE = 'PROCEDURE;
WHERE OBJECT_NAME like 'EMPTIME%';

The next query will return a list of all function names that reside within the schema:
SELECT OBJECT_NAME

FROM USER_OBJECTS
WHERE OBJECT TYPE = "FUNCTION';

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

Lastly, the following query will return a listing of all package names that reside within the schema:

SELECT OBJECT_NAME
FROM USER_OBJECTS
WHERE OBJECT _TYPE = 'PACKAGE';

How It Works

Oracle Database contains many views that contain data useful for application development. Using the
USER_OBJECTS table can be very handy when searching for objects within the database. By prefixing like
objects with the same first word, it can make searching for a particular selection of objects rather easy.

USER_OBJECTS provides the ability to find a certain object type by specifying the 0BJECT_TYPE within
the query. If no OBJECT_TYPE is specified, then all objects for the schema will be returned.

4-20. Viewing Source Code for Stored Programs

Problem

You want to retrieve the code for your stored functions, procedures, triggers, and packages.

Solution

Use the DBMS_METADATA package to assist you in fetching the information. In this case, you will use the
DBMS_METADATA.GET_DDL procedure to obtain the code for a stored function. In the following code, the
DBMS_METADATA package is used to return the DDL for the CALC_QUARTER_HOUR function:

SELECT DBMS_METADATA.GET DDL('FUNCTION','CALC_QUARTER HOUR') FROM DUAL;

The query illustrated previously should produce results that are similar to the following as long as
you have the CALC_QUARTER_HOUR function loaded in your database:

CREATE OR REPLACE FUNCTION "MY_SCHEMA"."CALC_QUARTER_HOUR" (HOURS IN NUMBER)
RETURN NUMBER AS
CALCULATED_HOURS NUMBER := 0;
BEGIN
IF HOURS > 1 THEN
IF MOD(HOURS, 1) <=.125 THEN
CALCULATED_HOURS := substr(to_char(HOURS),0,1);
ELSIF MOD(HOURS, 1) > .125 AND MOD(HOURS,1) <= .375 THEN
CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.25,1);
ELSIF MOD(HOURS, 1) > .375 AND MOD(HOURS,1) <= .625 THEN
CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.50,1);
ELSIF MOD(HOURS, 1) > .63 AND MOD(HOURS,1) <= .825 THEN
CALCULATED_HOURS := substr(to_char(HOURS),0,1) + MOD(.75,1);
ELSE
CALCULATED_HOURS := ROUND(HOURS,1);
END IF;
ELSE
IF HOURS > 0 AND HOURS <=.375 THEN

n v u

www.it-ebooks.info

91

http://www.it-ebooks.info/

CHAPTER 4 = FUNCTIONS, PACKAGES, AND PROCEDURES

92

CALCULATED_HOURS := .25;
ELSIF HOURS > .375 AND HOURS <= .625 THEN
CALCULATED_HOURS := .5;
ELSIF HOURS > .625 AND HOURS <= .825 THEN
CALCULATED_HOURS := .75;
ELSE
CALCULATED_HOURS := ROUND(HOURS,1);
END IF;
END IF;
RETURN CALCULATED HOURS;
END CALC_QUARTER_HOUR;

The GET_DDL function returns the code that can be used to re-create the procedure or function. This
can be a good way to debug code that you may not have authored and do not have on hand.

Note The GET_DDL function will not format the code. Rather, it will be returned as a single string of text. By
default, the buffer will not be large enough to display all of the DDL. You can change the buffer size by issuing the
SET LONG buffersize within SQL*Plus, substituting buffersize with a large integer value.

How It Works

You can use the DBMS_METADATA package to retrieve various pieces of information from the database. The
solution to this recipe demonstrated how to fetch the DDL for a function. There is an abundance of
information that can be obtained by using the DBMS_METADATA package, and GET_DDL barely scratches the
surface.

The GET_DDL function can return the code for each different type of object. To retrieve a the code for
an object using GET_DDL, use the following syntax:

SELECT DBMS_METADATA.GET DDL('object type', 'object name', 'schema') FROM DUAL;

The OBJECT_TYPE can be the name of any database object type, including TABLE. For the purposes of
PL/SQL code, the OBJECT_TYPE can be FUNCTION, PROCEDURE, PACKAGE, or TRIGGER. The SCHEMA parameter is
optional and does not have to be specified if the object resides within the caller’s schema.

Using DBMS_METADATA, you can obtain complete database object definitions from the database
dictionary via the retrieval subprograms. To learn more about the DBMS_METADATA package and obtain a
listing of available subprograms, please refer to the online Oracle documentation at
http://download.oracle.com/docs/cd/B28359 01/appdev.111/b28419/d_metada.htm#ARPLS640, which
goes into detail regarding each of the subprogram functionalities.

www.it-ebooks.info

http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28419/d_metada.htm#ARPLS640
http://www.it-ebooks.info/

CHAPTER 5

Triggers

Triggers play an important role in any database developer’s or database administrator’s career. They
provide the ability to execute code upon the occurrence of defined database, schema, or system events.
Triggers can be useful for enhancing applications by providing database capabilities when a table event
occurs, providing alerts on system event occurrences, and so much more. Triggers are an enormous
topic because they are very intricate constructs. However, even though triggers can open up a world of
possibilities, they are easy to use.

In this chapter, you will see recipes demonstrating the many different capabilities that triggers
provide to you. If you are interested in learning how to create code that executes upon a database table—
level event, then this is the chapter for you. If you want to learn how to create an intricate alerting system
that will send e-mail and create logs upon system events, then look at the recipes in this chapter.
Triggers are intricate building blocks that can provide an enormous benefit to our databases and
applications as a whole. By learning how to incorporate these recipes into your applications, you will be
able to solve many issues and enhance a number of your application features. Triggers can be one of the
most useful tools to add to a DBA or application developer’s arsenal.

5-1. Automatically Generating Column Values

Problem

You want to automatically generate certain column values for newly inserted rows. For example, one of
your tables includes a date field that you want to have populated with the current date when a record is
inserted.

Solution

Create a trigger that executes BEFORE INSERT on the table. The trigger will capture the system date and
populate this date field with it prior to inserting the row into the database. The following code
demonstrates how to create a trigger that provides this type of functionality for your application. In the
example, the EMPLOYEES table is going to have its HIRE_DATE populated with the current date when a
record is inserted into the EMPLOYEES table.

CREATE or REPLACE TRIGGER populate hire date
BEFORE INSERTe ON employees
FOR EACH ROW
DECLARE
BEGIN
:new.hire date := sysdate;
END;

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ™ TRIGGERS

94

A BEFORE INSERT trigger has access to data before it is inserted into the table. This example
demonstrates a useful technique for using this type of trigger.

How It Works

You can use triggers to execute code when a DML statement, DDL statement, or system event occurs.
This recipe demonstrates a trigger that executes when a DML event occurs. Specifically, the trigger that
was created for this recipe is fired BEFORE a row is inserted into the EMPLOYEES table. Any DDL event
trigger can be created to fire BEFORE or AFTER a row is inserted, updated, or deleted from a database table.
This flexibility allows a developer or DBA the luxury of executing code either before or directly after the
values are inserted into the database.

The syntax for creating a trigger that will execute before an insert on a particular table is as follows:

CREATE or REPLACE TRIGGER trigger name
BEFORE INSERT

ON table name

[FOR EACH ROW]
DECLARE

-- variable declarations
BEGIN

-- trigger code
EXCEPTION

WHEN ...

-- exception handling
END;

The CREATE OR REPLACE TRIGGER statement will do just what it says, either create the trigger in the
current schema if none is specified or replace it if another trigger by that name already exists. The trigger
name must be unique among other triggers within the same schema. Although it is possible to name a
trigger the same as an existing table, we do not recommend doing so. Different triggers by the same
name can coexist in the same database if they are in different schemas.

The BEFORE INSERT clause is what tells Oracle when the trigger should be executed before a row is
inserted into the table. The other option for insert triggers is AFTER INSERT, which causes the trigger to be
executed after a row is inserted into the table. You will learn more about AFTER INSERT triggers in
another recipe within this chapter. The optional FOR EACH ROW clause determines whether the trigger will
be executed once for each row that is affected or once when the statement is executed. Essentially this
clause determines whether it will become a row-level trigger or a statement level-trigger. The FOR EACH
ROW clause can have a significant impact on the outcome of an UPDATE trigger. You will learn more about
UPDATE triggers in the next recipe.

The code that follows the optional FOR EACH ROW clause is the DECLARE section. Much like that of a
procedure, this section of the trigger is used to declare any variables, types, or cursors that will be used
by the trigger body. The body of the trigger also resembles that of a procedure. The trigger body is a
standard code block that opens with the BEGIN keyword and ends with the END keyword. Any of the
keywords and constructs that can be used within other PL/SQL code blocks can also be used in triggers.

There are a couple of differences between the trigger and other code blocks in PL/SQL. First, a
trigger is limited to 32KB in size. This is a bit of a limitation; however, it does not prevent a trigger from
invoking other named code blocks. For example, you can write a trigger to invoke stored procedures and
functions that are much longer than 32KB in size.

Second, the INSERT trigger has access to data values prior to insertion in the database via the :NEW
qualifier. This qualifier is what provides the power to the trigger construct. Using the :NEW qualifier along
with a table column name allows you to access the value that is going to be placed into that column via

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ™ TRIGGERS

the INSERT statement that has just occurred. In the solution to is recipe, using :NEW.FIRST_NAME and
:NEW.LAST_NAME allows you to reference the values that are going to be inserted into the FIRST_NAME and
LAST_NAME columns before it occurs. This provides the ability to change the values or check the values for
error prior to insertion.

In the case of the solution to this recipe, the HIRE_DATE will always be made the same as the date in
which the record is inserted into the database. Even if the HIRE_DATE is set to some date in the past, this
trigger will automatically assign SYSDATE to it and override the original value. Now, this may not be very
practical example because the data entry clerk may not be inputting the data on the same day as the
hire, but it does provide an effective learning tool for this type of situation. If you wanted to modify the
trigger to be more realistic, then you could add an IF statement to check and see whether
:NEW.HIRE_DATE already had a value. If it does, then that value is inserted into the database, but if left
blank, then SYSDATE could be used. Such an example would be a more practical real-life solution.

5-2. Keeping Related Values in Sync

Problem

You want to keep related values in sync that happen to be stored in separate tables. For example, say you
are updating the salary level for a number of jobs within the JOBS table. However, in doing so, you will
need to update the salaries within the EMPLOYEES table for employees having those jobs. In short, if you
update the salary range for a job, then you want to automatically update salaries to ensure that they fall
within the new range.

Note When we use the term related in this problem description, we do not necessarily mean related in the
relational sense that one commonly thinks about. There is no referential integrity issue in our scenario. Rather, we
are instituting a business rule that says that employees automatically get salary bumps in response to changing
salary ranges. Not all businesses would choose to institute such a rule. In fact, we suspect most businesses would
not do such a thing.

Solution

Create an AFTER UPDATE trigger on the primary table. In our example, create such a trigger to be executed
after the JOBS table has been updated. This trigger will obtain the updated salary from the JOBS table and
modify the data within the EMPLOYEES table accordingly.

CREATE OR REPLACE TRIGGER job_salary update
AFTER UPDATE
ON jobs
FOR EACH ROW
DECLARE

CURSOR emp_cur IS

SELECT * FROM employees

WHERE job_id = :new.job_id

AND salary < :new.min_salary FOR UPDATE;

emp_rec emp_cur%ROWTYPE;

www.it-ebooks.info

95

http://www.it-ebooks.info/

CHAPTER 5 ™ TRIGGERS

96

BEGIN

FOR emp_rec IN emp_cur LOOP
UPDATE employees
SET salary = :new.min_salary
WHERE CURRENT OF emp_cur;
END LOOP;

END;

Since this example uses an AFTER UPDATE trigger, you have access to both the :NEW and :0LD data value
qualifiers. This can be very advantageous, as you’ll learn in the next section.

How It Works

The update trigger provides the same type of functionality as an INSERT trigger. The syntax for an update
trigger is almost identical to that of an insert trigger, other than the BEFORE UPDATE or AFTER UPDATE
clause. A BEFORE UPDATE trigger is executed prior to an update on a database table. On the contrary, the
AFTER UPDATE executes after an update has been made to a table.

The optional FOR EACH ROW clause can make a great deal of difference when issuing an update
trigger. If used, this clause tells Oracle to execute the trigger one time for every row that is updated. This
is quite useful for capturing or modifying data as it is being updated. If the FOR EACH ROW clause is
omitted, the trigger is executed one time either prior to or after the UPDATE has taken place. Without the
FOR EACH ROW clause, the trigger is not executed once for each row but rather one time only for each
UPDATE statement that is issued.

As mentioned previously in this recipe, update triggers have access to the :0LD and :NEW qualifiers.
The qualifiers allow the trigger to obtain the values of data that are being updated prior to (:0LD) and
after (:NEW) the update has been made. Generally, update triggers are most useful for obtaining and
modifying data values as the update is occurring. Update triggers, along with every other type of trigger,
should be used judiciously because too many triggers on a table can become problematic.

For example, the solution to this recipe demonstrates a trigger in which a salary change in the JOBS
table causes a trigger to execute. The trigger will be executed only if the JOBS table is updated. The cursor
that is declared will select all the records within the EMPLOYEES table that contain a SALARY that is lower
than the new MIN_SALARY for the corresponding JOB_ID. In the body of the trigger, the cursor result set is
iterated, and each record is updated so that the SALARY is adjusted to the new MIN_SALARY amount for that
job.

If that trigger contains another update statement that modifies values in the EMPLOYEES table, then
you must be sure that the EMPLOYEES table does not contain an update trigger that modifies values within
the JOBS table. Otherwise, a vicious cycle could occur in which one trigger is causing another trigger to
execute, which in turn causes the initial trigger to execute again, and so on. This may even cause an
ORA-xxxxx error if Oracle detects a recursive loop.

Update triggers can provide the best of both worlds because you have access to data values before
and after they have been updated.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ™ TRIGGERS

5-3. Responding to an Update of a Specific Table Column

Problem

You want to automatically update some particular values within a table based upon another update that
has been made on a specific column of another table. For instance, assume that management has
decided to change some positions around within your organization. A new manager is coming to one of
the current manager positions, so several employees will receive a new manager. You need to find a way
to update several employee records to change their manager from the old one to the new one.

Solution

Create an AFTER UPDATE trigger that will be executed only when the MANAGER_ID column is updated. The
following trigger uses a cursor to obtain the employees that are supervised by the old manager. The
trigger then determines whether the MANAGER_ID column has been updated, and if so, it loops through
each employee who has the old manager in their record, and it updates the MANAGER _ID column to reflect
the new manager’s ID.

CREATE OR REPLACE TRIGGER dept_mgr_update
AFTER UPDATE OF manager_id
ON departments
FOR EACH ROW
DECLARE
CURSOR emp_cur IS
SELECT *
FROM EMPLOYEES
WHERE manager_id = :old.manager_id
FOR UPDATE;
BEGIN

FOR emp_rec IN emp_cur LOOP
UPDATE employees
SET manager_id = :new.manager_id
WHERE CURRENT OF emp_cur;

END LOOP;

END;

This trigger will be executed only if the MANAGER_ID column of the DEPARTMENTS table is updated.
Triggers that have this ability provide for better database performance, because the trigger is not
executed each time the DEPARTMENTS table has been updated.

How It Works

Triggers can specify columns that must have their values updated in order to cause the trigger to
execute. This allows the developer to have finer-grained control over when the trigger executes. You can
take a few different strategies in order to cause a trigger to execute upon an update of a specified
column. As is demonstrated in the solution to this recipe, you can specify the column in the trigger
declaration. This is one of the easiest approaches to take, and it causes the trigger to execute only if that

www.it-ebooks.info

97

http://www.it-ebooks.info/

CHAPTER 5 ™ TRIGGERS

98

specified column is updated. Alternatively, you can use a conditional predicate in the trigger body to
determine whether the row you had specified in the declaration is indeed being updated. A conditional
predicate can be used along with a specified column name to determine whether a specified action is
being performed on the named column. You can use three conditional predicates, INSERTING, UPDATING,
and DELETING. Therefore, a conditional predicate such as the following can be used to determine whether
a specified column is being updated by the current statement:

IF UPDATING ('my_column') THEN
-- Some statements
END IF;

Using a conditional predicate ensures that the code in the THEN clause is executed only if a specified
action is occurring against the named column. These predicates can also be used along with other
conditions to have finer-grained control over your statements. For instance, if you want to ensure that a
column was being updated and also that the current date does not match some end date, then you can
combine those two conditions with an AND boolean operator. The following code demonstrates this type
of conditional statement:

IF UPDATING ('my_column') AND end_date > SYSDATE THEN
-- Some statements
END IF;

If you prefer to use the technique demonstrated in the solution to this recipe, then you can still
check to ensure that the specified column is being updated by using the IF UPDATING predicate without
the column name specified. This technique would look like the following statement:

IF UPDATING THEN
--some statements
END IF;

As mentioned in the solution to this recipe, specifying a specific column can help decrease the
amount of times that the trigger is fired because it is executed only when the specified column has been
updated. Another advantage to using this level of constraint within your triggers is that you can add
more triggers to the table if needed. For instance, if you needed to create another trigger to fire AFTER
UPDATE on another column on the same table, then it would be possible to do so with less chance of a
conflict. On the contrary, if you were using a simple AFTER UPDATE trigger, then chances of a conflict are
more likely to occur.

5-4. Making a View Updatable

Problem

You are working with a database view, and it needs to be updated. However, the view is not a simple
view and is therefore read-only. If you tried to update a column value on the view, then you would
receive an error.

Solution

Use an INSTEAD OF trigger to specify the result of an update against the view, thus making the view
updatable. For example, let’s begin