

Oracle 11g Streams
Implementer's Guide

Design, implement, and maintain a distributed
environment with Oracle Streams

Ann L. R. McKinnell

Eric Yen

 BIRMINGHAM - MUMBAI

Oracle 11g Streams Implementer's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2010

Production Reference: 1130110

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847199-70-6

www.packtpub.com

Cover Image by Ann L.R. McKinnell (ann.mckinnell@apgtech.com)

Credits

Authors
Ann L. R. McKinnell

Eric Yen

Reviewer
Shekar Kadur

Lavanya Kompella

Acquisition Editor
James Lumsden

Development Editor
Dilip Venkatesh

Technical Editors
Neha Damle

Arani Roy

Copy Editor
Sanchari Mukherjee

Indexer
Rekha Nair

Production Editorial Manager
Abhijeet Deobhakta

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Poorvi Nair

Proofreader
Andie Scothern

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

Graphics
Nilesh R. Mohite

Geetanjali Sawant

About the Authors

Ann L.R. McKinnell, a Colorado native, has been an OCP since Oracle 7.3.4.
She has more than 16 years of IT experience; with over 8 years as a senior technical
member of Oracle Global Support, specializing in Replication and Distributed system
technologies. She was a recognized global technical expert for Oracle replication;
earning the internal nickname "Replication Goddess". Ann has trained Oracle
Support and Consulting personnel from many countries in Advanced Replication
and Distributed System Internals and problem solving techniques. Ann has authored
and co-authored many of the Oracle Advanced Replication notes found on Oracle
Metalink, and was a technical reviewer for the Oracle University Pilot 9i Streams
course material, as well as various Oracle Replication and Database Administration
user manuals. Ann continues to specialize in practical implementation strategies and
the development of distributed Oracle database systems, database architecture, and
software and database design and integration, and is currently a Senior Principal
Consultant with APG Technologies, LLC.

As we go through life, our paths are often greatly influenced by
even the slightest of touches from others. Whether knowingly or not,
near or far, well-known or acquaintances, you have all produced far
reaching ripples in my life's stream.

Mike Pomphrey, for giving me my break into the IT business and
introducing me to Oracle (not to mention providing tongue-in-
cheek bragging rights that Lockheed-Martin waited at the door after
hours for me!). Little did I know of the journey of opportunity that
began that day at the Job Fair so long ago. Thank you, not only for
recognizing a diamond in the rough, but for your friendship and
support over these many years. Though we don't see each other
often, I have come to believe that when our paths cross, it is God's
way of telling me that great opportunities are right around
the corner.

Andy Taylor, my greatest professional supporter. Friend, you
never wavered in helping me attain what I myself never thought
attainable. Your own talents and abilities have inspired me to reach
far beyond my comfort zone and broaden my horizons. Whenever
you saw the opportunity, you not only showed me the door,
but opened it and pulled me through. Also, to Chip Brown, for so
often handing Andy the "keys" to open those doors and "do it". It
is these doors of opportunity that have led me here.

To my Replication mentors: Rhonda, David, and Janet.

Rhonda Cordonnier (the original Replication Goddess of Oracle
Support). For taking advantage of my technical naivety so many
years ago and convincing me that I DID want to learn Replication.
David Russell "…of the UK" for inviting me to join the Replication
PA team at Oracle and mentoring me in the best practices of
technical writing for all those Metalink notes. Janet Stern, though
it has been many years, the document and beta review invitations,
and phone mentoring marathons are still fresh in my mind (it's been
almost a decade since you sat on the phone with me for 5 hours
explaining heterogeneous gateways, while 7 months pregnant and
no break—I am STILL in awe!). Perhaps without even knowing it,
you were my most instrumental technical mentor.

To the illustrious Mr. Yen for calling me up and asking "Have you
ever thought of writing a book?" Wow! What a ride! Thank you for
all your help and support, I never would have done this if it weren't
for you. Can't wait for the next adventure!

To Rodger, and Tony of APG Technologies for your "Johnny on
the spot" IT support and helping us with the test bed. Also to Eric
Amberge, for giving us the thumbs-up to pursue this opportunity
to push our personal boundaries and expand our horizons.

To the Oracle 11gR2 beta team for allowing us the opportunity to
"play" with the latest and greatest incarnation. Thank you for your
support and assistance.

To our publishing team at Packt Publishing for making this all
possible. Also, to our editors and reviewers for all their hard work
and dedication in bringing this book to intelligible print. Your
support, patience, expertise, and assistance have been invaluable.
And to Lavanya, for stepping in at the eleventh hour to help us
with the final reviews.

To my friends and family who have been so supportive and
understanding throughout the writing of this book. Thank you for
not forgetting that I exist, and pulling me out of my "cave" every
so often to remind me that the sun still shines in the sky and in the
hearts of those close to me. To Renee, Patrick, and the helpful and
handsome, blue-eyed cowboy (whose name is unknown) at the dude
ranch at the end of the white fence; for helping me find my way
back to one of my favorite places on earth to take the cover picture.
And to God for giving me that incredible place all to myself that
beautiful day.

To my parents, for life; and the brains, encouragement, and sense
of humor to live it. I hope your life's choices have brought you the
happiness and peace you sought with them, as mine have me.

To Rachel and Jacob, the greatest gifts and loves of my life. For
the unwavering support, encouragement, and unconditional love.
My strength and my joy. It is because of you that I am who I have
become. You ARE the best of me.

Most of all, to Him and His; through whom all things are possible.
For bringing each and every one of you into my life to help me come
to this point.

Eric Yen began working with Oracle Databases at the time of version 7.3.4. Over
the next 14 years, he obtained his Oracle DBA Certification starting with version
8 and maintaining it up to the current release and also earned the (ISC)2 CISSP
certification. He began working with Oracle Streams with Oracle 9i Streams beta.
As a Senior Principal Consultant with APG Technologies, LLC, Eric's work includes
designing and implementing Streams solutions for Government clients using the
more recent versions of Streams in Oracle 10 and Oracle 11. In his little spare time,
you can find Eric exercising and tinkering around with Oracle products.

On occasion I have moments where I wonder "How did I get here?"
Well, as we finish this book, now is the time to pause and reflect. I
would like to thank the Professor who first taught me about Oracle,
"Professor Hutch". "Professor Hutch" always challenged the students
with the statement "go ahead and try that, see if it works", never
giving us the easy way out and forcing us to learn through our
actual experiences. To the friends and managers that were part of the
Oracle SCHOLAR program where good memories were made being
in the crucible. The Oracle SCHOLAR program was an unforgettable
experience, for it set the foundations for what I am now with regards
to Oracle.

Thanks to the "Replication Goddess" for saying "sure that sounds
exciting" when I asked her to co-author this book. Ann, it's been
one interesting and exciting journey and I could not have done it
without you.

To the members of APG Technology, it's a pleasure to work with all
of you. This is the best group of talent and personalities I have ever
seen. To Mike Janeway and Eric Amberge, things have definitely
changed since the meeting at the Proud Bird. Thanks to both of you
for bringing me on board and providing support.

To the team at Packt Publishing, thanks for providing this platform
for us. I never knew the amount of behind-the-scenes work and
editing done to get a book published. This team rocks!

To Yvonne Yu for being part of my life in a way only you can be.

To B and Turtle, thanks for adding perspective outside of my work.
Turtle thanks for more than you could ever know.

To my parents, thanks for always doing your best for my sister and I,
even when I was not doing my best.

To Richard Rose, Connie Yen-Rose, Carlie Rose and Emma Rose love
you all.

About the Reviewers

Shekar Kadur has over 23 years of experience in Information Systems specifically
designing, developing, and managing complete system development lifecycle of
projects involving Databases, Data warehousing, Business Intelligence, OLAP, SAP,
and Enterprise Management Reporting applications in the automotive, finance,
utility, retail, and healthcare industries.

He is a certified PMP (Project Management Professional), a certified Hyperion
instructor and a consultant proficient with all Oracle and Hyperion toolsets (Essbase,
Planning, and so on). He is extremely proficient in project/program management of
applications using Oracle, Hyperion, SAP, SAPBW, Business Objects, and web-based
technologies. He has consulted, deployed, and managed IT projects at Ford Motor
Company, Ford Motor Credit Corporation (Ford Credit), General Motors, Daimler
Chrysler Financial Corporation, Daimler Chrysler, Consumers Energy, Guardian
Industries, Oakwood Health Systems, General Dynamics, Management Technologies
Inc, TRW, Constellation Brands Inc, Johnson Controls Inc, Deloitte Consulting, and
Capgemini Inc.

He has delivered lectures on Data warehousing, Datamarts, Oracle, and Hyperion
toolset in Michigan, USA and London, UK.

He has also been a technical reviewer of the Oracle Essbase 9 Implementation Guide
book published by Packt in 2009.

Lavanya Kompella is an experienced Oracle DBA who started her Oracle career
on V6. Her areas of expertise include Advanced Replication, Streams, and AQ. She is
an Oracle Certified DBA (OCP) from V7 through to V11.

Her previous employers include Tata Consultancy Services and Oracle USA. She is
currently part of the DBA team of WELLSFARGO in India.

I would like to thank my wonderful husband Chandra, who always
wanted nothing but the best for me. Without his encouragement and
cooperation I wouldn't be where I am today.

Table of Contents
Preface	 1
Chapter 1: All the Pieces: The Parts of an Oracle 11g
Streams Environment	 11

Streams architecture overview 	 12
Topology configurations	 12

Single source 	 13
Multiple source	 15

Simultaneous versus Synchronous replication	 19
Oracle's Streams replication process flow 	 19
Streams components 	 20

About those Queues	 21
Capture process—what are we supposed to stream?	 22

Downstream Capture	 26
Synchronous Capture	 27

Instantiation	 28
What sets the instantiation SCN and when?	 30

Propagate process	 32
The Network: COMLINK	 34
Propagation success/failure	 35
Propagation Stream Split and Merge	 35

Apply process	 36
Trigger firing and Apply	 37

Combined Capture and Apply	 39
SCN Coordination—keeps it flowing smoothly	 41

The SCNs of Capture	 42
FIRST_SCN	 42
START_SCN	 43
REQUIRED_CHECKPOINT_SCN	 43

Table of Contents

[ii]

CAPTURED_SCN 	 44
APPLIED_SCN	 44
MAXIMUM_SCN	 44
LAST_ENQUEUED_SCN	 44
SOURCE_RESETLOGS_SCN	 44
MAX_CHECKPOINT_SCN	 45

The SCNs of Propagation	 45
The SCNs of Apply	 45

IGNORE_SCN	 45
MAXIMUM_SCN 	 45
OLDEST_SCN_NUM	 46
Low-watermark SCN	 46

SCN SYNC-hronization	 46
Capture checkpointing	 47
Archive Log availability	 48

LCRs—what they are and how they work	 48
Extracting data from an LCR	 50
Conflict detection and the LCR	 50

Controlling conflict detection	 51
Types of LCRs and how they get created	 52

Oracle 11g memory and storage architecture (basic)
relating to Streams	 52
A word on performance 	 53
Streams Change tables	 54
Oracle GoldenGate XSTREAMS	 56
Summary	 58

Chapter 2: Plot Your Course: Design Considerations	 59
Why?	 60
What?	 60
Where?	 61
Who and How?	 62
When and How?	 64
Other factors to consider	 65

Network capabilities	 65
Transaction sizes	 66
Potential queue growth	 66
Additional hardware resource requirements	 66
Administration and maintenance costs	 67
Third party application requirements	 68
Security	 68
Change auditing	 69
Platform and version compatibility	 69

Table of Contents

[iii]

KISS	 69
Design aid: Streams site matrix	 71

The Matrix template	 72
Summary	 79

Chapter 3: Prepare the Rafts and Secure Your Gear:
The pre-work before configuring Oracle 11g Streams	 81

Network connectivity	 82
Check the waterways	 82
Configure the Oracle Net "Current"	 85

Configure the database	 87
Initialization parameters	 87
Logging features	 90

Archive logging	 90
Supplemental logging	 90
Forced logging	 91

Separate tablespaces	 92
LogMiner tablespace	 92
Streams Administration tablespace	 92

Streams users and privileges	 93
Trusted Streams Administrator user configuration	 93
Untrusted Streams capture, propagation, and apply user configuration	 94

Streams Administration user	 94
Capture user	 95
Propagation user	 96
Apply user	 96
Database links	 97

Trusted versus untrusted configurations	 98
Understanding your Instantiation tools	 98

Using Data Pump to Instantiate	 98
Setting Instantiation SCN manually	 99

Oracle Demo Schemas	 102
Summary	 103

Chapter 4: Single-Source Configuration	 105
The stream flows one way: Downhill	 105

The Enterprise Manager	 106
Setup options	 108
Schedule Streams setup job	 120
Verify	 121

The code behind the curtain	 125
Checking the waters	 126
Diving in	 127
The proof is in the pudding (or propagation in this case)	 144

Table of Contents

[iv]

Sequences and triggers and Apply	 146
Other levels at which to replicate	 147

The beauty of DBMS_STREAMS_ADM.MAINTAIN_*	 150
Summary	 151

Chapter 5: N-Way Replication	 153
Pre-planning for N-way replication 	 154
Avoiding conflict	 155
The setup	 156

Preliminary setup	 157
Streaming STRM1 to STRM2	 159
Streaming STRM2 to STRM1	 164

Conflict resolution	 168
Extending the example	 171
Rinse and repeat	 171
Summary	 172

Chapter 6: Get Fancy with Streams Advanced Configurations	 173
Synchronous Capture—straight to the Queue	 174
Subsetting—the micro side of replication	 177
Tag!—you're it	 184

The default behaviour of tags	 185
Making tags work for you	 185

Setting the tag value	 186
Evaluating tags at the replication process rule level	 187
Tag usage	 189

RULES—they're what we live by	 201
Rule components	 202

Rule conditions	 202
Rule evaluation context	 202
Action context	 204

Creating your own rules 	 205
Rule creation	 205
Rule Sets 	 206
Event context	 207
How it all comes together	 208

Rule based transformation—eat your heart out transformers!	 209
Declarative versus User Created	 209
How the transformation is processed	 216
Transformation errors	 217

Things to remember when working with Rules	 218
Downstream Capture—avoid white water at the source	 218

Setting up the redo log transport	 222
Configuring the Streams part of DSC	 224

Table of Contents

[�]

Streams change tables—just tracking the "Facts" Ma'am	 227
Automatic propagation split and merge—redirecting the current	 230
Basic Heterogeneous Configuration	 234

Configuring a Heterogeneous Apply process	 236
Data Transfer via Queue Messaging	 239

Basic XSTREAMS Configuration	 239
XSTREAMS Servers	 240

Configuring the Database	 240
Configuring XSTREAMS Out	 241
Configuring XSTREAMS In	 245

Summary	 246
Chapter 7: Document What You Have and How It Is Working	 249

Mapping the Stream	 249
The Stream without a map	 250
DBMS_STREAMS_ADVISOR_ADM	 251

Making the map	 253
Basic Streams views	 255
UTL_SPADV	 256

Automating the collection of Streams performance data	 258
Summary	 261

Chapter 8: Dealing with the Ever Constant Tides of Change 	 263
Affecting expected change effectively	 264

Changing States: Starting and stopping processes	 264
Database changes	 265

Structure changes to existing objects	 265
Data changes—beware the bulk load!	 266

Expanding your Streamed environment	 266
Example: Adding a Master Site	 267
Example: Adding a table to a replicated schema	 274

Shrinking the Streamed environment 	 276
Removing table, scheme, and tablespace level replication from Streams	 276
Removing a site from a Streamed environment	 276

Troubleshooting unexpected changes and resulting Streams errors	 277
Failure Points and Most Likely Causes (a.k.a. FPs and MLCs)	 277

Failure Point 1: DML/DDL statement commit logging 	 278
Failure Point 2: LogMiner	 278
Failure Point 3: Capture process and rules	 280
Failure Point 4: Capture enqueue	 283
Failure Point 5: Propagation dequeue from Capture queue	 284
Failure Point 6: Propagation Rules	 285
Failure Point 7: Database link configuration	 286
Failure Point 8: Network connectivity and stability	 286

Table of Contents

[vi]

Failure Point 9: Propagation enqueue to the Apply queue	 287
Failure Point 10: Apply dequeue	 288
Failure Point 11: Apply Rules	 289
Failure Point 12: Conflict detection and resolution rules	 290
Failure Point 13: Apply Errors	 291

Troubleshooting tools	 292
Enterprise Manager: Streams management	 293
Command line packages and scripts	 298
Compare and Converge divergent data.	 299

Summary	 318
Chapter 9: Appendix and Glossary	 319

Oracle Streams Commander	 319
Streams and Oracle RAC	 320
Oracle GoldenGate	 323
Glossary	 323
Summary	 324

Index	 325

Preface
This Preface and the entire book are a little bit different—and that is by design. Both
authors wrote this book understanding that our target audience often does not have
time to read a whole book, or the Oracle documentation, from cover to cover. As
such, we wrote this book with the idea that the table of contents and headings should
tell you exactly what is being covered. Bullet lists will be used to quickly highlight
key points where appropriate. Where concepts need to be explained in more detail,
a supporting narrative is supplied. Another difference is that we make multiple
references to Oracle documentation rather than attempting to rewrite everything.
This is also by design. Having seen Oracle documentation evolve over the years, both
authors, and our publisher, recognize the intrinsic value of getting specific detailed
information straight from the "horse's mouth". To promote the development of overall
expertise, we focus on helping our readers effectively use all the tools available.
The Oracle documentation is one of your most valuable tools. At times, Oracle
documentation can be difficult to follow or find information within, but once you
develop an expertise in using the documentation, the expertise in the functionality is
not far behind. The focus of this book is not to replace the Oracle documentation, but
rather to be a quick reference companion to the Oracle documentation.

Replication in general
The concept of replication is simply to duplicate. Birds do it, bees do it, and even
cells do it. However, replication is not limited to the biological world. Accurately
duplicating data from which information is derived is the foundation of human
communication. Whether that data be the words or gestures used to convey a story
that is handed down from generation to generation, or the numbers used to quantify
the quantifiable, or the grouping of on/off bits stored in a computer file; humans
have been replicating data since they discovered the need to communicate.

Preface

[�]

Now that we have evolved into the wonderful age of computerized technology, we
recognize the limitless advantages of sharing data, and the need to accurately and
efficiently duplicate and distribute that data.

Distributed database systems
We all know that a database is a collection of data objects that are typically accessed
through a client/server architecture, and where the database is the server.

We also know that client/server architecture uses a network communication
channel that allows the client to send or get data to/from the database. The client
can be local (on the same computer as the database), or it can be remote (on a
different computer than the database). Either way, the client uses some type of
network connection to access the database.

The sharing of data between two or more databases constitutes a distributed
database system (even if the databases reside on the same computer). Distributed
database systems can be homogeneous (all on the same platform, such as Oracle)
or heterogeneous (two or more platforms, such as Oracle, MS SQL Server, SYBASE,
and so on.) These systems can utilize a number of data distribution methods
(unidirectional, bidirectional, read-only, synchronous, and asynchronous). The
glue that holds this all together is the network and database links between the
various databases.

A database link is a one-way communication channel from one database (source) to
another database (target) that allows the source database to access the objects in the
target database.

Key terms that have been discussed and should be understood here are: database
link, communication channel, and network connections. These all work to provide
connectivity in a distributed system. It is very important to understand that network
connectivity makes or breaks a distributed system. No network connection means no
data distribution. An unstable network means unstable data distribution.

Now that you have a distributed database system, add client applications that access
one or more databases in that distributed database system, and voila! You have a
full-blown distributed system.

What is Data Replication?
Data Replication is literally the act of accomplishing data object changes throughout
a distributed system. Period. Replication can be manual, or it can be automated.
Automated is the preferred mode of 3 out of 4 DBA's surveyed (we do not really
count the 4th, he's semi-retired and has nothing better to do).

Preface

[�]

How do "Replication" and "Distributed
Systems" interact?
Replication makes data located in different databases available to all databases
within the distributed system. So replication is the method behind a distributed
system. It moves the data around to different sites.

Databases within a distributed system are often referred to as sites.
As mentioned earlier, databases can be physically co-located on the
same computer, but the databases themselves could still be referred to
as separate sites. The term 'site' is more of a logical distinction, than a
physical distinction.

Why would we want to replicate?
There are a number of reasons to replicate data, but it is a good bet that they all boil
down to increased availability. This means that the same data is available at different
sites, and the flow of data between those sites is automated. Replication supports
increased availability by providing the following:

•	 Change consistency: Ensures that all sites get the same change.
•	 Mass deployment/disconnected computing: Data can be sent to

secondary computers (laptops, desktops) so that it is available when
these devices might be offline.

•	 Faster access: Load balancing is the art of distributing client connections
over multiple databases. This comes in really handy when the system has a
large number of users, and even more so if those users are geographically
separated from the system databases. The user just connects the
geographically closest database. Network load can also be reduced by
directing traffic over different routers for different database sites.

•	 Survivability: Data is still accessible if one site fails.

When not to use replication for survivability purposes
If the need is to only support survivability and data changes made
at a single site, there are better tools to use to support survivability
that require a little less configuration, maintenance, and monitoring.
For example: Data Guard!

Preface

[�]

Replication architecture
Replication architecture refers to the overall structure of the replicated environment.
This ��� includes what is replicated�� between the sites and ��������������������������� the role of���������������� each site. The
following terms are used to make these distinctions:

Master table/object: A table or object that is replicated to another database. A
replicated table can be a master table for a snapshot/materialized view, or a table
that is duplicated at a remote site. For tables, both the structure and the data are
replicated. For non-table objects, the object definition is replicated.

Master/Source site: A database which hosts master tables/objects. The tables can
be a master table for a snapshot/materialized view, or a table that is replicated to
a remote master site.

Secondary/Target site: A database which hosts replicated objects to which changes
are sent by a master site. This can be another master site, or a materialized view site.
The expectation of a secondary site is that if a data conflict occurs when attempting
to apply the change from the sending master site, the conflicting secondary site data
is always replaced by the values from the sending master site.

Replication methods
A replication method describes how data is replicated between sites. This can be
broken down into commit synchronization and directional flows.

Commit synchronization flow refers to when changes are committed at and
between sites. There are two methods of commit synchronization; synchronous
and asynchronous.

Synchronous replication requires that all sites be able to commit the change before
it is committed at the originating site. If any site is not able to commit the change,
the change is rolled back at all sites, including the originating site. This requires all
database sites in the distributed system to be writable over network connections.
The nature of synchronous replication keeps the data at all sites synchronized, thus
(at least theoretically), eliminating the need for conflict resolution. Synchronous is
used for real-time, mission-critical replication.

Asynchronous replication allows the transaction to be committed at the originating
site regardless of whether it is successfully committed at the other target sites in the
distributed system. In this method, if the commit is successful at the originating site,
appropriate deferred transactions for each target site are created and stored to be
propagated and applied at a later time (keep in mind "a later time" can be as little as a
few seconds). This allows work to continue at the originating site even if the changes

Preface

[�]

cannot be applied to the other sites within the distributed system immediately. This
does, however, open up the possibility of data divergence, and requires some form of
conflict resolution (manual or automated) to be implemented should divergence occur.

Replication from one site to another can only be synchronous or asynchronous. It
cannot be both (in other words, it is mutually exclusive).

Directional flow refers to the direction in which changes are passed between
two sites.

Unidirectional means that data changes only flow one way. In this case, changes
are made at a primary master and are sent to a secondary site. Direct changes made
at secondary sites are either not allowed, or not sent to the primary master site. If
changes are made at a secondary site that causes data divergence from the primary
master database, subsequent changes from the primary master will either fail due to
the data differences, or overwrite that change if conflict resolution mechanisms are in
place. Read-only snapshots are an example of unidirectional replication.

Bidirectional (N-Way) replication means that data changes can flow to and from
sites within a distributed system. Changes can be made at any master or updateable
snapshot site. These changes are then propagated to all other sites. If the bidirectional
replication is asynchronous it can lead to data divergence, and requires some
form of conflict resolution (manual or automated) to be implemented, should
divergence occur. Master-to-Master and Updateable Snapshots are examples
of bidirectional replication.

Replication of an object between two sites can only be unidirectional or bidirectional.
It cannot be both (again, mutually exclusive).

A commit synchronization method can be applied to either directional flow method,
and vice versa.

Replication configurations
Now that you understand replication architecture and methods, these can be
combined to create a replication configuration. A replication configuration can
also be referred to as a replication environment. The following define the different
replication configurations that you can implement:

N-Way/Master-to-Master/Multi-Source: A distributed environment that has two or
more change source sites. These source sites push changes to other change source
sites and receive changes from other change source sites.

Preface

[�]

Uni-directional/Master-to-Secondary/Single-Source: A distributed environment
where one site is the (change) source site (primary/master). It, in turn, pushes
changes to other sites (secondary). If data changes directly at a secondary site,
this could result in data divergence and must be addressed through conflict
resolution methods.

Hybrid: A distributed environment that has a combination of multi and single
source configurations.

Oracle Streams
As you can see, there are many components and methods that can be used to
implement replication. Where do you start? What do you use, what don't you
use, and when? And most importantly, how does Streams help?

The concept of Streams grew from pairing the distributed theory of Oracle's
Advanced Replication with the redo change capture technology of Oracle's
LogMiner. Rather than using triggers to capture database changes (as is done with
Oracle's Advanced Replication), Streams uses LogMiner to capture the committed
changes from the database on-line redo/archive logs. This allows for a more
flexible replication architecture (like data capture, propagation, and apply rules that
support site-to-site pass-through propagation and data transformations). However,
by the nature of redo change capture, Streams replication is always, technically,
asynchronous. The data change is committed at the source regardless if it can be
committed at the destination. If you require a truly synchronous environment, you
will want to explore Oracle Advanced Replication rather than Oracle Streams.

What this book is (and is NOT)
This book is intended to be a quick reference guide to Oracle 11g Streams. Along
those lines we are going to quickly go over the basics and have you up and running
with a simple Oracle 11g Streams environment in the first sections of this book.
This is because we believe that hands-on is the only true and meaningful way of
developing an expertise with a technology. Then we will evolve the simple Streams
environment to cover areas of concern related to more advanced configurations
and the administration of an Oracle 11g Streams configuration in a production
environment. The authors do make an attempt to direct the reader to specific
Oracle documentation, should the reader desire additional detailed information.

You should also be aware that this book is meant to be read chapter to chapter for
the first three chapters. This provides you with the foundation that is needed for
later chapters. If you have a background with Oracle Streams, consider jumping
to specific configuration chapters (Chapter 4 through to Chapter 6).

Preface

[�]

Here is the high level layout of the chapters.

•	 Chapter 1: All the pieces: The parts of an Oracle 11g Streams Environment
examines the different components of Oracle Streams and how they
work together.

•	 Chapter 2: Plot Your Course: Design Considerations provides the reader
with guidelines on what details to consider when designing a Streamed
environment, as well as a design aid to help you to organize your
environment requirements.

•	 Chapter 3: Prepare the Rafts and Secure Your Gear: The pre-work before
configuring Oracle 11g Streams begins the implementation process by
successfully configuring both Source and Target databases
to support Streams Capture, Propagation, and Apply processes.

•	 Chapter 4: Single-Source Configuration looks at configuring single source
streams replication using Enterprise Manager DB Console and review the
PL/SQL API calls being issued behind the scenes.

•	 Chapter 5: N-Way Replication takes the concepts for setting up a
single-source configuration and applies it to a multi-master, or
N-Way Replication environment configuration.

•	 Chapter 6: Get Fancy with Streams Advanced Configurations covers the
popular advanced features of Oracle Streams including Subsetting, Tags,
Rules, Rule-based transformations, and 11gR2 new features such as
Change tables, and XSTREAMS.

•	 Chapter 7: Document What You Have and How It Is Working addresses
issues and concerns associated with losing a key member of a team
responsible for a Streamed (or any) environment by creating and
maintaining proper documentation.

•	 Chapter 8: Dealing with the Ever Constant Tides of Change consists of to
sections. The first section of this chapter looks at the impacts of, and
dealing with, expectedly changing your existing Streamed environment
and what you can do to minimize the impact. The second section
addresses troubleshooting techniques and what to look for when things
"stop working" due to any unexpected changes.

•	 Chapter 9: Appendix and Glossary is the catch-all chapter dealing with
subjects that did not quite fit into the previous chapters. It covers subjects
that the authors wanted to mention but did not have the time/resources
to fully develop into a standalone chapter.

Preface

[�]

Who this book is for
This book is not for the novice Oracle DBA. In order to gain the most out of this
book, you should have a good background as a working Oracle DBA and have a
good familiarity with the Oracle Streams Components mentioned in Chapter 1.
However, Chapters 1 and 2 may prove helpful to the novice in gaining a high-level
understanding of Streams architecture and components, and design considerations.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => '"STREAMS_CAPTURE_QT"',
 queue_name => '"STREAMS_CAPTURE_Q"',
 queue_user => '"STRM_ADMIN"');
END;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => '"STREAMS_CAPTURE_QT"',
 queue_name => '"STREAMS_CAPTURE_Q"',
 queue_user => '"STRM_ADMIN"');
END;

Any command-line input or output is written as follows:

ALTER TABLE <table_name> ADD SUPPLEMENTAL LOG GOUP <log_group_name>
(col1, col2) ALWAYS;

Preface

[�]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/9706_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Preface

[10]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

So, grab your waterwings and let's jump into Streams...

All the Pieces: The Parts
of an Oracle 11g Streams

Environment
Oracle Streams provides a flexible data-distribution architecture, founded on
Advanced Queuing. This architecture allows users to not only distribute data and
changes between Oracle databases, but also non-Oracle databases. The architecture
supports flexibility far beyond that of Oracle's Advanced Replication allowing users
to direct, manipulate, and transform data changes as they flow through the
distributed environment.

In the Preface of this book, we have discussed the concepts of replication and
distributed systems and why they are used. Often, Streams is used to replicate data
between different business units. One example of this is using Streams to replicate
data from local offices to headquarters, or vice versa, allowing the local creation of
reports at the destination or target database.

Streams is built into the database and is part of Oracle Enterprise Edition. As such,
Streams has tighter integration to the database than any other third party product.
Streams can be configured between single instance databases or used with Oracle
Real Application Cluster.

This chapter provides a high-level review of:

Streams architecture overview
Capture process
Instantiation
Propagation process
Apply process

•
•
•
•
•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[12]

SCN co-ordination
Logical Change Records (LCRs)
Memory and storage architecture
Data (DML) Change Auditing via Streams Change_Tables
A brief word on XSTREAMS

The information presented in this chapter provides a quick overview of Oracle
Streams components. Each component is introduced and some detail is provided.
In subsequent chapters, we review Streams design considerations and database
configuration, then move on to setting up our first Oracle Streams environment.
For more detailed information on these components, please refer to the Oracle 11g
Streams Concepts and Administration Guide. Throughout the chapter, we also provide
references to other Oracle documentation that is beneficial in gaining a detailed
understanding of the component discussed.

Streams architecture overview
Let's take a moment to briefly run through the replication topologies and process
flow, and identify the Oracle functional components that are used by Streams.

Topology configurations
Distributed topology configurations are as limited as rocks in a river. However,
many are not conducive to an efficient and maintainable system. The number
one consideration when choosing a distributed topology is data ownership and
conflict resolution requirements as discussed in Chapter 2, Plot Your Course: Design
Considerations. To keep your Streams from becoming wild, untamed rivers, and
drowning the DBA's, keep master sites to a minimum, if at all possible, and data
flows in a tightly controlled and synchronized manner. Oracle recommends no more
than four masters involved in full-on all-site N-way replication, and the authors
second that recommendation with gusto.

In the Preface, we briefly described single-source, multiple-source, hybrid, and
heterogeneous configurations.

The following images provide a synopsis of succinct, controlled single-source and
multiple-source configuration examples. Of course these are not the only viable
configurations, but they will help you to start developing a feel of how to control
your Streams.

Keep in mind that the relationship between source and target (secondary) databases
assumes they share the same data at some level. Two databases that handle totally
different data would not be considered a source or secondary site to each other.

•
•
•
•
•

Chapter 1

[13]

Single source
In a single-source configuration there is only one database that is the source
of data changes that are being Streamed to other database site(s). At the other
site(s)/target(s), the data can be applied and/or forwarded to another database. If
data changes are forwarded from a destination database, the configuration is called a
directed network. There are two types of directed network forwarding configurations;
Queue forwarding and Apply forwarding. Queue forwarding involves propagating
the change to a target database site but not applying the change at the database.
Rather, the destination only forwards the change to a subsequent site to be
applied down the line. Apply forwarding will apply the change, and forward it
to subsequent destinations via local Capture and Propagation. Destination sites
configured as Queue or Apply forwarding sites are often referred to as intermediate
sites. Another single source configuration consists of a copy of the actual redo logs
being forwarded from the source database, to a "downstream" target database. The
actual Capture process and queue are configured on the downstream database rather
than on the source database. This configuration is called Downstream Capture which
is explained in more detail later on this chapter and in Chapter 6, Get Fancy with
Streams Advanced Configurations.

In a single source environment, steps should be taken to avoid changes being made
at the secondary destination databases to avoid data divergence and change conflicts.

Some illustrated examples of single-source configurations with a brief explanation of
where the Streams processes are located are shown as follows.

Single database
A single database configuration hosts both the Capture and Apply processes on the
same database. This can negate the need for a Propagation process as the Apply
process can be created to dequeue from the same buffered queue into which the
Capture process enqueues. However, there may be circumstances where you wish
to configure separate buffered capture queue and persistent apply queues. In this
case you would also configure a Propagation process between the two queues. The
Apply process can be assigned an apply handler that processes the LCRs in a specific
manner. This type of configuration can be used to support client application access to
captured LCR data and heterogeneous configurations.

Buffered Queue
Capture Apply PersistentQueue

Buffered Queue

All the Pieces: The Parts of an Oracle 11g Streams Environment

[14]

Uni-directional
In single-source to single-target configuration the Capture and Propagate processes
and the Capture queue are located at the Source database. The Apply process and
queue resides on the Target.

Source Target

Cascaded/directed network
In a directed network configuration, Capture and Propagation processes and
Capture queue reside on the Source. For Queue forwarding, the forwarding site
has a queue, but no Apply process. For Apply forwarding, the forwarding site is
configured with an Apply process and queue as well as a local Capture process and
queue. Tags (discussed in Chapter 6) are used to coordinate the local "recapture" of
the applied changes. Appropriate Propagation processes are configured from the
forwarding site Capture queue to the destination sites. The final destination site is
configured with a regular Apply process and queue.

Source Forwarding
Database

Target

Hub-and-Spoke
In single-source Hub-and-Spoke configuration, data is Streamed from one source
to multiple destinations (targets). This is often seen in "Headquarter to Branch
(or Regional)" configuration. With this type of configuration, there is a Capture
process and queue at the source as well as a Propagation process to each destination.
An Apply process and queue are configured on each of the destinations.

Chapter 1

[15]

Destination A
(SPOKE)

Destination B
(SPOKE)

Destination C
(SPOKE)

Source
(HUB)

Multiple source
In a multiple source Streams configuration, shared data can be changed at two or more
sites. A situation can arise where there is conflict caused by DML/DDL originating
from one or more databases acting on the exact same data at nearly the same time. To
overcome this conflict situation, conflict resolution must be implemented to determine
which data changes should be kept and which should be discarded.

Below are some illustrated examples of multiple-source configurations.

Bi-directional/N-way/Master-to-Master
Bi-directional, N-way, Master-to-Master are all names for essentially the same thing.
This configuration allows data changes to be made at all master sites and replicated
to all other master sites. As such, Capture, Propagation, and Apply processes and
queues must be configured at each master site. For the Capture processes at each site,
you can choose to configure a single Capture process and queue for all Propagation
processes, or a separate Capture process and queue for each Propagation process.

Master1 Master2

Master3

All the Pieces: The Parts of an Oracle 11g Streams Environment

[16]

Uni-directional Spokes-to-Hub
In this configuration, the SPOKES are the origination point of the data change and
the HUB is the destination. Capture and Propagation processes and Capture queue
are configured on each of the SPOKE sights. An Apply process and queue for each
SPOKE site is configured on the HUB. Conflict resolution should be configured at
the HUB to accommodate potential data change conflicts from multiple sources.

Source 1
(SPOKE)

Source 2
(SPOKE)

Source 3
(SPOKE)

Destination
(HUB)

Bi-directional Spoke-to-Hub
This configuration is just an extension of uni-directional Spoke-to-Hub that allows
the HUB to send its changes to each spoke. This means that at least one Capture
process and queue must be configured on the HUB, and a Propagation process
configured to each SPOKE. Note here that the HUB processes should be configured
so that the HUB does not send the same change back to the SPOKE that originated
it. This can be accomplished in a number of ways by using tags, and/or conditions
(covered in Chapter 6). In addition, an Apply process and queue must be configured
at each SPOKE to receive and process changes from the HUB, as well as the
Capture process and queue and Propagation process to the HUB that we use in
uni-directional Spoke-to-Hub.

Chapter 1

[17]

Master 2 Master 3 Master 4

Master 1

Hybrid
A Hybrid configuration is simply a combination of single and/or multiple- source
configurations. For instance, one leg of your topology could be a directed network,
while another leg could be a master-to-master. The trick is all in where you put
your Capture, Propagate, and Apply processes.

Heterogeneous
Heterogeneous configurations include a source or target database that is not an
Oracle database. Oracle Heterogeneous Gateways can be used to allow an Oracle
database to send and receive changes to and from these non-Oracle sources. The
gateways provide a "translation" level that converts Oracle SQL syntax to and from
non-Oracle SQL syntax. This allows the users to transparently accomplish equivalent
SQL operations from an Oracle database to a non-Oracle database. Oracle 11gR2
delivers the following Gateways to non-Oracle database platforms:

Adabas
APPC
DRDA
IMS
Informix
ODBC
SQL Server
Sybase
Teradata
VSAM

•
•
•
•
•
•
•
•
•
•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[18]

In a heterogeneous environment, the Apply process and queue must still exist in an
Oracle database and be configured to use a database link to the non-Oracle database.
The source database may or may not be an Oracle database. It could be such that the
Oracle database is merely an intermediate database that is a directed network where a
client application enqueues LCR constructed from data at a non-Oracle database into
the Apply queue. Regardless of how the LCR is enqueued in the Apply queue, the
Apply process on the Oracle database uses Heterogeneous Services and Transparent
Gateway to apply LCR changes directly to database objects in a non-Oracle database
through the database link to the non-Oracle database. In other words, the Apply
process unpacks the LCR and constructs the necessary DML statement on the
Oracle side. It then executes the statement through the gateway database link, using
Heterogeneous services to translate the SQL to the proper non-Oracle SQL syntax.
Capture and Propagation are configured at the source database. If the Apply process
for the non-Oracle database is configured on the source database, Propagation between
the Capture and Apply would not be required. A remote Oracle destination database
can also be configured to apply the change to a non-Oracle database.

As mentioned above, data can also be sent to an Oracle database from a non-Oracle
source. This can be done with Advanced queuing and XSTREAMS or JMS. Again
the Apply queue and process are on the Oracle database. The non-Oracle database
interface must be configured to enqueue a message to the apply queue on the Oracle
database. That message is then dequeued and processed by an Oracle advanced
queue process.

Gateway Link

Gateway Link

Sybase
Database Oracle

Database

Informix
Database

Oracle

Procedure:
Enqueue to
Oracle DB
Apply Queue

Heterogeneous
Services for
Sybase

Apply_Sybase

ApplyQ_Local

Heterogeneous
Services for
Informix

Apply_Informix

Chapter 1

[19]

Important: Apply processes for a non-Oracle database can only apply DML,
not DDL.

For more information on Streams Configurations, please reference the
Oracle Streams Extended Examples manual.

Simultaneous versus Synchronous replication
Synchronous replication in a distributed environment means that a change must be
successfully committed at the source and all destination sites, or it is not committed
at any site, including the source site.

As mentioned in the Preface, Streams is, by nature, an asynchronous replication. The
pure fact that the change must be committed at the source site before it is even sent
to other sites, means Streams is not a synchronous method of replication.

Even if you use Synchronous Capture, it is still not synchronous replication. The
"synchronous" in Synchronous Capture refers to the enqueueing of the change to the
Capture queue when it is committed to the source data, rather than having LogMiner
mine the redo logs, find the change, and enqueue it. This does not mean that the
change is successfully committed to the intended destination database data.

Can Streams be simultaneous (or near-simultaneous depending on data transfer
and processing rates)? Yes, the Synchronous Capture, and the combined Capture
and Apply (new in 11g and discussed later in this chapter) support simultaneous
replication (though they cannot be used together). They reduce the mining,
enqueueing, and dequeueing work required by normal implicit Streams. Just
remember; we may be able to get the change to the other sites very quickly, but we
cannot guarantee 100 percent that the change will be committed at the destination.

The moral of the story is: Streams replication, as it is today, can be "simultaneous",
but it can never be "synchronous".

Oracle's Streams replication process flow
A change is captured from a database redo stream via LogMiner, or
simultaneous Capture mechanisms
Any defined capture rules/transformations are applied to the change
The Captured Change is molded into a Logical Change Record (LCR)
The LCR is stored as a message in a specialized advanced queue to be sent
to the target site

•

•
•
•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[20]

The propagation job for the target site consumes the message, applies any
defined propagation rules/transformations to the message, and sends it
to a specialized advanced queue at the target site
Oracle's advanced queuing guaranteed, fail-safe Propagation protocol
ensures receipt of the message and coordinates the success/error result
and handling of the advanced queue messaging
The Apply process at the target site consumes the message from the
advanced queue
Any defined Apply rules/transformations are applied to the change
The Apply process then attempts to apply the change to the target site
All LCR transactions are validated at the target database by conflict detection
to ensure the data is consistent between the source and target databases prior
to applying the change
When data inconsistencies are found by conflict detection:

If conflict resolution is defined, it is applied to the LCR data
inconsistency
If conflict resolution is not defined, or fails to resolve the LCR
data inconsistency, the LCR is not applied at the target but
retained in the erred transaction queue for manual resolution

Streams components
The following Oracle components are used to support the Streams process flow:

Log Miner: Captures the changes at the originating site.
Advanced Queuing: Used to support transporting changes between sites.
Capture, Propagate, Apply database processes: Persistent database processes
that accomplish the Capture, Propagation, and Apply tasks.
Capture, Propagate, Apply rules/transformation via PL/SQL: PL/SQL
blocks that define how data should be manipulated by the various processes.
Logical change record types: Specialized record types used by Streams to
store and manage database change message payloads.
Database links/Oracle Net: Provides an operating system independent
connectivity between database sites.
User authentication/authorization: Provides security access at the database
connection and object levels.

•

•

•

•
•
•

•
°

°

•
•
•

•

•

•

•

Chapter 1

[21]

Guaranteed fail-safe propagation protocol: This ensures that a message
is successfully delivered and enqueued at the destination site. If an error
occurs, the propagation schedule is marked with an error at the originating
site for manual resolution and the message is retained in the Capture queue
until it can be propagated.
Conflict detection: Internal protocol that determines if the record to which
the change is to be applied matches the record at the originating site before
the change was made. This supports data change synchronization.
Conflict resolution via PL/SQL: Supplied or user defined PL/SQL blocks
used to resolve data conflicts found via conflict detection.

About those Queues
Throughout our discussion on the Streams processes, we mention the Advanced
Queues used by Streams to transport changes. These queues are either in-memory
(buffered queues) or tables on disk (persistent queues). Oracle Streams uses both
buffered queues and persistent queues. A buffered queue can only be an ANYDATA
queue, while a persistent queue can be an ANYDATA or a TYPED queue.

ANYDATA and TYPED refer to the payload datatype of the message handled by
the queue. An ANYDATA queue's payload is of the SYS.ANYDATA datatype. A TYPED
queue has a specific datatype (such as Varchar2, CLOB, BLOB, Number). To
determine the payload type of a queue, query the OBJECT_TYPE column of the
DBA_QUEUE_TABLES view.

select owner, queue_table, object_type from dba_queue_tables;

The Oracle memory segment used by buffered queues is part of the STREAMS_POOL in
the SGA. The type of queue used by Streams depends on the type of LCR that is being
stored. Captured and buffered LCRs are stored in buffered queues. Persistent LCRs
are stored in persistent queues.

For more information on Streams Queues, review the Introduction to Message Staging
and Propagation section of the Oracle Streams Concepts and Administration
user's manual.

•

•

•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[22]

It is always helpful to understand the whole picture and the pieces that make up the
picture. As such, we start with the image as follows:

Source Target

ApplyNetworkPropagateCapture

LogMiner
Tablespace

LogMiner

Parameter
Setting
SPFILE

Parameter
Setting
SPFILE

We use the image above as a reference in this chapter to explain the
following processes:

Capture
Instantiation (Not in image above)
Propagate
Apply

So, let us start covering each of the main processes and components and it's role
in the Streams environment.

Capture process—what are we supposed
to stream?
The Capture process uses both LogMiner and Advanced Queuing to accomplish
it's task (Note: Synchronous Capture uses internal triggers instead of LogMiner).
The Capture process uses a LogMiner process to examine the database redo log for
changes. A Capture process references a set of user-defined rules that determines
exactly what needs to be captured for the Stream. These Capture rules identify
specific changes to be captured from the redo logs.

•
•
•
•

Chapter 1

[23]

These changes are then formatted into Logical Change Records (LCRs) and placed
(enqueued) into an advanced queue. In most cases, the queue is a buffered queue
(more about LCRs and buffered and persistent queues a little later). This method of
capture enqueueing is called "Implicit Capture" and is most often used in a Streams
environment. The following image shows the process:

Source Queue Target Queue

LCR LCR

LCR LCR

LCR LCR

LCR LCR

User User

User User
Message Message

Source
Database

Propagate

Redo
logo

Log Miner

Apply

Target
Database

Capture

.. ..

.. ..

.. ..

DequeueEnqueue

The other method of capturing involves user generation and enqueuing of a message
directly into a buffered or persistent queue. This method is called "Explicit Capture"
and is usually done by application software. These explicit messages can be either
a user defined message or an LCR. For a more detailed explanation on Explicit
Capture, refer to the Oracle Streams Concepts and Administration Guide.

A Capture process can capture a majority of database transactions. The Capture
process specifically captures DML and DDL. The Streams Capture process can
capture DML on columns of the following datatypes:

 VARCHAR2
 NVARCHAR2
 FLOAT
 NUMBER
 LONG
 DATE
 BINARY_FLOAT
 BINARY_DOUBLE
 TIMESTAMP
 TIMESTAMP WITH TIME ZONE
 TIMESTAMP WITH LOCAL TIME ZONE

•
•
•
•
•
•
•
•
•
•
•

 INTERVAL YEAR TO MONTH
 INTERVAL DAY TO SECOND
 RAW
 LONG RAW
 CHAR
 NCHAR
 UROWID
 CLOB with BASICFILE storage
 NCLOB with BASICFILE storage
 BLOB with BASICFILE storage
 XMLType stored as CLOB

•
•
•
•
•
•
•
•
•
•
•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[24]

In turn, Capture process can capture the following DDL.

Tables
Indexes
Views
Sequences

•
•
•
•

 Synonyms
 PL/SQL packages, procedures, and functions
 Triggers
 Changes to users or roles
 GRANT or REVOKE on users or roles

•
•
•
•
•

There are limitations with the Capture process. The following DDL commands are
not captured.

 ALTER SESSION
 ALTER SYSTEM
 CALL or EXECUTE for
 PL/SQL procedures
 EXPLAIN PLAN

•
•
•

•

 LOCK TABLE
 SET ROLE
 NO LOGGING or UNRECOVERABLE operations
 FLASHBACK DATABASE

•
•
•
•

If you take a careful look at the list above, you may notice that these commands are
DDL that are instance specific. You want to avoid replicating them, so that you do
not end up corrupting the target instance.

In addition, there are object specific DDLs that are not supported by Streams.

 CREATE CONTROL FILE
 CREATE or ALTER DATABASE
 CREATE, ALTER, or DROP
 MATERIALIZED VIEW LOG
 CREATE, ALTER, or DROP
 MATERIALIZED VIEW

•
•
•

•

 CREATE, ALTER, or DROP SUMMARY
 CREATE SCHEMA
 CREATE PFILE
 CREATE SPFILE
 RENAME (Use ALTER TABLE instead.)

•
•
•
•
•

Looking at the lists above, one can start to think, "Is there a quick way to tell if my
environment can be streamed?" Yes, Oracle Development did provide a quick way
to find out. Simply query DBA_STREAMS_UNSUPPORTED view and you can find out the
reason why a particular table could not be streamed. We suggest that you query this
table as part of your planning a Streams environment.

SELECT * FROM DBA_STREAMS_UNSUPPORTED;

Chapter 1

[25]

Pay particular attention to the REASON and AUTO_FILTERED column. The REASON
column is self-explanatory. As for AUTO_FILTERED, if you see a YES value then
Streams automatically filters out the object from being streamed.

Possible reasons include:

Index Organized Table (IOT)
Column with user-defined type
Unsupported column exists
Object table
AQ queue table
Temporary table
Sub object
External table
Materialized view
FILE column exists

•
•
•
•
•
•
•
•
•
•

Materialized view log
Materialized view container table
Streams unsupported object
Domain index
IOT with overflow
IOT with LOB
IOT with physical Rowid mapping
Mapping table for physical row id of IOT
IOT with LOB
IOT with row movement
Summary container table

•
•
•
•
•
•
•
•
•
•
•

The Capture process is the first Streams specific related process. However, if you
look again at the diagram you will see LogMiner is also in the picture. The Capture
does not do everything by itself. The Capture process uses LogMiner to do all the
"heavy lifting". The Capture process takes advantage of LogMiner's ability to mine
the database redo logs.

In 9i, the LogMiner tablespace defaulted to the SYSTEM tablespace. As of 10g, it
defaults to the SYSAUX tablespace. As there will be additional usage of LogMiner
with a Streams environment, we recommend that you isolate the tables related to
LogMiner in its own tablespace. This can be accomplished with the following scripts.

CREATE TABLESPACE LOGMNRTS DATAFILE '/u05/oracle/data/logmnrtbs.dbf'
SIZE 100M AUTOEXTEND ON MAXSIZE UNLIMITED;

BEGIN
 DBMS_LOGMNR_D.SET_TABLESPACE('LOGMNRTS');
END;

This can help eliminate possible fragmentation in the SYSTEM or SYSAUX tablespace
where the LogMiner tables are created by default. Depending on your tablespace
file to disk distribution, it can also help with performance. If your database has been
upgraded from an earlier version, the LogMiner tablespace may well be set to the
SYSTEM tablespace. If it is, you are strongly cautioned to use the above method to
reset the LogMiner tablespace to a non-system tablespace.

All the Pieces: The Parts of an Oracle 11g Streams Environment

[26]

To actually identify the Capture and LogMiner processes that are running on the
source database, look for the background process on the host of CPnn for Capture
and MSnn for LogMiner where nn is a combination of letters and numbers. Both of
these processes may not be constantly running, so they should be monitored over
time. Also, there may be multiple Capture and/or LogMiner processes running.

Downstream Capture
The Capture process usually resides on the Source database. This configuration is
called Local Capture (and sometimes Upstream Capture). The Source database is
defined as containing both the Capture process and the tables being captured. There
is another Capture configuration that can be used called Downstream Capture. For
now, we will just give a quick example of when and why a Downstream Capture
would be configured.

Downstream Capture

Capture Propagate Network Apply

Target
Reporting

Source
Production Staging

Node

The Capture process consumes resources (memory and CPU) from the host. This
may not be optimal in a high-volume production environment (this is but one case
where Downstream Capture comes into play). Downstream Capture allows the
Capture process and queue to be moved to another staging node. That staging node
is the "worker" that can afford the additional overhead of Capture. Downstream
Capture uses standby archived log destinations (just like those used by Data Guard)
defined at the source database to direct a copy of the redo to the staging node. The
Capture process at the staging node then mines those redo copies and enqueues the
necessary LCRs. Propagation processes on the staging node then send the LCRs to
the appropriate destination database sites. We will cover Downstream Capture and
other advanced configurations in more detail in Chapter 6.

Chapter 1

[27]

Synchronous Capture
Synchronous Capture is not Synchronous replication. We need to be clear on this.

Where regular Implicit Capture depends on LogMiner to extract data changes from
the redo, Synchronous Capture actually enqueues the data change to its Capture
queue directly when the change is committed at the source.

Synchronous Capture (SC) does have some limitations and differences from Implicit
Capture. They are as follows:

SC can only be created at the Table or Subset levels, not the Schema or Global
SC cannot be created using the DBMS_STREAM_ADM.MAINTAIN_*_SCRIPTS
procedures
SC uses a persistent queue (queue data is stored on disk), so it requires
a slightly different configuration than normal Implicit Capture
SC only captures DML, no DDL
SC does not capture changes for the following datatypes:

LONG
LONG RAW
CLOB
NCLOB
BLOB
BFILE
ROWID
User-defined types (including object types, REFs, varrays,
and nested tables)
Oracle-supplied types (including ANY types, XML types,
spatial types, and media types)

SC can only capture changes for an Index Organized Tables (IOT) if it does
not contain any of the above listed datatypes
SC is not a valid configuration for Combined Capture and Apply (this
requires a buffered (in memory) capture queue)

We will cover Synchronous Capture and other advanced configurations in more
detail in Chapter 6.

•
•

•

•
•

°
°
°
°
°
°
°
°

°

•

•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[28]

Instantiation
We mention instantiation as part of this chapter to stress its importance. Instantiation
refers to the creation of the replicated object at target databases, based on the source
object. It also provides Streams with the information needed to determine what
transactions to apply at the destination site(s). You can think of it as an agreement
(starting point) that needs to be established between the source and destination
before any Streaming can be accomplished. The main purpose of instantiation is to
prepare the object structure and data at the destination site to receive changes from
the source.

Instantiation is a process composed of three steps:

Creating the object(s) at the destination Site
Updating the Streams data dictionary with metadata
Setting the Instantiation SCN for the object(s)

The database objects, which are either tables or other objects, need to exist on both
the source and destination site. Table structures between a source and destination
database can differ if there is a transformation or subsetting involved, though
often the tables will have the same data and the same structure. If there is data
that needs to be replicated in the table(s) then the data should be the same at
the source and destination sites at the time of instantiation, unless there is some
sort of transformation, subsetting, or other apply or error handler put in place to
compensate for the data differences. This becomes apparent when an update
or delete DML fails due to data NOT being at the destination site(s) or having
different values in the replicated columns.

Once instantiation is complete, the instantiation SCN will be the same at both the
source and destination site(s), indicating to Streams that it is from this SCN forward
that changes should be captured, propagated, and applied for the destination. The
following image demonstrates this concept as it shows the instantiated Inventory
Table with the same instantiation SCN at both the Source and Destination site.

HQ Database
Source

Branch Database
Destination

Product Schema
Inventory Table
SCN: 8889876

Product Schema
Inventory Table
SCN: 8889876

•
•
•

Chapter 1

[29]

Instantiation Levels and Methods can be accomplished at different levels depending
on your requirements. These instantiation levels include:

Instantiation Levels
Table Level
Schema Level
Database (Global) Level
Tablespace (this requires special steps)

Instantiation Methods
Data Pump
Transportable Tablespaces
RMAN for entire database
Manual method

The possible combinations of Instantiation Levels that can be used with
Instantiation Methods can become confusing. So, with a handful of different
methods to instantiate tables; How does one decide which method to use? In general,
you can use Data Pump to instantiate all (or some) of the tables at Schema Level. You
can also decide to move all tables to a particular tablespace and use transportable
tablespaces. For now, we will focus on two methods that we use most often due to
its ease of use and flexibility.

Using Data Pump to instantiate tables and schemas is fairly straightforward. The
Data Pump export utility EXPDP will use Oracle Flashback to ensure that the export
is consistent and at the same time capture the instantiation data. For greater control
use the FLASHBACK_SCN or FLASHBACK_TIME parameters. On the import side, use the
DataPump import utility IMPDP. If it is a full database import, use the parameter
STREAMS_CONFIGURATION=y (the default value) to direct IMPDP to include any
Streams related metadata that may be contained in the export.

STREAMS_CONFIGURATION is only relevant for FULL database imports
via IMPDP. All the other functionality of Data Pump can also be used.
So using Data Pump to export/import the entire database, schema, or
specific tables can be accomplished with ease, and is the recommended
method of export/import based instantiation as of Oracle 11g.

If the replicated structures and data are the same on both sites, we recommend
that you use DataPump Export/Import to instantiate (this can be done via
DBMS_STREAMS_ADM.MAINTAIN_* scripts).

All the Pieces: The Parts of an Oracle 11g Streams Environment

[30]

If the replicated structures are the same, but the data different between sites, we
recommend instantiating objects via DataPump with CONTENT=METADATA_ONLY,
and manual calls to necessary DBMS_STREAMS_ADM.ADD_RULE and
DBMS_CAPTURE_ADM subprograms.

CONTENT=METADATA_ONLY is not supported with TRANSPORTABLE
TABLESPACE mode. Make sure to include handling expected
data differences between sites in your Capture and/or Apply
processes as necessary (see Chapter 6 for more information on data
transformation and conflict resolution techniques that can be useful).

If the replicated structures and data are different between sites, we recommend that
you create and populate the objects at each site manually, then call the necessary
DBMS_STREAMS_ADM.ADD_RULE and DBMS_CAPTURE_ADM subprograms manually.
Make sure to configure transformation rules for the structural differences, and
handlers for the data differences. One important thing to remember is that if
Capture, Propagation and Apply processes and rules are added, or modified, you
will need to re-instantiate the SCN between the source and destination. You can do
this by following the manual method.

What sets the instantiation SCN and when?
Any of the DBMS_STREAMS_ADM.MAINTAIN_*_SCRIPTS subprograms will
automatically set both the Source and Target instantiation SCNs.

The DataPump or Transportable Tablespace instantiation methods will automatically
set the Source and Target instantiation SCNs.

Creating the Capture process via DBMS_STREAMS_ADM.ADD_RULE will automatically
set the Source instantiation SCN only. You will need to manually set the Target
instantiation SCN using the DBMS_APPLY_ADM.SET_*_INSTANTIATION_SCN (covered
in the next section).

Creating the Capture process via DBMS_CAPTURE_ADM.CREATE_CAPTURE will not set
any instantiation SCNs. You must manually set the instantiation at both the Source
and Target sites.

Setting the instantiation SCN manually using the DBMS_CAPTURE_ADM.PREPARE_*_
INSTANTIATION and DBMS_APPLY_ADM SET_*_INSTANTIATION_SCN for the proper
instantiation level is simple.

Chapter 1

[31]

The DBMS_CAPTURE_ADM contains the following packages used to prepare the objects
for instantiation at the source:

PREPARE_TABLE_INSTANTIATION

PREPARE_SCHEMA_INSTANTIATION

PREPARE_GLOBAL_INSTANTIATION

The DBMS_APPLY_ADM contains the following packages used to instantiate the object
at the destination:

SET_TABLE_INSTANTIATION_SCN

SET_SCHEMA_INSTANTIATION_SCN

SET_GLOBAL_INSTANTIATION_SCN

The steps for setting the instantiation SCN are as follows:

Call the appropriate DBMS_CAPTURE_ADM. PREPARE_*_INSTANTIATION
package at the source database
Determine the current SCN at the source database using
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER

Call the appropriate DBMS_APPLY_ADM SET_*_INSTANTIATION_SCN at the
destination database, specifying the SCN value returned in step 2

To state the obvious, you want to make sure that you use the same level for setting
the instantiation at the destination that you used to prepare instantiation at the
source. Code examples for setting the Instantiation SCN manually are provided
in Chapter 3, Prepare the Rafts and Secure Your Gear: The pre-work before configuring
Oracle 11g Streams.

The following views can help you determine what instantiation levels have been
prepared at the source database:

DBA/ALL_CAPTURE_PREPARED_TABLES

DBA/ALL_CAPTURE_PREPARED_SCHEMAS

DBA/ALL_CAPTURE_PREPARED_DATABASE

•

•

•

•

•

•

•

•

•

•

•

•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[32]

Propagate process
Now that we know about the Capture process, it is time to move to the Propagate
process. The Propagate process does the actual Propagation between the source and
target queues.

Queues

Capture Propagate Network Apply

Rules Rules Rules

LogMiner
Tablespace

LogMiner

Buffer
Queue

Buffer
Queue

Parameter
Settings

Parameter
Settings

Propagation has two configuration options, queue-to-queue or queue-to-dblink. In
the queue-to-queue configuration, each Propagation has its own propagation job.
This allows multiple Propagations to be configured and scheduled to propagate at
different times. It should be noted that queue-to-queue propagation is recommended
for Streams in an RAC environment. The default configuration of queue-to-dblink
has one shared propagation job. For queue-to-dblink configurations, having one
shared propagation job may cause issues because making any propagation schedule
change affects all the propagations that rely on the source queue and database link.
This issue can be overcome by configuring different queues when using queue-
to-dblink. For example, one queue would be set up QUEUE1 and be on its own
SCHEDULE. Then a separate queue, QUEUE2 can be set up and have its own SCHEDULE.
Propagation scheduler will be covered in a moment.

Propagation can be configured to propagate to different targets. With the use of
RULES one can set up multiple Propagate processes, referencing one buffer queue
on the Source. Each Propagation process will process from the same source queue.
The source queue will only delete the LCR once it is consumed by each Propagation
process registered as a consumer of the queue.

Chapter 1

[33]

At this time, we need to mention Secure Queue. A secure queue can be used only
by the owner of that secure queue. Think of it this way, the owner of the queue runs
and controls it. No other users or processes may use a secure queue unless the owner
allow it by granting explicit privileges to the user. For the purpose of this book, all
queues will be secure queues. This is compared to an unsecure queue which any
session or process is allowed to use.

So, how does Propagate know when to do its job? In Oracle 11g, Scheduler controls
when the Propagation takes place (in previous versions, it was accomplished
via regular database jobs). Later, when we work through our example Streams
configurations, we will accept the default propagation schedule.

"What" gets propagated "Where" is controlled via Propagation rules is just like
"What" is captured by the Capture process that is controlled via Capture rules. The
creation of these rules is very similar to Capture process rules, so we won't go into
the same level of detail again. Propagation process and rules can be created using
either the DBMS_STREAMS_ADM.ADD_*_PROPAGATION_RULE for the replication level
desired, or via the DBMS_PROPAGATION_ADM.CREATE_PROPAGATION procedure.

The main thing to understand is that Propagation needs to know what queue from
which it must dequeue captured LCRs, what database link to use to send the changes
and the destination database name, as well as the remote queue at the destination
database in which to enqueue the LCR. As with Capture rules, you can control
what the Propagation process sends based on the same type of parameters and
rule conditions used in the Capture process.

It should be noted that even though you create a Propagation process using
either the DBMS_STREAMS_ADM or DBMS_PROPAGATION_ADM procedures, you use the
DBMS_AQADM Propagation Subprograms to schedule/unschedule, alter, enable, and
disable propagation. You use the DBMS_PROPAGATION_ADM subprograms to create
drop, start, and stop propagation jobs. This is because the Propagation process is
separate from the propagation job. The Propagation process can remain running
while the propagation job is disabled. This separation allows Streams to support
queue-to-queue Propagation as well as queue-to-dblink propagation. Understanding
the separation of the two, aids in understanding what procedure to use to control
which piece of Propagation.

You can see this separation of duties by looking at the background processes for
Propagation. The Propagation processes (similar to the Capture processes) are
designated by Pnnn, where as the propagation jobs are separate job processes
designated by Jnnn.

All the Pieces: The Parts of an Oracle 11g Streams Environment

[34]

For more detailed information on creating and managing Propagation
processes and schedules, please refer to the Oracle Streams Concepts and
Administration Guide and the Oracle PL/SQL Reference and Types manual.

The Network: COMLINK
If you have a job title that ends in "Administrator", such as "DBA", you know
one thing for sure and that is that the bottom line performance is dependent on
the quality of hardware and network. To a certain point, Administrators hit the
hardware or network performance wall and no amount of configuration tweaking
will change the performance levels. As a DBA, we (hopefully) have some influence
on the hardware selection for our databases. DBAs often have little (or no) input as
to the network configuration or network hardware selected.

Why is this important? Streams depends on both hardware and network. If you have
slow hardware and/or network, you can expect Streams to have low performance
levels. The performance of Streams relates directly to your hardware and/or
network limitations.

It is with this in mind that we address how to measure the network performance
and its potential impact on Propagation before implementing Streams. In many
cases Streams database links are configured to use the aliases in TNSNAMES.ORA. The
TNSNAMES.ORA DESCRIPTION format can use different network protocols, though
most often we see (PROTOCOL=tcp). Measuring, and knowing the network speed and
protocol used between the SOURCE and TARGET nodes is important when diagnosing
overall Streams' performance. We cover this in more detail in Chapter 3.

We are not saying "blame the network" when a performance problem occurs with
Streams. What we wish to convey is that there are parts of the Streams environment
that are in your direct control. There are also parts that are beyond your control that
affect Streams' performance. Knowing how the network performs is crucial to your
ability to diagnose all Streams' performance. Having a good working relationship
with your Network Admin will also help when such problems arise. By working
with the Network Admin closely, you may also be able to establish minimum
service level agreements as well as set realistic client or user expectations where
performance is concerned.

Chapter 1

[35]

Propagation success/failure
How does a propagation job know that its payload has been successfully received
and stored at the destination site? This is accomplished via Oracle's guaranteed
fail-safe Propagation protocol that requires return notification of a successful commit
of the LCR payload data at the destination before it allows the LCR to be removed
from the Capture queue and the Capture REQUIRED_CHECKPOINT_SCN to be moved
beyond that LCRs' SCN. If, after a number of tries (16 to be exact) destination enqueue
fails, an error is logged in the DBA_QUEUE_SCHEDULES and DBA_PROPAGATION view,
the propagation job will be disabled and will require manual restart.

For more information on monitoring the Propagation process and jobs,
please refer to the Oracle Streams Concepts and Administration Guide, and
the Oracle Streams Replication Administrators' Guide.

Propagation Stream Split and Merge
Not all COMLINKs are created equal (unfortunately). It is quite possible to have a
distributed environment where some network connections from a source database
to the different destination databases may not move Streamed data at the same rate,
or be equally stable. This inequality of transport to multiple destinations can cause
the source queue to grow undesirably large as a result of enqueued LCRs that cannot
be deleted until the destination site has confirmed receipt and successful enqueue of
the LCR. This could result in Spilled transactions (the LCRs are written to disk from
the buffered queue), and memory resource consumption. This also creates a negative
performance impact as propagation jobs must scan all the entries in the queues
to determine which they have and have not sent. In previous releases, the way to
circumvent this was to create a separate capture queue that was used for slower
moving or unstable destination connections. This allowed jobs using faster and more
stable network connections to be assigned to less encumbered queues. 11g brings the
ability to have the Propagation process create these types of queue segmentations
on the fly, as needed, via Streams Split and Merge. A Propagation process can be
configured to recognize when a destination site is exceeding expected transport
times. If this happens, the Propagation process will (in a nutshell) clone the Capture
process and queue, spawn a separate Propagation job from the cloned queue to the
"slow" destination and remove the original Propagation job for the destination from
the original queue. In essence, it "splits" the slow stream off to a separate queue
allowing the original queue to service the faster destination Propagation processes
without performance impact. If/when transport times for the "Split" destination
Propagation return to normal, the cloned Capture process can be started to allow the
rogue destination site to catch up. Once it does, the queues and processes are merged
back to their original configuration automatically. We cover more on Stream Split
and Merge in more detail in Chapter 6.

All the Pieces: The Parts of an Oracle 11g Streams Environment

[36]

The following lists Propagation/Scheduler views that contain helpful information
concerning your Propagation processes and job:

DBA_PROPAGATION

V$BUFFERED_SUBSCRIBERS

V$BUFFERED_PUBLISHERS

V$PROPAGATION_RECEIVER

V$PROPAGATION_SENDER

DBA_SCHEDULER_JOBS
(filter on JOB_CLASS = 'AQ$_PROPAGATION_JOB_CLASS')

Apply process
We are over the hump and it's all downhill from here. From our previous image on
Queues, we notice that we are now on the Target side of the Streams environment.
On this side, we have a buffered queue and the Apply process. The queue on this
side will be a secure queue that is the same kind as that on the Source. This secure
queue (on the Target side) contains the LCRs sent over by the Propagation process.

At this point, the Apply process comes into the picture. The Apply process takes
LCRs (or messages) from the secure queue and applies them to the Target database
object, or hands it off to an Apply handler. An Apply handler is a user defined
procedure that processes the LCR change. The user defined procedure takes a single
LCR (or messages) as input. As with the Capture and Propagation, the Apply process
uses rules to determine what LCR's to Apply.

The Apply process is made up of multiple parts. Those parts are as follows:

Reader server: Takes the LCRs and converts it into transactions, preserving
transactional order, and dependencies.
Coordinator process: Takes the transactions from reader server and sends
them to Apply server. This process also monitors the Apply server to ensure
that the transactions are applied in the correct order.
Apply server: Applies the LCR or message to the handler, either an Apply
handler or message handler. Apply server also deals with placing the LCR
or message into the appropriate error queue if it cannot be applied.

Keep in mind that there can be multiple Apply processes. The Apply reader and
Apply server processes show up as background process on the host as ASnn. In
addition, there can also be multiple Coordinator Processes (from above). The Apply
coordinator background processes names appear as APnn. In both cases, nn is a
number and letter combination (0–9 and a–z).

•

•

•

•

•

•

•

•

•

Chapter 1

[37]

The Apply process itself is pretty straightforward; dequeue the LCR, evaluate the
LCR against the Apply rules, if the overall evaluation is true, apply it (if it evaluates
to FALSE ignore it), if the Apply fails, put the LCR in the Apply error queue. Where
things can get complicated is at conflict detection, resolution, transformations, and
user defined Apply handlers. To really get your head around conflict detection
and resolution, you need to understand the LCR structure. Therefore, we save this
discussion for the LCR section. Additional understanding of conflict resolution,
transformations, and Apply handlers requires a strong understanding of Rule
structures. Thus, we save these discussions for Chapter 5, N-Way Replication, for
configuring conflict resolution and Chapter 6 for rule-based transformations.

Trigger firing and Apply
By default, Triggers do not fire when an Apply processes applies data to a table.
This is intended behavior. This keeps changes to replicated tables that result from a
trigger at the source site from being duplicated at destination sites. Case in point–if
we did not take this precaution. Tables A and B are replicated from source to target.
Table A has a trigger that updates table B on commit. These two table updates are
replicated as both tables A and B are replicated. However, when the change to table
A is applied at the destination, it would kick off the trigger to update table B. But,
we also have the change to table B that was sent from the source. Either this change
will be overwritten by the trigger, or it will fail because the original values of both
records, do not match (see our discussion on conflict detection and LCRs later
in this chapter). This yields a high potential for data divergence, which is highly
undesirable in a replicated environment.

"Well" you say, "What if I need the trigger to fire because I don't replicate
table B?". That can be accomplished by setting the trigger's firing property to
allow the Apply process to fire the trigger. The trigger firing property default is
set to "once", so that it fires once when a normal change is made. However, when
the change is accomplished by an Apply process, the trigger will not fire if its
firing property is set to "once". The trigger firing property is managed by the
DBMS_DDL. SET_TRIGGER_FIRING_PROPERTY procedure. Be careful as the parameter
to set the trigger firing to allow the Apply process to fire the trigger is a Boolean
and can cause some initial confusion. If the value for FIRE_ONCE is set to TRUE,
then Apply will not be able to fire the trigger. If FIRE_ONCE is set to FALSE, then
the Apply will be able to fire the trigger.

All the Pieces: The Parts of an Oracle 11g Streams Environment

[38]

So, if you want a trigger to fire for applied LCRs you will have a call to DBMS_DDL
that looks like this:

sql>exec DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY (
 trig_owner => '<schema>',
 trig_name => '<trigger_name>',
 fire_once => FALSE);

If you are not sure as to what the trigger firing property is set to, you can use the
DBMS_DDL.IS_TRIGGER_FIRE_ONCE function. The function will return TRUE if the
FIRE_ONCE property is set to TRUE (meaning the Apply process cannot fire the trigger),
and FALSE if it is set to FALSE (meaning the Apply process can fire the trigger).

For more information on the Trigger firing property and the Apply
process, please refer to the Advanced Apply Process Concepts chapter
in the Oracle Streams Concepts, and the Oracle PL/SQL Reference and
Types manual.

The following lists Apply views that contain helpful information concerning your
Apply processes:

DBA_APPLY

DBA_APPLY_CONFLICT_COLUMNS

DBA_APPLY_DML_HANDLERS

DBA_APPLY_ENQUEUE

DBA_APPLY_ERROR

DBA_APPLY_EXECUTE

DBA_APPLY_INSTANTIATED_GLOBAL

DBA_APPLY_INSTANTIATED_OBJECTS

DBA_APPLY_INSTANTIATED_SCHEMAS

DBA_APPLY_KEY_COLUMNS

DBA_APPLY_PARAMETERS

DBA_APPLY_PROGRESS

DBA_APPLY_SPILL_TXN

DBA_APPLY_TABLE_COLUMNS

DBA_HIST_STREAMS_APPLY_SUM

V$STANDBY_APPLY_SNAPSHOT

V$STREAMS_APPLY_COORDINATOR

V$STREAMS_APPLY_READER

V$STREAMS_APPLY_SERVER

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1

[39]

Combined Capture and Apply
You've seen these movies and heard the famous songs where, when certain planets
align in certain ways at certain times, special powerful things automatically happen.
As of 11g, Streams has such a cosmic event potential. And when this cosmic
event occurs, its called Combined Capture and Apply. Seriously, it really is like
a cosmic event in the galaxy of optimization. When Oracle Streams is configured
a particular way between two sites, the Capture process acts as the propagator,
using its associated Propagation process rule set, and transmits the eligible LCR's
directly to the Apply process at the destination via database link. This functionality
automatically detects if the optimal configuration is in place and "flips the switch"
to enable Combined Capture and Apply. The only way to control whether or not
Combined Capture and Apply is enabled, is to change the configuration of your
Streams so that one of the configuration "rules" is violated.

The configurations that cultivate this cosmic event are a little different depending on
where the Apply process resides.

If the Apply process resides in a different database than the Capture process, the
configuration is required:

The Capture and Apply databases must be on release 11g Release 1 or higher
The Capture process is the only publisher for the capture queue
Propagation is configured directly between the capture and apply queues
(no intermediate queues allowed)
The Propagation is the only consumer for the Capture queue
The Propagation is the only publisher for the Apply queue
If a buffered Apply queue is used, the Apply process can be the only
consumer for the queue
If a persistent Apply queue is used, multiple Apply processes can be
consumers for the queue

One behavior to point out here is that if the Apply process is unavailable at the
destination database, the Capture process will hang in the INITIALIZING state
at startup until the Apply process becomes available. Once the Apply process is
enabled, the Capture process immediately transitions to CAPTURING CHANGES.

•
•
•

•
•
•

•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[40]

If the Apply process resides in the same database as the Capture process, the
configuration is required:

The database must be on release 11g Release 1 or higher
The Capture and Apply process use the same queue
The Capture process is the only publisher for the queue
Propagation is configured directly between the capture and apply queues
(no intermediate queues allowed)
If a buffered queue is used, the Apply process can be the only consumer for
the queue
If a persistent queue is used, multiple Apply processes can be consumers for
the queue

As the user has no control over the enablement of Combined Capture and Apply
(CCA) beyond setting up the Streams configuration, it may not be immediately
obvious when Combined Capture and Apply is enabled. You can determine if it is
enabled by checking the V$STREAMS_CAPTURE and V$STREAMS_APPLY_READER views.

In V$STREAMS_CAPTURE, the APPLY_NAME will have the name of the Apply process
and the OPTIMIZATION will be greater than 0 (zero, zed) if CCA is enabled.

select capture_name, apply_name, optimization from V$STREAMS_CAPTURE;
CAPTURE_NAME APPLY_NAME OPTIMIZATION
------------------ ----------------------- ------------
HR_CAPTURE HR_APPLY 2

The PROXY_SID is not NULL in V$STREAMS_APPLY_READER.

select apply_name, proxy_sid from V$STREAMS_APPLY_READER;
APPLY_NAME PROXY_SID
------------------------------ ----------
HR_APPLY 132

You will also see a similar entry in the alert log:

Propagation Sender (CCA) HR_PROPAGATION for Streams Capture HR_CAPTURE and
Apply HR_APPLY [on destination STRM2] with pid=28, OS id=6096 started.

When Streams is in Combined Capture and Apply mode, you will not see
information concerning the Propagation in the DBA_QUEUE_SCHEDULES view.
In this case, you will need to query the V$PROPAGATION_SENDER and
V$PROPAGATION_RECEIVER views.

•
•
•
•

•

•

Chapter 1

[41]

SCN Coordination—keeps it flowing
smoothly
All of the Streams processes use SCNs to keep track of what change transactions they
have processed and they share this information to coordinate who gets what, who
still needs what, and what can be ignored (because it has already processed). This is
why coordinating the Instigation SCN at the start is so important.

Capture and Apply object instantiation are not the only components of Streams that
rely on SCN synchronization. The Capture process must also coordinate it's SCNs
with the LogMiner process and available archived logs to ensure data integrity over
time. This is done via FIRST_SCN, START_SCN and REQUIRED_CHECKPOINT_SCN.

The Capture process relies on a valid LogMiner Data Dictionary to access database
object structure for redo capture to build LCRs. This LogMiner Data Dictionary is
separate from the Database Data Dictionary, but is a "picture" of the Database Data
Dictionary at the time the Capture process is created. Each Capture process either
builds a new LogMiner Data Dictionary or accesses an existing one when it first
starts. To build a LogMiner Data Dictionary, the Capture process must have access
to the "picture" of the Database Data Dictionary from the redo logs at the time of
the SCN from which it must first start capturing. This picture of the Database Data
Dictionary is created in the redo logs by running the DBMS_CAPTURE_ADM.BUILD
procedure. This procedure must be one at least once in the database before a Capture
process can be created. The BUILD creates a picture of the Database Data Dictionary
in the current redo log and records an entry in the V$ARCHVIED_LOG view indicating
that the redo log contains a Data Dictionary information (DICTIONARY_BEGIN='YES')
as of the SCN (FIRST_CHANGE#) at the time of the BUILD. The FIRST_SCN of the
Capture process must correspond to a FIRST_CHANGE# for a BUILD. For the Capture
process to start for the first time, the redo log for that FIRST_CHANGE# must be
available to the database instance. The BUILD procedure can be run multiple times,
and different Capture processes can use any one of these builds when it is created
by specifying one of the FIRST_CHANGE# values for a build for the Capture process
FIRST_SCN parameter (as long as the necessary redo logs are available to the
instance). The Capture process will access the redo log containing the Dictionary
information, and build its LogMiner Data Dictionary if needed. You can find eligible
FIRST_SCN values by querying V$ARCHIVED_LOGS for FIRST_CHANGE# values
generated by a build.

select distinct NAME, FIRST_CHANGE# from V$ARCHIVED_LOG where
DICTIONARY_BEGIN = 'YES';

All the Pieces: The Parts of an Oracle 11g Streams Environment

[42]

The NAME column has the name of the redo log(s) in which the BUILD resides. All
redo logs from this redo log forward, must be available for the Capture process to
first start.

If you specify a FIRST_SCN for a new Capture process from a BUILD for which
another Capture process has already built a LogMiner Data Dictionary, the new
Capture process will use the existing LogMiner Data Dictionary.

If you do not specify a FIRST_SCN (default is NULL) when creating a Capture process,
the creation will call DBMS_CAPTURE_ADM.BUILD procedure, and set the FIRST_SCN
for the Capture process to the FIRST_CHANGE# generated by the build. If you create a
Capture process using one of the procedures in the DBMS_STREAMS_ADM package, the
FIRST_SCN parameter is automatically set to NULL, forcing the capture creation to
do a BUILD.

The SCNs of Capture
The following synopsizes the SCNs of a Capture process; how they are used, and
rules of usage.

FIRST_SCN
The lowest SCN at which the Capture process can begin capturing
Must correspond to a FIRST_CHANGE# value in V$ARCHVIED_LOG for a Data
Dictionary BUILD in the redo logs
Points the Capture process to the redo log(s) that hold the Data Dictionary
information from which to build its LogMiner Data Dictionary if necessary,
and begin scanning redo for changes on the Capture process first startup
If REQUIRED_CHECKPOINT_SCN is 0, the Capture process will begin scanning
at FIRST_SCN on subsequent capture startups
It can be changed by the following:

 Manually using DBMS_CAPTURE_ADM.ALTER_CAPTURE
Automatically by CHECKPOINT_RETENTION_TIME
purge process

Change can only be to a value greater than the current FIRST_SCN value
FIRST_SCN cannot be greater than REQUIRED_CHECKPOINT_SCN when
REQUIRED_CHECKPIONT_SCN is greater than 0

•
•

•

•

•
°
°

•
•

Chapter 1

[43]

START_SCN
The SCN at which the Capture process will actually begin capturing changes
on startup
START_SCN must be greater than or equal to FIRST_SCN
If a Capture process's FIRST_SCN is changed (either manually or via
CHECKPOINT_RETENTION_TIME purge process) to a value greater than
its START_SCN, the START_SCN is automatically increased to the new
FIRST_SCN value
START_SCN can be changed manually using
DBMS_CAPTURE_ADM.ALTER_CAPTURE

START_SCN can be set to a value lower than its current value, as long as the
new value is not less than the FIRST_SCN value for the Capture process
START_SCN is usually only manually changed if a point-in-time recovery
has been performed at a destination site, and the point-in-time recovered
to requires changes to be resent to the destination site

If the point-in-time recovery requires an SCN before the Capture
process FIRST_SCN, that process cannot be used to send changes
to the recovered site. If a Data Dictionary BUILD is available in
the archived logs with a FIRST_CHANGE# less than or equal to
the SCN required for the point-in-time recovery, a new Capture
process can be created specifying the appropriate FIRST_CHANGE#
for the FIRST_SCN. Otherwise, the Streamed objects must be
re-instantiated from the source at the destination.

REQUIRED_CHECKPOINT_SCN
Set to 0 (zero, zed) when the Capture process is created
Incremented by the Capture process LogMiner checkpoint process
Value determined by the lowest APPLIED_SCN for all destination sites for the
Capture process queue
The lowest SCN that the Capture process must be able to access from the
redo logs to be able to restart
The redo log that includes this SCN and all subsequent redo logs must be
available to the Capture process database instance, for the Capture process
to successfully start
If value > 0 (zero, zed), the Capture process starts scanning from this SCN
when restarted

•

•

•

•

•

•

•
•
•

•

•

•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[44]

The REQUIRED_CHECKPOINT_SCN is only changed when a checkpoint is
completed. This happens either by:

Automated by LogMiner Checkpoint process
Manually via command
DBMS_CAPTURE_ADM.SET_PARAMETER('<capture_name>',
'_checkpoint_force','Y')

CAPTURED_SCN
The most recent SCN scanned by the Capture process.

APPLIED_SCN
The most recent SCN dequeued and processed by any Apply process that
receives changes from the Capture processes queue
Corresponds with the low-watermark SCN for an Apply process

MAXIMUM_SCN
The SCN at which a Capture process must stop capturing changes
and disable
The Capture process will disable when it reaches this upper limit SCN
Changes with and SCN greater than or equal to the MAXIMUM_SCN are not
captured by the Capture process
If the value is infinite (default), the Capture process captures changes
without upper limit

LAST_ENQUEUED_SCN
This is the last SCN enqueued by the Capture process
This value is dynamic and will increase as the Capture process captures and
enqueues LCR
Can be used to gauge latency of Propagation and Apply

SOURCE_RESETLOGS_SCN
The SCN at the last RESETLOGS action.

•

°
°

•

•

•

•
•

•

•
•

•

Chapter 1

[45]

MAX_CHECKPOINT_SCN
The SCN at which the latest checkpoint was taken.

For more detailed information on how FIRST_SCN, START_SCN and
REQUIRED_CHECKPOINT_SCN are used by the Capture process, please
refer to the The LogMiner Data Dictionary for a Capture Process, Capture
Process Checkpoints, and Multiple Capture Processes for the Same Source
Database sections in Chapter 2: Oracle Streams Information Capture of the
Oracle Streams Concepts and Administration guide 11g.

The SCNs of Propagation
A Propagation process really only tracks one SCN value. This is the ACKED_SCN
which is the SCN sent to the Propagation process from the destination for which
the Apply process has acknowledged by all Apply queue subscribers as successful
dequeued and processed. This means the dequeued LCR was either successfully
applied or successfully committed to the Apply error queue. This value is used by
the Capture checkpoint to help determine its REQUIRED_CHECKPOINT_SCN.

The SCNs of Apply
The following synopsizes the SCN's of an Apply process; how they are used, and
rules of usage.

IGNORE_SCN
The SCN below which changes received should not be applied
Only set when instantiation is accomplished via Export/Import
Corresponds with the SCN set at the source database when the object was
prepared for instantiation
The instantiation SCN must be equal to or greater than this SCN

MAXIMUM_SCN
The SCN at which an Apply process must stop applying changes and disable
The Apply process will disable when it reaches this upper limit SCN

•
•
•

•

•
•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[46]

Changes with and SNC greater than or equal to the MAXIMUM_SCN are not
applied by the Apply process
If the value is infinite (default), the Apply process applies changes without
upper limit

OLDEST_SCN_NUM
This is the latest SCN of a received LCR that was successfully dequeued
and applied
In the case where a point-in-time recovery is performed on the destination,
this value should be used to reset the START_SCN for the associated Capture
process at the source site to recapture changes
Does not pertain to synchronously captured changes received

Low-watermark SCN
The lowest SCN that can be guaranteed dequeued and applied by an
Apply process
Corresponds to the APPLIED_SCN of the Capture process

There are a myriad other SCNs that have used the Apply process internally. The
SCNs listed above are the ones you gain the most for understanding. You can find
detailed information on Apply SCN and transaction tracking in the Oracle
Streams Replication Administrators' Guide.

SCN SYNC-hronization
As you can see, if your SCNs are out of sync between the LogMiner Dictionary,
Capture, and Apply processes your Streams may not work as expected; or even not
at all. Obeying the following formula when implementing your Streams environment
will keep you out of SCN SYNC-hole.

Apply SCN >= OI SCN >= CP START_SCN >= CP FIRST_SCN
Where OI = Object Instantiation and CP = Capture

Once you have implemented Streams, avoid changes to SCNs unless it is necessary
to compensate for a destination site point-in-time recovery or an unrecoverable
archive log.

•

•

•

•

•

•

•

Chapter 1

[47]

Capture checkpointing
The Capture process keeps track of the lowest SCN that has been recorded
by its Propagation processes as greatest SCN that has been acknowledged by
its Apply destination as being applied. The Capture process cannot set its
REQUIRED_CHECKPIONT_SCN great than this SCN or there is a potential for
data loss. This is controlled by checkpointing.

The Capture process will conduct checkpoints in which it coordinates its SCNs.
By default these checkpoints happen with the capture of 10 MB of redo and the
checkpoint metadata is retained in the database for 60 days. You can also force a
checkpoint if the need arises. These checkpointing options are all controlled by
the following capture parameters:

_CHECKPOINT_FREQUENCY: The number of megabytes captured which
will trigger a checkpoint. Default value is 10 but can be changed with
DBMS_CAPTURE_ADM.SET_PARAMETER().
CHECKPOINT_RETENTION_TIME: Number of days to retain
checkpoint metadata. Default 60 but can be changed with
DBMS_CAPTURE_ADM.ALTER_CAPTURE() procedure.
_CHECKPOINT_FORCE: This will force a Capture checkpoint. Accomplished via
DBMS_CAPTURE_ADM.SET_PARAMETER, pass in Y for the value. It will set itself
back to N when the checkpoint is complete.

You can determine the current values for these parameters by querying the
DBA_CAPTURE_PARAMETERS view.

The following lists captures views that contain helpful information concerning your
Capture processes:

DBA/ALL_CAPTURE

DBA/ALL_CAPTURE_PARAMETERS

DBA/ALL_CAPTURE_EXTRA_ATTRIBUTES

V$STREAMS_CAPTURE

V$STREAMS_TRANSACTION

DBA/ALL_STREAMS_RULES

•

•

•

•

•

•

•

•

•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[48]

Archive Log availability
When a Capture process starts up, it will check its REQUIRED_CHECKPOINT_SCN
(if it's 0, it will use the FIRST_SCN) and look for the redo log that contains that SCN
and begin scanning at the redo log forward. If the SCN is in an archived log that is
no longer available; or if any subsequent redo logs (archived or online) from that
SCN forward are no longer available, the Capture process will not start. You can
overcome this by either of the following:

Restoring the required archive logs
Dropping and recreating the Capture process

This leads to the obvious question of "what happens when my archive logs are in
my flash_recovery_area and are aged out?" The obvious answer here is, "It
will break your Capture process if/when the archive log containing your Capture
FIRST_SCN/REQUIRED_CHECKPOINT_SCN is aged out". This would be why Oracle
documentation specifically and highly recommends that you do not use the
flash_recovery_area as your only archive log repository if you are using Streams.
If you use the flash_recovery_area, configure a separate archive log destination
to accommodate the archive redo logs needed by Streams. Now, if you really want
to only have archive logs in the flash_recovery_area, take pity on the on-call DBA
and make sure that your Capture process checkpoint_retention_time intervals
are set within the archive log retention period of the flash_recovery_area.

The following views can be used to help determine what archived redo
logs are required by the Capture process and which can be purged:
V$ARCHVIED_LOG

DBA_REGISTERED_ARCHIVED_LOG

DBA_LOGMNR_PURGED_LOG

For more detailed information on flash_recovery_area
and Streams, please refer to Are Required Redo Log Files Missing?
section of Chapter 20 of the Oracle Streams Concepts and
Administration guide.

LCRs—what they are and how they work
Knowing how LCR moves from source to target is only part of the story. What an LCR
contains is also important. Let's start by going over what we know about database
transactions. Every transaction in a database is assigned a unique transaction ID.
The transaction itself can be composed of one or more DML or DDL instructions.

•
•

•

•

•

Chapter 1

[49]

Most implicit DDL LCRs will have a single DDL instruction, due to the
implicit commit nature of Oracle's handling of DDL.

Each one of these instructions is associated to its parent transaction via this ID.
When we attempt to commit a transaction, all the instructions in the transaction
must be successfully completed or the whole transaction fails/rolls back. This means
that all the DML/DDL instructions within that transaction do not get applied to
the database. Remember this. It will be important when you have to troubleshoot
situations where a user demands "Where did my data go?"

As mentioned above, an LCR is a logical change record that is created by the Capture
process. The content of the LCR is the actual steps the database took to accomplish
the change instruction(s) of a transaction. These steps are stored in a special, ordered
format that is then parsed by the Apply process to rebuild the SQL to duplicate the
original transaction. We know that a transaction can have multiple instructions, thus,
an LCR can include multiple steps. Each one of these steps is a message. When you
look at the LCR metadata (where available; usually in error queues), you will see that
each LCR has a message count, and that each message has a sequential ID.

The message itself is composed of metadata from which the Apply process builds the
SQL to accomplish the instruction. This information includes (but is not limited to)
the following:

Message ID/Sequence
Message type name: LCR or User Enqueued Message
Source database: where the LCR originated
Owner: Schema owner for the object/table which the message is changing
Object: Name of the object/table
Is Tag Null: Indicates if there are any tag values. (Y means no tag values)
command_type:

If a DML message, this will be
INSERT/UPDATE/DELETE/LOB_UPDATE

If a DDL message, this will be CREATE/ALTER/DROP/ and
so on

•
•
•
•
•
•
•

°

°

All the Pieces: The Parts of an Oracle 11g Streams Environment

[50]

Change Values:
If a DML message: You will see the old, new, and data type
values for each field in the row

The values included depend on the command type:
Command type: INSERT, you will only see new values
Command type: DELETE, you will only see old values
Command type: UPDATE, you will see both old and
new values

For special field data types, you may also see a typename value
as well (such as timestamp). If a DDL message: you will see the
actual command text.

There is additional information stored in LCRs. If you wish to familiarize yourself
with the content of LCRs you can review the Types of Information Captured with Oracle
Streams section in the Oracle Streams Concepts and Administration user's manual,
and SYS.LCR$_ROW_RECORD and LCR$_DDL_RECORD type definitions found in the
Oracle PL/SQL Packages and Types Reference manual. These types are visible to
the user for use in explicit capture and are used by implicit capture as well.

Extracting data from an LCR
For regular, implicit Streams, you will most likely only need to extract data from
an LCR in the event of an apply error. You would extract and review this data to
determine what was in the LCR to help determine what caused the error. You can
drill down to the LCRs in the Apply Error Queue using Enterprise Manager or you
can create your own procedures that use Oracle APIs to extract the LCR data (we will
go over this in more detail in Chapter 8, Dealing with the Ever Constant Tides of Change,
dealing with how to administer and monitor Oracle 11g Streams).

Conflict detection and the LCR
In an Oracle replicated environment (Streams or Advanced), Conflict detection
is always turned on. Conflict detection acts as a guard-dog to the LCR. When
the Apply process attempts to apply the changes in an LCR, it first calls Conflict
detection to verify that the change can be applied without the unexpected loss of
data at the Apply site. Conflict detection identifies the row to be changed by the LCR.
It then compares values in the LCR with the actual values in the existing row (if they
exist). Depending on the change type, if certain values don't match (also known as
data divergence), Conflict detection will attempt to find any conflict resolution rules
assigned to the Apply process.

•
°

•
°
°
°

•

Chapter 1

[51]

If none are found, or the conflict resolution rules do not resolve the conflict, the
Conflict detection will not allow the change to be applied by raising an error to the
Apply process. If this happens, the Apply process will place the LCR, along with the
error raised by Conflict detection, in the Apply Error queue.

If an LCR is placed in the Apply Error queue, the DML/DDL messages
in that LCR have not been applied to the database object. This means all
messages (DML/DDL instructions) in the LCR, not just the one(s) that
failed. If you have multiple messages in the LCR, there may only be one
message that fails, but the entire LCR transaction fails because of that one
message failure. Keep this in mind when developing your transactions.
The more messages you have in an LCR, the more difficult it is to
determine which message(s) caused the failure.
If an LCR fails, all subsequent LCRs dependent on that failed LCR will
also fail. This makes it very important to have as much understanding
about how data changes will flow through your distributed environment
before you implement production. If not carefully planned, all your
changes could easily end up in your target error queue. It also makes it
very important to faithfully monitor the Apply Error queues and address
errors as quickly as possible.

The key to conflict detection and LCR playing nicely together is planning and conflict
resolution. These activities are discussed in more detail in the following chapters.

Controlling conflict detection
As discussed earlier, conflict detection will compare all the values of all the columns
by default. You do have some control on whether or not a non-key column value
should be compared or can be ignored and when. This is accomplished with the
DBMS_APPLY_ADM.COMPARE_OLD_VALUES procedure.

This procedure allows you specify a list of non-key columns in a table that are either
included or excluded from conflict detection value comparison. Use this power with
caution! Make sure you have identified all the ramifications to data convergence if
you choose to exclude column values from conflict detection to avoid unexpected
data loss.

The key term is is "non-key columns". The DBMS_APPLY_ADM.COMPARE_OLD_VALUES
procedure will not let you exclude key columns. It will raise an error. If you
absolutely, positively, without question, must exclude a key column from
conflict detection, you will need to redefine the table's key column list using
the DBMS_APPLY_ADM.SET_KEY_COLUMNS. Again, use this with reserve.

All the Pieces: The Parts of an Oracle 11g Streams Environment

[52]

For more detailed information on Conflict Detection control, please
reference the Streams Conflict Resolution chapter in the Oracle Streams
Concepts and Administration Guide, and the Oracle PL/SQL Reference
and Types manual and Administrators' Guide.

Types of LCRs and how they get created
The method used to create an LCR determines the LCR type.

If an LCR is created by an asynchronous Capture process (implicitly) it is
a captured LCR
If the LCR is created by a user application (explicitly), by a synchronous
Capture process, or enqueued by an Apply process, it is a persistent LCR
If an LCR is explicitly created by an application and enqueued with
delivery_mode set to BUFFERED, it is a buffered LCR

Oracle 11g memory and storage
architecture (basic) relating to Streams
At this point, we want to remind you that Streams interacts with the Oracle database
architecture in many different ways. Interaction and changes to the SGA and SPFILE
should be done prior to configuration of Streams. If subsequent changes are needed,
make sure to review those changes. The isolation of tables related to LogMiner
(already mentioned above) is also part of the pre-work that should be done as part
of the Streams configurations. The location of the redo logs and archive logs and the
retrieval speed from disk or disk cache should also be considered. The retention time
of archived logs must be coordinated with Capture process SCN requirements.

The use of Automatic Memory Management (AMM) or Dynamic SGA is suggested
when configuring Streams to ease administration. One of the parameters that will
need to be configured is STREAMS_POOL_SIZE. STREAMS_POOL_SIZE controls the
size of the Streams Pool in the SGA memory. A properly sized STREAMS_POOL_SIZE
allows for proper performance of the Capture and Apply processes. Streams Pool
also stores LCRs (or messages) in buffered queues. If the Streams Pool is undersized,
you can see issues with "Spilled transactions" for the Apply. This means that the
Apply process ran out of Streams Pool and had to write the LCRs to disk until they
could be loaded back to memory. This is where an undersized Streams Pool can
have a significant impact on Streams performance. If this happens, you will see
error messages in the alert log, as well as entries in the V$BUFFERED_QUEUES.

•

•

•

Chapter 1

[53]

If you see entries in the DBA_APPLY_SPILL_TXN view, this is a result of transaction
size or age exceeding the Apply process txn_lcr_spill_threshold and
txn_age_spill_threshold parameter values respectively.

STREAMS_POOL_SIZE

Redo Logs

Archive
logs

SGA

We will go into details about configuration of the database in Chapter 3. For
now just be aware that the database needs to be configured specifically for a
Streams environment.

A word on performance
We have briefly mentioned some performance-related concerns when setting up a
Streams environment. Having robust hardware and a fast, stable network greatly
affects overall Streams performance. Configuration of the database will also have
an impact on performance. This chapter was more about understanding the key
components of Streams. In Chapter 7, Document What You Have and How it is Working,
we will go into detail about Streams performance.

All the Pieces: The Parts of an Oracle 11g Streams Environment

[54]

Streams Change tables
The current ethical climate of computing unfortunately mandates the need to identify
who made what changes to what data, when and from where. Corporations must now
comply with stringent data change auditing mandates associated with such regulations
as SOX (Sarbanes–Oxley Act), FISMA (Federal Information Security Management
Act); to name a couple. Prior to Oracle 11gR2, the Capture and Propagation of data
change audit information had to be manually included in Streamed environments.
Oracle 11gR2 introduces the DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE procedure
that allows the DBA to quickly configure a separate change audit table for a Streamed
table, as well as to propagate the change audit data from the source site to all target
destination sites. This procedure can also be used to create one-way replication of a
table along with the change capture from a source to a destination database. Change
tables can be implemented for local or downstream capture, and local or remote
apply configurations.

The DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE procedure creates all the
components necessary to capture, send, and record data change information
to the change table.

The DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE procedure is run at the capture
site and accomplishes the following:

Creates a separate change table for the change audit data
The change table can be located in the same database or a
remote database
The change table columns tracked for its source table are
based on the column_type_list
Additional audit data columns that can be added to the
change table include:

value_type

source_database_name

command_type

object_owner

object_name

tag

transaction_id

scn

commit_scn

compatible

instance_number

message_number

•
°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

Chapter 1

[55]

row_text

row_id

serial#

session#

source_time

thread#

tx_name

username

Creates a Capture process to capture source table changes
Creates a Propagation process for remote apply
Creates an Apply process at the destination site
Creates and adds DML handlers to the specified Apply process that record
change information in the change table based on row LCR information
Configures the Apply process to execute the row LCR on the remote source
table if EXECUTE_LCR is TRUE
This supports the optional one-way replication.

The following figure shows configuration with local capture, remote Apply with
Source table replication.

Source Table

LCR ch
an

ge
inf

o

Execute LCR
True

Source Database

Change Table

Target Database

Source Table

°

°

°

°

°

°

°

°

•
•
•
•

•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[56]

Before configuring change tables, you want to make decisions as to:
The type of environment to configure
The source table columns to track
If/what metadata to record
The values to Track for Update Operations (old, new)
Whether to configure a KEEP_COLUMNS transformation
Whether to specify CREATE TABLE options for the Change Table
Whether to perform the Configuration Actions Directly or with a Script
Whether to replicate the Source Table as well

For more information on Streams Change Tables, please refer to
Chapter 20, Using Oracle Streams to Record Table Changes in the
Oracle Streams Concepts and Administration 11g Release 2 Guide.
For more information on the MAINTAIN_CHANGE_TABLE
procedure, please reference the Oracle PL/SQL Packages and
Types Reference—DBMS_STREAMS_ADM: subprogram
MAINTAIN_CHANGE_TABLE.

Oracle GoldenGate XSTREAMS
With the acquisition of GoldenGate, Oracle 11gR2 incorporates GoldenGate
XSTREAMS technology providing client applications with the ability to insert
and extract LCR datatypes directly into an implicit or explicit Stream.

To use the XSTREAMS API's, you must purchase an Oracle GoldenGate
product license. See the Oracle GoldenGate documentation at http://
download.oracle.com/docs/cd/E15881_01/index.htm.

The following lists views that supply helpful information for XSTREAMS:

ALL_APPLY

ALL_APPLY_ERROR

ALL_XSTREAM_INBOUND

ALL_XSTREAM_INBOUND_PROGRESS

ALL_XSTREAM_OUTBOUND

ALL_XSTREAM_OUTBOUND_PROGRESS

•
•
•
•
•
•
•
•

•

•

•

•

•

•

Chapter 1

[57]

ALL_XSTREAM_RULES

DBA_APPLY

DBA_APPLY_ERROR

DBA_APPLY_SPILL_TXN

DBA_XSTREAM_INBOUND

DBA_XSTREAM_INBOUND_PROGRESS

DBA_XSTREAM_OUTBOUND

DBA_XSTREAM_OUTBOUND_PROGRESS

DBA_XSTREAM_RULES

XTREAMS is built on Oracle Streams infrastructure and thus can take advantage of
Oracle Streams' functionality and flexibility.

The Oracle database is configured to support XSTREAMS using the
DBMS_XSTREAMS_ADM package subprograms. Specialized server processes are
configured to handle inbound and outbound traffic to standard Oracle Streams queues.
Outbound server processes can be created to dequeue from an existing Streams queue,
or its own queue. Inbound server processes are created with their own Streams queue
which can then be configured for use via normal Streams apply rule creation. These
server processes are accessed via the OCI or Java API function interfaces.

XSTREAMS provides the ability to share information across a heterogeneous
environment with excellent flexibility, usability, and performance. This functionality
can be used as an alternative to replicating with Oracle Heterogeneous Gateways,
and Java Messaging Service (JMS) clients.

For more information on XSTREAMS, please reference the Oracle
Database XSTREAMS Guide.
Special Documentation Notes:
The DBMS_XSTREAM_ADM package is documented in the Oracle
Database XSTREAMS Guide rather than the Oracle PL/SQL Packages
and Types Reference.
XSTREAM OCI interfaces are found in the Oracle Database
XSTREAMS Guide.
XSTREAM Java API's are found in the XSTREAM Java API Reference.

•

•

•

•

•

•

•

•

•

All the Pieces: The Parts of an Oracle 11g Streams Environment

[58]

Summary
This is the foundation chapter for the rest of this book. We went over the basics
of what Streams can do and the background processes that make up a Streams
environment. Those background processes being Capture, Propagate, and Apply.
Knowing each of these processes well is crucial to implementing a robust production
level Streams environment. Not knowing these background processes can cause you
difficulties when setting up Streams and future problems. Instantiation was covered
in this chapter to point out not only what it is but to also stress its importance in the
Streams environment and its role in SCN synchronization.

Streams is also dependent on the hardware and network that it runs on. Having
properly sized hardware is within a DBA's influence. The network is often beyond
the DBA's control. As the network is so crucial to Streams, we included discussion
on the impacts of network speed and stability on Streams performance.

We also went into what an LCR is and its function. An LCR contains the DMLs
and/or DDLs that are sent from Source to Target. Not all DMLs and DDLs are
supported by Streams and we showed how to quickly identify what objects are
supported and those that are not (query DBA_STREAMS_UNSUPPORTED).

We began to go into the Oracle Architecture (and components needed to support
Streams) and Streams Performance. Chapter 7 will cover capturing Streams
performance statics because it deserves its own special place. We will go into detail
about how to configure the database in Chapter 3 to support optimal performance.
Finally, we focus on two new Oracle 11gR2 features: Streams Change tables
and XSTREAMS.

Now that we have reviewed the components of Oracle Streams Replication, let us
move on to Chapter 2 where we will explore the many, many things to consider
and options available when designing your Streamed environment.

Plot Your Course:
Design Considerations

Successful implementation starts with a well thought-out plan.

The information presented in this chapter provides guidelines on details to
be considered while designing your streamed environment. The design of an
environment is highly dependent on your business's particular data requirements.
Every business is different. While businesses may share common architectures,
the details of their data requirements can be as different, and as numerous, as
snowflakes in a snow storm (or so says Confucius, or maybe would have, if he were
alive today). The authors' goal is to point out what to look for in the details as this
will be the "meat" of your design.

In a perfect world, every Database architect and System Engineer would have
the luxury of the 80/10/10 methodology. 80% design, 10% implementation, and
10% maintenance (preferably proactive). Unfortunately, in the real world, the
methodology ends up being more like 10/40/50, with maintenance being reactive
rather than proactive. However, by taking into consideration the following design
components of your system, you can get a better idea of how much implementation
and maintenance you will have ahead of you.

In this chapter, we will cover a number of design considerations to be taken into
account before implementing your Streamed environment, including (but not
limited to):

Data ownership and movement: Who, What, When, Where, Why, and How
Resource availability and limitations
Application and business rules
Best practices
The Streams Site Matrix Design Aid

In journalism, the recipe for a good article includes "who, what, when, where, why,
and how." This same recipe can be applied to your distributed environment design.

•
•
•
•
•

Plot Your Course: Design Considerations

[60]

Why?
First, look at why you want to replicate data.

Is it only to provide an alternative identical database if the primary database
fails or becomes unreachable?
Do you need to support DML and/or query load balancing?
Must you distribute different data subsets to different locations?

Your reason could be any one, or a combination of, the above; as well as other
reasons not mentioned. Understanding why you want to replicate will actually help
you determine why you would use one tool or functionality over another. You will
need to differentiate between the efficiencies of similar tools and functionalities
available to you. The key word here is efficiencies. You may be able to effectively
accomplish your goal using one or the other, but the reason why you would want to
use one tool or functionality instead of another is determined by how efficiently the
tool or functionality allows you to accomplish your goal.

What?
Next, look at what needs to be replicated.

Do you need to replicate the whole database or just certain schemas?
Do only certain tables need to be replicated?
Of those tables are there only specific rows or columns that should
be replicated?
What changes should be replicated?
Just DML?
Which DML; inserts, updates, and/or deletes?
Do you need to replicate object structure changes, aka DDL, as well?
And again, what DDL changes need to be distributed?
Do you need to replicate dependant application objects; like packages,
indexes, views, privileges, triggers, and so on?
What are the dependencies between these objects?
Many of these objects require special handling (privileges, procedures, views,
sequences, and triggers) which means additional configuration.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2

[61]

Also look at what role each site will play. Will the site be:

A master: Changes are made at the site and sent to other sites. These sites
usually contain the full copy of the distributed data and communicate
continuously with the other master sites. Any interval between Propagation
should be relatively short to avoid data divergence.
A secondary or slave: The site contains all, or a subset of, the distributed data
and receives changes from one (ideally) or more masters. Direct changes are
rarely made at this site. If changes are made at this site, any conflicts with
master site data will result in the change being overwritten by the master
site data at the next Propagation interval.
A directed network site: A master or secondary site that receives changes
from another site, may or may not apply the change to itself, then passes
the change to another database.

A word of caution on how many sites you choose to be master sites. For each
site that you allow to be a master site, you increase your risk of data divergence
exponentially. The more master sites you allow, the more conflict resolution
definitions you will need to put into place. As the number of master sites increases,
conflict resolution becomes statistically impossible, and over all maintenance and
administration becomes unfeasible.

Understanding what you want to replicate will help you determine how much
configuration work you will have ahead of you. It will also help you identify
potential problem areas that may require special handling.

Where?
Now you want to look at where the data changes will originate and where these
changes need to be sent to allow users to access.

Will the changes only be made at one site?
At what sites will data changes be made?
Are these sites where changes are not allowed at the site, but will receive
changes from other sites?
Will a site have to pass changes that it receives from an originating site to
other sites?
Are there any special handling rules at each individual site depending on
what data is received and from where?

•

•

•

•

•

•

•

•

Plot Your Course: Design Considerations

[62]

Part of this step is also to determine if the change flow is unidirectional or
bidirectional. A unidirectional change flow means that between two sites, changes
are only made at one site and sent to the other site. A bidirectional change
flow means that changes can be made at either of the two sites and are sent
to the other site.

Network pathing is also essential to your design. In many systems, there may not be
a direct network connection between the source and target database. The network
topology may require routing the Propagation through an intermediate database.
This is known as a directed network environment. While the intermediate database
may be used to route the change, you may or may not need or want to apply
the change at that database. If the change is not applied but "passed" to another
database; this is known as a "pass-through" transaction.

Is there a direct network path between the source and target database or does
Propagation have to flow through an intermediate database?
Do changes need to be applied to intermediate databases?

Again, understanding where changes are being made, sent, and applied will help
you determine how much configuration work you will have ahead of you. You will
identify any special handling rules that will need to be defined at each site. This
step dictates which sites must be configured for capture, which sites to configure
propagation, and which sites must be configured for apply. You also take it down
a level by determining any special tagging and/or transformation and handling
rules that need to be defined and coded for each of the capture/propagate/Apply
processes and directed networks.

Who and How?
The next step is to look at who will use the data and how they will use it. When you
design your Streamed environment, take into account considerations such as.

Will some users only need to query (read) the data?
Which sites will create the data?
Which sites will be allowed to change or delete the data?
If data diverges, which version of the data is kept and which is overwritten?

In short, who owns the data? Let's talk about what this means.

Data ownership refers to the right to create, change, or delete data. Data ownership
can be described by a level and model.

•

•

•

•

•

•

Chapter 2

[63]

Data ownership can be enforced at the site, user, and table levels. Table level
ownership can be further subsetted at the row (horizontal) and column (vertical)
levels. For instance, regional databases may have access to personnel data, however,
only headquarters can make changes to the data (Site level). A further limitation
could be that only HR employees are allowed to change the data (user level).
However, these HR employees are only allowed to change HR data (table level). Of
these HR employees, only those HR employees responsible for a division can change
the records for the employees in that division (row level/horizontal). And one last
limitation, only the division lead can change the salary and bonus fields for those
employees (column level/vertical).

Data ownership models are more specific to the site level of ownership. Single-Site
ownership means that only one site in the distributed environment is allowed to
make changes to a piece of data. A standalone Oracle database provides single-site
ownership enforcement by default. Dynamic ownership is a single-site ownership
model, but the ownership moves to the transaction site that is changing the data at a
point in time. A master-slave distributed configuration is indicative of the dynamic
ownership models. These models avoid data conflict by limiting data changes to
a single "owner". If data changes are made at the slave sites, they are overwritten
when the master site sends its data down to the slave site. This ensures that all
users will have the same picture of the data when the master change is committed
and distributed. Shared ownership means that anyone can update the same piece
of data at any time, at any site. A multi-master environment with asynchronous
distribution is indicative of a shared ownership model. This model can lead to data
divergence and conflicts, as multiple owners could be making different changes to
the same data at different sites. Once these changes have been committed, the data
diverges between the sites. For distributed environments using a shared ownership
model with asynchronous propagation, you must implement some method of
conflict resolution to reconcile the data conflicts. The conflict resolution will dictate
what changes are kept, or discarded in the event of data change conflicts. Oracle's
Replication provides support for the dynamic and shared ownership models.

Put the where, who, and how together and you get Single-Site ownership with
unidirectional change flow or Dynamic and Shared ownership with bidirectional
change flow. Amazing how it all comes together!

Distinguishing between who owns the data, and who will just use the data, will
drive how changes flow through your distributed system and where capture
and Apply processes must be configured. It will help you determine what conflict
resolution rules are required. Each site Apply process must be configured to enforce
these rules. It will also influence your table design in that you must make sure
you have the necessary columns in the table to support the conflict resolution
method implemented.

Plot Your Course: Design Considerations

[64]

When and How?
Once you have determined why and what you are replicating and to which sites,
you want to look at when the data needs to be delivered to each site and how to
keep the data synchronized between all the distributed sites. This will help you
determine your propagation schedule and method. We have already explained what
Propagation means in Chapter 1, All the Pieces: The Parts of an Oracle 11g Streams
Environment. Now, let's dig a bit deeper and look at how Propagation and data
synchronization interrelate.

Data Propagation is one aspect of data synchronization; conflict detection and
resolution are the other two aspects.

The two methods of data Propagation are Synchronous and Asynchronous.

 Synchronous propagation is a distributed transaction in its truest form. All sites have
to "agree" to commit the change before it can be committed anywhere; including the
originating site. This means that all sites take out a lock on the piece of data until the
transaction is committed at all sites. While the distributed transaction has a lock on
the data, no other processes can modify that data. Thus, synchronous propagation,
enforces the dynamic ownership model, and ensures immediate data synchronization.

Due to the "all or nothing" commit of synchronous propagation, it is not
recommended for use between any two sites that have intermittent or unstable
connectivity. If any site involved in the transaction is not reachable, the transaction
cannot be committed anywhere, even at the origination site. This can have a
significant negative impact on work flow and business productivity. Synchronous
propagation should only be used for business data requiring immediate transactional
consistency (for instance, banking, tickets/reservations, financial, and so on). In these
cases, network connectivity, and stability must be of paramount design focus.

With this said, remember that Streams replication is, by nature, asynchronous.

Asynchronous propagation allows autonomy between the replicated sites, but
still supports eventual data synchronization via the autonomous distribution of
a copy of the transaction to each site. Asynchronous propagation also allows data
divergence. Asynchronous propagation allows a change to be committed at the
originating site without "agreement to commit" from the other sites where the change
will be sent. This means that over some amount of time, the data between the sites
will temporarily diverge. If a user changes the same piece of data at a target site
before the previous change is received, it will cause a permanent divergence of data
that will require conflict resolution when the initial change is received and applied at
the site.

Chapter 2

[65]

This means that special attention needs to be paid to when you schedule your
asynchronous propagation between sites to avoid permanent data divergence. If
your change flow is unidirectional, your propagation schedules may be more relaxed
in Single-Site ownership models. However, if your change flow is bidirectional , you
will want to reduce Propagation lag as much as possible.

To help determine when and how you will distribute data changes throughout your
distributed system, take into account the following:

Does your business require synchronous propagation?
Which sites require synchronous propagation?
What will the business impact of the temporary data divergence in an
asynchronous distribution environment be and is it acceptable?

Other factors to consider
Now that you have looked at the core factors of your design, you need to turn your
attention to extraneous factors that will have an impact on your environment. Some
of these factors will play a major role in determining your design while others a
minor role. Either way, include these factors in your design consideration, and
you will be glad you did.

Network capabilities
You always want to know what your network capabilities will be from the start.
Network bandwidth and stability—we just can't say it enough—is the key. If you
have a low network bandwidth, the connection may bog down or collapse with the
push of a large number of changes. Unstable networks mean unstable propagation
and higher risks of data loss. Also, look at network traffic high and low peaks. Can
you relieve network workload by propagating at low peak hours?

Another factor is the site or data location and availability. Once again, network
limitations come into play. Look at the geographic location and associated WAN/
LAN performance. Are there any "Window" limits; when and how long connections
can be made. If the Propagation cannot complete within the scheduled amount of
time, repeated failures will disable the Propagation all together.

Avoid scheduling Propagation to sites that have limited or intermittent connectivity
(laptops, mobile users). This can cause queue back up and slow propagation to
other sites scheduled to propagate from the same queue. Consider creating separate
capture queue(s) for sites with limited or intermittent connectivity. Or, consider
materialized views as part of your distributed environment. Materialized views
are alive and well in 11g and can greatly enhance the flexibility of your streamed
environment by accommodating those "hard to reach places".

•
•
•

Plot Your Course: Design Considerations

[66]

Transaction sizes
Be cognizant of transaction sizes (the LCR message count). Remember that basic
Streams replication is at the row level and generates a message for each row
changed. If the transactions are large bulk updates, consider user enqueued
procedure calls as an alternative to large row level LCR's. This may require more
application coding, but will alleviate issues encountered by LCR with a large
number of messages. You will need to include conflict detection and resolution
in the procedure code as well as tags to avoid change cycling.

Potential queue growth
Be aware of the rate at which LCR's are enqueued and dequeued. Queue growth is
the biggest factor here. If the Propagation and Apply process dequeue cannot keep
up with the enquiring, the queues will keep growing. This can cause buffered queues
to spill on to the disk, and persistent queues to require additional extents. Network
speed and stability plays a large role in allowing the queue operations and size to
remain consistent.

Additional hardware resource requirements
You also want to understand your hardware system requirements when planning
your streamed environment. Streams replication requires additional resources
such as:

System O/S resources: More memory (shared pool) and
O/S processes/threads
Disk space: You will need more storage for structures (queues, streams
metadata, additional rollback, and so on)
CPU time: Streams generates additional background processes that require
CPU. Those processes are listed next:

Propagation is CPU intensive
Near-Real time constantly uses CPU
If you plan to use parallelism—this means multiple processes
are using CPU as well as the associated dependency tracking
Heavy DML means larger data transfers are using more CPU

Things to watch out for that cause CPU and other resource contention:
Avoid conflicts with other CPU intensive operations
Avoid propagation during hot backups

Every system is different; testing is the best way to determine the impact
of Streams on CPU resources

•

•

•

°
°
°

°
•

°
°

•

thaiha
Highlight

Chapter 2

[67]

Administration and maintenance costs
Don't underestimate your administration costs. Enterprise Manager offers a number
of features to help reduce the time and effort in the actual implementation and
maintenance of a Streamed environment. However, it is only a tool. The blue-print
comes from the design and planning stage. This will, and should be, where the bulk
of your time is spent.

The activities to include in your plan are:

Implementation:
Design: Global and single site designs must be developed to meet the goals of
the Streamed environment.
Setup: Each site must be configured for its role in the environment; master,
secondary, pass-through, and so on.
Backup and recovery:
Design: The backup plans need to be designed to allow for the most efficient
and effective recovery for foreseeable failure scenarios.

Test: The backup and recovery procedures should be tested to ensure restorable
backups and successful resynchronization.

Schema/application changes:
Design: The schema and application changes will have global and single site
impacts. These impacts must be studied and incorporated in the design.
Test: All changes should be tested globally and singularly to avoid
implementation problems.

Setup: Changes must be implemented at all required sites in such a way that
structure and data divergence are kept to a minimum.
Resynchronization of Diverged Data: Propagation failures can cause data
divergence and manual review, recovery, and resynchronization may be
required. Additional administration is required for continual monitoring
of the apply error queues. The erred LCRs will need to be reviewed to
determine the cause of the error, the cause corrected, and the LCR reapplied.
This can be very time consuming; especially if the conflict resolution has not
been adequately defined.
Database Tuning: Streams introduces additional processes and resource
consumption. Tuning may need to be revisited after instantiating Streams
and as the environment matures.

•

•

•

•

•

Plot Your Course: Design Considerations

[68]

The administration of a streamed environment requires extra hours from the DBAs
to monitor the system and streamed sites. These DBAs will require specialized
training to understand how to keep the system and Streams healthy.

Third party application requirements
In the event that your distributed environment is configured as part of an
implementation of a third party technology stack, make sure you understand the
full scope and design of that implementation. Review your third party application
documentation to identify how Streams replication is implemented, and used by
the application, what database user accounts and schemas are created and what
privileges are granted to what accounts.

Security
Database security requirements should be reviewed. Certain database users must
be created to administer the streamed environment, and capture, send, receive, and
execute the LCR's. These users require a higher level of database privileges than
the normal application end user. This must be taken into consideration along with
the environment's security requirements. The basic security models that can be
implemented are Trusted and Untrusted:

Trusted: This model implements lower security measures. One user is
usually configured to administer the environment as well as capture,
propagate, and apply the LCR's. This user has access to all stream queues
at all sites, as well as being able execute any procedure. This results in
decreased security, but allows for increased flexibility.
Untrusted: This model separates the administration, capture, send, receive,
and execute roles and privileges between different users. This allows each
user to be only granted those privileges needed to accomplish their particular
role. This results in higher security, but less flexibility in the overall Stream
flow. It also requires additional implementation and design coordination.

Keep in mind that the replication of data within a Streams distributed environment is
at the database level. It is highly recommended that the user accounts configured to
support Streams replication be specifically and exclusively assigned for the task and
separate from all other database and third party application database user accounts.
This is due to the level of access to database objects that must be granted to the
Streams users. This access level, if granted to application user accounts, could
result in unexpected and unknown security loopholes that can be exploited.

•

•

Chapter 2

[69]

Change auditing
When using Oracle Streams, regular Oracle auditing will not capture the same
change audit information from the originating site at the apply site. You can expect
that change audit information will be specific to the Apply process that is applying
the change at the destination site. In cases where you need to track change audit
information throughout a Streamed environment, it can be done by including the
change audit information as fields in the replicated tables that are associated with
the changed data. This can be accomplished in a number of ways. The main focus
is that, if the change audit data needs to be persisted throughout the distributed
environment, the structure of the change audit data should be included in the
replicated data model and the collection of the required data values supported at the
application level and persisted with the associated changed data. In Oracle 11gR2,
you can use the DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE feature as discussed
in Chapter 1.

Platform and version compatibility
Database platform compatibility and interoperability will have an impact on your
design. If your system is homogeneous (All Oracle), it is preferable, and highly
recommended, to have all Oracle databases on the same release and patch level.
Overall capability of the Streamed environment is limited to the capabilities of the
lowest Oracle version.

If your system is heterogeneous (Oracle and Non-Oracle), you will need to
accommodate special configuration. Streaming between Oracle and non-Oracle
platforms is supported via Oracle Gateway and user enqueued messages. Capture
and apply queues and processes will always be on the Oracle database. Be cognizant
of data type conversions and special handling that may be required when using
Oracle Gateway connectivity.

KISS
Keep it simple and sweet. The greatest advantage that Streams has over Oracle's
Advanced Replication is its flexibility. The golden rule of functionality is that with
flexibility comes complexity. Flexibility is not a bad thing; you just need to plan for
the additional complexity that implementation and maintenance will incur. One way
to reduce complexity is to use the most efficient tool for the job. Do your research
and choose your foundation and tools wisely (no doubt, the tower builders in Pisa,
Italy would tell you the same).

Plot Your Course: Design Considerations

[70]

A special note on Streams versus Data Guard.

In the Why? section, we discussed understanding why you would choose one tool
over another tool to accomplish your goal. The key word we used in that discussion
was 'efficiencies'. While you may be able to use either tool to accomplish your goal,
one tool may be more efficient than the other.

A note about using Streams versus Data Guard to support a redundant failover
system. A redundant failover system is by design, single-site ownership with
unidirectional change flow.

If your main purpose is to provide a redundant failover system, do yourself a
favor and avoid making mortal enemies of the production DBAs; use Data Guard's
physical standby database. If you wish or need to access the standby for queries as
well, use Data Guard's logical standby database—it is built on the same Streams
apply technology (sent via remote procedure calls rather than advanced queues).
However, Data Guard enforces single-site ownership without you having to
define conflict resolution and error handling rules as you must do with Streams.
This recommendation is not made lightly. Oracle highly recommends Data Guard
over Streams for the purpose of a redundant failover site, and has done so since
the inception of both technologies. Data Guard physical and logical standby
functionality is included in the Enterprise License just as Streams, so there is no extra
cost. Enterprise Manager Grid Control provides setup and maintenance support
for Data Guard just as for Streams. Since Logical Standby and Streams use the same
underlying technology, your data type and DDL limitations are about the same, as
well as your network dependencies. The main difference is that there is less work in
setting up and maintaining, and DBA's will have less work in monitoring the system.
And maybe, they even thank you for the available automated switchover/failover,
and database recovery capabilities that Data Guard provides (I know I would). Data
Guard is designed to focus on zero or minimal data loss in the case of switchover/
failover, this is not the main focus of Streams.

If you use Streams, you will need to incorporate the development and implementation
of conflict resolution rules for each piece of data that is replicated. In some cases, one
rule may be sufficient for all data. In other cases, you will need to differentiate how
change conflicts are resolved based on data ownership requirements.

Streams is not a "set and forget" environment. It must be continually monitored to
ensure transactions are successfully captured, propagated, and applied at all sites.

Chapter 2

[71]

Recovery and resynchronization of a failed or lost site may require a full re-
instantiation of the site was well as data. Remember, Streams does not guarantee
zero or minimal data loss in the case of failure. Depending on the number of objects
replicated, capture, propagation, and apply rules defined, and amount of data, this
could take anywhere from minutes to days. Special consideration and procedures
must be followed if a point-in-time recovery is necessary.

Think of Streams versus Data Guard this way: yes, you can use Streams to provide a
redundant failover system. But would you use a butter knife to cut a steak? Yes, you
could do it, but you'd have to work a lot harder than if you used the steak knife that
is in the same drawer (over to the left, next to the dinner forks).

Never say never: Now, the above recommendation does not intend to imply that you
cannot or should not use a streamed database that has been configured to support
shared ownership as a fail-to instance should a primary site fail. If it is there, and
maintains data consistency at the required level, go ahead and use it. Every business
circumstance is different. In some circumstances you may decide you want to use
Streams to support a redundant failover system. Just think twice about implementing
Streams specifically to support a redundant failover system rather than Data Guard.

Design aid: Streams site matrix
If a picture is worth a thousand words, then a matrix should be worth at least 500.
This section discusses the use of a handy-dandy little tool that we like to call the
Streams Site Matrix. This matrix provides a visual summary of who sends what
where, and who's changes get applied to where and how. Overall, this matrix,
when combined with the design considerations, helps you more accurately predict
the level of effort to implement Streams and identify, early on, potential data and
design conflicts, as well as identify resource requirements and potential limitations.
For instance, from this matrix, you can accurately provide information concerning
necessary hardware, Oracle licensing, network connections needs to your system
architects; necessary user application data values to support the distributed data
model, and optimal DML transaction behavior to your software architects; and,
additional data fields necessary to support conflict resolution, and change audit
throughout the distributed environment to your data architects. The Matrix also
provides a succinct, organized list of the Capture, Propagation, and Apply processes
and queues, advanced functionality such as conflict resolution, transformations, and
so on, needed for each site.

Plot Your Course: Design Considerations

[72]

The Matrix template
First, let's talk about the matrix template. The template shown here provides
a starting point. It highlights the main components of our intended Streamed
environment. As you work through your own designs, feel free to modify and
expand the template to reflect information that makes the most sense to you and
your business. Add more detail as you develop your design. You will find that doing
so produces an excellent overview to include with your environment documentation.

Chapter 2

[73]

Our template begins with listing information in the first couple of rows that help us
understand the type of replication environment we are designing: Adding Single-
Source schema level replication for the HR schema where STRM1 is the master site and
STRM2 is the secondary site. Artistic license is allowed, modify this section as needed
to show information that is helpful to you and your business; but DO show it.

Streams Site
Matrix for:

Replication
Level: Schema Color Key: Existing
Name: HR Add/Remove
Add/Remove: Add Comment: Single Source

STRM1 master to STRM2
secondary

Then we begin our matrix.

In column A, we list out each site that needs to be configured for Streams, listing the
three streams processes under each site section. Column B lists specific information
that we want to identify for each Streams process at that local site. For instance,
process and queue names, whether or not the process includes DDL, has associated
advanced components like transformations rules, tags, and so on (covered in
Chapter 6, Get Fancy with Streams Advanced Configurations), and conflict resolution
(for Apply processes only—covered in Chapter 5, N-Way Replication). If you are
replicating tables rather than schemas, you may want to include a link to a list of
tables associated with each process. Again, show information that is helpful to you
and your business.

Local Sites
STRM1
Capture Process Name:

Queue Name:
DDL (Y/N):
Transformations:
Table list

Propagate Process Name:
From Queue Name:
To Queue Name:
DDL (Y/N):
Transformations:

Plot Your Course: Design Considerations

[74]

Apply Process Name:
Queue Name:
DDL (Y/N):
Transformations:
Conflict Resolution

STRM2
Capture Process Name:

Queue Name:
DDL (Y/N):
Transformations:

Propagate Process Name:
From Queue Name:
To Queue Name:
DDL (Y/N):
Transformations:

Apply Process Name:
Queue Name:
DDL (Y/N):
Transformations:
Conflict Resolution

One variation here would be that you have multiple Capture processes. To show
this, add a sub-section for each Capture process, like so:

STRM1
Capture Process Name:

Queue Name:
DDL (Y/N):
Transformations:

Process Name:
Queue Name:
DDL (Y/N):
Transformations:

Chapter 2

[75]

Propagate Process Name:
From Queue Name:
To Queue Name:
DDL (Y/N):
Transformations:

Apply Process Name:
Queue Name:
DDL (Y/N):
Transformations:
Conflict Resolution

In the subsequent columns, list each database site that is a member of the
distributed system.

Remote Site

STRM1 STRM2

As we move across the columns, we record what needs to be created at this local site
for each of the processes in the appropriate column for the remote site. If the local
site does not interact with a remote site, leave the remote site column blank (showing
which sites do not interact is just as important as showing what sites do interact). If
the "local" Site is the same as the "remote" site, don't worry that it is not technically
"remote" (if you are that detail—oriented—a.k.a "anal"; might we recommend taking
up a right-brained hobby such as Yoga?). This is a great section to record the Capture
information for the Local Site. Think of it as "we are setting up capture AT this site,
FOR this site".

Let's define our Single-Source design (See Chapter 4, Single-Source Configuration,
for actual implementation). As mentioned, this design is just a simple 2-site,
Single-Source environment. STRM1 is the site where changes are made. STRM2 is
the secondary site to which we will replicate these changes. This means we need a
Capture process and queue at STRM1 for the HR schema, and a Propagation process
at STRM1 (to STRM2) that will be from queue-to-queue. We also need an Apply
process and queue at STRM2. Since this is a Single-Source configuration, we do not
need to create any capture or Propagation processes on STRM2, or an Apply process
on STRM1. This not only reduces the internal operations for replication, it protects
the data at STRM1 from potential changes made at STRM2. We will call our Capture
process SCHEMA_HR_CAPTURE and assign it to the SCHEMA_HR_CAPTURE_Q queue.
We will call our Apply process SCHEMA_HR_APPLY and assign it to the SCHEMA_HR_
APPLY_Q queue. Our Propagation process name will be SCHEMA_HR_PROPAGATION,
and will propagate from the SCHEMA_HR_CAPTURE_Q queue at STRM1 to the SCHEMA_
HR_APPLY_Q queue at STRM2. We want to include DDL changes in this stream, so we
will show this for all processes as well.

Plot Your Course: Design Considerations

[76]

Based on this, let's fill in our Site Matrix:

First, the Capture at STRM1:

Remote Sites
Local Sites STRM1 STRM2
STRM1
Capture Process Name: SCHEMA_HR_CAPTURE

Queue Name: SCHEMA_HR_CAPTURE_Q
DDL (Y/N): Y
Transformations:

Next, the Propagation at STRM1 to STRM2:

Remote Sites
Local Sites STRM1 STRM2
STRM1
…

Propagate Process Name:
SCHEMA_HR_
PROPAGATION

From Queue Name: SCHEMA_HR_CAPTURE_Q
To Queue Name: SCHEMA_HR_APPLY_Q
DDL (Y/N): Y
Transformations:

And finally, the Apply at STRM2:

Remote Sites
Local Sites STRM1 STRM2
STRM2
…

Apply Process Name: SCHEMA_HR_APPLY
Queue Name: SCHEMA_HR_APPLY_Q
DDL (Y/N): Y
Transformations:
Conflict Resolution

Chapter 2

[77]

The completed Streams Site Matrix appears as follows:

Even though we will not be sending changes from STRM2 to STRM1, we still need
to consider that changes can be made (whether intended or not) directly at STRM2
that can result in data conflicts and apply errors for changes from STRM1. While
we don't address it in this example, you would want to implement some form of
conflict resolution to avoid having to continually monitor for these conflicts (the
OVERWRITE method would be recommended here). See Chapter 5 for discussion
on conflict resolution.

Plot Your Course: Design Considerations

[78]

Let's now expand this concept to show an N-Way Replication configuration
(See chapter 5 for actual implementation). In this configuration, we are going to
replicate a single table EMPLOYEE in the LEARNING schema. DML and DDL changes
to the table can be made at either STRM1 or STRM2 and replicated to the other master
site. Since data changes can be made at either site, as good DBAs we know we need
conflict resolution defined for our Apply processes. Our business rules tell us that
the latest change should "win" in the case of a data conflict so we will implement
maximum—time resolution (a.k.a. latest timestamp resolution for all you Advanced
Replication buffs).

Our Streams Site Matrix appears as follows:

The Streams Site Matrix provides a simple yet elegant visual aid. From here you can
develop your level of effort and resources requirements, detail level blueprints, and
understand what you need to implement your Streamed environment.

Chapter 2

[79]

Summary
While Chapter 1, is the foundation chapter for the rest of this book, Chapter 2 is the
blue print chapter. In this chapter, we went over the major design considerations to
take into account when designing your distributed environment.

We discussed the who, what, when, where, why, and how factors to consider for
your replicated system. Why are you replicating? What are you replicating? Who
will use the data and how? Where are you replicating to and from? How will
you propagate the data between sites and when? How will you handle the data
divergence between sites? Taken on-board together, this all helps you to determine
the most efficient tools and functionality to employ in your design. It also helps you
predict the time and effort needed to implement the environment, and subsequently
maintain the environment.

The number one goal of a successful Streamed environment is to avoid data
divergence. Data divergence leads to data conflicts, and data conflicts lead to
unsynchronized data mayhem in a distributed environment. Establishing overall
business rules for data ownership and change flow is the precursor to understanding
what your conflict resolution design will require.

We also looked at additional considerations that you will want to take into account.
These included network connectivity, propagation volume (transaction size and
queue growth), database security and user privileges, database platform and version
compatibility, additional hardware resource requirements, administration and
maintenance costs, and the flexibility-to-complexity factor (using the best tool
for the job).

The Streams Site Matrix was introduced and demonstrated to show us how to
succinctly organize and visualize the sites and components needed to build your
distributed environment using Oracle Streams technology.

Now that we have plotted our course, we next turn our attention to the vehicles we
will use to get there. In Chapter 3, Prepare the Rafts and Secure Your Gear: The pre-work
before configuring Oracle 11g Streams, we will properly set up the database and make
the necessary configuration changes to support a Streams environment. We will go
over the changes and provide the reasons for those changes. We won't go into all
the minute details and bore you with too much analysis of mundane configurations.
If you wish additional information, please refer to the Oracle Streams Concepts and
Administration Manual and the Oracle Streams Replication Administrator's Guide.

We now know what we need to build and the tools we have available to us
for building it, so let's start configuring the database! (Ok, maybe take a quick
bio-break first.)

Prepare the Rafts and Secure
Your Gear: The pre-work

before configuring Oracle 11g
Streams

Chapter 2 provided the insight needed to design and plan a Streams environment
and "chart" the course of our distributed environment. This chapter takes the next
step of preparing your "vessels", also known as databases and servers. The basic
source and target server and database configurations for Streams are the same.
In this chapter, we address the verification and configuration of the following:

Network connectivity
Database parameters and logging settings
Stream Administrator user and privileges
Data Pump and Instantiation preparation
Optional creation of the Oracle Example schemas

At this point, the assumption is that you have already created your databases at each
site involved in the Distributed Environment. This could have been accomplished
with the Oracle software installation, or later using the Database Creation Assistant,
or your own custom scripts. It is also assumed that you are able to connect to each
database as SYSDBA.

For more information on creating an Oracle Database, please reference the
Creating and Configuring an Oracle Database chapter in the Oracle Database
Administrator's Guide.

•

•

•

•

•

Prepare the Rafts and Secure Your Gear: The pre-work before configuring Oracle 11g Streams

[82]

Network connectivity
We mentioned earlier in Chapter 1 and Chapter 2, how important having a stable
and reliable network is to the Streams environment. Without this comlink you just
have a Source and Target with no ability to "stream" the data over the wire. Knowing
this, having a good working relationship with the Network Administrator is vital.
Network Administrators have additional tools and methods that can influence the
performance of Streams. The Streams Administrator or DBA does not know the
network path taken by the data from Source to Target unless a situation causes the
question to come up. Be proactive, work with the Network Administrators, and ask
the following questions:

How does this data packet move from Source to Target?
What is the typical network speed along that path?
Is this a dedicated path?
Is the network shared?
What are the usage patterns of the network?
Are there times when we can expect the network to be slower?

These questions are not the fun ones that most Network Administrators like to hear.
However, by being proactive and knowing about your network performance, you
will avoid headaches in the future. Just think of it this way: you can have a perfect
Streams setup, but the data still has to cross the network and it is difficult to move
a mountain of data through a straw-size network. Believe us; we have tried it too
many times!

Streams uses the network in the Propagation process. When we define Propagation
we will reference a dblink. That dblink uses the destination database global_name,
and either an entry in the tnsnames.ora file or a tns descriptor. We will provide
full examples of this configuration in Chapter 4, Single-Source Configuration,. For
now, it should suffice to say, that the performance of Streams is dependent on the
performance of the network. As Streams Administrators or DBAs, we do not usually
get to tune the network, so work with your Network Administrators. We take ours
out to lunch to stay on his good side!

Check the waterways
The use of basic network tools such as ping and tracert can be used to determine
network capabilities. Here are some examples of ping and tracert that should be
run from the Source host (to the destination):

ping <IP ADDRESS>
tracert <IP ADDRESS>

•

•

•

•

•

•

Chapter 3

[83]

where <IP ADDRESS> is the IP address of the Target host. You may also want to run
the same test going from Target host to Source host. Please also check with your
Network Administrator as he/she may have additional tools and techniques to
measure network performance that are already being used.

The following is a ping from IP 129.193.117.13 to 129.193.117.14 on Linux/Unix:

[oracle@dev-db01 ~]$ ping 129.193.117.14

PING 129.193.117.14 (129.193.117.14) 56(84) bytes of data.

64 bytes from 129.193.117.14: icmp_seq=1 ttl=64 time=0.103 ms

64 bytes from 129.193.117.14: icmp_seq=2 ttl=64 time=0.091 ms

64 bytes from 129.193.117.14: icmp_seq=3 ttl=64 time=0.089 ms

64 bytes from 129.193.117.14: icmp_seq=4 ttl=64 time=0.088 ms

64 bytes from 129.193.117.14: icmp_seq=5 ttl=64 time=0.089 ms

64 bytes from 129.193.117.14: icmp_seq=6 ttl=64 time=0.091 ms

64 bytes from 129.193.117.14: icmp_seq=7 ttl=64 time=0.088 ms

64 bytes from 129.193.117.14: icmp_seq=8 ttl=64 time=0.089 ms

64 bytes from 129.193.117.14: icmp_seq=9 ttl=64 time=0.090 ms

64 bytes from 129.193.117.14: icmp_seq=10 ttl=64 time=0.090 ms

64 bytes from 129.193.117.14: icmp_seq=11 ttl=64 time=0.088 ms

64 bytes from 129.193.117.14: icmp_seq=12 ttl=64 time=0.088 ms

64 bytes from 129.193.117.14: icmp_seq=13 ttl=64 time=0.087 ms

64 bytes from 129.193.117.14: icmp_seq=14 ttl=64 time=0.089 ms

64 bytes from 129.193.117.14: icmp_seq=15 ttl=64 time=0.089 ms

64 bytes from 129.193.117.14: icmp_seq=16 ttl=64 time=0.088 ms

64 bytes from 129.193.117.14: icmp_seq=17 ttl=64 time=0.088 ms

64 bytes from 129.193.117.14: icmp_seq=18 ttl=64 time=0.088 ms

64 bytes from 129.193.117.14: icmp_seq=19 ttl=64 time=0.089 ms

64 bytes from 129.193.117.14: icmp_seq=20 ttl=64 time=0.090 ms

64 bytes from 129.193.117.14: icmp_seq=21 ttl=64 time=0.088 ms

64 bytes from 129.193.117.14: icmp_seq=22 ttl=64 time=0.089 ms

--- 129.193.117.14 ping statistics ---

22 packets transmitted, 22 received, 0% packet loss, time 21000ms

rtt min/avg/max/mdev = 0.087/0.089/0.103/0.009 ms

Prepare the Rafts and Secure Your Gear: The pre-work before configuring Oracle 11g Streams

[84]

Pay particular attention to the summary results at the end.

The result of running tracert from 172.26.12.12 to 172.26.13.23 shows two "hops "
in the network between two servers.

[root@db01 ~]# tracert 172.26.13.23

traceroute to 172.26.13.23 (172.26.13.23), 30 hops max, 40 byte packets

1 172.26.12.1 (172.26.12.1) 0.948 ms 1.220 ms 1.462 ms

2 db02.apgtech.com (172.26.13.23) 0.157 ms 0.171 ms 0.171 ms

The following shows examples of the ping and tracert commands on Windows:

C:\>ping 209.191.92.52

P��������������������� ���������������������� inging 209.191.92.52 with 32 bytes of data:

Reply from 209.191.92.52: bytes=32 time=53ms TTL=52

Reply from 209.191.92.52: bytes=32 time=54ms TTL=52

Reply from 209.191.92.52: bytes=32 time=52ms TTL=52

Reply from 209.191.92.52: bytes=32 time=54ms TTL=52

Ping statistics for 209.191.92.52:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 52ms, Maximum = 54ms, Average = 53ms

C:\>tracert 209.191.92.52

Tracing route to f20.www.mud.yahoo.com [209.191.92.52]

over a maximum of 30 hops:

(Notice this IP takes over 30 hops! What gets output is the starting IP, and then
the last 13 hops. The Request timed out on hop 2, and this is the one-liner
catch-all for all the other hops)

 1 <1 ms <1 ms <1 ms <ip>

 2 * * * Request timed out.

 3 9 ms 11 ms 9 ms ge-2-3-ur01.....net [<ip>]

 4 12 ms 11 ms 11 ms te-0-2-0-1-ar02.....net [<ip>]

 5 10 ms 11 ms 11 ms <ip>

Chapter 3

[85]

 6 25 ms 26 ms 26 ms pos-0-3-0-0-cr01...net [<ip>]

 7 46 ms 43 ms 51 ms pos-1-7-0-0-cr01...net [<ip>]

 8 53 ms 53 ms 53 ms <ip>

 9 44 ms 42 ms 44 ms <ip>

 10 52 ms 54 ms 52 ms <ip>

 11 51 ms 52 ms 52 ms <ip>

 12 52 ms 53 ms 52 ms ae2-p111.msr2.mud.yahoo.com [<ip>]

 13 58 ms 53 ms 52 ms te-9-2....yahoo.com [<ip>`1]

 14 54 ms 52 ms 52 ms UNKNOWN...yahoo.com [<ip>]

 15 53 ms 52 ms 52 ms f20.www.mud.yahoo.com [<ip>]

Trace complete.

Here are some suggestions on how to establish a baseline on the network that
you have.

Use ping command to see how long it takes to reach the TARGET from the
SOURCE node
Use tracert to determine which route packets cross the network
Work with the Network Administrator to determine if there are different
times when network performance changes

Configure the Oracle Net "Current"
Next, make sure that your Oracle Net files are configured to allow connectivity to
and between the databases.

TNSNAMES.ORA: This file provides aliases that can be used for client
connections. The aliases can be for local and remote databases.
Special considerations: In many cases, the aliases contained in the
tnsnames.ora files are configured with multiple addresses in the address
list to accommodate high availability client failover. In the case of a Streams
connection, we do not want to redirect our connection to a different database.
So, if needed, add a single address tnsnames alias to the tnsnames.ora to be
used by Streams connections.
Example of basic tnsalias entries:
STRM2 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=TCP)(HOST=DB_SRV2)(PORT=1521))
 (CONNECT_DATA =

•

•

•

•

Prepare the Rafts and Secure Your Gear: The pre-work before configuring Oracle 11g Streams

[86]

 (SERVER = DEDICATED)	
 (SERVICE_NAME = STRM2)
)
)

STRM1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=TCP)(HOST=DB_SRV1)(PORT=1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = STRM1)
)
)

SQLNET.ORA: This file provides client/server connection parameters that
control client access and database connectivity.
Special considerations: If your server side SQLNET.ora is set up with
INVITED_NODES, make sure to add the server IP or DNS name of all
servers that host databases that will be connecting to the local database(s),
to the invited nodes list. Otherwise, SQLNET will not allow the database
links to connect to the database.
Example of sqlnet.ora entries:
SQLNET.AUTHENTICATION_SERVICES = (NTS) --Windows only

AUTOMATIC_IPC = OFF
TRACE_LEVEL_CLIENT = OFF
NAMES.DEFAULT_DOMAIN = mydomain.com
#SQLNET.CRYPTO_SEED = "12101751101259991325"
NAMES.DIRECTORY_PATH = (TNSNAMES)

TCP.VALIDNODE_CHECKING = YES
TCP.EXCLUDED_NODES= (138.3.33.33, NODB.mydomain.com)
TCP.INVITED_NODES=(localhost, DB_SRV2.mydomain.com)

LISTENER.ORA: This file provides connection information to the local
databases on the server. All client connections to a database come in through
a listener process (with the exception of bequeath connections, but we don't
use those here).
Special considerations: Make sure listener processes are configured to
start automatically if the server is rebooted. Otherwise, Streams (and other
client) connections cannot be established with the database, even though
the database may be up and running after reboot.

•

•

Chapter 3

[87]

Example of Basic Listener.ora entries:
SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = strm1)
 (SID_NAME = strm1)
)
)

LISTENER =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=TCP)(HOST=DB_SRV1)(PORT=1521))
)

For more information on configuring Oracle Net Services, please reference
the Oracle Database Net Services Administrator's Guide.

Configure the database
The Streams environment requires proper configuration of the database initialization
parameters that support the underlying functionality prior to the configuration of
Capture, Propagate, and Apply process. It also requires that we "turn on" additional
redo logging functionality. With all this added activity being turned on, we can
expect a larger amount of metadata to be accumulated to keep track of all this.
As much of this metadata is dynamic, it can cause fragmentation in the SYSTEM
and SYSAUX tablespaces where it would be created by default. Due to this, we
also recommend (as does Oracle) to move Logging and Streams schemas to their
own tablespaces. This also feeds into the ease of "separation of duties" between
tablespaces and database schemas and objects that enhance transportability.

Initialization parameters
These database parameters govern database naming, redo activity, connectivity, and
SGA and PGA memory structures.

Beginning with Oracle 11g, the management of memory structures can be automated.
We suggest the use of Oracle 11g's Automatic Memory Management which can be
enabled by setting the MEMORY_MAX_TARGET and MEMORY_TARGET parameters. Then,
by setting specific values for the remainder of the memory-related parameters,
configures that parameter value as the minimum value.

Prepare the Rafts and Secure Your Gear: The pre-work before configuring Oracle 11g Streams

[88]

The following is a list of parameters that should be set for Streams along with a quick
description and notes.

Parameter Name Description Notes

COMPATIBLE Specifies the version
at which the Oracle
server must maintain
compatibility.

If set lower than the current
version, certain functionality
introduced in the current version
will not be available�.

GLOBAL_NAMES Forces dblink to have
the same name as the
database.

Set to true.

LOG_ARCHIVE_DEST_n

LOG_ARCHIVE_DEST_
STATE_n

Specifies location for
archived redo logs
and the ability of the
database to copy a
version of the archived
log to the destination.

Especially important if you are
using the flash recovery area. To
avoid having required archived
logs "aged" out of the flash
recovery area, set, and enable a
separate archive log location.

LOG_BUFFER Buffer used by redo
entries prior to writing
redo logs.

Increasing this allows the
Capture process to read from
buffer rather than log

MEMORY_MAX_TARGET Maximum memory
allocated to Oracle
system wide�.

Set this as high as possible based
on the available memory on the
host.

MEMORY_TARGET Oracle uses this
parameter to
dynamically control the
SGA and PGA.

Use a percentage of MEMORY_
MAX_TARGET �������������� leave room to
adjust upward to MEMORY_MAX_
TARGET.

OPEN_LINKS Specifies the maximum
number of concurrent
open connections to
remote databases in one
session.

This number needs to be
increased to support additional
connections used by Streams.
Relates to the amount of dblink
opened by one session.

PROCESSES Specifies the maximum
number of operating
system user processes
that can simultaneously
connect to Oracle.

Increase to account for Capture,
Propagate, and Apply process
and all slaves of those processes.

Chapter 3

[89]

Parameter Name Description Notes
SESSIONS Specifies the maximum

number of sessions that
can be created in the
system.

Derived from the PROCESESS
parameter value by default.
Increasing PROCESSES
will automatically increase
SESSIONS if left to default.
Otherwise, increase this by 1 for
every Capture, Propagation, or
Apply process to be created.

SHARED_POOL_SIZE Contains shared
cursors, stored
procedures, control
structures, and other
structures.

Larger values can improve
performance in a multi-user
system. Consider increasing
the shared pool by 10% of the
amount of the STREAMS_POOL_
SIZE. If STREAMS_POOL_SIZE
is 0 and AMM is used, then
AMM will allocate 10% of this
memory to the streams memory
pool.

STREAMS_POOL_SIZE This is the segment of
memory allocated to
handle buffered queues
and allocate Capture,
Propagation, and
Apply process memory.

If set too low, Streams processes
may not run, or buffered queues
may "spill" to disk. Rule of
thumb, set to a minimum value
of the sum of:

10 MB for each Capture process
parallelism.

10 MB or more for each buffered
queue.

1 MB for each Apply process
parallelism.

TIMED_STATISTICS Set STATISTICS_
LEVEL to TYPICAL
or ALL.

Allows gather of performance
metrics.

UNDO_RETENTION Specifies (in seconds)
the amount of
committed undo
information to retain in
the database.

Adjust higher to avoid snapshot
to old.

Prepare the Rafts and Secure Your Gear: The pre-work before configuring Oracle 11g Streams

[90]

Logging features
Oracle Streams requires that enhanced logging features be enabled to support the
mining and capture of data changes in the redo logs.

Archive logging
When configuring your database for Streams, additional logging information is
required. Most Production DBAs normally configure their database in ARCHIVELOG
Mode to support the use of online database backups and point-in-time recovery.
Being in ARCHIVELOG is also a requirement of Streams. If your database is not in
ARCHIVELOG mode, you can enable it through the SQLPLUS as a SYSDBA:

Log in to SQLPLUS as SYSDBA.

SHUTDOWN --you can take an offline (cold) backup
 --at this point if you wish
STARTUP MOUNT
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

At this point, any previous backups taken in NOARCHIVELOG mode are no longer
usable with the current control file. You may wish to take a full backup of the
database and control file.

SHUTDOWN IMMEDIATE; --backup up from here.

For more information on putting a database into ARCHIVELOG mode,
please refer to the Controlling Archiving chapter in the Oracle Database
Administrators Guide.

Supplemental logging
Supplemental logging instructs the database to record additional data at the column
level to the redo logs. This means that supplemental logging instructs Oracle to
include the old and unchanged values of certain columns in the redo. LCRs are
created using the additional data by the Capture process. When the Apply process
applies the LCR, these supplemental values can be used by conflict detection and
resolution, and other apply handlers.

Activation of supplemental logging can be accomplished at the database or table
level. It can also be accomplished for key (primary, unique, and foreign) and
non-key columns. Table level supplemental columns can be grouped together
in a Supplemental Log Group.

Chapter 3

[91]

Some examples of Table level key column supplemental logging:

ALTER TABLE hr.employees ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY)
COLUMNS;

ALTER TABLE hr.departments ADD SUPPLEMENTAL LOG DATA
 (UNIQUE, FOREIGN KEY) COLUMNS;

Example of Table level key column supplemental logging:

ALTER TABLE hr.employee ADD SUPPLEMENTAL LOG GROUP log_group_emp_pk
 (department_id, manager_id) ALWAYS;

Example of Database level key column supplemental logging:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

If your system storage can accommodate the additional redo generated by including
supplemental logging on all columns, you can activate supplemental logging once at
the database level. This alleviates the need to add logging for any new tables created.
To accomplish this, use the following example:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

Keep in mind that this level of supplemental logging can generate a significant
amount of additional redo. Setting it can quickly max out your archive log
destinations and stop the database cold. While we would recommend setting
supplemental logging at this level in databases with a small number of tables,
columns, and rows or data changes, use it with caution, and monitor your
archive log destinations.

Forced logging
For a Capture process to capture changes from the redo logs, the changes must be
recorded in the redo logs. It is possible for a user session to "turn-off" redo logging
(ex: using NO LOGGING option) or to bypass redo generation through direct loads.
This ability could cause unexpected data divergence. To avoid this, you place the
database in "Forced Logging" mode. In this mode, the database will log all changes
regardless of the session level logging settings. To turn on forced logging mode, log
in as SYSDBA.

ALTER DATABASE FORCE LOGGING;

Forced logging is persistent. Once it is set, it stays set through subsequent
database restarts.

Prepare the Rafts and Secure Your Gear: The pre-work before configuring Oracle 11g Streams

[92]

Separate tablespaces
Another highly recommended best practice is to create separate tablespaces for
specialized users, such as the LogMiner and Streams administrators. A number of
justifications can be made for creating these separate tablespaces; the main thing to
understand is that it is a good idea. You will find that the separation of objects will
by far outweigh the addition of a couple of data files.

LogMiner tablespace
If the LogMiner tablespace is the SYSTEM tablespace, set it to a different tablespace.
Not doing so jeopardizes the integrity of the SYSTEM tablespace and the operation
of the database.

You may also determine that the LogMiner should be moved out of the SYSAUX
tablespace and into a different tablespace for performance reasons.

Use the DBMS_LOGMNR_D.SET_TABLESPACE procedure to set a different tablespace
for LogMiner.

First, create the desired tablespace if it does not exist:

Set the SIZE and MAXSIZE to something that will fit on your disk. If you
have AUTOEXTEND on and limited disk space, avoid setting MAXSIZE
to unlimited, as this could lead to a full disk and a hung database if not
properly monitored.

CREATE TABLESPACE ts_lgmnr
DATAFILE '/u05/oracle/oradata/tslgmnr1.dbf'
SIZE 100M
REUSE AUTOEXTEND ON MAXSIZE 5G;

Second, set the LogMiner tablespace to the new tablespace using
DBMS_LOGMNR_D.SET_TABLESPACE.

EXECUTE dbms_logmnr_d.set_tablespace('ts_lgmnr');

Streams Administration tablespace
Create a separate tablespace for the Streams Administrator user(s). This will separate
out Streams-specific database objects from the mainstream database objects. This also
helps segment Streams objects for exclusion from tablespace level exports; allowing
Data Pump transportable tablespaces to be leveraged for production schemas. Create
a separate tablespace for Streams on each Streamed database.

CREATE TABLESPACE streams_ts
DATAFILE '/u05/oracle/oradata/streams_01.dbf'

Chapter 3

[93]

SIZE 100M
REUSE AUTOEXTEND ON MAXSIZE 5G;

When you create your Streams Admin user(s), assign this tablespace as the user's
default tablespace. Do not assign the SYSTEM tablespace as the Streams Admin
user default tablespace.

Streams users and privileges
Repeat the following: Never use the SYS or SYSTEM users as Streams administrators.
These users are assigned the SYSTEM and SYSAUX tablespaces as default
tablespaces, as well as very powerful database privileges.

As mentioned in Chapter 2, Plot Your Course: Design Considerations, the Stream user(s)
can be configured for a trusted or untrusted security environment. In a trusted
environment, a single Streams Administrator user is configured at each database site.
All capture, propagation, and apply duties and supporting object ownership are in
the security context of this user. In an untrusted environment, the duties of capture,
propagation, and apply can be separated and assigned to different users with
different privilege levels sufficient to perform the duties.

Trusted Streams Administrator user
configuration
In this book, we use the STRMADMIN user as our Streams Administrator. The user ID
can be whatever makes the most sense to you. The expectation is that this user is
only used exclusively for Streams purposes and is not referenced directly by user
applications. This user has a high level of privileges, so we recommend that the
login information be limited to the DBAs that are responsible for maintaining the
Streamed environment.

Make sure that the Streams Administration user is not assigned the SYSTEM
tablespace as a default or temporary tablespace. Here, we create our STRMADMIN
user with the STREAMS_TS tablespace as the default tablespace.

Create the strmadmin account with the appropriate role and privileges:
CREATE USER strmadmin IDENTIFIED BY <password>
DEFAULT TABLESPACE streams_ts
TEMPORARY TABLESPACE TEMP
QUOTA UNLIMITED ON streams_ts;

GRANT DBA TO strmadmin;

BEGIN

Prepare the Rafts and Secure Your Gear: The pre-work before configuring Oracle 11g Streams

[94]

DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
 grantee => 'strmadmin',
 grant_privileges => TRUE
);
END;
/

As mentioned above, this should be performed on each database in the
streamed environment.

The configuration of the Streams Administration user can be
accomplished as a part of the setup through the Enterprise Manager
Streams Setup Wizard if desired. We address it here, as well as in
Chapter 4, for clarity of usage.

Untrusted Streams capture, propagation, and
apply user configuration
The following describes how to go about configuring "separation of duties" for an
untrusted Streams configuration.

Streams Administration user
Even though you may intend to have separate capture, propagation, and/or apply
users, it is recommended that you have a Streams Administration user to manage the
overall Streams environment. You can either create a Streams Administration user
using the same method above for a trusted environment, or use an existing DBA user.

If you wish to configure an existing DBA user as a Streams Administrator, ensure
that the SYSTEM tablespace is not assigned as the DBA users' default and temporary
tablespaces (this is why it is strongly recommended not to use SYS or SYSTEM
for your Streams Administrator). If the DBA users' default and/or tablespace is
SYSTEM, either ALTER the user to reassign these, or create a new DBA user.

To configure an existing DBA user as a Stream Administrator, run the
following command:

BEGIN
DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
 grantee => '<dba_user>',
 grant_privileges => TRUE
);
END;
/

Chapter 3

[95]

Capture user
The Capture user must have DBA privileges.

It is recommended that you use the DBMS_CAPTURE_ADM.CREATE_CAPTURE package
to create the Capture process. The DBMS_STREAMS_ADM package makes assumptive
associations between the execution user and queue and rule ownership, and captures
user assignments that can get a little tricky.

When using DBMS_CAPTURE_ADM.CREATE_CAPTURE, the CAPTURE_USER can be
specified at the creation of a Capture process. This user is configured as a secure
queue user and is granted enqueue privileges on the capture queue.

However, you must also make sure that the user is explicitly granted the
following privileges:

EXECUTE on all rule sets used by the Capture process.
This can be done by either:
DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege IN BINARY_INTEGER,
 object_name IN VARCHAR2,
 grantee IN VARCHAR2,
 grant_option IN BOOLEAN DEFAULT FALSE);

where privilege => 'SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET'
and object_name => <schema>.<rule_set_name>

OR
DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege IN BINARY_INTEGER,
 grantee IN VARCHAR2,
 grant_option IN BOOLEAN DEFAULT FALSE);

where privilege => 'SYS.DBMS_RULE_ADM.EXECUTE_ANY_RULE_SET'

For more information on granting privileges on rules and rule sets, please
refer to the Oracle PL/SQL Packages and Types Reference manual.

EXECUTE on all rule-based transformation functions used in the positive
rule set.
EXECUTE on all packages (Oracle-supplied and user created) invoked by
rule-based transformations run by the Capture process.

These privileges must be granted explicitly, they cannot be granted through roles.

•

•

•

Prepare the Rafts and Secure Your Gear: The pre-work before configuring Oracle 11g Streams

[96]

Propagation user
Messages are propagated by the user who owns the source queue. The owner of the
source queue is not necessarily a capture user. The source queue owner must have
the following privileges to propagate messages:

EXECUTE on the rule sets used by the propagation (see capture user
for specifics).
EXECUTE on all custom rule-based transformation functions used in
the rule sets.
Enqueue privilege on the destination queue if the destination (apply)
 queue is in the same database.
Own the database link used by the propagation if destination (apply)
queue is on a remote database. The user to which the database link connects
at the remote database must have enqueue privileges on the destination
(apply) queue.

Security note: It is possible for the database link to be a public database
link. However, this opens up many security issues by having a database
link in an untrusted system that any user can use to potentially exploit
access to the remote database. Due to the high security risks of public
database links, it is adamantly recommended that public database links
not be used in either a trusted or untrusted Streams configuration.

Apply user
The apply user must have DBA privileges.

It is recommended that you use the DBMS_APPLY_ADM.CREATE_APPLY
package to create the APPLY process for the same reason mentioned in
the "Capture user" section.

When using DBMS_APPLY_ADM.CREATE_APPLY, the apply_user can be specified at
the creation of an Apply process. This user is configured as a secure queue user and
granted dequeue privileges on the apply queue. However, you must also make sure
that the user is explicitly granted the following privileges:

DML and DDL privileges on the apply objects
EXECUTE on the rule sets used by the Apply process (see capture user
for specifics)
EXECUTE on all rule-based transformation functions used in the rule set

•

•

•

•

•

•

•

Chapter 3

[97]

EXECUTE on all apply handler procedures
EXECUTE on all packages, including Oracle-supplied packages, that are
invoked in subprograms run by the Apply process

Again, these privileges must be granted explicitly, they cannot be granted
through roles.

Database links
When creating the database links, we again stress—use private database links, not
public, in order to avoid security breaches through the links. Create the database link
when connected as the user that will use the database link. This should be the only
user that uses this database link. The overheads for maintaining private database
links is well worth the security breach potential that a shared database link opens up.

We also recommend using the TNS Description parameter in the database link
connection clause rather than a TNS Alias to avoid unintended or malicious
misdirection of a database link if the local TNSNAMES.ora is ever changed, moved,
or replaced. However, we have provided examples of TNSNAMES.ora files above,
should you choose to go down that route.

Database link creation with TNS Description:

Create database link STRM2
connect to strm_admin identified by strm_admin
using '(DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = STRM2_HOST)
 (PORT = 1521)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = STRM2)
)
);

Database Link creation with TNS Alias:

Create database link STRM2
connect to strm_admin identified by strm_admin
using 'STRM2';

•

•

Prepare the Rafts and Secure Your Gear: The pre-work before configuring Oracle 11g Streams

[98]

Trusted versus untrusted configurations
After running through the privileges needed for an untrusted configuration, it
becomes obvious that the "separation of duties" does not really save us anything
from a security perspective. The capture and apply users must have DBA privileges
which our trusted STRMADMIN user has. The source queue owner is the propagator, so
if you create the queue as STRMADMIN, this makes STRMADMIN the propagator anyway.
Then, you add in the best practices of keeping the number of users with DBA or
higher privileges to a minimum, the trusted model becomes a better option even in
an untrusted environment. The only time untrusted buys you any advantage is if
you are in an environment where you are not allowed to create a DBA user specific
to Streams, but you do have a non-SYS and non-SYSTEM DBA user that you can
work with. By using private database links and secure queues, you can lock down
many of the security loopholes with distributed systems.

Understanding your Instantiation tools
In Chapter 1, All the Pieces: The Parts of an Oracle 11g Streams Environment, we
discussed Instantiation and Instantiation SCN theoretically. In our examples in
this book, we use Data Pump for Instantiation. We provide a quick review of Data
Pump commands and configuration here to prepare for its use when we begin
building Streams. We also provide practical examples of how to go about setting
the Instantiation SCN manually, should you need to do so.

Using Data Pump to Instantiate
If you plan to use Data Pump to instantiate your target sites, you will need to create
work directories in which Data Pump will create and access the resulting dump file
for export and import. The naming convention you use is up to you. If you used
the Database Creation Assistant to create your database, you may already have a
DATA_PUMP_DIR (destination C:\Oracle\11gR2\product\11.2.0\db_1\rdbms\log\).
You can determine this by querying the DBA_DIRECTORIES view.

At the Source site, create a work directory for the Data Pump export, setting
the destination to what suits your needs best (it doesn't have to be the default
{oracle_home}/rdbms/log/). Best practice; specify the full path explicitly.

Windows:

CREATE DIRECTORY 'DATA_PUMP_DIR' AS 'c:\oracle\dpump\export\';

Unix:

CREATE DIRECTORY 'DATA_PUMP_DIR' AS '/u01/oracle/dpump/export/';

Chapter 3

[99]

Note: This can also be done through the EM Console: Schema | Database Objects |
Directory Objects.

Setting Instantiation SCN manually
As mentioned in Chapter 1, you can use the DBMS_CAPTURE_ADM. PREPARE_*_
INSTANTIATION, DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER and DBMS_APPLY_
ADM SET_*_INSTANTIATION_SCN packages to manually set the Instantiation SCN
between a capture and an Apply process.

The steps for setting the instantiation SCN are as follows:

1.	 Call the appropriate DBMS_CAPTURE_ADM.PREPARE_*_INSTANTIATION
package at the source database.

2.	 Determine the current SCN at the source database using
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER.

3.	 Call the appropriate DBMS_APPLY_ADM SET_*_INSTANTIATION_SCN at the
destination database, specifying the SCN value returned in step 2.

The following provides examples using all three packages from the Source side and
Destination side. The procedures below must be run as the Streams Administrator
and uses a database link owned by the Streams Administrator user and connects to
the Streams Administrator at the remote database.

The database links used for examples are as follows:

Database Links
From /Source To/Destination Database Link Name
HQ Branch BRANCH.US.APGTECH.COM
Branch HQ HQ.US.APGTECH.COM

The example below is run on the Source side (HQ.US.APGTECH.COM). The object(s) are
prepared for instantiation at the source. The SCN is captured on the source side once
the table is instantiated. That SCN is then set for the same table at the Destination
(BRANCH.US.APGTECH.COM) across a database link.

DECLARE
iscn NUMBER; -- Variable to hold instantiation SCN value

BEGIN
DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
table_name => 'product.inventory',

Prepare the Rafts and Secure Your Gear: The pre-work before configuring Oracle 11g Streams

[100]

supplemental_logging => 'keys' --default
);
iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();

DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@BRANCH.US.APGTECH.COM(
source_object_name => 'product.inventory',
source_database_name => 'HQ.US.APGTECH.COM',
instantiation_scn => iscn);
END;
/

This pattern of capturing the Instantiation SCN on Source side and applying it to the
Destination side continues in the examples below for SCHEMA and GLOBAL level.

For SCHEMA level:

DECLARE
iscn NUMBER; -- Variable to hold instantiation SCN value

BEGIN
DBMS_CAPTURE_ADM.PREPARE_SCHEMA_INSTANTIATION(
table_name => 'product.inventory',
supplemental_logging => 'keys' --default
);

iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();

DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN@BRANCH.US.APGTECH.COM(
source_schema_name => 'product',
source_database_name => 'HQ.US.APGTECH.COM',
instantiation_scn => iscn
recursive => TRUE);
END;
/

The recursive parameter provides instructions to apply the proper Instantiation
SCN to each table in the schema.

For GLOBAL level:

BEGIN
DBMS_CAPTURE_ADM.PREPARE_GLOBAL_INSTANTIATION(
supplemental_logging => 'keys' --default
);

iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();

Chapter 3

[101]

DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN@BRANCH.US.APGTECH.COM(
source_database_name => 'HQ.US.APGTECH.COM',
instantiation_scn => iscn
recursive => TRUE);
END;
/

The recursive parameter provides instructions to apply the proper Instantiation SCN
to each of the tables in all schemas.

In most situations we find the use of either DBMS_APPLY_ADM.SET_TABLE_
INSTANTIATION_SCN or DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN
to be the most appropriate.

The examples above have shown the "pushing" of the instantiation SCN from the
Source side to the Destination side. The reverse can also be accomplished essentially
"pulling" the instantiation SCN to the Destination from the Source side. This can be
accomplished by simply running the same code above and changing the location
and entry of the database link mentioned above from BRANCH.US.APGTECH.COM to
HQ.US.APGTECH.COM. The example at the table level for clarity is shown as follows.
This is run on the Destination side (BRANCH.US.APGTECH.COM).

DECLARE
iscn NUMBER; -- Variable to hold instantiation SCN value

BEGIN
DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION@HQ.US.APGTECH.COM(
table_name => 'product.inventory',
supplemental_logging => 'keys' --default
);

iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER@HQ.US.APGTECH.COM();

DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
source_object_name => 'product.inventory',
source_database_name => 'HQ.US.APGTECH.COM',
instantiation_scn => iscn);
END;
/

The code above "pulls" the instantiation SCN from the Source Side (HQ.US.APGTECH.
COM) and applies it the Destination Side (BRANCH.US.APGTECH.COM).

One important point that needs to be mentioned is that we include preparing objects
for instantiation manually. If you used the DBMS_STREAMS_ADM package to build
the Capture process, the call to DBMS_CAPTURE_ADM.PREPARE_*_INSTANTIATION is
done automatically.

Prepare the Rafts and Secure Your Gear: The pre-work before configuring Oracle 11g Streams

[102]

To check that instantiation was done properly use the following queries:

-- Run on the Source Side
COLUMN TABLE_OWNER HEADING 'Table Owner' FORMAT A15
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A15
COLUMN SCN HEADING 'Prepare SCN' FORMAT 99999999999
COLUMN TIMESTAMP HEADING 'Time Ready for|Instantiation'

SELECT TABLE_OWNER,
 TABLE_NAME,
 SCN,
 TO_CHAR(TIMESTAMP, 'HH24:MI:SS MM/DD/YY') TIMESTAMP
FROM DBA_CAPTURE_PREPARED_TABLES;

-- Run on the Destination Side
COLUMN SOURCE_DATABASE HEADING 'Source Database' FORMAT A20
COLUMN SOURCE_OBJECT_OWNER HEADING 'Object Owner' FORMAT A15
COLUMN SOURCE_OBJECT_NAME HEADING 'Object Name' FORMAT A15
COLUMN INSTANTIATION_SCN HEADING 'Instantiation SCN' FORMAT
99999999999

SELECT SOURCE_DATABASE,
 SOURCE_OBJECT_OWNER,
 SOURCE_OBJECT_NAME,
 INSTANTIATION_SCN
 FROM DBA_APPLY_INSTANTIATED_OBJECTS
WHERE APPLY_DATABASE_LINK IS NULL;

There are occasions where you may need to remove an instantiation SCN.
This is usually only done when an attempt at instantiation has failed or gone
wrong. This being the case, you can clear the apply Instantiation SCN with
DBMS_APPLY_ADM.SET_*_INSTANTIATION_SCN procedure and setting the
Instantiation SCN to NULL. This removes the entry from the associated dictionary
view. Where * is one of the following levels: TABLE, SCHEMA, or GLOBAL. You
would then prepare the object for instantiation at the source and use that SCN
to retry setting the Instantiation SCN at the apply site.

Oracle Demo Schemas
In this book, we use the ever-familiar Oracle Demo Schemas in our Streams examples.
If you wish to practice with the scripts provided in this book and your database does
not have the Demo Schemas, you can use the Load_Demo_Schemas.sql that can be
downloaded from the Packt website.

Chapter 3

[103]

The demo schemas use the EXAMPLES tablespace and include the following
schemas—HR, OE, PM, IX, BI, and SH. Please be aware and forewarned, that if you
use the Load_Demo_Schemas.sql, the EXAMPLES tablespace (and datafiles), and the
HR, OE, PM, IX, BI, and SH schemas will be dropped and recreated. If needed, back
up your database or export your existing demo schemas before running the script.

Summary
In this chapter, we have seen the steps necessary to prepare our databases to support
Streams, and our tools to instantiate our Streamed objects.

We have looked at a way to verify our network connectivity and throughput with
the ping and tracert commands.

We configured our database initialization parameters to support Streams processes
and memory structures. We enabled archive logging and supplemental logging to
support Streams capture and apply.

We discussed configuring our Streams user(s) for trusted and untrusted security
environments as well as best practices for database links.

We then addressed creating directories objects to be used during instantiation with
Data Pump and how to manually set Instantiation SCNs for corresponding capture
and Apply processes.

And last but not least, we covered how you can create the Oracle Demo Schemas in
your database so that you can practice along with us, as we go through examples of
setting up the different Stream configurations.

So, hop aboard, grab your paddles (or keyboards in this case) and let's float onto
Chapter 4 where we will bring this all together with a uni-directional scenario
and start Streaming!

Single-Source Configuration

The stream flows one way: Downhill
In this chapter, we will look at configuring single-source streams replication using
Enterprise Manager (EM) DB Console (this can also be applied if you are using
Enterprise Manager Grid Control). We will also provide the PL/SQL API calls being
issued behind the scenes. The PL/SQL for these calls can be copied to a script and
used to configure Streams from the command line as well. This chapter is organized
as follows:

The Enterprise Manager: This takes you step-by-step through the EM
Streams setup wizard, using a schema-level replication example
The code behind the curtain: A step-by-step walk-through the PL/SQL
code that configures the Stream
Sequences, and triggers, and apply: Points out expected behavior of
sequence and triggers in our example, as well as special case considerations
Other levels at which to replicate: Provides a brief description of
other replication levels that can be used and the beauty of the
DBMS_STREAMS_ADM.MAINTENANCE_* scripts

The pre-requisite for the examples in this chapter is to include the demo schemas in
your source database. Please see Chapter 3, Prepare the Rafts and Secure Your Gear: The
pre-work before configuring Oracle 11g Streams, for instructions on including the demo
schemas in your database if you wish to "practice along" with our example.

For our example, we are going to set up Streams for the HR Schema between
two instances. STRM1 will be our source master database and STRM2 will be
our destination target database.

•

•

•

•

Single-Source Configuration

[106]

The single-source model is uni-directional replication. This means that it changes
the flow only one way; from the source master to the destination target. Thus, we
will create a capture queue and process at the source master, and a propagation job
and process at the source master to the destination target (queue to queue). We then
create an Apply queue and process at the destination target.

The Enterprise Manager
Log into EM DBConsole to the source master database.

At the homepage, click on the Data Movement sub-tab.

Chapter 4

[107]

Click on the Setup link under Streams.

The EM has a 15 minute idle time-out by default. If you are not able to
complete the configuration pages within that time period, you will need
to start over. So, it doesn't hurt to read through this first, determine
what you will need to enter where, and then start the setup.

Single-Source Configuration

[108]

Setup options
Select Streams Global, Schema, Table and Subset Replication Wizard and
click Continue.

Specify the Streams Administration username and password.

OR

If your designated Streams Administration user does not already exist in the source
master database, click Create Streams Administrator button.

Chapter 4

[109]

Enter a SYSDBA username and password, and the username and password for the
Streams Administration user. Take note of the privileges that will be granted to the
new user.

Single-Source Configuration

[110]

Click OK.

This will return you to the specify Streams Administrator screen, click NEXT.

Next, you will specify information for the destination or target database.

Chapter 4

[111]

Again, if the Streams Administrator user does not exist on the target database, click
Create Streams Administrator button.

Specify the appropriate information and click OK.

This will take you back to the configure destination database page. Click Next.

Single-Source Configuration

[112]

Configure replication
This page allows us to specify our replication options. First, we specify what level of
replication we want to configure. The levels are as follows:

1.	 Global Rule means we want to replicate all the schemas and their objects
in the database (of course this does not include schema's proprietary to the
database like sys, system, and so on). We will have the option of excluding
specific schemas and/or tables in a later step.

2.	 Schema Rule means we want to replicate all objects in one or more specific
schemas. We will have the option of excluding specific tables in the schemas
specified in a later step.

3.	 Table Rule means we want to replicate only specific tables. This can be all
the data in the table or a subset of data in the table through a where clause
specified in a later step. The tables do not need to belong to the same schema.

In this example, we want to replicate the full HR schema. So, we will select
Schema Rule.

Processes
Here we specify the names for each of the processes that we will want to use/create.

Specify a name that is specific to the process configuration. Why?
You can have multiple capture, propagate, and Apply processes in an
instance. Different rules can be associated to these different processes.
Using meaningful names provides a quick visual aid to differentiate
between the processes.

Chapter 4

[113]

In our example, we are going to use the following naming to help us identify which
processes work together to support this configuration. We will use SCHEMA_HR and
forego using STREAMS since we already know it is Streams. Keep in mind that you do
have a length limitation of 30 characters here. Keep it short. Feel free to abbreviate.
KISS it.

Directory objects
The Streams setup wizard will use Data Pump to instantiate the destination/target
database. This is where you specify where the resulting dump and log files will be
written/read. You can use an existing directory (click on the flashlight to select from
a list), or create one. To make life easy, let's use one that already exists for Data Pump
purposes. It's the DATA_PUMP_DIR (convenient isn't it?)

Single-Source Configuration

[114]

Options
This is where we specify what changes get sent (DML and/or DDL) and the direction
in which they are sent. By default, the page selects only DML and bi-directional
(master-to-master). In our example, we want a single-source master. So, we will
uncheck Setup Bi-directional replication. We want to replicate DDL changes to any
of our HR schema objects as well as DML (data) changes, so we will check Capture,
Propagate, and Apply data definition language (DDL) changes.

Click Next.

Chapter 4

[115]

Object selection
This is where we specify any or all objects in the database schema that we do or
do not want to replicate. What you see presented to you on this page will depend
on what replication rule you selected on the previous page (global, schema, table).
You can select any or all of the schemas listed to replicate. Please note that the table
shows only 10 at a time, so if you don't see the schema you want to at first, use the
table navigation button to traverse the list. If you wish to exclude any tables that
belong to your selected schemas, you can do so by adding them to the Exclude
Tables list in the next section (click Add).

Single-Source Configuration

[116]

In our case, we want just the HR schema with all its tables.

Click NEXT.

Chapter 4

[117]

This brings us to our Review summary sheet.

Review
The Summary of Operations lists the tasks in the order that the Setup wizard will
accomplish them, based on the configuration parameters you have specified. A nice
feature here is the Save Scripts button. This will allow you to save a copy of the
generated SQL code to a file (default name is setup.sql).

Single-Source Configuration

[118]

In this example, the saved script will contain the PL/SQL to create the STRM_ADMIN
user on both STRM1 and STRM2 instances and grant the necessary privileges, create the
necessary database links, and then call the DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS
procedure passing in the parameters you defined in the wizard. It is this
DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS procedure that actually generates and
executes the PL/SQL to build streams. We will see more on this in our "The code
behind the curtain" section.

Chapter 4

[119]

The Save operation will prompt you for the save confirmation and location. It then
returns you to the Review page.

Click Finish.

Single-Source Configuration

[120]

Schedule Streams setup job
You can choose to either set up streams immediately or schedule the setup for a later
time (perhaps at night when users are not using the system).

In our case, we will run the setup Immediately. Note that you will also need to
specify Host Credentials. This would be an O/S user and password. Please note
that the user must have appropriate privileges to run jobs through the EM. For
more information on the required privileges, please refer to your O/S specific
Oracle maintenance manual. Click Submit.

Chapter 4

[121]

This will bring you to the job confirmation page. It provides a link to the job
monitoring page if you wish to monitor the progress of the job.

Click OK, and you will return to the initial Streams setup page.

Verify
When the job is complete, you can verify your Streams environment from the
Streams Management page. Navigate to the Data Movement page and select
Manage under Streams.

Single-Source Configuration

[122]

This will take you to the Overview page. Click on Capture.

Notice that the Capture process is enabled. This means your process is currently
capturing changes. To stop/start (disable/enable) the process, click the radio
button under the select column for the Capture process, and then click Start or Stop.

Chapter 4

[123]

You can view process statistics by clicking on Statistics.

Click on the Streams breadcrumb link to return to the Capture page.

Single-Source Configuration

[124]

Click on the Propagation link. Verify the status is Enabled.

You can view the information and propagation rule sets by clicking on View.

Chapter 4

[125]

Click on the Streams breadcrumb link to return to the Propagation page.

We then go to our destination site EM DBConsole and we see our Apply process and
verify that it is enabled.

At our destination site (STRM2), the absence of a Capture process for the schema and
a Propagation process back to STRM1 ensures uni-directional single-source master
replication. However, it does not keep changes from being made directly to the
destination site. So, it is still possible for data to diverge, and lead to data conflicts. To
avoid this, we recommend implementing site priority conflict resolution error handling
at the destination site (see Chapter 5, N-Way Replication, for conflict resolution).

The code behind the curtain
This section addresses the PL/SQL package procedures and functions that are
executed behind the scenes by EM to actually create the Streams replication. We
have included these procedures in PL/SQL block code that can be used individually
to accomplish each step of the process at a time, or combined in a "master" script
(with some minor modifications). Please note that you may need to make minor
modifications to accommodate your specific environment setups (like machine
names, connections, db links name and so on).

Single-Source Configuration

[126]

Checking the waters
When you use the EM Streams setup wizard to generate the code to configure your
single source, EM generates and runs PL/SQL that does the following:

Creates the Streams Administrator user account (if not already done) on both
the source and destination instances
Grants the necessary privileges to the Streams Administrator account (if not
already done) on both the source and destination instances
Creates database links for the Streams Administrator user (first, dropping the
link if it already exists)
Calls the appropriate DBMS_STREAMS_ADM.MAINTAIN_* procedure to
configure Streams between the two databases

The call to a DBMS_STREAMS_ADM.MAINTAIN_* procedure sets parameters that tell the
procedure what to capture, propagation, and to apply queues and processes to create
and where to create them, as well as script naming and location specification. You
can also direct the procedure to only generate the the necessary scripts and not run
them. For specific details on the DBMS_STREAMS_ADM.MAINTAIN_* procedures, please
refer to your Oracle PL/SQL Packages and Types Reference Manual.

In our example, it is the DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS procedure.

At the time of publishing, the EM Streams setup wizard has an
undocumented feature in that even though you uncheck "Setup
bi-direction replication" on your configuration it may still pass a
"TRUE" value to the DBMS_STREAMS_ADM.MAINTAIN_* procedure
bi_directional parameter. A "FALSE" value for the
bi_directional parameter tells the procedure to set up
single-source replication, A "TRUE" value for the bi_directional
parameter tells the procedure to set up master-to-master replication.
Check the script before running it by doing a "Save Scripts" on the
Review page. If the script has the bi_directional parameter set to
"TRUE", you can cancel out of the setup wizard, edit the saved script
to set the value to "FALSE", and run the script from SQLPLUS.

The DBMS_STREAMS_ADM.MAINTAIN_* procedure in turn will generate and run scripts
that set up single-source replication by doing the following:

Add supplemental logging to the necessary tables on the source database
Create the capture queue at the source database
Create the Propagation process at the source database

•

•

•

•

•

•

•

Chapter 4

[127]

Create the schema Capture process at the source database
Configure and execute Data Pump schema export/import to/from the
source/destination database
Instantiate the capture SCN
Create the apply queue and process on the destination database
Instantiate the apply SCN
Start the capture, apply, and Propagation processes

It is possible to run the DBMS_STREAMS_ADM.MAINTAIN_* procedure to generate the
PL/SQL to build the Streams, but not actually run it. This is done by setting the
perform_actions parameter to "FALSE".

To generate a full set of scripts, you can begin by running through the EM Streams
setup wizard, save the script at the review page, and then cancel out the wizard
without finishing. You can edit the saved script, setting the perfrom_actions
parameter to "FALSE", and run the script from SQLPLUS. The procedure
will create the SQL script to set up the Streams to directory specified by the
script_directory_object parameter with the filename by the script_name
parameter. This script can then be opened and viewed with a standard text editor.
This file can then be run as a standalone script. Keeping a copy of these scripts also
provides a way to quickly and accurately recreate the Streamed configuration
between the two databases from the command line, should the need arise.

Diving in
In this section, we are going to look at the PL/SQL commands needed to configure
single-streams replication between our two databases. The scripts created by the
EM and DBMS_STREAMS_ADM.MAINTAIN_* procedure do pretty much the
same thing though there may be some minor differences in order of operations
and the secondary version checks which we chose to skip here. The PL/SQL
presented here is formatted to be run, stand-alone for each step. This will allow you
to "play" with each step, individually. You can download these scripts from the
Packt website.

If you would like more information on the PL/SQL packages and
SQL commands issued in these scripts you can find it in your
Oracle PL/SQL Packages and Types Reference, and the Oracle SQL
Language Reference manuals respectively.
For PL/SQL block structure and coding, please reference your
Oracle PL/SQL Language Reference manual.

•

•

•

•

•

•

Single-Source Configuration

[128]

The first step is the creation of the Streams Administrator user and granting of
privileges at both the source master and destination target databases. This must be
done by a SYSDBA user. The code is in the create_strmadmin.sql script and does
the following:

Connects to the source database as SYS
Creates the STRM_ADMIN user
Grants DBA, IMP_FULL_DATABASE, EXP_FULL_DATABASE privileges
to STRM_ADMIN
Executes DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE for STRM_ADMIN
Connects to the destination database as SYS
Creates the STRM_ADMIN user
Grants DBA, IMP_FULL_DATABASE, EXP_FULL_DATABASE privileges
to STRM_ADMIN
Executes DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE for STRM_ADMIN
Connects at the source database as the new STRM_ADMIN user
Creates a database link from the source database to the destination database.

For more detailed information on the privileges for the Streams Administrator,
reference the "Configure an Oracle Streams Administrator" of the Oracle Streams
Concepts and Administration manual for 11gR1, or the Oracle Streams Replication
Administrator's Guide for 11gR2.

--create_strmadmin.sql…
set echo on;
ACCEPT src PROMPT 'Enter tnsalias for the source database:'
ACCEPT dba_pwd_src PROMPT 'Enter Password of user "sys" to create
 Streams Admin at Source : ' HIDE
ACCEPT strm_pwd_src PROMPT 'Enter Password of Streams Admin
 "strm_admin" to be created at Source : ' HIDE
ACCEPT dest PROMPT 'Enter tnsalias for the target database:'
ACCEPT dba_pwd_dest PROMPT 'Enter Password of user "sys" to create
 Streams Admin at Destination : ' HIDE
ACCEPT strm_pwd_dest PROMPT 'Enter Password of Streams Admin
 "strm_admin" to be created at Destination : ' HIDE

PROMPT connecting as sys at &src
connect sys/&dba_pwd_src@&src as SYSDBA;
PROMPT
PROMPT creating strm_admin user
create user strm_admin identified by &strm_pwd_src;
PROMPT granting privs

•

•

•

•

•

•

•

•

•

•

Chapter 4

[129]

grant DBA, IMP_FULL_DATABASE, EXP_FULL_DATABASE to strm_admin;
BEGIN
 DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
 grantee => 'strm_admin',
 grant_privileges => true);
END;
/
COMMIT;
/
PROMPT connecting as sys at &dest
connect sys/&dba_pwd_dest@&dest as SYSDBA;
PROMPT
PROMPT creating strm_admin user
create user strm_admin identified by &strm_pwd_dest;
PROMPT granting privs
grant DBA, IMP_FULL_DATABASE, EXP_FULL_DATABASE to strm_admin;
BEGIN
 DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
 grantee => 'strm_admin',
 grant_privileges => true);
END;
/
PROMPT strm_admin create and privs complete
/
COMMIT;

/

Next, we connect as strm_admin and create a database link from our source database
to our target database.

connect strm_admin/&strm_pwd_src;

--if the STRM2 dblink already exists you can drop it.
--DROP DATABASE LINK STRM2;

CREATE DATABASE LINK STRM2 connect to strm_admin identified by
 &strm_pwd_dest using '(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=
 (PROTOCOL=TCP)(HOST=strm_target)
(PORT=1521)))(CONNECT_DATA=(SID=strm2)(server=DEDICATED)))';
COMMIT;
/
--end code

Single-Source Configuration

[130]

Notice that we used the full TNS connect description rather than the alias for the
using parameter? Using the full connect description instead of a TNS alias avoids
issues with tnsnames.ora file configurations. This removes any dependency of the
database link on tnsnames.ora files that can be changed, moved, or deleted.

Next, we need to add supplemental logging to the tables in the HR schema at the
source master database. This needs to be done for each table.

The command to do this is:

ALTER TABLE "HR"."<table_name>" ADD SUPPLEMENTAL LOG DATA (PRIMARY
KEY, -FOREIGN KEY, UNIQUE INDEX) COLUMNS';

In the setup script generated by the DBMS_STREAMS_ADM.MAINTAIN_* procedure, you
will see the command repeated and hard-coded for each table in the schema. The
following code block below accomplishes the same actions, but dynamically, so it
does not need to be edited if table names change, or if tables are added or dropped.
This code is found in the add_supplog_schema.sql script and does the following:

Sets up a loop for each table name in the specified schema
Builds and executes the statement to add supplemental logging for each table
Reports the results of each statement

--create_supplog_schema.sql..
ACCEPT sowner PROMPT 'Enter schema owner:'
set serveroutput on
BEGIN
 For tn in (select table_name from dba_tables where owner =
upper('&sowner')) loop
 BEGIN
 EXECUTE IMMEDIATE 'ALTER TABLE "&sowner"."' ||
 tn.table_name ||
 '" ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY,
FOREIGN KEY, UNIQUE INDEX) COLUMNS';
 dbms_output.put_line('added supplemental logging for ' ||
 tn.table_name);
 EXCEPTION WHEN OTHERS THEN
 IF sqlcode = -32588 THEN
 dbms_output.put_line('supplemental logging already exists
 for ' || tn.table_name);
 ELSE
 RAISE;
 END IF;
 END;
 end loop;
END;
/
--end code

•

•

•

Chapter 4

[131]

Next we set up the capture queue on our source master (STRM1). This code is
found in the create_capture_queue.sql script. The script should be run as
the STRM_ADMIN user and does the following:

Calls dbms_streams_adm.set_up_queue to create the queue
Verifies queue creation

--create_capture_queue.sql...
ACCEPT cqname PROMPT 'Enter Capture Queue Name: ex: SCHEMA_HR'
DECLARE
 uname varchar2(50);
BEGIN
 select user into uname from dual;
 dbms_streams_adm.set_up_queue(
 queue_table => uname ||'.&cqname._CAPTURE_QT',
 storage_clause => NULL,
 queue_name => uname ||'.&cqname._CAPTURE_Q',
 queue_user => uname);
END;
/
column object_name format a30
select object_name, object_type, created from user_objects
where object_name like upper('%&cqname%')
/
--end code

Next, create the propagation rules for the schema. Note that the propagation
job is created in an enabled state, so we want to disable it until we are finished
setting up the apply queue on the destination site. This code is found in the
add_schema_propagation.sql script. The script should be run as the
STRM_ADMIN user and does the following:

Calls dbms_streams_adm.add_schema_propagation_rules to create the
Propagation process and job
Calls dbms_aqadm.disable_propagation_schedule to disable
the propagation
Verifies the creation of the Propagation process and rules

--add_schema_propagation.sql…
ACCEPT sname PROMPT 'Enter Schema Name:'
ACCEPT qname PROMPT 'Enter Queue Name prefix: (ex: SCHEMA_HR) '

ACCEPT destlink PROMPT 'Enter the DB Link name for
 the destination DB: (ex: STRM2) '
DECLARE

•

•

•

•

•

Single-Source Configuration

[132]

 uname varchar2(50);
 gsid varchar2(10) ;
BEGIN
 select user into uname from dual;
 select upper(instance) into gsid from v$thread;

 dbms_streams_adm.add_schema_propagation_rules(
 schema_name => upper('&sname'),
 streams_name => '&qname._PROPAGATION',
 source_queue_name => uname||'.&qname._CAPTURE_Q',
 destination_queue_name => uname||'.&qname._APPLY_Q@&destlink',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => gsid,
 inclusion_rule => TRUE,
 and_condition => NULL,
 queue_to_queue => TRUE);

 --disable propagation until we are finished
 BEGIN
 dbms_aqadm.disable_propagation_schedule(
 queue_name => uname||'.&qname._CAPTURE_Q',
 destination => '&destlink',
 destination_queue => uname||'.&qname._APPLY_Q');
 EXCEPTION WHEN OTHERS THEN
 IF sqlcode = -24065 THEN NULL;
 -- propagation already disabled
 ELSE RAISE;
 END IF;
 END;
END;
/
--let's verify
set pagesize 150
set linesize 100

select * from dba_propagation
where propagation_name like upper('%&qname.%')
/

select * from dba_streams_schema_rules
where streams_type = 'PROPAGATION'
/
--end code

Chapter 4

[133]

Next we add the schema capture rule. This code is found in the
add_schema_capture.sql script. The script should be run as the
STRM_ADMIN user and does the following:

Calls dbms_streams_adm.add_schema_rule to create the schema level
Capture process and rules
Verifies the creation of the Capture process and rules

--add_schema_capture.sql…
ACCEPT sname PROMPT 'Enter Schema Name:'
ACCEPT qname PROMPT 'Enter Queue Name prefix: (ex: SCHEMA_HR) '
DECLARE
 uname varchar2(50);
 gsid varchar2(10) ;
BEGIN
 select user into uname from dual;
 select upper(instance) into gsid from v$thread;

 dbms_streams_adm.add_schema_rules(
 schema_name => '&sname',
 streams_type => 'CAPTURE',
 streams_name => '&qname._CAPTURE',
 queue_name => uname ||'.&qname._CAPTURE_Q',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => gsid,
 inclusion_rule => TRUE,
 and_condition => NULL);
END;
/

--let's verify
set pagesize 150
set linesize 100

select * from dba_capture
where capture_name like upper('%&qname.%')
/

select * from dba_streams_schema_rules
where streams_type = 'CAPTURE'
/
--end code

•

•

Single-Source Configuration

[134]

We do not want to actually start the Capture process until we have
everything else in place. This we will do at the end. The script generated
by the DBMS_STREAMS_ADM.MAINTAIN_* procedure starts the Capture
process here. However, Oracle documentation, and Oracle Streams course
material both recommend starting the capture as the last step, as do these
authors. In this case, we will do as "they say" not as "they do".

Next, we will want to instantiate the HR schema. We do this using Data Pump to
export the HR schema to a dump file that will then be imported into the destination
target database. In our example, the HR schema does not exist at our destination site.
If it did exist, we would want to drop the HR schema at the destination site so that
the Data Pump import is able to identically reproduce it at the destination site.

For detailed information on instantiation, reference the "Instantiation
and Oracle Streams Replication" chapter of the Oracle Streams Replication
Administrators Guide.

First, we will do the Data Pump export. This code is found in the
instantiate_exp_schema.sql script. The script will connect as the
STRM_ADMIN user and do the following:

Opens a Data Pump job handle with dbms_datapump.open
Sets the metadata for the Data Pump job handle with
dbms_datapump.metadata_filter

Sets the filenames to be generated using dbms_datapump.add_file
Starts the Data Pump export job with dbms_datapump.start_job
Monitors the job and reports status and completion

--instantiate_exp_schema_hr.sql…
ACCEPT sname PROMPT 'Enter Schema Name to instantiate: '
ACCEPT src_dirobj PROMPT 'Enter Source directory Object name:
 (DATA_PUMP_DIR:) '
ACCEPT expdump PROMPT 'Enter Export dump file Name
 (file extension .dmp will be appended): '
ACCEPT stmadm PROMPT 'Enter Stream Admin username: '
ACCEPT stmadmpwd PROMPT 'Enter Stream Admin Password: '
ACCEPT srcsdb PROMPT 'Enter Source SID: '

connect &stmadm/&stmadmpwd@&srcsdb
set serveroutput on
PROMPT 'Opening DataPump Export Job at &srcsdb'
DECLARE

•

•

•

•

•

Chapter 4

[135]

 -- data pump job handle
 H1 NUMBER;
 srcsid varchar2(10);
 job_state VARCHAR2(30) := 'UNDEFINED'; -- job state
 status ku$_Status; -- data pump status
 no_job exception;
 pragma exception_init(no_job, -40717);

BEGIN

 H1 := dbms_datapump.open(
 operation=>'EXPORT',
 job_mode=>'SCHEMA',
 remote_link=>'',
 job_name=>NULL, version=>'COMPATIBLE');

 dbms_output.put_line('setting metadata filter with handle: '
||H1);
 dbms_datapump.metadata_filter(
 handle=>H1,
 name=>'SCHEMA_EXPR',
 value=>'IN (''&sname'')');

--This command specifies the export dump file
 dbms_output.put_line('Adding export dump file name to handle: '
||H1);
 dbms_datapump.add_file(
 handle=>H1,
 filename=>'&expdump..dmp',
 directory=>'&src_dirobj',
 filetype=>dbms_datapump.ku$_file_type_dump_file);

--This command specifies the export log file
 dbms_output.put_line('Adding export log file name');
 dbms_datapump.add_file(
 handle=>H1,
 filename=>'&expdump._exp.log',
 directory=>'&src_dirobj',
 filetype=>dbms_datapump.ku$_file_type_log_file);

--This command starts the export
 dbms_output.put_line('starting DataPump Export Job');
 dbms_datapump.start_job(H1);

 commit;

Single-Source Configuration

[136]

--monitor export job status
 job_state := 'STARTING';
 BEGIN
 WHILE (job_state != 'COMPLETING') AND (job_state != 'STOPPED')
LOOP
 dbms_output.put_line ('job is: ' || job_state ||' ' ||
 to_char(sysdate,'HH24:MI:SS'));
 status := dbms_datapump.get_status(
 handle => h1,
 mask => dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,
 timeout => -1);
 job_state := status.job_status.state;
 dbms_lock.sleep(5);
 END LOOP;
 EXCEPTION
 WHEN no_job THEN
 dbms_output.put_line('job finished');
 END;

 DBMS_DATAPUMP.DETACH(handle => h1);

END;
/

PROMPT DataPump Export Operation is finished
--end code

--end code

Now, we move to the destination site.

First, we need to instantiate the HR schema, and then create the Apply process. We
use Data Pump import to instantiate the HR schema and data. It is important to
remember that Data Pump will create the objects in the same tablespace in which
they reside at the source database. So, our import is going to need the EXAMPLE
tablespace. Make sure you create the EXAMPLE tablespace in the destination database
if you have not already done so. You can do this through the EM DBConsole. Or,
you can issue the create tablespace command.

For example:

CREATE SMALLFILE TABLESPACE "EXAMPLE"
DATAFILE 'C:\ORACLE\11GR2\ORADATA\STRM1\EXAMPLE01.DBF' SIZE 100M
AUTOEXTEND ON NEXT 640K MAXSIZE UNLIMITED LOGGING EXTENT MANAGEMENT
LOCAL SEGMENT SPACE MANAGEMENT AUTO;

Chapter 4

[137]

Now that we have our tablespace in place, we can begin the import. This code
is found in the instantiate_imp_schema.sql script. This will connect as the
STRM_ADMIN user and do the following:

Check to see if it needs to transport the databfile based on the source and destination
directory locations you specify. If these are different, dbms_file_transfer.put_file
is called.

Note some caveats here:

Make sure that the file specified for the import file exists in the location
defined for the source directory in the destination database.
If it does not, the dbms_file_transfer.put_file will fail with:
ORA-19505: failed to identify file"<path\filename>"
ORA-27041: unable to open file
OSD-04002: unable to open file
O/S-Error: (OS 2) The system cannot find the file specified.

Make sure that the file specified for the import file does not already exist in
the destination directory.
If it does, the dbms_file_transfer.put_file will fail with:
ORA-19504: failed to create file "<path\filename>"
ORA-27038: created file already exists

And will use the existing file for the import instead.
Opens a Data Pump job handle with dbms_datapump.open.
Sets the filenames to be used with dbms_datapump.add_file.
Starts the Data Pump import job with dbms_datapump.start_job.
Monitors the job and reports status and completion.
Checks the object count for the schema.

--instantiate_exp_schema_hr.sql…
ACCEPT sname PROMPT 'Enter Schema Name to instantiate: '
ACCEPT src_dirobj PROMPT 'Enter Source directory Object name:
 (DATA_PUMP_DIR): '
ACCEPT dest_dirobj PROMPT 'Enter Destination directory
 Object name: (DATA_PUMP_IMP_DIR): '
ACCEPT expdump PROMPT 'Enter Import dump file Name
 (file extension .dmp will be appended): '
ACCEPT destdb PROMPT 'Enter Import Destination
 DB Sid: (ex: STRM2): '
ACCEPT stmadm PROMPT 'Enter Stream Admin username: '
ACCEPT stmadmpwd PROMPT 'Enter Stream Admin Password: '

•

•

•

•

•

•

•

Single-Source Configuration

[138]

connect &stmadm/&stmadmpwd@&destdb
set serveroutput on

--we check to see if the source and destination directory objects
are different.
--If so we need to transfer the dump file from the source to the
destination target database directory Object
PROMPT 'Checking if dump file requires transport from &src_dirobj
to &dest_dirobj'
DECLARE
 dest_sid varchar2(10) := upper('&&destdb');
BEGIN
 --dbms_output.put_line('dest_sid is: ' || dest_sid);
 IF '&src_dirobj' != '&dest_dirobj' THEN
 dbms_file_transfer.put_file(
 source_directory_object => '"DATA_PUMP_DIR"',
 source_file_name => '&expdump..dmp',
 destination_directory_object => '"DATA_PUMP_IMP_DIR"',
 destination_file_name => '&expdump..dmp',
 destination_database => '&destdb');

 commit;
 END IF;
END;
/

PROMPT 'Opening DataPump Import Job at &destdb'

DECLARE
 H1 NUMBER; -- data pump job handle
 job_state VARCHAR2(30) := 'UNDEFINED'; -- job state
 status ku$_Status; -- data pump status
 no_job exception;
 pragma exception_init(no_job, -40717);
BEGIN

 H1 := dbms_datapump.open(operation=>'IMPORT',job_mode=>'SCHEMA',
 remote_link=>'',
 job_name=>NULL, version=>'COMPATIBLE');

--This command specifies the import dump file location
 dbms_output.put_line('Adding import dump
 file name to handle: ' ||H1);
 dbms_datapump.add_file(
 handle=>H1,

Chapter 4

[139]

 filename=>'&expdump..dmp',
 directory=>'&dest_dirobj',
 filetype=>dbms_datapump.ku$_file_type_dump_file);

--This command specifies the import log file location
 dbms_output.put_line('Adding import log
 file name to handle: ' ||H1);
 dbms_datapump.add_file(
 handle=>H1,
 filename=>'&expdump._imp.log',
 directory=>'&dest_dirobj',
 filetype=>dbms_datapump.ku$_file_type_log_file);

--This command starts the import job.
 dbms_output.put_line('starting import job with handle: ' ||H1);
 dbms_datapump.start_job(H1);

--monitor export job status
 job_state := 'STARTING';
 BEGIN
 WHILE (job_state != 'COMPLETING') AND (job_state != 'STOPPED')
LOOP
 dbms_output.put_line ('job is: ' || job_state ||' ' ||
 to_char(sysdate,'HH24:MI:SS'));
 status := dbms_datapump.get_status(
 handle => h1,
 mask => dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,
 timeout => -1);
 job_state := status.job_status.state;
 dbms_lock.sleep(5);
 END LOOP;
 EXCEPTION
 WHEN no_job THEN
 dbms_output.put_line('job finished');
 WHEN OTHERS THEN
 RAISE;
 END;
 --dbms_lock.sleep(10); --give it time to create objs before
checking count

 DBMS_DATAPUMP.DETACH(handle => h1);

END;

Single-Source Configuration

[140]

/
--Once the import is complete, verify the HR schema objects exist.
PROMPT DataPump Import operation is finished
exec dbms_output.put_line('check object count at &destdb')
Select count(*) from dba_objects where owner = '&sname'
/
--end code

If the OE user does not exist on the destination database and it did on
the source database, you will see grant permission errors in the import
log when the import brings in the HR schema object permissions. This is
okay. You just want to remember to make sure that the OE gets the grants
if you ever decide to create that schema on the destination in the future.

Next, create the apply queue at the destination target. This code is found in the
add_apply.sql script, it should run as the STRM_ADMIN user and do the following:

Creates the Apply queue with the dbms_streams_adm.set_up_queue
procedure
Adds the Apply rule for the schema with the
dbms_streams_adm.add_schema_rules procedure
Verifies the creation of the Apply process and rules

--add_apply.sql…
ACCEPT sname PROMPT 'Enter Schema Name:'
ACCEPT qname PROMPT 'Enter Queue Name prefix: (ex: SCHEMA_HR) '
ACCEPT srcsdb PROMPT 'Enter the Source Database SID: (STRM1) '
ACCEPT destdb PROMPT 'Enter the Destination Database
 SID: (STRM2) '
ACCEPT stmadm PROMPT 'Enter Stream Admin username: '
ACCEPT stmadmpwd PROMPT 'Enter Stream Admin Password: '

connect &stmadm/&stmadmpwd@&destdb
set serveroutput on
DECLARE
 uname varchar2(50);
BEGIN
 select user into uname from dual;

--Create the apply queue
 dbms_output.put_line('Creating &qname._apply queue');
 dbms_streams_adm.set_up_queue(
 queue_table => uname || '.&qname._APPLY_QT',
 storage_clause => NULL,
 queue_name => uname || '.&qname._APPLY_Q',

•

•

•

Chapter 4

[141]

 queue_user => uname);
 dbms_output.put_line('sleep 10 secs');
 dbms_lock.sleep(10);
--give it time to create the queue before we create rules

--Add the schema apply rules
 dbms_output.put_line('adding apply rules for source &srcsdb');
 dbms_streams_adm.add_schema_rules(
 schema_name => '&sname',
 streams_type => 'APPLY',
 streams_name => '&qname._APPLY',
 queue_name => uname || '.&qname._APPLY_Q',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => '&srcsdb',
 inclusion_rule => TRUE,
 and_condition => NULL);
END;
/

--verify the queue and rule creation
set pagesize 150
set linesize 100

select * from dba_apply
where apply_name like upper('%&qname.%')
/

select * from dba_streams_schema_rules
where streams_type = 'APPLY'
/

By using the dbms_streams_adm.add_schema_rules procedure to add our Capture
process at the source-master database, we automatically prepared our schema object
SCN instantiation value. This means that the dbms_streams_adm.add_schema_rules
already made a call to the dbms_capture_adm.prepare_schema_instantiation
procedure for us.

If we had used dbms_capture_adm, we would need to call the
dbms_capture_adm.prepare_schema_instantiation procedure explicitly.

As we used Data Pump export/import to instantiate our schema at the destination
target database, the instantiation SCN has also been set for us.

Single-Source Configuration

[142]

If we had used other instantiation methods, we would need to call
DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN manually.

For more information on instantiation methods and setting the capture
and apply instantiation SCN, please refer the "Instantiation and
Oracle Streams Replication" chapter in your Oracle Streams Replication
Administrator's Guide.

With our instantiation SCNs synchronized, we are now ready to start our Apply
process at our destination database, our Propagation process at our source database,
and finally our Capture process at our source database; in that order. We do it in this
order to allow the apply and Propagation processes time to "ramp up" before getting
work from the Capture process. This code is found in the start_it_all_up.sql
script. The script runs as the STRM_ADMIN user and does the following:

Connects to the destination database
Starts the Apply process with dbms_apply_adm.start_apply
Connects to the source database
Starts the Propagation process with
dbms_aqadm.enable_propagation_schedule

Starts the Capture process with dbms_capture_adm.start_capture
Verifies the status of the processes

First, we start at our destination database and start the Apply process.

--start_it_all_up.sql…
ACCEPT destdb PROMPT 'Enter Destination DB tnsalias: (ex: STRM2): '
ACCEPT stmadm PROMPT 'Enter Stream Admin username: '
ACCEPT stmadmpwd PROMPT 'Enter Stream Admin Password: '
ACCEPT srcsdb PROMPT 'Enter Source tnsalias: (ex: STRM1): '
ACCEPT qname PROMPT 'Enter Queue Name prefix: (ex: SCHEMA_HR) '

--First connect to the destination database and start the Apply
process.

PROMPT 'connecting to &destdb as &stmadm and starting &qname._APPLY'
connect &stmadm/&stmadmpwd@&destdb
BEGIN
 dbms_apply_adm.start_apply(
 apply_name => '&qname._APPLY');

•

•

•

•

•

•

Chapter 4

[143]

 dbms_lock.sleep(10); --give it time to start
EXCEPTION WHEN OTHERS THEN
 IF sqlcode = -26666 THEN NULL; -- APPLY process already running
 ELSE RAISE;
 END IF;
END;
/

Next, connect to the source database and start the Propagation process.

--NOTE: this code assumes the db link name is the same as the
tnsalias
-- if this is not the case, you will need to accommodate for the
-- destination parameter in the enable_propagation_schedule call

PROMPT 'connecting to &srcsdb as &stmadm
connect &stmadm/&stmadmpwd@&srcsdb
PROMPT 'starting &qname._PROPAGATION'
BEGIN
 dbms_aqadm.enable_propagation_schedule(
 queue_name => '&stmadm..&qname._CAPTURE_Q',
 destination => '&destdb',
 destination_queue => '&stmadm..&qname._APPLY_Q');

 dbms_lock.sleep(10); --give it time to start

EXCEPTION WHEN OTHERS THEN
 IF sqlcode = -24064 THEN NULL; -- propagation already enabled
 ELSE RAISE;
 END IF;
END;
/

--Finally, start the Capture process
PROMPT starting &qname._CAPTURE'
BEGIN
 dbms_capture_adm.start_capture(
 capture_name => '&qname._CAPTURE');

 dbms_lock.sleep(10); --give it time to start
EXCEPTION WHEN OTHERS THEN
 IF sqlcode = -26666 THEN NULL; -- CAPTURE process already running
 ELSE RAISE;
 END IF;
END;
/

Single-Source Configuration

[144]

select apply_name || ' is ' ||status apply_status from dba_
apply@&destdb
where apply_name like upper('%&qname.%')
/

select propagation_name || ' is ' ||status apply_status from dba_
propagation
where propagation_name like upper('%&qname.%')
/

select capture_name || ' is ' ||status apply_status from dba_capture
where capture_name like upper('%&qname.%')
/
--end code

The process for setting up single-source replication from STRM1 to STRM2 is
now complete.

The proof is in the pudding (or propagation in
this case)
Now that we have created our single source environment, let us see if it works!

We will log into SQLPlus as the HR user at our source master (STRM1) and create a
record in the employee table.

We will then log into SQLPlus as the HR user at our destination target (STRM2) and
see if the new record appears.

In this screenshot for our STRM1 SQLPlus session, we will do the following:

We first show the current user and the global name of our instance to verify
where we are
We then show that there are no records in the employee table for last
name "McKinnell"
We then insert a "McKinnell" record into the employee table at STRM1
and commit

•

•

•

Chapter 4

[145]

We then show that there is now a record in the employee table for last
name "McKinnell"

In this screenshot for our STRM2 SQLPlus session, we first show the current user and
the global name of our instance to verify where we are.

We then show that there are no records in the employee table that has "McKinnell"
for the last_name.

•

Single-Source Configuration

[146]

After we insert the "McKinnell" record into the employee table at STRM1 and commit,
we rerun the select at STRM2 to see if the record is now there.

Voila! Our record has been replicated.

Sequences and triggers and Apply
Have you noticed there is a sequence being used for the employee ID? Aren't there
special rules for replicating with sequences? There are indeed. However, in our
example, they don't affect us. The LCR is created with the value generated by the
sequence, not the call to the sequence itself. So, the insert statement actually sent
to STRM2 has "208" hard coded as the employee ID. As this is a single source,
uni-directional configuration we don't need to worry about what the other sequence
is doing as it will/should never be used for values in this table. If you wish to be safe,
you can even drop the table PK sequences on the destination site. However, as you will
see in the next chapter, be very careful with sequences in a multi-master configuration.

What would happen if we had a before insert trigger on the table that populates
the employee_id value from the local employees_seq? Would the trigger end up
overwriting the "208" with the local sequence next value? In this case, it would not.
The reason is that the Apply process will not fire triggers on the receiving site table
by default. This keeps us from potentially duplicating changes that will be generated,
captured, and propagated to the destination as a result of the same triggers firing at
the source site.

Chapter 4

[147]

Let's take this one step further. What if we are not replicating the tables that are
updated by the triggers at the source site? How do those changes get made at the
receiving site if the triggers aren't fired by the Apply process? To force our Apply
process to fire table triggers on apply, we have to specify a special "fire flag". To do
this we use the DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY. This procedure accepts
a trigger owner and name, and a fire_once Boolean indicating if a trigger should
fire more than once. Be careful with how you interpret this Boolean. It logically
acts as a double negative and can be confusing. If the value is TRUE (default), the
trigger will only fire once, and thus does NOT fire if the action is a result of an Apply
process. If the value is FALSE, the trigger will fire more than once allowing the
Apply process to fire the trigger. So, in this particular case we want to set the
fire_once value to false so the Apply process will fire the trigger.

exec DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY
 trig_owner => 'HR',
 trig_name => 'HRID_TRIGGER',
 fire_once => FALSE);

This example references a fictitious trigger. It really doesn't exist
in the schema.

Other levels at which to replicate
In the example that we have used in this chapter, we replicated at the schema level.
As mentioned earlier, it is possible to replicate at the table level, the tablespace level,
and the entire database (also known as global).

The principle for creating the different levels of replication are pretty much the same
as those we used in the schema level setup. You just use different subprograms of
the DBMS_STREAMS_ADM package.

Subprogram Description
ADD_GLOBAL_PROPAGATION_
RULES Procedure

Adds global rules to the appropriate positive/negative
rule set for the specified Propagation process.
The rules propagate changes for the entire database.
Creates the specified Propagation process if it does
not exist.

Single-Source Configuration

[148]

Subprogram Description
ADD_GLOBAL_RULES Procedure Adds global rules to the appropriate positive/negative

rule set for the specified Capture/Apply process.
The rules capture/apply changes for the entire
database.
Creates the specified Capture/Apply process if it does
not exist.

MAINTAIN_GLOBAL Procedure Configures Streams replication at the database level
between two databases.
Calls ADD_GLOBAL_PROPAGATION_RULES and
ADD_GLOBAL_RULES

Uses Data Pump Full Export/Import to Instantiate.

ADD_SCHEMA_PROPAGATION_
RULES Procedure

Adds schema level rules to the appropriate positive/
negative rule set for the specified Propagation process.
The rules propagate changes for the specified schema.
Creates the specified Propagation process if it does not
exist.

ADD_SCHEMA_RULES Procedure Adds schema level rules to the appropriate positive/
negative rule set for the specified Capture/Apply
process.
The rules capture/apply changes to the specified
schema.
Creates the specified Capture/Apply process if it does
not exist.

MAINTAIN_SCHEMAS Procedure Configures Streams replication for the specified
schema(s) between two databases.
Calls ADD_SCHEMA_PROPAGATION_RULES and
ADD_SCHEMA_RULES

Uses Data Pump SCHEMA Export/Import to
Instantiate.

ADD_SUBSET_PROPAGATION_
RULES Procedure

Adds table row level subset rules to the appropriate
positive/negative rule set for the specified Propagation
process.
The rules propagate changes for the specified table row
level subset data.
Creates the specified Propagation process if it does not
exist.

Chapter 4

[149]

Subprogram Description
ADD_SUBSET_RULES Procedure Adds table row level subset rules to the appropriate

positive/negative rule set for the specified Capture/
Apply process.
The rules capture/apply changes to the specified table
row level subset data.
Creates the specified Capture/Apply process if it does
not exist.

ADD_TABLE_PROPAGATION_
RULES Procedure

Adds table rules to the appropriate positive/negative
rule set for the specified Propagation process.
The rules propagate changes to the specified table.
Creates the specified Propagation process if it does not
exist.

ADD_TABLE_RULES Procedure Adds table rules to the appropriate positive/negative
rule set for the specified Capture/Apply process.
The rules capture/apply changes to the specified table.
Creates the specified Capture/Apply process if it does
not exist.

MAINTAIN_TABLES Procedure Configures Streams replication for the specified table(s)
between two databases.
Calls ADD_TABLE_PROPAGATION_RULES and
ADD_TABLE_RULES.
Uses Data Pump Table Export/Import to Instantiate.

MAINTAIN_SIMPLE_TTS
Procedure

Clones a single tablespace from the source database.
Uses Data Pump to instantiate the tablespace at the
destination database.
Calls ADD_TABLE_PROPAGATION_RULES and
ADD_TABLE_RULES.

For more information on the DBMS_STREAMS_ADM package subprograms,
refer to your Oracle PL/SQL Packages and Types Reference manual.

A note about the DBMS_STREAMS_ADM.MAINTAIN_* scripts.

Single-Source Configuration

[150]

These scripts can be used to generate setup scripts similar to those we have already
seen in this chapter. The EM DBConsole actually makes a call to these subprograms
to accomplish the Streams configuration tasks. These subprograms each go about
the configuration differently, depending on parameter values and the replication
level being configured. Therefore, we would recommend that before using these
subprograms to configure your Streamed environment, to first run the subprogram
with the perform_actions parameter set to FALSE so that you can generate and
review the scripts to familiarize yourself with what the scripts will be doing, prior
to actually doing it.

The beauty of DBMS_STREAMS_ADM.MAINTAIN_*
As mentioned earlier, the EM setup wizard generates a PL/SQL block with a call to
the appropriate DBMS_STREAMS_ADM.MAINTAIN_* subprogram. This PL/SQL block
can be run manually from SQLPLUS if you wish. These scripts can save you a lot
of time and headaches.

What happens if the DBMS_STREAMS_ADM.MAINTAIN_* scripts fail? How do
you recover? The beauty of the DBMS_STREAMS_ADM.MAINTAIN_* scripts is that
they record their progress in the database and "know" where it left off. If the script
fails, it will raise an error and add an entry in the DBA_RECOVERABLE_SCRIPT
view (and other DBA_RECOVERABLE_SCRIPT views). You can then use the
DBMS_STREAMS_ADM.RECOVER_OPERATION procedure to do the following:

Rollback the build: This undoes the build and purges the script metadata.
Purge the build without rolling back: Leaves everything as it is, just
purges the script metadata (you will need to clean up manually: See
DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION).
Forward the build: You will first need to correct the error condition. The
forward will start with the command that erred, and if the command is
successful, it will continue the build from that point.

If you want to use the forward recover, do not rollback or purge.

The caveat here is that DBMS_STREAMS_ADM.RECOVER_OPERATION will only recover a
Streams build done through a DBMS_STREAMS_ADM.MAINTAIN_* procedure.

The DBMS_STREAMS_ADM.MAINTAIN_* scripts also provide an excellent baseline with
which to begin scripting a custom Streams topology.

•

•

•

Chapter 4

[151]

Summary
In this chapter, we demonstrated how to set up a single-source (uni-directional)
streamed environment.

We demonstrated how to use the EM DBConsole Streams "Wizard" to configure your
streamed environment and/or generate scripts that you can run manually.

We walked through the steps to manually configure your streamed environment
using PL/SQL code and provided code examples.

We addressed the different DBMS_STREAM_ADM subprograms that can be used to
configure different levels of streaming. These being table level, schema level (as in
our example), tablespace level, and global (database) level. We also touched on the
use of the DBMS_STREAM_ADM.MAINTENANCE_* subprograms that are called by
EM DBConsole to configure Streams and/or generate scripts, and the importance
of understanding how these subprograms work "under the covers".

We also discussed sequence and trigger calls, what we can expect, and how to
control them in a streamed environment.

In the next chapter, we will demonstrate how to stream both ways. Like canoeing
up-stream, it takes a bit more work, but using the paddle helps.

N-Way Replication
Now is the real fun N-way replication. N-way replication refers to a Streams
environment where there are multiple sources. In this chapter, we will still use
the STRM1 and STRM2 databases but with a little twist; making both databases
the source. By making both STRM1 and STRM2 sources, we need to first consider
a couple of unique situations and do a little more pre-planning, specifically for
N-Way replication.

The concepts and techniques used to configure a 2-way replication can then be used
to scale to N-way replication. We all need to crawl before we run, the better you
crawl (understand) this chapter, the easier it will be to scale up to N-way replication.
Pay close attention and learn the technique so that you can implement it well.

This chapter will cover the following:

Planning for N-way replication
Technique to avoid conflict
The setup

Configure replication from STRM1 to STRM2
Configure replication from STRM2 to STRM1

Configure conflict resolution
Expanding the example
Rinse and repeat

Warning: In this chapter, you should be familiar with the concepts
presented earlier in this book. We highly recommend that you DO
NOT start with this chapter unless you have completed a couple of
single-source configurations and are comfortable with the Streams
processes and terms.

•

•

•

°

°

•

•

•

N-Way Replication

[154]

We need to repeat this—Streams is not Failover.

We need to repeat this—Streams is not Failover.

No, that is not a typo. The authors are passionate about Streams and want to see you
successfully implement it. To successfully implement Streams, you need to know not
to step into the trap of using it for Failover.

Both authors have done some work where Failover was the requirement. Streams
is not a Failover solution. Failover is handled by Oracle Data Guard, NOT Oracle
Streams. Streams is about distributing the data to multiple locations. On more than
one occasion, Streams was used as a Failover technology because it can distribute
data to multiple locations. Do not fall into the trap of using the wrong tool for
the wrong job. Streams distributes (replicates) data. As such, there will always be
some difference between the databases in a Streams environment. All replication
technology has this problem. The only time where all of the databases are in sync is,
when there is no activity and all replication has been applied to all target locations.

If you need Failover, then use the proper tool. Oracle Data Guard is for Failover. It
has the necessary processes to guarantee a different level of failover from a primary
site to a secondary site, whereas Streams is a Replication tool that distributes data.
Just remember the following, when there is a discussion of Replication and Failover
that comes up:

Streams distributes data, it is built for replication
Data Guard is built for Failover

Pre-planning for N-way replication
When we set up N-way replication, we must consider the possibility of a collision of
data. Since we have multiple sources of data, it is possible for the exact same data to
be inputted on any or all of the sources at the exact same time. When this happens,
it is a conflict. This example is just one type of conflict that can happen in N-way
replication environments. The types of conflict that can occur are as follows:

Update conflict: When transactions from different databases try to update
the same row at nearly the same time.
Delete conflict: When one transaction deletes a row and the next
transaction tries to update or delete the row. Transactions originate
from different databases.

•

•

•

•

Chapter 5

[155]

Unique conflict: When transactions from different databases violate
a primary or unique constraint, the first transaction is accepted. The
second transaction obtains the conflict.
Foreign key conflict: This happens when a transaction from a Source tries to
insert a child record before the parent record exists.

The good news is that Oracle has provided built-in conflict resolution in Streams that
solves the most common situations. The built-in solutions are as follows:

OVERWRITE
DISCARD
MAXIMUM
MINIMUM

We will provide an example of conflict resolution after we build our N-way
replication. In our case, we will use MAXIMUM.

As part of the pre-planning for N-way replication, we highly suggest creating a
simple table such as the Setup Table.

Avoiding conflict
As conflict requires additional pre-planning and configuration, one begins to
wonder, "Are there techniques so that we can configure N-way replication without
the possibility of conflict?" The simple answer to the question is "Yes". The not-so-
simple answer is that there is some configuration magic that needs to be done and
the devil is in the details.

Limiting who and what can be updated is one method of avoiding conflict. Think of
it this way— there is no conflict if we agree to who and what can update the specific
data. User 1 can only update his specific data and no one else can do that. Similarly,
user 2 can only update his specific data. So, user 1 and user 2 can never cause a
conflict. Now this may be a little bit difficult depending on the application. This can
be implemented with the use of offset sequences. One sequence produces only odd
values, and another produces only even values. We could also use a combination of
sequence and some unique characteristics of the database.

•

•

•

•

•

•

N-Way Replication

[156]

The setup
Here is the big picture for this chapter. We will create a new user and tablespace
to isolate all the examples used in this chapter. That user's schema will contain one
table replicated between STRM1 and STRM2 database. Both STRM1 and STRM2 are
sources. STRM1 is the source for STRM2 and vice-versa. The Streams Administrator
will configure the Streams environment. Conflict resolution will handle the situation
where the exact same data inputted on one or more sources at the same time. The
conflict resolution will use the built-in MAXIMUM confliction resolution handler.

The set-up table is given as follows:

Description Value
New User LEARNING
Table EMPLOYEE
New Tablespace LEARNING
Replication Type N-Way
Conflict Resolution MAXIMUM
Streams Administrator STRM_ADMIN on both STRM1 & STRM2
Databases STRM1 & STRM2

STRM 2STRM 1

LEARNING.EMPLOYEES LEARNING.EMPLOYEES

This chapter is heavy on the PL/SQL and does not use DB Control or Grid Control
to set up Streams. As such, this is a deeper dive into what actually is going on under
the covers. There is an extensive use of comments in the provided code and images
to help you understand and visualize what Streams is doing. The set-up here is to
make sure you learn, understand, and are able to implement N-way replication by
providing a working example that is extendable.

All code in this chapter ran against a Beta of Oracle 11g R2 on both
Windows and Linux 32 bit. The authors have made efforts to make the
code reusable with slight modification.

Chapter 5

[157]

Preliminary setup
Please refer to Chapter 3, Prepare the Rafts and Secure Your Gear: The pre-work before
configuring Oracle 11g Streams, for a full explanation on how to configure the database
for Streams. For this chapter, the preliminary setup involves:

On both STRM1 and STRM2:

Create Tablespace for User "Learning"
Create User "Learning"
Create Table "Employees" and ADD SUPPLEMENTAL LOG
Create Trigger on "Employees" table to record when data was inserted
or updated
Load data for table "Employees"
If not already done

Create strm_admin using a DBA account.
Tablespace for Streams Administrator
Create Streams Administrator reuse from Chapter 4, Single-Source
Configuration.

Clear out previous configuration
Drop and recreate Streams Administrator

Check TNSNAMES.ORA
The tnsnames.ora file on the STRM1 host should have an
STRM2 entry
The tnsnames.ora file on the STRM2 host should have an
STRM1 entry

Make sure that the parameter global_names is set to TRUE on
both databases.

select name, value
from v$parameter
where name = 'global_names';

Global names
select * from global_name;

DBLINKS
Create Private DB link as STRM_ADMIN

Grant permissions to Streams Administrator for the table "Employees"

•

•

•

•

•

•

°

•

•

°

°

°

•

•

°

°

°

•

•

N-Way Replication

[158]

Scripts_5_1_PSU.sql provides the setup for the above. The script does not include
the steps:

Check TNSNAMES.ORA

The tnsnames.ora file on the STRM1 host should have an
STRM2 entry
The tnsnames.ora file on the STRM2 host should have an
STRM1 entry

Make sure that the parameter global_names is set to TRUE on
both databases.

select name,
value from v$parameter
where name = 'global_names';

Global names
select * from global_name;

DBLINKS
Create Private DB Link as STRM_ADMIN

Carefully review Scripts_5_1_PSU.sql and modify what you deem appropriate.
Then use an account with DBA privileges to run Scripts_5_1_PSU.sql script. At
the minimum, you will need to modify the creation of the tablespaces.

At this point, both STRM1 and STRM2 are set up according to the setup table with
the exception of the implementation of conflict resolution. Now, we will configure
Streams first on STRM1 then on STRM2. Check scripts will also be run to confirm that
the configuration of Streams is going well.

In a Streams environment, you connect to more than one database at a time while
performing Streams administration. To make things easier, we highly suggest
changing your glogin.sql script located in your $ORACLE_HOME/SQLPLUS/admin.
The following code will change the prompt from the default SQL> to the
USER@GLOBAL_NAME>. In our case we will see:

STRM_ADMIN@STRM1.US.APGTECH.COM>

STRM_ADMIN@STRM2.US.APGTECH.COM>

when we are logged into STRM1 and STRM2 as STRM_ADMIN respectively.

°

•

•

°

°

°

•

Chapter 5

[159]

When logged into the database as DBA, the login prompt will reflect

DBA1@STRM1.US.APGTECH.COM>

DBA1@STRM1.US.APGTECH.COM>

showing DBA1 being logged into STRM1 and STRM2 respectively.

-- start: change the sql prompt
-- to reflect user@global_name
-- Code for modifying glogin.sql
-- Append to the end of the glogin.sql
 set termout off
 col gname new_value prompt_gname
 select global_name gname from global_name;
 set sqlprompt "&&_USER'@'prompt_gname> "
 set termout on
-- end: change the sql prompt

STRM_ADMIN is used to run all of the scripts to set up for Streams. If necessary,
a DBA account may be used. The login prompt will reflect the logged-in user and
at what database. STRM_ADMIN does have DBA role and privileges, but we suggest
opening a separate session and using a different user for simplicity. The code for
the next two sections is in the files Scripts_5_1_STRM1_STRM2.sql and
Scripts_5_1_STRM2_STRM1.sql.

Streaming STRM1 to STRM2
If you are reusing the Streams set up from Chapter 4, Single-Source Configuration,
please run the following to clear out all previous configurations. This will destroy the
previous configuration! If you are starting with a new STRM_ADMIN account with no
previous configuration, skip this step.

STRM_ADMIN@STRM1.US.APGTECH.COM>
EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();

Receive
Queue

Learning Employees
Table

STRM 1

Send
Queue

Capture

Propagate

STRM 2

Learning Employees
Table

Apply

N-Way Replication

[160]

Let us step back and plan the set up of Streams between STRM1 and STRM2.

On STRM1, log in as STRM_ADMIN

-- ADD THE QUEUE: A good queue name is STREAMS_CAPTURE_Q

-- ADD THE CAPTURE RULE

-- ADD THE PROPAGATION RULE

-- INSTANTIATE TABLE ACROSS DBLINK

-- DBLINK TO DESTINATION is STRM2.US.APGTECH.COM

-- SOURCE is STRM1.US.APGTECH.COM

On STRM2 log in as STRM_ADMIN

-- ADD THE QUEUE: A good queue name is STREAMS_APPLY_Q

-- ADD THE APPLY RULE

Start everything up and test the Stream on STRM1

Then, check to see if the record is Stream'ed to STRM2.

We take the additional step of performing a commit after each
running of a procedure. Although not technically needed, we
use it as a precaution.

-- On STRM1, log in as STRM_ADMIN

-- ADD THE QUEUE: A good queue name is STREAMS_CAPTURE_Q

-- STRM_ADMIN@STRM1.US.APGTECH.COM>
BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => '"STREAMS_CAPTURE_QT"',
 queue_name => '"STREAMS_CAPTURE_Q"',
 queue_user => '"STRM_ADMIN"');
END;
/
commit;

-- ADD THE CAPTURE RULE
-- STRM_ADMIN@STRM1.US.APGTECH.COM>
BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(

Chapter 5

[161]

 table_name => '"LEARNING.EMPLOYEES"',
 streams_type => 'capture',
 streams_name => '"STREAMS_CAPTURE"',
 queue_name => '"STRM_ADMIN"."STREAMS_CAPTURE_Q"',
 include_dml => true,
 include_ddl => true,
 include_tagged_lcr => false,
 inclusion_rule => true);
END;
/
commit;

-- ADD THE PROPAGATION RULE
-- STRM_ADMIN@STRM1.US.APGTECH.COM>
BEGIN
DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
table_name => '"LEARNING.EMPLOYEES"',
streams_name => '"STREAMS_PROPAGATION"',
source_queue_name =>
 '"STRM_ADMIN"."STREAMS_CAPTURE_Q"',
destination_queue_name =>
 '"STRM_ADMIN"."STREAMS_APPLY_Q"@STRM2.US.APGTECH.COM',
include_dml => true,
include_ddl => true,
source_database => 'STRM1.US.APGTECH.COM',
inclusion_rule => true);
END;
/
COMMIT;

-- INSTANTIATE TABLE ACROSS DBLINK
-- STRM_ADMIN@STRM1.US.APGTECH.COM>
DECLARE
-- Variable to hold instantiation System Change Number
 iscn NUMBER;
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@STRM2.US.APGTECH.COM(
 source_object_name => 'LEARNING.EMPLOYEES',
 source_database_name => 'STRM1.US.APGTECH.COM',
 instantiation_scn => iscn);
END;
/
COMMIT;

N-Way Replication

[162]

-- On STRM2 log in as STRM_ADMIN

-- ADD THE QUEUE a good queue name is STREAMS_APPLY_Q

-- STRM_ADMIN@STRM2.US.APGTECH.COM>
BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => '"STREAMS_APPLY_QT"',
 queue_name => '"STREAMS_APPLY_Q"',
 queue_user => '"STRM_ADMIN"');
END;
/
COMMIT;

-- ADD THE APPLY RULE
-- STRM_ADMIN@STRM2.US.APGTECH.COM>
BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => '"LEARNING.EMPLOYEES"',
 streams_type => 'apply',
 streams_name => '"STREAMS_APPLY"',
 queue_name => '"STRM_ADMIN"."STREAMS_APPLY_Q"',
 include_dml => true,
 include_ddl => true,
 include_tagged_lcr => false,
 inclusion_rule => true);
END;
/
commit;

Start everything up and test.

-- STRM_ADMIN@STRM2.US.APGTECH.COM>
BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'STREAMS_APPLY',
 parameter => 'disable_on_error',
 value => 'n');
END;
/
COMMIT;

-- STRM_ADMIN@STRM2.US.APGTECH.COM>
DECLARE
 v_started number;

Chapter 5

[163]

BEGIN
SELECT DECODE(status, 'ENABLED', 1, 0) INTO v_started
 FROM DBA_APPLY where apply_name = 'STREAMS_APPLY';
 if (v_started = 0) then
 DBMS_APPLY_ADM.START_APPLY(apply_name => '"STREAMS_APPLY"');
 end if;
END;
/
COMMIT;

-- STRM_ADMIN@STRM1.US.APGTECH.COM>
DECLARE
 v_started number;
BEGIN
SELECT DECODE(status, 'ENABLED', 1, 0) INTO v_started
FROM DBA_CAPTURE where CAPTURE_NAME = 'STREAMS_CAPTURE';
if (v_started = 0) then
 DBMS_CAPTURE_ADM.START_CAPTURE(capture_name =>
 '"STREAMS_CAPTURE"');
end if;
END;
/

Then on STRM1,

-- STRM_ADMIN@STRM1.US.APGTECH.COM>
ACCEPT fname PROMPT 'Enter Your First Name:'
ACCEPT lname PROMPT 'Enter Your Last Name:'
Insert into LEARNING.EMPLOYEES (EMPLOYEE_ID, FIRST_NAME, LAST_NAME,
TIME) Values (5, '&fname', '&lname', NULL);
dbms_lock.sleep(10); --give it time to replicate

On the first record we have found that the Streams take a while to
"warm up". That is why we used dbms_lock above. Once Streams is
up and running it runs and runs and runs.

Then on STRM2, search for the record.

-- STRM_ADMIN@STRM2.US.APGTECH.COM>
Select * from LEARNING.EMPLOYEES;

If everything is working, now is a good time for a break before moving on to the next
section. In the next section, we will set up the reverse STRM2 to STRM1.

N-Way Replication

[164]

Streaming STRM2 to STRM1

Receive
Queue

Learning Employees
Table

STRM 2

Send
Queue

Capture

Propagate

STRM 1

Learning Employees
Table

Apply

Now the plan for setting up Streams for STRM2. It is the mirror image of what we
have done above, except for the test part.

On STRM2, log in as STRM_ADMIN.

-- ADD THE QUEUE, a good queue name is STREAMS_CAPTURE_Q

-- ADD THE CAPTURE RULE

-- ADD THE PROPAGATION RULE

-- INSTANTIATE TABLE ACROSS DBLINK

-- DBLINK TO DESTINATION is STRM1.US.APGTECH.COM

-- SOURCE is STRM2.US.APGTECH.COM

On STRM1 log in as STRM_ADMIN.

-- ADD THE QUEUE: A good queue name is STREAMS_APPLY_Q

-- ADD THE APPLY RULE

Start everything up and test the Stream on STRM2.

Then check to see if the record is STREAM'ed to STRM1.

-- On STRM2 log in as STRM_ADMIN

Chapter 5

[165]

-- ADD THE QUEUE :A good queue name is STREAMS_CAPTURE_Q

-- STRM_ADMIN@STRM2.US.APGTECH.COM>
BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => '"STREAMS_CAPTURE_QT"',
 queue_name => '"STREAMS_CAPTURE_Q"',
 queue_user => '"STRM_ADMIN"');
END;
/
commit;

-- ADD THE CAPTURE RULE
-- STRM_ADMIN@STRM2.US.APGTECH.COM>
BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => '"LEARNING.EMPLOYEES"',
 streams_type => 'capture',
 streams_name => '"STREAMS_CAPTURE"',
 queue_name => '"STRM_ADMIN"."STREAMS_CAPTURE_Q"',
 include_dml => true,
 include_ddl => true,
 include_tagged_lcr => false,
 inclusion_rule => true);
END;
/
commit;

-- ADD THE PROPAGATION RULE
-- STRM_ADMIN@STRM2.US.APGTECH.COM>
BEGIN
DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
table_name => '"LEARNING.EMPLOYEES"',
streams_name => '"STREAMS_PROPAGATION"',
source_queue_name =>
 '"STRM_ADMIN"."STREAMS_CAPTURE_Q"',
destination_queue_name =>
 '"STRM_ADMIN"."STREAMS_APPLY_Q"@STRM1.US.APGTECH.COM',
include_dml => true,
include_ddl => true,
source_database => 'STRM2.US.APGTECH.COM',
inclusion_rule => true);
END;
/
COMMIT;

N-Way Replication

[166]

Because the table was instantiated from STRM1 already, you can skip this step.

-- INSTANTIATE TABLE ACROSS DBLINK
-- STRM_ADMIN@STRM2.US.APGTECH.COM>
DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@STRM1.US.APGTECH.COM(
 source_object_name => 'LEARNING.EMPLOYEES',
 source_database_name => 'STRM1.US.APGTECH.COM',
 instantiation_scn => iscn);
END;
/
COMMIT;

-- On STRM1, log in as STRM_ADMIN.

-- ADD THE QUEUE, a good queue name is STREAMS_APPLY_Q
-- STRM_ADMIN@STRM1.US.APGTECH.COM>
BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => '"STREAMS_APPLY_QT"',
 queue_name => '"STREAMS_APPLY_Q"',
 queue_user => '"STRM_ADMIN"');
END;
/
COMMIT;

-- ADD THE APPLY RULE
-- STRM_ADMIN@STRM1.US.APGTECH.COM>
BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => '"LEARNING.EMPLOYEES"',
 streams_type => 'apply',
 streams_name => '"STREAMS_APPLY"',
 queue_name => '"STRM_ADMIN"."STREAMS_APPLY_Q"',
 include_dml => true,
 include_ddl => true,
 include_tagged_lcr => false,
 inclusion_rule => true);
END;
/
commit;

Chapter 5

[167]

Start everything up and Test.

-- STRM_ADMIN@STRM1.US.APGTECH.COM>
BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'STREAMS_APPLY',
 parameter => 'disable_on_error',
 value => 'n');
END;
/
COMMIT;

-- STRM_ADMIN@STRM1.US.APGTECH.COM>
DECLARE
 v_started number;
BEGIN
SELECT DECODE(status, 'ENABLED', 1, 0) INTO v_started
 FROM DBA_APPLY where apply_name = 'STREAMS_APPLY';
 if (v_started = 0) then
 DBMS_APPLY_ADM.START_APPLY(apply_name => '"STREAMS_APPLY"');
 end if;
END;
/
COMMIT;

-- STRM_ADMIN@STRM2.US.APGTECH.COM>
DECLARE
 v_started number;
BEGIN
SELECT DECODE(status, 'ENABLED', 1, 0) INTO v_started
 FROM DBA_CAPTURE where CAPTURE_NAME = 'STREAMS_CAPTURE';
 if (v_started = 0) then
 DBMS_CAPTURE_ADM.START_CAPTURE(capture_name => '"STREAMS_CAPTURE"');
 end if;
END;
/

Then on STRM2:

-- STRM_ADMIN@STRM2.US.APGTECH.COM>
ACCEPT fname PROMPT 'Enter Your Mom's First Name:'
ACCEPT lname PROMPT 'Enter Your Mom's Last Name:'
Insert into LEARNING.EMPLOYEES (EMPLOYEE_ID, FIRST_NAME, LAST_NAME,
TIME) Values (5, '&fname', '&lname', NULL);
dbms_lock.sleep(10); --give it time to replicate

N-Way Replication

[168]

On the first record we have found the Streams take a while to "warm up".
That is why we used dbms_lock above. Once Streams is up and running,
it runs and runs and runs.

Then on STRM1, search for the record.

-- STRM_ADMIN@STRM1.US.APGTECH.COM>
Select * from LEARNING.EMPLOYEES;

We now have N-way replication.

Receive
Queue

Learning Employees
Table

STRM 2

Send
Queue

Capture

Propagate

STRM 1

Learning Employees
Table

Apply

Apply Receive
Queue

Propagate Send
Queue

Capture

But wait, what about conflict resolution?

Good catch; all of this was just to set up N-way replication. In this case, it is a 2-way
replication. It will work the majority of the time; that is until there is conflict. Conflict
resolution needs to be set up and in this example the supplied/built-in conflict
resolution handler MAXIMUM will be used. Now, let us cause some CONFLICT!
Then we will be good people and create the conflict resolution and ask for world
peace while we are at it!

Conflict resolution
Conflict between User 1 and User 2 has happened. Unbeknown to both of them,
they have both inserted the exact same row of data to the same table, at roughly
the same time. User 1's insert is to the STRM1 database. User 2's insert is to the
STRM2 database.

Chapter 5

[169]

Normally the transaction that arrives second will raise an error. It is most likely that
the error will be some sort of primary key violation and that the transaction will fail.
We do not want that to happen. We want the transaction that arrives last to "win"
and be committed to the database.

Receive

Queue

Learning Employees

Table

STRM 2

Send

Queue

Capture

Propagate

STRM 1

Learning Employees

Table

Apply

Apply Receive

Queue
Propagate Send

Queue

Capture

Insert into LEARNING.EMPLOYEES (EMPLOYEE_ID, FIRST_NAME, LAST_NAME, TIME)

Values(777,’Lucky’,’Smith’,NULL);

Insert into LEARNING.EMPLOYEES (EMPLOYEE_ID, FIRST_NAME, lAST_NAME, TIME)

Values(777,’Lucky’,’Smith’,NULL);User1User1

Use2

At this point, you may be wondering "How do I choose which conflict resolution
to use?" Well, you do not get to choose, the Business Community that you support
will determine the rules most of the time. They will tell you how they want conflict
resolution handled. Your responsibility is to know what can be solved with built-in
conflict resolutions and when you will need to create custom conflict resolution.

Going back to User 1 and User 2. In this particular case, User 2's insert arrives later
than User 1's insert. Now the conflict resolution is added using the DBMS_APPLY_ADM
package, specifically the procedure DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_
HANDLER which instructs the APPLY process on how to handle the conflict.

N-Way Replication

[170]

Scripts_5_1_CR.sql shows the conflict resolution used to resolve the conflict
between User 1 and User 2. Since it is part of the APPLY process, this script is run
by the Streams Administrator. In our case, that would be STRM_ADMIN. This type of
conflict can occur on either STRM1 or STRM2 database, so the script will be run on both
databases. The numbers to the left are there for reference reasons. They are not in the
provided code.

-- Scripts_5_1_CR.sql

1.	DECLARE
2.	cols DBMS_UTILITY.NAME_ARRAY;
3.	BEGIN
4.	cols(0) := 'employee_id';
5.	cols(1) := 'first_name';
6.	cols(2) := 'last_name';
7.	cols(3) := 'time';
8.	DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
9.	object_name => 'learning.employees',
10.	method_name => 'MAXIMUM',
11.	resolution_column => 'time',
12.	column_list => cols);
13.	END;
14.	/
15.	Commit;

So what do these 15 magical lines do to resolve conflict?

Let us break it down piece by piece logically first, and look at the specific syntax
of the code. Oracle needs to know where to look when a conflict happens. In our
example, that is the learning.employees table. Furthermore, Oracle needs more
than just the table name. It needs to know what columns are involved. Line 9
informs Oracle of the table. Lines 1 -7 relate to the columns. Line 8 is the actual
procedure name.

What Oracle is supposed to do when this conflict happens, is answered by Line 10.
Line 10 instructs Oracle to take the MAXIMUM of the resolution_column and use that
to resolve the conflict. Since our resolution column is time, the last transaction
to arrive is the "winner" and is applied.

Chapter 5

[171]

Extending the example
This chapter has covered the concepts needed to implement N-way replication. The
provided code made it tangible. Now, what does it take to go to the next level?

Start with the conflicts. In this case we used the built-in MAXIMUM conflict
resolution handler. In your case, start with the business units that you are supporting
and learn the business use cases. Then drive down to the tables involved in the
transactions from the uses cases. Setting up conflict resolution is implemented
at the table level. But you need to think at the transaction level.

The example in this chapter is for a table. Taking this skeleton code you can move up
to schema level by using the related schema-level procedure. For example, we used
the following in this chapter:

Table level:

DBMS_STREAMS_ADM.ADD_TABLE_RULES
DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES
DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN
DBMS_STREAMS_ADM.ADD_TABLE_RULES

by changing it to Schema level:

DBMS_STREAMS_ADM.ADD_SCHEMA_RULES
DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES
DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN
DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

By making minor syntax changes, you can quickly start Stream'ing at the schema
level. Please refer to Chapter 4 on using Data Pump to export and import a schema.

Rinse and repeat
You may have noticed that setting up Streams for N-way replication can be
confusing. We suggest that you establish the conflict resolution solution with the
business units first. Then document it with something as simple as the setup table.
Remember to plan thinking about the transaction and then implement conflict
resolution at table level. Your implementation documentation should be both visual
and in text. During the actual implementation, start with one host and complete and
test before moving to the next host.

N-Way Replication

[172]

Summary
Building N-way replication is about making sure it is exactly what you need.
Misusing N-way replication as a Failover technology is a trap that you need to
avoid at all cost. Remember, replication is about distributing data while Failover
(technology) is about disaster recovery.

Planning for N-way replication starts with conflict resolution. Working with your
Business Units is a must, and setting and managing expectations needs to be done
before any discussion of implementation. The use of Use Case scenarios driven
down to transactions, then to tables involved in those transactions is one method
to promote discussions with the Business Units.

Document your solution prior to implementation. Use the documentation as your
implementation plan. Implementing N-way replication is easy when you are
organized and have the steps defined and in order ahead of time. As part of the
documentation/implementation plan, we recommend the use of a simple table,
such as the Setup Table, and deciding ahead of time the order of implementation.
This answers the question of "Where do we start and what next?" So, identify which
host to start with and the order of implementation is important to avoid confusion
during implementation.

Now, go and take a break before going into Chapter 6, Get Fancy with Streams
Advanced Configurations, which looks at advanced configurations.

Get Fancy with Streams
Advanced Configurations

Our previous chapters have presented examples for configuring your basic Streams
environments. The configuration ensures the flow of data remains calm and
consistent. Now that we have gotten our feet wet in the calm of the current, we
understand the underlying principles that we can now build on to move into some
white water. This chapter reviews the advanced functionality of Oracle Streams that
provides flexibility and maneuverability of data throughout a diverse environment.
Please note here that the Authors' intent is to provide a quick reference to these
functionalities. In order to attempt to present the myriad of possible scenarios that
can be addressed with these functionalities would be similar to attempting to empty
Lake Michigan with a two gallon bucket! While the thought of seeing in how many
ways we can combine these advanced features to create a totally awesome "water
park" of Streams is tempting, the Authors have opted to provide an overview of the
advanced features of Streams, with some basic examples of usage, and direction to
Oracle documentation allowing our readers to choose which eddies, rapids, and
forks they wish to further explore.

In this chapter, we take a quick look at the following advanced features of Streams:

Synchronous Capture
Subsetting
Tags
Rules (basic structure and user defined)
Down-Stream Capture
Streams change tables
Automated propagation split and merge
Heterogeneous replication basics
XSTREAMS basics

•

•

•

•

•

•

•

•

•

Get Fancy with Streams Advanced Configurations

[174]

Many of the advanced features addressed in this chapter have been introduced
in Chapter 1, All the Pieces: The Parts of an Oracle 11g Streams Environment.
Understanding how each feature interacts with the Streams' core components and
other features is paramount to not only successfully implementing the feature in
your design, but also in controlling the result.

Synchronous Capture—straight to the
Queue
As mentioned in Chapter 1, Synchronous Capture allows you to capture a DML data
change (insert, update, delete, and merge) at the source when it is committed, rather
than having LogMiner capture the change from the redo. While this can provide
performance gains, it does so at the cost of some flexibility; as seen in the restrictions
listed in Chapter 1. But remember, Synchronous Capture is NOT Synchronous
replication as we explain in Chapter 1.

A Synchronous Capture process is a Streams client that uses internal mechanisms
(think table triggers) to capture DML changes at the time they are committed to a
table. The DML change is converted to an LCR format and enqueued to the capture
queue. To avoid duplicating the capture of the same DML, it is highly recommended
that you do not configure Synchronous Capture and regular Capture on the
same table.

Synchronous Capture rules can only be added to a ruleset via
DBMS_STREAMS_ADM.ADD_TABLE_RULES or DBMS_STREAMS_ADM.ADD_TABLE_RULES.
Attempts to create or add Synchronous Capture rules with any other package
procedure will cause the rules to be ignored. For a Synchronous Capture rule,
you specify sync_capture as the value for the streams_type parameter.

Synchronous Capture rules can only be added to positive rulesets
(inclusion_rule = TRUE).

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.employees',
 streams_type => 'sync_capture',
 streams_name => 'capture_sync1',
 queue_name => 'strm_admin.HR_CAPTURE_Q',
 include_dml => TRUE,
 inclusion_rule => TRUE –-default
);
END;
/

Chapter 6

[175]

The above creates a Synchronous Capture Ruleset with the name of RULESET$_122
and Synchronous Capture with the name CAPTURE_SYNC1. Please note that in your
environment, you may have a different numeric value for your ruleset. You can view
information for Synchronous Capture using the DBA_SYNC_CAPTURE view:

SQL> select * from dba_sync_capture;

CAPTURE_NAME QUEUE_NAME QUEUE_
OWNER
------------------------------ ----------------------------- ---------

RULE_SET_NAME RULE_SET_OWNER CAPTURE_
USER
------------------------------ ----------------------------- --------

CAPTURE_SYNC1 HR_CAPTURE_Q STRM_
ADMIN
RULESET$_122 STRM_ADMIN STRM_
ADMIN

We also see a new rule, EMPLOYEES121 associated with the ruleset in
DBA_RULE_SET_RULES:

SQL> select rule_set_owner, rule_set_name, rule_owner,
 2 rule_name, rule_set_rule_enabled, rule_set_rule_comment
 3 from dba_rule_set_rules
 4 where rule_set_name = 'RULESET$_122'
 5 ;
RULE_SET_OWNER RULE_SET_NAME RULE_OWNER
--------------- --------------- ---------------
RULE_NAME RULE_SET
------------------------------ --------
RULE_SET_RULE_COMMENT

STRM_ADMIN RULESET$_122 STRM_ADMIN
EMPLOYEES121 ENABLED
"STRM_ADMIN"."RULESET$_122"

And the EMPLOYEES121 rule information in DBA_RULES

SQL> select rule_owner, rule_name, rule_condition
 2 from dba_rules where rule_name = 'EMPLOYEES121';

RULE_OWNER RULE_NAME
--------------- ----------------------
RULE_CONDITION

Get Fancy with Streams Advanced Configurations

[176]

STRM_ADMIN EMPLOYEES121
(((:dml.get_object_owner() = 'HR' and
:dml.get_object_name() = 'EMPLOYEES'))
 and :dml.is_null_tag() = 'Y')

Rulesets can be assigned to one or more Oracle Streams Clients. If you wish to assign
a Synchronous Capture ruleset to additional Oracle Synchronous capture clients,
once it has been created using one of the two above-mentioned DBMS_STREAMS_ADM
and rule procedures, you can use the DBMS_CAPTURE_ADM. ALTER_SYNC_CAPTURE to
add that ruleset to the specified Synchronous Capture client as well.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_SYNC_CAPTURE(
 capture_name => 'CAPTURE_SYNC2',
 rule_set_name => 'RULESET$_122');
END;
/

Note: CAPTURE_SYNC2 would be Synchronous Capture process
previously created using the DBMS_STREAMS_ADM.ADD_TABLE_RULES
or the DBMS_STREAMS_ADM.ADD_SUBSET_RULES.

Once a Synchronous Capture ruleset is created, its conditions can be modified using
the DBMS_RULE_ADM package.

WARNING: Do not modify the :dml.get_object_name and
:dml.get_object_owner conditions of a Synchronous Capture rule.
This could cause the Synchronous Capture rule to not capture changes.
However, other conditions can be added, deleted, or modified as desired.

As with regular capture, there can be only one capture user associated with a
Synchronous Capture client. That capture user for Synchronous Capture requires
explicit execute privileges to perform any custom rule-based transformations (this
includes all transformation functions and all packages/procedures/functions
invoked by any transformation functions), execute privilege on the synchronous
capture rule set, and enqueue privileges on the associated capture queue.

If you decide that you wish to remove a Synchronous Capture rule from a ruleset,
you can do so by using the DBMS_STREAMS_ADM.REMOVE_RULE procedure.

BEGIN
 DBMS_STREAMS_ADM.REMOVE_RULE(
 rule_name => 'EMPLOYEES121',
 streams_type => 'sync_capture',

Chapter 6

[177]

 streams_name => 'capture_sync2',
);
END;
/

You can convert a regular Capture process to a Synchronous Capture process and
vice versa, but restrictions do apply. For information on these restrictions, please
refer to the Switching From a Capture Process to a Synchronous Capture and Switching
from a Synchronous Capture to a Capture Process sections of Chapter 15, in the Oracle
Streams Concepts and Administration Guide.

For more information on Synchronous Capture, please refer to
the Implicit Capture with Synchronous Capture section in Chapter 2,
Managing a Synchronous Capture section in Chapter 15, and Monitoring a
Synchronous Capture section in Chapter 24 of the Oracle Streams Concepts
and Administration Manual 11gR2. For more information on the DBMS_
STREAMS_ADM and DBMS_CAPTURE_ADM subprograms mentioned, please
refer to the Oracle PL/SQL Packages and Types References Manual.

Subsetting—the micro side of replication
In the previous chapters, we looked at replicating whole table via table level and
schema level replication. There may be times when you only what to replicate a
subset of rows in a table to a site. Say for instance, your corporate headquarter's
database has HR table data for all departments, but you only want to send HR
data specific to location_id to that location's database. You can do this with
subsetting rules. Subsetting is considered a table level replication, but includes a
filter parameter that is applied to the process to include only those LCRs that meet
that filter criteria. Along with the ADD GLOBAL, SCHEMA, and TABLE rules of the
DBMS_STREAMS_ADM package, the ADD_SUBSET_RULE can be defined for the Capture,
Propagation, and/or Apply process.

Subsetting will generate rather complex rule_conditions depending on the dml
operation it is associated with. Because of this, it is recommended that Subset rules
only be assigned to positive rulesets. Assigning Subset rules to negative rule sets
could yield unexpected results.

An example use of the ADD_SUBSET_RULE is described below.

The HR.EMPLOYEES table has a department column DEPARTMENT_ID that references
the HR.DEPARTMENTS table. The HR.DEPARTMENTS table in turn has a column that
references the HR.LOCATIONS table.

Get Fancy with Streams Advanced Configurations

[178]

Depending on how you have configured your Streams environment and your
business rules, you may find that it is more advantageous to put the subset rule on
the Propagation process, rather than the Apply process. Or you may find it more
advantageous to put the subset rule on the Capture process. It all depends on what
is most efficient for your environment. For our example, we are going to assume
that we have created a capture queue (1500_CAPT_Q) that captures changes only for
a particular location—let's pick San Francisco, whose location ID is 1500. For the
HR.EMPLOYEE table, we only want to capture HR records that are associated with
LOCATION_ID 1500 for our capture queue 1500_CAPT_Q.

Los Angeles San Francisco

The HR tables in the San Francisco database
have the data for LOCATIONS and
DEPARTMENTS tables. However, the

EMPLOYEES table contains only a of
records. Those whose department_ids have a

location_ID of 1500.

ALL

SUBSET

The HR tables in the
Los Angeles database have

the data.
ALL

Location_id = 1500

LOCATIONS

...
location_id

country_id

...

location_id

department_id
DEPARTMENTS

...

...

department_id

EMPLOYEES

LOCATIONS

...
location_id

country_id

...

location_id

department_id
DEPARTMENTS

...

...

department_id

EMPLOYEES

The main thing to keep in mind here is that the dml_condition works best with
simpler evaluations formatted as they would be for the where clause of a SQL
statement, but just not actually including the where key word. You also want
the evaluation field(s) to be in the table you are sub-setting. Also make sure
that supplemental logging has been enabled for the fields referenced in the
dml_condition. We will see why when we look at the actual rule condition created.
Now, if the table we were sub-setting were the HR.DEPARTMENTS table, we could
simply supply the dml_condition as such:

dml_condition => 'location_id = 1500'

Chapter 6

[179]

But not so fast (in a couple of ways)! The table we want to sub-set is the
HR.EMPLOYEES table. It does not have a location_id. It does have a department_id
from which we can derive the location_id, but it is a table "down the line". So, for
a select statement to yield a result to determine if an employee record belongs to
location_id 1500, we would need something like this in the where clause:

department_id in (select department_id
 from hr.departments
 where location_id = 1500)

Unfortunately the dml_condition does not handle complex filters such as this very
well at all. Thus, we have to simplify the call for the dml_condition and allow it
to return an "easy" value to evaluate. Sounds like a job for Super-Function! We can
create a function that returns Y if the employee_id is related to the location id we are
looking for, and N if it is not. We can then pass in the simplified function call with
desired return value to the dml_condition to include in the rule_condition just
as we might in the where clause of a SQL statement. Please note, even though the
dml_condition is in a simplified format, you may still experience a noticeable
slow-down of change capture (the other part of the "not so fast"—it really can be
"not so fast"). It is highly recommended that you test the performance of a complex
capture such as this and determine if performance impacts are acceptable. If not,
look at using Tags (discussed later) and and_conditions as alternatives.

The complete code to set up a Single-Source Subsetting on the HR.EMPLOYEE table
can be found in the SubSetting.sql code file. In the following discussion, we are
only going to delve into the creation of the Subset Capture process creation to get a
good understanding of how the dml_condition can be used for complex conditions.
So, synch up your life-vest; here we go.

First we want to make sure the capture user STRM_ADMIN has the necessary privileges
to select the data in question via PL/SQL. This means explicitly granting all
privileges on HR.EMPLOYEES, HR.DEPARTMETNS, AND HR.LOCATIONS to STRM_ADMIN.
If STRM_ADMIN were only to be the Capture user, then the SELECT privileges on the
above tables would suffice.

grant all on hr.employees to strm_admin;
grant all on hr.departments to strm_admin;
grant all on hr.locations to strm_admin;

Get Fancy with Streams Advanced Configurations

[180]

Next, we create a function under the STRM_ADMIN schema that performs the complex
evaluation for us and returns either a Y if the employee_id belongs to location_id
1500, and N if it does not. The function will also return N in the case of error. To
make the function reusable, we will also pass in the location_id value we want
to evaluate against so that it is not limited to just 1500. If you choose to create
the function under a different schema, be sure to explicitly grant EXECUTE on the
function to the STRM_ADMIN user. Using a PL/SQL function allows us to code the
complex SQL needed to return the location_id associated with the employee_id in
question. The employee_id is a column in the HR.EMPLOYEE table, so we use it in the
dml_condition to pass to the function. We could use the department_id instead,
but let's stick with the employee_id for this example:

create or replace function chk_emp_loc (hrid in number,
 schkloc in number)
return varchar2 is get_loc number;
begin
 select location_id into get_loc from hr.departments
 where department_id = (select department_id from hr.employees
 where employee_id = hrid);
 if get_loc = chkloc then
 return 'Y';
 else
 return 'N';
 end if;
 exception
 when others then
 return 'N';
end;
/

Now, all we have to do is use the evaluation of the function return value in
the dml_condition. We create our Subset Rule as follows:

BEGIN
DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
table_name => 'hr.employees',
dml_condition => 'strm_admin.chk_emp_loc(employee_id, 1500) =
''Y''',
streams_type => 'capture',
streams_name => 'capture_1500',
queue_name => 'STRM_ADMIN.HR_CAPTURE_Q',
include_tagged_lcr => false,
source_database => 'STRM1');
END;
/

Chapter 6

[181]

You may have noticed that the ADD_SUBSET_RULES procedure has three out
parameters at the end of the procedure. These allow the procedure to report back the
DML rule names created should you wish to view them after the rules are created. The
procedure itself is an overloaded procedure (as shown below). If you do not need
this information, you can simply leave them out of the parameter list:

DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
 table_name IN VARCHAR2,
 dml_condition IN VARCHAR2,
 streams_type IN VARCHAR2 DEFAULT 'apply',
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 insert_rule_name OUT VARCHAR2,
 update_rule_name OUT VARCHAR2,
 delete_rule_name OUT VARCHAR2);
DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
 table_name IN VARCHAR2,
 dml_condition IN VARCHAR2,
 streams_type IN VARCHAR2 DEFAULT 'apply',
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL);

Once you have created the Sub-Setting Rule for the table, you can view the
sub-setting condition as well as the rule_condition generated in the
DBA_STREAMS_TABLE_RULES view:

set long 1000
column rule_condition format a75;

select streams_name, table_owner || '.' || table_name tablename,
 subsetting_operation action, rule_name, dml_condition,
 rule_condition
 from dba_streams_table_rules
 where streams_name = 'CAPTURE_1500'
 order by rule_name;

STREAMS_NAME TABLENAME ACTION RULE_NAME
--------------- --------------- ------ ---------------
DML_CONDITION||CHR(13)||CHR(10)
--
RULE_CONDITION
--

Get Fancy with Streams Advanced Configurations

[182]

CAPTURE_1500 HR.EMPLOYEES INSERT EMPLOYEES127
strm_admin.chk_emp_loc(employee_id, 1500) = 'Y'
:dml.get_object_owner()='HR' AND :dml.get_object_name()=
'EMPLOYEES' AND :dml.is_null_tag()='Y' AND :dml.get_source_datab
ase_name()='STRM1' AND :dml.get_command_type() IN ('UPDATE',
'INSERT') AND (:dml.get_value('NEW','"EMPLOYEE_ID"') IS NOT
NULL) AND ("STRM_ADMIN"."CHK_EMP_LOC"(:dml.get_value('NEW','
"EMPLOYEE_ID"').AccessNumber(),1500)='Y') AND (:dml.get_comm
and_type()='INSERT' OR ((:dml.get_value('OLD','"EMPLOYEE_ID"
') IS NOT NULL) AND NOT EXISTS (SELECT 1 FROM SYS.DUAL WHERE
 ("STRM_ADMIN"."CHK_EMP_LOC"(:dml.get_value('OLD','"EMPLOYEE
_ID"').AccessNumber(),1500)='Y'))))

CAPTURE_1500 HR.EMPLOYEES UPDATE EMPLOYEES128
strm_admin.chk_emp_loc(employee_id, 1500) = 'Y'
:dml.get_object_owner()='HR' AND :dml.get_object_name()=
'EMPLOYEES' AND :dml.is_null_tag()='Y' AND :dml.get_source_datab
ase_name()='STRM1' AND :dml.get_command_type()='UPDATE' AND
(:dml.get_value('NEW','"EMPLOYEE_ID"') IS NOT NULL) AND (:dm
l.get_value('OLD','"EMPLOYEE_ID"') IS NOT NULL) AND ("STRM_A
DMIN"."CHK_EMP_LOC"(:dml.get_value('OLD','"EMPLOYEE_ID"').Ac
cessNumber(),1500)='Y') AND ("STRM_ADMIN"."CHK_EMP_LOC"(:dml
.get_value('NEW','"EMPLOYEE_ID"').AccessNumber(),1500)='Y')

CAPTURE_1500 HR.EMPLOYEES DELETE EMPLOYEES129
strm_admin.chk_emp_loc(employee_id, 1500) = 'Y'
:dml.get_object_owner()='HR' AND :dml.get_object_name()=
'EMPLOYEES' AND :dml.is_null_tag()='Y' AND :dml.get_source_datab
ase_name()='STRM1' AND :dml.get_command_type() IN ('UPDATE',
'DELETE') AND (:dml.get_value('OLD','"EMPLOYEE_ID"') IS NOT
NULL) AND ("STRM_ADMIN"."CHK_EMP_LOC"(:dml.get_value('OLD','
"EMPLOYEE_ID"').AccessNumber(),1500)='Y') AND (:dml.get_comm
and_type()='DELETE' OR ((:dml.get_value('NEW','"EMPLOYEE_ID"
') IS NOT NULL) AND NOT EXISTS (SELECT 1 FROM SYS.DUAL WHERE
 ("STRM_ADMIN"."CHK_EMP_LOC"(:dml.get_value('NEW','"EMPLOYEE
_ID"').AccessNumber(),1500)='Y'))))

Let's examine the UPDATE action rule_condition (we will get into rules in more
depth later in the chapter): each condition must evaluate to TRUE for the rule to
capture the change (Positive Rule Set). Each condition acts very much like the
conditions in a SQL statement WHERE clause, and could be considered synonymous
with the WHERE clause.

Chapter 6

[183]

The first conditions are pretty straight forward. The change has to be an UPDATE for
the HR.EMPLOYEE table, with a null tag, and source database being STRM1.

:dml.get_object_owner()='HR' AND
:dml.get_object_name()='EMPLOYEES' AND
:dml.is_null_tag()='Y' AND
:dml.get_source_database_name()='STRM1' AND :dml.get_command_
type()='UPDATE'

The next set of evaluations, as stated in the following, check to make sure the
primary key column has a value:

AND
(:dml.get_value('NEW','"EMPLOYEE_ID"') IS NOT NULL) AND
(:dml.get_value('OLD','"EMPLOYEE_ID"') IS NOT NULL)

And finally, our dml_condition evaluation. Notice the column employee_id has
been extended to use the LCR$_ROW_RECORD Type nomenclature.

AND
("STRM_ADMIN"."CHK_EMP_LOC"(:dml.get_value('OLD','"EMPLOYEE_ID"').
AccessNumber(),1500)='Y') AND
("STRM_ADMIN"."CHK_EMP_LOC"(:dml.get_value('NEW','"EMPLOYEE_ID"').
AccessNumber(),1500)='Y')

For more information on LRC Types and Member functions,
please refer to the Logical Change Record Types chapter in the
Oracle Database PL/SQL Packages and Types Reference Manual.

You will see more verbose checking on the primary key columns with the INSERT
and DELETE statements to address additional existing record checks. It is possible for
an UPDATE statement to be converted into an INSERT or DELETE statement depending
on the situation.

For more information on Subset rule evaluation for different
DML operations, please refer to the DBMS_STREAMS_ADM.
ADD_SUBSET_RULES usage notes in the Oracle Database PL/SQL
Packages and Types Reference Manual.

Get Fancy with Streams Advanced Configurations

[184]

The resulting Capture should capture only those changes for location_id 1500 that
can then be propagated to the Location 1500 database and applied.

Streaming only a
subset of the

HR.EMPLOYEE data

Los Angeles

Focusing on the HR.EMPLOYEES
table in the Los Angeles

database we see recordsALL

EMPLOYEES
EMPLOYE_ID DEPARTMENT_ID

206 110
... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

101 90

177 80

204 70

104 60

120
121
122
123
124

203

116

201

50
50
50
50
50

40

30

20

10200

San Francisco

EMPLOYEES
EMPLOYE_ID DEPARTMENT_ID

...

...

120
121
122
123
124

50
50
50
50
50
50

50

The HR.EMPLOYEES table in the
San Francisco database contains
only records of employees who
are in the San Francisco office

(location_id = 1500)

Because Sub-Setting is at the table level, you will want to do this for every table in
the HR schema for which you wish to subset data by the location_id. The previous
example is just one such example.

Tag!—you're it
For eons, mankind has used a wonderful, yet simplistic method to mark,
differentiate, and/or identify objects. What is this method? They put a tag on it. We
put tags on retail merchandise to mark a price, size, inventory id, and so on. We put
little tags on maps to show where something of significance has happened. We put

Chapter 6

[185]

tags on presents. We even put tags on toes (morbid, but true). Whatever the reason
may be, we tag it. These tags make it easier for us to identify something "special"
about the object. Oracle Streams is no different. Streams uses tags on LCRs to help
the various Streams processes identify changes that need "special" handling. This
tag is of a raw data type and can store a value up to 2000 bytes. If you are familiar
with the use of the DBMS_REPUTIL.FROM_REMOTE procedure in advanced replication
triggers, you are already familiar with the default usage for a Streams tag.

The default behaviour of tags
Every entry in the redo logs has a tag associated with it. The default value of the tag
is set to null when a change is recorded in the redo. When the Capture process
evaluates a change it has retrieved from the redo, by default it looks for a null value
tag. If the tag is null, the Capture process builds an LCR from the change. When the
Capture process builds an LCR from a redo transaction, it includes the null value of the
tag. When the LCR is propagated and applied at the receiving site, the Apply process
does something special to set the value of the tag that will be included with the redo
log entry that resulted from the Apply process of the change at the target database.
The Apply process sets the value of the redo tag to the hexadecimal equivalent of
"00"—double zero (how you ask? the dbms_streams.set_tag procedure might be a
clue here—more on this in the next section). Now, if there is a Capture process at the
Apply site, the change is ignored because it has a non-null tag value. Thus Streams
gives us a default mechanism that keeps the change from cycling back to the source
from whence it came. Just like the DBMS_REPUTIL.FROM_REMOTE procedure call in the
advanced replication trigger.

Making tags work for you
You can set the value of a redo entry tag either when the original change is recorded
in the redo log at the source database, or when the Apply process applies the
change at the destination database. You can also configure your capture, propagate,
and Apply processes to evaluate the value of the tag to determine if the process
should or should not process the LCR at that stage of the replication. You can also
reference these tag values in rules and apply handlers. This allows a great amount
of flexibility with how you can manipulate an LCR throughout the replication
process based on that tag value. To capture or not to capture; where to propagate;
what to apply and how. The combinations are limited only by your imagination
(ok, that and the statistical limit of values that can be set, but hey there's a lot you
can do in 2000 bytes).

Get Fancy with Streams Advanced Configurations

[186]

Setting the tag value
You can set the value of a tag at the time the change is made at the source database
by first calling the DBMS_STREAMS.SET_TAG function for the session, and then making
the change.

Begin
 DBMS_STREAMS.SET_TAG(HEXTORAW('22'));
 Insert into oe.promotions values (3,'Local Sale');
 Commit;
End;
/

You can also set the value of the tag for the change at the apply site by specifying
a value for the APPLY_TAG with the DBMS_APPLY_ADM.CREATE_APPLY or
DBMS_APPLY_ADM.ALTER_APPLY procedures:

DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name IN VARCHAR2,
 apply_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 message_handler IN VARCHAR2 DEFAULT NULL,
 ddl_handler IN VARCHAR2 DEFAULT NULL,
 apply_user IN VARCHAR2 DEFAULT NULL,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 apply_tag IN RAW DEFAULT '00',
 apply_captured IN BOOLEAN DEFAULT FALSE,
 precommit_handler IN VARCHAR2 DEFAULT NULL,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 source_database IN VARCHAR2 DEFAULT NULL);

Notice that the default for the apply_tag parameter is '00' for the CREATE_APPLY
procedure, as we discussed earlier in this chapter:

DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name IN VARCHAR2,
 apply_tag IN RAW DEFAULT NULL);

Notice that the default for the apply_tag parameter is null for the ALTER_APPLY
procedure. This means that if you do not explicitly supply a value, the parameter
value will not be changed. It does not mean that the value will be changed to null.
This being the case, what if you really want the value of the tag to be null? This is
where the remove_apply_tag parameter steps up:

DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name IN VARCHAR2,
 remove_apply_tag IN BOOLEAN DEFAULT FALSE);

Chapter 6

[187]

If the remove_apply_tag is set to true, then the Apply process sets the value of the
tag to null when it generates redo. This comes in very handy when you want to
configure an "apply forward" directed network streamed configuration.

If the remove_apply_tag is set to false (the default), then the apply sets the tag to the
value specified for the apply_tag parameter.

Evaluating tags at the replication process rule level
When you configure capture, propagation, and Apply processes, you are actually
adding rule conditions. These rules tell the process of how to handle an LCR. As
mentioned earlier, if created with one of the DBMS_STREAMS_ADM.ADD_*_RULE, by
default, the capture, propagate, and Apply processes only handle LCR's with null
tags, and the Apply processes sets the tag to '00' when it applies a change. First,
you want to tell the rule that you want non-null tagged LCRs considered as well as
null tags (not ignored as is the default). You do this with the INCLUDE_TAGGED_LCR.
Next, you want to make sure the rule knows not to let the non-null tag override the
expected behavior of the rule set evaluation. You do this with the INCLUSION_RULE
parameter. Finally, you let the rule know what the evaluation on the non-null
tag should be. This is set by the AND_CONDITION parameter. Let's dig into this
a little deeper.

INCLUDE_TAGGED_LCR
This parameter tells the process whether or not to consider non-null tagged LCR's
for replication.

If the value is set to FALSE, the rule includes a condition for the process to only look
for LCRs with a null tag. If the tag is not null, then ignore the LCR.

If the value is set to TRUE, the rule is for the process to consider null and non-null
tags. In actuality, it removes the piece of the rule that evaluates if the tag is set,
thus making all tags a candidate for additional rule evaluation.

Make sure associated Capture, Propagate, and Apply processes have the same
INCLUDE_TAGGED_LCR value. If these values are not synchronized between the
associated processes, non-null tagged LCR's may be ignored when expected to
be replicated, leading to unexpected behavior from one process to the next.

INCLUSION_RULE
If this parameter is set to TRUE, this rule becomes part of the positive rule set. This
means that if the LCR evaluates to true for this rule, it is processed. If it evaluates
to false, it is ignored.

Get Fancy with Streams Advanced Configurations

[188]

If this parameter is set to false, this rule becomes part of the negative rule set. This
means that if the LCR evaluates to true for this rule, it is ignored. If it evaluates to
false, it is processed. This is just the opposite from the LCR evaluating true for a
positive rule.

A good rule of thumb here is that if this parameter is set to FALSE, meaning it is a
negative rule, then set the INCLUDE_TAGGED_LCR = TRUE. The reason is that if the
negative rule evaluates to TRUE, we would expect the LCR to be ignored. However, if
the INCLUDE_TAGGED_LCR is set to false, and the LCR tag is null, the overall rule will
replicate the LCR. By setting INCLUDE_TAGGED_LCR=TRUE, you can use the value of
the tag as a "tie-breaker".

AND_CONDITION
This parameter is a string that is appended to the rule conditions defined by the
other parameters. Think of these rule conditions as where clauses. This last one
allows you to add additional conditions to the where clause with the AND operator.
This condition uses the :lcr object reference. When entering this value, remember it
is a string. If you have single quotes within the string, make sure you escape them as
you would with any PL/SQL string; for example:

and_condition => ':lcr.get_tag = HEXTORAW(''22'')'

A word of warning! Make sure your AND_CONDITION corresponds with the
INCLUSION_RULE setting. Here is why:

dbms_streams_adm.add_schema_rules(
 inclusion_rule => FALSE,
 and_condition => ':lcr.get_tag = HEXTORAW(''22'')');

The above rule tells the process that if the LCR tag is equal to 22, don't process the
LCR. This is because the INCLUSION_RULE is set to FALSE, which means that the
rule is a negative rule, and will NOT process the change if the tag value equal
to 22 evaluates to TRUE (we have a positive negative).

dbms_streams_adm.add_schema_rules(
 inclusion_rule => TRUE,
 and_condition => ':lcr.get_tag = HEXTORAW(''22'')');

Setting the INCLUSION_RULE = TRUE in the rule tells the process that if the LCR tag
is equal to 22 then process the LCR. This means that the rule is a positive rule, and
will process the change if the tag value equal to 22 evaluates to TRUE (we have a
positive positive).

Chapter 6

[189]

LCR subprograms
Below is a list of LCR subprograms common to both DDL and DML that might be
used in the AND_CONDITION. For a full list, please refer to Oracle's PL/SQL Packages
and Types Reference manual:

Subprogram/Member Functions Description
GET_COMMAND_TYPE Returns the command type of the LCR
GET_COMMIT_SCN Returns the LCR commit system change number (SCN)

at the time it is Applied (or erred) at the destination
database.

GET_COMPATIBLE Returns the minimal database version compatibility
required to support the LCR

GET_EXTRA_ATTRIBUTE Returns the value for the specified extra attribute in the
LCR

GET_OBJECT_NAME Returns the name of the object that is changed by the
LCR

GET_OBJECT_OWNER Returns the owner of the object that is changed by the
LCR

GET_SCN Returns the system change number (SCN) of the LCR
when it was committed at the source database.

GET_SOURCE_DATABASE_NAME Returns the source database name.
GET_SOURCE_TIME Returns the time when the LCR's change was generated

in the redo log of the source database, or the time when
a persistent LCR was created.

GET_TAG Returns the LCR tag value
GET_TRANSACTION_ID Returns the LCR transaction identifier
"IS_NULL_TAG Returns LCR tag status. 'Y' if the tag is NULL, 'N' if the

tag is not NULL

Tag usage
Avoid change cycling. We've seen how the default use of tags helps Capture
processes determine if a change should be captured and how an Apply process
avoids having its change captured. This method works well in a bi-directional,
master-to-master configuration. The understanding here is that propagation only
makes one "hop"; from the source to the destination, and then stops. We like to
call this the "one hop prop" (when said with a rap rhythm, it's kinda catchy)!

Get Fancy with Streams Advanced Configurations

[190]

We can take this logic one step further to a hub and spoke replicated environment.
By setting the tag to a value specific to a site, we can tell a propagation job to send all
changes from the master hub to a destination for all tag values except the tag value
for the destination site. For instance: say you have a configuration with one "hub"
(H1) and 3 (S1, S2, and S3) "spoke" masters. Changes can be made at any of the four
master sites. H1 is responsible for receiving a change from one spoke master and
passing it on to the other spokes.

H1

S1 S3S2

When the H1 master passes the change to the spokes, we want to avoid sending
the change back to the spoke that originated it. This can be done using tags set to
unique identifiers indicating where the change originated from (this is where those
prior design activities we discussed in Chapter 2 come in really handy—you should
already know how many unique tag values you will need, and which site will be
assigned which value).

One way to accomplish this is to have the Apply process at the hub set the
apply_tag value indicating where the change originated from and then have the
Propagation process to each site check the tag value, sending only those that do not
match the id assigned to the destination for that Propagation process.

In this case, we will assign the tag values of "A1", "A2", and "A3" to the changes
originating from the spoke sites S1, S2, and S3 respectively. We will let the changes
that originate at the Hub default to the null tag value.

Note: The following steps assume that the OE schema has already been
instantiated in all 4 databases, the appropriate database links have been
created, and the SCN has been set for each apply site at each site using
the DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN for the OE
schema, and DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN for
each table in the OE scheme (both levels must be done). At this point no
changes should be made to any of the objects at any of the sites until the
Streams setup is completed.

Chapter 6

[191]

Capture at the Hub
Prior to Oracle 11g and the introduction of Propagation Split and Merge, using the
same capture queue for multiple destinations has the potential of impacting the
performance of the overall Streaming if the connectivity to one or more destination
sites is degraded. Thus, prior to 11g, we would want to create a separate outbound
queue and Capture process for each spoke. This way, if the propagation to one spoke
is slow or down, it will not impact propagation or queue management for the other
spokes. In Oracle 11g, the Propagation Split and Merge feature can be implemented
with a single capture queue to mitigate these potential issues. In our example, we are
going to go ahead and use the "Separate Capture Queue Per Destination" to allow us
to focus on Tag usage.

H1

Capture
Queue

S1_CAPT_Q

Capture
OE_CAPT_S1

include_tagged_Icr=True

Capture
Queue

S2_CAPT_Q

Capture
Queue

S3_CAPT_Q

Capture
OE_CAPT_S2

Capture
OE_CAPT_S3

include_tagged_Icr=True include_tagged_Icr=True

S1 S2 S3

The following code creates the capture queues and processes, and can be found in
the TAG_HubCapture.sql code file.

First we create the capture queues; one for each destination.

Begin
dbms_streams_adm.set_up_queue(
 queue_table => 'strm_admin.S1_CAPT_QT',
 storage_clause => NULL,
 queue_name => 'strm_admin.S1_CAPT_Q',
 queue_user => 'strm_admin');
End;

Get Fancy with Streams Advanced Configurations

[192]

/
Begin
dbms_streams_adm.set_up_queue(
 queue_table => 'strm_admin.S2_CAPT_QT',
 storage_clause => NULL,
 queue_name => 'strm_admin.S2_CAPT_Q',
 queue_user => 'strm_admin');
End;
/
Begin
dbms_streams_adm.set_up_queue(
 queue_table => 'strm_admin.S3_CAPT_QT',
 storage_clause => NULL,
 queue_name => 'strm_admin.S3_CAPT_Q',
 queue_user => 'strm_admin');
End;
/

We then create Capture processes for each queue, making sure to include non-null
tags. We want the AND_CONDITION to be NULL so we get all of the changes regardless
of the tag value.

Begin
 dbms_streams_adm.add_schema_rules(
 schema_name => 'OE',
 streams_type => 'CAPTURE',
 streams_name => 'OE_CAPT_S1',
 queue_name => 'S1_CAPT_Q',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE, ---capture null and non-null tags
 source_database => 'H1.oracle.com',
 inclusion_rule => TRUE,
 and_condition => NULL);
End;
/

Begin
 dbms_streams_adm.add_schema_rules(
 schema_name => 'OE',
 streams_type => 'CAPTURE',
 streams_name => 'OE_CAPT_S2',
 queue_name => 'S2_CAPT_Q',
 include_dml => TRUE,
 include_ddl => TRUE,

Chapter 6

[193]

 include_tagged_lcr => TRUE, ---capture null and non-null tags
 source_database => 'H1.oracle.com',
 inclusion_rule => TRUE,
 and_condition => NULL);
End;
/

Begin
 dbms_streams_adm.add_schema_rules(
 schema_name => 'OE',
 streams_type => 'CAPTURE',
 streams_name => 'OE_CAPT_S3',
 queue_name => 'S3_CAPT_Q',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE, ---capture null and non-null tags
 source_database => 'H1.oracle.com',
 inclusion_rule => TRUE,
 and_condition => NULL);
End;
/

Capture, Propagate, and Apply at each spoke
At each spoke, we want to set up the basic capture and propagation to the Hub
processes. We also want to create an Apply process that applies all changes sent
to the spoke regardless of the tag value.

S1 S2 S3

Capture
OE_CAPT_H1

Capture
OE_CAPT_H1

Capture
OE_CAPT_H1

Capture
Queue

S1_CAPT_Q

Apply
OE_APPLY_H1

Apply
OE_APPLY_H1

Apply
OE_APPLY_H1

Capture
OE_CAPT_S1

Propagate
OE_PROP_H1

Propagate
OE_PROP_H1

Propagate
OE_PROP_H1

Capture
Queue

H1_CAPT_Q

Capture
Queue

H1_CAPT_Q

Capture
Queue

H1_CAPT_Q

Apply
Queue

H1_APPLY_Q

Apply
Queue

H1_APPLY_Q

Apply
Queue

H1_APPLY_Q

include_tagged_Icr=False include_tagged_Icr=False include_tagged_Icr=False

include_tagged_Icr=True include_tagged_Icr=True include_tagged_Icr=True

Capture
Queue

S2_CAPT_Q

Capture
OE_CAPT_S2

Capture
Queue

S3_CAPT_Q

Capture
OE_CAPT_S3

H1

Get Fancy with Streams Advanced Configurations

[194]

The following code creates the Capture and Apply queues, and the necessary
Capture, Propagation, and Apply processes at each spoke. This code can be
found in the TAG_SpokeSQL.sql code file.

First, we create the Capture and Apply queues.

Begin
dbms_streams_adm.set_up_queue(
 queue_table => 'strm_admin.H1_CAPT_QT',
 storage_clause => NULL,
 queue_name => 'strm_admin.H1_CAPT_Q',
 queue_user => 'strm_admin');
End;
/
Begin
dbms_streams_adm.set_up_queue(
 queue_table => 'strm_admin.H1_APPLY_QT',
 storage_clause => NULL,
 queue_name => 'strm_admin.H1_APPLY_Q',
 queue_user => 'strm_admin');
End;
/

Next, create the Capture rule, making sure to set the SOURCE_DATABASE with the
appropriate spoke name, and only capture null tag changes. We do this because
the spoke is only sending to one site, so we don't need to worry about tags here.

Begin
 dbms_streams_adm.add_schema_rules(
 schema_name => 'OE',
 streams_type => 'CAPTURE',
 streams_name => 'OE_CAPT_H1',
 queue_name => 'H1_CAPT_Q',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => False, ---capture just null tags -
changes made at this site
 source_database => 'S1.oracle.com',---substitute S2, S3 here
 ---for the other two spokes
 inclusion_rule => TRUE,
 and_condition => NULL);
End;
/

Chapter 6

[195]

Create the Apply Rule to include non-null tags. We do this because we may be
receiving changes from the hub that are forwarded from another spoke. These
changes will have a non-null tag. If the change originated at the hub, the tag will be
null. We do not need to evaluate the tag value past null or non-null. This would have
already been done by the Propagation process for this destination at the hub. Setting
the AND_CONDITION to NULL and the INCLUDE_TAGGED_LCR to TRUE, instructs the
Apply process to apply any null and non-null tagged LCR's it receives.

BEGIN
 dbms_streams_adm.add_schema_rules(
 schema_name => 'OE',
 streams_type => 'APPLY',
 streams_name => 'OE_APPLY_H1',
 queue_name => 'strm_admin.H1_APPLY_Q',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE, --check null and non-null tags
 source_database => 'H1.oracle.com',
 inclusion_rule => TRUE,
 and_condition => NULL);
END;
/

Now create the propagation from the spoke to the Hub. As we want to send all of
the changes originating at the spoke to the Hub, we don't need to worry about tags.
We just need a basic null tag LCR propagation rule. Run the following at each spoke,
substituting S1 with S2 and S3 for the respective spoke site. Because propagation is
enabled when it is created, we will disable it immediately after creation to allow us
to complete the configuration setup.

BEGIN
 dbms_streams_adm.add_schema_propagation_rules(
 schema_name => 'OE',
 streams_name => 'OE_PROP_H1',
 source_queue_name => 'H1_CAPT_Q',
 destination_queue_name => 'S1_APPLY_Q@H1.oracle.com',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => FALSE, --send only null tags
 source_database => 'S1.oracle.com',
 inclusion_rule => TRUE,
 and_condition => NULL,
 queue_to_queue => TRUE);

Get Fancy with Streams Advanced Configurations

[196]

 --disable propagation until we are finished
 BEGIN
 dbms_aqadm.disable_propagation_schedule(
 queue_name => 'H1_CAPT_Q',
 destination => ' H1.oracle.com ',
 destination_queue => 'S1_APPLY_Q@H1.oracle.com'
);
 EXCEPTION WHEN OTHERS THEN
 IF sqlcode = -24065 THEN NULL; -- propagation already disabled
 ELSE RAISE;
 END IF;
 END;
END;

Apply at the Hub
We now want to create an inbound queue and Apply process for each spoke at the
Hub. This way, if one queue is slow or has errors, it will not hold up changes from
the other spokes. This also helps with maintenance. Should you need to drop and
recreate the queue, you are only impacting synchronization between the Hub and
the one spoke. You can use a single apply queue if you wish.

S1 S2 S3

Capture

OE_CAPT_H1

Capture

OE_CAPT_H1

Capture

OE_CAPT_H1

Apply_tag-HEXTORAW(’A1’) Apply_tag-HEXTORAW(’A2’) Apply_tag-HEXTORAW(’A3’)

Capture

Queue

S1_CAPT_Q

Capture

Queue

S2_CAPT_Q

Capture

Queue

S3_CAPT_Q

Apply

OE_APPLY_H1

Apply

OE_APPLY_H1

Apply

OE_APPLY_H1

include_tagged_Icr=True include_tagged_Icr=True include_tagged_Icr=True

Capture

OE_CAPT_S1

Capture

OE_CAPT_S2

Capture

OE_CAPT_S3

Apply

OE_APPLY_S1

Apply

OE_APPLY_S2

Apply

OE_APPLY_S3

H1

Apply

Queue

S1_APPLY_Q

Apply

Queue

S2_APPLY_Q

Apply

Queue

S3_APPLY_Q

Propagate

OE_PROP_H1

Propagate

OE_PROP_H1

Propagate

OE_PROP_H1

Capture

Queue

H1_CAPT_Q

Capture

Queue

H1_CAPT_Q

Capture

Queue

H1_CAPT_Q

Apply

Queue

H1_APPLY_Q

Apply

Queue

H1_APPLY_Q

Apply

Queue

H1_APPLY_Q

include_tagged_Icr=False include_tagged_Icr=False include_tagged_Icr=False

include_tagged_Icr=True include_tagged_Icr=True include_tagged_Icr=True

Chapter 6

[197]

The following code creates the Apply queues and Apply processes at the Hub. This
code can be found in the TAG_SpokeSQL.sql code file.

First we create the Apply queues; one for each source site.

Begin
dbms_streams_adm.set_up_queue(
 queue_table => 'strm_admin.S1_APPLY_QT',
 storage_clause => NULL,
 queue_name => 'strm_admin.S1_APPLY_Q',
 queue_user => 'strm_admin');
End;
/
Begin
dbms_streams_adm.set_up_queue(
 queue_table => 'strm_admin.S2_APPLY_QT',
 storage_clause => NULL,
 queue_name => 'strm_admin.S2__APPLY_Q',
 queue_user => 'strm_admin');
End;
/
Begin
dbms_streams_adm.set_up_queue(
 queue_table => 'strm_admin.S3_APPLY_QT',
 storage_clause => NULL,
 queue_name => 'strm_admin.S3__APPLY_Q',
 queue_user => 'strm_admin');
End;
/

We then configure an Apply process on H1 for each of the spoke sites, and set the
apply_tag with that site's tag value.

Begin
 dbms_streams_adm.add_schema_rules(
 schema_name => 'OE',
 streams_type => 'APPLY',
 streams_name => 'OE_APPLY_S1',
 queue_name => 'S1_APPLY_Q',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'S1.oracle.com',
 inclusion_rule => TRUE,
 and_condition => NULL);

Get Fancy with Streams Advanced Configurations

[198]

dbms_apply_adm.alter_apply(
apply_name => 'OE_APPLY_S1',
apply_tag => HEXTORAW('A1') ---this is the key
);
END;
/
Begin
 dbms_streams_adm.add_schema_rules(
 schema_name => 'OE',
 streams_type => 'APPLY',
 streams_name => 'OE_APPLY_S2',
 queue_name => 'S2_APPLY_Q',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'S2.oracle.com',
 inclusion_rule => TRUE,
 and_condition => NULL);
dbms_apply_adm.alter_apply(
apply_name => 'OE_APPLY_S2',
apply_tag => HEXTORAW('A2') ---this is the key
);
END;
/
Begin
 dbms_streams_adm.add_schema_rules(
 schema_name => 'OE',
 streams_type => 'APPLY',
 streams_name => 'OE_APPLY_S3',
 queue_name => 'S3_APPLY_Q',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'S3.oracle.com',
 inclusion_rule => TRUE,
 and_condition => NULL);
dbms_apply_adm.alter_apply(
apply_name => 'OE_APPLY_S3',
apply_tag => HEXTORAW('A3') ---this is the key
);
END;
/

Chapter 6

[199]

Propagation at the Hub
Now we want to set up propagation from the Hub to each spoke. It is here where we
evaluate the tag using the AND_CONDITION. As we want to send all changes, expect
those originating from the destination spoke, it is easier to create a negative rule.
Because propagation is enabled when it is created, we will disable it immediately
after creation. As mentioned earlier, the AND_CONDITION is a string that is appended
to system conditions created by the rule. Make sure to escape single quotes using
PL/SQL syntax. Run the following at the hub for each spoke site, substituting S1
with S2 and S3 respectively, and A1 with A2 and A3 respectively.

The following code creates the Propagation processes at the Hub. This code can be
found in the TAG_HUBProp.sql code file.

BEGIN
 dbms_streams_adm.add_schema_propagation_rules(
 schema_name => 'OE',
 streams_name => 'OE_PROP_S1',
 source_queue_name => 'S1_CAPT_Q',
 destination_queue_name => 'H1_APPLY_Q@S1.oracle.com',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE, --check null and non-null tags
 source_database => 'H1.oracle.com',
 inclusion_rule => FALSE, --if condition is true, don't send
 and_condition => ':lcr.get_tag = HEXTORAW(''A1'')',
 queue_to_queue => TRUE);

 --disable propagation until we are finished
 BEGIN
 dbms_aqadm.disable_propagation_schedule(
 queue_name => 'S1_CAPT_Q',
 destination => ' S1.oracle.com ',
 destination_queue => 'H1_APPLY_Q@S1.oracle.com'
);
 EXCEPTION WHEN OTHERS THEN
 IF sqlcode = -24065 THEN NULL; -- propagation already disabled
 ELSE RAISE;
 END IF;
 END;
END;
/

Get Fancy with Streams Advanced Configurations

[200]

Summary of what we have just done:

We have created a Capture process at the Hub that looks for null and
non-null tagged LCRs
We have created a Capture process at each spoke that looks for null tag
LCRs only
We have created an Apply process at the hub, for each spoke site, that
sets the LCR tag to a unique non-null value identifying where the change
originated from
We have created an Apply process at each spoke that applies all null and
non-null tagged LCRs sent to it
We have created a Propagation process from the hub, to each spoke site, that
evaluates the LCR tag value, and sends all LCRs whose tag value is not equal
to the destination spoke assigned identifier
We have created a Propagation process from each spoke to the hub that
sends any null tagged LCRs

S1 S2 S3

Capture

OE_CAPT_H1

Capture

OE_CAPT_H1

Capture

OE_CAPT_H1

apply_tag-HEXROW(’A1’) Apply_tag-HEXROW(’A2’) Apply_tag-HEXROW(’A3’)

Capture

Queue

S1_CAPT_Q

Capture

Queue

S2_CAPT_Q

Capture

Queue

S3_CAPT_Q

Apply

OE_APPLY_H1

Apply

OE_APPLY_H1

Apply

OE_APPLY_H1

include_tagged_Icr=True include_tagged_Icr=True include_tagged_Icr=True

Capture

OE_CAPT_S1

Capture

OE_CAPT_S2

Capture

OE_CAPT_S3

Apply

OE_APPLY_S1

Apply

OE_APPLY_S2

Apply

OE_APPLY_S3

H1

Apply

Queue

S1_APPLY_Q

Apply

Queue

S2_APPLY_Q

Apply

Queue

S3_APPLY_Q

Propagate

OE_PROP_H1

Propagate

OE_PROP_H1

Propagate

OE_PROP_H1

Capture

Queue

H1_CAPT_Q

Capture

Queue

H1_CAPT_Q

Capture

Queue

H1_CAPT_Q

Apply

Queue

H1_APPLY_Q

Apply

Queue

H1_APPLY_Q

Apply

Queue

H1_APPLY_Q

include_tagged_Icr=False include_tagged_Icr=False include_tagged_Icr=False

include_tagged_Icr=True include_tagged_Icr=True include_tagged_Icr=True

Propagate

OE_PROP_S1
Propagate

OE_PROP_S3

Propagate

OE_PROP_S2

include_tagged_Icr=True

inclusio_rule=False

and_condition=’:Icr.get_tag()

=HEXTORAW(”A3”)’

include_tagged_Icr=True

inclusio_rule=False

and_condition=’:Icr.get_tag()

=HEXTORAW(”A2”)’

include_tagged_Icr=True

inclusio_rule=False

and_condition=’:Icr.get_tag()

=HEXTORAW(”A1”)’

•

•

•

•

•

•

Chapter 6

[201]

At this point you will need to set the Apply Instantiation SCN using the
DBMS_APPLY_ADM.SET_SCHEMA_INSTANITIATION_SCN and then start each of the
Apply processes using the DBMS_APPLY_ADM.START_APPLY procedure (see Chapters
4 and 5 for specifics). Enable the Propagation processes using the DBMS_AQADM.
ENABLE_PROPAGATION_SCHEUDLE procedure. Then finally, start the Capture processes
using the DBMS_CAPTURE_ADM.START_CAPTURE procedure.

Tags can also be used by Rules, such as Error handling, and Rule based
transformations. These rules are configured to run specified PL/SQL packages in
which the LCR properties can be evaluated and modified. In these cases, you would
reference the :dml, or :ddl object type methods (similar to the :lcr object type
referenced in the AND_CONDITION) to read or set the tag value as needed.

RULES—they're what we live by
Streams is all about the rules; literally. The action context that a Streams process
takes is governed by the rule conditions. When you create a rule, Oracle generates
system conditions, and evaluation contexts, that are used to evaluate each LCR to
determine if the action context for the process should be accomplished. We have
already addressed a number of these system conditions during our TAG discussion;
for instance INCLUDE_TAGGED_LCR=FALSE generates a system evaluation for the
LCR$_ROW_RECORD_TYPE :dml.is_null_tag='Y' subprogram.

For more information on LCR Types, reference Oracle Database PL/SQL
Packages and Types Reference manual.

You can control what system evaluations are included in the rule by the
parameter values you specify, as well as add user-defined evaluations with
the AND_CONDITION parameter.

There is a lot going on under the calm surface water of rules. Understanding how
this activity flows together will help you become more advanced in creating rules to
manipulate your Streams throughout your current environment. So, let's grab our
snorkels and masks, and stick our heads under the surface and take a look.

Get Fancy with Streams Advanced Configurations

[202]

Rule components
Rules have three components: conditions, evaluation context, and action context.
These components coordinate with the "when", "what", and "how" of the LCR
being processed. The conditions tell the Streams process "when" the LCR should
be processed, the evaluation context defines "what" data/information the Streams
process uses to process the LCR, and the action context tells the Streams process
"how" to handle the LCR.

Rule conditions
The rule condition is essentially the "where clause". The conditions are evaluated
against the properties of the LCR and return either TRUE or FALSE. The conditions
can contain compound expressions and operators (AND, OR, NOT, and so on.).
The final evaluation returned from the condition (TRUE or FALSE) is the final result
of all the compound expressions. An example of a system-generated condition
would be that of our good friend :dml.is_null_tag = 'Y' (generated by the
INCLUDE_TAGGED_LCR=FALSE parameter of the DBMS_STREAMS_ADM.ADD_*_RULE
procedures). On rule creation, the condition is passed in as a string (so make sure
to escape any single quotes within the string).

':dml.get_object_owner() = ''OE'' and :dml.get_tag() =
HEXTORAW(''22'')'

It is important to remember that you want to keep your rule conditions as simple as
possible. Complex rule conditions can have a significant impact on performance. The
rule condition created by our Sub-Setting example is an example of a complex rule as
it includes a PL/SQL call to a function. Also, rule conditions that contain NOT, or !=
can also impact performance.

Rule evaluation context
The rule evaluation context defines data external to the LCR properties that can
be referenced in the rule conditions. This is comparable to the SQL statement
from clause. This reference is a database object that contains the external data. The
evaluation context provides the rule conditions with the necessary information
for interpreting and evaluating the conditions that reference external data. If the
evaluation context references objects, the rule owner must have the proper privileges
to reference the object (select and execute) as the rule condition is evaluated in the
schema of the evaluation context owner. Information contained in an Evaluation
Context might include table aliases used in the condition, variable names and
types, and/or a function to use to evaluate the rules to which the evaluation
context is assigned.

Chapter 6

[203]

Evaluation Context structure can get a bit confusing. To get a better feel of it, you
may want to start by looking at the following database views:

DBA/ALL/USER_EVALUATION_CONTEXT_TABLES: table alias used
DBA/ALL/USER_EVALUATION_CONTEXT_VARS: variable types used
DBA/ALL/USER_EVALUATION_CONTEXTS: functions used

Streams system created rules (created using DBMS_STREAMS_ADM) will create rules
using the standard Oracle-supplied SYS.STREAMS$_EVALUATION_CONTEXT rule
evaluation context. This evaluation context is composed of a variable_types list
for the :dml and :ddl variables, and the evaluation function SYS.DBMS_STREAMS_
INTERNAL.EVALUATION_CONTEXT_FUNCTION as seen in the previous DBA views.

You can create your own evaluation context using the
DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT procedure:

DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
 evaluation_context_name IN VARCHAR2,
 table_aliases IN SYS.RE$TABLE_ALIAS_LIST DEFAULT NULL,
 variable_types IN SYS.RE$VARIABLE_TYPE_LIST DEFAULT NULL,
 evaluation_function IN VARCHAR2 DEFAULT NULL,
 evaluation_context_comment IN VARCHAR2 DEFAULT NULL
);

If you create a custom Evaluation Context that uses the SYS.DBMS_STREAMS_
INTERNAL.EVALUATION_CONTEXT_FUNCTION, it must include the same variables
and types as in the SYS.STREAMS$_EVALUATION_CONTEXT (a.k.a. :dml and :ddl).

Variable_types can be defined using SYS.RE$VARIABLE_TYPE_LIST, which in turn
accepts individual variable types defined using SYS.RE$VARIABLE_TYPE.

Similarly, if you create a custom function to use as the evaluation function, it must
have the following signature:

FUNCTION evaluation_function_name(
 rule_set_name IN VARCHAR2,
 evaluation_context IN VARCHAR2,
 event_context IN SYS.RE$NV_LIST DEFAULT NULL,
 table_values IN SYS.RE$TABLE_VALUE_LIST DEFAULT NULL,
 column_values IN SYS.RE$COLUMN_VALUE_LIST DEFAULT NULL,
 variable_values IN SYS.RE$VARIABLE_VALUE_LIST DEFAULT NULL,
 attribute_values IN SYS.RE$ATTRIBUTE_VALUE_LIST DEFAULT NULL,

•

•

•

Get Fancy with Streams Advanced Configurations

[204]

 stop_on_first_hit IN BOOLEAN DEFAULT FALSE,
 simple_rules_only IN BOOLEAN DEFAULT FALSE,
 true_rules OUT SYS.RE$RULE_HIT_LIST,
 maybe_rules OUT SYS.RE$RULE_HIT_LIST);
RETURN BINARY_INTEGER;

Where the returned BINARY_INTEGER value must be one of the following:

DBMS_RULE_ADM.EVALUATION_SUCCESS
DBMS_RULE_ADM.EVALUATION_CONTINUE
DBMS_RULE_ADM.EVALUATION_FAILURE

For more information on creating custom Evaluation Contexts and
evaluation functions and Rule Types, refer to the Oracle Database
PL/SQL Packages and Types Reference manual, and The Oracle
Streams Extended Examples manual.

Once an Evaluation Context is created it can be assigned to a rule or a rule set using
the evaluation_context parameter of the appropriate DBMS_RULE_ADM procedure.

The Evaluation Context for a Rule can be different than the Evaluation Context for a
Rule Set to which the Rule might be assigned. The bottom line is that a Rule must be
able to associate itself with an Evaluation Context at some level. We will revisit this
concept as we discuss Rule Creation a little later on this section.

Action context
The rule action context is just that, the action information that the rule evaluation
engine returns to the client application, to be acted upon by the client application,
when the rule evaluates to true. This is not the action itself, but values to be used
by the action code that are specific to the rule. The action context is of the
SYS.RE$NV_LIST type, which contains an array of name-value pairs and is associated
to a rule condition. A rule condition can only have one action context. The action
context itself is optional and can contain zero to many name-value pairs.

The SYS.RE$NV_LIST has the following construct:

TYPE SYS.RE$NV_LIST AS OBJECT(
 actx_list SYS.RE$NV_ARRAY);

Subprograms are:

ADD_PAIR (name IN VARCHAR2,
 value IN ANYDATA);
GET_ALL_NAMES ()
 RETURN SYS.RE$NAME_ARRAY;

Chapter 6

[205]

GET_VALUE (name IN VARCHAR2)
 RETURN ANYDATA;
REMOVE_PAIR (name IN VARCHAR2);

For more information on creating and populating Action Contexts types,
refer to the Oracle Database PL/SQL Packages and Types Reference
manual.
For more information on Rule components refer to the Oracle Streams
Concepts and Administration manual.

Creating your own rules
In some cases, we may need more complex rules than what the DBMS_STREAMS_ADM
package creates. For instance, a rule condition that uses NOT to exclude a subset of
LCRs from the overall inclusion evaluation. Or perhaps to only look for a specific
combination of conditions other than those normally generated. Actually, a complex
rule is defined as a rule that cannot be created with the DBMS_STREAMS_ADM package.
In these cases, we can create our own rules and evaluation contexts using the
DBMS_RULES_ADM package. Both packages create rule conditions evaluation contexts.
However, you should avoid using them interchangeably with the same rule. This is
because the DBMS_STREAMS_ADM package is an Oracle specialized package for setting
up Streams rules to a specific design. It has a set functionality and tight controls on
the variables so the generation and clean-up of associated metadata is more precise.
Giving us users the DBMS_RULES_ADM package opens up a world of opportunities
for us to exploit the power of these procedures and function, but also has the
potential for generating unexpected or not generating expected metadata. Thus,
the DBMS_RULES_ADM metadata management may differ in areas from that of the
DBMS_STREAMS_ADM package. So it is best to use the same package to manage and
remove the rules that you had used to create them.

Rule creation
To create a RULE, you use the DBMS_RULE_ADM.CREATE_RULE procedure.

DBMS_RULE_ADM.CREATE_RULE(
 rule_name IN VARCHAR2,
 condition IN VARCHAR2,
 evaluation_context IN VARCHAR2 DEFAULT NULL,
 action_context IN SYS.RE$NV_LIST DEFAULT NULL,
 rule_comment IN VARCHAR2 DEFAULT NULL);

If you do not specify an evaluation_context here, it will default to that of the
rule set to which the rule is added. If the evaluation_context is set here, it takes
precedence over all other evaluation_context assignments.

Get Fancy with Streams Advanced Configurations

[206]

Rule Sets
No rebel Rules allowed! Each Rule must belong to a Rule Set to be accessed by the
Rules engine. A Rule Set can have one or more Rules assigned to it. First you create
the Rule Set, and then add the Rule. When you do this, pay particular attention to
where the evaluation context assignments are made in the process. This dictates
which one is used in the case of multiple evaluation_context assignments.

To create a Rule Set, you use the DBMS_RULE_ADM.CREATE_RULE_SET procedure.

DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name IN VARCHAR2,
 evaluation_context IN VARCHAR2 DEFAULT NULL,
 rule_set_comment IN VARCHAR2 DEFAULT NULL);

If you set the evaluation_context here, it is only used by the Rule if the Rule has
not already been assigned an evaluation_context when it was created or when it is
added to the Rule Set.

To add the Rule to the Rule Set, you use the DBMS_RULE_ADM.ADD_RULE procedure.

DBMS_RULE_ADM.ADD_RULE(
 rule_name IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 evaluation_context IN VARCHAR2 DEFAULT NULL,
 rule_comment IN VARCHAR2 DEFAULT NULL);

If you set the evaluation_context here when you add the Rule to the Rule Set
this evaluation_context takes precedence over the evaluation_context that
was set when the Rule Set was created. However, if you had already set the
evaluation_context when you created the Rule, this evaluation_context
is ignored.

It is possible to have different Rules in the Rule Set that have different
evaluation_context assignments. Be careful when doing this as it may yield
unexpected results when the Rule Set is used for evaluation (see Event Context below).

The evaluation_context has to be assigned at some point. If the
evaluation_context has not been assigned at any point; Rule creation, Rule Set
creation, or adding the Rule to the Rule Set, an error is raised when you attempt
to add the Rule to the Rule Set.

Information on Rule Sets and Rules can be found in the following views:
DBA_RULES

DBA_RULE_SETS

DBA_RULE_SET_RULES

•

•

•

Chapter 6

[207]

V$RULE

V$RULE_SET

V$RULE_SET_AGGREGATE_S

Event context
When a client application submits a payload to the Rules engine, it is called an
"event". The client application submits the payload as an event context using the
DBMS_RULE.EVALUATION procedure. This procedure accepts a SYS.RE$NV_LIST
datatype containing the name-value pairs identifying the event, as well as the name
of the Rule Set to be used for the evaluation, and other information. Notice the
evaluation_context is required here. This tells the Rules engine to look only for
Rules in the Rule Set that have been assigned this evaluation_context and use
them to evaluate the payload. Be careful here as it could yield unexpected results
if the wrong evaluation_context is specified inadvertently.

DBMS_RULE.EVALUATE(
 rule_set_name IN VARCHAR2,
 evaluation_context IN VARCHAR2,
 event_context IN SYS.RE$NV_LIST DEFAULT NULL,
 table_values IN SYS.RE$TABLE_VALUE_LIST DEFAULT NULL,
 column_values IN SYS.RE$COLUMN_VALUE_LIST DEFAULT NULL,
 variable_values IN SYS.RE$VARIABLE_VALUE_LIST DEFAULT NULL,
 attribute_values IN SYS.RE$ATTRIBUTE_VALUE_LIST DEFAULT NULL,
 stop_on_first_hit IN BOOLEAN DEFAULT FALSE,
 simple_rules_only IN BOOLEAN DEFAULT FALSE,
 true_rules OUT SYS.RE$RULE_HIT_LIST,
 maybe_rules OUT SYS.RE$RULE_HIT_LIST);
DBMS_RULE.EVALUATE(
 rule_set_name IN VARCHAR2,
 evaluation_context IN VARCHAR2,
 event_context IN SYS.RE$NV_LIST DEFAULT NULL,
 table_values IN SYS.RE$TABLE_VALUE_LIST DEFAULT NULL,
 column_values IN SYS.RE$COLUMN_VALUE_LIST DEFAULT NULL,
 variable_values IN SYS.RE$VARIABLE_VALUE_LIST DEFAULT NULL,
 attribute_values IN SYS.RE$ATTRIBUTE_VALUE_LIST DEFAULT NULL,

•

•

•

Get Fancy with Streams Advanced Configurations

[208]

 simple_rules_only IN BOOLEAN DEFAULT
FALSE,
 true_rules_iterator OUT BINARY_INTEGER,
 maybe_rules_iterator OUT BINARY_INTEGER);

Also note that the procedure is overloaded. The stop_on_first_hit is only available
in the first version. The out paramaters true_rules and true_rules_iterator are
mutually exclusive, as are maybe_rules and maybe_rules_iterator.

For more information on evaluation events, refer to the Oracle Streams
Concepts and Administration manual.
For more information on the DBMS_RULE.EVALUATE procedure, refer to
the Oracle Database PL/SQL Packages and Types Reference manual.

How it all comes together
So, now that you have created all your Rules and assigned them to Rule Sets and
Evaluation Contexts, how does it all work?

1.	 The client application generates an event and sends it to the Rules Engine via
the DBMS_RULE.EVALUATE procedure.

2.	 The Rules Engine evaluates the event using the Rule Conditions for the Rules
in the Rule Set whose evaluation_context match the evaluation_context
in the DBMS_RULE.EVALUATE procedure call.

3.	 The results of the evaluation (TRUE, FALSE, or UNKNOWN) are returned to the
Rules Engine.

4.	 The Rules Engine then returns those Rules that evaluated to TRUE back to the
client application along with any Action Context associated with the Rule(s).
The Client application then performs actions based on the results and using
any action context returned by the Rule Engine.

Client Application

Generates an
Event

Rules & Action
Context are
performed

Event Sent Via
DBMS_RULE.EVALUATE

Procedure

If Rule evaluation is TRUE
Rule & Action Context

sent back to Client Application

Rules Engine

Retrieves Rules from Rule
set with the specified
Evaluation Context

Evaluates Event
using Rule
Conditions
Retrieved

Results:

True False

Unknown }

Chapter 6

[209]

Rule based transformation—eat your heart
out transformers!
As with all good rules, some are made to be broken; or maybe changed. In some
circumstances we need to have rules that govern change. In Advance Replication, a
number one rule is that a replicated table must have the same structure at all master
sites. The column names and data types have to be identical or the "apply" of a
deferred transaction will fail. With Streams, we can now break this rule by adding a
new rule that allows the LCR to "morph" to a new structure. We call this ability Rule
Based Transformation; and it is done via complex rules and action context.

When you plan your Rule Based Transformation design (remember Chapter 2?),
you want to remember that Rule Based Transformation rules are only evaluated
with positive Rule Sets. If the Rule Set is negative, the Rule Based Transformation
is ignored.

Declarative versus User Created
In the real world, there are many ways to accomplish the same thing; just as there
are many ways to model data. You may run into a situation where the table structure
in one master database may be different from the structure of the table in another
master database but data must be replicated between them. It could be that a table
column at one master is a VARCHAR2, but is a DATE at another master site. Or perhaps
the column does not exist at all. Rule Based Transformation provides the ability to
capture the LCR and convert it to the necessary structure needed to apply it at the
destination site. This is not to be confused with transformations accomplished via
the DBMS_TRANSFORMATION package. That is a different fish (and doesn't swim in
this stream).

A special note concerning SUBSET Rules and transformations. A SUBSET Rule
has an internal row_migration transformation assigned to it when it is created.
This internal transformation will always be the first one executed before any
other transformations.

Another thing to keep in mind is the amount of "transformation" that will be applied
to the LCR. If extensive transformations need to be made to the LCR, you may wish
to consider using a custom DML handler instead to take advantage of the apply
parallel capabilities.

Get Fancy with Streams Advanced Configurations

[210]

The remainder of this section is going to use the premise that we have an LCR
that we need to change a column name for, before we send it out from the source
site. The LCR is generated on a table which has a different column name than the
corresponding table at all the other sites. This being the case, we are going to create
the transformation at the Capture process. There are two ways to accomplish this;
either by using a declarative transformation or a user created transformation.
We will review each, and then apply the method to our LCR that needs a column
name change.

Depending on the Transformation type, you can use one of the following views to
find information concerning the transformation:

Declarative: DBA_STREAMS_TRANSFORMATIONS
User Created: DBA_STREAMS_TRANSFORM_FUNCTION

Declarative transformation
As of 10g, Oracle provides commonly used transformations in the DBMS_STREAMS_ADM
package. These transformations are referred to as declarative transformations.

Declarative transformations only work with row LCR's (aka DML LCR's).
The row LCR can be a Streams captured LCR (basic or synchronous), or a user
created message.

The procedures allow you to add transformation rules to do the following:

Add a column (DBMS_STREAMS_ADM.ADD_COLUMN)
Delete a column (DBMS_STREAMS_ADM.DELETE_COLUMN)
Rename a column (DBMS_STREAMS_ADM.RENAME_COLUMN)
Rename a table (DBMS_STREAMS_ADM.RENAME_TABLE)
Rename a schema (DBMS_STREAMS_ADM.RENAME_SCHEMA)

Special considerations when DBMS_STREAMS_ADM.ADD_COLUMN

Be aware that the DBMS_STREAMS_ADM.ADD_COLUMN procedure does not support a
number of data types. These include:

LOBS (BLOB, CLOB, NCLOB, BFILE, and so on)
LONG, LONG RAW, and so on
ROWID

•

•

•

•

•

•

•

•

•

•

Chapter 6

[211]

User-defined types (including object types, REFs, varrays, nested tables, and
so on)
Oracle-supplied types (including ANY types, XML types, spatial types, and
media types)

For more information on DBMS_STREAMS_ADM Declarative
Transformation subprograms, please refer to the Oracle Database
PL/SQL Packages and Types Reference.

For our purposes, we want to use the DBMS_STREAMS_ADM.RENAME_COLUMN to create
a declarative transformation. In our example, we will work with the JOB_HISTORY
table from the Oracle Example HR Schema. We will assume that at our source
database the HR.JOB_HISTORY table has a column named DEPARTMENT_ID, and
at the destination database the corresponding column in the HR.JOB_HISTORY is
DEPT_ID. Declarative Transformations can only be added to an existing rule. If the
rules specified do not exist, an error is raised. Also, the transformation will be
owned by STRM_ADMIN so make sure you have explicitly granted all privileges
on HR.JOB_HISTORY to STRM_ADMIN.

First we find the rule to which we wish to add the declarative transformation, logged
in as STRM_ADMIN we can look at the USER_RULES view:

SQL> select * from user_rules;
RULE_NAME

RULE_CONDITION

RULE_EVALUATION_CONTEXT_OWNER RULE_EVALUATION_CONTEXT_NAME
------------------------------ ------------------------------
RULE_ACTION_CONTEXT(ACTX_LIST(NVN_NAME, NVN_VALUE()))
--
RULE_COMMENT
--
HR1
((:dml.get_object_owner() = 'HR') and :dml.get_source_database_name()
= 'STRM1'
)
SYS STREAMS$_EVALUATION_CONTEXT

HR2
((:ddl.get_object_owner() = 'HR' or :ddl.get_base_table_owner() =
'HR') and :ddl
.get_source_database_name() = 'STRM1')
SYS STREAMS$_EVALUATION_CONTEXT

•

•

Get Fancy with Streams Advanced Configurations

[212]

HR1 is our Row LCR (:dml) rule, so we will add

To create our declarative transformation Rule, we issue the following command:

begin
DBMS_STREAMS_ADM.RENAME_COLUMN(
 rule_name => 'strm_admin.HR1',
 table_name => 'HR.JOB_HISTORY',
 from_column_name => 'DEPARTMENT_ID',
 to_column_name => 'DEPT_ID',
 value_type => '*', -- default
 step_number => 0, --default
 operation => 'ADD' -–default
);
end;
/

We can now check the rule in the USER_RULES view:

SQL> select * from user_rules where rule_name = 'HR1';
RULE_NAME

RULE_CONDITION

RULE_EVALUATION_CONTEXT_OWNER RULE_EVALUATION_CONTEXT_NAME
------------------------------ ------------------------------
RULE_ACTION_CONTEXT(ACTX_LIST(NVN_NAME, NVN_VALUE()))

RULE_COMMENT

HR1
((:dml.get_object_owner() = 'HR') and :dml.get_source_database_name()
= 'STRM1'
)
SYS STREAMS$_EVALUATION_CONTEXT
RE$NV_LIST(RE$NV_ARRAY(RE$NV_NODE('STREAMS$_INTERNAL_TRANS',
ANYDATA())))

Notice that the RULE_COMMENT now has an entry indicating the inclusion of the
transformation rule.

We can also look at the DBA_STREAMS_TRANSFORMATION view:

SQL> select rule_owner, rule_name, transform_type,
 2 from_column_name, to_column_name, value_type,
 3 declarative_type, precedence, step_number

Chapter 6

[213]

 4 from dba_streams_transformations;
RULE_OWNER

RULE_NAME TRANSFORM_TYPE
------------------------------ --------------------------
FROM_COLUMN_NAME TO_COLUMN_NAME VAL
-------------------- -------------------- ---
DECLARATIVE_TYPE PRECEDENCE STEP_NUMBER
-------------------- ---------- -----------
STRM_ADMIN
HR1 DECLARATIVE TRANSFORMATION
DEPARTMENT_ID DEPT_ID *
RENAME COLUMN 2 0

To remove the declarative transformation from the rule, we use the same procedure
we used to create the transformation, but set the operation parameter to REMOVE:

begin
DBMS_STREAMS_ADM.RENAME_COLUMN(
 rule_name => 'strm_admin.HR1',
 table_name => 'HR.JOB_HISTORY',
 from_column_name => 'DEPARTMENT_ID',
 to_column_name => 'DEPT_ID',
 operation => 'REMOVE' -–default
);
end;
/

Note: Removing the declarative transformation does not clear the
RULE_COMMENT we see in the USER_RULES view. However, it does
clear the entry from the DBA_STREAMS_TRANSFORMATION view.
For more detailed information on using the
DBMS_STREAMS_ADM.RENAME_COLUMN, and other declarative
transformation procedures, please refer to the Oracle PL/SQL
Packages and Types Reference, and the Oracle Streams Concepts
and Administration Guide.

User created Rule Based Transformations (UCRBT)
You can also create your own Rule Based Transformations. These transformations
are referred to as user-created transformations (imagine that).

The steps for creating a UCRBT are pretty basic.

Get Fancy with Streams Advanced Configurations

[214]

Create the PL/SQL function that performs the transformation.

The function should receive the LCR as a SYS.ANYDATA IN parameter
The function should return either an LCR a SYS.ANYDATA or
STREAMS$_ANYDATA_ARRAY

If the function returns a STREAMS$_ANYDATA_ARRAY, it can only be associated
with a capture rule

Grant the EXECUTE privilege on the function to the appropriate user as necessary.

Create or locate the rules for which the transformation will be used.

Set the custom rule-based transformation for each rule by running the
SET_RULE_TRANSFORM_FUNCTION procedure.

In this example, we will setup a UCRBT that makes the same transformation as
the previous declarative transformation. The UCRBT is going to be owned by
STRM_ADMIN so make sure you have explicitly granted all privileges on
HR.JOB_HISTORY to STRM_ADMIN.

The code for this example can be found in the UCRBT.sql code file.

First we create the PL/SQL function to accomplish the transformation; STRM_ADMIN
will be the function owner, so make sure you are logged in as STRM_ADMIN in
this example:

CREATE OR REPLACE FUNCTION DEPT_COLNAME_CHANGE (evt IN SYS.AnyData)
RETURN SYS.AnyData IS
 lcr SYS.LCR$_ROW_RECORD;
 obj_name VARCHAR2(30);
 rc NUMBER;
BEGIN
 IF evt.GetTypeName='SYS.LCR$_ROW_RECORD' THEN
 rc := evt.getObject(lcr);
 obj_name := lcr.GET_OBJECT_NAME();
 IF obj_name = 'JOB_HISTORY' THEN
 lcr.RENAME_COLUMN('DEPARTMENT_ID','DEPT_ID','*');
 RETURN SYS.ANYDATA.ConvertObject(lcr);

 END IF;
 END IF;
 RETURN evt;
END;
/

•

•

•

Chapter 6

[215]

Because STRM_ADMIN is the function owner, we do not need to grant EXECUTE on the
function. If the function was created in a different schema, then we would want to
explicitly grant execute on the function to STRM_ADMIN.

Next we determine which rule to which to add the transformation function.
You can either create a new rule at this point, or use an existing rule. We will use
our HR1 rule from above (we can do this because we removed the Declarative
RENAME_COLUMN transformation from the rule in our last step of the Declarative
Transformation example).

select * from dba_rules;

Then, we use the DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION procedure to
add the transformation function to the desired rule:

BEGIN
 DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
 rule_name => 'HR1',
 transform_function => 'strm_admin.DEPT_COLNAME_CHANGE');
END;
/

We will now see the transformation in the DBA/ALL_STREAMS_TRANSFORM_FUNCTION
view:

SQL> select * from all_streams_transform_function;

RULE_OWNER

RULE_NAME VALUE_TYPE
------------------------------ --------------------
TRANSFORM_FUNCTION_NAME CUSTOM_TYPE
----------------------------------- -----------
STRM_ADMIN
HR1 SYS.VARCHAR2
"STRM_ADMIN"."DEPT_COLNAME_CHANGE" ONE TO ONE

For more detailed information on UCRBT, please reference the Usage
Notes for the DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION
procedure in the Oracle PL/SQL Packages and Types Reference, and the
Oracle Streams Concepts and Administration Guide.

Get Fancy with Streams Advanced Configurations

[216]

Transformation order of execution
It is possible to have a combination of declarative and user defined transformations
assigned to a single rule. This being the case, how do you know which ones get
executed when? Especially, if you have not assigned step numbers. There is a default
order of execution for transformation that help keep the rule from running amuck.

If the rule is a Subset rule, then Row Migration is always executed first
Next are Declarative Rule based transformations

These are further ordered by the step number specified for each transformation if
they have been assigned. If the step numbers are not assigned, the transformations
are executed in the following order:

Delete_Column

Rename_Column

Add_Column

Rename_Table

Rename_Schema

Last (but not the least), the User Created Rule-Based Transformation
is executed.

How the transformation is processed
The Streams process to which you assign the Rule Based Transformation determines
when the transformation is applied to the LCR. The transformation is only applied if
the rule belongs to a positive rule set and the LCR evaluates to true for the rule (if it
belonged to a negative rule then evaluating to TRUE would mean that we don't send
the change—so why transform it?).

At the Capture (basic and synchronous)
1.	 The Capture process creates the LCR from the redo log change
2.	 The transformation is applied (if the rule evaluates to TRUE)
3.	 The transformed LCR is stored in the Capture Queue

At the Propagation
1.	 The Propagation process begins the dequeue of the LCR
2.	 The transformation is applied to the LCR (if the rule evaluates to TRUE)
3.	 The Propagation process completes the dequeue of the LCR
4.	 The transformed LCR is sent to the destination queue

•

•

•

•

•

•

•

•

Chapter 6

[217]

At the Apply
1.	 The Apply process begins the dequeue of the LCR
2.	 The transformation is applied to the LCR (if the rule evaluates to TRUE)
3.	 The Apply process completes the dequeue of the LCR
4.	 The transformed LCR is applied at the destination

Transformation errors
If the transformation errors, it has significant ramifications on the overall Streams
processes. To protect data integrity between the source and destination databases,
stringent rules are put in place. In most cases, the Streams process that is performing
the transformation is disabled if there is an error. This means that all Streams
configurations dependent on that process come to a halt until the error is addressed.
The rule of thumb here is to make sure you have very thorough exception handling
in your transformation PL/SQL packages.

At the Capture (basic and synchronous)
If the transformation is declarative and the error can be ignored (like removing a
column that does not exist), the error is ignored and the process continues.

If the transformation is declarative and the error cannot be ignored, or if the
transformation is user created; the LCR is not captured, the error is raised to
the Capture process, and the Capture process is disabled.

At the Propagation
The LCR is not dequeued or propagated, and the error is raised to the
Propagation process.

At the Apply
The LCR is not dequeued or applied, the error is raised to the Apply process, and the
Apply process is disabled.

If some of the messages in the LCR were successfully transformed, the LCR is placed
in the Apply Error queue. Those transformations that were completed are retained
in the LCR when it is moved to the Apply Error queue. Attempts to execute the
error with the DBMS_APPLY_ADM.EXECUTE_ERROR procedure will only process the
LCR as-is and not attempt to execute further transformation.

To mitigate a transformation failure and re-enable any disabled Streams processes,
you must either fix the problem in the PL/SQL function or remove the Rule
Based Transformation.

Get Fancy with Streams Advanced Configurations

[218]

Things to remember when working with Rules
If you wish to modify a rule created using DBMS_RULE_ADM.CREATE_RULE, it can be
modified with DBMS_RULE_ADM.ALTER_RULE procedure.

If you wish to modify a rule created by DBMS_STREAMS_ADM.ADD_*_RULE, you may
wish to drop the existing rule and create a new rule with the new parameters to
ensure that the rule metadata is updated as expected.

DBMS_RULE_ADM.ALTER_RULE can support rules created using the
DBMS_STREAMS_ADM package, but certain metadata may not be updated as expected.

It is recommended that you do not use the DBMS_RULE_ADM.DROP_RULE to drop
a rule created using DBMS_STREAMS_ADM as it may not remove all the metadata
for the rule. Instead, use the DBMS_STREAMS_ADM.REMOVE_RULE procedure.

In general, a good rule of thumb is to use the same package to modify, remove or
drop a rule that was used to create the rule.

If you are creating your own Rules and Rule Sets, make sure to coordinate the
evaluation_context assignments with the client application event generation
specified evaluation_context. Otherwise you may receive unexpected results
if the wrong evaluation_context is inadvertently used.

Downstream Capture—avoid white water
at the source
In Chapter 1, we briefly mention Downstream Capture (DSC) and how it can be
used to offload the Capture and Propagation processes off a Production/Source
Server. In this section, we will take a deeper dive into DSC and cover:

What is DSC?
When to use DSC?
How to set up DSC?

By covering the above with the example provided, you should have the information
needed to understand and properly use DSC.

DSC is a configuration of Streams that has the Capture and Propagation Process on a
different server from where the data is processed. Recall the first image that was seen
in Chapter 1 of DSC.

•

•

•

Chapter 6

[219]

Capture Propagate Network

Source
Production Worker Target

Database

Apply

Downstream Capture

The Source Production database is where all the transactions are run against. The
Worker database receives redo logs from the Source Production database and then
the normal Streams process (Capture, Propagate) happens on the Worker database
(flowing from left to right in the image) and then the Apply process is at the Target
Database. Notice that we wrote that the Worker Database receives the redo logs.

The components of DSC are a mixture of concepts from Oracle Data Guard and
Oracle Streams. The Oracle Streams processes we know about already. As for
Oracle Data Guard components, the redo transport service is used in DSC. It is this
redo transport service that is used in DSC to move logs from a Source Production
database to a Worker Database. Also note that a Worker Database can be the end
Target Database as seen in the following image:

Source
Production

Network

Capture Apply

Target
Database

Downstream Capture

Get Fancy with Streams Advanced Configurations

[220]

From the previous image, we can see that the Target Database has both the Capture
and Apply processes. As all the processing is on the Target Database there is no
need to have a Propagate process. To get a better understanding, let us start with
one of the differences in DSC as compared to a "regular" Streams configuration—the
parameter LOG_ARCHIVE_DEST_n.

Source
Production

Network

Capture Apply

Target
Database

LOG_ARCHIVE_DEST_n

LOD_ARCHIVE_DEST_n

Downstream Capture

LOG_ARCHIVE_DEST_n is a parameter that is used on both the source and
target sides. Setting this parameter will control how the redo logs are sent and
received at the source and target side. We will configure the parameter,
LOG_ARCHIVE_DEST_2 on both source and target, as a part of the example
used in this section.

Source
Production

Network

Capture Apply

Target
Database

LOG_ARCHIVE_DEST_2

LOG_ARCHIVE_DEST_2

Online redo logs Standby redo logs Online redo logs

Downstream Capture

Chapter 6

[221]

Evolving the diagram, we now show the local Online redo logs for each of the
respective databases. Also, Standby redo logs have been added on the Target
Database side. The Oracle recommendation for Standby redo logs is to have at least
one more group than the number of online redo log file groups on the source. The
properly configured Capture process will scan the Standby redo logs that came across
the network. The Standby redo logs will cross the network as a result of configuring
the parameter LOG_ARCHIVE_DEST_2 on both source and target sides.

Up to this point we have covered a little of the what and how of DSC. Shifting focus
to the when of DSC, we answer the question, when should you use DSC? DSC is
most often used to "offload" the Capture and Propagation processes off of the host
machine of your Source Production (Database).

Network

Capture Apply
LOG_ARCHIVE_DEST_2

LOG_ARCHIVE_DEST_2

Online redo logs Standby redo logs Online redo logs

STRM1
(SOURCE)

STRM1
(TARGET)

LEARNING. EMPLOYEE
TABLE

LEARNING. EMPLOYEE
TABLE

Downstream Capture

Now back to the how. We are going to take the image above and fully work through
the scenario from ground zero. The scenario and assumptions are:

We have a Production Level OLTP database, STRM1, and due to the policy
and performance demand only required and necessary processing can be
done on the host server.
A replicated database is needed where activities that are not "required and
necessary" can be done. The replicated database will be STRM2.
Network and Storage resources have been properly scoped and allocated.
Both databases are configured in archive log mode.

•

•

•

•

Get Fancy with Streams Advanced Configurations

[222]

The necessary supplemental logging and pre-work for Streams configuration
has been completed and this includes setting up a Streams Administrator.
We will use STRM_ADMIN as the Streams Administrator for this chapter.
Please refer to Chapter 3 for details on the pre-work for Streams.
The schema in this example is LEARNING.

We will be going over the set up of DSC with the following steps:

1.	 Setting up the redo log transport.
2.	 Configuring the Streams part of DSC.

Setting up the redo log transport
1.	 The SYS password needs to be the same on the source and target. Run the

following command on source and target to make sure that the sys password
is the same. Replace <password> with a password that meets your security
policy requirement.
alter user sys identified by <password>;	

2.	 A DBLINK between STRM2 and STRM1 will also be used. Create this as Streams
Administrator.
-- run on STRM2.US.APGTECH.COM
conn STRM_ADMIN/STRM_ADMIN
-- create dblink
create database link STRM2.US.APGTECH.COM connect to STRM_ADMIN
identified by STRM_ADMIN using 'STRM2';
-- test it
select * from STRM2.US.APGTECH.COM;

3.	 The configuration of LOG_ARCHIVE_DEST_2 on STRM2 should be:
ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE SCOPE=SPFILE;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='LOCATION=/u07/STRM2/standby-
archives/
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'
SCOPE=SPFILE;

4.	 Set the parameter LOG_ARCHIVE_CONFIG to enable the sending and receiving
of redo logs between STRM1 and STRM2
-- run on STRM2.US.APGTECH.COM
ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(STRM1,STRM2)'
SCOPE=SPFILE;

•

•

Chapter 6

[223]

5.	 Now for creating the Standby redo logs on STRM2. This example is for a single
instance database. We will cover RAC at the end of this example. Let's "Keep
It Simple" for right now.

Determine the size of the redo log on source (STRM1)
SELECT L.THREAD#,
 L.GROUP#,
 L.BYTES / 1024 / 1024 MB,
 LF.MEMBER LOCATION
 FROM V$LOG L, V$LOGFILE LF
 WHERE L.GROUP# = LF.GROUP#;

The result should be similar to below (shown in table format
for clarity):

THREAD# GROUP# MB LOCATION
1 1 50 /u04/oracle/STRM1/archives/
1 2 50 /u05/oracle/STRM1/archives/
1 3 50 /u06/oracle/STRM1/archives/

Once the size of the redo logs is determined from Source we can
create the Standby redo log on STRM2. Remember to create an
additional group as recommended by Oracle.
-- run on STRM2.US.APGTECH.COM
conn /as sysdba
ALTER DATABASE ADD STANDBY LOGFILE GROUP 4
(/u07/STRM2/standby-archives/slog4.rdo') SIZE 50M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 5
(/u07/STRM2/standby-archives/slog5.rdo') SIZE 50M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 6
(/u07/STRM2/standby-archives/slog6.rdo') SIZE 50M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 7
(/u07/STRM2/standby-archives/slog7.rdo') SIZE 50M;

Confirm that standby redo logs were created successfully:
-- run on STRM2.US.APGTECH.COM
conn /as sysdba
SELECT GROUP#, THREAD#, SEQUENCE#, ARCHIVED, STATUS
FROM V$STANDBY_LOG;

Now to configure redo transport service for the STRM1 side

°

°

°

°

Get Fancy with Streams Advanced Configurations

[224]

6.	 The configuration of LOG_ARCHIVE_DEST_2 on STRM1 should be:
ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE SCOPE=SPFILE;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=STRM2 LGWR SYNC
NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
DB_UNIQUE_NAME=ORCL102D'
SCOPE=SPFILE;

Note that we are using SYNC parameter for real-time downstream Capture
process. Otherwise use SYNC.

7.	 Set the parameter LOG_ARCHIVE_CONFIG to enable the sending and receiving
of redo logs between STRM1 and STRM2
-- run on STRM1.US.APGTECH.COM
ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(STRM1,STRM2)'
SCOPE=SPFILE;

Now we have the redo transport service configured for real-time downstream
capture. Our next step is to configure.

Configuring the Streams part of DSC
If you have not already done so, create the schema LEARNING with a couple of tables
on STRM1 and STRM2. You can modify (see notes at the beginning of script) and use
the supplied script, Create_LEARNING.sql to quickly create a tablespace, user, and
the table EMPLOYEE with data.

From this point forward, the setting up of DSC should be fairly familiar with some
slight important. The steps involved are all on STRM2. The following scripts are all
run on STRM2.US.APGTECH.COM.

1.	 Create a single Queue to be used by both Capture and Apply process.
conn STRM_ADMIN/STRM_ADMIN
BEGIN
DBMS_STREAMS_ADM.SET_UP_QUEUE(
queue_table => 'STRM_ADMIN.DOWNSTREAM_Q_TABLE',
queue_name => 'STRM_ADMIN.DOWNSTREAM_Q',
queue_user => 'STRM_ADMIN');
END;
/

2.	 Create the Apply process.
conn STRM_ADMIN/STRM_ADMIN
BEGIN
DBMS_APPLY_ADM.CREATE_APPLY(

Chapter 6

[225]

queue_name => 'STRM_ADMIN.DOWNSTREAM_Q',
apply_name => 'DOWNSTREAM_APPLY',
apply_captured => TRUE
);
END;
/

3.	 Create the Capture process.
conn STRM_ADMIN/STRM_ADMIN
BEGIN
DBMS_CAPTURE_ADM.CREATE_CAPTURE(
queue_name => 'STRM_ADMIN.DOWNSTREAM_Q',
capture_name => 'DOWNSTREAM_CAPTURE',
rule_set_name => NULL,
start_scn => NULL,
source_database => 'STRM1.US.APGTECH.COM',
use_database_link => true,
first_scn => NULL,
logfile_assignment => 'implicit'); -- Refer to Note below.
END;
/

It is at this point that we specifically focus on the logfile_assignment
parameter. We set this parameter to 'implicit' to instruct the CAPTURE
process to scan all redo log files added by redo transport services or
manually from the source database to the downstream database.

4.	 Alter the Capture process for real-time capturing
Once the Capture process is created; this command will alter it so that
real-time capturing can occur. Real-time Capture, captures changes in
the online redologs from Source.
conn STRM_ADMIN/STRM_ADMIN
BEGIN
DBMS_CAPTURE_ADM.SET_PARAMETER(
capture_name => 'DOWNSTREAM_CAPTURE',
parameter => 'downstream_real_time_mine',
value => 'y');
END;

You will also need to archive the current redo log on the Source with this
command:
ALTER SYSTEM ARCHIVE LOG CURRENT;

Get Fancy with Streams Advanced Configurations

[226]

5.	 Add the rule to the Capture process
conn STRM_ADMIN/STRM_ADMIN
BEGIN
DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
schema_name => 'LEARNING',
streams_type => 'capture',
streams_name => 'downstream_capture',
queue_name => 'STRM_ADMIN.downstream_q',
include_dml => true,
include_ddl => true,
include_tagged_lcr => false,
source_database => 'STRM1.US.APGTECH.COM',
inclusion_rule => TRUE);
END;
/

6.	 Instantiate the schema
conn STRM_ADMIN/STRM_ADMIN
DECLARE
-- Variable to hold instantiation SCN value
iscn NUMBER;
BEGIN
-- Get current SCN from Source
iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER@STRM1.US.APGTECH.COM;
DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN(
source_schema_name => 'LEARNING',
source_database_name => 'STRM1.US.APGTECH.COM',
instantiation_scn => iscn,
recursive => TRUE);
END;
/

7.	 Start up the Apply and Capture process
Start the Apply process:
=================
conn STRM_ADMIN/STRM_ADMIN

exec DBMS_APPLY_ADM.START_APPLY(apply_name => 'DOWNSTREAM_APPLY');
select apply_name, status from dba_apply;

Start the Capture process:
==================
conn STRM_ADMIN/STRM_ADMIN

exec DBMS_CAPTURE_ADM.START_CAPTURE(capture_name =>
 'DOWNSTREAM_CAPTURE');
select capture_name, status from dba_capture;

Chapter 6

[227]

8.	 Test and Celebrate
Now on STRM1.US.APGTECH.COM add some additional data and confirm
Streaming.
Insert into LEARNING.EMPLOYEES (EMPLOYEE_ID, FIRST_NAME, LAST_
NAME, TIME) Values (5, 'Larry', 'Jonson', NULL);
Insert into LEARNING.EMPLOYEES (EMPLOYEE_ID, FIRST_NAME, LAST_
NAME, TIME) Values (6, 'Karen', 'Kim', NULL);

So, DSC, is just another configuration of Oracle Streams with a little bit of help from
redo transport services. If you are in a situation where policy or performance reason
dictates that "only ("pure") OLTP process can run on Production" then DSC is a
possible solution.

Streams change tables—just tracking the
"Facts" Ma'am
Streams Change Tables provide us with the ability to capture and replicate "data
change audit information" that is often required to meet Regulatory Standards such
as SOX, and FISMA. The Streams Change Tables are new in 11gR2 and are created
and maintained using the DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE procedure.
As discussed in Chapter 1, this procedure configures a separate change audit table
for a Streamed table, and creates all the components necessary to capture, send,
and record data change information to the change table. This procedure can also be
used to create one-way replication of a table along with the change capture from
a source to a destination database. Change tables can be implemented for local or
downstream capture, and local or remote apply configurations.

Before configuring Change tables you will want to have made the
following decisions:

The type of environment to configure
The source table columns to track
If/what metadata to record
The Values to Track for Update Operations (old, new)
Whether to Configure a KEEP_COLUMNS Transformation
Whether to Specify CREATE TABLE Options for the Change Table
Whether to Perform the Configuration Actions Directly or With a Script
Whether to Replicate the Source Table as well

•

•

•

•

•

•

•

•

Get Fancy with Streams Advanced Configurations

[228]

For our purposes, we will make the following decisions:

Type of environment Single-Source Master
Table columns and values to track: all old and new
Metadata: username and time
No additional "create table" options
We will keep all columns
We will Replicate the source table as well

Based on this, we make the following call to DBMS_STREAMS_ADM.MAINTAIN_CHANGE_
TABLE:

begin
DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE(
 change_table_name => 'HR.EMPLOYEES_CHANGES',
 source_table_name => 'HR.EMPLOYEES',
 column_type_list => 'EMPLOYEE_ID NUMBER(6), FIRST_NAME
VARCHAR2(20),
 LAST_NAME VARCHAR2(25), EMAIL VARCHAR2(25),
 PHONE_NUMBER VARCHAR2(20), HIRE_DATE DATE,
 JOB_ID VARCHAR2(10), SALARY NUMBER(8,2),
 COMMISSION_PCT NUMBER(2,2),
 MANAGER_ID NUMBER(6),
 DEPARTMENT_ID NUMBER(4)',
 extra_column_list => 'username,source_time',
 capture_values => '*',
 options_string => NULL,
 script_name => 'changetable_employees.sql',
 script_directory_object => 'SCRIPT_DIR',
 perform_actions => TRUE,
 capture_name =>'HR_CAPT_EMP',
 propagation_name => 'HR_PROP_EMP',
 apply_name => 'HR_APPLY_EMP',
 source_database => 'STRM1',
 destination_database => 'STRM2',
 keep_change_columns_only => TRUE,
 execute_lcr => TRUE);
end;
/

•

•

•

•

•

•

Chapter 6

[229]

Note: At the time of writing, the Authors have experienced potential
SQL parsing issues with the DBMS_STREAMS_ADM.MAINTAIN_CHANGE_
TABLE procedure on Linux. The Authors are working with Oracle to
determine if the issues are related to parameter syntax/datatype or with
internal processing. When the cause of the issues have been determined
and resolved, this section will be updated to include additional
information for the functionality of this new feature.

Some things to keep in mind when running the script:

The Change table is created at the database specified for the
destination_database parameter.
There cannot be a table with the name specified for the change_table_name
parameter at the database specified for the destination_database parameter.
The apply_name parameter can only be null if there are no Apply processes
at the destination database.
If an apply_name is specified, no messaging client with the same name can
exist at the destination database.
If specified capture, propagation, and/or Apply processes already exists, the
procedures adds the rules to the positive rule set of the process. If the process
does not exist, it will create the process.
If you specify the same database for the source_database and the
destination_database, then you probably don't want to specify
execute_lcr = TRUE as it could end up attempting to apply the
same change back to the source table.

As with the other DBMS_STREAMS_ADM.MAINTAIN_* procedures, and with a
new functionality, we highly recommend that you first run the procedure
with perform_actions = FALSE, and have it generate a script that you can
then review to fully understand what the procedure is going to do before it
does it. You can then either run the script as-is from SQLPlus as the Streams
Administrator, or modify the script as you see necessary.

For more detailed information on Streams Change Tables and the
DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE procedure, please
reference the Oracle Streams Concepts and Administration Guide, and
the Oracle PL/SQL Packages and Types Reference.

•

•

•

•

•

•

•

Get Fancy with Streams Advanced Configurations

[230]

Automatic propagation split and
merge—redirecting the current
Prior to Oracle 11g, maintaining a single capture queue for multiple destinations was
not highly recommended due to performance impacts to the overall Streaming, and
as a result, substandard propagation performance from the source to one or more
destinations. As for Oracle 11g, Propagation Split and Merge not only allows the
DBA to separate a sub-performant destination from a single capture queue on the fly,
but also automates the remerging of the destination to the original capture queue,
if and when the destination propagation performance reaches an acceptable level.
Chapter 1 covers the theory of the Propagation Split and Merge feature, here we will
review how to implement the feature.

The Propagation Split and Merge is managed using the following procedures:

DBMS_STREAMS_ADM.SPLIT_STREAMS

DBMS_STREAM_ADM.MERGE_STREAMS_JOB

DBMS_STREAM_ADM.MERGE_STREAMS

DBMS_PROPAGATION_ADM.CREATE_PROPAGATION

specifically the auto_merge_threshold parameter to automate the remerge of the
Propagation process once propagation performance to the destination site reaches
an acceptable level.

For our example, we have a Single-Source one Hub and two (2) Spoke environment
(One master database, H1, and two secondary databases, S1 and S2). The Master
Hub has a single capture queue and process, and two Propagation processes; one to
each Spoke Site. Each Spoke has an Apply queue and process for changes received
from H1.

S1 S2

Apply
APPLY_H1

Apply
APPLY_H1

Apply
Queue

H1_APPLY_Q

Apply
Queue

H1_APPLY_Q

Capture
CAPT_ALL

Capture
Queue

ALL_CAPT_Q

Propagate
PROP_S1

Propagate
PROP_S2

H1

•

•

•

•

Chapter 6

[231]

If propagation to S2 becomes degraded, the DBA can Split the propagation from the
capture queue using the DBMS_STREAMS_ADM.SPLIT_STREAMS procedure as such:

declare
sched_name varchar2(50);
mergejob_name varchar2(50);
begin
DBMS_STREAMS_ADM.SPLIT_STREAMS(
 propagation_name =>'PROP_S2',
 cloned_propagation_name =>'CLONE_PROP_S2',
 cloned_queue_name =>'CLONE_CAPT_S2_Q',
 cloned_capture_name =>'CLONE_CAPT_S2',
 perform_actions => TRUE,
 script_name => 'Split_S2_Stream.sql',
 script_directory_object => 'SCRIPT_DIR',
 auto_merge_threshold => 6,
 schedule_name =>sched_name,
 merge_job_name =>mergejob_name);
end;
/

S1 S2

Apply

APPLY_H1
Apply

APPLY_H1

Apply

Queue

H1_APPLY_Q

Apply

Queue

H1_APPLY_Q

Capture

CAPT_ALL

Capture

Queue

ALL_CAPT_Q

Propagate

PROP_S1

Propagate

PROP_S2

H1 DBMS_STREAMS_ADM.SPLIT_STREAMS(

propagation_name =>’PROP_S2’,

cloned_propagation_name=>’CLONE_PROP_S2’,

cloned_queue_name =>’CLONE_CAPT_S2_Q’,

cloned_capture_name =>’CLONE_CAPT_S2’,

....);

Get Fancy with Streams Advanced Configurations

[232]

The result of this procedure is the creation of a new capture queue,
CLONE_CAPT_S2_Q, and process CLONE_CAPT_S2; and a new Propagation process
CLONE_PROP_S2 from the CLONE_CAPT_S2_Q to the APPLY_H1_Q at the S2 site. Also,
the original Propagation process PROP_S2 is removed all together.

S1 S2

Apply
APPLY_H1

Apply
APPLY_H1

Apply
Queue

H1_APPLY_Q

Apply
Queue

H1_APPLY_Q

Capture
CAPT_ALL

Capture
CLONE_CAPT_S2

Capture
Queue

ALL_CAPT_Q

Capture
Queue

CLONE_CAPT_S2_Q

Propagate
PROP_S1

Propagate
clone_PROP_S1

H1

Propagate
PROP_S2X

Notice we specified six seconds for the auto_merge_threshold. This means that a
scheduler job will be created to monitor the latency of the CLONE_CAPT_S2 Capture
process. We can access the scheduler name and merge job name via out parameters.
You can also view the job information in the DBMS_SCHEDULER_JOB view. The
scheduler job runs the DBMS_STREAMS_ADM.MERGE_STREAMS_JOB procedure based
on its schedule.

The DBMS_STREAMS_ADM.MERGE_STREAMS_JOB procedure is actually responsible for
comparing the latency of the cloned capture with the orignal capture and merging
the cloned processes back into the original processes if the difference falls at or
below the specified auto_merge_threshold.

If the latency for the new CLONE_CAPT_S2 process falls below a difference of six
seconds from the latency of the original CAPT_ALL Capture process, the job will
merge the cloned stream back into the original stream.

Chapter 6

[233]

This latency is determined by comparing the CAPTURE_MESSAGE_CREATE_TIME
for the original Capture process and the cloned Capture process in the
GV$STREAMS_CAPTURE view.

If we had specified NULL or zero (0) for the auto_merge_threshold, a schedule
job would not be created to automate the merge. We would need to accomplish
this manually using the DBMS_STREAM_ADM.MERGE_STREAM procedure.

begin
DBMS_STREAMS_ADM.MERGE_STREAMS(
 cloned_propagation_name => 'Clone_PROP_S2',
 propagation_name => 'PROP_S2',
 queue_name => 'CAPT_ALL_Q',
 perform_actions => TRUE,
 script_name => 'Merge_S2_Stream.sql',
 script_directory_object => 'SCRIPT_DIR');
end;
/

The result of the merge is the deletion of the cloned queue, CLONE_CAPT_S2_Q,
the cloned Capture process, CLONE_CAPT_S2, and the cloned Propagation
process,CLONE_PROP_S2. A new Propagation process, PROP_S2 is created from
the original CAPT_ALL_Q at H1 to the APPLY_H1_Q at S2. Essentially, returning the
Stream back to its original configuration.

S1 S2

Apply
APPLY_H1

Apply
APPLY_H1

Apply
Queue

H1_APPLY_Q

Apply
Queue

H1_APPLY_Q

Capture
CAPT_ALL

Capture
Queue

ALL_CAPT_Q

Propagate
PROP_S1

Propagate
PROP_S2

H1

Get Fancy with Streams Advanced Configurations

[234]

You can view information concerning Split/Merge operation in the
DBA_STREAMS_SPLIT_MERGE view.

For more detailed information on Propagation Split and Merge, and
associated packages, please reference the Oracle Streams Concepts
and Administration Guide, and the Oracle PL/SQL Packages and
Types Reference.

Basic Heterogeneous Configuration
Not all is Oracle (sorry Larry). In many situations, the need to share data between
different database platforms is unavoidable. For many versions now, Oracle has
support cross-platform data sharing with Oracle Heterogeneous Services (HS) and
Transparent Gateways (TG). Heterogeneous Services is a service that can be installed
in an Oracle database that will translate Oracle SQL syntax to a specific "generic"
syntax. Heterogeneous Services works in concert with Oracle Transparent Gateways.
A Transparent Gateway client allows Oracle to make a connection to a Non-Oracle
database via a database link. The Transparent Gateway can then accept the generic
SQL syntax generated by Heterogeneous Services and translate it into the platform
specific SQL syntax for its specific Non-Oracle database platform, and run the
translated SQL at the Non-Oracle database. Heterogeneous Services handles generic
translation for code that is common among the different Gateways. The Gateways
handle translation for code that is specific to that particular Gateway Non-Oracle
database platform (A list of the different Gateway platforms supported in 11g can
be found in chapter 1). If the SQL returns data, the Gateway retrieves the data from
the Non-Oracle database, and returns it to the Oracle session. Transparent Gateway
connectivity is configured via Oracle Net (a.k.a SQLNet) as a database link.

The basic steps for Oracle to Non-Oracle communications is as follows:

1.	 A distributed/remote SQL statement is issued to the Oracle Server (the SQL
contains at database link).

2.	 Oracle determines that the data is external by the database link.
3.	 Oracle passes the distributed portion of the SQL to the Heterogeneous

Services for generic translation.
4.	 Heterogeneous Services performs the initial translation and the passes the

generic SQL to the Gateway configured for the database link.
5.	 The Gateway performs any platform specific translations.
6.	 The Gateway executes the translated SQL at the Non-Oracle database.

Chapter 6

[235]

7.	 If the translated SQL returns data, the Gateway retrieves the data from the
Non-Oracle Database.

8.	 The Gateway then maps the Non-Oracle datatypes to Oracle datatypes.
9.	 The Gateway then returns the data to the waiting Oracle session processing

the SQL.

Streams can be configured to use HS and TG to replicate data to and from an
Oracle database to a Non-Oracle database. The Apply process must be created
on the Oracle database (because its an Oracle specific process) using the
DBMS_APPLY_ADM.CREATE_APPLY procedure. The DBMS_APPLY_ADM.CREATE_APPLY
procedure allows us to specify an apply_database_link. This database link
used for a Non-Oracle database would be configured for Transparent Gateway
connectivity. When the Apply process dequeues and processes an LCR, it constructs
the SQL statement to accomplish the transaction contained in the LCR (as we
discussed Chapter 1). This SQL statement is then passed through the HS and
executed at the Non-Oracle database via the TG database link.

Oracle DB

Apply
APPLY_Sybase

Capture
Queue

ALL_CAPT_Q

Capture
CAPT_ALL

Apply
APPLY_informix

Dblink: TG_Sybase

Heterogeneous Services

Oracle Net

Transparent Gateway for Sybase Transparent Gateway for Informix

Informix DBSybase DB

Dblink: TG_Informix

Get Fancy with Streams Advanced Configurations

[236]

You can not alter an Apply process to add or remove an apply_database_link. It
can only be added at Apply process creation, and only with the DBMS_APPLY_ADM.
CREATE_APPLY procedure.

Capture and Propagation are created as normal. If the Capture is on the same
database as the Apply process, propagation need not be configured. In this case,
the Apply process can be configured to use the same queue as the resident
Capture process.

Configuring a Heterogeneous Apply process
The following code for setting up a Heterogeneous Apply process can be found in
the HeterogeneousApply.sql code file.

1.	 First, Configure Heterogeneous Services and the Appropriate Transparent
Gateway to the Non-Oracle database.
Refer to the Oracle Database Heterogeneous Connectivity User's Guide and
the Oracle Database Gateway for [platform] User's Guide for information on
this step.

2.	 Configure Oracle Net (listener.ora and tnsnames.ora) to use HS.
Reference the "Configuring Oracle Net Services for Oracle Heterogeneous
Services" section of Chapter 13 in the Oracle Database Net Services
Administrator's Guide.
listener.ora
SID_LIST_LISTENER=
 (SID_LIST=
 (SID_DESC=
 (SID_NAME=sybasegw)
 (ORACLE_HOME=/oracle11g)
 (PROGRAM=tg4sybs)))

tnsnames.ora alias
TG_Sybase=
 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sybase-server)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=sybasegw)
)
 (HS=ok)))
)

Chapter 6

[237]

3.	 Create the database link (dblink) for the Non-Oracle Gateway.
Note: for the USING clause, you can specify the gateway tnsalias in your
tnsnames.ora or the "description" syntax for the alias. Also, make sure to
specify a user that is configured at the Non-Oracle database that has the
necessary DML privileges on target tables.
CREATE DATABASE LINK TG_SYBASE.oracle.com CONNECT TO "<sybase_
user>"
 IDENTIFIED BY "&password" USING 'TG_Sybase';
 or
CREATE DATABASE LINK TG_SYBASE.oracle.com CONNECT TO "<sybase_
user>"
 IDENTIFIED BY "&password"
 USING '(DESCRIPTION=
	 (ADDRESS=(PROTOCOL=tcp)(HOST=sybase-server)(PORT=1521))
	 (CONNECT_DATA=
	 (SERVICE_NAME=sybasegw)
)
	 (HS=ok)))
)';

4.	 Test the link by running a basic select statement using the dblink
select ... from "tablename"@tg_sybase.oracle.com;

5.	 Create the Apply process using the DBMS_APPLY_ADM.CREATE_APPLY
procedure setting
BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.CAPT_ALL',
 apply_name => 'APPLY_Sybase',
 apply_database_link => 'TG_SYBASE.oracle.com',
 apply_captured => TRUE);
END;
/

6.	 Add an Apply Rule to the Apply process
BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.jobs',
 streams_type => 'apply',
 streams_name => 'APPLY_Sybase',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE,
 include_ddl => FALSE,

Get Fancy with Streams Advanced Configurations

[238]

 source_database => 'Oracle_DB.oracle.com',
 inclusion_rule => TRUE);
END;
/

7.	 Set any Apply Process parameters you wish
BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'APPLY_Sybase',
 parameter => 'disable_on_error',
 value => 'N');
END;
/

8.	 Prepare the table for instantiation and set the Apply process SCN
DECLARE
 iscn NUMBER;
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name => 'hr.jobs',
 source_database_name => 'Oracle_DB.oracle.com',
 instantiation_scn => iscn);
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name => 'hr.jobs',
 source_database_name => 'Oracle_DB.oracle.com',
 instantiation_scn => iscn,
 apply_database_link => 'TG_SYBASE.oracle.com');
END;
/

9.	 Start the Apply Process
BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'APPLY_Sybase');
END;
/

For more information on setting up Heterogeneous Replication, please
reference the Oracle Streams Concepts and Administration Guide, and
the Oracle Streams Extended Examples manual.

Chapter 6

[239]

Some basic rules to remember when configuring an Apply process for a
Non-Oracle database.

The Apply process and queue are configured at the Oracle database
 No queue is created on the non-Oracle database
The replicated Oracle tables must be prepared for instantiation and the apply
SCN set for the Apply process
The tables at the Non-Oracle database must be created and populated with
the necessary data manually
To avoid data convergence, the Non-Oracle tables should have the same or
"equivalent" data as their Oracle table counter-part
Only basic DML operations are supported
Captured DDL changes cannot be applied on the non-Oracle database
Error handlers and conflict handlers are not supported
Conflict detection is supported

Data Transfer via Queue Messaging
If you wish to populate Oracle tables from Non-Oracle databases, you must create a
client application that retrieves the data from the Non-Oracle database and inserts it
into the appropriate Oracle tables. The client application can be coded to retrieve the
data directly from the Non-Oracle database, or from an Oracle session using HS and
TG database links.

You can also use client applications that are coded to use advanced queue messaging
and LCR datatypes to enqueue data into a Streams queue to which an Apply process
is assigned.

Basic XSTREAMS Configuration
As discussed in Chapter 1, GoldenGate XSTREAMS is new in 11gR2 and provides an
alternative to the above traditional Heterogeneous methods. XSTREAMS technology
can be used to build LCRs from Non-Oracle database log files, that can then be
enqueued into an Oracle Streams queue. While much of the XSTREAM OCI and Java
API usage is beyond the scope of this book, we briefly discuss the Oracle database
configuration and Specialized Server processes that support XSTREAMS OCI and
Java API.

•

•

•

•

•

•

•

•

•

Get Fancy with Streams Advanced Configurations

[240]

The following views provide XSTREAMS configuration and performance information:

DBA/ALL_XSTREAM_OUTBOUND

DBA/ALL_XSTREAM_OUTBOUND_PROGRESS

DBA/ALL_XSTREAM_INBOUND

DBA/ALL_XSTREAM_INBOUND_PROGRESS

DBA/ALL_XSTREAM_RULES

V$STREAMS_APPLY_READER

V$STREAMS_APPLY_SERVER

V$STREAMS_CAPTURE

V$STREAMS_MESSAGE_TRACKING

V$STREAMS_TRANSACTION

XSTREAMS Servers
First, let's look at configuring the Specialized Server processes that support
XSTREAMS. There are two: XSTREAM Out and XSTREAM In.

The XSTREAM Out process is an Outbound Server that supports XSTREAM access
to dequeue LCRs from a Streams Capture queue. The XSTREAMS In process is an
Inbound server that supports XSTREAM access to enqueue LCR's and messages
to a Streams apply queue.

You can configure multiple Outbound and Inbound Servers; just remember to
increase your PROCESSES initialization parameter as necessary to accommodate the
added processes. As with regular Streams client processes, an XSTREAMS Server
process can only be assigned to a single queue. However, multiple Servers can be
assigned to the same queue.

Configuring the Database
Before creating the XSTREAM Server processes, make sure that your Oracle Streams
and database is configured to support the normal Streams clients and queues
(capture, apply): this includes, database parameter, Streams Pool and Streams
Administrator configuration, database link configuration, archive logging, etc
(see Chapter 3 for configuring your database to support Streams). Once you have
Oracle Streams configured, you can tap into the Stream using XSTREAMS.

The XSTREAMS Server processes are configured using the
DBMS_XSTREAM_ADM package.

•

•

•

•

•

•

•

•

•

•

Chapter 6

[241]

Configuring XSTREAMS Out
An XSTREAMS Out server can either be created with its own capture queue and
process, or can be created to an existing capture queue and process. To create an Out
server that uses its own capture queue and process, you use the DBMS_XSTREAMS_ADM.
CREATE_OUTBOUND procedure. To create an Out Server that uses an existing capture
queue and process, you use the DBMS_XSTREAMS_ADM.ADD_OUTBOUND procedure.

The DBMS_XSTREAMS_ADM.CREATE_OUTBOUND procedure accomplishes the following:

Configures supplemental logging for the specified table objects if not
already done
Creates a Capture queue with a system-generated name used by the
Outbound Server
Creates and starts a Capture process with a system-generated name with
appropriate capture rule sets
Creates and starts an Outbound server with appropriate Apply rule sets
Sets the current user as the connect user for the outbound server

Ideally, the current user is the Oracle Streams Administrator.

Note: If you wish to specify names for the Capture queue and Process,
you will need to create the Capture queue and process manually, and
then use the DBMS_XSTREAMS_ADM.ADD_OUTBOUND procedure to add
the Outbound Server rules to the Capture process.

The DBMS_XSTREAMS_ADM.ADD_OUTBOUND procedure accomplishes the following:

Creates and starts an Outbound server with appropriate Apply rule sets
Sets the current user as the connect user for the outbound server

Ideally, the current user is the Oracle Streams Administrator.

The CREATE_OUTBOUND and ADD_OUTBOUND procedures can be used to add Table,
Schema, and Global level rules. The procedures have a table_names parameter and a
schema_names parameter that accept either a DBMS_UTILITY.UNCL_ARRAY datatype
(for multiple names), or a VARCHAR2 string (for single name). You can specify
both parameters in the same call, just avoid specifying tables in the table_names
parameter that will be included in the schema objects of the schemas specified in
the schema_names parameter. If you want to generate Global Level Rules, Set both
table_name and schema_name parameters to NULL.

•

•

•

•

•

•

•

Get Fancy with Streams Advanced Configurations

[242]

An Outbound Server is essentially a specialized Apply process, and can be managed
with the DBMS_APPLY_ADM procedures. However, not all DBMS_APPLY_ADM procedures
can be used. The following lists which DBMS_APPLY_ADM procedures can be used to
manage an XSTREAMS Outbound Server process:

ALTER_APPLY Procedure
DROP_APPLY Procedure
SET_GLOBAL_INSTANTIATION_SCN Procedure
SET_PARAMETER Procedure
SET_SCHEMA_INSTANTIATION_SCN Procedure
SET_TABLE_INSTANTIATION_SCN Procedure
START_APPLY Procedure
STOP_APPLY Procedure

Steps for configuring an XSTREAMS Outbound Server
The following code examples can be found in the XStreams.sql code file.

1.	 Create the Outbound Server:
If the Capture queue and Process exist, use
DBMS_XSTREAMS_ADM.ADD_OUTBOUND

In this example we will assume that we have a Capture queue, HROE_CAPT_Q,
and a Capture process, HROE_CAPT, that captures Schema level changes for
the HR and OE schemas already configured. Here we want the Outbound
Server to access all HR schema changes and table level changes for the
OE.ORDERS and OE_ORDER_ITEMS tables.
DECLARE
 ob_tables DBMS_UTILITY.UNCL_ARRAY;
 ob_schemas DBMS_UTILITY.UNCL_ARRAY;
BEGIN
 tables(1) := 'OE.ORDERS';
 tables(2) := 'OE.ORDER_ITEMS';
 schemas(1) := 'HR';
 DBMS_XSTREAM_ADM.ADD_OUTBOUND(
 server_name => 'HROE_Out',
 queue_name => 'STRM_ADMIN.HROE_CAPT_Q',
 source_database => 'STRM1',
 table_names => ob_tables,
 schema_names => ob_schemas);
END;
/

•

•

•

•

•

•

•

•

Chapter 6

[243]

OR
To create a capture queue and process with the Outbound Server, use
DBMS_XSTREAMS_ADM.CREATE_OUTBOUND.
DECLARE
 ob_tables DBMS_UTILITY.UNCL_ARRAY;
 ob_schemas DBMS_UTILITY.UNCL_ARRAY;
BEGIN
 tables(1) := 'OE.ORDERS';
 tables(2) := 'OE.ORDER_ITEMS';
 schemas(1) := 'HR';
 DBMS_XSTREAM_ADM.CREATE_OUTBOUND(
 server_name => 'HROE_Out',
 table_names => ob_tables,
 schema_names => ob_schemas);
END;
/

2.	 Create the Client Application that will use the Outbound Server process.
3.	 The client application must connect to the database as the user schema that

created the XSTREAM Outbound Server to interact with that Server process.

For an example client application, please reference the "Sample
XSTREAM Client Application" Section of Chapter 3—Configuring
XStream in the Oracle Database XStream Guide.

4.	 Add Additional Outbound Servers as needed.
5.	 Start the Outbound Server

exec DBMS_APPLY_ADM.START_APPLY('HROE_Out');

6.	 To remove an Outbound Server configuration, use the DBMS_XSTREAM_ADM.
DROP_OUTBOUND procedure
BEGIN
 DBMS_XSTREAM_ADM.DROP_OUTBOUND('HROE_Out');
END;
/

Subsetting Rules for an Outbound Server
You can also add Subsetting rules to an existing Outbound server

The DBMS_XSTREAMS_ADM.ADD_SUBSET_OUTBOUND_RULES adds subsetting rules,
much like the DBMS_STREAMS_ADM.ADD_SUBSET_RULES procedure.

Get Fancy with Streams Advanced Configurations

[244]

The ADD_SUBSET_OUTBOUND_RULES condition parameter equates to the
ADD_SUBSET_RULES dml_condition parameter. The ADD_SUBSET_OUTBOUND_RULES
keep parameter equates the ADD_SUBSET include_rule parameter (If TRUE, include
the LCRs that meet the condition. If FALSE, ignore the LCRs that meet the condition).

DECLARE
 col_list DBMS_UTILITY.LNAME_ARRAY;
 x number := 0;
BEGIN
 select column_name from dba_tab_cols where owner = 'HR'
 and table_name = 'EMPLOYEES';
 for arec in (select column_name from dba_tab_cols
 where owner = 'HR' and table_name = 'EMPLOYEES')
 loop
 x := x+1;
 col_list(x) := arec.column_name;
 end loop;
 --last position in the array must be set to NULL
 If x >0 then
 x := x+1;
 col_list(x) := NULL;
 end if;
 DBMS_XSTREAM_ADM.ADD_SUBSET_OUTBOUND_RULES(
 server_name => 'HROE_Out',
 table_name => 'HR.EMPLOYEES',
 condition => 'department_id = 50',
 column_list => col_list,
 keep => TRUE);
END;
/

To remove a Subsetting rule from an Outbound Server, first determine the Subset
Rule names:

SELECT STREAMS_NAME, STREAMS_TYPE, STREAMS_RULE_TYPE,
 RULE_OWNER, SUBSETTING_OPERATION, RULE_NAME
 FROM DBA_XSTREAM_RULES
 WHERE SUBSETTING_OPERATION IS NOT NULL;

Then use the DBMS_XSTREAM_ADM.REMOVE_SUBSET_OUTBOUND_RULES procedure to
remove the rules

DBMS_XSTREAM_ADM.REMOVE_SUBSET_OUTBOUND_RULES(
 server_name IN VARCHAR2,
 insert_rule_name IN VARCHAR2,
 update_rule_name IN VARCHAR2,
 delete_rule_name IN VARCHAR2);

Chapter 6

[245]

Configuring XSTREAMS In
XSTREAM Inbound Servers can receive DML and DDL changes, configured as an
LCR, from a client application. These changes can be applied to Oracle database
objects, or can be handled by customized processing via apply handlers. The client
application can use the XSTREAMS OCI or Java API interface to generate and pass
the LCR to the Inbound Server process.

As with the Outbound Server process, the Inbound Server process is a specialized
Apply process. One big difference with an Inbound Server Apply process is that
it only uses its assigned queue to store erred LCRs. Another difference is that, by
default, the Inbound server does not use rules or rule sets. However, rules and rule
sets can be added to an Inbound Server process using the DBMS_STREAMS_ADM or
DBMS_RULE_ADM packages once the Inbound Server process is created.

An Inbound Server process is created using the
DBMS_XSTREAMS_ADM.CREATE_INBOUND procedure.

The DBMS_XSTREAMS_ADM.CREATE_OUTBOUND procedure accomplishes the following:

Creates an Inbound server process
Assigns the specified queue to the Inbound Server process as its error queue
If the queue does not exist, the procedure creates it
Sets the current user as the Apply user for the Inbound Server process if the
apply_user parameter is null

Steps for configuring an XSTREAMS inbound server
The following code examples can be found in the XStreams.sql code file.

1.	 Create the Inbound Server:
BEGIN
 DBMS_XSTREAM_ADM.CREATE_INBOUND(
 server_name => 'XSTRM_IN',
 queue_name => 'XSTRM_IN_ERR_Q',
 apply_user => 'STRM_ADMIN'
);
END;
/

2.	 Create the Client Application that will use the Inbound Server process.
The client application must connect to the database as the apply_user for the
XSTREAM Inbound Server to interact with that Server process.

•

•

•

•

Get Fancy with Streams Advanced Configurations

[246]

For an example client application, please reference the "Sample
XSTREAM Client Application" section of Chapter 3—Configuring
XStream in the Oracle Database XStream Guide.

4.	 Add Apply Handler to the Inbound Server as needed.
5.	 This can be done using the DBMS_APPLY_ADM package.
6.	 Start the Inbound Server

exec DBMS_APPLY_ADM.START_APPLY('XSTRM_IN');

Subsetting is not supported with XSTREAMS Inbound Server processes.

To remove an Inbound Server configuration, use the
DBMS_XSTREAM_ADM.DROP_INBOUND procedure

BEGIN
 DBMS_XSTREAM_ADM.DROP_OUTBOUND('XSTRM_IN');
END;
/

For more information on configuring XSTREAMS Server processes and
using the DBMS_XSTREAMS_ADM package, please reference the Oracle
Database XSTREAMS Guide.

Summary
In this chapter we looked at ways to implement advanced Streams features and
configurations using specialized parameters, procedures, and techniques.

We covered how to replicate a subset of rows from a table to a destination site.

We addressed Tags; what they are, and how they can be used to fine-tune how
capture, propagate, and Apply processes handle each individual LCR.

We looked at Rules, which are the framework of Streams, and their evaluation
criteria and action context. We also investigated how to extend these components
to meet special needs via Rule Based Transformation, and User-Created Rules and
Evaluation Contexts. We also discussed how to manage rules created using the
different packages available, and some does and don'ts along the way.

Chapter 6

[247]

Plus, we presented examples of how to configure advanced Streamed environments
such as Synchronous and Down-Stream Capture, Streams Change Tables,
Propagation Split and Merge, and Heterogeneous Streaming using the traditional
Heterogeneous Services and Transparent Gateways, and the new XSTREAMS.

In the next chapter we will address a necessary evil that almost every
developer-techno-geek avoids like the plague…Documentation! It's a dirty
job, but will make your life easier in the long run. No really, it will…Promise!

Document What You Have
and How It Is Working

One of the things I joke about is the cliché and concern of losing a key member of
any team. Try this joke with your client or manager and see their face of concern
when you tell them that you are going to the local bus station to play chicken with
the buses!

Even if you work with a team of DBAs, often the responsibility of a particular feature
or functionality will be on the shoulders of the specialist within the team. This
chapter will address some of the concerns about losing a key member of any team
by creating and maintaining proper documentation. Yes, your co-workers will miss
you. However, follow the suggestions in this chapter and they will sing your praises
when you leave.

This chapter covers the following:

How to create a map of your Streams environment
Taking a look at some of the basic Streams Views
How to use UTL_SPADV to automate collections of Streams
performance statistics

Mapping the Stream
Being able to hand over documentation that fully describes your Oracle Streams
environment is the goal we are trying to achieve. Getting to the goal in the most
efficient manner is the goal of this chapter. As you are probably the person that set
up Streams, you are the lucky winner who will do the documentation. If you are
the person handed the "opportunity" to learn Streams earlier today, then reviewing,
confirming, and building documentation will be part of your task when you take
over administration responsibilities.

•

•

•

Document What You Have and How It Is Working

[250]

Like Chapter 5 on N-Way Replication, this chapter will focus on using the Oracle
supplied packages. Oracle made substantial improvements to help the Streams
Administrator: set up, document, and monitor Streams all through supplied
packages. Knowing Streams down to the supplied packages level also allows
for creative usages to build custom monitoring beyond Database Control
and/or Grid Control.

The Stream without a map
In order to learn how to document, we have to start with the basic questions of
"What should we document?" We want to document everything that we have set
up and determine if Streams is working correctly or within acceptable baselines.

The documentation plan is to have a high level of current Streams environment.
Then drive down to the detail components and baseline performance level.
Fortunately, as you have probably set up the Streams environment, you can quickly
sketch out the environment in a quick picture. If you are the lucky "winner" who
inherited the Streams environment then you will need to derive this picture from
the techniques covered in this chapter.

Receive
Queue

Learning Employees
Table

STRM 1

Send
Queue

Capture

Propagate

STRM 2

Learning Employees
Table

Apply

Oracle has supplied about two hundred and fifty or so supplied packages with
Oracle 11gR2. Out of those, we will focus on two of them. They are as follows:

DBMS_STREAMS_ADVISOR_ADM

UTL_SPADV

These two supplied packages and a little creativity will build all your documentation.
The documentation will be easily updated and maintained once you understand how
to use these two key packages.

•

•

Chapter 7

[251]

DBMS_STREAMS_ADVISOR_ADM
DBMS_STREAMS_ADVISOR_ADM has only one package and it is ANALYZE_CURRENT_
PERFORMANCE. Using DBMS_STREAMS_ADVISOR_ADM is conceptually similar to using
DBMS_WORKLOAD_REPOSITORY PACKAGE. You create snapshots to gather data into
data dictionary views. Then you can either query the related views directly or use
other packages to produce a report.

Run all the scripts in the chapter as Streams Administrator. The Streams
Administrator must have been granted all the necessary rights and
permissions with DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE.
We also set line size 200; or you can use the glogin.sql given in
Chapter 5.

In Streams they did not call the gathering of data snapshots; that would be too easy.
Instead, the Streams Administrator gathers data by asking Oracle to ANALYZE CURRENT
PERFORMANCE for Streams. This is done by executing the following command:

exec DBMS_STREAMS_ADVISOR_ADM.ANALYZE_CURRENT_PERFORMANCE;

-- wait for some time period and then

exec DBMS_STREAMS_ADVISOR_ADM.ANALYZE_CURRENT_PERFORMANCE;

The commands above gather data related to the components and performance of your
Streams environment. Waiting between ANALYZE CURRENT PERFORMANCE commands
allows changes to be gathered. Essentially what happens is data is gathered from the
first execution of ANALYZE CURRENT PERFORMANCE, waits for some time to pass, and
executes ANALYZE CURRENT PERFORMANCE again. The difference between the first and
second run is what is in the views that are mentioned as follows:

View Name Answer the question of Life of Data
DBA_STREAMS_TP_COMPONENT What are the parts of the

Streams environment?
Permanent

DBA_STREAMS_TP_COMPONENT_LINK How do the parts relate to
each other?

Permanent

DBA_STREAMS_TP_DATABASE What databases are involved
in the Stream?

Permanent

DBA_STREAMS_TP_COMPONENT_STAT How are the parts doing? Temporary
DBA_STREAMS_TP_PATH_STAT How is the path doing? Temporary
DBA_STREAMS_TP_PATH_BOTTLENECK What might be causing a

slow down?
Temporary

Document What You Have and How It Is Working

[252]

The image following is another way to understand what data is permanent or
temporary in which view.

The data in the views on the left are permanent while the data in the views on the
right are temporary. Taking a closer look at the tables reveals that the tables on the
left relate to the "parts" of Streams, while the tables to the right are "performance"
oriented. When you end your session that is performing queries above, then data
related to performance is lost.

If you wish to persist this data in the temporary views, you can select it
into a permanent table. For instance:
create table my_streams_tp_path_bottleneck as select * from
dba_streams_tp_path_bottleneck

Chapter 7

[253]

Making the map
The process of mapping out and gathering data about your Streams environment
should be done in one session with the following steps:

1.	 Collect the data needed into the tables mentioned previously with
exec DBMS_STREAMS_ADVISOR_ADM.ANALYZE_CURRENT_PERFORMANCE;

-- wait for some time and
exec DBMS_STREAMS_ADVISOR_ADM.ANALYZE_CURRENT_PERFORMANCE;

At a minimum, run two ANALYZE_CURRENT_PERFORMANCE.

2.	 Querying the respective views in the previous figure. The following table
has a listing of the supplied queries for this chapter. These queries are a
modification of those supplied by Oracle.

Query Name Purpose
ListDBs.sql List out the databases that are part of the Streams environment
ListParts.sql List out the parts of the Streams environment
ListPaths.sql List the Path of the Streams environment
ListARs.sql List out Advisor Runs that have been collected
ListBNs.sql List out the Bottlenecks using the latest Advisor Run

(The views used in this query require Oracle Diagnostic Pack)
ListPerfParts.
sql

List the performance of the parts of the Streams environment using
the latest Advisor Run

ListPerfFlows.
sql

List the flow and/or waits for the Streams environment the latest
Advisor Run

ListPerfS2E.sql List the performance from start to end of the Stream using the
latest Advisor Run

Learn by doing. Just having these queries mean nothing unless you take the time and
try them in your environment. So, here is the framework for using these queries. You
need to create the Streams environment for this chapter. Setting up Streams multiple
times is good practice and by now you should be comfortable with the process. To
make things easier for you the scripts to build the environment pictured in the first
figure are included.

0000_CleanHouse.sql

0025_Create_STRMADMIN_Both_Sides.sql

0050_Create_Learning_Both_Sides.sql	

0100_Source_Grant_All.sql	

•

•

•

•

Document What You Have and How It Is Working

[254]

0200_Both_DB_Link.sql	

0300_Source_Setup.sql

0400_Instantiate_Schema_Setup.sql

0500_Destination_Setup.sql

0600_Destination_Startup.sql

0700_Source_Startup.sql

If you have a Streams Administer already created, you can use 0000_CleanHouse.sql
and skip 0025_Create_STRMADMIN_Both_Sides.sql then run the remainder of the
scripts in numeric order. The comments and instructions are in each script.

If you are starting from scratch, start with 0025_Create_STRMADMIN_Both_Sides.
sql and do not use 0000_CleanHouse.sql. Then, run the remainder of the scripts,
comments, and instructions in each script in numeric order.

Now that your environment is up and running, here are some suggestions on mapping
your environment and learning its particular performance characteristics. Make sure to
use the glogin.sql of Chapter 5 to configure your SQLPlus session display.

Build your Streams map by running these scripts in the order presented as follows:

1.	 ListDBs.sql

2.	 ListParts.sql

3.	 ListPaths.sql

Take time to study the results of each query. The result from ListDBs.sql is easy to
read and understand. As for ListParts.sql and ListPaths.sql, take some time
and notice the order of the data. You should be able to build the Streams map from
the result of running ListDBs.sql and ListParts.sql.

To cause a bottleneck, run BN_Exercise.sql. Use three separate SQL*Plus sessions
connecting as follows:

1.	 SYS on STRM2
2.	 STRM_ADMIN on STRM1
3.	 STRM_ADMIN on STRM2

The LOCK TABLE command is used to cause the bottleneck. Full instructions and
comments are in the BN_Exercise.sql script.

•

•

•

•

•

•

Chapter 7

[255]

To obtain an understanding of the following, you will need to use loop.sql to cause
some load.

1.	 ListPerfParts.sql

2.	 ListPerfFlows.sql

3.	 ListPerfS2E.sql

The loop.sql inserts records into LEARNING.EMPLOYEES at a rate of one record every
half second for five minutes. While the load is running, run advise.sql a couple of
times. Then run each of the ListPerf*.sql. Get a feel for each of the queries and what
it provides. Note that each of the ListPerf*.sql will use the latest Advisor Run.

For a high-level view of how Streams is performing, run ListPerfS2E.sql. If
performance is not what you expect then dig down using ListPerfParts.sql
or ListPerfFlows.sql.

Basic Streams views
There are times when you already know or suspect where a problem may be in the
Streams environment. So, having a handful of queries related to the main processes
is useful. Here are some of the queries we keep in our toolbox and the reasoning on
when to use each. The queries listed below are in Handy.sql. The scripts are from
source side to destination side.

-- CHECK ON THE STATUS AND IF THERE ARE

-- ANY ERRORS WITH CAPTURE PROCESS
SELECT CAPTURE_USER, CAPTURE_NAME, QUEUE_OWNER, QUEUE_NAME,
STATUS,STATUS_CHANGE_TIME, ERROR_NUMBER, ERROR_MESSAGE
FROM DBA_CAPTURE;

-- TO CHECK ON THE BUFFER QUEUE PROPAGATION SCHEDULES ON THE

--SENDING (SOURCE) SIDE

SELECT QUEUE_ID, QUEUE_SCHEMA, QUEUE_NAME, STARTUP_TIME,
PROPAGATION_NAME, DBLINK, STATE
FROM V$PROPAGATION_SENDER;

-- CHECK ON THE PROPAGATION

SELECT PROPAGATION_NAME, SOURCE_QUEUE_OWNER, SOURCE_QUEUE_NAME,
DESTINATION_QUEUE_OWNER, DESTINATION_QUEUE_NAME, DESTINATION_DBLINK,
STATUS, ERROR_MESSAGE, ERROR_DATE
FROM DBA_PROPAGATION;

Document What You Have and How It Is Working

[256]

-- CHECK ON THE BUFFER QUEUE PROPAGATION SCHEDULES ON THE
SENDING (DESTINATION) SIDE

SELECT SRC_QUEUE_SCHEMA, SRC_QUEUE_NAME, SRC_DBNAME,
DST_QUEUE_SCHEMA, DST_QUEUE_NAME, PROPAGATION_NAME, STATE
FROM V$PROPAGATION_RECEIVER;

-- CHECK ON THE STATUS OF APPLY

SELECT APPLY_NAME, STATUS, STATUS_CHANGE_TIME,
ERROR_NUMBER, ERROR_MESSAGE
FROM DBA_APPLY;

-- CHECKING THE PROGRESS OF THE APPLY PROCESS

SELECT APPLY_NAME, SOURCE_DATABASE,
APPLY_TIME-APPLIED_MESSAGE_CREATE_TIME AS LAG,
SPILL_MESSAGE_NUMBER
FROM DBA_APPLY_PROGRESS;

UTL_SPADV
The DBA's time is precious. So, automate and stop wasting it on mundane and
tedious tasks. That is what UTL_SPADV does; it automates the collection of statistics
related to Streams performance. UTL_SPADV is simple to use and once configured,
you can forget about it. Then take it to the next level and automated custom reports
against the data collected.

UTL_SPADV has six subprograms. Following are their names along with
their definitions:

UTL_SPADV.COLLECT_STATS

UTL_SPADV.COLLECT_STATS(
interval IN NUMBER DEFAULT 60,
num_runs IN NUMBER DEFAULT 10,
comp_stat_table IN VARCHAR2 DEFAULT
 'STREAMS$_ADVISOR_COMP_STAT',
path_stat_table IN VARCHAR2 DEFAULT
 'STREAMS$_ADVISOR_PATH_STAT',
top_event_threshold IN NUMBER DEFAULT 15,
bottleneck_idle_threshold IN NUMBER DEFAULT 50,
bottleneck_flowctrl_threshold IN NUMBER DEFAULT 50);

•

Chapter 7

[257]

UTL_SPADV.START_MONITORING

UTL_SPADV.START_MONITORING(
job_name IN VARCHAR2 DEFAULT
 'STREAMS$_MONITORING_JOB',
client_name IN VARCHAR2 DEFAULT NULL,
query_user_name IN VARCHAR2 DEFAULT NULL,
interval IN NUMBER DEFAULT 60,
top_event_threshold IN NUMBER DEFAULT 15,
bottleneck_idle_threshold IN NUMBER DEFAULT 50,
bottleneck_flowctrl_threshold IN NUMBER DEFAULT 50,
retention_time IN NUMBER DEFAULT 24);

UTL_SPADV.IS_MONITORING

UTL_SPADV.IS_MONITORING(
job_name IN VARCHAR2 DEFAULT
 'STREAMS$_MONITORING_JOB',
client_name IN VARCHAR2 DEFAULT NULL)
RETURN BOOLEAN;

UTL_SPADV.SHOW_STATS

UTL_SPADV.SHOW_STATS(
path_stat_table IN VARCHAR2 DEFAULT
 'STREAMS$_ADVISOR_PATH_STAT',
path_id IN NUMBER DEFAULT NULL,
bgn_run_id IN NUMBER DEFAULT -1,
end_run_id IN NUMBER DEFAULT -10,
show_path_id IN BOOLEAN DEFAULT TRUE,
show_run_id IN BOOLEAN DEFAULT TRUE,
show_run_time IN BOOLEAN DEFAULT TRUE,
show_optimization IN BOOLEAN DEFAULT TRUE,
show_setting IN BOOLEAN DEFAULT FALSE,
show_stat IN BOOLEAN DEFAULT TRUE,
show_sess IN BOOLEAN DEFAULT FALSE,
show_legend IN BOOLEAN DEFAULT TRUE);

UTL_SPADV.ALTER_MONITORING

UTL_SPADV.ALTER_MONITORING(
interval IN NUMBER DEFAULT NULL,
top_event_threshold IN NUMBER DEFAULT NULL,
bottleneck_idle_threshold IN NUMBER DEFAULT NULL,
bottleneck_flowctrl_threshold IN NUMBER DEFAULT NULL,
retention_time IN NUMBER DEFAULT NULL);

UTL_SPADV.STOP_MONITORING(

purge IN BOOLEAN DEFAULT FALSE);

•

•

•

•

•

Document What You Have and How It Is Working

[258]

Automating the collection of Streams
performance data
Using the Streams setup of STRM1 to STRM2 at the beginning of this chapter we will
do the following:

1.	 Configure UTL_SPADV using defaults settings.
2.	 Configure and confirm automated collection of data.
3.	 Place load on STRM1 to be STREAMed to STRM2.
4.	 Analyze the data.
5.	 Change UTL_SPADV to more aggressive collection schedule.
6.	 Use UTL_SPADV to stop collection of data.

The above should be done as STRM_ADMIN@STRM1.US.APGTECH.COM, except
where noted in Step 1.

1.	 Configure UTL_SPADV using defaults settings

For some unknown reason Oracle decided not to include the package
UTL_SPADV as a default install. So, we have to do some additional work
before using it.

As SYSDBA
GRANT EXECUTE ON sys.dbms_lock TO STRM_ADMIN;

As STRM_ADMIN
Locate and run the utlspadv.sql script.
It can be found in ORACLE_HOME/ rdbms/admin directory
@utlspadv.sql

Use UTL_SPADV.COLLECT_STATS to start things all off. Think of it as a manual
collection of Advisor Runs for a small period. It also creates the STREAMS$_ADVISOR_
COMP_STAT and STREAMS$_ADVISOR_PATH_STAT tables.

exec UTL_SPADV.COLLECT_STATS

By default, this runs for 10 minutes creating Advice Runs (think snapshots) every
60 seconds. We would suggest running it with the following, just to get the tables
created and so we can move on to setting up the automated version:

exec UTL_SPADV.COLLECT_STATS(interval => 30,
 num_runs => 2);

•

•

°

°

°

Chapter 7

[259]

2.	 Configure and confirm automated collection of data.
You first start of by using:
exec UTL_SPADV.START_MONITORING

The Advice Runs are taken every 60 seconds and retained for 24 hours. We
will modify this to be more aggressive and retain data for a longer period
in a moment. It continues collecting until we stop it.
To confirm that the Advice Runs are being collected, use:
SET SERVEROUTPUT ON
DECLARE
this_collecting BOOLEAN;
BEGIN
 this_collecting := UTL_SPADV.IS_MONITORING(
job_name => 'STREAMS$_MONITORING_JOB');
IF this_collecting=TRUE THEN
DBMS_OUTPUT.PUT_LINE('Good job collecting of advice is
automatic.');
ELSE
DBMS_OUTPUT.PUT_LINE('Nothing is being collected.');
END IF;
END;
/

3.	 Place load on STRM1 to be STREAMed to STRM2
Just simply run the included script on STRM1, loop_50.sql to create inserts
for the next 25 minutes.
declare
 n_numb number := 1;
begin
 loop
 Insert into LEARNING.EMPLOYEES (EMPLOYEE_ID, FIRST_NAME,
LAST_NAME, TIME) Values (n_numb, 'Hello' || n_numb , 'You', NULL);
 COMMIT;
 n_numb := n_numb + 1;
 DBMS_LOCK.SLEEP(.25); -- quarter second pause
 exit when n_numb >= 6000; -- about 25 minutes
 end loop;
end;
/

Document What You Have and How It Is Working

[260]

4.	 Analyze the data
-- run this if you used UTL_SPADV.COLLECT_STATS
spool run1.txt
SET SERVEROUTPUT ON SIZE 50000
BEGIN
UTL_SPADV.SHOW_STATS();
END;
/
spool off;

Once automatic collection of Advisor Runs is set up, use the following:
-- run this if you used UTL_SPADV.START_MONITORING
spool run2.txt
SET SERVEROUTPUT ON SIZE 50000
BEGIN
UTL_SPADV.SHOW_STATS(path_stat_table => 'STREAMS$_PA_SHOW_PATH_
STAT');
END;
/
spool off;

5.	 Change UTL_SPADV to more aggressive collection schedule
Changing the collections of Advisor Runs is accomplished with
the following:
-- more aggressive monitoring every 30 seconds
-- retain for 48 hours
BEGIN
UTL_SPADV.ALTER_MONITORING(
interval => 30,
retention_time => 48);
END;
/

6.	 Use UTL_SPADV to stop collection of data.
exec UTL_SPADV.STOP_MONITORING

The collection of data from the previous gathering of Advisor Runs will still
be retained.

It is easy to use UTL_SPADV packages. There are some minor "issues".

You need to GRANT EXECUTE ON sys.dbms_lock TO STRM_ADMIN.
You have to install the package with @utlspadv.sql. It is not installed
by default.

•

•

Chapter 7

[261]

Format of output from UTL_SPADV.SHOW_STATS should be much easier to
read.(I honestly think that Oracle support must have some kind of PERL
script that makes the output of UTL_SPADV.SHOW_STATS more readable.)

But even with these minor "issues", the use of UTL_SPADV packages is similar to
the use and evolution of DBMS_WORKLOAD_REPOSITORY PACKAGE. The UTL_SPADV
packages will mature as more people use and ask for enhancements. Until then,
the decision to use the UTL_SPADV.SHOW_STATS or to query the tables created by
utlspadv.sql will be the choice of the Streams Administrator. The twelve core
tables created are listed at the end of this chapter.

STREAMS$_PA_COMPONENT

STREAMS$_PA_COMPONENT_LINK

STREAMS$_PA_COMPONENT_PROP

STREAMS$_PA_COMPONENT_STAT

STREAMS$_PA_CONTROL

STREAMS$_PA_DATABASE

STREAMS$_PA_DATABASE_PROP

STREAMS$_PA_MONITORING

STREAMS$_PA_PATH_BOTTLENECK

STREAMS$_PA_PATH_STAT

STREAMS$_PA_SHOW_COMP_STAT

STREAMS$_PA_SHOW_PATH_STAT

The DBA_STREAMS_TP_* and the STREAMS$_PA_* are very similar.
They do not exactly match. But a good starting point is modifying the
scripts supplied after the summary.

Summary
From being lost without a map to using DBMS_STREAMS_ADVISOR_ADM and
UTL_SPADV to map out the Streams environment, this was a quick ride on
how to be a cartographer for your Streams environment.

We used DBMS_STREAMS_ADVISOR_ADM for mapping out Streams and immediate
troubleshooting. Then we moved on to setting up UTL_SPADV for the automated
collection of Advisor Runs. Some of the minor concerns relating to UTL_SPADV were
also covered. Those issues will most likely go away with the usage and maturity
of UTL_SPADV.

•

•

•

•

•

•

•

•

•

•

•

•

•

Dealing with the Ever
Constant Tides of Change

It WAS Working!

Number 1 claim when things stop working: Nothing Changed!

Number 1 reason when things stop working: Something Changed.

Change within a Streamed environment often has a far reaching impact. Changes
come in two types: expected, and unexpected. Even the simplest of changes can
bring the distributed environment to a halt; and unexpected changes can be the most
detrimental. In the first section of this chapter, we will look at the impacts of, and
dealing with, expectedly changing your existing Streamed environment. The focus
will be on planning expected changes and knowing what to do to minimize their
impact. The second section will address what to look for when things "stop working"
due to unexpected changes . It will take you through techniques for identifying and
troubleshooting issues with Streams that could result from such changes. Finally, the
third section will give you some out-of-the-mainstream tips and tricks, and a brief
introduction to additional tools.

In this chapter, we paddle through:

Change Planning
Troubleshooting unexpected changes and errors
Helpful troubleshooting Tools
And couple of tricks and tips

•
•
•
•

Dealing with the Ever Constant Tides of Change

[264]

Affecting expected change effectively
The most consistent thing in life is change. Eventually, you will need to modify
your Streamed environment or something in it. Big or small, the modification must
be planned (back to that old design thing again) and the ramifications identified.
Some changes may be external to the database but still impact on your Streamed
environment (for instance IT notifies you that the allocated networking bandwidth
between your databases will be reduced by 25% to accommodate a new application
being added to the environment). Other changes may be required to support new
and improved features for a distributed application (adding or modifying database
object structures such as tables, view definitions, PL/SQL code, and so on), or an
additional site (to accommodate a new region). And then of course, there are always
the Oracle upgrades. As you become more familiar with the inner workings of
Streams, you develop the ability to foresee how certain changes will impact on the
overall Streamed environment as well as each component within the environment.
And, most importantly, how these changes impact other components that do
not change.

Changing States: Starting and stopping
processes
One rule of thumb for affecting changes to the Streams processes is to configure and
start and stop the processes in a specific order. You want to make sure your receiving
processes are up and ready when you start the process that sends to it; a comparison
that could be drawn is not throwing the ball to the home plate before the catcher
gets there. This will help avoid the possible loss of events as mentioned in Chapter 4,
Single-Source Configuration.

Start the processes in the following order:

Apply
Propagation
Capture

Stop the processes in the follow order:

Capture
Propagation
Apply

•
•
•

•
•
•

Chapter 8

[265]

Another rule of thumb is to avoid collecting and sending changes for an object that
is in the process of being configured for replication. This too can result in a loss
of events. If you are adding a rule to an existing process, stop the process cleanly
first. Once the rule has been successfully added, start the process and it will pick
up where it left off. For Capture processes, this does require that all redo/archive
from the Capture process REQUIRED_CHECKPOINT_SCN (or FIRST_SCN , if
REQUIRED_CHECKPOINT_SCN is 0) be available to LogMiner.

Database changes
The key to affecting database changes is to ensure that everything is kept
synchronized between the Streamed sites. The Streams Capture, Propagation, and
Apply processes can be configured to handle DDL propagation as well as DML
propagation, so DDL changes can be made at a primary master site and propagated
via normal Streams processing. However, it may be necessary to coordinate the
changes via other means.

Structure changes to existing objects
If DDL changes are necessary, make sure the Streams processes are configured to
include DDL changes. If they are not, the DDL change must be manually made at
each site at which the object is streamed.

If you intend to make object structure changes only at certain sites in your Streamed
environment and not others, you must remember that by not applying a DDL change
to all Streamed sites, the object behavior in the system will differ between the sites.
Make sure this is well documented, so that when troubleshooting you are expecting
the correct behavior from the object at any one site.

For tables, if a DDL change is not affected at all streamed sites hosting the table, the
Apply processes where the DDL change is not made will break, and potentially,
existing conflict resolution. You must make sure you put rule based transformation
in place to accommodate a structure change not made at that site, as well as update
any conflict resolution that may be affected by the structure change.

Dealing with the Ever Constant Tides of Change

[266]

Data changes—beware the bulk load!
Bulk loads can generate massive amounts of redo that, when in a distributed
environment, may bring the system to its knees. To avoid this, many choose to bypass
Streams and run the bulk load at each site. To do this, make sure FORCE LOGGING
is disabled on the databases to be loaded. You can then use the UNRECOVERABLE
option in SQL*LOADER, or specify NO LOGGING for your load operation. This
keeps the load from recording entries in the redo. If the entries are not in the redo, the
Capture processes will not pick up the changes. Note that if you have synchronous
capture configured, either remove the synchronous capture, or disable the capture
triggers. Once the load is complete, remember to re-enable FORCE LOGGING on the
database, and rebuild/re-enable your synchronous capture triggers. These methods
are fine as long as the following precautions are taken:

No changes are made at any site in the Streamed environment that must
receive the load once the loading begins
The bulk load is accomplished in the exact same manner at all master sites
Any errors that occur during the bulk load at each site are rectified before
Streaming is re-enabled
All data is identical between master tables once the loading is complete; the
number of records, and data values for each record are the same, and so on.
In the event that some secondary master sites may have only subsets of the
data loaded at a primary master, ensure that the secondary site data subset is
complete when compared to the primary master site(s)

Otherwise, the data will not be synchronized and could result in erred or lost apply
transactions (a.k.a the dreaded data divergence).

Expanding your Streamed environment
It often becomes necessary to expand an existing Streamed environment to
accommodate new sites, or database objects. You pretty much use the same
approach to expand, or add to a Streamed environment as you would for its initial
creation. You want to make sure that you do not (or do) overwrite existing objects,
and in some instances you may need to manually prepare objects at the capture site
for reinstantiation.

As with your initial design, it helps to break down the changes needed into
"single-master to single-destination views", using the Streams Site Matrix.

Let's look at two examples of expanding a Streamed environment. First, we will
expand a Single-Source environment to include an additional Master site. Second,
we will add a table to a Replicated Schema.

•

•
•

•

•

Chapter 8

[267]

Example: Adding a Master Site
We start with our Streams Site Matrix that shows us what our current Streams
environment looks like.

Our current environment is Single-Source where MS1 is the master source site and
SS3 is a secondary destination site. At MS1 we have a Capture process HR_CAPT, and
a Propagation process HR_PROP_SS3 that propagates from the HR_CAPT queue to the
HR_MS1_APPLY queue at SS3. At SS3, we have an Apply process HR_MS1_APPLY that
has Site Priority conflict resolution defined where MS1 changes have priority over
SS3 changes (just in case someone makes a change on SS3 that they really weren't
supposed to make).

We want to add a master site MS2 that will have a Master-to-Master relationship
with MS1, and a Master-to-Secondary relationship with SS3. We are going to choose
to use the existing queues on MS1 and SS3 for MS2 stream processes (however, you
do have the option to create a separate set of queues if you wish—just remember to
add queue creation to your steps).

Dealing with the Ever Constant Tides of Change

[268]

We are going to choose not to propagate DDL changes from MS2. This means that
DDL changes can only be sent from MS1. By only propagating DDL changes from
one master site, we are mimicking the old Master Definition Site architecture of
Advanced Replication. If you choose to allow multiple masters to propagate DDL
changes, you must implement conflict resolution to handle situations where DDL
changes between masters conflict.

First, we will look at the "single source to single destination view" for MS1 to MS2.

MS1 already has a Capture process and queue for the HR schema, so no additions
are needed there. One thing we need to consider is conflict resolution, since changes
can be made at either MS1 or MS2. In this case, we will use Latest Timestamp (the
latest change is applied if there is a conflict). This means that each of our tables in
the HR schema must have a column that records the time the change was made (this
opens up a whole new can of worms! BUT, because we sat down and worked out our
design with the Streams Site Matrix, we are forewarned and thus forearmed). Time
zone time differences need to be taken into account here. We need to either make
sure the DB_TIMEZONE for all databases in the environment is the same, or we convert
the time to equivalent time zone values when the record is created/modified, or
during conflict resolution. We will also need to make sure that any application
inserts/updates to the HR Schema tables update this new column. We can do this
by creating a before trigger that sets the value of the column on insert/update to
make the change transparent to any applications with code that manipulates data
in the tables. Otherwise, application code must be modified to include the column
in the DML operation. To configure Latest timestamp resolution, we would use the
MAXIMUM resolution method referencing the time column.

To configure replication from MS1 to MS2, we will need to:

Create the database on MS2 and configure for replication following the steps
listed in Chapter 3
Add timestamp columns and triggers to all HR tables at MS1

DDL propagation from MS1 to SS3 will automatically push
these new columns to SS3
By adding the column and trigger to the tables before
instantiating MS2, they are automatically picked up via the
instantiation

Capture MS2 SCN at this point to be used on MS1 and SS3 in later steps to
avoid change loss should changes be made on MS2 before you complete
Configure an Apply process at MS2 (HR_MS1_APPLY)
Add conflict resolution at MS2 for the Apply process using the timestamp
column as the resolution column

•

•
°

°

•

•
•

Chapter 8

[269]

Configure a Propagation process from MS1 to MS2
Prepare the HR Schema on MS1 for instantiation
Add/instantiate the HR Schema on MS2; including supplemental logging for
the conflict resolution columns; privileges for the apply user and so on
Set the MS1 instantiation SCN at MS2 if it was not accomplished via the
above instantiation method
Start the Apply process on MS2
Start the Propagation process from MS1 to MS2
Start the Capture process on MS1 (if stopped)

At this point our Streams Site Matrix looks like this:

•
•
•

•

•
•
•

Dealing with the Ever Constant Tides of Change

[270]

Next we look at the "single source to single destination view" from MS2 to MS1
(the opposite path).

Because we have created the HR schema on MS2 as part of our set up from MS1 to
MS2, we just need to handle changes going from MS2 to MS1.

To configure replication from MS2 to MS1 we will need to:

Configure the Capture process on MS2 (it should not be started)
Configure an Apply process on MS1 for MS2
Add conflict resolution at MS1 for the Apply process using the timestamp
column as the resolution column (for the DDL LCRs, you can use the
DDL_HANDLER parameter of the Apply process to define a "conflict handler"
for DDL changes)
Configure a Propagation process from MS2 to MS1
Prepare the HR Schema on MS2 for instantiation
Instantiate the MS2 SCN on MS1
Start the Apply process on MS1
Start the Propagation process from MS2 to MS1
Do not start the Capture process on MS2 yet (we still need to configure SS3)

We have now completed the design for the replication between MS1 and MS2. Our
Streams Site Matrix now shows:

•
•
•

•
•
•
•
•
•

Chapter 8

[271]

Let us turn our attention now to the "single source to single destination view" for
MS2 to SS3.

SS3 only receives changes, it does not send them. This means we only need to
create an Apply process for the changes coming from MS2. This is the easy part.
Coordinating changes from two master sites is a little trickier.

Dealing with the Ever Constant Tides of Change

[272]

If changes are made directly on SS3 in the As Is configuration, they are overwritten
by changes from MS1 if a conflict occurs; easy enough. However, we now have to
receive changes from MS2 as well. The expectation would be that if a change is made
directly on SS3, it would be overwritten by an MS2 change if a conflict between the two
occurred. However, what happens if the conflict arises as a result of a change on SS3
coming from MS1 that did not get toMS2 before the same row was changed at MS2 by
another user and sent to SS3 (did that make your head hurt)? Should the MS2 change
win on SS3, or should the old MS1 change win? In our master-to-master relationship
between MS1 and MS2, we determined that the most recent change wins. So, not only
do we need to implement Site priority conflict resolution to handle conflicts between
direct SS3 changes and each master, we now need to also evaluate if the conflict is
a result of a change from the other master. Take heart! There is actually a way to do
this. User defined conflict resolution allows us to combine Site priority and Latest
Timestamp evaluations to yield multiple levels of resolution. The user defined conflict
resolution function first evaluates the site that created the change on SS3. The site value
can be passed with the LCR via a tag or a column. If the originating site was SS3, then
the record is overwritten by the master change. If the originating site was one of the
masters, the change is evaluated for Latest Timestamp. The oldest change is discarded
and the newest change is applied/kept. Keep in mind here that time zone differences
need to be taken into consideration at this point. If the timestamps are for different
time zones, they will need to be converted to equivalent times.

Believe it or not, this approach is pretty straight forward. But think of what it would
be if you had more than 2 master sites sending changes and you had to apply
multiple levels of conflict evaluation. The more masters, the more complicated and
unmanageable conflict resolution becomes. That is why Oracle (and an architect that
wishes to maintain his/her, and other's sanity) recommends keeping the number
of master sites in a distributed environment to a minimum. It also helps to keep
the number of conflict resolution evaluation levels used between master sites to a
minimum as well.

So, to complete our addition of MS2 to our environment, we need to do the following
on SS3:

Configure an Apply process for MS2 changes
Add user defined conflict resolution to the MS2 Apply process that evaluates
first by Site Priority, and then by Latest Timestamp.
Redefine the conflict resolution for the MS1 Apply process so that it evaluates
first by Site Priority, and then by Latest Timestamp.
Instantiate the MS2 SCN on SS3
Start the MS2 Apply process on SS3
Start the Propagation process from MS2 to SS3
Start the Capture process on MS2

•
•

•

•
•
•
•

Chapter 8

[273]

We now have a completed Streams Site Matrix from which we have gained great
insight as to the more effective and efficient way to affect the change. You will
notice that even though we are not changing replication from MS1 to SS3 (insert
"but nothing changed between MS1 and SS3, so why did it break?" question here).
However, we found out that we do indeed need to change components of the MS1 to
SS3 replication to accommodate the new MS2 site. If we are focusing on only adding
the new master site, the addition would end up causing a cascade of apply errors at
SS3 which we do not see with just the MS1 master.

Dealing with the Ever Constant Tides of Change

[274]

Time based values used for comparision and time zones.
One point came out of this example that bears additional discussion: time zones. It
is this author's overwhelming desire to call a special meeting of the UN and have
us all agree that life and the universe would be so much easier to deal with if we all
just got on the same time. 8 o'clock am is 8 o'clock am regardless of where you are
in the world. Think of all the brain power and sleep that is lost over keeping track
of 24 different time zones that all change, at different intervals, on different dates
depending on the year. Look at how many patches Oracle has had to put out just
to keep up with them all. After all, if those wonderful planetary inhabitants South
of the equator can celebrate Christmas in the middle of summer, surely those of us
in the Western continents can handle going to work at noon (actually, many of us
already do). So why not unite! One planet, one time, one people!

However, until this happens, we must accommodate for the ever changing time zones
and the impact on time-based conflict resolution. As mentioned above, you will need
to make sure the time values used for conflict resolution are equivalent by time zone.
Your most efficient practice is going to be to store all of the time-based columns in the
database at the same time zone. If needed, convert the time value via a trigger or code
prior to inserting or updating the record. This way you only have to convert once,
when you store, not every time you retrieve. In a distributed environment, it is highly
recommended that you set the DBTIMEZONE on all databases to the same time zone.
UTC/GMT is recommended (with no Daylight Savings time change). Then, incoming
time-based values can be converted from its known time zone to the database time
zone. For example, use the FROM_TZ/AT TIME ZONE statement:

FROM_TZ(CAST(<my_date_type_data>) AS TIMESTAMP),
('<my_time_zone_name>')) AT TIME ZONE (DBTIMEZONE)

Note: You must convert your time-based data type to a simple TIMESTAMP if it is not
already one. This is done with the CAST (...) AS TIMESTAMP.

For more information on working with time-based values and time zone
conversions, please reference the Datetime Data Types and Time Zone
Support Chapter in the Oracle Database Globalization Support Guide.

Example: Adding a table to a replicated schema
Our next challenge is to add a table to a replicated schema. Since our sites are not
going to change, we can refer to our Streams Site Matrix to help us keep track of all
the sites where we need to add the table and configure it for replication. We won't
be making any changes to the matrix. In our previous example, we extended our
streamed environment to include a second master site. We will use this extended
environment as our base for adding a table to our HR schema.

Chapter 8

[275]

The first step is to understand which commands can be issued once and propagated
throughout the environment, and which commands must be issued at each site.

We know from our Streams Site Matrix that the HR Schema is hosted at MS1, MS2,
and SS3.

We know that the create table command is DDL and when issued at MS1 will be
propagated to MS2 and SS3. However, it would not be propagated if issued at MS2.

We know that DBMS_STREAMS_ADM procedures needed to configure the table
replicaton are not DDL and therefore are not propagated.

The table must exist on the local database to be referenced in a DBMS_STREAMS_ADM
procedure call.

Since this is a new table, we do not need to worry about data synchronization for
this table between sites. However, we should take precautions to make sure no one
adds data to the table at any site until we have added the capture rule to the Capture
process for the table at each site.

From the above analysis of what we know, we can conclude:

The DDL to create the new table (and associated indexes and triggers) can be
issued at MS1 and propagated to MS2 and SS3
Once the propagated DDL has been applied at MS2 and SS3,
DBMS_STREAMS_ADM procedures must be issued at each site to configure
the appropriate capture and Apply process rules for the table at each site
To ensure the table is empty of data when the capture rule is added to the
HR_CAPT Capture process, we can issue a truncate table command on the
table just prior to adding the capture rule
As soon as the capture rule is added to the HR_CAPT process, we want to get
the SCN at the capture site to avoid losing any apply for changes made after
the Capture process is created but before the table apply rule is instantiated

To accomplish adding the table to the replicated Schema, we can do the following:

Issue the DDL to create the table and any associated indexes and triggers
at MS1
Allow the DDL to be propagate and applied at MS2 and SS3
Stop HR_CAPT processes at MS1 and MS2
Stop all Propagation processes
Stop HR_MS1_Apply process at MS2 and SS3
Stop HR_MS2_Apply process at MS1 and SS3
Add apply table rule to all Apply processes

•

•

•

•

•

•
•
•
•
•
•

Dealing with the Ever Constant Tides of Change

[276]

Add the appropriate apply rule conflict resolution for the table to all
Apply processes
Add propagation table rule to the all Propagation processes
Add capture table rule to all Capture processes
Prepare the table for instantiation at MS1 and MS2 (this is done automatically
if you used the DBMS_STREAMS_ADM package to add the rule to the
Capture process)
Instantiate MS1 SCN at MS2 for the table
Instantiate MS1 SCN at SS3 for the table
Instantiate MS2 SCN at MS1 for the table
Instantiate MS2 SCN at SS3 for the table
Start all Apply processes
Start all Propagation processes
Start all Capture processes

Shrinking the Streamed environment
Shrinking a Streamed environment is much less complicated than extending it. It
is accomplished by simply removing the rules/rulesets that govern the capture,
propagation, and Apply processes for the replication level and site.

Removing table, scheme, and tablespace level
replication from Streams
DBMS_STREAMS_ADM.REMOVE_RULE or DBMS_RULE_ADM.DROP_RULE

As mentioned in Chapter 6, remember to use the same package to remove the rules
as used to add them. Using a standard procedure for creating Streams rules will help
with this. For example, you always use DBMS_STREAMS_ADM to configure replication
capture, apply and propagation rules, rather than DBMS_RULE_ADM

Removing a site from a Streamed environment
There may be times when a site becomes so badly desynchronized within a Streamed
environment, that it is more efficient to remove the site entirely and rebuild it. Or, it
is no longer needed in the environment.

Use DBMS_PROPAGATION_ADM.DROP_PROPAGATION to remove Propagation processes
to the database to be rebuilt/removed. It is more efficient to drop and recreate a
Propagation process than it is attempt to resynchronize it with a capture and/or
apply queue and process that has been dropped and recreated.

•

•
•
•

•
•
•
•
•
•
•

Chapter 8

[277]

Use DBMS_STREAM_ADM.REMOVE_STREAMS_CONFIGURATION locally at the database that
is to be removed. It leaves the database and the Streams users intact, but removes the
objects created for Streams processes (queues, processes, rules, and so on).

Troubleshooting unexpected changes
and resulting Streams errors
Expect the unexpected. Whether the failure occurs after the Streams environment
has been up and running or occurs while you are attempting to implement the
environment, your best defense is knowing the failure points in a Streamed
environment, and the most likely causes for the failures. In this section, we will
address this very thing, as well as present a methodical approach to troubleshooting
errors. We will also discuss various COTS and custom tools that you may find
helpful in monitoring and troubleshooting the environment.

Failure Points and Most Likely Causes
(a.k.a. FPs and MLCs)
The following diagram shows the overall flow of DML/DDL change through the
Streams processes from source to destination. Each transition constitutes a potential
point of failure (notated by the circled number). We will start at the beginning and
work our way through the flow describing the failure point and the most likely
causes. The following section is not intended to be an "All Inclusive" list of every
issue you may encounter. Rather, it provides some basic, well known issues at
specific points that are intended to help you begin to associate where to look when
issues are encountered.

DML/DDL Statement

Commit

Redo Logs

LogMiner

Capture

Rules

Rules

Conflict
Resolution

Rules

No

NoYes

Yes

Dequeue
Apply

Rules

DML/DDL Statement

Change
CommittedDequeue

Propagate

Capture
Queue

Apply
Queue

Apply
Error

Queue

N
etw

ork/D
atabaselink

Reader Server
Coordinator Process
Apply Server

Conflict
Detected?

Conflict
Resolved?

13

1

8

9

4

3

2

5

7

12

11

10

6

Dealing with the Ever Constant Tides of Change

[278]

Failure Point 1: DML/DDL statement commit logging
At this FP, we want to make sure that committed changes are being recorded in the
redo. If the changes are not in the redo, they cannot be captured.

Successful commit
Make sure the statement was successfully committed.

DML/DDL statements must execute and commit successfully to the redo to be
eligible for capture. If the DML/DDL is not successfully executed and committed,
it will not be captured. If you are using Synchronous Capture, make sure triggers are
enabled and valid. Again, the DML/DDL must be successfully committed to "kick
off" the Synchronous Capture triggering.

NOLOGGING option
Mitigate potential use of the NOLOGGING option on the session issuing DML/
DDL statements with the NOLOGGING option will keep the change from being
entered into the redo log completely. To avoid this, all capture databases should
be configured with FORCED LOGGING. This ensures that DML/DDL changes are
logged in the redo regardless of the use of the NOLOGGING option specification.

You can either create the database or tablespaces with the FORCE LOGGING option
or use the alter database or alter tablespace commands to enable FORCE LOGGING.

Archive Log mode
Make sure the database is in Archive log mode and the Archive process is started
(you may see ORA-01001: Invalid Cursor ,ORA-01405:Fetched column value is
NULL errors).

Failure Point 2: LogMiner
At this FP, we want to make sure that LogMiner has the configuration and resources
it needs.

Supplemental logging
Make sure supplemental logging has been configured for each table replicated.

Check Supplemental Logging at the Database level:
select supplemental_log_data_pk pk_logging,

supplemental_log_data_ui ui_logging

from v$database;

•

Chapter 8

[279]

PK_LOGGING UI_LOGGING

------------ ------------

NO NO

Check Supplemental Logging at the table level:
select lg.log_group_name, lg.table_name, lg.always, lgc.column_
name, lgc.position

from dba_log_groups lg,

dba_log_group_columns lgc

where lg.log_group_name = lgc.log_group_name(+);

To enable Database level Supplemental Logging issue the
following command:
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY, UNIQUE
INDEX) COLUMNS;

To enable table level Supplemental Logging issue the following command:
ALTER TABLE <table_name> ADD SUPPLEMENTAL LOG GOUP <log_group_
name> (col1, col2) ALWAYS;

_LOG_PARALLELISM
This parameter sets the redo allocation concurrency level. If one or more Capture
processes are run on the database, this parameter should be set to 1 (Note: this does
not affect capture parallelism). Attempting to set the value greater than 1 could
result in an ORA-01374: Log_parallelism_max greater than 1 not supported in
this release.

LOGMNR_MAX_PERSISTENT_SESSIONS
Make sure this parameter is set as equal to, or more than, the number of Capture
processes configured on the database (this could result in ORA-01353: Exisiting
LogMiner Session).

Each Capture process requires its own persistent LogMiner mining session. If the
number of Capture processes exceed the number of persistent sessions, then those
Capture processes will not be able to start.

•

•

•

Dealing with the Ever Constant Tides of Change

[280]

Failure Point 3: Capture process and rules
This FP focuses on making sure the Capture process has the resources, configuration,
and proper rules in place to Capture changes. If you've confirmed the Capture
process is up and running, and capturing changes, you will want to look at the rules
defined for the process. On thing to keep in mind, it is possible that changes in data
handling via applications can impact behavior of a Capture rule if unexpected or
new values are not handled in rule conditions that use those values. If your Capture
process starts "missing" changes, take a good hard look at the data values, and
compare them to the rule conditions.

Memory allocation
Make sure Streams has adequate memory allocation. Either implement Automatic
Memory Management (10g and higher), or increase the shared pool and streams pool
by at least 10MB per Capture process. In the event you see an ORA-01341: LogMiner
out-of-memory, you can increase LogMiner memory allocation by increasing the
Capture process parameter _sga_size. The default for this memory allocation is
10MB. Note that if you increase the _sga_size, you will most likely want to make a
corresponding increase the streams pool size as well to accommodate the additional
memory allocation for the capture. The following command allocates 50 MB to
LogMiner memory

exec dbms_capture_adm.set_parameter('STRMADMIN_CAPTURE','_SGA_
SIZE','50');

Capture process status
Make sure the Capture process (and queue) is enabled.

select capture_name, queue_name, status, error_number, error_ message
from dba_capture;

CAPTURE_NAME QUEUE_NAME STATUS ERROR_NUMBER ERROR_MESSAGE

SCHEMA_HR_CAPTURE SCHEMA_HR_CAPTURE_Q ENABLED

If the Capture process has a status of DISABLED, attempt to start the process.

If the Capture process has a status of ABORTED, you should see accompanying errors.
Address the errors and attempt to restart the process.

If the Capture process is ENABLED, but not capturing recent transactions, it may have
fallen behind.

Chapter 8

[281]

select to_char(enqueue_message_create_time,'DD-MON-YY HH24:MI:SS')
last_enqueue, to_char(sysdate,'DD-MON-YY HH24:MI:SS') cur_time

from v$streams_capture;

LAST_ENQUEUE CUR_TIME

23-AUG-09 20:09:12

Notice the lack of enqueued time. Even though our process is enabled, it is
not capturing.

In this case, the next step is to check the state of the Capture process.select
capture_name, startup_time, state from v$streams_capture;

CAPTURE_NAME STARTUP_TIME STATE

SCHEMA_HR_
CAPTURE

Aug 22, 2009
4:01:00 PM

WAITING FOR DICTIONARY REDO: FIRST SCN
960867

In this case, the Capture process is expecting to find the archive log with the noted
SCN to access the Data Dictionary info in the redo log to build the LogMiner Data
Dictionary. However, the archive log has been deleted. If possible, restore the archive
log with the FIRST_SCN to the archive log destination folder and re-register it with
the Capture process.

alter database register logfile <path\filename> for <capture_name>;

If the required archive log is not available, you will need to recreate the
Capture process.

If a Capture process appears to be "stuck" in the INITIALIZING state, it could be a
result of one of the following:

Combined Capture and Apply is enabled and the Apply site is not available
Downstream capture is configured and redo is still in transit or unavailable
The START_SCN is significantly higher than the REQUIRED_CHECKPOINT_SCN/
FIRST_SCN and the process is still scanning the redo
One or more required redo logs are not available
Indoubt distributed transactions can keep capture checkpoints from
advancing as expected

Check for issues in the DBA_2PC_PENDING and DBA_2PC_NEIGHBORS
views and also, reference the Viewing Information about Distributed
Transactions chapter in the Oracle Database Administrator's Guide 11g

•
•
•

•
•

Dealing with the Ever Constant Tides of Change

[282]

Capture queue designation
Verify that the Capture process is assigned to the correct queue.

select capture_name, queue_name, queue_owner

from dba_capture;

CAPTURE_NAME QUEUE_NAME QUEUE_OWNER

--------------- --------------- -------------

HR_CAPTURE HR_CAPTURE_Q STRM_ADMIN

Capture Rules and Rule Sets
While most expectations are to capture changes, it is quite possible to not want to
capture changes. Keep in mind that if any rule in a rule set evaluates to TRUE, the
whole rule set evaluates to TRUE.

Verify Capture Rules are configured properly for expected capture.
The obvious verification is to make sure that the capture rule set contains
rules (an empty rule set can throw an ORA-01405: Fetched column value is
null). There should be at least one rule (DML) in the rule set, and an addi-
tional rule for DDL if include_DDL is set to true for the capture.
If the rules were created with the DBMS_STREAMS_ADM, you can query the
following views.
Select * from dba_streams_<level>_rules;

Where <level> is table, schema, or global. Add appropriate where clause
to filter on the rules of interest.

Otherwise, query dba_rules
Select * from dba_rules;

Add appropriate where clause to filter on the rules of interest.
Verify if the values for source_database, and :dml.get_source_
database_name() are the same as the capture database global_name. If the
global_name has been changed, the Capture process will no longer capture
changes.
Verify the rule conditions are set as expected for the capture rules.
Compare the rule evaluations to the values of the change that was not or was
captured. Rules behave the opposite of rule sets. If one or more conditions
evaluates to FALSE, the rule returns FALSE.
Is it a negative rule set ()?—remember this is a double negative. If the
negative rule evaluates to TRUE, the change is NOT captured.
If the rules set has multiple rules, do one or more rules cancel each
other out?

•

•

•

Chapter 8

[283]

If the rule set has multiple rules defined, make sure they do not cancel each
other out; especially if you mix positive and negative rules in the rule set.

See the Tricks and Tips section below for an example of altering a Streams
process rule.

Check Tag settings
Make sure you are, or are not including tags as expected. Verify the tag
value in the rule to the tag value being set when the change is originated if
possible (most of the time this is done via code, so you can do this. However,
if a user manually set the tag you may or may not be able to determine the
tag value used).
Verify any transformations for the rules.
select r.rule_name, rac.nvn_name ac_name, rac.nvn_value.
accessvarchar2() ac_value
from dba_rules r, table (r.rule_action_context.actx_list) rac;

Add the appropriate where clause to filter on the rules of interest.
Transformations can affect the capture of an event. If a transformation exists,
verify the logic and outcome of the PL/SQL code. If the transformation fails
the Capture process is aborted (see chapter 6).

Check for Capture process errors in alert.log
Also look for any tracefiles. Check EM for failed capture operations alerts.

Failure Point 4: Capture enqueue
This FP focuses on the ability of the Capture process to enqueue LCR's to its assigned
Capture queue.

Capture user privileges
Make sure the capture user either owns the queue or has been granted enqueue
privileges on the queue.

select capture_name, capture_user, queue_name, queue_owner

from dba_capture;

CAPTURE_NAME CAPTURE_USER QUEUE_NAME QUEUE_OWNER

--------------- --------------- --------------- ------------

HR_CAPTURE STRM_ADMIN HR_CAPTURE_Q STRM_ADMIN

•

•

•

Dealing with the Ever Constant Tides of Change

[284]

Failure Point 5: Propagation dequeue from
Capture queue
At this FP, we want to make sure the Propagation process is able to dequeue LCRs
from the Capture queue.

Propagation Status
Verify the Propagation process is started

Set the date display to show time as well
alter session set nls_date_format='DD-MON-YY HH24:MI:SS';
select propagation_name, status, error_date, error_message
from dba_propagation;

PROPAGATION_NAME STATUS ERROR_DATE ERROR_MESSAGE

------------------ -------- ------------------ ---------------

HR_PROPAGATION ENABLED 25-AUG-09 15:47:58

You can also view information in the DBA_QUEUE_SCHEDULES view.

If you see an error date but not an error_message, check the propagation
site alert log. If the destination site is down, you will see entries similar to
the following:

Fatal NI connect error 12518, connecting to:
(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HO
ST=STRM2_HOST)(PORT=1521)))(CONNECT_DATA=(SID=STRM2)(ser
ver=DEDICATED)(CID=(PROGRAM=c:\oracle\11gr2\product\11.2.0\
db_1\bin\ORACLE.EXE)(HOST=STM2_HOST)(USER=SYSTEM))))
 VERSION INFORMATION:
	 TNS for 32-bit Windows: Version 11.2.0.0.1 - Beta
	 Windows NT TCP/IP NT Protocol Adapter for 32-bit Windows:
Version 11.2.0.0.1
 Time: 25-AUG-2009 17:29:49
 Tracing not turned on.
 Tns error struct:
 ns main err code: 12564
TNS-12564: TNS:connection refused
 ns secondary err code: 0
 nt main err code: 0
 nt secondary err code: 0
 nt OS err code: 0

•

Chapter 8

[285]

Propagation source configuration
Verify if the Propagation process is pointed to the correct capture queue
Verify if the propagation user either owns the capture queue or has been
granted dequeue privileges on the capture queue

select propagation_name, rule_set_owner, source_queue_owner srcq_owner,
source_queue_name srcq_name from dba_propagation;

PROPAGATION_NAME RULE_SET_OWNER SRCQ_OWNER SRCQ_NAME

------------------ -------------------- ------------ -------------

HR_PROPAGATION STRM_ADMIN STRM_ADMIN HR_CAPTURE_Q

Propagation Job
Verify that the propagation job is running and does not have errors.

Select * from dba_propagation;

Failure Point 6: Propagation Rules
These are pretty much the same as for Capture Rules (See Failure Point 3 for more
detail on rules). You just want to focus on the propagation rule types (via filter).

Verify Propagation Rules are configured properly for expected Propagation
process.
If the rules were created with the DBMS_STREAMS_ADM, you can query the
following views.
Select * from dba_streams_<level>_rules;

Where <level> is table, schema, or global. Add appropriate where clause
to filter on the rules of interest.

Otherwise, query DBA_RULES
Select * from dba_rules;

Add appropriate where clause to filter on the rules of interest.
Verify the value for source_database, and :dml.get_source_database_
name() are the same as the capture database global_name
Verify the rule conditions are set as expected for the propagation rules
Check Tag settings
Verify any Transformations for the rules

•
•

•

•

•
•
•

Dealing with the Ever Constant Tides of Change

[286]

Check propagation errors in the alert.log
Also check Propagation process trace files. Check EM for failed propagation
operations alerts

Failure Point 7: Database link configuration
Verify the database link named for process is correct
Verify database link works
The database link (dblink) name must be the same as global_name of the
database to which it connects. If global_name of the destination database has
been changed, the dblink will need to be dropped and recreated (You may
see ORA-02082 or other associated errors indicate db global naming is not
configured correctly).
The user connection information is correct (the Propagation process will be
aborted with invalid username/ password error).
The "using" parameter is a valid sqlnet connection description: either a valid
tnsalias or the full connection description string.
Verify that the propagation user owns the dblink used by the
Propagation process

Failure Point 8: Network connectivity and stability
Verify tnsnames.ora configuration is correct/current and in the correct
Oracle home.
Check environment variables:
TNS_NAMES and PATH settings can unexpectedly redirect the OracleNet
connection to use a tnsnames.ora file that does not contain the tnsalias
used in the db link "using clause". If you are in an environment where these
may change, consider using the full connection description string in the
database link "using" parameter rather than a tnsalias.
Create database link STRM2
connect to strm_admin identified by strm_admin
using '(DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = STRM2_HOST)
 (PORT = 1521)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = STRM2)
)
)';

•

•
•

•

•

•

Chapter 8

[287]

Verify Host value: Has the host name or IP address changed for the host?
If host name is used, is the domain needed to locate the host in a different
domain (recommended for multi-domain environments)?
Verify Port value: Did the listener port for the destination database change?
Verify Invited_Nodes: If set in the destination sqlnet.ora, is the source
database in the list? If host name is used, is the domain needed
(recommended for multi-domain environments)?
Check for ORA-3113 on propagation job. ORA-03113: end-of-file on
communication channel indicates that the network throughput was
interrupted causing the propagation job to abort. Attempt to restart the
Propagation process manually. In most cases the propagation should start
back up. If you are on a network experiencing these types of comlink issues
regularly, consider creating a scheduled job owned by the Propagation
process owner that checks the propagation status on a regular basis and
attempts to restart the process if it is not enabled. Example code for this
can be found in the Tricks and Tips section below.
TNS errors (ex: ORA-12505, ORA-12514; could not resolve sid/service name)
indicate issues with connecting via alias's. Troubleshoot these errors for
database links just as you would for a straight SQL*PLUS connection.

Failure Point 9: Propagation enqueue to the
Apply queue
We need to make sure that the Propagation process is able to enqueue the LCR's to
its assigned Apply queue.

Destination availability
Verify that the destination database is open and the destination listener is started.

If a Capture process status is initializing, it could indicate that a
destination database associated with the capture via a Propagation
process is down. Check the source and destination database alert
logs for any TNS connection refusal errors.

•

•
•

•

•

Dealing with the Ever Constant Tides of Change

[288]

Propagation destination configuration
Verify that the db link connect user either owns the apply queue or has
enqueued privileges on the queue
Verify that the Propagation process is pointed to the correct capture queue

select propagation_name, destination_dblink dst_dblink, username
connected_user,

destination_queue_owner dstq_owner,

destination_queue_name dstrcq_name

from dba_propagation,

 dba_db_links

where destination_dblink=db_link;

PROPAGATION_NAME DST_DBLINK CONNECTED_USER DSTQ_OWNER
DSTRCQ_NAME

------------------ --------------- --------------- ------------ --

HR_PROPAGATION STRM2 STRM_ADMIN STRM_ADMIN
HR_APPLY_Q

Failure Point 10: Apply dequeue
Here, we want to make sure the Apply process is able to dequeue the LCRs from the
Apply queue

Apply process status
Verify the Apply process (and queue) is up and running.
If the status id DISABLED, attempt to restart the process
If the status is ABORTED, check the accompanying error information, address
the errors, and attempt to restart the process.
Verify the Apply process is configured to apply captured events
If APPLY_CAPTURE is NO, the Apply process will only apply user enqueued
events for the rule set.
select apply_name, status, apply_captured apply_capt,

error_number err_num, error_message err_msg

from dba_apply;

APPLY_NAME STATUS APPLY_CAPT ERR_NUM ERR_MSG

--------------- -------- ---------- ---------- -----------------

HR_APPLY ENABLED YES

•

•

•

•

Chapter 8

[289]

Apply user privileges
Make sure the Apply user either owns the Apply queue or has been granted dequeue
privileges on the queue.

Failure Point 11: Apply Rules
These are pretty much the same as for Capture Rules (See Failure Point 3 for more
detail on rules). You just want to focus on the Apply rule types (via filter).

Verify Apply Rules are configured properly for expected Apply process.
If the rules were created with the DBMS_STREAMS_ADM, you can query the
following views.
Select * from dba_streams_<level>_rules;

Where <level> is table, schema, or global. Add appropriate where clause
to filter on the rules of interest.

Otherwise, query DBA_RULES.
Select * from dba_rules;

Add appropriate where clause to filter on the rules of interest.
Verify the value for source_database, and :dml.get_source_database_
name() are the same as the capture database global_name
Verify that the rule conditions are set as expected for the capture rules
Check Tag settings
Verify any Transformations for the rules
Check any existing Apply handlers
Check for Apply process errors in alert.log
Also look for any tracefiles. Check EM for failed Apply operations alerts

Apply latency
Determine if the Apply process is keeping up with workload.
select hwm_message_number message_id,
hwm_message_create_time create_time,
hwm_time apply_time,
((hwm_time-hwm_message_create_time) * 86400) apply_lag_secs
from v$streams_apply_coordinator;

MESSAGE_ID CREATE_TIME APPLY_TIME APPLY_LAG_SECS
---------- -------------- ------------- --------------
3103329 25-AUG-09 13:01:46 25-AUG-09 13:01:56 10

•

•

•
•
•
•
•

•

Dealing with the Ever Constant Tides of Change

[290]

If transactions are coming in faster than the Apply process can Apply them,
try increasing the parallelism of the Apply processes. Or, consider adding an
additional Apply queue and process, and splitting the inbound Propagation
processes between them (this means that those Propagation processes that
need to be redirected to the new queue must be recreated).
Check for LARGE transactions.
The APPLY reader will keep dequeing the large transaction until it reaches
the transaction end marker. During this time, the coordinator and APPLY
slaves will be IDLE. To determine if there is a large transaction in progress,
you can check the capture site alert log for large transaction messages and
match it with the transaction id in the APPLY views.
Check for Apply spill to disk.
If the number of messages in a transaction exceeds the txn_lcr_spill_
threshold the Apply process will begin to spill messages to disk. This can
slow down the Apply process. Use the DBA_APPLY_SPILL_TXN view to see
information on spilled messages.

Failure Point 12: Conflict detection and
resolution rules
Oracle's conflict detection determines if old values or data structure in the event LCR
do not match the existing data in the destination table. When this happens, it checks
to see if there is any conflict resolution defined for the Apply ruleset. If none is
found, the LCR is placed in the Apply Error Queue (this is a persistent queue which
allows us to query it at will).

If conflict resolution methods are defined for the apply rule they are used to continue
processing the LCR. If the conflict is still not resolved after applying all the conflict
resolution methods to the LCR, the LCR is put in the Apply Error queue.

Verify the conflict resolution method resolves the conflict as expected.
Conflict resolution methods are a type of transformation and they can change
the data. Make sure the resolution and data change logic are correct and yield
the expected result with the values of the LCR.
Make sure supplemental logging has been configured for each
table replicated.

•

•

•

•

Chapter 8

[291]

Verify that supplemental logging is configured for conflict resolution
columns at both the capture and apply sites

Check Supplemental Logging at the Database level:
select supplemental_log_data_pk pk_logging,
supplemental_log_data_ui ui_logging
from v$database;

PK_LOGGING UI_LOGGING
------------ ------------
NO NO

Check Supplemental Logging at the table level:
select lg.log_group_name, lg.table_name, lg.always,
lgc.column_name, lgc.position
from dba_log_groups lg,
dba_log_group_columns lgc
where lg.log_group_name = lgc.log_group_name(+);

To enable Database level Supplemental Logging issue the following
command:
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY, UNIQUE
INDEX) COLUMNS;

To enable table level Supplemental Logging issue the following command:
ALTER TABLE <table_name> ADD SUPPLEMENTAL LOG GOUP <log_group_
name> (col1, col2) ALWAYS;

Failure Point 13: Apply Errors
If there are errors in the apply error queue, it means that a conflict was encountered
that could not be resolved. These errors must be resolved manually. It may be
helpful to extract the LCR of the event to determine the old and new values and
change type for the change event. This can be done via Enterprise Manager DB
Console/Grid Control Streams Apply Error drill down screens, or you can use
scripts to extract the LCR like the one below in the Troubleshooting Tools section.
One thing to understand at this failure point is that change transactions that
reach the Apply Error queue have not been handled by the conflict resolution or
transformation design and should not be "fixed and forgotten". The following tells
you how to address errors quickly so that the Apply process can be fixed when these
errors occur, allowing Streaming to function. However, a record of the errors and
causes should be kept and reviewed with the appropriate parties so that appropriate
change handling design modifications can be implemented to circumvent the cause
of the errors and avoid them in the future.

•

Dealing with the Ever Constant Tides of Change

[292]

It is extremely important to monitor the Apply Error queue. If an LCR
fails, all subsequent LCR's with a direct or indirect dependency on that
LCR will fail as well. This can quickly lead to the Apply site becoming
totally out of sync with its master site(s).

When you address the events in the Apply Error queue, you will want to sort them
so that you address the oldest error first.

select * from dba_apply_error
order by local_transaction_id;

Address the first error. Determine what the change was and what the original values
of the row were by extracting the LCR. Compare these value to the existing row in
the table at the Apply site.

If may be possible that changes from another master may have been applied after
the erred change you are addressing failed. This being the case you may not wish
to apply the change at all. If this is the case, you can delete the change using the
DBMS_APPLY_ADM.DELETE_ERROR procedure. If you wish to attempt to reapply the
change, update the existing row in the table to match the old values so the Apply
process can "find" the old record and it can pass conflict detection (remember,
conflict detection compares the old values of the LCR to the current values in the
destination table). You can then reapply the change using the DBMS_APPLY_ADM.
EXECUTE_ERROR. Verify that the change was applied as expected. Note: capitalization
in text fields makes a difference.

You may wish to just manually update the existing data in the destination table to
match the new values of the change. This is also acceptable.

If you choose to Apply the change to the destination table, and it has been
successfully applied, you may want to run the DBMS_APPLY_ADM.EXECUTE_ALL_
ERRORS('APPLY'). The reason being that what may have kept the rest of the errors
from being applied, was the first error. Now that you have fixed the first error, the
Apply process can now reprocess the rest of the errors without issue. This could
drastically reduce the size of your error queue and the number of errors you will
need to manually address.

The same method can be accomplished via the EM Streams Management GUI if you
prefer that to command line. See the next section for more on troubleshooting Tools.

Troubleshooting tools
The following section addresses some useful and recommended tools that will help
you monitor and troubleshoot your Streamed environment.

Chapter 8

[293]

Enterprise Manager: Streams management
Your new best friend! The following screenshots highlight the EM DBConsole/Grid
Control UI's that allow you to monitor, troubleshoot, and administer the Streams
processes in each database. If nothing else worked in EM, with exception of these
UI's, this tool would still be worth its weight in gold. Keep in mind however, that
as a DBA, you should always know what is going on under the buttons and links.
Meaning, you should understand the database level commands that the UI issues to
accomplish tasks and displays. If things do not work as expected from the UI, you
will want to attempt the operation from command line (a.k.a SQLPlus) to determine
if the problem is with the tool or the database. As you go through the screen shots,
see what you recognize in the UI's from our previous failure point section.

To get to Streams Management, go to the Database tab. Click on the Data Movement
link. Click on the Management link under the Streams section. This will bring you to
the Streams Overview page.

Streams Overview
This page gives a summary view of Streams Capture, Propagate, Apply, and User
Messaging. Notice we have an Error in our Apply Process.

Dealing with the Ever Constant Tides of Change

[294]

By clicking on the Error link we go to a summary page showing the error.

Or we can go directly to the Apply process home page by clicking on the Apply Tab.

The status of the Apply process shows ABORTED. This usually happens when the
Apply process encounters an error and the DISABLE_ON_ERROR is set to Yes.

Chapter 8

[295]

You can verify the Apply process configurations by clicking on the View and Edit
buttons. To see the errors, click on the Error button.

You now see the records that are in the local DBA_APPLY_ERROR queue. You can drill
down into the LCR by clicking on the icon in the View Error LCRs column.

The LCR information lists all messages contained in the LCR.

Dealing with the Ever Constant Tides of Change

[296]

Select a message via its radio button and click on Compare Values to extract the LCR
message and display the actual change values.

Return to the Apply Errors page, when you have resolved the issue that caused the
LCR to fail, you can retry or delete the error by clicking on the appropriate buttons.

Now let's look at the Capture Process. Notice that even though the status is
ENABLED the state is n/a. This is a good indication that one or more of the Apply
sites associated to the Capture process (via propagation) is not available. When the
Apply returns to operations, you should see the state of the Capture process go to
CAPTURING CHANGES.

Chapter 8

[297]

Our next stop is the propagation page (hey! stop, prop, one-hop prop—feeling a hit
single coming on!).

Dealing with the Ever Constant Tides of Change

[298]

You can check statistics for any process by clicking on the Stastics button and view
or edit process configuration by clicking on the View and Edit buttons respectively
as you see on the Propagation screen.

Command line packages and scripts
In the event that you do not have access to the EM console, you can still efficiently
monitor your Streamed environment using a number of command line PL/SQL
packages and scripts. This chapter provides a few examples that the authors have
found most useful over the years. However, do not limit yourself. A number
of Streams command line monitoring scripts can be found on Oracle Technical
Network, Metalink, and the Internet. Play with them. Find out what works best for
you. Keep in mind one rule of thumb that we've seen get even seasoned DBAs: Role
level privileges and PL/SQL execution do not mix. The context user of the script
(whomever the script runs as, by default is the owner of the script) must be explicitly
(directly) granted privileges on certain objects and database packages, procedures,
and functions to access them via PL/SQL script. Privilege assignment via a Role is
not recognized by the PL/SQL execution engine by design.

Chapter 8

[299]

If you encounter "object does not exist" errors when you know the object does exist,
or "insufficient privilege" errors during PL/SQL execution, log on as a SYSDBA and
grant the package owner privileges on the object directly.

Compare and Converge divergent data.
Depending on the circumstance, it may not be feasible to manually find and fix
divergent data between sites. Oracle supplies a package to help us do just this. This
package is the DBMS_COMPARISON package. This handy-dandy little package can be
used to automate the comparison of the data between two objects (a lot faster than
we can), and even converge (fix and synchronize) the data. The object itself must be
table-based. Meaning, the object stores data in a record format, such as a table type,
an index type, or a materialized view type.

Comparing data
You first must define what is to be compared; the schema and object, the dblink
to the remote object (the object is assumed to be in the local database). You use
the CREATE_COMPARISON procedure to do this. This procedure also allows you to
compare objects that may be in a different schema or have a different name at the
remote site, set a limit on when to stop comparing, replace null values with a specific
value, just determine how many rows do not match, or show actual rows that do not
match, to name a few.

Once you have created the "Comparison", use the DBMS_COMPARISON.COMPARE
function to compare a shared object between two databases.

The function returns a boolean, but also has an out parameter (scan_info) that is
of the COMPARISON_TYPE record type of which the SCAN_ID value can then be used
to find scan results in the following views.

DBA/USER_COMPARISON_SCAN

DBA/USER _COMPARISON_SCAN_VALUES

DBA/USER _COMPARISON_ROW_DIF

Each execution of the COMPARE function will generate a new SCAN_ID for
the scan_info.

The COMPARISON_TYPE record has the following attributes:

scan_id(number): The ID of the scan
loc_rows_merged(number): The number of rows in the local database object
that differ from matching rows in the remote database object

•

•

•

•

•

Dealing with the Ever Constant Tides of Change

[300]

rmt_rows_merged(number): The number of rows in the remote database
object that differ from matching rows in the local database object
loc_rows_deleted(number): The number of rows found in the remote
database object not found in the local database object
rmt_rows_deleted(number): The number of rows found in the local
database object not found in the remote database object

The function returns TRUE is no differences are found, it returns FALSE if differences
are found.

Once you determine if and what row differences there are, you can use the
DBMS_COMPARISON.CONVERGE procedure to either make the remote site look
like the local site, or the local site look like the remote site. This is specified via
the CONVERGE_OPTIONS parameter. The converge option choices are either
CMP_CONVERGE_LOCAL_WINS or CMP_CONVERGE_REMOTE_WINS.

Note: The option is all inclusive. It is an all or nothing, either/or. There is
no "this one from the local and that one from the remote". If you need this
level of granularity for a converge, you can run the compare, and then
create a procedure to loop through the records in the DBA_COMPARISON_
ROW_DIF view and handle each record separately as needed.

Once you have completed your compare and converge operations, you can recheck
the compare (this only rechecks the differing rows for the identified compare
scan_id), purge the scan information from the comparison views, and drop the
compare definition as you wish.

For more information on using DBMS_COMPARISON please refer
to the Comparing and Converging Data chapter in the Oracle Streams
Replication Administrators' Guide, and the Oracle Database PL/SQL
Packages and Types Reference.

Oracle HealthCheck
For each major release, Oracle provides a Streams HealthCheck script that you can
download from Oracle Metalink. This script runs at a SQLPlus prompt, connected as
a SYSDBA and queries various Streams views and tables to generate a compressive
report detailing the Streams configuration in the instance and the health of the
configuration. This script is exceedingly useful to Oracle Support if you require their
assistance to resolve issues. To access these scripts, log on to Metalink and search on
Streams Health Check Scripts.

•

•

•

Chapter 8

[301]

Custom QuickCheck
If you just wish to run a quick check on your Streams processes the following script
provides a basic report for all sites designated in the script. The script uses union all
queries to pull information from multiple dblinked sites into the summary report.
Of course the expectation here, is that you run the script from a database that has the
dblinks to the sites you wish to monitor. To use the script, edit the union queries to
include a select from each database link you wish to monitor (our example shows
3 sites). If you are handy with PL/SQL, you can even auto generate this script by
creating a procedure that loops through the Stream Administrators database links
and "builds" the union queries for each link. A quick hint if you do not already know.
You can mimic a loopback database link on the site that you are running the script on
by using the global_name of the local database as the dblink name. This causes the
database to "connect" to itself and lets us standardize the query segment.

The script does the following:

Shows the status of all the Capture Processes at all the specified database link
sites, including the last SCN captured
Shows the status of all the Apply Processes at all the specified database link
sites, including the Last SCN applied, and the Last SCN dequeued

In most cases the last SCN applied and the last scn dequeued
will be the same unless there is some lag time where the
Apply process is still applying the last dequeued SCN.
You can compare your last applied SCN at the destination
sites with the last captured SCN at the source site to quickly
determine if your Streams is working and keeping up. You
should see all values increment as LCR activity flows through
the Streamed environment.

Show any/all Erred transactions in DBA_APPLY_ERROR at the destination site
Shows the status of all the Propagation Processes at all the specified database
link sites inlcluding the last acknowledged SCN from the associated
Apply process

Special note here: In the Oracle documentation the ACK_SCN
is described as being the last "dequeued" SCN acknowledged
by the Apply process. If the Apply queue is a buffered queue,
then "dequeue" means both dequeued and successfully
processed. This because if the buffered apply queue is flushed
from memory, it needs to be reloaded from the source
Capture process. To avoid potential event/LCR loss, the
Apply process must not acknowledge the SCN until it has
completed processing it.

•

•

°

°

•
•

°

Dealing with the Ever Constant Tides of Change

[302]

We like to call this script check_rep_status.sql. It should be run as the stream
admin user from SQLPlus and it goes like this:

--CHECK_REP_STATUS.sql
set echo off
set serveroutput on
set pagesize 150
set linesize 100

column capture_site format a45
column apply_site format a45
column propagation_site format a45
column error_message format a45

alter session set nls_date_format='DD-MON-YY HH24:MI:SS';
exec dbms_output.put_line('**********************************');
exec dbms_output.put_line('System Capture Progress');
exec dbms_output.put_line('**********************************');
select c.capture_site, c.capture_queue, c.last_captured_scn
from
(select source_database capture_site, queue_name capture_queue,
last_enqueued_scn last_captured_scn
from dba_capture@STRM1
union all
select source_database, queue_name, last_enqueued_scn
from dba_capture@STRM2
union all
select source_database, queue_name, last_enqueued_scn
from dba_capture@STRM3
) c
order by c.capture_site;

exec dbms_output.put_line('**********************************');
exec dbms_output.put_line('System Apply Progress');
exec dbms_output.put_line('**********************************');
select a.apply_site, a.apply_name, a.OLDEST_SCN_NUM, a.last_apply_scn
from (
select (select global_name from global_name@STRM1) apply_site,
apply_name, OLDEST_SCN_NUM ,DEQUEUED_MESSAGE_NUMBER last_apply_scn
from v$streams_apply_reader@STRM1
union all
select (select global_name from global_name@STRM2) db_name,
apply_name, OLDEST_SCN_NUM, DEQUEUED_MESSAGE_NUMBER
from v$streams_apply_reader@STRM2
union all
select (select global_name from global_name@STRM3) db_name,
apply_name, OLDEST_SCN_NUM, DEQUEUED_MESSAGE_NUMBER

Chapter 8

[303]

from v$streams_apply_reader@STRM3
) a
order by a.apply_name, a.apply_site;

exec dbms_output.put_line('**********************************');
exec dbms_output.put_line('Apply Progress Errors');
exec dbms_output.put_line('**********************************');

select c.apply_site, c.apply_name, c.source_commit_scn,
c.message_number, c.error_number, c.error_message,
c.error_creation_time
from (
select (select global_name from global_name@STRM1) apply_site,
apply_name, source_commit_scn, message_number, error_number,

error_message, error_creation_time from dba_apply_error@STRM1
union all
select (select global_name from global_name@STRM2) apply_site,
apply_name, source_commit_scn, message_number, error_number,

error_message, error_creation_time from dba_apply_error@STRM2
union all
select (select global_name from global_name@STRM3) apply_site,
apply_name, source_commit_scn, message_number, error_number,

error_message, error_creation_time from dba_apply_error@STRM3
) c
order by c.apply_site, c.apply_name;

exec dbms_output.put_line('**********************************');
exec dbms_output.put_line('System Propagation status');
exec dbms_output.put_line('**********************************');
select p.propagation_site, p.propagation_name, p.aked_scn
acknowledged_scn, p.status, p.error_message, p.error_date
from (select (select global_name from global_name@STRM1)
propagation_site, propagation_name, acked_scn, status,
error_message, error_date
from dba_propagation@STRM1
union all
select (select global_name from global_name@STRM2)
db_name,propagation_name, acked_scn, status, error_message, error_date
from dba_propagation@STRM2
union all
select (select global_name from global_name@STRM3) db_name,
propagation_name, acked_scn, status, error_message, error_date
from dba_propagation@STRM3
) p;
/

Dealing with the Ever Constant Tides of Change

[304]

Extract LCRs.
While the UI in Enterprise Manager DB Console/Grid Control Streams Apply
Error drill-down into the LCR values is the next best thing since sliced bread, there
may be times when you only have command line access available to you, or you
wish to extract an LCR to a spool file for analysis. Oracle supplies scripts (found in
"Displaying Detailed Information about Apply Errors" section, in the Monitoring
Oracle Streams Apply Processes chapter in Oracle Streams Concepts and Administration
Guide 11g) to help you "unpack" an LCR associated with an erred transaction for
analysis. We have provided a PL/SQL procedure below to create these scripts for
you as well as added one or two enhancements (like the ability to print a specific
erred transaction). You will need to make sure the schema used to build the scripts
has explicit privileges on the necessary objects and procedures/functions referenced
in the scripts (you'll quickly find out which ones you need the first time you execute
the scripts). As you become familiar with how these scripts work, you can adjust
the code to format the output and expand the functionality as you wish. As with
the quick check scripts, it is recommended that you create these in the stream
admin schema.

--LCR_EXTRACT.sql
SET heading OFF
--SET feedback OFF
--SET echo OFF
--SET verify OFF
SET pagesize 0
SET linesize 10000
SET serveroutput on
set echo ON
set feedback ON

exec dbms_output.put_line('create print_any');
-- ***
-- Description: Print the contents of the sys.anydata payload
--
-- Input Parameters: Data, sys.anydata
--
-- Output/Returned Parameters: NONE
--
-- Error Conditions Raised: NONE
--
-- Notes: This procudure is call by:
-- print_lcr
-- SET SERVEROUTPUT ON before calling the procedure
--

Chapter 8

[305]

-- ***
create or replace PROCEDURE print_any (DATA IN SYS.ANYDATA)
IS
 tn VARCHAR2 (61);
 str VARCHAR2 (4000);
 chr1 CHAR (255);
 num NUMBER;
 dat DATE;
 rw RAW (4000);
 res NUMBER;
BEGIN
 IF DATA IS NULL
 THEN
 dbms_output.put_line ('NULL value');
 RETURN;
 END IF;
 tn := DATA.gettypename ();

 IF tn = 'SYS.VARCHAR2'
 THEN
 res := DATA.getvarchar2 (str);
 dbms_output.put_line (str);
 ELSIF tn = 'SYS.CHAR'
 THEN
 res := DATA.getchar (chr1);
 dbms_output.put_line (chr1);
 ELSIF tn = 'SYS.VARCHAR'
 THEN
 res := DATA.getvarchar (chr1);
 dbms_output.put_line (chr1);
 ELSIF tn = 'SYS.NUMBER'
 THEN
 res := DATA.getnumber (num);
 dbms_output.put_line (num);
 ELSIF tn = 'SYS.DATE'
 THEN
 res := DATA.getdate (dat);
 dbms_output.put_line (dat);
 ELSIF tn = 'SYS.RAW'
 THEN
 res := DATA.getraw (rw);
 dbms_output.put_line (RAWTOHEX (rw));
 ELSE
 dbms_output.put_line ('typename is ' || tn);
 END IF;
END print_any;

Dealing with the Ever Constant Tides of Change

[306]

/
show errors

exec dbms_output.put_line('create print_lcr');
-- ***
-- Description: Print the contents of the sys.anydata payload
--
-- Input Parameters: lcr payload as sys.anydata
--
-- Output/Returned Parameters: NONE
--
-- Error Conditions Raised: NONE
--
-- Notes: This procudure is call by:
-- print_errors
-- print_transaction
-- Set serveroutput on before running this procedure
--
-- ***
create or replace PROCEDURE print_lcr (lcr IN SYS.ANYDATA)
IS
 typenm VARCHAR2 (61);
 ddllcr SYS.lcr$_ddl_record;
 proclcr SYS.lcr$_procedure_record;
 rowlcr SYS.lcr$_row_record;
 res NUMBER;
 newlist SYS.lcr$_row_list;
 oldlist SYS.lcr$_row_list;
 ddl_text CLOB;
BEGIN
 typenm := lcr.gettypename ();
 dbms_output.put_line ('type name: ' || typenm);
 IF (typenm = 'SYS.LCR$_DDL_RECORD')
 THEN
 res := lcr.getobject (ddllcr);
 dbms_output.put_line ('source database: ' ||
 ddllcr.get_source_database_name);
 dbms_output.put_line ('owner: ' || ddllcr.get_object_owner);
 dbms_output.put_line ('object: ' || ddllcr.get_object_name);
 dbms_output.put_line ('is tag null: ' || ddllcr.is_null_tag);
 DBMS_LOB.createtemporary (ddl_text, TRUE);
 ddllcr.get_ddl_text (ddl_text);
 dbms_output.put_line ('ddl: ' || ddl_text);
 DBMS_LOB.freetemporary (ddl_text);

Chapter 8

[307]

 ELSIF (typenm = 'SYS.LCR$_ROW_RECORD')
 THEN
 res := lcr.getobject (rowlcr);
 dbms_output.put_line ('source database: ' ||
 rowlcr.get_source_database_name);
 dbms_output.put_line ('owner: ' || rowlcr.get_object_owner);
 dbms_output.put_line ('object: ' || rowlcr.get_object_name);

 dbms_output.put_line ('is tag null: ' || rowlcr.is_null_tag);

 dbms_output.put_line ('command_type: ' ||
 rowlcr.get_command_type);
 oldlist := rowlcr.get_values ('OLD');
 FOR i IN 1 .. oldlist.COUNT
 LOOP
 IF oldlist (i) IS NOT NULL
 THEN
 dbms_output.put_line ('old(' || i || '): ' ||
 oldlist (i).column_name);
 print_any (oldlist (i).DATA);
 END IF;
 END LOOP;
 newlist := rowlcr.get_values ('NEW');
 FOR i IN 1 .. newlist.COUNT
 LOOP
 IF newlist (i) IS NOT NULL
 THEN
 dbms_output.put_line ('new(' || i || '): ' ||
 newlist (i).column_name);
 print_any (newlist (i).DATA);
 END IF;
 END LOOP;
 ELSE
 dbms_output.put_line ('Non-LCR Message with type ' || typenm);
 END IF;
END print_lcr;
/
show error

exec dbms_output.put_line('create print_errors');
-- ***
-- Description: Print the contents of the DBA_APPLY_ERROR queue
--
-- Input Parameters: NONE

Dealing with the Ever Constant Tides of Change

[308]

--
-- Output/Returned Parameters: NONE
--
-- Error Conditions Raised: NONE
--
-- Notes: None
--
-- ***

create or replace PROCEDURE print_errors
IS
 CURSOR c
 IS
 SELECT local_transaction_id, source_database, message_count,
 error_number, error_message
 FROM dba_apply_error
 ORDER BY source_database, source_commit_scn;
 i NUMBER;
 txnid VARCHAR2 (30);
 sourcedb VARCHAR2 (128);
 msgcnt NUMBER;
 errnum NUMBER := 0;
 errno NUMBER;
 errmsg VARCHAR2 (500);
 lcr SYS.ANYDATA;
 r NUMBER;
BEGIN
 FOR r IN c
 LOOP
 errnum := errnum + 1;
 msgcnt := r.message_count;
 txnid := r.local_transaction_id;
 sourcedb := r.source_database;
 errmsg := r.error_message;
 errno := r.error_number;
 dbms_output.put_line ('***************************************');
 dbms_output.put_line ('----- ERROR #; || errnum');
 dbms_output.put_line ('----- Local Transaction ID: ' || txnid);
 dbms_output.put_line ('----- Source Database: ' || sourcedb);
 dbms_output.put_line ('----Error Number: ' || errno);
 dbms_output.put_line ('----Message Text: ' || errmsg);
 FOR i IN 1 .. msgcnt
 LOOP
 dbms_output.put_line ('--message: ' || i);

Chapter 8

[309]

 lcr := DBMS_APPLY_ADM.get_error_message (i, txnid);
 print_lcr (lcr);
 END LOOP;
 END LOOP;
END print_errors;
/
show error

exec dbms_output.put_line('create print_error_id');
-- ***
-- Description: Print error infomation for a specific transaction id
-- in DBA_APPLY_ERROR
--
-- Input Parameters: Ltran_id: the local transaction Id of
-- the erred transaction
--
-- Output/Returned Parameters: NONE
--
-- Error Conditions Raised: NONE
--
-- Notes: None
--
-- ***
create or replace PROCEDURE print_error_id (ltran_id in varchar2)
IS
 CURSOR c
 IS
 SELECT local_transaction_id, source_database, message_count,
 error_number, error_message
 FROM dba_apply_error
 WHERE local_transaction_id = ltran_id
 ORDER BY source_database, source_commit_scn;
 i NUMBER;
 txnid VARCHAR2 (30);
 sourcedb VARCHAR2 (128);
 msgcnt NUMBER;
 errnum NUMBER := 0;
 errno NUMBER;
 errmsg VARCHAR2 (500);
 lcr SYS.ANYDATA;
 r NUMBER;
BEGIN
 FOR r IN c
 LOOP

Dealing with the Ever Constant Tides of Change

[310]

 errnum := errnum + 1;
 msgcnt := r.message_count;
 txnid := r.local_transaction_id;
 sourcedb := r.source_database;
 errmsg := r.error_message;
 errno := r.error_number;
 dbms_output.put_line ('**');
 dbms_output.put_line ('----- ERROR #; || errnum');
 dbms_output.put_line ('----- Local Transaction ID: ' || txnid);
 dbms_output.put_line ('----- Source Database: ' || sourcedb);
 dbms_output.put_line ('----Error Number: ' || errno);
 dbms_output.put_line ('----Message Text: ' || errmsg);
 FOR i IN 1 .. msgcnt
 LOOP
 dbms_output.put_line ('--message: ' || i);
 lcr := DBMS_APPLY_ADM.get_error_message (i, txnid);
 print_lcr (lcr);
 END LOOP;
 END LOOP;
END print_error_id;
/
show error

exec dbms_output.put_line('create print_transaction');
-- ***
-- Description: Print the lcr transaction metadata for the local
-- transaction id passed in
-- Input Parameters: Ltxnid local transaction ID of the erred
-- transaction
--
-- Output/Returned Parameters: NONE
--
-- Error Conditions Raised: NONE
--
-- Notes: None
--
-- ***
create or replace PROCEDURE print_transaction (
 ltxnid IN VARCHAR2)
IS
 i NUMBER;
 txnid VARCHAR2 (30);
 sourcedb VARCHAR2 (128);
 msgcnt NUMBER;

Chapter 8

[311]

 errno NUMBER;
 errmsg VARCHAR2 (128);
 lcr SYS.ANYDATA;
BEGIN
 SELECT local_transaction_id, source_database, message_count,
 error_number, error_message
 INTO txnid, sourcedb, msgcnt, errno, errmsg
 FROM dba_apply_error
 WHERE local_transaction_id = ltxnid;
 dbms_output.put_line ('----- Local Transaction ID: ' || txnid);
 dbms_output.put_line ('----- Source Database: ' || sourcedb);
 dbms_output.put_line ('----Error Number: ' || errno);
 dbms_output.put_line ('----Message Text: ' || errmsg);
 FOR i IN 1 .. msgcnt
 LOOP
 dbms_output.put_line ('--message: ' || i);
 --gets the LCR
 lcr := DBMS_APPLY_ADM.get_error_message (i, txnid);
 print_lcr (lcr);
 END LOOP;
END print_transaction;
/
show error

spool off
/

Tricks and tips
In this section we offer some examples of how to "get around" a couple of
troublesome situations. While we have been offering advice and best practice
recommendations throughout this book, this section is dedicated to out-of-the-
mainstream techniques. As this publication matures, we hope to expand this section
to include tricks and tips suggested by our readers. We would love to see this section
grow into its own chapter!

Dealing with the Ever Constant Tides of Change

[312]

Keep propagation going on an unstable network
If your Propagation is plagued by constant network disconnection or interruption
causing the process to disable or abort throughout the day, you can automate a job
to check the status of the Propagation process and attempt to restart it if it finds it
stopped. The following script does this on a 15 minute interval. It also creates an
audit table that the job populates when it runs, to allow you to review the down
history of the Propagation and associated errors.

--AUTOFIX_PROP.sql

set serveroutput on
spool c:\create_autofix_prop.txt
exec dbms_output.put_line('create table prop audit');
--*********************************

create table strmadmin.propagation_audit (
PROPAGATION_NAME VARCHAR2(30)
,SOURCE_QUEUE_NAME VARCHAR2(30)
,DESTINATION_QUEUE_NAME VARCHAR2(30)
,DESTINATION_DBLINK VARCHAR2(128)
,STATUS VARCHAR2(8)
,ERROR_MESSAGE VARCHAR2(4000)
,ERROR_DATE DATE
);
exec dbms_output.put_line('create ckprop proc');
-- ***
-- Description: Query the status for all propagation jobs
-- scheduled in dba_propagation.
-- Insert a record of the status for each job into
-- the propagation_audit table.
-- If the job is disabled, attempt to enable it
-- If an error occurs on enable attempt it is logged
-- in the propagation_audit table.
--
-- Input Parameters: None
--
-- Output/Returned Parameters: NONE
--
-- Error Conditions Raised: NONE. Errors are recorded in
-- propagation_audit table.
--
-- Notes: This procedure is called by a scheduled
-- job that runs every 15 mins
--

Chapter 8

[313]

-- Author: A. McKinnell
-- ********************************
create or replace procedure strmadmin.ckprop_enable
as
errnum number;
errmsg varchar2(4000);
cursor prop_status is select propagation_name, destination_dblink,
 status, source_queue_name,
 destination_queue_name,
 error_message, error_date
 from dba_propagation
 where status != 'ENABLED';

begin

for rec in prop_status loop
 insert into propagation_audit
 values (rec.propagation_name, rec.source_queue_name,
 rec.destination_queue_name, rec.destination_dblink,
 rec.status, rec.error_message, rec.error_date);
 commit;

 begin
 dbms_aqadm.enable_propagation_schedule(rec.source_queue_name,
rec.destination_dblink);
 exception
 when others then
 errnum := SQLCODE;
 errmsg := SQLERRM;
 insert into propagation_audit
 values ('CKPROP_ENABLE', rec.source_queue_name,
 're-enable propagation for',
 rec.destination_dblink,
 'ERROR', errnum ||': ' ||errmsg, sysdate);
 commit;
 end;
 end loop;

exception
 when others then
 errnum := SQLCODE;
 errmsg := SQLERRM;
 insert into propagation_audit
 values ('CKPROP_ENABLE', 'Exception handler', null, null,

Dealing with the Ever Constant Tides of Change

[314]

 'ERROR', errnum ||': ' ||errmsg, sysdate);
 commit;

end ckprop_enable;
/
show error

--Schedule a job to run every 15 mins to re-enable any disabled
 propagation.

exec dbms_output.put_line('schedule chk prop job');
exec DBMS_SCHEDULER.CREATE_JOB (-
 job_name => 'propagation_check', -
 job_type => 'STORED_PROCEDURE', -
 job_action => 'ckprop_enable', -
 number_of_arguments => 0, -
 start_date =>sysdate, -
 repeat_interval => 'FREQ=MINUTELY;INTERVAL=15', -
 end_date => null, -
 enabled => TRUE, -
 auto_drop=>FALSE, -
 comments => 'This job kicks off every 15 minutes and checks
dba_propagation for any disabled propagation schedules and attempts
to re-enable. Audits of this job are captured in table strmadmin.
propagation_audit');
spool off
/

How to change a Streams process Rule
Based on what we reviewed in Chapter 6 on Rules, we can modify a rule condition
directly. Use this power with caution. Changes made via this method may not be
reflected in existing rule metadata. If you make a change, document it to avoid
confusion down the road.

An Example: Enterprise Manager Streams Creation Wizard Created Process with
INCLUDE_TAGGED_LCR = TRUE, but you want it to be FALSE.

As mentioned earlier, if you use the EM Streams Setup wizard to configure your
Streams, be aware that it graciously sets all process INCLUDE_TAGGED_LCR to TRUE.

select streams_name, streams_type, include_tagged_lcr include_tag

 from dba_streams_rules;

Chapter 8

[315]

STREAMS_NAME STREAMS_TYPE INCLUDE_TAGGED_LCR

------------------------------ ------------ ------------------

HR_APPLY APPLY YES

HR_APPLY APPLY YES

HR_PROPAGATION PROPAGATION YES

HR_PROPAGATION PROPAGATION YES

HR_PROPAGATION PROPAGATION YES

HR_PROPAGATION PROPAGATION YES

HR_CAPTURE CAPTURE YES

HR_CAPTURE CAPTURE YES

8 rows selected.

To change the behavior without dropping the Capture process and recreating
it manually with the DBMS_STREAMS_ADM.ADD_SCHEMA_RULES setting INCLUDE_
TAGGED_LCR => FALSE, you can alter the existing Rule for the capture.

Using SQLPlus:

First determine the Rule name and condition text for the Capture Rule.

set long 4000

select streams_type, streams_name, rule_owner, rule_name, rule_condition
from dba_streams_rules where streams_type = 'CAPTURE'
and streams_name = 'HR_CAPTURE';

STREAMS_TYPE STREAMS_NAME RULE_OWNER
------------ ---------------------------- ------------------------------
RULE_NAME

RULE_CONDITION
--
CAPTURE HR_CAPTURE STRM_ADMIN
HR19
((((:ddl.get_object_owner() = 'HR' or :ddl.get_base_table_owner() = 'HR')
and :ddl.get_source_database_name() = 'STRM1')) and
(:ddl.get_compatible() <= dbms_streams.compatible_11_1))

CAPTURE HR_CAPTURE STRM_ADMIN
HR18
((((:dml.get_object_owner() = 'HR') and :dml.get_source_database_name()�
= 'STRM1 POSITIVE SCHEMA')) and (:dml.get_compatible() <=
dbms_streams.compatible_11_1))

Dealing with the Ever Constant Tides of Change

[316]

You can also find the condition in the dba_rules table, as shown:

select rule_name, rule_condition from dba_rules where rule_name = 'HR18';

RULE_NAME

RULE_CONDITION

--

HR18

((((:dml.get_object_owner() = 'HR') and :dml.get_source_database_name()

 = 'STRM1 POSITIVE SCHEMA')) and (:dml.get_compatible() <= dbms_streams.
compatible_11_1))

In our case we are only going to change the DML Rule. The Rule name is HR18. We
copy and edit the text to include an evaluation for a null tag (the equivalent of setting
INCLUDE_TAGGED_LCR = FALSE when adding Rules via DBMS_STREAMS_ADM).

((((:dml.get_object_owner() = 'HR') and :dml.is_null_tag() = 'Y' and :
dml.get_source_database_name() = 'STRM1 POSITIVE SCHEMA')) and (:dml.get_
compatible() <= dbms_streams.compatible_11_1))

Next, alter the Rule to use the new condition (make sure to escape the single quotes
in the condition string).

The syntax is dbms_rule_adm.alter_rule('<rulename>','<condition>');

begin
dbms_rule_adm.alter_rule('HR18',
'((((:dml.get_object_owner() = ''HR'') ' ||
'and :dml.is_null_tag() = ''Y'' ' ||
'and :dml.get_source_database_name() = ''STRM1 POSITIVE SCHEMA'')) ' ||
'and (:dml.get_compatible() <= dbms_streams.compatible_11_1))');
end;
/

select streams_name, rule_name, rule_condition
from dba_streams_rules
where rule_name = 'HR18';

STREAMS_NAME RULE_NAME
------------------------------ ------------------------------
RULE_CONDITION
--
HR_CAPTURE HR18
((((:dml.get_object_owner() = 'HR') and :dml.is_null_tag() = 'Y' and

Chapter 8

[317]

:dml.get_source_database_name()
 = 'STRM1 POSITIVE SCHEMA')) and (:dml.get_compatible() <= dbms_streams.
compatible_11_1))

One thing to be aware of when using this method is that changing the Rule condition
itself to exclude tagged LCR's does not change the INCLUDE_TAGGED_LCR value.
That is ok, it is the rule_condition that is used for the actual evaluation, not the
INCLUDE_TAGGED_LCR value. You will also notice the columns original_rule_
condition and same_rule_condition. These show the original Rule condition for
the Streams name and whether it is the same as the current Rule condition (YES/NO)
respectively. If the change does not work as expected you can use the original_
rule value to quickly fall back to the original condition. In our example we see the
original condition that we started with and NO that indicates the Rule condition for
the capture has been changed.

select streams_name, rule_name,include_tagged_lcr,
original_rule_condition, same_rule_condition
from dba_streams_rules
where rule_name = 'HR18';

STREAMS_NAME RULE_NAME INCLUDE_TAGGED_LCR
-------------------- ----------- --------------------
ORIGINAL_RULE_CONDITION

SAME_RULE_CONDITION

HR_CAPTURE HR18 YES
((((:dml.get_object_owner() = 'HR') and
:dml.get_source_database_name() = 'STRM1')) and
(:dml.get_compatible() <= dbms_streams.compatible_11_1))
NO

While the above method is directed at changing the Rule condition to not capture
tagged LCRs, the same method can be used to add, change, or delete any condition
in the Rule.

Dealing with the Ever Constant Tides of Change

[318]

Summary
This chapter converges techniques we have covered throughout the book and
demonstrates how they can be utilized to introduce known changes to your existing
environment, as well as address ramifications of unknown changes.

We used the Streams Site Matrix to help us break down the Streamed environment
architecture into manageable pieces and focus on how a change affects each piece.
We saw that the same change requires different tasks at each piece, and may even
require changes that may not be initially apparent.

We also dissected the Streams flow and identified failure points. We analyzed
common causes for failures at these points and provided some suggested approaches
to mitigating those failures.

We presented a brief discussion on tools available to help you monitor, and
troubleshoot your environment, as well as a couple of Tricks and Tips on how
 to address a couple of common, yet potentially annoying problems.

Appendix and Glossary
Both the authors have put in many hours creating and rewriting this book. But, there
are areas of Oracle Streams that fall outside the previous chapter. This chapter is
the catch-all chapter dealing with subjects that did not quite fit in the previous
chapters. Subjects that we wanted to mention to provoke thought are along the
lines of the following:

Alternative methods of monitoring Streams
Streams and Oracle RAC
Oracle GoldenGate

Read on and be creative. Use what you have learned in this book to come up with
solutions to problems. Know what Streams should be used for and when Streams
is NOT a good fit.

Oracle Streams Commander
Spend some time researching Oracle Streams on OTN or Google Oracle Streams
and you will eventually come across Oracle Streams Commander (OSC). OSC
comes out of Oracle Deutschland GmbH. It is a standalone product that is separate
from Grid Control. Personally, I think it is a solution that probably came out of the
Oracle Deutschland GmbH Consulting group. OSC is a product that is constantly
maturing and seems to be separate from the main development efforts of
Oracle Headquarters.

As a tool, OSC is something I do not use because it is an Oracle Consulting solution
and NOT an official Oracle product. But, you may like it for its ease of use and simple
'point and click' abilities. As the OSC matures more, I can envision it being an add-on
"pack" to Grid Control. For more information on OSC, please visit the website
http://www.oracle.com/global/de/community/platform/osc/index.html.

•

•

•

Appendix and Glossary

[320]

Streams and Oracle RAC
Oracle Real Application Cluster (RAC) is one of the components used in Oracle
Maximum Available Architecture (MAA). As such, we are seeing more Oracle
RAC configurations being deployed more often to support High Availability
requirements. Oracle Streams does work in an Oracle RAC configuration.

Pre-planning must be done in order to fully utilize both Oracle Streams and Oracle
RAC. There must be careful considerations related to the design, and implementation
of: Capture, Queues, Propagation, and Apply processes. Oracle RAC must be
configured so that all archive logs can be accessed by Capture process. As Capture
process will follow the Queue if an instance goes down, the configuration of Capture
and Queues should be planned accordingly.

The use of the procedure DBMS_AQADM.ALTER_QUEUE_TABLE is suggested to set up
primary_instance and secondary_instance. This will help when determining
where the Queue migrates, should an instance fail in a RAC environment. To
determine the instance number, use:

SELECT INST_ID, INSTANCE_NAME, HOST_NAME
FROM GV$INSTANCE;

DBMS_AQADM.ALTER_QUEUE_TABLE (
queue_table IN VARCHAR2,
comment IN VARCHAR2 DEFAULT NULL,
primary_instance IN BINARY_INTEGER DEFAULT NULL,
secondary_instance IN BINARY_INTEGER DEFAULT NULL);

Parameter Description
queue_table Name of a queue table to be created.
comment Modifies the user-specified description of the queue table. This

user comment is added to the queue catalog. The default value
is NULL which means that the value will not be changed.

primary_instance This is the primary owner of the queue table. Queue monitor
scheduling and propagation for the queues in the queue table
will be done in this instance. The default value is NULL, which
means that the current value will not be changed.

secondary_instance The queue table fails over to the secondary instance if the
primary instance is not available. The default value is NULL,
which means that the current value will not be changed.

Propagation needs to be configured to connect to the queue of the destination
instance using the proper database link. The database link should refer to the
tnsnames.ora entry that contain the Virtual IPs (VIPs).

Chapter 9

[321]

For instance, the entry below in tnsnames.ora is as follows:

db02.mycompany.com=
(description=
(address=(protocol=tcp)(host=node2-vip)(port=1521))
(address=(protocol=tcp)(host=node4-vip)(port=1521))
(connect_data=
(service_name=db02.mycompany.com)))

Then, building the database link:

create database link 'db02.mycompany.com' connect to <username>
identified by <password> using 'db02.mycompany.com';

For the Propagation, focus on the parameter destination_queue_name when
adding the Propagation rule. The destination_queue_name should point to the
queue name and database link mentioned previously.

The Apply process also follows the Queues, so careful creation of the
related Queue is a must. Once the Queue is created, adjustments using
DBMS_AQADM.ALTER_QUEUE_TABLE should be done.

Pulling it all together, we have the configuration as seen in the following figure:

Instance1 Instance2

streams

Instance3 Instance4

node1-vip node2-vipnode3-vip node4-vip

DBO1 DBO2

The following steps explain the configuration:

1.	 Database DB01 with Instance 1 and Instance 3.
2.	 Database DB02 with Instance 2 and Instance 4.
3.	 Capture, Queue, and Propagation is on Instance 1. Streaming to Queue, and

Apply Instance 2.

Appendix and Glossary

[322]

4.	 Use of DBMS_AQADM.ALTER_QUEUE_TABLE to configure Capture, Queue, and
Propagation to failover from Instance 1 to Instance 3. Queue and Apply to
failover from Instance 4 to Instance 4.

5.	 Configuration of Propagation to use database link db02.mycompany.com
which has the alias in tnsnames.ora as shown previously.

Oracle Support also provides the following as background to setting up Streams
and RAC:

In an RAC configuration, all Streams processes run from a single "owning"
instance. The owning instance is identified in the DBA_QUEUE_TABLES view
in the column OWNER_INSTANCE. If the instance that "owns" the queue goes
down, ownership is switched to one of the surviving instances. All Streams
processes automatically migrate and restart at the new "owning" instance.
Instance ownership can be explicitly set for individual queue tables.
Use the DBMS_AQADM.ALTER_QUEUE_TABLE procedure to specify the
primary_instance and secondary_instance ownership for a particular
queue table and its associated queues. The Streams processes will
automatically start on the owning instance of the queue. If both the primary
and secondary instance for a queue table containing a destination queue
become unavailable, then queue ownership is transferred automatically
to another instance in the cluster. In this case, if the primary or secondary
instance becomes available again, then ownership is transferred back to
one of them accordingly.
When a queue is created, it also creates a service for the queue, which
follows the queue. The NAME column in the DBA_SERVICES data dictionary
view contains the service name for a queue. You can also determine the
service_name for a particular queue from the NETWORK_NAME column of
DBA_QUEUES. Use GV$ACTIVE_SERVICES to confirm that the queue service
is available.
A queue-to-queue propagation always has its own exclusive propagation
job to propagate messages from the source queue to the destination queue.
Because each propagation job has its own propagation schedule, the
propagation schedule of each queue-to-queue propagation can be managed
separately. Even when multiple queue-to-queue propagations use the same
database link, you can enable, disable, or set the propagation schedule for
each queue-to-queue propagation separately.

•

•

•

•

Chapter 9

[323]

Oracle GoldenGate
Oracle has recently completed the acquisition of GoldenGate software during the
writing of this book. The acquisition brings an exciting and interesting time to Oracle's
line-up of Data Integration and Replication technology. Oracle Data Integration
(ODI) is currently positioned as "a fully unified solution for building, deploying, and
managing real-time, data-centric architectures in an SOA, BI, and data warehouse
environment." While Oracle GoldenGate (OGG) provides "real-time, log-based
change data capture, and delivery between heterogeneous systems."

Take note that both of these products are complementary to Oracle Streams.
For instance, ODI provides advance ETL/ELT abilities in real time across
heterogeneous environments. ODI essentially moves and transforms data
regardless of the database platform.

OGG brings a strong story related to supporting heterogeneous environments. OGG
brings XSTREAM to Oracle Streams. XSTREAM exposes APIs allowing for data
sharing between "other systems that include non-Oracle databases, non-RDBMS
Oracle products, filesystems, third-party software applications, and so on." OGG
and Streams will eventually merge into one product and take on the best of both
worlds. Exactly what comes from the merging of OGG and Streams is being worked
on by Oracle. At the time this book went to press the direction is Oracle Streams
will continue to be maintained. Emphasis and further development will be on
OGG. Whatever the final results are, the merging of OGG and Streams will be
a new and exciting product.

Glossary
* indicates Oracle Parameter. Please refer to Oracle® Database Reference 11g Release
2 (11.2) Part Number E10820-03 for further details.

Master-to-Slave/Single-Source A configuration of Oracle Streams where there is one
Source and one Target.

MEMORY_MAX_TARGET * Specifies the maximum value to which a DBA can set the
MEMORY_TARGET initialization parameter.

MEMORY_TARGET * Specifies the Oracle system-wide usable memory.
N-Way Replication Refer to Master-to-Master/Multi-Source.
OPEN_LINKS * Specifies the maximum number of concurrent open

connections to remote databases in one session.
Oracle Data Guard An Oracle product specifically for High Availablity. This

product handles failover in a gracious manner.

Appendix and Glossary

[324]

PROCESSES * Specifies the maximum number of operating system user
processes that can simultaneously connect to Oracle.

Propagation (Process) The Streams process that sends LCRs from Source to
Target across a Database Link.

QUEUE Staging area in both memory and/or tables that contain
messages and/or LCRs.

Replication As related to Streams, the sharing data across multiple
database.

Rule(s) Are used to determine how message and/or LCR are
handled.

SCN System Change Number.
SHARED_POOL_SIZE * Specifies (in bytes) the size of the shared pool.
Slave Site The Target site where LCRs are applied.
SPFILE The dynamic parameter file of the Oracle database.
STREAMS_POOL_SIZE *
Synchronous Processes that are blocking. With reference to Streams

there are Asynchronous actions related to configuring
LOG_ARCHIVE_DEST_N of Downstreams Capture.

Tag(s) An identifier that relates to a LCR. Tags can be evaluted
by Rules to determine how the LCR is to be handled.

TIMED_STATISTICS Oracle parameter that is recommended to be set to
TRUE. This allows for collection of time statistics.

Two phase commit A commit or rollback of a transaction. An all-commit or
all-rollback situation.

UNDO_RETENTION * Oracle parameter that specifies (in seconds) the low
threshold value of undo retention.

Unidirectional Related to Streams configuration, from a Master Site to
Slave Site.

WAN Wide Area Network.

Summary
This chapter addressed some of the loose ends that are found in all books. We took a
look at an Oracle Consulting tool from Oracle Deutschland GmbH, that being Oracle
Streams Commander (OSC). Although OSC is not an official Oracle product, you may
find it useful when working with Streams. Next, we went into some consideration
when combining Streams and RAC. We highly recommend pre-planning and
sketching out a diagram before actual configuration. The merging of OGG and
Streams will provide for some interesting times.

Index
Symbols
 XSTREAMS

about 56, 57
list 56

A
advanced queues

about 21, 22
buffered queues 21
persistent queues 21

affecting changes, Stream
database changes 265
processes, starting 264
processes, stopping 264
Streamed environment, expanding 266
Streamed environment, shrinking 276

AMM 52
AND_CONDITION

LCR subprograms, list 189
Apply process

about 36, 37
apply server 36
Apply views 38
coordinator process 36
reader server 36
SCN 45
trigger firing 37, 38

Automatic Memory Management. See
AMM

B
buffered queue 13, 21

C
Capture process

about 320
DDL, capturing 24
DDL, not supported 24
DML, capturing 23
Downstream Capture 26
Explicit Capture method 23
image 23
limitations 24
LogMiner process, using 22
reasons 24, 25
SCN 42
Synchronous Capture 27
Upstream Capture 26

capture process, failure points
designation 282
memory allocation 280
rule sets 282, 283
status 280, 281

CCA
about 39
residing, in different database 39
residing, in same database 40

Combined Capture and Apply. See CCA
comment parameter 320
COMPATIBLE parameter 88
conflict detection, LCR

about 50
controlling 51
key aspects 51

conflict resolution
configuring 168, 170

[326]

conflicts
avoiding, methods 155
delete conflict 154
foreign key conflict 155
unique conflict 155
update conflict 154

D
database changes

bulk loads, avoiding 266
key 265
precautions 266
structure changes 265

database configuration
about 87
COMPATIBLE parameter 88
GLOBAL_NAMES parameter 88
LOG_ARCHIVE_DEST_STATE_n

parameter 88
LOG_BUFFER parameter 88
logging feature 90
MEMORY_MAX_TARGET parameter 88
MEMORY_TARGET parameter 88
OPEN_LINKS parameter 88
parameters, initializing 88, 89
PROCESSES parameter 88
separate tablespaces, creating 92
SESSIONS parameter 89
SHARED_POOL_SIZE parameter 89
STREAMS_POOL_SIZE parameter 89
TIMED_STATISTICS parameter 89
UNDO_RETENTION parameter 89

data ownership
about 63
single-site ownership 63

data replication
asynchronous propagation 64
contents 60, 61
data, delivering 64
data, propagating 64
data changes, distributing 65
data changes, looking for 61, 62
need for 60
ownership 62
synchronous propagation 64
users, considerations 62

dblink 82
DBMS_AQADM.ALTER_QUEUE_TABLE

use 320
DBMS_DDL. SET_TRIGGER_FIRING_

PROPERTY 147
DBMS_STREAMS_ADM.MAINTAIN_*

features 150
recovering 150

DBMS_STREAMS_ADM.MAINTAIN_
CHANGE_TABLE procedure

about 54
configuring 56
tasks 54, 55

DBMS_STREAMS_ADM package
ADD_GLOBAL_PROPAGATION_RULES

Procedure 147
ADD_GLOBAL_RULES Procedure 148
ADD_SCHEMA_PROPAGATION_RULES

Procedure 148
ADD_SCHEMA_RULES Procedure 148
ADD_SUBSET_PROPAGATION_RULES

Procedure 148
ADD_SUBSET_RULES Procedure 149
ADD_TABLE_PROPAGATION_RULES

Procedure 149
ADD_TABLE_RULES Procedure 149
DBMS_STREAMS_ADM.MAINTAIN_*

150
MAINTAIN_GLOBAL Procedure 148
MAINTAIN_SCHEMAS Procedure 148
MAINTAIN_SIMPLE_TTS Procedure 149
MAINTAIN_TABLES Procedure 149

DBMS_STREAMS_ADVISOR_ADM
about 251, 252
mapping 253, 254

DBMS_XSTREAM_ADM package 57
declaration transformation, Rule Based

Transformation
about 210
combining, with UCRBT 216
DBA_STREAMS_TRANSFORMATION

view, looking 212
DBMS_STREAMS_ADM.ADD_COLUMN,

considerations 210-212
removing 213
rules, adding to 210

[327]

design consideration
factors 65
overview 59

design consideration, factors
administration costs 67
audit information 69
database platform compatibility 69
database security, trusted models 68
database security, untrusted models 68
flexibility 69
hardware resource requirement 66
network capabilities 65
potential queue growth 66
site availability 65
site location 65
third party application requirements 68
transaction size 66

divergent data, Enterprise manager tool
comparing 299, 300
converging 299
LCRs, extracting 304-311
Oracle HealthCheck 300
propagation process 312-314
quick check 301-303
Streams process Rule, modifying 314-317
tricks 311

DML/DDL Statement Commit logging,
failure points

Archive log mode 278
NOLOGGING option 278
successful commit 278

Downstream Capture. See DSC
DSC

about 218
assumptions 221
components 219
LOG_ARCHIVE_DEST_n parameter 220
online redo logs 221
redo log transport, setting up 222, 223
scenario 221
setting up 222-227
Source Production database 219
Streams, configuring 224, 226
Target Database 220
Worker database 219

E
EM

about 105, 106
Data Movement sub-tab 106
homepage 106
idle time-out 107
process statistics, viewing 123
Schedule Streams setup job 120, 121
setup options 108
Stream environment, managing 121, 122
Streams breadcrumb link 125
Streams Management page 121
View option 124

Enterprise Manager. See EM
Enterprise manager tool

command line package 298
command line scripts 298
divergent data, comparing 299
divergent data, converging 299
streams overview page 293-298

F
Failover

implementing 154
Oracle DataGuard tool 154

failure points
Capture enqueue 283
capture process 280
conflict detection 290
conflict resolution 290
database link, configuring 286
dequeue, applying 288
dequeue propagation 284, 285
DML/DDL Statement Commit logging 278
enqueue propagation 287
errors, applying 291
latency, applying 289
LogMiner 278
network connectivity 286, 287
propagation rules 285
rules, applying 289

fire flag 147

[328]

G
GET_COMMAND_TYPE function 189
GET_COMMIT_SCN function 189
GET_COMPATIBLE function 189
GET_EXTRA_ATTRIBUTE function 189
GET_OBJECT_NAME function 189
GET_OBJECT_OWNER function 189
GET_SCN function 189
GET_SOURCE_DATABASE_NAME

function 189
GET_SOURCE_TIME function 189
GET_TAG function 189
GET_TRANSACTION_ID function 189
GLOBAL_NAMES parameter 88
GoldenGate XSTREAMS. See XSTREAMS

H
Heterogeneous configuration

about 236
Apply process, configuring 236-238
Apply process, configuring for Non Oracle

database 239
data transferring, via Queue Messaging 239
Oracle to Non-Oracle communication,

steps 234
Heterogeneous Services (HS) 234

I
Index Organized Tables. See IOT
instantiation

about 28
Data Pump, using 29
levels 29
methods 29
SCN settings, factors 30, 31
steps 28
tools 98, 99

instantiation tools
DataPump, using 98
Instantiation SCN setup, manually 99-102

IOT 27

J
Java Messaging Service. See JMS

JMS 57

K
key aspects, conflict detection 51

L
LCR

about 19, 48
conflict detection 50, 51
data, extracting from 50
information, building 49, 50
types 52

ListARs.sql 253
ListBNs.sql 253
ListDBs.sql 253
ListParts.sql 253
ListPaths.sql 253
ListPerfFlows.sql 253
ListPerfParts.sql 253
ListPerfS2E.sql 253
LOCK TABLE command

using 254
LOG_ARCHIVE_DEST_STATE_n

parameter 88
LOG_BUFFER parameter 88
logging feature, database configuration

Archive logging 90
forced logging 91
supplemental logging 90
supplemental logging, activating 90, 91

Logical Change Record. See LCR
LogMiner, failure points

_LOG_PARALLELISM parameter 279
LOGMNR_MAX_PERSISTENT_SESSIONS

parameter 279
supplemental logging 278

M
MAA 320
Master-to-Slave/Single-Source 323
Maximum Available Architecture. See

MAA
MEMORY_MAX_TARGET parameter 88
MEMORY_TARGET parameter 88

[329]

multiple-source, topology configuration
about 15
bi-directional configuration 15
bi-directional Spokes-to-Hub 16
heterogeneous configuration 17, 19
Hybrid configuration 17
Master-to-Master configuration 15
N-way configuration 15
uni-directional Spokes-to-Hub 16

N
N-way replication

about 153
delete conflict 154
example 171
foreign key conflict 155
pre-planning 154
setup 156
unique conflict 155
update conflict 154

N-way replication, setup
about 156
preliminary steps 157-159
STRM1 Streams, setting up 159-163
STRM2 Streams, setting up 164-168
table 156

network connectivity
about 82
baseline, establishing 85
Oracle Net files, configuring 85
ping command 82-85
tracert command 82

O
ODI 323
OGG 323
OPEN_LINKS parameter 88
Oracle

built-in conflicts 155
OracleGoldenGate XSTREAMS 56

Oracle 11g
DBMS_STREAMS_ADM.MAINTAIN_

CHANGE_TABLE procedure 54
memory 52
storage architecture, Streams 52, 53

Oracle DataGuard tool 154
Oracle Data Integration. See ODI
Oracle Demo Schemas 102
Oracle GoldenGate. See OGG
Oracle Net files, network connectivity

configuring 85, 86
LISTENER.ORA 86
SQLNET.ORA 86
TNSNAMES.ORA 85

Oracle Streams Commander. See OSC
OSC 319

P
performance 53
ping command

using 85
PL/SQL package procedures

about 125
actions, performing 126
apply queue, creating 140, 141
caveats 137-139
DBMS_STREAMS_ADM.MAINTAIN_*

procedure , calling 126
destination database, starting 142
HR schema, instantiating 134-136
propagation rules for schema,

creating 131-133
single source environment,

working 144-146
source database, connecting 143, 144
Streams Administrator user, creating 128
strm_admin, connecting as 129

primary_instance parameter 320
PROCESSES 324
Propagate process

about 32
COMLINK 34
failure 35
Merge 35
queue-to-dblink configuration 32
queue-to-queue configuration 32
RULES, using 32
Secure Queue 33
Streams Split 35
success 35
working 33

[330]

Propagation Split and Merge
managing 230, 233

Q
queue_table parameter 320
QUEUE 324

R
RAC

about 320
setting up 322

Real Application Cluster. See RAC
Replication 324
Rule Based Transformation

about 209
combining, user and declarative transfor-

mation 216
declaration transformation 210
errors 217
errors, at Apply process 217
errors, at Capture process 217
errors, at Propagation process 217
processing 216
processing, at Apply process 217
processing, at Capture process 216
processing, at Propagation process 216
 User created rule-based-transformation

210
user created rule-based-transformation 213

rules
about 201
adding, to Rule Set 206
binding together 208
components 202
components, action text 204, 205
components, conditions 202
components, evaluation text 202, 204
concepts 218
creating 205
creating, steps 205
event context 207, 208
Rule Set 206

S
SCN

Apply process 45
archive redo logs 48
Capture process 42
check pointing options 47
Propagation process 45
SYNC-hronization 46

SCN, Apply process
IGNORE_SCN 45
Low-watermark SCN 46
MAXIMUM_SCN 45
OLDEST_SCN_NUM 46

SCN, Capture process
APPLIED_SCN 44
CAPTURED_SCN 44
FIRST_SCN 42
LAST_ENQUEUED_SCN 44
MAX_CHECKPOINT_SCN 45
MAXIMUM_SCN 44
REQUIRED_CHECKPOINT_SCN 43
SOURCE_RESETLOGS_SCN 44
START_SCN 43

Scripts_5_1_PSU.sql script
reviewing 158

secondary_instance parameter 320
separate tablespaces, database configuration

LogMine tablespace 92
Streams Administration tablespace 92

SESSIONS parameter 89
setup options, EM

about 108-110
Configure replication page 112
Create Streams Administrator

button 108, 111
DDL changes, replicating 114
directory objects 113
object, specifying 115-117
processes 112
review page 117, 119
Save Scripts button 117

SHARED_POOL_SIZE 324

[331]

single-source, topology configuration
directed network, Apply forwarding 13
directed network, Queue forwarding 13
directed network configuration 14
Hub-and-Spoke configuration 14
single database configuration 13
uni-directional configuration 14

single source configuration
EM 105
PL/SQL package procedures 125
replication levels, creating 147

Slave Site 324
SPFILE 324
Stream

advanced features 173
affecting changes 264
architecture 12
Automatic Propagation Split and

Merge 230
documentation plan 250
Downstream Capture 218
Heterogeneous configuration 234
implementing 154
mapping 249, 250
Oracle Demo Schema, using 102
queries 255, 256
Rules 201
Streams change tables 227
subsetting 177
Synchronous Capture 174
tags 184
versus Data Guard 70
XSTREAMS configuration 239

Stream, architecture
components 20
overview 12
replication process flow 19, 20
simultaneous replication 19
synchronous replication 19
topology configuration 12

Streamed environment, expanding
Master Site addition, example 267-273
table, adding to replicated schema 274, 275
time zones 274

Streamed environment, shrinking
schema, removing 276
site, removing 276
table, removing 276

STREAMS_POOL_SIZE parameter 89, 324
Streams change Tables

about 227
configuring, requirements 227
script, running 229

Streams site matrix
about 71
template 72

Streams site matrix template 76
about 72
information, listing 73
Single-Source design, defining 75
sub-section, adding 74
viewing 78

stream users
configuring 93
STRMADMIN user 93
trusted streams configuration 93
untrusted, versus trusted configuration 98
untrusted streams configuration 94

subsetting
about 177-184
ADD_SUBSET_RULE example,

describing 177, 178
ADD_SUBSET_RULES procedure 181
rule_condition, viewing 181, 182

Synchronous 324
Synchronous Capture

about 174
rules, adding 174-176

T
tags

about 184
AND_CONDITION parameter 188
Apply process creation, at Hub 196-198
Apply queues creation, at Hub 196-198
Capture and Apply queues, creating 193
capture queues creation, at Hub 191-193

[332]

Capture rule, creating 194, 195
default behaviour 185
evaluating, at replication process rule

level 187
INCLUDE_TAGGED_LCR parameter 187
INCLUSION_RULE parameter 187
LCR subprograms, list 189
propagation process creation, at

Hub 199, 200
using 189
value, setting 186, 187
working 185

TIMED_STATISTICS parameter 89
topology configuration

multiple-source 15
single-source 13

tracert command
using 84

Transparent Gateways (TG) 234
triggers 146
troubleshooting, Stream errors 277

Enterprise manager tool 293
failure points 277
tools 292

Two phase commit 324

U
UCBRT

about 213
creating, steps 213-215

UNDO_RETENTION parameter 89
untrusted streams configuration, stream

users
apply user 96
Capture user 95
database links, creating 97
database links creation, TNS Alias used 97
database links creation, TNS description

used 97

prilvileges 95
propagation user 96
Streams Administration user 94

User created Rule Based Transformations.
See UCRBT

UTL_SPADV
about 256
performance data collection, automating

258-260
UTL_SPADV.ALTER_MONITORING 257
UTL_SPADV.COLLECT_STATS 256
UTL_SPADV.IS_MONITORING 257
UTL_SPADV.SHOW_STATS 257
UTL_SPADV.START_MONITORING 257

V
Virtual Ips (VIPS) 320

W
WAN 324
Wide Area Network. See WAN

X
XSTREAMS

about 56
configuration information, providing 239,

240
servers 240

XSTREAMS, servers
database, configuring 240
XStream In 240
XStream In, configuring 245
XStream In configuration, steps 245, 246
XStream Out 240
XStream Out, configuring 241, 242
XStream Out, rules subsetting 243, 244
XStream Out configuration, steps 242, 243

Thank you for buying
Oracle 11g Streams
Implementers’ Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle 10g/11g Data and
Database Management Utilities
ISBN: 978-1-847196-28-6 Paperback: 432 pages

Master twelve must-use utilities to optimize the
efficiency, management, and performance of your
daily database tasks

1.	 Optimize time-consuming tasks efficiently
using the Oracle database utilities

2.	 Perform data loads on the fly and replace the
functionality of the old export and import
utilities using Data Pump or SQL*Loader

3.	 Boost database defenses with Oracle Wallet
Manager and Security

Mastering Oracle Scheduler in
Oracle 11g Databases
ISBN: 978-1-847195-98-2 Paperback: 240 pages

Schedule, manage, and execute jobs that automate
your business processes

1.	 Automate jobs from within the Oracle database
with the built-in Scheduler

2.	 Boost database performance by managing,
monitoring, and controlling jobs more
effectively

3.	 Contains easy-to-understand explanations,
simple examples, debugging tips, and real-life
scenarios

Please check www.PacktPub.com for information on our titles

Oracle SQL Developer 2.1
ISBN: 978-1-847196-26-2 Paperback: 460 pages

Install, configure, customize, and manage your SQL
Developer environment

1.	 Includes the latest features to enhance
productivity and simplify database
development

2.	 Covers reporting, testing, and debugging
concepts

3.	 Meet the new powerful Data Modeling tool
– Oracle SQL Developer Data Modeler

4.	 Detailed code examples and screenshots for
easy learning

Oracle Modernization Solutions
ISBN: 978-1-847194-64-0 Paperback: 432 pages

A practical guide to planning and implementing SOA
Integration and Re-architecting to an Oracle platform

1.	 Complete, practical guide to legacy
modernization using SOA Integration and
Re-architecture

2.	 Understand when and why to choose the
non-invasive SOA Integration approach to
reuse and integrate legacy components
quickly and safely

3.	 Understand when and why to choose
Re-architecture to reverse engineer legacy
components and preserve business knowledge
in a modern open and extensible architecture

Please check www.PacktPub.com for information on our titles

	Packt - Oracle 11g Streams Implementer's Guide (2010) (ATTiCA)
	Copyright
	Credits
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: All the Pieces: The Parts of an Oracle 11g Streams Environment
	Streams architecture overview
	Topology configurations
	Single source
	Multiple source

	Simultaneous versus Synchronous replication
	Oracle's Streams replication process flow
	Streams components

	About those Queues
	Capture process—what are we supposed to stream?
	Downstream Capture
	Synchronous Capture

	Instantiation
	What sets the instantiation SCN and when?

	Propagate process
	The Network: COMLINK
	Propagation success/failure
	Propagation Stream Split and Merge

	Apply process
	Trigger firing and Apply

	Combined Capture and Apply
	SCN Coordination—keeps it flowing smoothly
	The SCNs of Capture
	FIRST_SCN
	START_SCN
	REQUIRED_CHECKPOINT_SCN
	CAPTURED_SCN
	APPLIED_SCN
	MAXIMUM_SCN
	LAST_ENQUEUED_SCN
	SOURCE_RESETLOGS_SCN
	MAX_CHECKPOINT_SCN

	The SCNs of Propagation
	The SCNs of Apply
	IGNORE_SCN
	MAXIMUM_SCN
	OLDEST_SCN_NUM
	Low-watermark SCN

	SCN SYNC-hronization
	Capture checkpointing
	Archive Log availability

	LCRs—what they are and how they work
	Extracting data from an LCR
	Conflict detection and the LCR
	Controlling conflict detection

	Types of LCRs and how they get created

	Oracle 11g memory and storage architecture (basic) relating to Streams
	A word on performance
	Streams Change tables
	Oracle GoldenGate XSTREAMS
	Summary

	Chapter 2: Plot Your Course: Design Considerations
	Why?
	What?
	Where?
	Who and How?
	When and How?
	Other factors to consider
	Network capabilities
	Transaction sizes
	Potential queue growth
	Additional hardware resource requirements
	Administration and maintenance costs
	Third party application requirements
	Security
	Change auditing
	Platform and version compatibility
	KISS
	Design aid: Streams site matrix
	The Matrix template

	Summary

	Chapter 3: Prepare the Rafts and Secure Your Gear: The pre-work before configuring Oracle 11g Streams
	Network connectivity
	Check the waterways
	Configure the Oracle Net "Current"

	Configure the database
	Initialization parameters
	Logging features
	Archive logging
	Supplemental logging
	Forced logging

	Separate tablespaces
	LogMiner tablespace
	Streams Administration tablespace

	Streams users and privileges
	Trusted Streams Administrator user configuration
	Untrusted Streams capture, propagation, and apply user configuration
	Streams Administration user
	Capture user
	Propagation user
	Apply user
	Database links

	Trusted versus untrusted configurations

	Understanding your Instantiation tools
	Using Data Pump to Instantiate
	Setting Instantiation SCN manually

	Oracle Demo Schemas
	Summary

	Chapter 4: Single-Source Configuration
	The stream flows one way: Downhill
	The Enterprise Manager
	Setup options
	Schedule Streams setup job
	Verify

	The code behind the curtain
	Checking the waters
	Diving in
	The proof is in the pudding (or propagation in this case)

	Sequences and triggers and Apply
	Other levels at which to replicate
	The beauty of DBMS_STREAMS_ADM.MAINTAIN_*

	Summary

	Chapter 5: N-Way Replication
	Pre-planning for N-way replication
	Avoiding conflict
	The setup
	Preliminary setup
	Streaming STRM1 to STRM2
	Streaming STRM2 to STRM1

	Conflict resolution
	Extending the example
	Rinse and repeat
	Summary

	Chapter 6: Get Fancy with Streams Advanced Configurations
	Synchronous Capture—straight to the Queue
	Subsetting—the micro side of replication
	Tag!—you're it
	The default behaviour of tags
	Making tags work for you
	Setting the tag value
	Evaluating tags at the replication process rule level
	Tag usage

	RULES—they're what we live by
	Rule components
	Rule conditions
	Rule evaluation context
	Action context

	Creating your own rules
	Rule creation
	Rule Sets
	Event context
	How it all comes together

	Rule based transformation—eat your heart out transformers!
	Declarative versus User Created
	How the transformation is processed
	Transformation errors

	Things to remember when working with Rules

	Downstream Capture—avoid white water at the source
	Setting up the redo log transport
	Configuring the Streams part of DSC

	Streams change tables—just tracking the "Facts" Ma'am
	Automatic propagation split and merge—redirecting the current
	Basic Heterogeneous Configuration
	Configuring a Heterogeneous Apply process
	Data Transfer via Queue Messaging

	Basic XSTREAMS Configuration
	XSTREAMS Servers
	Configuring the Database
	Configuring XSTREAMS Out
	Configuring XSTREAMS In

	Summary

	Chapter 7: Document What You Have and How It Is Working
	Mapping the Stream
	The Stream without a map
	DBMS_STREAMS_ADVISOR_ADM
	Making the map

	Basic Streams views
	UTL_SPADV
	Automating the collection of Streams performance data

	Summary

	Chapter 8: Dealing with the Ever Constant Tides of Change
	Affecting expected change effectively
	Changing States: Starting and stopping processes
	Database changes
	Structure changes to existing objects
	Data changes—beware the bulk load!

	Expanding your Streamed environment
	Example: Adding a Master Site
	Example: Adding a table to a replicated schema

	Shrinking the Streamed environment
	Removing table, scheme, and tablespace level replication from Streams
	Removing a site from a Streamed environment

	Troubleshooting unexpected changes and resulting Streams errors
	Failure Points and Most Likely Causes (a.k.a. FPs and MLCs)
	Failure Point 1: DML/DDL statement commit logging
	Failure Point 2: LogMiner
	Failure Point 3: Capture process and rules
	Failure Point 4: Capture enqueue
	Failure Point 5: Propagation dequeue from Capture queue
	Failure Point 6: Propagation Rules
	Failure Point 7: Database link configuration
	Failure Point 8: Network connectivity and stability
	Failure Point 9: Propagation enqueue to the Apply queue
	Failure Point 10: Apply dequeue
	Failure Point 11: Apply Rules
	Failure Point 12: Conflict detection and resolution rules
	Failure Point 13: Apply Errors

	Troubleshooting tools
	Enterprise Manager: Streams management
	Command line packages and scripts
	Compare and Converge divergent data.

	Summary

	Chapter 9: Appendix and Glossary
	Oracle Streams Commander
	Streams and Oracle RAC
	Oracle GoldenGate
	Glossary
	Summary

	Index

