THE EXPERT’S VOICE® IN ORACLE

Expert

Oracle

Database Architecture

Oracle Database 9/, 10g, and 11g
Programming Techniques and Solutions

SECOND EDITION

Thomas Kyte

Forewords by Jonathan Lewis and Ken Jacobs (aka “Dr. DBA”)

Apress’

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

Praise for
Expert Oracle Database Architecture:
9i and 109 Programming Techniques and Solutions

“This book will help you make the best use of Oracle technology. Emulating Tom’s
rational methodology, and demand for proof by example, will make you a far better
technology thinker. Without question, this is one of the most important Oracle books
you can possess.”

—Ken Jacobs, (aka “Dr. DBA”) Vice President of Product Strategy
(Server Technologies), Oracle Corporation

“It’s an excellent book, full of plenty of deep insights about Oracle technology.”

—Sean Hull, Heavyweight Internet Group (http://iheavy.com)

www.it-ebooks.info

http://iheavy.com
http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

Expert Oracle
Database Architecture

Oracle Database 9/, 10g, and 11g Programming
Techniques and Solutions

Second Edition

Thomas Kyte

Apress-

www.it-ebooks.info

http://www.it-ebooks.info

Expert Oracle Database Architecture: Oracle Database 9i, 10g, and 11g Programming
Techniques and Solutions, Second Edition

Copyright © 2010 by Thomas Kyte

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2946-9
ISBN-13 (electronic): 978-1-4302-2947-6
Printed and bound in the United States of America987654321

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, are not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Jonathan Gennick

Technical Reviewers: Christopher Beck, Melanie Caffrey, and Jason Straub

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Debra Kelly

Copy Editors: Mary Behr and Sharon Terdeman

Compositor: Mary Sudul

Indexer: BIM Indexing and Proofreading Services

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales-eBook Licensing web page at waw.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

www.it-ebooks.info

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://www.it-ebooks.info

Contents at a Glance

Chapter 1: Developing Successful Oracle Applicationsoocceememmmnnecsssssssnnnnns 1
Chapter 2: Architecture OVervieW.........ccccmmsmsmsssnssssssssssssssssssssssssssssssnsssssnnsnssns 51
Chapter 3: FileS.......cccsmvmmmismmmsmss s s s s s s s s s s s s snsns ssnss 67
Chapter 4: Memory Structures.......ccoueemmmumsssmmmssssssnmmssssssssmsssssssssssssssnssssssnnnnns 121
Chapter 5: Oracle ProCesSses........cuumsmmsssmssssmsssmssssssssssssssssssssssssssssssnsssnssnsnsnnas 165
Chapter 6: Locking and Latchingcccuuumememmmmmmnnmssssssssssssmsssssssssssssssssssssssssnns 195
Chapter 7: Concurrency and Multi-versioningccuuusssssssssssessssssssssssssssssssssssas 243
Chapter 8: Transactions..........cccouvsmmsesmmssmmssmmsssmms s s s s snns s 267
Chapter 9: Redo and Undo..........ccccurmsesmssmsmssssmsssmssssmssssmssssssssssssssssssssssnsnssnsnsnnas 299
Chapter 10: Database Tablesccucsrvsmsmssmmsmsmmsssmsssmssssss s s s snsnsnns 345
Chapter 11: INAEXEScuccsrssmssssnsmsssnsmsssnsssssnsssssnsssssnsssssnsssssnsssssnnssssnnssssnnsnssns 425
Chapter 12: Datatypes......ccccrmmmssmmmmmmssssnsnmsssssnsnssssssssnssssssnsnssssssnsnsssssnnsnsssssnnnnnss 493
Chapter 13: Partitioning........cccceemmmmmrrmnsssssssssnnmsmmmssssssssssssssssssssssssssssssssssesssssnns 557
Chapter 14: Parallel EXecution...........cccusemmmssmsmssssmsssnsssssnsssssssssssnsssssnsssssassnnsns 621
Chapter 15: Data Loading and Unloading.......c.ccuusseemmmssssnsnsmssssssnssssssssnssssssnnnnss 657
Chapter 16: Data Encryplion.........cccccvnnnmssmmsmmmmmmmmssssssssssssssssssssssssssssssssssssnnns 709
INA@X .ciieeiiinnssssnnnsssannssssnsssssnnssssnnssssnnssssnnsnssnnssssnnsassnnnsasnnnnnsnnnnssnnnsnssnnnsssnnnnssnnnnsns 751

www.it-ebooks.info

http://www.it-ebooks.info

Contents

Contents at @ GIANCE...........ccvverrrmsmissmmss s s ——— v
1 O xviii
Foreword from the First Editionccccvcmmnnmmnnmmmnmmmnessmssssssssassssssnnne. Xix
About the AUROKccuismmminenmssmssssss s n e nn s xxii
About the Technical REVIEWEI'Sccuusesssssmsssssssssssnnsssssnssssansssssnsssssnsssssnsssssnnssnsns Xxiii
Acknowledgments..........cccccumisemmmssnsmssnsmsssnsmssssssssssssssssssssssnsssssnsssssnssnssnnsnssnnnnnsns Xxiv
INtroduction.........cccccimiimmmnnensnsennssss s XXV
Setting Up Your Environmentccoounmemmmmmmnmmnmsssssssssssmmssmsssssssssssssssssssssssnsnns XXXii
Chapter 1: Developing Successful Oracle Applicationscooceememmmnnecsssssssnnnnns 1
LAY o0 0 T o SRS 2
The Black BoX APProach.........ccocvcrercersinsessessessss s sns e ses s s s snssnsssssnnnnns 3
How (and How Not) to Develop Database Applicationsc.ccccvevercrcrcssessescessennnne 11
Understanding Oracle ArChiteCIUre ... 12
Understanding Concurrency CONTIOL...........cccieeicriinnii et s se s snsnens 21
MURI-VEISIONINGveueviiiccirc s s e s e s e e p e e pe e e aenanne s 25
Database INAEPENUENCE? ... s 32

How DO I MaKe It RUN FASTEI? ..ot 46

The DBA-Developer RelationShip........ccocvieininninsin s sesnes 48
SUMMANY ... sse e s s ssesse e ssesse s e s s e s s e s sessesaesaenaensensenseneesanssenaennnnnensnnsnnnans 49

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

Chapter 2: Architecture OVervieW.........ccccmmsmsmsssnssssssssssssssssssssssssssssssnsssssnnsnssns 51
Defining Database and INSTANCE. ... 52
The SGA and Background ProCESSES..........cu i sssssssseses 58
Connecting 10 Oracle ... s 60
DEAICALEA SEIVENcoveeeeeeeeeeereri e e e esa e e e e s s e e se s R e e ee s e nene e e s nene e nrnnas 60
SNAMBU SBIVET ... bbb 62
Mechanics of CONNECtiNG OVEr TCP/IP.......co.ou oo 63
SUMMANY ... sse e s s ssesse e ssesse s e s s e s s e s sessesaesaenaensensenseneesanssenaennnnnensnnsnnnans 66
Chapter 3: FileS.......cccsmvmmmismmmsmss s s s s s s s s s s s s snsns ssnss 67
Parameter Files........courinnii e 68
What Are Parameters?.........cuuciiiisisssssss s 69
Legacy init.ora Parameter FIlES.........o o se e sn e 73
Server Parameter FileS (SPFILES)cocoeeeeerereresesse e ssessssssssssssssssnsssssnsssssssssssssnnnns 74
Converting t0 SPFILES ... s 75
LI L= 82
Requested Trace Files ... 83
Trace Files Generated in Response to Internal Errors ... 88
Trace File WEAD-UD ...coueiiierircrie e ses s se s st s se s s s e e b et p e e b et p s 93
LT o 0 1 93
DAtA FIleS....covieirriii it —————— 96
A Brief Review of File System MecChanismscouinissssssssssssssssssssssseses 96
The Storage Hierarchy in an Oracle Database..........c.oococorreecninncncseeee s 97
Dictionary-Managed and Locally-Managed TableSPACES..........cccceururuererermrserererseeseseseseesessseesesesnas 101
TEMP FIlES ..t ————— 103
CONEIOl FIlBS...cviuceric e 105
Redo LOG FlEScuceeriiiirnii s s 105
ONHNE RBAD LOG......ocuiuiririririssis s 106
Archived REAO LOG........ouveiereieiesinssrssssssssssssssssss s 108
PasSWOrd FlES.......ccriiniriiiri s 109

www.it-ebooks.info

vii

http://www.it-ebooks.info

CONTENTS

Change TracKing Filecccoirinniirnircne s 113
FIAShDACK LOGSc.coerrieiriiiirisirs s s s 114
Flashback DAtabase ... 114
FIaSh RECOVEIY ArBa......ccciocruiiricineisisss i ss s s s s ss s s s s p e nnnn 115
DMP FileS (EXP/IMP FilBS)......cccesimrererernniresessessssssesessesssssss s sssssssssssssssssssssnsssnens 116
Data PUMP FIlES......cccoiiririiririiinc s 117
o L 120
RS T1 3] 1 120
Chapter 4: Memory Structures.......ccoueemmmmssssnmmssssssnmmssssssssssssssssssssssssnssssssnnnns 121
The Process Global Area and User Global Area ... 122
Manual PGA Memory Managementccocoerereeenererenesenesse e e sesse e sessesee e s sessssssssesssssnsssnns 123
Automatic PGA Memory Management...........cccoeieecrerennencnenese e e se s se s se s ses 129
Choosing Between Manual and Auto Memory Management.............cccoornennrnnencnessseneseseseeseseenas 140
PGA aN0 UGA WEAD-UP...coriiirerirerieeseseseseseseses et s e sss e ssssese st ssessssessessssesssnesssssssesassesaensssssssssssssessnns 142
The System GIODaAl Ar€a...........cvrermrinmnim s 142
FIXEA SGAvvuuneresseseeesssesseesssssssessssssssesssssssseesssssssssssssassesssssessessssssssesssssssnessssssssessssssssnesssssssesssssnns 148
L= (O3 148
BIOCK BUTFEF CACNEeererere et 149
SNAFEU POOL ... 156
LArge POOL......ccciiiiirrini it 159
JAVA POOL ... ———————————— 160
STEAMS POOL ... ——————————————— 160
Automatic SGA Memory Management............ccoveeeerererencrereseseses e e se s se e se e nes 161
Automatic Memory Managementcccccoeerererereienereseee e e 162
3T 1 Uy 164
Chapter 5: Oracle ProCesSses.........ccuuusmmssmsssmmssssssssmsssssssssssssssssssssssssssnsassnsnsnsns 165
SBIVEI PrOCESSES ...cuvvuissrsesesssssissssssessssssess s s s sas s s sa s s s sas e 166
Dedicated Server CONNECLIONS ..o 166
Shared Server CONNECLIONS ... s 169

viii

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

Database Resident Connection P0OlNG (DRCP).......cceeociererenerereee e se e seenas 170
CONNECHIONS VS. SESSIONScoveriririririrese s 170
Dedicated Server vs. Shared Server vs. DRCP ... 176
Dedicated/Shared SErver Wrap-Up........ccocciernernsiniesesse s e sss s e sessesassesssssssessssessssesssssssesssnesns 179
BaCKground ProCESSEScccuvererieruererersssessssssss s sssse s s s ssss s ssssssnssssnens 180
Focused Background PrOCESSES..........ouueerriiimmiinisssssssss s ssssssssssees 181
Utility BaCKgroUNT PrOCESSEScccourueerereruecrereseesesesseess s e sesssss e s e s e e e sse s e sss s s sssssssssssnas 190
SIAVE PrOCESSES....cciueucrrrisirrrssis st s s 193
1/ SIAVES......ceeieeece et e e s se s e e R e R e e e A e R e e R R e Re e e e A e e e e e Re et neenan 193
Pnnn: Parallel QUEry EXECULION SEIVEScoouicecreruecererisee e sese e e e sesnssnens 193
T4 12 SRS 194
Chapter 6: Locking and Latchingcccccimsmmmmssmsmmsssssssssssssssssssssssssssssssssasnnss 199
What Are LOCKS?couiiicircrini s s s s s 195
LOCKING ISSUBScomrueuieriisisrsssns s st s s s s e sasssne s 198
LOSE UPAALES.....cviicirriiic it 198
PeSSIMISHC LOCKING.....cciviiiririrririiri e 199
0] 01T 0T (Tl T o T 201
Optimistic or PesSimiStic LOCKING?.........covvrrrnnnsssssss s 207
BIOCKING.....cuuiunisensssssse s e 208
DEAAIOCKScvviriirtric i —————— 211
L0 Ti QT L0 215
0o G] 0SSR 216
D 0 €N 216
DD 0L 225
LAICNES ...ttt ——————— 230
MUTEBXES ..ottt 240
Manual Locking and USer-Defined LOCKSccoceeruruenerereneese st se e ese e se s eennns 240
3T 1 Uy 241

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

Chapter 7: Concurrency and Multi-versioning..........cccussmssssmssssmssssssssssssnnsnnns 243

What Are Concurrency ControlS?...........cconiinnnnnnss s 243
Transaction 1S0lation LEVEIS ... 244
READ UNCOMMITTED........ccotrtrueeererseeesessesesessssesssessesssesessessssessssssssessessssssssssssssssssssssssenssssssssssssssnn 246
READ COMMITTEDctiuiicaereeecsesseesesessesssesesssesesesssss e sessesessessess s sesssessssssssesssssssssssssensssssssassnssssnan 248
REPEATABLE READ ...t sess s s s sss s e s s st sas s st st sa s s sn s snsnnns 249
SERIALIZABLEocucceeeeuecesessecses et ses s se s se s e e e s e s e e s ae e E e e ae e e s A e ne e e nenne s ensnenn st nes 252
READ ONLYcoveiiieeeeeeeseseseesesseses e e see e sas e e sesae e s sesse e e sesse e e sesse e aeseese s sesaese e aesasnne e nesRenn s nesnan 254
Implications of Multi-version Read ConsiStenCy...........cccvinermienennnenensnnsessesessseens 255
A Common Data Warehousing Technique That FailS...........ccovnnnninnnnsss 255
An Explanation for Higher Than Expected 1/0 on Hot TabIESccoemrrveiererencnenenecreeeeeese s 256
Write CONSISTENCYcueereicirrsei s 259
Consistent Reads and Current REAAScccviis s 259
SEeING @ RESTAN ... —————————— 262
Why Is a Restart Important to US? ... 264
ST 1 1 1 265
[F: T CT o I T T (] ——— .] |
Transaction Control Statements ... 267
ALOMICHTY...c.viecererci e ———————————— 269
Statement-Level ALOMICITY ... 269
Procedure-Level ATOMICHY ... 271
Transaction-Level ALOMICITY ... 275
DDL @nd ATOMICILYvvviscrcscsesssssssss s 275
DUFADIlIY ..o ——————————— 275
WRITE Extensions t0 COMMIT.........ooviiiiinissssssssssss s 276
COMMITS in a Non-Distributed PL/SQAL BIOCKccovurerrirninrimninissssssss s 277
Integrity Constraints and TranSactions..........c..cccverrrrrssssssses s 279
IMMEDIATE CONSIFAINTSccccvieieiesinisiri s 279
DEFERRABLE Constraints and Cascading Updates..........c.covrnnrninnnnsnsnnsssssesesesesesesesesesesens 280

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

Bad Transaction Habits.........c.cccccuiinnn s 284
ComMMIEING N @ LOOP ..vvveieiriririrsiriiisiss s 284
USING AULOCOMMILcvivieiiiririrci e 290

Distributed TranSaCtioNs...........cccvreririnnn s ———— 291

Autonomous TranSACHIONScccvecrerreresiniersr s 293
How Autonomous TranSactions Work...........cuvrnnnss s 293
When to Use Autonomous TranSaCLIONScccccverrieresenesine st ss s st sse e snes 295

T4 12 SRS 298

Chapter 9: Redo and Undo...........ccucmsmmnmmmmmimmsmmsmsms s ssssssssssns 299

What IS REAO?......ccriciriiir s 300

What IS UNdO?......ciiicirnirs s 300

How Redo and Undo Work TOGEther ... 304
Example INSERT-UPDATE-DELETE SCENATOccvvviriiniirisissssssssssssssssssssssssssssssesesesesesesesesesens 304

Commit and RolIDack ProCessing.........ccurmerersmnernsssssssss s s sssssnens 308
What Does @ COMMIT DO?......cviiininrissssssssssssssss s 308
What DoeS @ ROLLBACK DO? ... s 315

Investigating REdOccccvcvcercercrr s 316
MeasUuring REAO. ... 316
Can | Turn Off Redo Log GENEration? ... 318
Why Can’t | AlIOCAtE @ NEW LOG?........ccoeeerereeeerereire e ses e e e e se s ss s s 321
BIOCK CIBANOUL.........ceeiiecceiiieeee s 323
LOG CONENTION.cccvieierriii e 326
Temporary Tables and Redo/UNdOcccuinninmisssssssssssssssssssssssssssssssssssssssess 328

Investigating UNdoccocvcicnircrcerin s s 332
What Generates the Most and Least Undo? ... 332
ORA-01555: SNapShot t00 01t EXTOFcovericriccrerne et sa s sss e snns 334

3T 1 Uy 344

www.it-ebooks.info

[Bs.

http://www.it-ebooks.info

CONTENTS

Chapter 10: Database Tablesocvmmmmnmn s —————————— 345
TYPES Of TADIES.......cocerererirer s sr s n s nnn s 345
LI 011010 0 SRS 347

E3 =T 11 1 N 347
Segment SPace ManagEMEeNT ... e r e e 350
High=WaLBE IMAIK ...t e e ne s 350
L 31 ==L I Y TSR 352
PCTFREE @NQ PCTUSEDootiuieeieeesce e secessse e e e e se e ss s se e e st sas e sesassnssssnsnas 356
LOGGING and NOLOGGINGccereueeremeereueereseseusssessssesssessssessssessssessssessssesssssnssssusssssssssasssssssssnssssassnes 359
INITRANS and MAXTRANS ..ot se s e e se s se s e e e s s e e e sas e e nnan 359

Heap Organized TabIES.........cuerrinminsssns s 359

Index Organized TaDIES ... ———— 363
Index Organized TableS WIAP-UPcccvverriereninernesesese s ssessssesss st ssessssesseses e ssssesassessesssesssnens 378
Index Clustered TabIES ... 378
Index Clustered TableS WIAP-UPccccuveriererernieresissesessessssessessssessesessesessessssessessssessssssssssssesssssssansnns 386
Hash Clustered TabIes..........curinnin s 386
Hash Clustered Tables Wrap-UP ..o s s sss s ssessssesssssssessssessssessessssensnns 394
Sorted Hash Clustered TabIes ... 395
Nested TaDIES ... ——————— 397
Nested Tables SYNAX ... ————— 398
Nested Table STOrage ... ————— 405
Nested TahleS WIaD-UDcceeereerereeeresessesese s s s s e se s n s n e sn e r e s s e s ressesnesnesresansensannenns 408
Temporary TADIESccccvcrceriererir s sr e n e nr s n s nnnnan 409
Temporary Tables Wrap-Up ... s 415
ODJECt TADIES ... ——————————— 416
ODbject TablES WIaAD-UPcvcrieiriririirissssssss s 423
3T 1 Uy 423

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

L1 F: T L T T 1T T ——— . |

An Overview of Oracle INAEXES ... 425
R TN T0) 427
INdeX Key COMPIESSIONcovrererererererersss i 430
Reverse Key INABXES ..o s 433
DESCENAING INABXEScocvererereririri e 439
When Should You Use @ B*Tree INUEX?cceinmmiiimsssanes 41
B¥TrEES WIAP-UD c.veoveeeeereieiseresese s s s e s sse s s e s e e s s s s s sn e sn e b e n e nn e n e s e nennennenresrannannesrnnnenns 452
BitMap INUEXESeereeciree et ae s s s n e s 452
When Should You Use @ Bitmap INAEX?..........ccoeerieicrericeie e se s e se s 453
Bitmap JOiN INABXESccvvririiirri e 457
Bitmap INAEXES WEAD-UDcouiueriiireiererissess s ses s e s st a s sa s sae st st s b e st s e s e snennns 459
Function-Based INAEXES ... s 460
Important Implementation Detailscccovieninnir e ——————— 460
A Simple Function-Based INdeX EXAMPIE........ccccvvererrernienne s sessesessessssessssessessssessssesses 461
Indexing Only SOME 0f the ROWS ..ot 470
Implementing Selective UNIQUENESS ... s ssssessssessessssessssesns 472
Caveat Regarding ORA-01743 ... e se s e s e s n e e 472
Function-Based INAEXES WIAP-UPcccurerrrermierenesienesesessessssessssessessssesssssssssssssssssessssessssessssssssssssenns 473
Application Domain INAEXESc.ccvcrverrerrersersirsrr s nssnn e 474
Frequently Asked Questions and Myths About INdexes.........ccccvveevverririerrcniessersennaens 475
Do Indexes WOrk 0N VIBWS? ... sesesssens 475
Do Nulls and Indexes Work TOGEther?..........ccc s 475
Should Foreign Keys Be INAEXEU?o.ecoceerereicerirereise e se s ss s ss s se s s 477
Why Isn’t My Index GEtiNG USEA?cccoe i s 479
Myth: Space Is Never Reused in @n INEX ..o 485
Myth: Most Discriminating Elements Should Be First ..o 488
3T 1 Uy 491

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

Chapter 12: Datatypes......cccciummsmmmmmmssssnsmmsssssnsnmsssssnsnssssssnsnssssssnsnsssssnnnnsssssnnnnnss 493
An Overview of Oracle Datatypescccccvrrrrrrnrsnss s 493
Character and Binary String TYPEScccceeeeerercre e sss e s s sns e s sns s 496
I =T T 496
LB E T T (T (1410 LTSRS 499
Binary Strings: RAW TYPES ... s s 506
NUMDEE TYPES...ceiererciririr s n e r s n e n e nn e nn e nn e n s 508
NUMBER Type SyntaX @nd USAQEcc.ceerererueenerereesesesseesesesssseesessssesesssssesessssssssesssssssssssssnssnns 510
BINARY_FLOAT/BINARY_DOUBLE Type Syntax and USAQE..........cccceererreerererereresssesesesseesesessensesesnas 513
Non-native NUMDEE TYPES ..o 514
Performance ConSiderations ... 514
LONG TYPES ceeeeeeeererressessesse e ssessessessessessessessesaesaesse s e ssessessesnesr e s e s e nnensessesansnesnsnsessnnes 516
Restrictions on LONG and LONG RAW TYPEScccccrerermrnmnenmnmsesmsesssisesesesese s sesesesesesesesesasesens 516
Coping With LEJACY LONG TYPES ...ecuecerreueererseeseressesesesesseseesesseseesesseses e ssssessssssssssssssssssssssssasssssas 518
Dates, Timestamps, and Interval TYPES........cccverrrrrrrssses s 523
FOTMALS ...t 523
DATE TYPE «.rrveereeereesseessessssssssesessssesssssesssssssesessssesssssessesessssssse s st sssssssessssssssesesssses s ssasessssnsssnseses 525
TIMESTAMP TYPE......cteeeuecrereeneesesseseesesassesesesessesssses e ess e s e e s sesae e e e sas e e s sae e e sssaenssesesne s assnssansasaes 531
LA I = o 538
02 0 0T o4
INEEINAI LOBSoeeet s e 541
BFILES........vvvveomeeeeesssseesesssessesssssasssssssssssssssssssessssssssssssssassesssssassessssssssesssssassessssssssesssssssnesssssssnnsssssnns 552
ROWID/UROWID TYPES ..ceverevessesessesssnessssssssssssssssssssssmssssssesssssssssssssssssesssssnesssanes 554
SUMMANY ... sre e s ae s e se s s sesaesa e s ae s e s aesa e naesaeea e s e s e nrena e s e nannnennnnnennnnns 955
Chapter 13: Partitioning..........cccouvsmmssmmssmmssmmsssmms s s s s ssss s snsnsnnns 557
Partitioning OVEIVIBW ..o s s 557
Increased AVaIlability ... ——————— 558
Reduced Administrative BUFAEN ... 560
Enhanced Statement Performance...........cccconn s 564

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

Table Partitioning SChEMES..........cccoriinin e ———— 566
Range Partitioningcccceeeeeeirereiesiesecsi et 567
Hash Partitioning ... 569
LiSt Partitioningccveiin s 574
Interval Partitioning ... —————— 575
Reference Partitioning..........c.ouvvin 581
Composite Partitioning ... 586
ROW MOVEMENL.......coviiiiintini e 588
Table Partitioning SChemes Wrap-Up ... s et ssssesnes 590

Partitioning INAEXESccvverreniniinir i 991
Local Indexes vS. GIODAI INABXEScccverermrririririnine s 592
LOCEAI INABXES.....viuiitrtisicirissi bbb e 593
GIODAL INUBXESvveeircrrrisr e 599

Partitioning and Performance, Revisitedc.cccvrrvrrrsssscscsces s 612

Auditing and Segment Space COMPreSSiON..........ccccveerrersessessessessessessesssssessssssssesssseas 618

SUMMANY ... sre e s ae s e se s s sesaesa e s ae s e s aesa e naesaeea e s e s e nrena e s e nannnennnnnennnnns 619

Chapter 14: Parallel EXecution...........cccusemmsssmsmsssmsmsssnsssssssssssnsssssssssssnsssssnssnnsns 621

When to Use Parallel EXECULION ... 622
A Parallel ProceSSing ANAIOQYcoeeeeeererueerereseeesesesesessssssesesssseesessesssssessssesssssssssssssssssssssssssses 623

L0 11 [0 257 T = U 624

Parallel QUETY ... 624

Parallel DML..........cooiiri s s 630

Parallel DDL ..o 633
Parallel DDL and Data Loading Using External TabIes............ccooreerninennnescre e 634
Parallel DDL and EXtent TAMMING........cooovinnmns s 636

Parallel RECOVEIY ..ot s s 645

Procedural ParalleliSm..........ccuriinnnn s 645
Parallel Pipelined FUNCLIONS ... 646
Do-It-Yourself ParalleliSm ..o 649

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

0Id School Do-It-Yourself ParalleliSmccococereeeceernecne e e se e sesesnsseesnas 652
T4 12 SRS 656
Chapter 15: Data Loading and Unloading.........ccvessmsessmsmsssssmsassmssssssnsnsnssnsnsnnas 657
R e 0 U L 657
Loading Data with SQALLDR FAQS.......ccccoumrrererierneresisssssssesesssssssesesssssssessssssssesssssssesssssssssssssssssssnns 661
L0 I 1 686
SQLLDR SUMIMAIYceiviueerireesecsesssseesesasesssesssesesssssseesssesasssssssasassssssssssssssesssssssssssssssssnsassssssnsssses 686
External TabIes ... ————— 686
Setting Up EXIErNal TADIEScococieerieece et e 687
DEAlING WIth EFTOIS ...ttt n e ne s 693
Using an External Table to Load Different Files.........oocoorreininsieieneeeee e 696
IMURLIUSEE ISSUBS ...ttt s e e s s s e e e e n e e nnas 696
External Tables SUMMAIY.........cccoiriieieerecere e se s s e e e e nnenas 697
Flat File Unload ...t s 698
Data PUMP UNI0AQ ..o 706
SUMMANY ... esss s e sesse s se s a e s e sa e sr e saesa e naenaenresa e s e nnana e s e nannnenrennennnnns 708
Chapter 16: Data Encryption..........ccccciuusmmmmssmsmsssssmsssssssssssssssssssssssssssssssssnssnnsns 709
TYPEs Of ENCIYPLIONc.eecerercerr st 709
DAta in MOTION ... 709
Data at RESt........ccoiici s ————————————— 710
Manual Application ENCIYPLIONcceoiie ettt 713
The 0racle WallEt ... 714
Transparent Column Level ENCryption..........ocoinninccncsn s ses e s s se s snes 717
Transparent Tablespace ENCryplionccoiinicnn s s snes 719
What Encryption IS Not ADOUL ..o 722
Implementing Manual Application Encryptioncccvvrvrcrcscscescescesces e 723
Reasons to Avoid the Manual APProachcccvevniernnnnnne s e 723
Performance Implications of the Manual APproachccccvirninnsnnnnnen e sessesnens 724
When to Use the Manual APProach ... s s s ssssnsssssssneas 729

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

Implementing Column Level ENCryptionccocvcvcrcrcssssessssces s 729
How to Use Column ENCIYPLIONccciiiss s 729
Data Storage with Column ENCIYPLION. ...ttt 730
Measuring the Performance Impact of Column ENCryption...........ccerieinennncsenesssese e 734
Influences on the Magnitude ... ——— 734
Limitations of COlUMN ENCIYPHON........cc.oioieiieieeee e 740

Implementing Tablespace ENCryplion..........cccvcvcrcrcrcnssss s 41
How to Use Tablespace ENCryplion ... e se s sessessssesssssssessssens 41
Data Storage with Tablespace ENCryplion...........cccccoereeenennnencnereesese e e eeenas 41
Measuring the Performance Impact of Tablespace Encryption........c.ccoeenivivnnnniennscnnesnennsennnne 743

Deciding on an Encryption TECANIQUEcccveereercercercer s 748

3T 1 Uy 749

11— |) |

xvii

www.it-ebooks.info

http://www.it-ebooks.info

xviii

Foreword

I first met the Oracle RDBMS some time in 1988, or possibly 1987, when my manager dumped a small
box on my desk and said something like: “There’s this new product called Oracle just coming into the
country. Play around with it for a few weeks and then tell us what it’s good for.”

The version was something like 5.0.22, and in those days it was a lot easier getting started with
Oracle. The entire printed manual set—including Forms 2.0, SQL*Report, and everything else—would fit
into a small briefcase and the documentation for the create table statement ran to about three pages.

If you check the PDF file for the 11.2 SQL reference manual, you’ll find that create table currently
starts at page 16-6 and runs on to page 16-79 for a total of 74 pages. The last time I checked the total page
count was for 97, and that was more than 20,000 pages—and I doubt if the number has dropped in 10g
and 11g.

With three (fairly slim) manuals for 5.0.22, it didn’t take me very long to learn about everything that
Oracle was supposed to do and how to do it efficiently. There weren’t many options, so there weren'’t
many ways to do things wrong. But how do you get started today when the core of Oracle is hidden
under a huge mass of options and features? Worse, the details you really need to understand are covered
by a mountain of information that is nice to have, but not critical to getting started.

The answer is simple.

Step 1: Read the concepts manual so you have an idea of what it’s all about.

Step 2: Read Tom Kyte’s book so that you can follow a rational progression of learning and
experimenting that leads you from your first “select ‘hello world’ from dual” to the day when you can
confidently say things like “we should use a range partitioned IOT with these columns in the overflow for
this table because”

Tom combines three things in this book: a conversational style that makes it easier to read about
technical details and understand the “why” behind the “how”; a structured “storyline” so that you see
the text building towards a target rather than scattering a disjointed collection of random tips; and an
array of carefully constructed demonstrations that teach you how things work and how you should work
and think.

Consider just one example, indexing. There are many types of indexes, so we need a brief
introduction to separate the different types. It’s good to have an idea of how B-tree indexes (for example)
actually work so that we can understand their strengths and weaknesses. Then we can move on to the
idea of function-based indexes—indexes on “data that don’t really exist.” This gets us to the point of
understanding what Oracle can do, but we can (and do) go further with what we can do with Oracle. So
we see how we can put the pieces together to create an index that guarantees uniqueness across subsets
of the data, we see how we can—on a huge data set—create a tiny, low-maintenance index that identifies
exactly the data that we really want to access and minimizes the risk of the optimizer producing a silly
execution plan.

In principle, it’s all in the manuals, but only if we have the insight to take the naked descriptions of
the available commands and see how we can use them to construct solutions to real problems. Tom Kyte
supplies that insight, and then encourages you to go further in developing your own insights.

Frankly, if every DBA and developer in the world were made to work carefully through Tom Kyte’s
book, I'd probably have to start offering consultancy services to SQL Server users because the number of
clients needing Oracle consultancy would drop dramatically.

Jonathan Lewis

www.it-ebooks.info

http://www.it-ebooks.info

Foreword from the First Edition

“THINK.” In 1914, Thomas J. Watson, Sr. joined the company that was to become IBM, and he brought
with him this simple one-word motto. It was an exhortation to all IBM employees, no matter their role,
to take care in decision-making and do their jobs with intelligence. “THINK” soon became an icon,
appearing on publications, calendars, and plaques in the offices of many IT and business managers
within and outside IBM, and even in The New Yorker magazine cartoons. “THINK” was a good idea in
1914, and it is a good idea now.

“Think different.” More recently, Apple Computer used this slogan in a long-running advertising
campaign to revitalize the company’s brand, and even more important, to revolutionize how people
think of technology in their daily lives. Instead of saying “think differently,” suggesting how to think,
Apple’s slogan used the word “different” as the object of the verb “think,” suggesting what to think (as in,
“think big”). The advertising campaign emphasized creativity and creative people, with the implication
that Apple’s computers uniquely enable innovative solutions and artistic achievements.

When I joined Oracle Corporation (then Relational Software Incorporated) back in 1981, database
systems incorporating the relational model were a new, emerging technology. Developers,
programmers, and a growing group of database administrators were learning the discipline of database
design using the methodology of normalization. The then unfamiliar, nonprocedural SQL language
impressed people with its power to manipulate data in ways that previously took painstaking procedural
programming. There was a lot to think about back then—and there still is. These new technologies
challenged people not only to learn new ideas and approaches, but also to think in new ways. Those who
did, and those who do, were and are the most successful in creating innovative, effective solutions to
business problems using database technology to its best advantage.

Consider the SQL database language that was first introduced commercially by Oracle. SQL permits
application designers to manipulate sets of rows with a nonprocedural (or “declarative”) language,
rather than writing iterative loops in conventional languages that process records one at a time. When I
was first introduced to SQL, I found it required me to “think at 45 degrees” to figure out how to use set
processing operations like joins and subqueries to achieve the result I wanted. Not only was the idea of
set processing new to most people, but so also was the idea of a nonprocedural language, where you
specified the result you wanted, not how to derive it. This new technology really did require me to “think
differently” and also gave me an opportunity to “think different.”

Set processing is far more efficient than one-at-a-time processing, so applications that fully exploit
SQL in this way perform much better than those that do not. Yet, it is surprising how often applications
deliver suboptimal performance. In fact, in most cases, it is application design—rather than Oracle
parameter settings or other configuration choices—that most directly determines overall performance.
Thus, application developers must learn not only details about database features and programming
interfaces, but also new ways to think about and use these features and interfaces in their applications.

Much conventional wisdom exists in the Oracle community about how to tune the system for best
performance or the best way to use various Oracle features. Such wisdom sometimes becomes folklore
or even mythology, with developers and database administrators adopting these ideas uncritically or
extending these ideas without reasoning about them.

One example is the idea that “if one is good, more—lots more—is better.” This idea is popular, but
only rarely true. Take Oracle’s array interface, for example, which allows the developer to insert or
retrieve multiple rows in a single system call. Clearly, reducing the number of network messages

www.it-ebooks.info

Xix

http://www.it-ebooks.info

FOREWORD FROM THE FIRST EDITION

between the application and the database is a good thing. But, if you think about it, there is a point of
diminishing returns. While fetching 100 rows at once is far better than one at a time, fetching 1,000 rows
at once is generally not really any more efficient overall, especially when you consider memory
requirements.

Another example of uncritical thinking is to focus on the wrong aspects of system design or
configuration, rather than those most likely to improve performance (or, for that matter, reliability,
availability, or security). Consider the conventional wisdom of tuning the system to maximize the buffer
hit ratio. For some applications, it’s true that maximizing the chance that required data is in memory will
maximize performance. However, for most applications it’s better to focus attention on performance
bottlenecks (what we call “wait states”) than it is to focus on specific system-level metrics. Eliminate
those aspects of the application design that are causing delays, and you’ll get the best performance.

I've found that breaking down a problem into smaller parts and solving each part separately is a
great way to think about application design. In this way, you can often find elegant and creative uses of
SQL to address application requirements. Often, it is possible to do things in a single SQL statement that
at first seem to require complex procedural programming. When you can leverage the power of SQL to
process sets of rows at a time, perhaps in parallel, not only are you more productive as an application
developer, but the application runs faster as well!

Sometimes, best practices that were based, even in part, on some degree of truth become no longer
applicable as the facts change. Consider the old adage, “Put indexes and data in separate tablespaces for
best performance.” I've often seen database administrators express strong opinions over the merits of
this idea, without taking into account changes in disk speeds and capacities over time, or the specifics of
given workloads. In evaluating this particular “rule,” you should think about the fact that the Oracle
database caches frequently and recently used database blocks (often blocks belonging to an index) in
memory, and the fact that it uses index and data blocks sequentially, not simultaneously, for any given
request. The implication is that I/O operations for both index and data really should be spread across all
simultaneous users, and across as many disk drives as you have. You might choose to separate index and
data blocks for administrative reasons or for personal preference, but not for performance. (Tom Kyte
provides valuable insights on this topic on the Ask Tom web site, http://asktom.oracle.com, where you
can search for articles on “index data tablespace.”) The lesson here is to base your decisions on facts,
and a complete set of current facts at that.

No matter how fast our computers are or how sophisticated the database becomes, and regardless
of the power of our programming tools, there simply is no substitute for human intelligence coupled
with a “thinking discipline.” So, while it’s important to learn the intricacies of the technologies we use in
our applications, it’s even more important to know how to think about using them appropriately.

Tom Kyte is one of the most intelligent people I know, and one of the most knowledgeable about the
Oracle database, SQL, performance tuning, and application design. I'm pretty sure Tom is an aficionado
of the “THINK” and “Think different” slogans. Tom also quite obviously believes in that anonymous
saying, “Give a man a fish and you feed him for a day. Teach a man to fish and you feed him for a
lifetime.” Tom enjoys sharing his knowledge about Oracle, to the great benefit of our community, but
rather than simply dispensing answers to questions, he helps others learn to think and reason.

On his web site (http://asktom.oracle.com), in his public speaking engagements, and in this book,
Tom implicitly challenges people to “think differently” too, as they design database applications with the
Oracle database. He rejects conventional wisdom and speculation, instead insisting on relying on facts
proven through examples. Tom takes a very pragmatic and simple approach to problem solving, and by
following his advice and methodology, you can be more productive and develop better, faster
applications.

Not only will Tom’s book teach you about features of Oracle and how to use them, but it also reflects
many of these simple thoughts:

* Don’t believe in myths. Reason for yourself.
* Don’t follow conventional wisdom. Often the things everybody knows are simply wrong!

* Don’t trust rumors or opinions. Test things for yourself and base decisions on proven examples.

www.it-ebooks.info

http://asktom.oracle.com
http://asktom.oracle.com
http://www.it-ebooks.info

FOREWORD FROM THE FIRST EDITION

* Break apart a problem into simpler questions, and assemble the answers to each step into an
elegant, efficient solution.

* Don’tdo things in your programs when the database can do them better and faster.

* Understand the differences between the ideal and the real.

* Askquestions about and be skeptical of unjustified company policies for technical standards.
* Consider the big picture of what'’s best overall for the requirements at hand.

* Take the time to THINK.

Tom encourages you to treat Oracle as much more than a black box. Instead of you just putting data
into and taking data out of Oracle, Tom will help you understand how Oracle works and how to exploit
its power. By learning how to apply Oracle technology creatively and thoughtfully, you will be able to
solve most application design problems quickly and elegantly.

As you read and enjoy this book, I know you'll learn a lot of new facts about Oracle database
technology and important concepts about application design. As you do, I'm confident that you’ll also
start to “think differently” about the challenges you face.

IBM’s Watson once said, “Thought has been the father of every advance since time began. ‘I didn’t
think’ has cost the world millions of dollars.” This is a thought with which both Tom and I agree. Armed
with the knowledge and techniques you’ll learn in this book, I hope you’ll be able to save the world (or at
least your enterprise) millions of dollars, and enjoy the satisfaction of a job well done.

Ken Jacobs
aka “Dr. DBA”

www.it-ebooks.info

XXi

http://www.it-ebooks.info

xxii

About the Author

I am Tom Kyte. I have been working for Oracle since version 7.0.9 (that’s
1993 for people who don’t mark time by Oracle versions). However, I've been
working with Oracle since about version 5.1.5c¢ (the $99 single-user version for
DOS on 360KB floppy disks). Before coming to work at Oracle, I worked for
more than six years as a systems integrator, building large-scale,
heterogeneous databases and applications, mostly for military and
government customers. These days, I spend a great deal of my time working
with the Oracle database and, more specifically, helping people who are
using the Oracle database. I work directly with customers, either in specifying
and building their systems or, more frequently, in helping them rebuild or
tune them (“tuning” frequently being a synonym for rebuilding). In addition, I am the Tom behind the
“Ask Tom” column in Oracle Magazine, where I answer people’s questions about the Oracle database
and tools. On a typical day, I receive and answer dozens of questions at http://asktom.oracle.com. Every
two months, I publish a “best of” in the magazine (all of the questions asked are available on the Web,
stored in an Oracle database, of course). Additionally, I give technical seminars covering much of the
material you’ll find in this book. Basically, I spend a lot of my time helping people be successful with the
Oracle database. Oh yes, in my spare time, I build applications and develop software within Oracle
Corporation itself.
This book is a reflection of what I do every day. The material within covers topics and questions that
I see people struggling with every day. These issues are covered from a perspective of “When I use this, I
do it this way.” It is the culmination of many years of experience using the product in myriad situations.

www.it-ebooks.info

http://asktom.oracle.com
http://www.it-ebooks.info

About the Technical Reviewers

Christopher Beck has a degree in computer science from Rutgers University
and has been working with multiple DBMSs for more than 19 years. He has
spent the last 15 years as an Oracle employee where he is currently a Principal
Technologist focusing on core database technologies. He is a co-inventor of
two US Patents on software methodologies, which were the basis for what is
now known as Oracle Application Express. Chris has reviewed other Oracle
books including Tom’s first book, Expert One-On-One, and is himself the co-
author of two books, Beginning Oracle Programming and Mastering Oracle
PL/SQL. He resides in Northern Virginia with his wife, Marta, and four
children, and when not spending time with them, can usually be found
wasting time playing video games or watching Series A football.

Melanie Caffrey is a senior development manager for Oracle Corporation,
providing front-end and back-end Oracle solutions for the business needs of
various clients. She is co-author of several technical publications including
Expert Oracle Practices: Oracle Database Administration from the Oak Table
published by Apress, as well as Oracle Web Application Programming for
PL/SQL Developers, The Oracle DBA Interactive Workbook, and Oracle Database
Administration: The Complete Video Course, all published by Prentice Hall. She
instructed students in Columbia University’s Computer Technology and
Applications program in New York City, teaching advanced Oracle database
administration and PL/SQL development. She is also a frequent Oracle
conference speaker.

Jason Straub has a bachelor's degree in mathematics and has been applying
it to the computer science field for the past 15 years developing database
driven Web applications. Jason is on his second tour at Oracle Corporation and
worked for Microsoft Corporation in between. He has been developing Oracle
database applications since version 8.0.6 and has worked with Microsoft's SQL
Server since version 2000. Currently Jason is a principal developer for Oracle
Corporation working on a Web development tool that is growing in popularity
called Oracle Application Express. Jason's primary focus is integration features
of Oracle Application Express, building support of Web services into the
product. He is the author of several white papers available on the Oracle
Technology Network and frequent presenter at various Oracle technology
conferences such as ODTUG Kaleidoscope, RMOUG, and Oracle Open World.

xxiii

www.it-ebooks.info

http://www.it-ebooks.info

Acknowledgments

I'would like to thank many people for helping me complete this book.

First, would like to thank you, the reader of this book. There is a high probability that if you are
reading this book, you have participated in my site http://asktom.oracle.com/ in some fashion, perhaps
by asking a question or two. It is that act—the act of asking questions, and of questioning the answers—
that provides me with the material for the book and the knowledge behind the material. Without the
questions, I would not be as knowledgeable about the Oracle database as I am. So, it is you who
ultimately makes this book possible.

I'would like to thank Tony Davis for his previous work making my work read well. If you enjoy the
flow of the sections, the number of section breaks, and the clarity, then that is in some part due to him. I
have worked with Tony writing technical material since the year 2000 and have watched his knowledge
of Oracle grow over that time. He now has the ability to not only edit the material, but in many cases
tech edit it as well. Many of the examples in this book are there because of him (pointing out that the
casual reader was not going to “get it” without them). Tony did not edit the second edition of this book,
but the contents rely heavily on the first edition. This book would not be what it is without him.

Without a technical review team of the caliber I had during the writing of this book and the previous
edition, I would be nervous about the content. The first edition had Jonathan Lewis, Roderick Manalac,
Michael Méller, and Gabe Romanescu as technical reviewers. They spent many hours poring over the
material and verifying it was technically accurate as well as useful in the real world. This second edition
had a team of similar caliber: Melanie Caffrey, Christopher Beck, and Jason Straub. I firmly believe a
technical book should be judged not only by who wrote it, but also by who reviewed it. Given these seven
people, I feel confident in the material.

At Oracle, I work with the best and brightest people I have ever known, and they all have
contributed in one way or another. I would like to thank Ken Jacobs in particular for his support and
enthusiasm over the years. Ken is unfortunately (for us) no longer with Oracle Corporation, but his
impact will long be felt.

Lastly, but most important, I would like to acknowledge the unceasing support I've received from
my family. You know you must be important to someone when you try to do something that takes a lot
of “outside of work hours” and that someone lets you know about it. Without the continual support of
my wife, Melanie (who also was a technical reviewer on the book!), son Alan, and daughter Megan, I
don’t see how I could have finished this book.

XXiv

www.it-ebooks.info

http://asktom.oracle.com
http://www.it-ebooks.info

Introduction

The inspiration for the material contained in this book comes from my experiences developing Oracle
software, and from working with fellow Oracle developers to help them build reliable and robust
applications based on the Oracle database. The book is basically a reflection of what I do every day and
of the issues I see people encountering each and every day.

I covered what I felt was most relevant, namely the Oracle database and its architecture. I could
have written a similarly titled book explaining how to develop an application using a specific language
and architecture—for example, one using JavaServer Pages that speaks to Enterprise JavaBeans, which in
turn uses JDBC to communicate with Oracle. However, at the end of the day, you really do need to
understand the topics covered in this book in order to build such an application successfully. This book
deals with what I believe needs to be universally known to develop successfully with Oracle, whether you
are a Visual Basic programmer using ODBC, a Java programmer using EJBs and JDBC, or a Perl
programmer using DBI Perl. This book does not promote any specific application architecture; it does
not compare three tier to client/server. Rather, it covers what the database can do and what you must
understand about the way it works. Since the database is at the heart of any application architecture, the
book should have a broad audience.

As the title suggests, Expert Oracle Database Architecture concentrates on the database architecture
and how the database itself works. I cover the Oracle database architecture in depth: the files, memory
structures, and processes that comprise an Oracle database and instance. I then move on to discuss
important database topics such as locking, concurrency controls, how transactions work, and redo and
undo, and why it is important for you to know about these things. Lastly, I examine the physical
structures in the database such as tables, indexes, and datatypes, covering techniques for making
optimal use of them.

What This Book Is About

One of the problems with having plenty of development options is that it's sometimes hard to figure out
which one might be the best choice for your particular needs. Everyone wants as much flexibility as
possible (as many choices as they can possibly have), but they also want things to be very cut and
dried—in other words, easy. Oracle presents developers with almost unlimited choice. No one ever says,
“You can’t do that in Oracle.” Rather, they say, “How many different ways would you like to do that in
Oracle?” I hope that this book will help you make the correct choice.

This book is aimed at those people who appreciate the choice but would also like some guidelines
and practical implementation details on Oracle features and functions. For example, Oracle has a really
neat feature called parallel execution. The Oracle documentation tells you how to use this feature and
what it does. Oracle documentation does not, however, tell you when you should use this feature and,
perhaps even more important, when you should not use this feature. It doesn’t always tell you the
implementation details of this feature, and if you're not aware of them, this can come back to haunt
you (I'm not referring to bugs, but the way the feature is supposed to work and what it was really
designed to do).

www.it-ebooks.info

http://www.it-ebooks.info

XXVi

INTRODUCTION

In this book I strove to not only describe how things work, but also explain when and why you
would consider using a particular feature or implementation. I feel it is important to understand not
only the “how” behind things, but also the “when” and “why” as well as the “when not” and “why not!”

Who Should Read This Book

The target audience for this book is anyone who develops applications with Oracle as the database back
end. It is a book for professional Oracle developers who need to know how to get things done in the
database. The practical nature of the book means that many sections should also be very interesting to
the DBA. Most of the examples in the book use SQL*Plus to demonstrate the key features, so you won't
find out how to develop a really cool GUI—but you will find out how the Oracle database works, what its
key features can do, and when they should (and should not) be used.

This book is for anyone who wants to get more out of Oracle with less work. It is for anyone who
wants to see new ways to use existing features. It is for anyone who wants to see how these features can
be applied in the real world (not just examples of how to use the feature, but why the feature is relevant
in the first place). Another category of people who would find this book of interest is technical managers
in charge of the developers who work on Oracle projects. In some respects, it is just as important that
they understand why knowing the database is crucial to success. This book can provide ammunition for
managers who would like to get their personnel trained in the correct technologies or ensure that
personnel already know what they need to know.

To get the most out of this book, the reader should have

* Knowledge of SQL. You don'’t have to be the best SQL coder ever, but a good working knowledge
will help.

* Anunderstanding of PL/SQL. This isn’t a prerequisite, but it will help you to absorb the examples.
This book will not, for example, teach you how to program a FOR loop or declare a record type;
the Oracle documentation and numerous books cover this well. However, that’s not to say that
you won'’t learn a lot about PL/SQL by reading this book. You will. You’ll become very intimate
with many features of PL/SQL, you'll see new ways to do things, and you'll become aware of
packages/features that perhaps you didn’t know existed.

* Exposure to some third-generation language (3GL), such as C or Java. I believe that anyone who
can read and write code in a 3GL language will be able to successfully read and understand the
examples in this book.

* Familiarity with the Oracle Concepts manual.

A few words on that last point: due to the Oracle documentation set’s vast size, many people find it
to be somewhat intimidating. If you're just starting out or haven’t read any of it as yet, I can tell you that
the Oracle Concepts manual is exactly the right place to start. It’s about 400 pages long (I know that
because I wrote some of the pages and edited every one) and touches on many of the major Oracle
concepts that you need to know about. It may not give you each and every technical detail (that’s what
the other 10,000 to 20,000 pages of documentation are for), but it will educate you on all the important
concepts. This manual touches the following topics (to name a few):

* The structures in the database, and how data is organized and stored
* Distributed processing

* Oracle’s memory architecture

* Oracle’s process architecture

* Schema objects you will be using (tables, indexes, clusters, and so on)

www.it-ebooks.info

http://www.it-ebooks.info

INTRODUCTION

e Built-in datatypes and user-defined datatypes
* SQL stored procedures

* How transactions work

e The optimizer

* Data integrity

* Concurrency control

I will come back to these topics myself time and time again. These are the fundamentals. Without
knowledge of them, you will create Oracle applications that are prone to failure. I encourage you to read
through the manual and get an understanding of some of these topics.

How This Book Is Structured

To help you use this book, most chapters are organized into four general sections (described in the list
that follows). These aren’t rigid divisions, but they will help you navigate quickly to the area you need
more information on. This book has 16 chapters, and each is like a “minibook”—a virtually stand-alone
component. Occasionally, I refer to examples or features in other chapters, but you could pretty much
pick a chapter out of the book and read it on its own. For example, you don’t have to read Chapter 10 on
database tables to understand or make use of Chapter 14 on parallelism.

The format and style of many of the chapters is virtually identical:

* Anintroduction to the feature or capability.

* Why you might want to use the feature or capability (or not). I outline when you would consider
using this feature and when you would not want to use it.

* How to use this feature. The information here isn’t just a copy of the material in the SQL
reference; rather, it's presented in step-by-step manner: here is what you need, here is what you
have to do, and these are the switches you need to go through to get started. Topics covered in
this section will include:

* How to implement the feature

* Examples, examples, examples

* How to debug this feature

* Caveats of using this feature

* How to handle errors (proactively)
* Asummary to bring it all together.

There will be lots of examples and lots of code, all of which is available for download from the
Source Code area of http://www.apress.com. The following sections present a detailed breakdown of the
content of each chapter.

Chapter 1: Developing Successful Oracle Applications

This chapter sets out my essential approach to database programming. All databases are not created
equal, and in order to develop database-driven applications successfully and on time, you need to
understand exactly what your particular database can do and how it does it. If you do not know what

XXVii

www.it-ebooks.info

http://www.apress.com
http://www.it-ebooks.info

INTRODUCTION

your database can do, you run the risk of continually reinventing the wheel—developing functionality
that the database already provides. If you do not know how your database works, you are likely to
develop applications that perform poorly and do not behave in a predictable manner.

The chapter takes an empirical look at some applications where a lack of basic understanding of the
database has led to project failure. With this example-driven approach, the chapter discusses the basic
features and functions of the database that you, the developer, need to understand. The bottom line is
that you cannot afford to treat the database as a black box that will simply churn out the answers and
take care of scalability and performance by itself.

Chapter 2: Architecture Overview

This chapter covers the basics of Oracle architecture. We start with some clear definitions of two terms
that are very misunderstood by many in the Oracle world, namely “instance” and “database.” We also
take a quick look at the System Global Area (SGA) and the processes behind the Oracle instance, and
examine how the simple act of “connecting to Oracle” takes place.

Chapter 3: Files

This chapter covers in depth the eight types of files that make up an Oracle database and instance. From
the simple parameter file to the data and redo log files, we explore what they are, why they are there, and
how we use them.

Chapter 4: Memory Structures

This chapter covers how Oracle uses memory, both in the individual processes (Process Global Area, or
PGA, memory) and shared memory (SGA). We explore the differences between manual and automatic
PGA and, in Oracle 10g, SGA memory management, and see when each is appropriate. After reading this
chapter, you will have an understanding of exactly how Oracle uses and manages memory.

Chapter 5: Oracle Processes

This chapter offers an overview of the types of Oracle processes (server processes versus background
processes). It also goes into much more depth on the differences in connecting to the database via a
shared server or dedicated server process. We'll also take a look, process by process, at most of the
background processes (such as LGWR, DBWR, PMON, and SMON) that we’ll see when starting an Oracle instance
and discuss the functions of each.

Chapter 6: Locking and Latching

Different databases have different ways of doing things (what works well in SQL Server may not work as
well in Oracle), and understanding how Oracle implements locking and concurrency control is
absolutely vital to the success of your application. This chapter discusses Oracle’s basic approach to
these issues, the types of locks that can be applied (DML, DDL, and latches), and the problems that can
arise if locking is not implemented carefully (deadlocking, blocking, and escalation).

xxviii

www.it-ebooks.info

http://www.it-ebooks.info

INTRODUCTION

Chapter 7: Concurrency and Multi-versioning

In this chapter, we’ll explore my favorite Oracle feature, multi-versioning, and how it affects concurrency
controls and the very design of an application. Here we will see that all databases are not created equal
and that their very implementation can have an impact on the design of our applications. We’ll start by
reviewing the various transaction isolation levels as defined by the ANSI SQL standard and see how they
map to the Oracle implementation (as well as how the other databases map to this standard). Then we’ll
take alook at what implications multiversioning, the feature that allows Oracle to provide non-blocking
reads in the database, might have for us.

Chapter 8: Transactions

Transactions are a fundamental feature of all databases—they are part of what distinguishes a database
from a file system. And yet, they are often misunderstood and many developers do not even know that
they are accidentally not using them. This chapter examines how transactions should be used in Oracle
and also exposes some bad habits that may have been picked up when developing with other databases.
In particular, we look at the implications of atomicity and how it affects statements in Oracle. We also
discuss transaction control statements (COMMIT, SAVEPOINT, and ROLLBACK), integrity constraints,
distributed transactions (the two-phase commit, or 2PC), and finally autonomous transactions.

Chapter 9: Redo and Undo

It can be said that developers do not need to understand the detail of redo and undo as much as DBAs,
but developers do need to know the role they play in the database. After first defining redo, we examine
what exactly a COMMIT does. We discuss how to find out how much redo is being generated and how to
significantly reduce the amount of redo generated by certain operations using the NOLOGGING clause. We
also investigate redo generation in relation to issues such as block cleanout and log contention.

In the undo section of the chapter, we examine the role of undo data and the operations that
generate the most/least undo. Finally, we investigate the infamous ORA-01555: snapshot too old error,
its possible causes, and how to avoid it.

Chapter 10: Database Tables

Oracle now supports numerous table types. This chapter looks at each different type—heap organized
(i.e., the default, “normal” table), index organized, index clustered, hash clustered, nested, temporary,
and object—and discusses when, how, and why you should use them. Most of time, the heap organized
table is sufficient, but this chapter will help you recognize when one of the other types might be more
appropriate.

Chapter 11: Indexes

Indexes are a crucial aspect of your application design. Correct implementation requires an in-depth
knowledge of the data, how it is distributed, and how it will be used. Too often, indexes are treated as an
afterthought in application development, and performance suffers as a consequence.

This chapter examines in detail the different types of indexes, including B*Tree, bitmap, function-
based, and application domain indexes, and discusses where they should and should not be used. I'll
also answer some common queries in the “Frequently Asked Questions and Myths About Indexes”
section, such as “Do indexes work on views?” and “Why isn’'t my index getting used?”

XXix

www.it-ebooks.info

http://www.it-ebooks.info

INTRODUCTION

Chapter 12: Datatypes

There are a lot of datatypes to choose from. This chapter explores each of the 22 built-in datatypes,
explaining how they are implemented, and how and when to use each one. First up is a brief overview of
National Language Support (NLS), a basic knowledge of which is necessary to fully understand the
simple string types in Oracle. We then move on to the ubiquitous NUMBER type and look at the new Oracle
10g options for storage of numbers in the database. The LONG and LONG RAW types are covered, mostly
from a historical perspective. The main objective here is to show how to deal with legacy LONG columns
in applications and migrate them to the LOB type. Next, we delve into the various datatypes for storing
dates and time, and investigating how to manipulate the various datatypes to get what we need from
them. The ins and outs of time zone support are also covered.

Next up are the LOB datatypes. We'll cover how they are stored and what each of the many settings
such as IN ROW, CHUNK, RETENTION, CACHE, and so on mean to us. When dealing with LOBs, it is important
to understand how they are implemented and how they are stored by default—especially when it comes
to tuning their retrieval and storage. We close the chapter by looking at the ROWID and UROWID types.
These are special types, proprietary to Oracle, that represent the address of a row. We’ll cover when to
use them as a column datatype in a table (which is almost never!).

Chapter 13: Partitioning

Partitioning is designed to facilitate the management of very large tables and indexes by implementing a
divide and conquer logic—basically breaking up a table or index into many smaller and more
manageable pieces. It is an area where the DBA and developer must work together to maximize
application availability and performance. This chapter covers both table and index partitioning.

We look at partitioning using local indexes (common in data warehouses) and global indexes (common
in OLTP systems).

Chapter 14: Parallel Execution

This chapter introduces the concept of and uses for parallel execution in Oracle. We’ll start by looking at
when parallel processing is useful and should be considered, as well as when it should not be
considered. After gaining that understanding, we move on to the mechanics of parallel query, the feature
most people associate with parallel execution. Next, we cover parallel DML (PDML), which allows us to
perform modifications using parallel execution. We’ll see how PDML is physically implemented and why
that implementation leads to a series of restrictions regarding PDML.

We then move on to parallel DDL. This, in my opinion, is where parallel execution really shines.
Typically, DBAs have small maintenance windows in which to perform large operations. Parallel DDL
gives DBAs the ability to fully exploit the machine resources they have available, permitting them to
finish large, complex operations in a fraction of the time it would take to do them serially.

The chapter closes on procedural parallelism, the means by which we can execute application code
in parallel. We cover two techniques here. The first is parallel pipelined functions, or the ability of Oracle
to execute stored functions in parallel dynamically. The second is “do it yourself” (DIY) parallelism,
whereby we design the application to run concurrently.

Chapter 15: Data Loading and Unloading

This first half of this chapter focuses on SQL*Loader (SQLLDR) and covers the various ways in which we
can use this tool to load and modify data in the database. Issues discussed include loading delimited
data, updating existing rows and inserting new ones, unloading data, and calling SQLLDR from a stored
procedure. Again, SQLLDR is a well-established and crucial tool, but it is the source of many questions

www.it-ebooks.info

http://www.it-ebooks.info

INTRODUCTION

with regard to its practical use. The second half of the chapter focuses on external tables, an alternative
and highly efficient means by which to bulk load and unload data.

Chapter 16: Data Encryption

This chapter looks at the opportunities for encrypting data in the Oracle database. A discussion of
manual “do it yourself” encryption using the built-in database package DBMS_CRYPTO is included, but
not emphasized. Rather, a discussion on why you should probably not be using that package is included.
The focus of this chapter is on the implementation details of Transparent Data Encryption (TDE) in the
Oracle Database. This chapter focuses on how both column level and tablespace level encryption are
achieved and what it means to you as a developer or DBA. Not every possible configuration possibility is
described (that is what the Oracle documentation is for), but rather the practical implementation details
and how they will affect you are laid out.

Source Code and Updates

As you work through the examples in this book, you may decide that you prefer to type in all the code by
hand. Many readers choose to do this because it is a good way to get familiar with the coding techniques
that are being used.

Whether you want to type the code in or not, all the source code for this book is available in the
Source Code section of the Apress web site (http://www.apress.com). If you like to type in the code, you
can use the source code files to check the results you should be getting—they should be your first stop if
you think you might have typed in an error. If you don't like typing, then downloading the source code
from the Apress web site is a must! Either way, the code files will help you with updates and debugging.

Errata

Apress makes every effort to make sure that there are no errors in the text or the code. However, to err is
human, and as such we recognize the need to keep you informed of any mistakes as they’re discovered
and corrected. Errata sheets are available for all our books at http:// www.apress.com. If you find an
error that hasn’t already been reported, please let us know. The Apress web site acts as a focus for other
information and support, including the code from all Apress books, sample chapters, previews of
forthcoming titles, and articles on related topics.

xxxi

www.it-ebooks.info

http://www.apress.com
http://www.apress.com
http://www.it-ebooks.info

Setting Up Your Environment

In this section, I will cover how to set up an environment capable of executing the examples in this book.
Specifically:

* How to set up the SCOTT/TIGER demonstration schema properly

* The environment you need to have up and running

* Configuring AUTOTRACE, a SQL*Plus facility

* Installing Statspack

* Installing and running runstats, and other custom utilities used throughout the book
* The coding conventions I use in this book

All of the non-Oracle supplied scripts are available for download from the www.apress.com website.

Setting up the SCOTT/TIGER Schema

The SCOTT/TIGER schema will often already exist in your database. It is generally included during a
typical installation, but it is not a mandatory component of the database. You may install the SCOTT
example schema into any database account; there is nothing magic about using the SCOTT account. You
could install the EMP/DEPT tables directly into your own database account if you wish.

Many of my examples in this book draw on the tables in the SCOTT schema. If you would like to be
able to work along with them, you will need these tables. If you are working on a shared database, it
would be advisable to install your own copy of these tables in some account other than SCOTT to avoid
side effects caused by other users mucking about with the same data.

Executing the Script
In order to create the SCOTT demonstration tables, you will simply:
e cd [ORACLE_HOME]/sqlplus/demo

* rundemobld.sql when connected as any user

Note In Oracle 10g and above, you must install the demonstration subdirectories from the Companion CD. |
have reproduced the necessary components of demobld. sql below as well.

xxxii

www.it-ebooks.info

http://www.apress.com
http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

demobld. sql will create and populate five tables. When it is complete, it exits SQL*Plus
automatically, so don't be surprised when SQL*Plus disappears after running the script—it’s supposed
to do that.

The standard demo tables do not have any referential integrity defined on them. Some of my
examples rely on them having referential integrity. After you run demobld.sql, it is recommended you
also execute the following:

alter table emp add constraint emp pk primary key(empno);
alter table dept add constraint dept pk primary key(deptno);
alter table emp add constraint emp fk dept
foreign key(deptno) references dept;

alter table emp add constraint emp fk emp foreign key(mgr) references emp;

This finishes off the installation of the demonstration schema. If you would like to drop this schema
at any time to clean up, you can simply execute [ORACLE_HOME]/sqlplus/demo/demodrop.sql. This will
drop the five tables and exit SQL*Plus.

Creating the Schema without the Script

In the event you do not have access to demobld.sql, the following is sufficient to run the examples in this
book:

CREATE TABLE EMP
(EMPNO NUMBER(4) NOT NULL,
ENAME VARCHAR2(10),

JOB VARCHAR2(9),

MGR NUMBER(4),

HIREDATE DATE,

SAL NUMBER(7, 2),

COMM NUMBER(7, 2),

DEPTNO NUMBER(2)

b

INSERT INTO EMP VALUES (7369, 'SMITH', 'CLERK', 7902,
TO DATE('17-DEC-1980', 'DD-MON-YYYY'), 800, NULL, 20);
INSERT INTO EMP VALUES (7499, 'ALLEN', 'SALESMAN', 7698,
TO_DATE('20-FEB-1981', 'DD-MON-YYYY'), 1600, 300, 30);
INSERT INTO EMP VALUES (7521, 'WARD', 'SALESMAN', 7698,
TO DATE('22-FEB-1981', 'DD-MON-YYYY'), 1250, 500, 30);
INSERT INTO EMP VALUES (7566, 'JONES', 'MANAGER', 7839,
TO DATE('2-APR-1981', 'DD-MON-YYYY'), 2975, NULL, 20);
INSERT INTO EMP VALUES (7654, 'MARTIN', 'SALESMAN', 7698,
TO DATE('28-SEP-1981', 'DD-MON-YYYY'), 1250, 1400, 30);
INSERT INTO EMP VALUES (7698, 'BLAKE', 'MANAGER', 7839,
TO DATE('1-MAY-1981', 'DD-MON-YYYY'), 2850, NULL, 30);
INSERT INTO EMP VALUES (7782, 'CLARK', 'MANAGER', 7839,
TO DATE('9-JUN-1981', 'DD-MON-YYYY'), 2450, NULL, 10);
INSERT INTO EMP VALUES (7788, 'SCOTT', 'ANALYST', 7566,
TO DATE('09-DEC-1982', 'DD-MON-YYYY'), 3000, NULL, 20);
INSERT INTO EMP VALUES (7839, 'KING', 'PRESIDENT', NULL,
TO DATE('17-NOV-1981', 'DD-MON-YYYY'), 5000, NULL, 10);
INSERT INTO EMP VALUES (7844, 'TURNER', 'SALESMAN', 7698,

xXxxiii

www.it-ebooks.info

http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

TO DATE('8-SEP-1981', 'DD-MON-YYYY'), 1500, 0, 30);
INSERT INTO EMP VALUES (7876, 'ADAMS', 'CLERK', 7788,
TO_DATE('12-JAN-1983", 'DD-MON-YYYY'), 1100, NULL, 20);
INSERT INTO EMP VALUES (7900, 'JAMES', 'CLERK', 7698,
TO DATE('3-DEC-1981', 'DD-MON-YYYY'), 950, NULL, 30);
INSERT INTO EMP VALUES (7902, 'FORD', 'ANALYST', 7566,
TO DATE('3-DEC-1981', 'DD-MON-YYYY'), 3000, NULL, 20);
INSERT INTO EMP VALUES (7934, 'MILLER', 'CLERK', 7782,
TO DATE('23-JAN-1982', 'DD-MON-YYYY'), 1300, NULL, 10);

CREATE TABLE DEPT
(DEPTNO NUMBER(2),
DNAME VARCHAR2(14),
LOC VARCHAR2(13)

b

INSERT INTO DEPT VALUES (10, 'ACCOUNTING', 'NEW YORK');
INSERT INTO DEPT VALUES (20, 'RESEARCH', 'DALLAS");
INSERT INTO DEPT VALUES (30, 'SALES', "CHICAGO");

INSERT INTO DEPT VALUES (40, 'OPERATIONS', 'BOSTON');

If you create the schema by executing the commands above, do remember to go back to the previous
subsection and execute the commands to create the constraints.

Setting Your Environment

Most of the examples in this book are designed to run 100 percent in the SQL*Plus environment. Other
than SQL*Plus though, there is nothing else to set up and configure. I can make a suggestion, however,
on using SQL*Plus. Almost all of the examples in this book use DBMS_OUTPUT in some fashion. In order for
DBMS_OUTPUT to work, the SQL*Plus command

SQL> set serveroutput on

must be issued. If you are like me, typing this in each and every time would quickly get tiresome.
Fortunately, SQL*Plus allows us to setup a login.sql file, a script that is executed each and every time we
start SQL*Plus. Further, it allows us to set an environment variable, SQLPATH, so that it can find this
login.sql script, no matter what directory it is in.

The login.sql script I use for all examples in this book is:

define _editor=vi

set serveroutput on size 1000000
set trimspool on

set long 5000

set linesize 100

set pagesize 9999

column plan_plus_exp format a80
column global name new_value gname
set termout off

define gname=idle

column global name new_value gname
select lower(user) || '@"' || substr(global name, 1, decode(dot, 0, length(global name),
dot-1)) global name

XXXiV

www.it-ebooks.info

http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

from (select global name, instr(global name,'.') dot from global name);
set sqlprompt '&gname> '
set termout on

An annotated version of this file is as follows:

* define _editor=vi - Set up the default editor SQL*Plus would use. You may set that to be your
favorite text editor (not a word processor) such as Notepad or emacs.

* set serveroutput on size unlimited - Enable DBMS_OUTPUT to be on by default (hence we don't have
to type set serveroutput on every time). Also set the default buffer size to be as large as possible.

* set trimspool on - When spooling text, lines will be blank-trimmed and not fixed width. If this is
set off (the default), spooled lines will be as wide as your linesize setting

* setlong 5000 - Sets the default number of bytes displayed when selecting LONG and CLOB columns.
* setlinesize 100 - Set the width of the lines displayed by SQL*Plus to be 100 characters.

* set pagesize 9999 - Set the pagesize, which controls how frequently SQL*Plus prints out headings,
to a big number (we get one set of headings per page).

* column plan_plus_exp format a80 - This sets the default width of the explain plan output we
receive with AUTOTRACE. a80 is generally wide enough to hold the full plan.

The next bit in the login.sql sets up my SQL*Plus prompt for me:

define gname=idle
column global name new_value gname
select lower(user) || '@' || substr(global name, 1, decode(dot, 0, length(global name),
dot-1)) global name
from (select global name, instr(global name,'.') dot from global name);

set sqlprompt '&gname> '

The directive column global_name new_value gname tells SQL*Plus to take the last value it retrieves
for any column named global_name, and place it into the substitution variable gname. I then select the
global name out of the database, and concatenate this with the username I am logged in with. That
makes my prompt look like this

ops$tkyte@oraiigr2>

so I know who I am as well as where I am.

Setting up Autotrace in SQL*Plus

AUTOTRACE is a facility within SQL*Plus to show us the explain plan of the queries we've executed, and
the resources they used. This book makes extensive use of this facility. There is more than one way to get
AUTOTRACE configured.

www.it-ebooks.info

http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

Initial Setup
This is what I like to do to get AUTOTRACE working:
e cd [ORACLE_HOME]/rdbms/admin
* log into SQL*Plus as SYSTEM
* run@utlxplan
e run CREATE PUBLIC SYNONYM PLAN_TABLE FOR PLAN_ TABLE;
e runGRANT ALL ON PLAN_TABLE TO PUBLIC;

You can replace the GRANT TO PUBLIC with some user if you want. By making it public, you let
anyone trace using SQL*Plus (not a bad thing, in my opinion). This prevents every user from having to
install their own plan table. The alternative is for you to run @utlxplan in every schema from which you
want to use AUTOTRACE.

The next step is creating and granting the PLUSTRACE role:

e cd [ORACLE_HOME]/sqlplus/admin

* loginto SQL*Plus as SYS or AS SYSDBA
* run@plustrce

¢ run GRANT PLUSTRACE TO PUBLIC;

Again, you can replace PUBLIC in the GRANT command with some user if you want.

Controlling the Report

You can automatically get a report on the execution path used by the SQL optimizer and the statement
execution statistics. The report is generated after successful SQL DML (that is, SELECT, DELETE, UPDATE,
MERGE, and INSERT) statements. It is useful for monitoring and tuning the performance of these
statements.

You can control the report by setting the AUTOTRACE system variable.

e SET AUTOTRACE OFF - No AUTOTRACE report is generated. This is the default.
e SET AUTOTRACE ON EXPLAIN - The AUTOTRACE report shows only the optimizer execution path.

* SET AUTOTRACE ON STATISTICS - The AUTOTRACE report shows only the SQL statement execution
statistics.

e SET AUTOTRACE ON - The AUTOTRACE report includes both the optimizer execution path and the
SQL statement execution statistics.

e SET AUTOTRACE TRACEONLY - Like SET AUTOTRACE ON, but suppresses the printing of the user's query
output, if any.

Setting up Statspack

StatsPack is designed to be installed when connected as SYSDBA (CONNECT/AS SYSDBA). In order to install,
you must be able to connect in the SYSDBA role. In many installations, installing StatsPack will be a task
that you must ask the DBA or administrators to perform.

XXXVi

www.it-ebooks.info

http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

Once you have the ability to connect, installing StatsPack is trivial. You simply run @spcreate.sql.
This script will be found in [ORACLE_HOME] \rdbms\admin and should be executed when connected as
SYSDBA via SQL*Plus.

You'll need to know three pieces of information before running the spcreate.sql script. They are:

* The password you would like to use for the PERFSTAT schema that will be created
* The default tablespace you would like to use for PERFSTAT
e The temporary tablespace you would like to use for PERFSTAT

Running the script will look something like this:
$ sqlplus / as sysdba

SQL*Plus: Release 11.2.0.1.0 Production on Fri May 28 10:52:52 2010

Copyright (c) 1982, 2009, Oracle. All rights reserved.

Connected to:

Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

sys%O0RA11GR2> @spcreate

Choose the PERFSTAT user's password
Not specifying a password will result in the installation FAILING
Enter value for perfstat password:

. <output omitted for brevity> ..

The script will prompt you for the needed information as it executes. In the event you make a typo
or inadvertently cancel the installation, you should use spdrop.sql found in $0RACLE_HOME/rdbms/admin
to remove the user and installed views prior to attempting another install of StatsPack. The StatsPack
installation will create a file called spcpkg.lis. You should review this file for any possible errors that
might have occurred. The user, views, and PL/SQL code should install cleanly, however, as long as you
supplied valid tablespace names (and didn't already have a user PERFSTAT).

Custom Scripts

In this section, I will describe the requirements (if any) needed by various scripts used throughout this
book. As well, we will investigate the code behind the scripts.

Runstats

Runstats is a tool I developed to compare two different methods of doing the same thing and show
which one is superior. You supply the two different methods and Runstats does the rest. Runstats
simply measures three key things:

* Wall clock or elapsed time— This is useful to know, but not the most important piece of
information.

» System statistics—This shows, side by side, how many times each approach did something (such
as a parse call, for example) and the difference between the two.

* Latching—This is the key output of this report.

XXXVii

www.it-ebooks.info

mailto:@spcreate.sql
http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

As we’ll see in this book, latches are a type of lightweight lock. Locks are serialization devices.
Serialization devices inhibit concurrency. Applications that inhibit concurrency are less scalable, can
support fewer users, and require more resources. Our goal is always to build applications that have the
potential to scale—ones that can service one user as well as 1,000 or 10,000. The less latching we incur in
our approaches, the better off we will be. I might choose an approach that takes longer to run on the wall
clock but that uses 10 percent of the latches. I know that the approach that uses fewer latches will scale
substantially better than the approach that uses more latches.

Runstats is best used in isolation; that is, on a single-user database. We will be measuring statistics
and latching (locking) activity that result from our approaches. We do not want other sessions to
contribute to the system’s load or latching while this is going on. A small test database is perfect for these
sorts of tests. I frequently use my desktop PC or laptop, for example.

Note | believe all developers should have a test bed database they control to try ideas on, without needing to
ask a DBA to do something all of the time. Developers definitely should have a database on their desktop, given
that the licensing for the personal developer version is simply “use it to develop and test with, do not deploy, and
you can just have it.” This way, there is nothing to lose! Also, I've taken some informal polls at conferences and
seminars. Virtually every DBA out there started as a developer! The experience and training developers could get
by having their own database—being able to see how it really works—pays dividends in the long run.

In order to use Runstats, you need to set up access to several V$ views, create a table to hold the
statistics, and create the Runstats package. You will need access to four V$ tables (those magic, dynamic
performance tables): V$STATNAME, V$MYSTAT, V$TIMER and V$LATCH. Here is a view I use:

create or replace view stats
as select 'STAT...' || a.name name, b.value
from v$statname a, v$mystat b
where a.statistic# = b.statistic#
union all
select 'LATCH.' || name, gets
from v$latch
union all
select 'STAT...Elapsed Time', hsecs from v$timer;

Note The actual object names you need to be granted access to will be V_$STATNAME, V_$MYSTAT, and So
on—that is, the object name to use in the grant will start with v_$ not v$. The v$ name is a synonym that points
to the underlying view with a name that starts with v_$. So, V$STATNAME is a synonym that points to V_$STATNAME
—aview. You need to be granted access to the view.

You can either have SELECT on V$STATNAME, V$MYSTAT, V$TIMER, and V$LATCH granted directly to you
(so you can create the view yourself) or you can have someone that does have SELECT on those objects
create the view for you and grant SELECT privileges on the view to you.

Xxxviii

www.it-ebooks.info

http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

Once you have that set up, all you need is a small table to collect the statistics:

create global temporary table run_stats
(runid varchar2(1s),

name varchar2(80),

value int)

on commit preserve rows;
Last, you need to create the package that is Runstats. It contains three simple API calls:
* RS_START (Runstats Start) to be called at the beginning of a Runstats test
e RS_MIDDLE to be called in the middle, as you might have guessed
e RS_STOP to finish off and print the report

The specification is as follows:

ops$tkyte%0RA11GR2> create or replace package runstats_pkg

2 as

3 procedure rs_start;

4 procedure rs_middle;

5 procedure rs stop(p_difference threshold in number default 0);
6 end;

7/

Package created.

The parameter, p_difference_threshold, is used to control the amount of data printed at the end.
Runstats collects statistics and latching information for each run, and then prints a report of how much
of a resource each test (each approach) used and the difference between them. You can use this input
parameter to see only the statistics and latches that had a difference greater than this number. By
default, this is zero, and you see all of the outputs.

Next, we'll look at the package body procedure by procedure. The package begins with some global
variables. These will be used to record the elapsed times for our runs:

ops$tkyte%ORA11GR2> create or replace package body runstats_pkg
as

g start number;
g runl number;
g run2 number;

~NouvipbhwnN

Next is the RS_START routine. This will simply clear out our statistics holding table and then populate
it with the "before" statistics and latches. It will then capture the current timer value, a clock of sorts that
we can use to compute elapsed times in hundredths of seconds:

8 procedure rs_start

9 is

10 begin

11 delete from run_stats;

12

13 insert into run_stats

14 select 'before', stats.* from stats;
15

www.it-ebooks.info

XXXiX

http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

16 g start := dbms_utility.get cpu_time;
17 end;
18

Next is the RS_MIDDLE routine. This procedure simply records the elapsed time for the first run of our
testin G_RUN1. Then it inserts the current set of statistics and latches. If we were to subtract these values
from the ones we saved previously in RS_START, we could discover how many latches the first method
used, how many cursors (a statistic) it used, and so on.

Last, it records the start time for our next run:

19 procedure rs _middle

20 is

21 begin

22 g runl := (dbms_utility.get cpu_time-g start);
23

24 insert into run_stats

25 select 'after 1', stats.* from stats;

26 g start := dbms_utility.get cpu_time;

27

28 end;

29

The next and final routine in this package is the RS_STOP routine. Its job is to print out the aggregate
CPU times for each run and then print out the difference between the statistic/latching values for each
of the two runs (only printing out those that exceed the threshold):

30 procedure rs_stop(p_difference threshold in number default 0)

31 is

32 begin

33 g run2 := (dbms_utility.get cpu_time-g start);

34

35 dbms_output.put_line

36 ('Run ran in " || g runl || ' cpu hsecs');

37 dbms_output.put_line

38 ('Run2 ran in " || g run2 || ' cpu hsecs');

39 if (g run2 <> 0)

40 then

41 dbms_output.put_line

42 ('run 1 ran in ' || round(g_runi/g_run2*100,2) ||
43 '% of the time');

44 end if;

45 dbms_output.put_line(chr(9));

46

47 insert into run_stats

48 select 'after 2', stats.* from stats;

49

50 dbms_output.put_line

51 (rpad('Name', 30) || lpad('Runi’, 12) ||

52 lpad('Run2', 12) || lpad('Diff', 12));

53

54 for x in

55 (select rpad(a.name, 30) ||

56 to_char(b.value-a.value, '999,999,999') ||
57 to_char(c.value-b.value, '999,999,999') ||

www.it-ebooks.info

http://www.it-ebooks.info

58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

to_char(

from run_stat
where a.name
and b.name
and a.runid
and b.runid
and c.runid

and abs((c.
> p_di
order by abs(
) loop
dbms_output.p
end loop;

dbms_output.put_1
dbms_output.put_1
(' 'Runi latches t
dbms_output.put_1
(lpad('Run1', 1

lpad('Diff', 1

for x in

(select to_char(
to_char(
to_char(
to_char(

from (select

from
where
and
and
and
and
and

) loop
dbms_output.p
end loop;
end;

end;
/

Package body created.

SETTING UP YOUR ENVIRONMENT

((c.value-b.value)-(b.value-a.value)),
'999,999,999") data
s a, run_stats b, run_stats c
b.name
c.name
'before’
‘after 1’
'after 2'

value-b.value) - (b.value-a.value))
fference_threshold
(c.value-b.value)-(b.value-a.value))

ut line(x.data);

ine(chr(9));

ine

otal versus runs -- difference and pct');
ine

2) || lpad('Run2', 12) ||

2) || Tpad('Pet’, 10)');

runi, '999,999,999"') ||
run2, '999,999,999"') ||
diff, '999,999,999") ||
round(runi/decode(run2, O,

to_number(0), run2) *100,2), '99,999.99') || '%' data
sum(b.value-a.value) runi, sum(c.value-b.value) run2,
sum((c.value-b.value)-(b.value-a.value)) diff

run_stats a, run_stats b, run_stats c
a.name = b.name

b.name = c.name

a.runid = 'before'

b.runid = 'after 1'

c.runid = 'after 2'

a.name like 'LATCH%'

ut line(x.data);

Now you are ready to use Runstats. By way of example, we'll demonstrate how to use Runstats

to see which is more efficient, a single bulk INSERT versus row-by-row processing. We’ll start by setting
up two tables into which we’ll insert 1,000,000 rows (the BIG_TABLE creation script is provided later in
this section):

www.it-ebooks.info

http://www.it-ebooks.info

xlii

SETTING UP YOUR ENVIRONMENT

ops$tkyte%0RA11GR2> create table t1
2 as
3 select * from big table.big table
4 where 1=0;

Table created.

ops$tkyte%ORA11GR2> create table t2
2 as
3 select * from big table.big table
4 where 1=0;

Table created.

And now we are ready to perform the first method of inserting the records, using a single SQL
statement. We start by calling RUNSTATS PKG.RS_START:

ops$tkyte%0RA11GR2> exec runstats_pkg.rs_start;
PL/SOL procedure successfully completed.

ops$tkyte%ORA11GR2> insert into t1
2 select *
3 from big table.big table
4 where rownum <= 1000000;
1000000 rows created.

ops$tkyte%0RA11GR2> commit;
Commit complete.

Now we are ready to perform the second method, row by row insertion of data:

ops$tkyte%0RA11GR2> exec runstats_pkg.rs_middle;
PL/SOL procedure successfully completed.

ops$tkyte%0RA11GR2> begin

2 for x in (select *

3 from big table.big table
4 where rownum <= 1000000)
5 loop

6 insert into t2 values X;

7 end loop;

8 commit;

9 end;

10 /

PL/SOL procedure successfully completed.
And finally, we’ll generate the report:

ops$tkyte%ORA11GR2> exec runstats_pkg.rs stop(1000000)
Runl ran in 411 cpu hsecs

Run2 ran in 6192 cpu hsecs

run 1 ran in 6.64% of the time

Name Runi Run2 Diff
STAT...opened cursors cumulati 213 1,000,365 1,000,152
STAT...execute count 213 1,000,372 1,000,159

www.it-ebooks.info

http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

LATCH. shared pool 2,820 1,006,421 1,003,601
STAT...recursive calls 3,256 1,014,103 1,010,847
STAT...physical read total byt 122,503,168 124,395,520 1,892,352
STAT...cell physical IO interc 122,503,168 124,395,520 1,892,352
STAT...physical read bytes 122,503,168 124,395,520 1,892,352

STAT...db block changes 110,810 2,087,125 1,976,315
STAT...file io wait time 5,094,828 438,102 -4,656,726
LATCH.cache buffers chains 571,469 5,510,416 4,938,947
STAT...undo change vector size 3,885,808 67,958,316 64,072,508
STAT...redo size 120,944,520 379,497,588 258,553,068

Runi latches total versus runs -- difference and pct
Run1 Run2 Diff Pct
804,522 6,840,599 6,036,077 11.76%

PL/SOL procedure successfully completed.

This confirms you have the RUNSTATS_PKG package installed and shows you why you should use a
single SQL statement instead of a bunch of procedural code when developing applications whenever
possible!

Mystat

Mystat.sql and its companion, mystat2.sql, are used to show the increase in some Oracle “statistic”
before and after some operation. Mystat.sql captures the begin value of some statistic

set echo off

set verify off

column value new val V
define S="81"

set autotrace off

select a.name, b.value

from v$statname a, v$mystat b

where a.statistic# = b.statistic#

and lower(a.name) like '%' || lower('8S')||'%"
/

set echo on

and mystat2.sql reports the difference (&V is populated by running the first script, mystat.sql-it
uses the SQL*Plus NEW_VAL feature for that. It contains the last VALUE selected from the query above):

set echo off

set verify off

select a.name, b.value V, to_char(b.value-&V,'999,999,999,999') diff
from v$statname a, v$mystat b

where a.statistic# = b.statistic#

and lower(a.name) like '%' || lower('8S')||'%"

/

set echo on

www.it-ebooks.info

xliii

http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

For example, to see how much redo is generated by some UPDATE statement we can:

big table@ORA11GR2> @mystat "redo size"
big table@ORA11GR2> set echo off

redo size 496

big table@ORA11CR2> update big table set owner = lower(owner)
2 where rownum <= 1000;

1000 rows updated.

big table@ORA11GR2> @mystat2
big table@ORA11GR2> set echo off

redo size 89592 89,096

This shows our UPDATE of 1,000 rows generated 89,096 bytes of redo.

Show_Space

The SHOW_SPACE routine prints detailed space utilization information for database segments. Here is the
interface to it:

ops$tkyte@ORA11GR2> desc show_space
PROCEDURE show_space

Argument Name Type In/Out Default?
P_SEGNAME VARCHAR2 IN

P_OWNER VARCHAR2 IN DEFAULT
P_TYPE VARCHAR2 IN DEFAULT
P_PARTITION VARCHAR2 IN DEFAULT

The arguments are as follows:
* P_SEGNAME - Name of the segment—the table or index name, for example.
* P_OWNER - Defaults to the current user, but you can use this routine to look at some other schema.

e P_TYPE - Defaults to TABLE and represents the type of object you are looking at. For example,
select distinct segment_type from dba_segments lists valid segment types.

e P_PARTITION - Name of the partition when you show the space for a partitioned object. SHOW_SPACE
shows space for only a partition at a time.

The output of this routine looks as follows, when the segment resides in an Automatic Segment
Space Management (ASSM) tablespace:

xliv

www.it-ebooks.info

http://www.it-ebooks.info

big table@ORA11GR2> exec show_space('BIG_TABLE');

Unformatted Blocksovevevunnnnnnnnn.
FS1 Blocks (0-25) wvveveveeneennneennns
FS2 Blocks (25-50) weeevininnneeernnnnnes
FS3 Blocks (50-75) cveeveeeeneennneennns
FS4 Blocks (75-200)«cceeueeenecennecnnns
Full Blocks @ cieiiiiiiiininenennns
Total BloCKS.eeeeeenenenneneneneannnnns
Total Bytes...ovvviiiiiiiiiiiiiiieeennn,
Total MByteS.....ceviiiiereriiiiieeennn,
Unused BloCKS..ueeeeeneneeeneeeaeanannns
Unused Bytes....ovviiiiiiiiiiiiienennn,
Last Used Ext FileId....ceveeeenenennn..
Last Used Ext BlockId....eeeeeeeueunnnnn
Last Used BloCK..eeeueeeeeeeeeeeeennnnn

PL/SOL procedure successfully completed.

The items reported are as follows:

15,360
125,829,120
120

728
5,963,776

SETTING UP YOUR ENVIRONMENT

* Unformatted Blocks - The number of blocks that are allocated to the table below the high water
mark, but have not been used. Add unformatted and unused blocks together to get a total count
of blocks allocated to the table but never used to hold data in an ASSM object.

* FS1 Blocks-FS4 Blocks — Formatted blocks with data. The ranges of numbers after their name
represent the emptiness of each block. For example, (0-25) is the count of blocks that are between

0 and 25 percent empty.

e Full Blocks - The number of blocks that are so full that they are no longer candidates for future

inserts.

* Total Blocks, Total Bytes, Total Mbytes - The total amount of space allocated to the segment
measured in database blocks, bytes, and megabytes.

* Unused Blocks, Unused Bytes — Represents a portion of the amount of space never used. These are
blocks allocated to the segment but are currently above the high water mark of the segment

e Last Used Ext Fileld — The file ID of the file that contains the last extent that contains data.
* Last Used Ext Blockld — The block ID of the beginning of the last extent; the block ID within the

last-used file.

e Last Used Block — The block ID offset of the last block used in the last extent.

When you use SHOW_SPACE to look at objects in user space managed tablespaces, the output

resembles this:

big table@ORA11GR2> exec show_space('BIG TABLE')

Free BlocKS. . ueeeer e eninenenenenennnnnn
Total BloCKS.eeeereneneninenenenennnnnns
Total Bytes...ovvveiiiiiiiiiiiiienennn,
Total MByteS.....cevviiiireriiiiinnennn,
Unused BloCKS..veeeneneneeeneeeananannns
Unused Bytes....ovveiiiiiiiiiiiiienennn,
Last Used Ext FileId....ceveevenenennn..

www.it-ebooks.info

1
147,456

1,207,959,552

1,152
1,616
13,238,272
7

http://www.it-ebooks.info

xlvi

SETTING UP YOUR ENVIRONMENT

Last Used Ext BlockId......cevvveunennn. 139,273
Last Used BlocK..veeiieeieereenennannns 6,576

PL/SOL procedure successfully completed.

The only difference is the Free Blocks item at the beginning of the report. This is a count of the
blocks in the first freelist group of the segment. My script reports only on this freelist group. You would
need to modify the script to accommodate multiple freelist groups.

The commented code follows. This utility is a simple layer on top of the DBMS_SPACE API in
the database.

create or replace procedure show_space
(p_segname in varchar2,
p_owner in varchar2 default user,
p_type in varchar2 default 'TABLE',
p_partition in varchar2 default NULL)
-- this procedure uses authid current user so it can query DBA *
-- views using privileges from a ROLE and so it can be installed
-- once per database, instead of once per user that wants to use it
authid current_user

as
1 free blks number;
1 total blocks number;
1 total bytes number;
1 unused blocks number;
1 unused_bytes number;
1 LastUsedExtFileld number;
1 LastUsedExtBlockId number;
1_LAST_USED BLOCK number;
1 segment_space_mgmt varchar2(255);

1 unformatted blocks number;

1 unformatted bytes number;

1 fsi blocks number; 1 fsi bytes number;

1 fs2 blocks number; 1 fs2 bytes number;

1 fs3 blocks number; 1 fs3_bytes number;

1 fs4 blocks number; 1 fs4 bytes number;

1 full blocks number; 1 full bytes number;

-- inline procedure to print out numbers nicely formatted
-- with a simple label
procedure p(p_label in varchar2, p num in number)

is
begin
dbms_output.put line(rpad(p_label,4o0,'.") ||
to_char(p_num, '999,999,999,999'));
end;
begin
-- this query is executed dynamically in order to allow this procedure
-- to be created by a user who has access to DBA_SEGMENTS/TABLESPACES
-- via a role as is customary.
-- NOTE: at runtime, the invoker MUST have access to these two
-- views!
-- this query determines if the object is an ASSM object or not
begin

www.it-ebooks.info

http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

execute immediate
'select ts.segment_space_management
from dba_segments seg, dba_tablespaces ts
where seg.segment_name = :p_segname
and (:p_partition is null or
seg.partition_name = :p partition)
and seg.owner = :p_owner
and seg.tablespace name = ts.tablespace_name'
into 1_segment_space_mgmt
using p_segname, p_partition, p_partition, p_owner;
exception
when too_many rows then
dbms_output.put_line
('This must be a partitioned table, use p_partition => ');
return;
end;

-- if the object is in an ASSM tablespace, we must use this API
-- call to get space information, else we use the FREE_BLOCKS
-- API for the user managed segments
if 1 _segment_space mgmt = 'AUTO'
then
dbms_space.space_usage
(p_owner, p_segname, p_type, 1 unformatted blocks,
1 unformatted bytes, 1 fsi blocks, 1 fsi bytes,
1 fs2 blocks, 1 fs2 bytes, 1 fs3_blocks, 1 fs3 bytes,
1 fs4 blocks, 1 fs4 bytes, 1 full blocks, 1 full bytes, p partition);

p('Unformatted Blocks ', 1 unformatted blocks);
p('FS1 Blocks (0-25) ', 1 fsi blocks);
p('FS2 Blocks (25-50) ', 1 fs2 blocks);
p('FS3 Blocks (50-75) ', 1 fs3 blocks);
p('FS4 Blocks (75-100)', 1 fs4 blocks);

p('Full Blocks , 1 full blocks);
else

dbms_space.free_blocks(
segment_owner => p_owner,
segment_name => p_segname,
segment_type => p_type,
freelist group_id => 0,
free_blks => 1 free blks);

p('Free Blocks', 1 free blks);
end if;

-- and then the unused space API call to get the rest of the
-- information
dbms_space.unused_space

(segment_owner => p_owner,
segment_name => p_segname,
segment_type => p_type,
partition_name => p_partition,
total blocks => 1 total_blocks,

www.it-ebooks.info

xlvii

http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

total_bytes > 1 total_bytes,

unused_blocks > 1 unused_blocks,
unused_bytes => 1 unused_bytes,
LAST_USED EXTENT FILE_ID => 1 LastUsedExtFileld,
LAST_USED_EXTENT BLOCK ID => 1 LastUsedExtBlockId,
LAST_USED BLOCK => 1_LAST USED BLOCK);

p('Total Blocks', 1 total blocks);
p('Total Bytes', 1 total bytes);
p('Total MBytes', trunc(l_total bytes/1024/1024));
p('Unused Blocks', 1 unused blocks);
p('Unused Bytes', 1 unused bytes);
p('Last Used Ext FileId', 1 LastUsedExtFileld);
p('Last Used Ext BlockId', 1 LastUsedExtBlockId);
p('Last Used Block', 1 LAST USED BLOCK);
end;

Big_Table

For examples throughout this book, I use a table called BIG_TABLE. Depending on which system I use,
this table has between one record and four million records and varies in size from 200MB to 800MB. In
all cases, the table structure is the same.

To create BIG_TABLE, I wrote a script that does the following:

* Creates an empty table based on ALL_OBJECTS. This dictionary view is used to populate the
BIG TABLE.

* Makes this table NOLOGGING. This is optional. I did it for performance. Using NOLOGGING mode for a
test table is safe; you won't use it in a production system, so features like Oracle Data Guard will
not be enabled.

* Populates the table by seeding it with the contents of ALL_OBJECTS and then iteratively inserting
into itself, approximately doubling its size on each iteration.

* Creates a primary key constraint on the table.
* Gathers statistics.

To build the BIG_TABLE table, you can run the following script at the SQL*Plus prompt and pass in
the number of rows you want in the table. The script will stop when it hits that number of rows.

create table big table
as
select rownum id, a.*
from all objects a
where 1=0
/
alter table big table nologging;

declare

1 cnt number;

1 rows number := &1;
begin

insert /*+ append */

xlviii

www.it-ebooks.info

http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

into big_table

select rownum, a.*
from all objects a

where rownum <= &1;

1 cnt := sql%rowcount;
commit;

while (1_cnt < 1 _rows)
loop
insert /*+ APPEND */ into big_table
select rownum+l cnt,
OWNER, OBJECT_NAME, SUBOBJECT NAME, OBJECT_ID, DATA OBJECT ID,
OBJECT_TYPE, CREATED, LAST DDL_TIME, TIMESTAMP, STATUS,
TEMPORARY, GENERATED, SECONDARY, NAMESPACE, EDITION_ NAME
from big table
where rownum <= 1 rows-1_cnt;
1 cnt := 1 cnt + sql%rowcount;
commit;
end loop;
end;
/
alter table big table add constraint
big table pk primary key(id);

exec dbms_stats.gather table stats(user, 'BIG TABLE', estimate_percent=> 1);

I estimated baseline statistics on the table. The index associated with the primary key will have
statistics computed automatically when it is created.

Coding Conventions

The one coding convention I use in this book that I would like to point out is how I name variables in
PL/SQL code. For example, consider a package body like this:

create or replace package body my pkg
as
g variable varchar2(25);

procedure p(p_variable in varchar2)
is
1 variable varchar2(25);
begin
null;
end;
end;
/

Here I have three variables: a global package variable, G_VARIABLE; a formal parameter to the
procedure, P_VARIABLE; and a local variable, L_VARIABLE. I name my variables after the scope they are
contained in. All globals begin with G_, parameters with P_, and local variables with L_. The main reason

xlix

www.it-ebooks.info

http://www.it-ebooks.info

SETTING UP YOUR ENVIRONMENT

for this is to distinguish PL/SQL variables from columns in a database table. For example, a procedure
such as

create procedure p(ENAME in varchar2)
as
begin
for x in (select * from emp where ename = ENAME) loop
Dbms_output.put line(x.empno);
end loop;
end;

would always print out every row in the EMP table where ENAME is not null. SQL sees ename = ENAME, and
compares the ENAME column to itself (of course). We could use ename = P.ENAME; that is, qualify the
reference to the PL/SQL variable with the procedure name, but this is too easy to forget, leading to
errors.

Ijust always name my variables after the scope. That way, I can easily distinguish parameters from
local variables and global variables, in addition to removing any ambiguity with respect to column
names and variable names.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1

Developing Successful
Oracle Applications

I spend the bulk of my time working with Oracle database software and, more to the point, with people
who use this software. Over the last eighteen years, I've worked on many projects—successful ones as
well as complete failures—and if I were to encapsulate my experiences into a few broad statements,
here’s what they would be:

* An application built around the database—dependent on the database—will
succeed or fail based on how it uses the database. As a corollary to this—all
applications are built around databases; I can’t think of a single useful application
that doesn’t store data persistently somewhere.

* Applications come, applications go. The data, however, lives forever. It is not
about building applications; it really is about the data underneath these
applications.

* Adevelopment team needs at its heart a core of database-savvy coders who are
responsible for ensuring the database logic is sound and the system is built to
perform from day one. Tuning after the fact—tuning after deployment—means
you did not build it that way.

These may seem like surprisingly obvious statements, but in my experience, too many people
approach the database as if it were a black box—something that they don’t need to know about. Maybe
they have a SQL generator that will save them from the hardship of having to learn SQL. Maybe they
figure they’ll just use it like a flat file and do “keyed reads.” Whatever they assume, I can tell you that
thinking along these lines is most certainly misguided; you simply can’t get away with not understanding
the database. This chapter will discuss why you need to know about the database, specifically why you
need to understand:

e The database architecture, how it works, and what it looks like.
* What concurrency controls are, and what they mean to you.
* How to tune your application from day one.

* How some things are implemented in the database, which is not necessarily the
same as how you think they should be implemented.

* What features your database already provides and why it is generally better to use
a provided feature than to build your own.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

* Why you might want more than a cursory knowledge of SQL.

* That the DBA and developer staff are on the same team, not enemy camps trying
to outsmart each other at every turn.

Now this may seem like a long list of things to learn before you start, but consider this analogy for a
second: if you were developing a highly scalable, enterprise application on a brand-new operating
system (OS), what would be the first thing you’d do? Hopefully you answered, “Find out how this new OS
works, how things will run on it, and so on.” If that wasn’t your answer, you’d most likely fail.

Consider, for example, Windows vs. Linux. If you are a long-time Windows programmer and were
asked to develop a new application on the Linux platform, you’d have to relearn a couple of things.
Memory management is done differently. Building a server process is considerably different—under
Windows, you would develop a single process, a single executable with many threads. Under Linux, you
wouldn’t develop a single standalone executable; you’'d have many processes working together. It is true
that both Windows and Linux are operating systems. They both provide many of the same services to
developers—file management, memory management, process management, security, and so on.
However, they are very different architecturally—much of what you learned in the Windows
environment won't apply to Linux (and vice versa, to be fair). You have to unlearn to be successful. The
same is true of your database environment.

What is true of applications running natively on operating systems is true of applications that will
run on a database: understanding that database is crucial to your success. If you don’t understand what
your particular database does or how it does it, your application will fail. If you assume that because
your application ran fine on SQL Server, it will necessarily run fine on Oracle, again your application is
likely to fail. And, to be fair, the opposite is true —a scalable, well-developed Oracle application will not
necessarily run on SQL Server without major architectural changes. Just as Windows and Linux are both
operating systems but fundamentally different, Oracle and SQL Server (pretty much any database could
be noted here) are both databases but fundamentally different.

My Approach

Before we begin, I feel it is only fair that you understand my approach to development. I tend to take a
database-centric approach to problems. If I can do it in the database, I will. There are a couple of reasons
for this—the first and foremost being that I know that if I build functionality in the database, I can deploy
it anywhere. I am not aware of a popular, commercially viable server operating system on which Oracle
is not available—from Windows to dozens of UNIX and Linux systems, to AIX and more—the same exact
Oracle software and options are available. I frequently build and test solutions on my laptop, running
Oraclellg or Oracle10g under Linux or Windows on a virtual machine. I can then deploy them on a
variety of servers running the same database software but different operating systems. When I have to
implement a feature outside of the database, I find it extremely hard to deploy that feature anywhere I
want. One of the main features that makes the Java language appealing to many people—the fact that
their programs are always compiled in the same virtual environment, the Java Virtual Machine JVM),
and so are highly portable—is the exact same feature that make the database appealing to me. The
database is my virtual machine. It is my virtual operating system.

So I try to do everything I can in the database. If my requirements go beyond what the database
environment can offer, I do it in Java outside of the database. In this way, almost every operating system
intricacy will be hidden from me. I still have to understand how my “virtual machines” work (Oracle, and
occasionally a JVM)—you need to know the tools you are using—but they, in turn, worry about how best
to do things on a given OS for me.

Thus, simply knowing the intricacies of this one “virtual OS” allows you to build applications that
will perform and scale well on many operating systems. I don’t mean to imply that you can be totally
ignorant of your underlying OS, just that as a software developer building database applications you can
be fairly well insulated from it, and you will not have to deal with many of its nuances. Your DBA,

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

responsible for running the Oracle software, will be infinitely more in tune with the OS (if he or she is
not, please get a new DBA!). If you develop client-server software and the bulk of your code is outside of
the database and outside of a VM (Java virtual machines being perhaps the most popular VM), of course
you’'ll have to be concerned about your OS once again.

I have a pretty simple mantra when it comes to developing database software, one that has been
consistent for many years:

* Youshould do it in a single SQL statement if at all possible. And believe it or not, it
is almost always possible.

* Ifyoucan’tdoitin asingle SQL Statement, do it in PL/SQL—as little PL/SQL as
possible! Follow the saying that goes “more code = more bugs, less code = less
bugs.”

* Ifyoucan’tdoitin PL/SQL, try a Java stored procedure. The times this is
necessary are extremely rare nowadays with Oracle9i and above.

* Ifyoucan’tdoitinJava, doitin a C external procedure. This is most frequently
the approach when raw speed or using a third-party API written in C is needed.

* Ifyoucan’tdoitin a C external routine, you might want to seriously think about
why it is you need to do it.

Throughout this book, you will see the above philosophy implemented. We’ll use PL/SQL—and
object types in PL/SQL—to do things that SQL itself can’t do or can’t do efficiently. PL/SQL has been
around for a very long time—over twenty years of tuning (as of 2010) has gone into it; in fact, in
Oraclel0g, the PL/SQL compiler itself was rewritten to be an optimizing compiler for the first time. You’ll
find no other language so tightly coupled with SQL, nor any as optimized to interact with SQL. Working
with SQL in PL/SQL is a very natural thing—whereas in virtually every other language from Visual Basic
to Java, using SQL can feel cumbersome. It never quite feels “natural”— it’s not an extension of the
language itself. When PL/SQL runs out of steam—which is exceedingly rare today with current database
releases—we’ll use Java. Occasionally, we’ll do something in C, but typically only when C is the only
choice, or when the raw speed offered by C is required. Often, this last reason goes away with native
compilation of Java—the ability to convert your Java bytecode into operating system-specific object
code on your platform. This lets Java run just as fast as C in many cases.

The Black Box Approach

I have an idea, borne out by first-hand personal experience (meaning I made the mistake myself), as to
why database-backed software development efforts so frequently fail. Let me be clear that I'm including
here those projects that may not be documented as failures, but nevertheless take much longer to roll
out and deploy than originally planned because of the need to perform a major rewrite, re-architecture,
or tuning effort. Personally, I call such delayed projects failures: more often than not they could have
been completed on schedule (or even faster).

The single most common reason for failure is a lack of practical knowledge of the database—a basic
lack of understanding of the fundamental tool that is being used. The black box approach involves a
conscious decision to protect the developers from the database. They are actually encouraged not to
learn anything about it! In many cases, they are prevented from exploiting it. The reasons for this
approach appear to be FUD-related (Fear, Uncertainty, and Doubt). Developers have heard that
databases are “hard,” that SQL, transactions, and data integrity are “hard.” The solution—don’t make
anyone do anything hard. They treat the database as a black box and have some software tool generate
all of the code. They try to insulate themselves with many layers of protection so that they don’t have to
touch this “hard” database.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

This is an approach to database development that I've never been able to understand, in part
because, for me, learning Java and C was a lot harder then learning the concepts behind the database.
I'm now pretty good at Java and C but it took a lot more hands-on experience for me to become
competent using them than it did to become competent using the database. With the database, you
need to be aware of how it works but you don’t have to know everything inside and out. When
programming in C or Java/J2EE, you do need to know everything inside and out—and these are huge
languages.

If you are building a database application, the most important piece of software is the database. A
successful development team will appreciate this and will want its people to know about it, to
concentrate on it. Many times I've walked into a project where almost the opposite was true.

A typical scenario would be as follows:

* The developers were fully trained in the GUI tool or the language they were using
to build the front end (such as Java). In many cases, they had had weeks if not
months of training in it.

* The team had zero hours of Oracle training and zero hours of Oracle experience.
Most had no database experience whatsoever. They would also have a mandate to
be “database independent” —a mandate they couldn’t hope to follow for many
reasons. The most obvious one is they didn’t know enough about what databases
are or what they do to even find the lowest common denominator among them.

* The developers encountered massive performance problems, data integrity
problems, hanging issues, and the like (but very pretty screens).

As aresult of the inevitable performance problems, I now get called in to help solve the difficulties
(in the past, I was the cause of such issues). On one particular occasion, I couldn’t fully remember the
syntax of a new command we needed to use. I asked for the SQL Reference manual—and I was handed
an Oracle 6.0 document. The development was taking place on version 7.3, five years after the release of
version.6.0! It was all they had to work with, but this did not seem to concern them at all. Never mind the
fact that the tool they really needed to know about for tracing and tuning didn’t really exist in version 6.
Never mind the fact that features such as triggers, stored procedures, and many hundreds of others had
been added in the five years since that documentation was written. It was very easy to determine why
they needed help—fixing their problems was another issue all together.

Note Even today, | often find that the developers of database applications have spent no time reading the
documentation. On my web site, asktom.oracle.com, | frequently get questions along the lines of “what is the
syntax for ...” coupled with “we don’t have the documentation so please just tell us.” | refuse to directly answer
many of those questions, but rather point them to the online documentation freely available to anyone, anywhere
in the world. In the last 15 years, the excuses of “we don’t have documentation” or “we don’t have access to
resources” have virtually disappeared. The expansion of the Web and sites like otn.oracle.com (the Oracle
Technology Network) and groups.google.com (Internet discussion forums) makes it inexcusable to not have a full
set of documentation at your finger tips! Today, everyone has access to all of the documentation; they just have to
read it or—even easier—search it.

The very idea that developers building a database application should be shielded from the database
is amazing to me, but that attitude persists. Many people still insist that developers can’t take the time to

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

get trained in the database and, basically, that they shouldn’t have to know anything about the database.
Why? Well, more than once I've heard “... but Oracle is the most scalable database in the world, my
people don’t have to learn about it, it'll just work.” That’s true; Oracle is the most scalable database in
the world. However, I can write bad code that does not scale in Oracle as easily—if not more easily—as I
can write good, scalable code in Oracle. You can replace Oracle with any piece of software and the same
is true. This is a fact: it is easier to write applications that perform poorly than it is to write applications
that perform well. It is sometimes too easy to build a single-user system in the world’s most scalable
database if you don’t know what you are doing. The database is a tool and the improper use of any tool
can lead to disaster. Would you take a nutcracker and smash walnuts with it as if it were a hammer? You
could, but it wouldn’t be a proper use of that tool and the result would be a mess (and probably some
seriously hurt fingers). Similar effects can be achieved by remaining ignorant of your database.

I'was called into a project that was in trouble. The developers were experiencing massive
performance issues—it seemed their system was serializing many transactions, that is—so instead of
many people working concurrently, everyone was getting into a really long line and waiting for everyone
in front of them to complete. The application architects walked me through the architecture of their
system—the classic 3-tier approach. They would have a web browser talk to a middle tier application
server running Java Server Pages (JSPs). The JSPs would in turn utilize another layer—Enterprise Java
Beans (EJBs)—that did all of the SQL. The SQL in the EJBs was generated by some third-party tool and
was done in a database-independent fashion.

Now, in this system it was very hard to diagnose anything, as none of the code was instrumented or
traceable. Instrumenting code is the fine art of making every other line of developed code be debug code
of some sort—so when you are faced with performance or capacity or even logic issues, you can track
down exactly where the problem is. In this case, we could only locate the problem somewhere between
the browser and the database—in other words, the entire system was suspect. The Oracle database is
heavily instrumented, but the application needs to be able to turn the instrumentation on and off at
appropriate points—something it was not designed to do.

So, we were faced with trying to diagnose a performance issue with not too many details, just what
we could glean from the database itself. Fortunately, in this case it was fairly easy. When someone who
knew the Oracle V$ tables (the V$ tables are one way Oracle exposes its instrumentation, its statistics, to
us) reviewed them, it became apparent that the major contention was around a single table—a queue
table of sorts. The application would place records into this table while another set of processes would
pull the records out of this table and process them. Digging deeper, we found a bitmap index on a
column in this table (see the later chapter on indexing for more information about bitmapped indexes).
The reasoning was that this column, the processed-flag column, had only two values—Y and N. As
records were inserted, they would have a value of N for not processed. As the other processes read and
processed the record, they would update the N to Y to indicate that processing was done. The developers
needed to find the N records rapidly and hence knew they wanted to index that column. They had read
somewhere that bitmap indexes are for low-cardinality columns—columns that have but a few distinct
values—so it seemed a natural fit. (Go ahead, use Google to search for when to use bitmap indexes; low-
cardinality will be there over and over.)

But that bitmap index was the cause of all of their problems. In a bitmap index, a single key entry
points to many rows, hundreds or more of them. If you update a bitmap index key, the hundreds of
records that key points to are locked as well. So, someone inserting the new record with N would lock the
N record in the bitmap index, effectively locking hundreds of other N records as well. Meanwhile, the
process trying to read this table and process the records would be prevented from modifying some N
record to be a Y (processed) record, because in order for it to update this column from N to Y, it would
need to lock that same bitmap index key. In fact, other sessions just trying to insert a new record into this
table would be blocked as well, as they would be attempting to lock the same bitmap key entry. In short,
the developers had created a table that at most one person would be able to insert or update against at a
time! We can see this easily using a simple scenario.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Note | will use autonomous transactions throughout this book to demonstrate locking, blocking, and
concurrency issues. It is my firm belief that autonomous transactions are a feature that Oracle should not have
exposed to developers—for the simple reason that most developers do not know when and how to use them
properly. The improper use of an autonomous transaction can and will lead to logical data-integrity corruption
issues. Beyond using them as a demonstration tool, autonomous transactions have exactly one other use—as an
error-logging mechanism. If you wish to log an error in an exception block, you need to log that error into a table
and commit it—without committing anything else. That would be a valid use of an autonomous transaction. If you
find yourself using an autonomous transaction outside the scope of logging an error or demonstrating a concept,
you are almost surely doing something very wrong.

Here, I will use an autonomous transaction in the database to have two concurrent transactions in a
single session. An autonomous transaction starts a “subtransaction” separate and distinct from any
already established transaction in the session. The autonomous transaction behaves as if it were in an
entirely different session—for all intents and purposes, the parent transaction is suspended. The
autonomous transaction can be blocked by the parent transaction (as we’ll see) and, further, the
autonomous transaction can’t see uncommitted modifications made by the parent transaction. For
example:

ops$tkyte%ORA11GR2>>> create table t
2 (processed flag varchar2(1)

3)5
Table created.

ops$tkyte%ORA11GR2> create bitmap index
2 t_idx on t(processed flag);
Index created.

ops$tkyte%ORA11CR2> insert into t values ('N');
1 row created.

ops$tkyte%0RA11GR2> declare
2 pragma autonomous_transaction;
3 begin
4 insert into t values ('N');
5 commit;
6 end;
7/
declare
*
ERROR at line 1:
ORA-00060: deadlock detected while waiting for resource
ORA-06512: at line 4

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Since I used an autonomous transaction and created a subtransaction, I received a deadlock—
meaning my second insert was blocked by my first insert. Had I used two separate sessions, no deadlock
would have occurred. Instead, the second insert would have just blocked and waited for the first
transaction to commit or roll back. This symptom is exactly what the project in question was facing—the
blocking, serialization issue.

So we had an issue whereby not understanding the database feature (bitmap indexes) and how it
worked doomed the database to poor scalability from the start. To further compound the problem, there
was no reason for the queuing code to ever have been written. The database has built-in queuing
capabilities and has had them since version 8.0 of Oracle—which was released in 1997. This built-in
queuing feature gives you the ability to have many producers (the sessions that insert the N, the
unprocessed records) concurrently put messages into an inbound queue and have many consumers (the
sessions that look for N records to process) concurrently receive these messages. That is, no special code
should have been written in order to implement a queue in the database. The developers should have
used the built-in feature. And they might have, except they were completely unaware of it.

Fortunately, once this issue was discovered, correcting the problem was easy. We did need an index
on the processed-flag column, just not a bitmap index. We needed a conventional B*Tree index. It took a
bit of convincing to get one created. No one wanted to believe that conventionally indexing a column
with two distinct values was a good idea. But after setting up a simulation (I am very much into
simulations, testing, and experimenting), we were able to prove it was not only the correct approach but
also that it would work very nicely.

When we created the index, we had to choose between the following approaches:

* Just create an index on the processed-flag column.

* Create an index only on the processed-flag column when the processed flag is N,
that is, only index the values of interest. We typically don’t want to use an index
when the processed flag is Y since the vast majority of the records in the table have
the value Y. Notice that I did not say “We never want to use....” You might want to
very frequently count the number of processed records for some reason, and then
an index on the processed records might well come in very handy.

In the chapter on indexing, we’ll go into more detail on both types. In the end, we created a very
small index on just the records where the processed flag was N. Access to those records was extremely
fast and the vast majority of Y records did not contribute to this index at all. We used a function-based
index on a function decode(processed flag, 'N', 'N') to return either N or NULL—since an entirely
NULL key is not placed into a conventional B*Tree index, we ended up only indexing the N records.

Was that the end of the story? No, not at all. My client still had a less than optimal solution on its
hands. They still had to serialize on the “dequeue” of an unprocessed record. We could easily find the
first unprocessed record—quickly— using select * from queue_table where decode(processed flag,
'N', 'N') = 'N' FOR UPDATE, but only one session at a time could perform that operation. The project was
using Oracle 10g and therefore could not yet make use of the relatively new SKIP LOCKED feature added in
Oracle 11g Release 1. SKIP LOCKED would permit many sessions to concurrently find the first unlocked,
unprocessed record, lock that record, and process it. Instead, we had to implement code to find the first
unlocked record and lock it manually. Such code would in general look like the following in Oracle 10g
and before. We begin by creating a table with the requisite index described above and populate it with
some data:

ops$tkyte%0RA11GR2> create table t

2 (id number primary key,
3 processed flag varchar2(1),
4 payload varchar2(20)
5):

)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Table created.

ops$tkyte%ORA11GR2> create index
2 t_idx on
3 t(decode(processed flag, 'N', 'N'));

Index created.

ops$tkyte%ORA11GR2>
ops$tkyte%ORA11GR2> insert into t

2

coO~N oYU B W

select r,

case when mod(r,2) = 0 then 'N' else 'Y' end,
'payload ' || 1
from (select level r
from dual
connect by level <= 5)

5 rows created.

ops$tkyte%ORA11GR2> select * from t;

ID P PAYLOAD

1Y payload 1
2 N payload 2
3 Y payload 3
4 N payload 4
5 Y payload 5

Then we basically need to find any and all unprocessed records. One by one we ask the database “Is

this row locked already? If not, then lock it and give it to me.” That code would look like:

ops$tkyte%ORA11GR2> create or replace
2 function get first unlocked row

3

O oo~N Ul b

return t%rowtype

resource_busy exception;
pragma exception init(resource busy, -54);
1 rec t¥%rowtype;

begin

for x in (select rowid rid
from t
where decode(processed flag, 'N','N') = 'N")
loop
begin
select * into 1 rec
from t
where rowid = x.rid and processed_flag='N'
for update nowait;
return 1 rec;
exception
when resource busy then null;
when no_data_found then null;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

21 end;

22 end loop;

23 return null;
24 end;

25 /

Function created.

Note In the above code, | ran some DDL—the CREATE OR REPLACE. Right before DDL runs, it automatically
commits, so there was an implicit COMMIT in there. The rows we’ve inserted are committed in the database—and
that fact is necessary for the following examples to work correctly. In general, I'll use that fact in the remainder of
the book. If you run these examples without performing the CREATE OR REPLACE, make sure to COMMIT first!

Now, if we use two different transactions, we can see that both get different records. We also see that
both get different records concurrently (using autonomous transactions once again to demonstrate the
concurrency issues):

ops$tkyte%0RA11GR2> declare
1 rec t%rowtype;

3 begin

4 1 rec := get first unlocked row;

5 dbms_output.put_line('I got row ' || 1 rec.id || ', ' || 1_rec.payload);
6 end;

7/

I got row 2, payload 2
PL/SOL procedure successfully completed.

ops$tkyte%ORA11GR2>
ops$tkyte%0RA11GR2> declare

2 pragma autonomous_transaction;

3 1 rec t%rowtype;

4 begin

5 1 rec := get first unlocked row;

6 dbms_output.put_line('I got row ' || 1 rec.id || ', ' || 1_rec.payload);
7 commit;

8 end;

9 /

I got row 4, payload 4
PL/SOL procedure successfully completed.

Now, in Oracle 11g Release 1 and above, we can achieve the above logic using the SKIP LOCKED
clause. In the following example we’ll do two concurrent transactions again, observing that they each
find and lock separate records concurrently.

ops$tkyte%ORA11GR2> declare

2 1 rec t¥%rowtype;
3 cursor c
4 is

www.it-ebooks.info

http://www.it-ebooks.info

10

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

5 select *

6 from t

7 where decode(processed flag, 'N','N') = 'N'
8 FOR UPDATE

9 SKIP LOCKED;

10 begin

11 open c;
12 fetch ¢ into 1 rec;
13 if (c%found)
14 then
15 dbms_output.put_line('I got row ' || 1 rec.id || ', ' || 1_rec.payload);
16 end if;
17 close c;
18 end;

19 /
I got row 2, payload 2

PL/SOL procedure successfully completed.

ops$tkyte%ORA11GR2>
ops$tkyte%0RA11GR2> declare

2 pragma autonomous_transaction;

3 1 rec throwtype;

4 cursor c

5 is

6 select *

7 from t

8 where decode(processed flag, 'N','N') = 'N'
9 FOR UPDATE

10 SKIP LOCKED;

11 begin
12 open c;
13 fetch ¢ into 1 rec;
14 if (c%found)
15 then
16 dbms_output.put_line('I got row ' || 1 rec.id || ', ' || 1_rec.payload);
17 end if;
18 close c;
19 commit;
20 end;
21/

I got row 4, payload 4
PL/SOL procedure successfully completed.

Both of the preceding “solutions” would help to solve the second serialization problem my client
was having when processing messages. But how much easier would the solution have been if my client
had just used Advanced Queuing and invoked DBMS_AQ.DEQUEUE? To fix the serialization issue for the
message producer, we had to implement a function-based index. To fix the serialization issue for the
consumer, we had to use that function-based index to retrieve the records and write code. So we fixed
their major problem, caused by not fully understanding the tools they were using and found only after
lots of looking and study since the system was not nicely instrumented. What we hadn’t fixed yet were
the following issues:

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

* The application was built without a single consideration for scaling at the
database level.

* The application was performing functionality (the queue table) that the database
already supplied in a highly concurrent and scalable fashion. I'm referring to the
Advance Queuing (AQ) software that is burned into the database, functionality
they were trying to reinvent.

* Experience shows that 80 to 90 percent of all tuning is done at the application
level, not at the database level.

* The developers had no idea what the beans did in the database or where to look
for potential problems.

This was hardly the end of the problems on this project. We also had to figure out

* How to tune SQL without changing the SQL. In general, that is very hard to do.
Oraclel0g and above do permit us to accomplish this magic feat for the first time
to some degree with SQL Profiles, and 11g and above with extended statistics. But
inefficient SQL will remain inefficient SQL.

* How to measure performance.
¢ How to see where the bottlenecks were.
¢ How and what to index. And so on.

At the end of the week the developers, who had been insulated from the database, were amazed at
what the database could actually provide for them and how easy it was to get that information. Most
importantly, they saw how big of a difference taking advantage of database features could make to the
performance of their application. In the end, they were successful—just behind schedule by a couple
of weeks.

My point about the power of database features is not a criticism of tools or technologies like
Hibernate, E]Bs, and container-managed persistence. It is a criticism of purposely remaining ignorant of
the database and how it works and how to use it. The technologies used in this case worked well—after
the developers got some insight into the database itself.

The bottom line is that the database is typically the cornerstone of your application. If it does not
work well, nothing else really matters. If you have a black box and it does not work, what are you going to
do about it? About the only thing you can do is look at it and wonder why it is not working very well. You
can’t fix it, you can’t tune it. Quite simply, you do not understand how it works—and you made the
decision to be in this position. The alternative is the approach that I advocate: understand your
database, know how it works, know what it can do for you, and use it to its fullest potential.

How (and How Not) to Develop Database Applications

That’s enough hypothesizing, for now at least. In the remainder of this chapter, I will take a more
empirical approach, discussing why knowledge of the database and its workings will definitely go a long
way towards a successful implementation (without having to write the application twice!). Some
problems are simple to fix as long as you understand how to find them. Others require drastic rewrites.
One of the goals of this book is to help you avoid the problems in the first place.

www.it-ebooks.info

11

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Note In the following sections, | discuss certain core Oracle features without delving into exactly what these
features are and all of the ramifications of using them. | will refer you either to a subsequent chapter in this book
or to the relevant Oracle documentation for more information.

Understanding Oracle Architecture

I have worked with many customers running large production applications—applications that had been
“ported” from another database (for example, SQL Server) to Oracle. I quote “ported” simply because
most ports I see reflect a “what is the least change we can make to have our SQL Server code compile and
execute on Oracle” perspective. The applications that result from that line of thought are frankly the
ones I see most often, because they are the ones that need the most help. I want to make clear, however,
that I am not bashing SQL Server in this respect—the opposite is true! Taking an Oracle application and
just plopping it down on top of SQL Server with as few changes as possible results in the same poorly
performing code in reverse; the problem goes both ways.

In one particular case, however, the SQL Server architecture and how you use SQL Server really
impacted the Oracle implementation. The stated goal was to scale up, but these folks did not want to
really port to another database. They wanted to port with as little work as humanly possible, so they
kept the architecture basically the same in the client and database layers. This decision had two
important ramifications:

e The connection architecture was the same in Oracle as it had been in SQL Server.
* The developers used literal (nonbound) SQL.

These two ramifications resulted in a system that could not support the required user load (the
database server simply ran out of available memory), and in a system that had abysmal performance.

Use a Single Connection in Oracle

Now, in SQL Server it is a very common practice to open a connection to the database for each
concurrent statement you want to execute. If you are going to do five queries, you might well see five
connections in SQL Server. In Oracle, on the other hand, if you want to do five queries or five hundred,
the maximum number of connections you want to open is one. So, a practice that is common in SQL
Server is something that is not only not encouraged in Oracle, it is actively discouraged; having multiple
connections to the database is just something you don’t want to do.

But do it they did. A simple web-based application would open 5, 10, 15, or more connections per
web page, meaning that their server could support only 1/5, 1/10, or 1/15 the number of concurrent
users that it should have been able to. Moreover, they were attempting to run the database on the
Windows platform itself—just a plain Windows server without access to the “data center” version of
Windows. This meant that the Windows single-process architecture limited the Oracle database server
to about 1.75GB of RAM in total. Since each Oracle connection took at least a certain fixed amount of
RAM, their ability to scale up the number of users using the application was severely limited. They had
8GB of RAM on the server, but could only use about 2GB of it.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Note There are ways to use more RAM in a 32-bit Windows environment, such as with the /AWE switch, but
they required versions of the operating system that were not in use in this situation.

There were three approaches to correcting this problem, and all three entailed quite a bit of work—
and this was after the “port” was complete! The options were:

* Re-architect the application to allow it to take advantage of the fact that it was
running “on” Oracle, and use a single connection to generate a page, not
somewhere between 5 to 15 connections. This is the only solution that would
actually solve the problem.

* Upgrade the operating system (no small chore) and utilize the larger memory
model of the Windows Data Center version (itself not a small chore either as it
involves a rather complicated database setup with indirect data buffers and other
non-standard settings.

* Migrate the database from a Windows-based OS to some other OS where multiple
processes are used, effectively allowing the database to utilize all installed RAM.
On a 32-bit Windows platform, you are limited to about 2GB of RAM for the
combined PGA/SGA regions (2GB for both, together) since they are allocated by a
single process. Using a multi-process platform that was also 32-bit would limit
you to about 2GB for the SGA and 2GB per process for the PGA, going much
further than the 32-bit Windows platform.

As you can see, none of these are an “OK, we’ll do that this afternoon” sort of solutions. Each is a
complex solution to a problem that could have most easily been corrected during the database port
phase, while you were in the code poking around and changing things in the first place. Furthermore, a
simple test to scale before rolling out to production would have caught such issues prior to the end users
feeling the pain.

Use Bind Variables

If I were to write a book about how to build non-scalable Oracle applications, “Don’t Use Bind Variables”
would be the first and last chapter. Not using bind variables is a major cause of performance issues and a
major inhibitor of scalability—not to mention a security risk of huge proportions. The way the Oracle
shared pool (a very important shared-memory data structure) operates is predicated on developers
using bind variables in most cases. If you want to make Oracle run slowly, even grind to a total halt, just
refuse to use them.

A bind variable is a placeholder in a query. For example, to retrieve the record for employee 123, I
can query:

select * from emp where empno = 123;
Alternatively, I can query:
select * from emp where empno = :empno;
In a typical system, you would query up employee 123 maybe once and then never again. Later, you

would query up employee 456, then 789, and so on. Or, foregoing SELECT statements, if you do not use
bind variables in your insert statements, your primary key values will be hard-coded in them, and I know

www.it-ebooks.info

13

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

for a fact that insert statement can’t ever be reused later!!! If you use literals (constants) in the query,
then every query is a brand-new query, never before seen by the database. It will have to be parsed,
qualified (names resolved), security-checked, optimized, and so on. In short, each and every unique
statement you execute will have to be compiled every time it is executed.

The second query uses a bind variable, :empno, the value of which is supplied at query execution
time. This query is compiled once and then the query plan is stored in a shared pool (the library cache),
from which it can be retrieved and reused. The difference between the two in terms of performance and
scalability is huge, dramatic even.

From the above description, it should be fairly obvious that parsing unique statements with hard-
coded variables (called a hard parse) will take longer and consume many more resources than reusing
an already parsed query plan (called a soft parse). What may not be so obvious is the extent to which the
former will reduce the number of users your system can support. Obviously, this is due in part to the
increased resource consumption, but an even more significant factor arises due to the latching
mechanisms for the library cache. When you hard-parse a query, the database will spend more time
holding certain low-level serialization devices called latches (see the chapter Locking and Latching for
more details). These latches protect the data structures in Oracle’s shared memory from concurrent
modifications by two sessions (otherwise Oracle would end up with corrupt data structures) and from
someone reading a data structure while it is being modified. The longer and more frequently you have to
latch these data structures, the longer the queue to get these latches will become. You will start to
monopolize scarce resources. Your machine may appear to be underutilized at times, and yet
everything in the database is running very slowly. The likelihood is that someone is holding one of these
serialization mechanisms and a line is forming—you are not able to run at top speed. It only takes one
ill-behaved application in your database to dramatically affect the performance of every other
application. A single, small application that does not use bind variables will cause the relevant SQL of
other well-tuned applications to get discarded from the shared pool over time. You only need one bad
apple to spoil the entire barrel.

If you use bind variables, then everyone who submits the same exact query that references the
same object will use the compiled plan from the pool. You will compile your subroutine once and use
it over and over again. This is very efficient and is the way the database intends you to work. Not only
will you use fewer resources (a soft parse is much less resource-intensive), but also you will hold latches
for less time and need them less frequently. This increases your performance and greatly increases
your scalability.

Just to give you a tiny idea of how huge a difference this can make performance-wise, you only need
to run a very small test. In this test, we’'ll just be inserting some rows into a table; the simple table we will
use is:

ops$tkyte%ORA11CR2> create table t (x int);
Table created.

Now we’ll create two very simple stored procedures. They both will insert the numbers 1 through
10,000 into this table; however, the first procedure uses a single SQL statement with a bind variable:

ops$tkyte%0RA11GR2> create or replace procedure procl

2 as

3 begin

4 for i in 1 .. 10000

5 loop

6 execute immediate

7 "insert into t values (:x)' using i;
8 end loop;

9 end;

10 /

Procedure created.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

The second procedure constructs a unique SQL statement for each row to be inserted:

ops$tkyte%ORA11GR2> create or replace procedure proc2

2 as

3 begin

4 for i in 1 .. 10000

5 loop

6 execute immediate

7 "insert into t values ('||i|]")";
8 end loop;

9 end;

10 /

Procedure created.

Now, the only difference between the two is that one uses a bind variable and the other does not.
Both are using dynamic SQL and the logic is identical. The only difference is the use of a bind variable in
the first. We are ready to evaluate the two approaches and we’ll use runstats, a simple tool I've
developed, to compare the two in detail:

Note For details on runstats and other utilities, please see the appendix on Tools & Scripts used in this book.

ops$tkyte%0RA11GR2> exec runstats_pkg.rs_start
PL/SOL procedure successfully completed.

ops$tkyte%0RA11GR2> exec procl
PL/SOL procedure successfully completed.

ops$tkyte%ORA11GR2> exec runstats_pkg.rs_middle
PL/SOL procedure successfully completed.

ops$tkyte%0RA11GR2> exec proc2
PL/SOL procedure successfully completed.

ops$tkyte%ORA11GR2> exec runstats_pkg.rs stop(10000)
Runl ran in 65 cpu hsecs

Run2 ran in 1224 cpu hsecs

run 1 ran in 5.31% of the time

Note You may not observe exactly the same values for cpu, nor in fact for any metric, as | report here.
Differences will be caused by different Oracle versions, different operating systems, or different hardware
platforms. The idea will be the same, but the exact numbers will undoubtedly be marginally different.

Now, the preceding result clearly shows that based on CPU time, it took significantly longer and
significantly more resources to insert 10,000 rows without bind variables than it did with them. In fact, it

15

www.it-ebooks.info

http://www.it-ebooks.info

16

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

took almost 20 times as much CPU time to insert the rows without bind variables. For every insert
without bind variables, we spent the vast preponderance of the time to execute the statement simply
parsing the statement! But it gets worse. When we look at other information, we can see a significant
difference in the resources utilized by each approach:

Name Run1 Run2 Diff
STAT...parse count (hard) 5 10,010 10,005
STAT...parse count (total) 34 10,055 10,021
STAT...consistent gets from ca 78 10,120 10,042
STAT...consistent gets 135 10,290 10,155
STAT...consistent gets from ca 135 10,290 10,155
LATCH.simulator hash latch 83 10,990 10,907
STAT...db block gets from cach 10,440 30,364 19,924
STAT...db block gets 10,440 30,364 19,924
STAT...db block gets from cach 79 20,041 19,962
LATCH.enqueues 40 20,372 20,332
LATCH.enqueue hash chains 74 20,414 20,340
STAT...session logical reads 10,575 40,654 30,079
STAT...recursive calls 10,326 40,960 30,634
LATCH.kks stats 23 65,141 65,118
STAT...session uga memory 0 65,512 65,512
STAT...session pga memory 0 65,536 65,536
LATCH.cache buffers chains 51,532 120,773 69,241
LATCH.shared pool simulator 42 104,558 104,516
LATCH.row cache objects 294 184,697 184,403
LATCH. shared pool 20,302 446,397 426,095
LATCH.JS slv state obj latch 1 435,890 435,889
Runi latches total versus runs -- difference and pct

Runi Run2 Diff Pct

73,082 1,411,695 1,338,613 5.18%

PL/SOL procedure successfully completed.

The runstats utility produces a report that shows differences in latch utilization as well as
differences in statistics. Here I asked runstats to print out anything with a difference greater than 10,000.
You can see that we hard parsed 4 times in the first approach using bind variables, and that we hard
parsed over 10,000 times without bind variables (once for each of the inserts). But that difference in hard
parsing is just the tip of the iceberg. You can see here that we used almost 20 times as many “latches” in
the non-bind variable approach as we did with bind variables. That difference might beg the question
“What is a latch?”

Let’s answer that question. A latch is a type of lock that is used to serialize access to shared data
structures used by Oracle. The shared pool is an example; it’s a big shared data structure found in the
System Global Area (SGA), and this is where Oracle stores parsed, compiled SQL. When you modify this
shared structure, you must take care to allow only one process in at a time. (It is very bad if two
processes or threads attempt to update the same in-memory data structure simultaneously—corruption
would abound). So, Oracle employs a latching mechanism, a lightweight locking method to serialize
access. Don’t be fooled by the word lightweight. Latches are serialization devices, allowing access one
process at a time. The latches used by the hard-parsing implementation are some of the most used
latches out there. These include the latches for the shared pool and for the library cache. Those are “big
time” latches that people compete for frequently. What all this means is that as we increase the number
of users attempting to hard parse statements simultaneously, our performance gets progressively worse

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

over time. The more people parsing, the more people waiting in line to latch the shared pool, the longer
the queues, the longer the wait.

Executing SQL statements without bind variables is very much like compiling a subroutine before
each method call. Imagine shipping Java source code to your customers where, before calling a method
in a class, they had to invoke the Java compiler, compile the class, run the method, and then throw away
the byte code. Next time they wanted to execute the same method, they would do the same thing:
compile it, run it, and throw it away. You would never consider doing this in your application; you
should never consider doing this in your database either.

Another impact of not using bind variables, for developers employing string concatenation, is
security—specifically something called SQL injection. If you are not familiar with this term, I encourage
you to put aside this book for a moment and, using the search engine of your choice, look up SQL
injection. There are almost one million hits returned for it as I write this edition. The problem of SQL
injection is well-documented.

Note SQL injection is a security hole whereby the developer accepts input from an end user and concatenates that
input into a query, then compiles and executes that query. In effect, the developer accepts snippets of SQL code from
the end user, then compiles and executes those snippets. That approach allows the end user to potentially modify the
SQL statement so that it does something the application developer never intended. It's almost like leaving a terminal
open with a SQL Plus session logged in and connected as SYSDBA. You are just begging someone to come by and
type in some command, compile it, and then execute it. The results can be disastrous.

Itis a fact that if you do not use bind variables, that if you use the string concatenation technique in
PROC2 shown earlier, your code is subject to SQL injection attacks and must be carefully reviewed. And it
should be reviewed by people who don’t actually like the developer who wrote the code—because the
code must be reviewed critically and objectively. If the reviewers are peers of the code author, or worse,
friends or subordinates, the review will not be as critical as it should be. Developed code that does not
use bind variables must be viewed with suspicion—it should be the exceptional case where bind
variables are not used, not the norm.

To demonstrate how insidious SQL injection can be, I present this small routine:

ops$tkyte%ORA11CR2> create or replace procedure inj(p_date in date)

2 as

3 1 rec all_userskrowtype;

4 d sys_refcursor;

5 1 query long;

6 begin

7 1 query :="'

8 select *

9 from all users

10 where created = ''' ||p_date ||'''";
11

12 dbms_output.put line(1 query);
13 open c for 1 query;

14

15 for iin1..5

16 loop

17 fetch ¢ into 1 rec;

www.it-ebooks.info

17

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

18 exit when c%notfound;

19 dbms_output.put line(1 rec.username || '..... ")
20 end loop;

21 close c;

22 end;

23/

Procedure created.

Note This code prints out only five records at most. It was developed to be executed in an “empty” schema. A
schema with lots of existing tables could cause various effects that differ from the results shown below. One effect
could be that you don’t see the table I'm trying to show you in the example—that would be because we print out
only five records. Another might be a numeric or value error—that would be due to a long table name. None of
these facts invalidate the example; they could all be worked around by someone wanting to steal your data.

Now, most developers I know would look at that code and say that it’s safe from SQL injection. They
would say this because the input to the routine must be an Oracle DATE variable, a 7-byte binary format
representing a century, year, month, day, hour, minute, and second. There is no way that DATE variable
could change the meaning of my SQL statement. As it turns out, they are very wrong. This code can be
“injected”—modified at runtime, easily—by anyone who knows how (and, obviously, there are people
who know how!). If you execute the procedure the way the developer “expects” the procedure to be
executed, this is what you might expect to see:

ops$tkyte%ORA11CR2> exec inj(sysdate)

select *
from all users
where created = '09-DEC-09'

PL/SOL procedure successfully completed.

This result shows the SQL statement being safely constructed—as expected. So, how could someone
use this routine in a nefarious way? Well, suppose you’ve got another developer in this project—the evil
developer. The developers have access to execute that procedure, to see the users created in the
database today, but they don’t have access to any of the other tables in the schema that owns this
procedure. Now, they don’t know what tables exist in this schema—the security team has decided
“security via obscurity” is good—so they don’t allow anyone to publish the table names anywhere. So,
they don’t know that the following table in particular exists:

ops$tkyte%0RA11GR2> create table user pw
2 (uname varchar2(30) primary key,
3 pw varchar2(30)
4);

Table created.

ops$tkyte%ORA11GR2> insert into user pw

2 (uname, pw)
3 values ('TKYTE', 'TOP SECRET');

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

1 row created.

ops$tkyte%0RA11GR2> commit;
Commit complete.

The pw table looks like a pretty important table, but remember, users do not know it exists. However,
they do have access to the INJ routine:

ops$tkyte’0RA11GR2> grant execute on inj to scott;
Grant succeeded.

So the evil developer/user, can simply execute:
scott%0RA11GR2> alter session set
2 nls date format = '"''union select tname,0,null from tab--"';

Session altered.

scott%0RA11GR2> exec ops$tkyte.inj(sysdate)

select *
from all users
where created = ''union select tname,0,null from
tab--
USER PW.....

PL/SQL procedure successfully completed.

Now, that NLS_DATE_FORMAT is interesting—most people don’t even know you can include character
string literals with the NLS_DATE_FORMAT. (Heck, many people don’t even know you can change the date
format like that even without this “trick.”) What the malicious user did here was to trick your code into
querying a table you did not intend him to query using your set of privileges. The TAB dictionary view
limits its view to the set of tables the current schema can see. When users run the procedure, the current
schema used for authorization is the owner of that procedure (you, in short, not them). They can now
see what tables reside in that schema. They see that table USER_PW and say “hmmm, sounds interesting.”
So, they try to access that table:

scott%ORA11GR2> select * from ops$tkyte.user pw;
select * from ops$tkyte.user pw
*

ERROR at line 1:
ORA-00942: table or view does not exist

The malicious user can’t access the table directly; he lacks the SELECT privilege on the table. Not to
worry, however, there is another way. The user wants to know about the columns in the table. Here’s one
way to find out more about the table’s structure:

scott%ORA11GR2> alter session set
2 nls date format = '"''union select tname||cname,0,null from col--"';
Session altered.

scott%0RA11GR2> exec ops$tkyte.inj(sysdate)
select *
from all users
where created = ''union select

www.it-ebooks.info

19

http://www.it-ebooks.info

20

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

tname| |cname,0,null from col--'
USER_PWPW.....
USER_PWUNAME.....

There we go, we know the column names. Now that we know the table names and the column
names of tables in that schema, we can change the NLS_DATE_FORMAT one more time to query that table—
not the dictionary tables. So the malicious user can next do the following:

scott%0RA11GR2> alter session set
2 nls_date format = '"''union select uname,0,null from user pw--"";
Session altered.

scott%0RA11GR2> exec ops$tkyte.inj(sysdate)

select *
from all users
where created = ''union select uname,0,null from
user_pw--'
TKYTE.....

PL/SOL procedure successfully completed.
scott%ORA11GR2> alter session set

2 nls date format = '"''union select pw,0,null from user pw--"';
Session altered.

scott%0RA11GR2> exec ops$tkyte.inj(sysdate)

select *
from all users
where created = ''union select pw,0,null from
user_pw--'
TOP SECRET.....

PL/SOL procedure successfully completed.

And there we go—that evil developer/user now has your sensitive username and password
information.

How could you have protected yourself? By using bind variables. For example:

ops$tkyte%ORA11CGR2> create or replace procedure NOT inj(p_date in date)

2 as

3 1 rec all_userskrowtype;

4 C sys_refcursor;

5 1 query long;

6 begin

7 1 query :="'

8 select *

9 from all users

10 where created = :x';

11

12 dbms_output.put line(1 query);
13 open ¢ for 1 query USING P_DATE;
14

15 for iin1..5

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

16 loop

17 fetch ¢ into 1 rec;

18 exit when c%notfound;

19 dbms_output.put line(1 rec.username || '..... ")
20 end loop;

21 close c;

22 end;

23/

Procedure created.

ops$tkyte%ORA11GR2>
ops$tkyte%ORA11GR2> exec NOT inj(sysdate)

select *
from all users
where created = :x
PL/SOL procedure successfully completed.

Itis a plain and simple fact that if you use bind variables you can’t be subject to SQL injection. If you
do not use bind variables, you have to meticulously inspect every single line of code and think like an evil
genius (one who knows everything about Oracle, every single thing) and see if there is a way to attack
that code. I don’t know about you, but if I could be sure that 99.9999 percent of my code was not subject
to SQL injection and only had to worry about the remaining 0.0001 percent (that couldn’t use a bind
variable for whatever reason), I'd sleep much better at night than if I had to worry about 100 percent of
my code being subject to SQL injection.

In any case, on the particular project I began describing at the beginning of this section, rewriting
the existing code to use bind variables was the only possible course of action. The resulting code ran
orders of magnitude faster and increased many times the number of simultaneous users that the system
could support. And the code was more secure—the entire codebase did not need to be reviewed for SQL
injection issues. However, that security came at a high price in terms of time and effort, because my
client had to code the system and then code it again. It is not that using bind variables is hard, or error-
prone, it’s just that they did not use them initially and thus were forced to go back and revisit virtually all
of the code and change it. My client would not have paid this price if the developers had understood that
it was vital to use bind variables in their application from day one.

Understanding Concurrency Control

Concurrency control is one area where databases differentiate themselves. It is an area that sets a
database apart from a file system and databases apart from each other. As a programmer, it is vital that
your database application works correctly under concurrent access conditions, and yet time and time
again this is something people fail to test. Techniques that work well if everything happens consecutively
do not necessarily work so well when everyone does them simultaneously. If you don’t have a good
grasp of how your particular database implements concurrency control mechanisms, then you will:

* Corrupt the integrity of your data.
* Have applications run slower than they should with a small number of users.
* Decrease your applications’ ability to scale to a large number of users.

Notice I don’t say, "you might...” or “you run the risk of...” but rather that invariably you will do
these things. You will do these things without even realizing it. Without correct concurrency control, you
will corrupt the integrity of your database because something that works in isolation will not work as you

www.it-ebooks.info

21

http://www.it-ebooks.info

22

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

expect in a multiuser situation. Your application will run slower than it should because you’ll end up
waiting for data. Your application will lose its ability to scale because of locking and contention issues.
As the queues to access a resource get longer, the wait gets longer and longer.

An analogy here would be a backup at a tollbooth. If cars arrive in an orderly, predictable fashion,
one after the other, there won'’t ever be a backup. If many cars arrive simultaneously, queues start to
form. Furthermore, the waiting time does not increase linearly with the number of cars at the booth.
After a certain point, considerable additional time is spent “managing” the people who are waiting in
line, as well as servicing them (the parallel in the database would be context switching).

Concurrency issues are the hardest to track down; the problem is similar to debugging a
multithreaded program. The program may work fine in the controlled, artificial environment of the
debugger but crashes horribly in the real world. For example, under race conditions, you find that two
threads can end up modifying the same data structure simultaneously. These kinds of bugs are terribly
hard to track down and fix. If you only test your application in isolation and then deploy it to dozens of
concurrent users, you are likely to be (painfully) exposed to an undetected concurrency issue.

Over the next two sections, I'll relate two small examples of how the lack of understanding
concurrency control can ruin your data or inhibit performance and scalability.

Implementing Locking

The database uses locks to ensure that, at most, one transaction is modifying a given piece of data at any
given time. Basically, locks are the mechanism that allows for concurrency—without some locking
model to prevent concurrent updates to the same row, for example, multiuser access would not be
possible in a database. However, if overused or used improperly, locks can actually inhibit concurrency.
If you or the database itself locks data unnecessarily, fewer people will be able to concurrently perform
operations. Thus, understanding what locking is and how it works in your database is vital if you are to
develop a scalable, correct application.

What is also vital is that you understand that each database implements locking differently. Some
have page-level locking, others row-level; some implementations escalate locks from row level to page
level, some do not; some use read locks, others don’t; some implement serializable transactions via
locking and others via read-consistent views of data (no locks). These small differences can balloon into
huge performance issues or downright bugs in your application if you don’t understand how they work.

The following points sum up Oracle’s locking policy:

¢ Oracle locks data at the row level on modification. There is no lock escalation to a
block or table level.

* Oracle never locks data just to read it. There are no locks placed on rows of data by
simple reads.

* Awriter of data does not block a reader of data. Let me repeat: reads are not
blocked by writes. This is fundamentally different from many other databases,
where reads are blocked by writes. While this sounds like an extremely positive
attribute (and it generally is), if you do not understand this thoroughly and you
attempt to enforce integrity constraints in your application via application logic,
you are most likely doing it incorrectly.

* Awriter of data is blocked only when another writer of data has already locked the
row it was going after. A reader of data never blocks a writer of data.

You must take these facts into consideration when developing your application and you must also
realize that this policy is unique to Oracle; every database has subtle differences in its approach to
locking. Even if you go with lowest common denominator SQL in your applications, the locking and
concurrency control models employed by each vendor assure something will be different. A developer
who does not understand how his or her database handles concurrency will certainly encounter data

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

integrity issues. (This is particularly common when a developer moves from another database to Oracle,
or vice versa, and neglects to take the differing concurrency mechanisms into account in the application.

Preventing Lost Updates

One of the side effects of Oracle’s non-blocking approach is that if you actually want to ensure that no
more than one user has access to a row at once, then you, the developer, need to do a little work yourself.

A developer was demonstrating to me a resource-scheduling program (for conference rooms,
projectors, etc.) that he had just developed and was in the process of deploying. The application
implemented a business rule to prevent the allocation of a resource to more than one person for any
given period of time. That is, the application contained code that specifically checked that no other user
had previously allocated the time slot (at least the developer thought it did). This code queried the
SCHEDULES table and, if no rows existed that overlapped that time slot, inserted the new row. So, the
developer was basically concerned with two tables:

ops$tkyte%ORA11GR2> create table resources
2 (resource name varchar2(25) primary key,
3 other data varchar2(25)
4);

Table created.

ops$tkyte%ORA11GR2> create table schedules
2 (resource name varchar2(25) references resources,

3 start_time date,
4 end_time date
5);

Table created.

And, right after inserting a room reservation into SCHEDULES, and before committing, the application
would query:

ops$tkyte%0RA11GR2> select count(*)
2 from schedules

3 where resource name = :resource_name
4 and (start_time < :new_end_time)

5 AND (end_time > :new_start time)
6 /

It looked simple and bulletproof (to the developer anyway); if the count came back as one, the room
was yours. If it came back greater than one, you could not reserve it for that period. Once I knew what his
logic was, I set up a very simple test to show him the error that would occur when the application went
live—an error that would be incredibly hard to track down and diagnose after the fact. You’d be
convinced it must be a database bug.

All T did was get someone else to use the terminal next to him. Both navigated to the same screen
and, on the count of three, each hit the Go button and tried to reserve the same room for the exact same
time. Both got the reservation. The logic, which worked perfectly in isolation, failed in a multiuser
environment. The problem in this case was caused in part by Oracle’s non-blocking reads. Neither
session ever blocked the other session. Both sessions simply ran the query and then performed the logic
to schedule the room. They could both run the query to look for a reservation, even if the other session
had already started to modify the SCHEDULES table (the change wouldn’t be visible to the other session
until commit, by which time it was too late). Since they were never attempting to modify the same row in
the SCHEDULES table, they would never block each other and, thus, the business rule could not enforce
what it was intended to enforce.

www.it-ebooks.info

23

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

The developer needed a method of enforcing the business rule in a multiuser environment—a way
to ensure that exactly one person at a time made a reservation on a given resource. In this case, the
solution was to impose a little serialization of his own. In addition to performing the preceding
count (*),the developer first performed the following:

select * from resources where resource name = :resource name FOR UPDATE;;;

What he did here was to lock the resource (the room) to be scheduled immediately before
scheduling it, in other words before querying the SCHEDULES table for that resource. By locking the
resource he is trying to schedule, the developer ensures that no one else is modifying the schedule for
this resource simultaneously. Everyone must wait until the transaction commits, at which point they
would be able to see the schedule. The chance of overlapping schedules is removed.

Developers must understand that, in a multiuser environment, they must at times employ
techniques similar to those used in multithreaded programming. The FOR UPDATE clause is working like a
semaphore in this case. It serializes access to the RESOURCES tables for that particular row—ensuring no
two people can schedule it simultaneously.

Using the FOR UPDATE approach is still highly concurrent as there are potentially thousands of
resources to be reserved. What we have done is ensure that only one person modifies a resource at any
time. This is a rare case where the manual locking of data we are not going to actually update is called
for. You need to be able to recognize where you must manually lock and, perhaps as importantly, when
not to (I'll get to an example of this in a bit). Furthermore, the FOR UPDATE clause does not lock the
resource from other people reading the data as it might in other databases. Hence the approach will
scale very well.

Issues such as the ones I've described in this section have massive implications when you're
attempting to port an application from database to database (I return to this theme a little later in the
chapter), and this trips people up time and time again. For example, if you are experienced in other
databases where writers block readers and vice versa, you may have grown reliant on that fact to protect
you from data integrity issues. The lack of concurrency is one way to protect yourself from this—that’s
how it works in many non-Oracle databases. In Oracle, concurrency rules supreme and you must be
aware that, as a result, things will happen differently (or suffer the consequences).

I have been in design sessions where the developers, even after being shown this sort of example,
scoffed at the idea they would have to actually understand how it all works. Their response was “We just
check the ‘transactional’ box in our Hibernate application and it takes care of all transactional things for
us; we don’t have to know this stuff.” I said to them, “So Hibernate will generate different code for SQL
Server and DB2 and Oracle, entirely different code, different amounts of SQL statements, different
logic?” They said no, but it will be transactional. This misses the point. Transactional in this context
simply means that you support commit and rollback, not that your code is transactionally consistent
(read that as “not that your code is correct"). Regardless of the tool or framework you are using to access
the database, knowledge of concurrency controls is vital if you want to not corrupt your data.

Ninety-nine percent of the time, locking is totally transparent and you need not concern yourself
with it. It’s that other one percent you must be trained to recognize. There is no simple checklist of “if
you do this, you need to do this” for this issue. Successful concurrency control is a matter of
understanding how your application will behave in a multiuser environment and how it will behave in
your database.

When we get to the chapters on locking and concurrency control, we’ll delve into this topic in much
more depth. There you'll learn that integrity constraint enforcement of the type presented in this
section, where you must enforce a rule that crosses multiple rows in a single table or is between two or
more tables (like a referential integrity constraint), are cases where you must always pay special
attention and will most likely have to resort to manual locking or some other technique to ensure
integrity in a multiuser environment.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Multi-versioning

This is a topic very closely related to concurrency control as it forms the foundation for Oracle’s
concurrency control mechanism. Oracle operates a multi-version, read-consistent concurrency model.
In Chapter 7 “Concurrency and Multi-versioning,” we’ll cover the technical aspects in more detail but,
essentially, it is the mechanism by which Oracle provides for:

* Read-consistent queries: Queries that produce consistent results with respect to a
point in time.

* Non-blocking queries: Queries are never blocked by writers of data, as they are in
other databases.

These are two very important concepts in the Oracle database. The term multi-versioning basically
describes Oracle’s ability to simultaneously maintain multiple versions of the data in the database (since
version 3.0 in 1983!). The term read-consistency reflects the fact that a query in Oracle will return results
as of a consistent point in time: Every block used by a query will be as of the same exact point in time—
even if it was modified or locked while you performed your query. If you understand how multi-
versioning and read consistency work together, you will always understand the answers you get from the
database. Before we explore in a little more detail how Oracle does this, here is the simplest way I know
to demonstrate multi-versioning in Oracle:

ops$tkyte’0RA11GR2> create table t
2 as
3 select *
4 from all users
5 /
Table created.

ops$tkyte’0RA11GR2> set autoprint off
ops$tkyte’0RA11GR2> variable x refcursor;
ops$tkyte’0RA11GR2> begin

2 open :x for select * from t;
3 end;
4 /

PL/SOL procedure successfully completed.

ops$tkyte’0RA11GR2> declare

2 pragma autonomous_transaction;
3 -- you could do this in another
4 -- sqlplus session as well, the
5 -- effect would be identical

6 begin

7 delete from t;

8 commit;

9 end;

10 /

PL/SOL procedure successfully completed.

ops$tkyte’0RA11GR2> print x

www.it-ebooks.info

25

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

USERNAME USER_ID CREATED

B 102 07-oct-2009 08:26am
A 101 07-oct-2009 08:26am
OPS$TKYTE 191 09-dec-2009 01:20pm
OUTLN 9 13-aug-2009 11:01pm
SYSTEM 5 13-aug-2009 11:00pm
SYS 0 13-aug-2009 11:00pm

40 rows selected.

In this example, we created a test table, T, and loaded it with some data from the ALL_USERS table.
We opened a cursor on that table. We fetched no data from that cursor: we just opened it and have kept
it open.

Note Bear in mind that Oracle does not “answer” the query. It does not copy the data anywhere when you
open a cursor—imagine how long it would take to open a cursor on a one-billion row table if it did. The cursor
opens instantly and it answers the query as it goes along. In other words, the cursor just reads data from the table
as you fetch from it.

In the same session (or maybe another session would do this; it would work as well), we proceed to
delete all data from the table. We even go as far as to COMMIT work on that delete action. The rows are
gone—but are they? In fact, they are retrievable via the cursor. The fact is that the resultset returned to us
by the OPEN command was preordained at the point in time we opened it. We had touched not a single
block of data in that table during the open, but the answer was already fixed in stone. We have no way of
knowing what the answer will be until we fetch the data; however, the result is immutable from our
cursor’s perspective. It is not that Oracle copied all of the data above to some other location when we
opened the cursor; it was actually the DELETE command that preserved our data for us by placing it into a
data area called an undo or rollback segment.

Flashback

In the past, Oracle always decided the point in time at which our queries would be consistent. That is,
Oracle made it such that any resultset we opened would be current with respect to one of two points
in time:

* The point in time the query was opened. This is the default behavior in READ
COMMITTED isolation (we’ll be covering the differences between READ COMMITTED,
READ ONLY, and SERIALIZABLE transaction levels in Chapter 7 “Concurrency and
Multi-versioning”).

* The point in time the transaction that the query is part of began. This is the default
behavior in READ ONLY and SERIALIZABLE transaction levels.

Starting with Oracle 9i’s flashback query feature, however, we can tell Oracle to execute a query “as
of” (with certain reasonable limitations on the length of time you can go back into the past, of course).
With this, you can “see” read consistency and multi-versioning even more directly.

26

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Note The flashback data archive, used for long-term flashback queries (months or years into the past) and
available with Oracle 119 Release 1 and above, does not use read consistency and multi-versioning to produce the
version of data that was in the database at some prior point in time. Instead, it uses before-image copies of
records it has placed into the archive. We'll come back to the flashback data archive in a later chapter.

Consider the following example. We start by getting an SCN (System Change or System Commit
number; the terms are interchangeable). This SCN is Oracle’s internal clock: every time a commit occurs,
this clock ticks upward (increments). We could use a date or timestamp as well, but here the SCN is
readily available and very precise:

scott%0RA11GR2> variable scn number

scott%ORA11GR2> exec :scn := dbms_flashback.get system_change number;
PL/SOL procedure successfully completed.

scott%ORA11GR2> print scn

6294346

Note The DBMS_FLASHBACK package might have restricted access on your system. | granted execute on this
package to SCOTT in my database; you may have to do the same.

We got the SCN so we can tell Oracle the point in time we’d like to query “as of.” We want to be able
to query Oracle later and see what was in this table at this precise moment in time. First, let’s see what is
in the EMP table right now:
scott%0RA11GR2> select count(*) from emp;

COUNT(*)

., «

Now let’s delete all of this information and verify that it’s “gone”:

scott%ORA11GR2> delete from emp;
14 rows deleted.

scott%0RA11GR2> select count(*) from emp;

COUNT (*)

www.it-ebooks.info

27

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

However, using the flashback query, either the AS OF SCN or AS OF TIMESTAMP clause, we can ask
Oracle to reveal to us what was in the table as of that point in time:

scott%0RA11GR2> select count(*),
2 :scn then_scn,
3 dbms_flashback.get system change number now_scn
4 from emp as of scn :scn;

COUNT(*) THEN_SCN NOW_SCN

14 6294536 6294537

Further, this capability works across transactional boundaries. We can even query the same object
“as of two points in time” in the same query! That opens some interesting opportunities indeed:

scott%0RA11GR2> commit;
Commit complete.

scott%ORA11GR2> select cnt_now, cnt_then,
2 :scn then_scn,
dbms_flashback.get system change number now_scn
from (select count(*) cnt_now from emp),
(select count(*) cnt_then from emp as of scn :scn)

(o) WV, BF ~ P

/

CNT_NOW CNT_THEN THEN_SCN NOW_SCN

0 14 6294536 6294539

Finally, if you are using Oracle10g and above, you have a command called “flashback” that uses
this underlying multi-versioning technology to allow you to return objects to the state they were at
some prior point in time. In this case, we can put EMP back the way it was before we deleted all of the
information:

scott%ORA11GR2> flashback table emp to scn :scn;
Flashback complete.

scott%ORA11GR2> select cnt_now, cnt_then,
2 :scn then_scn,
dbms_flashback.get system change number now_scn
from (select count(*) cnt_now from emp),
(select count(*) cnt_then from emp as of scn :scn)

(o) WV, BF ~ PN

/
CNT_NOW CNT_THEN THEN_SCN NOW_SCN
"""" 14 14 6294536 629455
This is what read consistency and multi-versioning are all about. If you don’t understand how

Oracle’s multi-versioning scheme works and what it implies, you won’t be able to take full advantage of
Oracle or write correct applications in Oracle (ones that will ensure data integrity).

28

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Read Consistency and Non-Blocking Reads

Let’s look at the implications of multi-versioning: read-consistent queries and non-blocking reads. If you
are not familiar with multi-versioning, what you see in the following code might be surprising. For the
sake of simplicity, assume the table we are reading stores one row per database block (the smallest unit
of storage in the database), and that we are full-scanning the table in this example.

The table we will query is a simple ACCOUNTS table. It holds balances in accounts for a bank. It has a
very simple structure:

create table accounts
(account_number number primary key,
account_balance number

)s

In reality the ACCOUNTS table would have hundreds of thousands of rows in it, but for simplicity we're
just going to consider a table with four rows, as shown in Table 1-1. (We will visit this example in more
detail in Chapter 7 “Concurrency and Multi-versioning.”)

Table 1-1. Accounts Table Contents

Row Account Number Account Balance
1 123 $500.00
2 234 $250.00
3 345 $400.00
4 456 $100.00

We would like to run an end-of-day report that tells us how much money is in the bank. That’s an
extremely simple query:

select sum(account_balance) from accounts;

And, of course, in this example the answer is obvious: $1250. However, what happens if we read
row 1, and while we’re reading rows 2 and 3, an automated teller machine (ATM) generates transactions
against this table and moves $400 from account 123 to account 4562 Our query counts $500 in row 4 and
comes up with the answer of $1650, doesn’t it? Well, of course, this is to be avoided, as it would be an
error—at no time did this sum of money exist in the account balance column. Read consistency is the
way Oracle avoids such occurrences. Oracle’s methods differ from those of most other databases, and
you need to understand how.

In many other databases, if you wanted to get a “consistent” and “correct” answer to this query,
you'd either have to lock the whole table while the sum was calculated or you’d have to lock the rows as
you read them. This prevents people from changing the answer as you are getting it. If you lock the table
up front, you get the answer that was in the database at the time the query began. If you lock the data as
you read it (commonly referred to as a shared read lock, which prevents updates but not other readers
from accessing the data), you get the answer that was in the database at the point the query finished.
Both of these methods inhibit concurrency a great deal. The table lock prevents any updates from taking
place against the entire table for the duration of your query (for a table of four rows, this would only be a
very short period, but for tables with hundreds of thousands of rows, it could be several minutes). The

www.it-ebooks.info

29

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

“lock as you go” method prevents updates on data you have read and already processed and could
actually cause deadlocks between your query and other updates.

Now, I said earlier that you wouldn’t be able to take full advantage of Oracle if you didn’t
understand the concept of multi-versioning. Here is one reason why that is true. Oracle uses multi-
versioning to get the answer, as it existed at the point in time the query began, and the query will take
place without locking a single thing (while our account transfer transaction updates rows 1 and 4, these
rows will be locked to other writers, but not locked to other readers, such as our SELECT SUM. ..query). In
fact, Oracle doesn’t have a “shared read” lock (a type of lock common in other databases)—it doesn’t
need it. Everything inhibiting concurrency that can be removed has been removed.

I'have seen actual cases where a report written by a developer who did not understand Oracle’s
multi-versioning capabilities would lock an entire system up as tight as could be. The reason: the
developer wanted to have read-consistent (i.e., correct) results from his queries. In every other database
the developer had worked with, this required locking the tables, or using a SELECT .. WITH HOLDLOCK (a
SQL Server mechanism for locking rows in a shared mode as you go along). So the developer would
either lock the tables prior to running the report or use SELECT ... FOR UPDATE (the closest he could find
to WITH HOLDLOCK). This would cause the system to basically stop processing transactions—needlessly.

So, how does Oracle get the correct, consistent answer ($1250) during a read without locking any
data—in other words, without decreasing concurrency? The secret lies in the transactional mechanisms
that Oracle uses. Whenever you modify data, Oracle creates entries in two different locations (most other
databases would put both entries in the same location; for them undo and redo are just “transaction
data”). One entry goes to the redo logs where Oracle stores enough information to redo or “roll forward”
the transaction. For an insert, this would be the row inserted. For a delete, it is a message to delete the
row in file X, block Y, row slot Z. And so on. The other entry is an undo entry, written to an undo
segment. If your transaction fails and needs to be undone, Oracle will read the “before” image from the
undo segment and restore the data. In addition to using this undo segment data to undo transactions,
Oracle uses it to undo changes to blocks as it is reading them —to restore the block to the point in time
your query began. This gives you the ability to read right through a lock and to get consistent, correct
answers without locking any data yourself.

So, as far as our example is concerned, Oracle arrives at its answer as shown in Table 1-2.

Table 1-2. Multi-versioning in Action

Time Query Account Transfer Transaction
T1 Reads row 1; balance = $500; sum = $500 so
far.
T2 Updates row 1; puts an exclusive lock on row 1,

preventing other updates (but not reads). Row
1 now has $100.

T3 Reads row 2; balance = $250; sum = $750 so
far.
T4 Reads row 3 balance = $400; sum = $1150 so
far.
T5 Updates row 4; puts an exclusive lock on block
4, preventing other updates (but not reads).
Row 4 now has $500.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Time Query Account Transfer Transaction

T6 Reads row 4; discovers that row 4 has been
modified. It will actually roll back the block
to make it appear as it did at time = T1. The
query will read the value $100 from this
block.

T7 Commits transaction.

T8 Presents $1250 as the answer.

At time T6, Oracle is effectively “reading through” the lock that our transaction placed on row 4. This
is how non-blocking reads are implemented: Oracle only looks to see if the data changed; it doesn'’t care
if the data is currently locked (which implies that the data may have changed). Oracle simply retrieves
the old value from the undo segment and proceeds to the next block of data.

This is another clear demonstration of multi-versioning. Multiple versions of the same piece of
information, all at different points in time, are available in the database. Oracle is able to use these
snapshots of data at different points in time to provide us with read-consistent queries and non-
blocking reads.

This read-consistent view of data is always performed at the SQL statement level. The results of any
single SQL statement are consistent with respect to the point in time they began. This quality is what
makes a statement like the following insert a predictable set of data:

for x in (select * from t)
loop

insert into t values (x.username, x.user id, x.created);
end loop;

The result of the SELECT * FROM T is preordained when the query begins execution. The SELECT will
not see any of the new data generated by the INSERT. Imagine if it did—this statement might be a never-
ending loop. If, as the INSERT generated more rows in T, the SELECT could “see” those newly inserted
rows, the preceding code would create some unknown number of rows. If the table T started out with 10
rows, we might end up with 20, 21, 23, or an infinite number of rows in T when we finished. It would be
totally unpredictable. This consistent read is provided to all statements so that an INSERT such as the
following is predictable as well:

insert into t select * from t;

The INSERT statement will be provided a read-consistent view of T. It will not see the rows that it just
inserted; rather, it will only insert the rows that existed at the time the SELECT began. Some databases
won’t even permit recursive statements such as the preceding because they can’t tell how many rows
might actually be inserted.

So, if you are used to the way other databases work with respect to query consistency and
concurrency, or you never had to grapple with such concepts (i.e., you have no real database
experience), you can now see how understanding how this works will be important to you. In order to
maximize Oracle’s potential, and to implement correct code, you need to understand these issues as
they pertain to Oracle—not how they are implemented in other databases.

www.it-ebooks.info

31

http://www.it-ebooks.info

32

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Database Independence?

By now, you might be able to see where I'm going in this section. I have made references above to other
databases and how features are implemented differently in each. With the exception of some read-only
applications, it is my contention that building a wholly database-independent application that is highly
scalable is extremely hard—it is, in fact, quite impossible unless you know exactly how each database
works in great detail. And, if you knew how each database worked in great detail, you'd understand that
database independence is not something you really want to achieve (a very circular argument!).

To illustrate, let’s revisit our initial resource scheduler example (prior to adding the FOR UPDATE
clause). Let’s say this application had been developed on a database with an entirely different
locking/concurrency model from that of Oracle. What I'll show here is that if you migrate your
application from one database to another, you'll have to verify that it still works correctly in these
different environments and substantially change it as you do!

Let’s assume that we had deployed the initial resource scheduler application in a database that
employed blocking reads (reads are blocked by writes). Also consider that the business rule was
implemented via a database trigger (after the INSERT had occurred but before the transaction committed,
we would verify that only our row existed in the table for that time slot). In a blocking read system, due to
this newly inserted data, it would be true that insertions into this table would serialize. The first person
would insert her request for “room A” from 2:00 pm to 3:00 pm on Friday and then run a query looking
for overlaps. The next person would try to insert an overlapping request and, upon looking for overlaps,
would become blocked (waiting for the newly inserted data to become available for reading). In that
blocking read database, our application would be apparently well-behaved, though it could just as easily
deadlock (a concept covered in the chapter on locking) if we both inserted our rows and then attempted
to read each other’s data. Our checks on overlapping resource allocations would have happened one
after the other, never concurrently.

If we migrated this application to Oracle and simply assumed it would behave in the same way, we
would be in for a shock. On Oracle, which does row-level locking and supplies non-blocking reads, it
appears to be ill-behaved. As we saw previously, we had to use the FOR UPDATE clause to serialize access.
Without this clause, two users could schedule the same resource for the same times. This is a direct
consequence of not understanding how the database we have works in a multiuser environment.

I have encountered issues such as this many times when an application is being moved from
database A to database B. When an application that worked flawlessly in database A does not work or
works in an apparently bizarre fashion on database B, the first thought is that database B is a “bad
database.” The simple truth is that database B just works differently. Neither database is wrong or bad;
they are just different. Knowing and understanding how they work will help you immensely in dealing
with these issues. Taking an application from Oracle to SQL Server exposes SQL Server’s blocking reads
and deadlock issues—it goes both ways.

For example, I was asked to help convert some Transact SQL (the stored procedure language for SQL
Server) into PL/SQL. The developer doing the conversion was complaining that the SQL queries in
Oracle returned the “wrong” answer. The queries looked like this:

declare
1 some variable varchar2(25);
begin
if (some_condition)
then
1 some variable := f(..);
end if;

for x in (select * from T where x = 1 some_variable)
loop

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

The goal here was to find all of the rows in T where x was NULL if some condition was not met or
where x equaled a specific value if some condition was met.

The complaint was that, in Oracle, this query would return no data when L_SOME_VARIABLE was not
set to a specific value (when it was left as NULL). In Sybase or SQL Server, this was not the case—the query
would find the rows where x was set to a NULL value. I see this on almost every conversion from Sybase or
SQL Server to Oracle. SQL is supposed to operate under tri-valued logic and Oracle implements NULL
comparisons the way ANSI SQL requires them to be implemented. Under those rules, comparing x to a
Null is neither true nor false—it is, in fact, unknown. The following snippet shows what I mean:

ops$tkyte@ORA10G> select * from dual where null=null;
no rows selected

ops$tkyte@ORA10G> select * from dual where null <> null;
no rows selected

ops$tkyte@ORA10G> select * from dual where null is null;

D

X

This can be confusing the first time you see it. It proves that, in Oracle, NULL is neither equal to nor
not equal to NULL. SQL Server, by default, does not do it that way: in SQL Server and Sybase, NULL is equal
to NULL (by default; in current releases of SQL Server, the default behavior may be modified to reflect the
ANSI standard). None of the databases’ processing is wrong—it is just different. And all of the databases
are, in fact, ANSI compliant (ANSI compliance does not mean you support 100% of the standard, not by
along shot), but they still work differently. There are ambiguities, backward compatibility issues, and so
on, to be overcome. For example, SQL Server supports the ANSI method of NULL comparison, just not by
default (it would break thousands of existing legacy applications built on that database).

In this case, one solution to the problem is to write the query like this instead:

select *
from t
where (x = 1_some_variable OR (x is null and 1_some_variable is NULL))

However, this leads to another problem. In SQL Server, this query would use an index on x. This
might not be the case in Oracle since a B*Tree index (more on indexing techniques in the chapter on
indexes) will not index an entirely NULL entry. Hence, if you need to find NULL values, B*Tree indexes are
not always useful.

Note As long as at least one column of an Oracle B*Tree index is defined as NOT NULL, all rows in the table
will, in fact, appear in the index and the predicate where x is null can and will use an index to retrieve the rows.

What we did in this case, in order to minimize impact on the code, was to assign x some value that it
could never in reality assume. Here, x, by definition, was a positive number — so we chose the number -1.
Thus, the query became:

select * from t where nvl(x,-1) = nvl(1l_some_variable,-1)

www.it-ebooks.info

33

http://www.it-ebooks.info

34

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

And we created a function-based index:
create index t_idx on t(nvl(x,-1));

With minimal change, we achieved the same end result. The important points to recognize from this
example are that:

* Databases are different. Experience with one will, in part, carry over to another
but you must be ready for some fundamental differences as well as some very
minor differences.

* Minor differences (such as treatment of NULLs) can have as big an impact as
fundamental differences (such as concurrency control mechanisms).

* Being aware of the database, how it works, and how its features are implemented
is the only way to overcome these issues.

Developers frequently ask me (usually more than once a day) how to do something specific in the
database, such as, “How do I create a temporary table in a stored procedure?” I don’t answer such
questions directly. Instead, I respond with a question: “Why do you want to do that?” Many times, the
answer that comes back is “In SQL Server we created temporary tables in our stored procedures and
we need to do this in Oracle.” That’s what I expected to hear. My response, then, is easy: “You don’t want
to create temporary tables in a stored procedure in Oracle—you only think you do.” That would, in fact,
be a very bad thing to do in Oracle. If you created the tables in a stored procedure in Oracle you would
find that:

* Doing DDL is a scalability inhibitor.
* Doing DDL constantly is not fast.
¢ Doing DDL commits your transaction.

* You would have to use Dynamic SQL in all of your stored procedures in order to
access this table—no static SQL.

* Dynamic SQL in PL/SQL is not as fast or as optimized as static SQL.

The bottom line is that you don’t want to do it exactly as you did it in SQL Server (if you even need
the temporary table in Oracle at all). You want to do things as they are best done in Oracle. Just as if you
were going the other way from Oracle to SQL Server, you would not want to create a single table for all
users to share for temporary data (that is how Oracle does it). That would limit scalability and
concurrency in those other databases. All databases are not created equal; they are all very different.

This is not to say that you can’t use temporary tables in Oracle. You can, you probably will. It is just
that you will use them differently in Oracle than you did in SQL Server (and vice versa).

The Impact of Standards

If all databases are SQL99-compliant, then they must be the same. At least that’s often the assumption.
In this section, I'd like to dispel that myth.

SQL99 is an ANSI/ISO standard for databases. It was the successor to the SQL92 ANSI/ISO standard,
which in turn superseded the SQL89 ANSI/ISO standard. It has now been superseded itself by the
SQL2003 and SQL2008 standards updates. The standard defines a language (SQL) and behavior
(transactions, isolation levels, and so on) that tell you how a database will behave. Did you know that
many commercially available databases are SQL99-compliant to at least some degree? Did you also
know that it means very little as far as query and application portability goes?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Starting with the SQL92 standard, the standards have four levels:

* Entry-level: This is the level to which most vendors have complied. It is a minor
enhancement of the predecessor standard, SQL89. No database vendors have been
certified higher and, in fact, the National Institute of Standards and Technology
(NIST), the agency that used to certify for SQL-compliance, does not even certify
anymore. I was part of the team that got Oracle 7.0 NIST-certified for SQL92 entry-
level compliance in 1993. An entry level-compliant database has a feature set that
is a subset of Oracle 7.0’s capabilities.

* Transitional: This level is approximately halfway between entry level and
intermediate level as far as a feature set goes.

* Intermediate: This level adds many features including (this is not by any means an
exhaustive list)

. Dynamic SQL
. Cascade DELETE for referential integrity
. DATE and TIME data types

. Domains

. Variable length character strings

. A CASE expression

. CAST functions between data types

* Full: Adds provisions for (again, this list is not exhaustive)
. Connection management
. A BIT string data type
. Deferrable integrity constraints
. Derived tables in the FROM clause
. Subqueries in CHECK clauses
. Temporary tables

The entry-level standard does not include features such as outer joins, the new inner join syntax,
and so on. Transitional does specify outer join syntax and inner join syntax. Intermediate adds more,
and Full is, of course all of SQL92. Most books on SQL92 do not differentiate between the various levels,
which leads to confusion on the subject. They demonstrate what a theoretical database implementing
SQL92 full would look like. It makes it impossible to pick up a SQL92 book, and apply what you see in the
book to just any SQL92 database. The bottom line is that SQL92 will not go very far at the entry level and,
if you use any of the features of intermediate or higher, you risk not being able to port your application.

SQL99 defines only two levels of conformance: Core and Enhanced. It attempted to go far beyond
traditional SQL and introduced object relational constructs (arrays, collections, etc.). It covered a SQL
MM (multi-media) type, object-relational types, and so on. No vendors are certifying databases to be
SQL99 Core or Enhanced “compliant” and, in fact, I know of no vendor who is even claiming his product
is fully compliant with either level of conformance.

You should not be afraid to make use of vendor-specific features—after all, you are paying a lot of
money for them. Every database has its own bag of tricks, and you can always find a way to perform a
given operation in each database. Use what is best for your current database, and re-implement
components as you go to other databases. Use good programming techniques to isolate yourself from

www.it-ebooks.info

35

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

these changes. The same techniques are employed by people writing OS-portable applications—such as
the Oracle kernel developers.

Make Sure You Can Adapt

The goal is to fully use the facilities available to you, but ensure you can change the implementation on a
case-by-case basis. As an analogy, Oracle is a portable application. It runs on many operating systems.
On Windows, however, it runs the Windows way: using threads and other Windows-specific facilities. On
UNIX, in contrast, Oracle runs as a multi-process server, using individual processes to do what threads
do on Windows—that’s the UNIX way. The “core Oracle” functionality is available on both platforms but
it is implemented in very different ways under the covers. Your database applications that must function
on multiple databases will be the same.

For example, a common function of many database applications is the generation of a unique key
for each row. When you insert the row, the system should automatically generate a key for you. Oracle
has implemented the database object called a SEQUENCE for this, SYS_GUID()is another function that
provides for unique keys as well. Informix has a SERIAL data type. Sybase and SQL Server have an
IDENTITY type. Each database has a way to do this. However, the methods are different, both in how
you do it, and the possible outcomes. So, to the knowledgeable developer, there are two paths that can
be pursued:

* Develop a totally database-independent method of generating a unique key.

* Accommodate the different implementations and use different techniques when
implementing keys in each database.

The theoretical advantage of the first approach is that to move from database to database you need
not change anything. I call it a “theoretical” advantage because the downside of this implementation is
so huge that it makes this solution totally infeasible. What you’d have to do to develop a totally database-
independent process is to create a table such as

ops$tkyte%0RA11GR2> create table id table
2 (id_name varchar2(30) primary key,
3 id value number);

Table created.

ops$tkyte%ORA11GR2> insert into id_table values ('MY_KEY', 0);
1 row created.

ops$tkyte%0RA11GR2> commit;
Commit complete.

Then, in order to get a new key, you’d have to execute the following code:

ops$tkyte%0RA11GR2> update id_table
2 set id value = id value+1
3 where id name = 'MY_KEY';

1 row updated.

ops$tkyte%0RA11GR2> select id_value
2 from id table
3 where id name = 'MY_KEY';

ID VALUE

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Looks simple enough, but the outcomes (notice plural) are as follows:

* Only one user at a time may process a transaction row. You need to update that
row to increment a counter, and this will cause your program to serialize on that
operation. At best, one person at a time will generate a new value for this key.

* InOracle (and the behavior might be different in other databases), all but the first
user to attempt to concurrently perform this operation would receive the error
“ORA-08177: can't serialize access for this transaction” in the SERIALIZABLE
isolation level.

For example, using a serializable transaction (which is more common in the J2EE environment,
where many tools automatically use this as the default mode of isolation, often unbeknownst to the
developers), you would observe the following behavior. Notice that the SQL prompt contains
information about which session is active in this example:

OPS$TKYTE session(261,2586)> set transaction isolation level serializable;
Transaction set.

OPS$TKYTE session(261,2586)> update id table
2 set id value = id value+1
3 where id name = 'MY_KEY';

1 row updated.

OPS$TKYTE session(261,2586)> select id value
2 from id_table
3 where id_name = 'MY_KEY';

ID VALUE

Now, we’ll go to another SQL*Plus session and perform the same operation, a concurrent request
for a unique id:

OPS$TKYTE session(271,1231)» set transaction isolation level serializable;
Transaction set.

OPS$TKYTE session(271,1231)> update id_table
2 set id value = id value+1
3 where id_name = 'MY_KEY';

This will block at this point, as only one transaction at a time can update the row. This demonstrates
the first possible outcome—we would block and wait for the row. But since we're using SERIALIZABLE in
Oracle, we’ll observe the following behavior as we commit the first session’s transaction:

OPS$TKYTE session(261,2586)> commit;
Commit complete.

The second session will immediately display the following error:
OPS$TKYTE session(271,1231)> update id_table

2 set id value = id value+1
3 where id_name = 'MY_KEY';

www.it-ebooks.info

37

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

update id_table
%

ERROR at line 1:
ORA-08177: can't serialize access for this transaction

That error would occur regardless of the ordering of the commit statement above. All it takes is for
your transaction to attempt to modify any record that was modified by some other session since your
transaction began.

So, that database-independent piece of logic really isn’t database independent at all. It may not
even perform reliably in a single database, depending on the isolation level! Sometimes we block and
wait; sometimes we get an error message. To say the end user would be upset in either case (wait long
time, or wait long time to get error) is putting it mildly.

This issue is compounded by the fact that our transaction is much larger than just outlined. The
UPDATE and SELECT in the example are only two statements of potentially many other statements that
make up the transaction. We have yet to insert the row into the table with this key we just generated, and
do whatever other work it takes to complete this transaction. This serialization will be a huge limiting
factor in scaling. Think of the ramifications if this technique was used on web sites that processed
orders, and this was how we generated order numbers. There would be no multiuser concurrency, so we
would be forced to do everything sequentially.

The correct approach to this problem is to use the best code for each database. In Oracle this would
be (assuming the table that needs the generated primary key is T):

ops$tkyte’0RA11GR2> create table t
2 (pk number primary key,
3 other_data varchar2(20)
4)
5 /
Table created.

ops$tkyte’0RA11GR2> create sequence t_seq;
Sequence created.

ops$tkyte%0RA11GR2> create trigger t before insert on t
2 for each row

3 begin

4 tnew.pk := t_seq.nextval;
5 end;

6 /

Trigger created.

Note In releases before Oracle 11g, you will have to use SELECT T_SEQ.NEXTVAL INTO :NEW.PK FROM DUAL;
in place of the assignment; direct assignment of a sequence in PL/SQL is a new 11g feature.

This will have the effect of automatically—and transparently—assigning a unique key to each row
inserted. A more performance-driven approach would be simply

Insert into t (pk, ...) values (t_seq.NEXTVAL, ...);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

That is, skip the overhead of the trigger altogether (this is definitely my preferred approach). You can
achieve the same effect in the other databases using their types. The CREATE TABLE syntax will be
different but the net results will be the same. Here, we’ve gone out of our way to use each database’s
feature to generate a non-blocking, highly concurrent unique key, and have introduced no real changes
to the application code—all of the logic is contained in this case in the DDL.

Layered Programming

Once you understand that each database will implement features in a different way, another example of
defensive programming to allow for portability is to layer your access to the database when necessary.
Let’s say you are programming using JDBC. If all you use is straight SQL SELECTs, INSERTs, UPDATEs, and
DELETEs, you probably don’t need a layer of abstraction. You may very well be able to code the SQL
directly in your application, as long as you limit the constructs you use to those supported by each of
the databases you intend to support—and that you have verified work exactly the same (remember the
NULL= NULL discussion!). This means you’ll have poorly performing SQL, though—and you’ll apparently
have in your head more knowledge about more databases than most anyone I know of (after all, that’s
the only way to know if something has a chance of working the same on all databases!). Another
approach that is both more portable and offers better performance, would be to use stored procedures
to return resultsets. You will discover that every vendor’s database can return resultsets from stored
procedures, but how they are returned is different. The actual source code you must write is different for
different databases.

Your two choices here are to either not use stored procedures to return resultsets, or to implement
different code for different databases. I would definitely follow the different code for different vendors
method and use stored procedures heavily. This might seem as if it would increase the time it takes to
implement on a different database. However, you'll find it is actually easier to implement on multiple
databases with this approach. Instead of having to find the perfect SQL that works on all databases
(perhaps better on some than on others), you will implement the SQL that works best on that database.
You can do this outside of the application itself, which gives you more flexibility in tuning the
application. You can fix a poorly performing query in the database, and deploy that fix immediately,
without having to patch the application. Additionally, you can take advantage of vendor extensions to
SQL using this method freely. For example, Oracle supports a wide variety of SQL extensions, such as
analytic functions, the SQL model clause, and more. In Oracle, you are free to use these extensions to
SQL since they are “outside” of the application (i.e., hidden in the database). In other databases, you
would use whatever features they provide to achieve the same results, perhaps. You paid for these
features so you might as well use them.

Another argument for this approach—developing specialized code for the database you will deploy
on—is that finding a single developer (let alone a team of developers) who is savvy enough to
understand the nuances of the differences between Oracle, SQL Server, and DB2 (let’s limit the
discussion to three databases in this case) is virtually impossible. I've worked mostly with Oracle for the
last sixteen years (mostly, not exclusively). I learn something new about Oracle every single day I use it.
To suggest that I could be expert in three databases simultaneously and understand what the differences
between all three are and how those differences will affect the “generic code” layer I'd have to build is
highly questionable. I doubt I would be able to do that accurately or efficiently. Also, consider that we
are talking about individuals here; how many developers actually fully understand or use the database
they currently have, let alone three of them? Searching for the unique individual who can develop
bulletproof, scalable, database-independent routines is like searching for the holy grail. Building a team
of developers that can do this is impossible. Finding an Oracle expert, a DB2 expert, and a SQL Server
expert and telling them “We need a transaction to do X, Y and Z”—that’s relatively easy. They are told,
“Here are your inputs, these are the outputs we need, and this is what this business process entails,” and
from this they can produce transactional APIs (stored procedures) that fit the bill. Each will be
implemented in the manner best for that particular database, according to that database’s unique set of
capabilities. These developers are free to use the full power (or lack thereof, as the case may be) of the
underlying database platform.

www.it-ebooks.info

39

http://www.it-ebooks.info

40

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

These are the same techniques developers who implement multi-platform code use. Oracle
Corporation, for example, uses this technique in the development of its own database. There is a large
amount of code (though a small percentage of the database code overall) called OSD (Operating System
Dependent) code that is implemented specifically for each platform. Using this layer of abstraction,
Oracle is able to make use of many native OS features for performance and integration, without having
to rewrite the majority of the database itself. The fact that Oracle can run as a multi-threaded application
on Windows and a multi-process application on UNIX attests to this feature. The mechanisms for inter-
process communication are abstracted to such a level that they can be re-implemented on an OS-by-OS
basis, allowing for radically different implementations that perform as well as an application written
directly, and specifically, for that platform.

In addition to SQL syntactic differences, implementation differences, and differences in
performance of the same query in different databases outlined above, there are the issues of
concurrency controls, isolation levels, query consistency, and so on. We cover these items in some detail
in Chapter 7 “Concurrency and Multi-versioning” in this book, and you'll see how their differences may
affect you. SQL92/SQL99 attempted to provide a straightforward definition of how a transaction should
work and how isolation levels should be implemented, but in the end, you’ll get different results from
different databases. It is all due to the implementation. In one database an application will deadlock and
block all over the place. In another database, the same exact application will run smoothly. In one
database, the fact that you did block (physically serialize) was used to your advantage but when you
deploy on another database and it does not block, you get the wrong answer. Picking an application up
and dropping it on another database takes a lot of hard work and effort, even if you followed the
standard 100 percent.

Features and Functions

A natural extension of the argument that you shouldn’t necessarily strive for database independence is
the idea that you should understand exactly what your specific database has to offer and make full use of
it. This is not a section on all of the features that Oracle 11g has to offer—that would be an extremely
large book in itself. The new features of Oracle 9i, 10g, and 11g themselves fill a book in the Oracle
documentation set. With over 10,000 pages of documentation provided by Oracle, covering every feature
and function would be quite an undertaking. Rather, this section explores the benefits of gaining at least
a cursory knowledge of what is provided.

AsT've said before, I answer questions about Oracle on the Web. I'd say that 80 percent of my
answers are simply URLs to the documentation (for every question you see that I've published—many of
which are pointers into the documentation—there are two more questions I choose not to publish,
almost all of which are “read this” answers). People ask how they might go about writing some complex
piece of functionality in the database (or outside of it), and I just point them to the place in the
documentation that tells them how Oracle has already implemented the feature they need and how to
use it. Replication comes up frequently. Here’s a typical example of what I am asked:

Is there a view that will show the literal SQL run? What I mean is that when I select
from V8SQL, the SQL_TEXT looks like: INSERT INTO TABLE1 (COL1,COL2) VALUES
(:1,:2). 1 need to see the actual data submitted. e.g. INSERT INTO TABLEI
(COL1,COL2) VALUES (FirstVal',12) . What I am trying to get is a list of insert, update
or delete statements run against one schema and run those same SQL statements
against a second schema in the same order of execution. I am hopeful to be able to
write something like:

Select SQL FULLTEXT from V$SOL where FIRST LOAD TIME > SYSDATE-(1/24) AND «~
(SOL_TEXT like 'INSERT%'...) order by FIRST LOAD TIME

This recordset would be sent via a web service to schemaZ2, which would process the
statements. Is this possible?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Here is someone trying to reinvent replication! He can’t get the literal SQL (and thank goodness for
that!), but even if he could, this approach would never work. You can’t just take a concurrently executed
set of SQL statements (what happens on a multi-CPU machine where two SQL statements are executed
at exactly the same time?) and execute them serially (you'll end up with different answers!). You’d need
to replay them using the degree of concurrency you used on the originating system.

For example, if you and I both execute INSERT INTO A TABLE SELECT * FROM A_TABLE; at about the
same time, we’d end up with A_TABLE having three times as many rows as it did when we started. For
example, if A_TABLE started with 100 rows and I did that insert, it would now have 200 rows. If you did the
insert right after me (before I commit), you would not see my 200 rows and you’d insert 100 more rows
into A_TABLE, which would end up with 300 rows. Now, if we change things so that a web service
performs my insert (A_TABLE grows from 100 to 200 rows) and then your insert (A_TABLE grows from 200
to 400 rows)—you can see the problem here. Replication is not trivial, it is, in fact, quite difficult. Oracle
(and other databases) have been doing replication for over a decade now; it takes a lot of effort to
implement and maintain.

It's true you can write your own replication, and it might even be fun to do so, but at the end of the
day, it’s not the smartest thing to do. The database does a lot of stuff. In general, it can do it better than
we can ourselves. Replication, for example, is internalized in the kernel, written in C. It’s fast, it’s fairly
easy, and it’s robust. It works across versions and across platforms. It is supported, so if you hit a
problem, Oracle’s support team will be there to help. If you upgrade, replication will be supported there
as well, probably with some new features. Now, consider if you were to develop your own. You'd have to
provide support for all of the versions you wanted to support. Interoperability between old and new
releases? That'd be your job. If it “broke,” you wouldn’t be calling support. At least, not until you could
get a test case small enough to demonstrate your basic issue. When the new release of Oracle comes out,
it would be up to you to migrate your replication code to that release.

Knowing What'’s Out There

Not having a full understanding of what is available to you can come back to haunt you in the long run. I
was working with some developers with years of experience developing database applications—on other
databases. They built analysis software (trending, reporting, visualization software). It was to work on
clinical data related to healthcare. They were not aware of SQL syntactical features like inline views,
analytic functions, scalar subqueries. Their major problem was they needed to analyze data from a
single parent table to two child tables; an Entity Relation Diagram (ERD) might look like Figure 1-1.

Child_1 N Parent 4 Child_2

Figure 1-1. Simple ERD

The developers needed to be able to report on the parent record with aggregates from each of the
child tables. The databases they worked with in the past did not support subquery factoring (WITH
clause), nor did they support inline views—the ability to “query a query” instead of query a table. Not
knowing these features existed, they wrote their own database of sorts in the middle tier. They would
query the parent table and for each row returned run an aggregate query against each of the child tables.
This resulted in their running thousands of tiny queries for each single query the end user wanted to run.
Or, they would fetch the entire aggregated child tables into their middle tier into hash tables in
memory—and do a hash join.

In short, they were reinventing the database, performing the functional equivalent of a nested loops
join or a hash join, without the benefit of temporary tablespaces, sophisticated query optimizers, and

www.it-ebooks.info

41

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

the like. They were spending their time developing, designing, fine-tuning, and enhancing software that
was trying to do the same thing the database they already bought did! Meanwhile, end users were asking
for new features but not getting them, because the bulk of the development time was in this reporting
“engine,” which really was a database engine in disguise.

I showed them that they could do things such as join two aggregations together in order to compare
data that was stored at different levels of detail. Several approaches are possible, as illustrated in Listings
1-1 through 1-3.

Listing 1-1. Inline Views to Query from a Query

select p.id, c1_suml, c2_sum2
from p,
(select id, sum(q1) c1_sumi
from c1
group by id) c1,
(select id, sum(q2) c2_sum2
from c2
group by id) c2
where p.id = c1.id
and p.id = c2.id

/
Listing 1-2. Scalar Subqueries that Run Another Query per Row

select p.id,
(select sum(q1) from c1 where c1.id
(select sum(q2) from c2 where c2.id
from p
where p.name = '1234'
/

p.id) c1_sumi,
p.id) c2_sum2

Listing 1-3. Subquery Factoring via the WITH Clause

with c1_vw as

(select id, sum(gq1) c1_sumi
from c1
group by id),

€2 vw as

(select id, sum(g2) c2_sum2
from c2
group by id),

c1 c2 as

(select c1.id, c1.c1 sumi, c2.c2_sum2
from c1_vw c1, c2 vw c2
where c1.id = c2.id)

select p.id, c1_suml, c2_sum2
from p, c1 c2

where p.id = c1 _c2.id

/

42

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

In addition to what you see in these listings, we can also do great things using the analytic functions
like LAG, LEAD, ROW_NUMBER, the ranking functions, and so much more. Rather than spending the rest of the
day trying to figure out how to tune their middle tier database engine, we spent the day with the SQL
Reference Guide projected on the screen (coupled with SQL*Plus to create ad-hoc demonstrations of how
things worked). The end goal was no longer tuning the middle tier; now it was turning off the middle tier
as quickly as possible.

Here’s another example: I have seen people set up daemon processes in an Oracle database that
read messages off of pipes (a database IPC mechanism). These daemon processes execute the SQL
contained within the pipe message and commit the work. They do this so they could execute auditing
and error logging in a transaction that would not get rolled back if the bigger transaction did. Usually, if a
trigger or something was used to audit an access to some data, but a statement failed later on, all of the
work would be rolled back. So, by sending a message to another process, they could have a separate
transaction do the work and commit it. The audit record would stay around, even if the parent
transaction rolled back. In versions of Oracle before Oracle 8i, this was an appropriate (and pretty much
the only) way to implement this functionality. When I told them of the database feature called
autonomous transactions, they were quite upset with themselves. Autonomous transactions,
implemented with a single line of code, do exactly what they were doing. On the bright side, this meant
they could discard a lot of code and not have to maintain it. In addition, the system ran faster overall,
and was easier to understand. Still, they were upset at the amount of time they had wasted reinventing
the wheel. In particular, the developer who wrote the daemon processes was quite upset at having just
written a bunch of “shelfware.”

I see examples like these repeated time and time again—large complex solutions to problems that
are already solved by the database itself. I've been guilty of this myself. 1 still remember the day when my
Oracle sales consultant (I was the customer at the time) walked in and saw me surrounded by a ton of
Oracle documentation. I looked up at him and just asked “Is this all true?” I spent the next couple of days
just digging and reading. I had fallen into the trap that I knew all about databases because I had worked
with SQL/DS, DB2, Ingress, Sybase, Informix, SQLBase, Oracle, and others. Rather than take the time to
see what each had to offer, I would just apply what I knew from the others to whatever I was working on.
(Moving to Sybase/SQL Server was the biggest shock to me—it worked nothing like the others at all.)
Upon actually discovering what Oracle could do (and the others, to be fair), I started taking advantage of
it and was able to move faster, with less code. This was in 1993. Imagine what you can do with the
software today, almost two decades later.

Take the time to learn what is available. You miss so much by not doing that. I learn something new
about Oracle pretty much every single day. It requires some keeping up with; I still read the
documentation.

Solving Problems Simply

There are always two ways to solve everything: the easy way and the hard way. Time and time again, I
see people choosing the hard way. It is not always done consciously. More often, it is done out of
ignorance. They never expected the database to be able to do “that.” I, on the other hand, expect the
database to be capable of anything and only do it the hard way (by writing it myself) when I discover it
can’t do something.

For example, I am frequently asked, “How can I make sure the end user has only one session in the
database?” (There are hundreds of other examples I could have used here). This must be a requirement
of many applications, but none I've ever worked on—I’ve not found a good reason for limiting people in
this way. However, people want to do it and when they do, they usually do it the hard way. For example,
they will have a batch job run by the operating system that will look at the V$SESSION table and arbitrarily
kill sessions of users who have more than one session. Alternatively, they will create their own tables and
have the application insert a row when a user logs in and remove the row when they log out. This
implementation invariably leads to lots of calls to the help desk because when the application crashes,
the row never gets removed. I've seen lots of other “creative” ways to do this, but none is as easy as:

www.it-ebooks.info

43

http://www.it-ebooks.info

44

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

ops$tkyte%ORA11GR2> create profile one_session limit sessions_per user 1;
Profile created.

ops$tkyte%ORA11GR2> alter user scott profile one_session;
User altered.

ops$tkyte%ORA11GR2> alter system set resource limit=true;
System altered.

ops$tkyte%0RA11GR2> connect scott/tiger
Connected.
scott%ORA11GR2> host sqlplus scott/tiger

SQL*Plus: Release 11.2.0.1.0 Production on Wed Dec 9 16:02:39 2009
Copyright (c) 1982, 2009, Oracle. All rights reserved.

ERROR:
ORA-02391: exceeded simultaneous SESSIONS_PER_USER limit
Enter user-name:

That’s it—now any user with the ONE_SESSION profile can log on only once. When I bring up this
solution, I can usually hear the smacking of a hand on the forehead followed by the statement “I never
knew it could do that.” Taking the time to familiarize yourself with what the tools you have to work with
are capable of doing can save you lots of time and energy in your development efforts.

The same “keep it simple” argument applies at the broader architecture level. I would urge people
to think carefully before adopting very complex implementations. The more moving parts you have in
your system, the more things you have that can go wrong, and tracking down exactly where that error is
occurring in an overly complex architecture is not easy. It may be really “cool” to implement using
umpteen tiers, but it’s not the right choice if a simple stored procedure can do it better, faster, and with
less resources.

I've seen projects where application development has been going on for months, with no end in
sight. The developers are using the latest and greatest technologies and languages, but development is
not going very fast. It wasn’t that big of an application—and perhaps that was the problem. If you are
building a doghouse (a small woodworking job), you wouldn’t bring in the heavy machinery. You’d use a
few small power tools, but you wouldn’t have any use for the “big stuff.” On the other hand, if you were
building an apartment complex, you'd have a cast of hundreds working on the project, you’d have the
big machines—you’d use totally different tools to approach this problem. The same is true of application
development. There is not a single “perfect architecture.” There is not a single “perfect language.” There
is not one single “perfect approach.”

For example, to build my web site I used APEX (Application Express). It’s a smallish application,
there was a single developer (or two) working on it. It has maybe 20 screens. PL/SQL and APEX was the
correct choice for this implementation—it did not need a cast of dozens, coding in Java, making EJBs,
using Hibernate, and so on. It was a simple problem, solved simply. There are few complex, large-scale,
huge applications (we buy most of those today: our HR systems, our ERP systems, and so on), but there
are thousands of small applications. We need to use the proper approach and tools for the job.

I will always go with the simplest architecture that solves the problem completely over a complex
one any day. The payback can be enormous. Every technology has its place. Not every problem is a nail,
so we can use more than a hammer in our toolbox.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Openness

I frequently see people doing things the hard way for another reason, and again it relates to the idea that
we should strive for openness and database independence at all costs. The developers wish to avoid
using closed, proprietary database features—even those as simple as stored procedures or sequences—
because doing so will lock them into a database system. Well, let me put forth the idea that the instant
you develop a read/write application, you are already somewhat locked in. You will find subtle (and
sometimes not-so-subtle) differences between the databases as soon as you start running queries and
modifications. For example, in one database you might find that your SELECT COUNT(*) FROM T deadlocks
with a simple update of two rows. In Oracle, you'll find that the SELECT COUNT(*) never blocks on a
writer of the data being counted. You've seen the case where a business rule appears to get enforced

on one database, due to side effects of the database’s locking model, and does not get enforced in
another database. You'll find that, given the same exact transaction mix, reports come out with different
answers in different databases, all because of fundamental implementation differences. You will find
that it is a very rare application that can simply be picked up and moved from one database to another.
Differences in the way the SQL is interpreted (for instance, the NULL=NULL example) and processed will
always be there.

On one project, the developers were building a web-based product using Visual Basic, ActiveX
Controls, IIS server, and the Oracle database. I was told that the development folks had expressed
concern that since the business logic had been written in PL/SQL, the product had become database
dependent and was asked, “How can we correct this?”

I'was a little taken aback by this question. In looking at the list of chosen technologies I could not
figure out how being database dependent was a “bad” thing:

* The developers had chosen a language that locked them into a single operating
system supplied by a single vendor (they could have opted for Java).

* Theyhad chosen a component technology that locked them into a single
operating system and vendor (they could have opted for J2EE).

* They had chosen a web server that locked them into a single vendor and single
platform (why not Apache?).

Every other technology choice they had made locked them into a very specific configuration—in
fact, the only technology that offered them any choice in terms of operating systems was the database.

Regardless of this (they must have had good reasons to choose the technologies they did) we still
have a group of developers making a conscious decision to not use the functionality of a critical
component in their architecture, and doing so in the name of openness. It is my belief that you pick your
technologies carefully and then you exploit them to the fullest extent possible. You paid a lot for these
technologies—isn’t it in your best interest to exploit them fully? I had to assume they were looking
forward to using the full potential of the other technologies, so why was the database an exception? This
was an even harder question to answer in light of the fact that it was crucial to their success.

We can put a slightly different spin on this argument if we consider it from the perspective of
openness. You put all of your data into the database. The database is a very open tool. It supports data
access via a large variety of open systems protocols and access mechanisms. Sounds great so far, the
most open thing in the world.

Then, you put all of your application logic and more importantly, your security outside of the
database. Perhaps in your beans that access the data. Perhaps in the JSPs that access the data. Perhaps in
your Visual Basic code running under Microsoft’s Transaction Server (MTS). Perhaps in your Hibernate-
generated code. The end result is that you have just closed off your database —you have made it “non-
open.” No longer can people hook in existing technologies to make use of this data; they must use your
access methods (or bypass security altogether). This sounds all well and good today, but what you must
remember is that the whiz-bang technology of today is yesterday’s concept, and tomorrow’s old, tired
technology. What has persevered for over 30 years in the relational world (and probably most of the

www.it-ebooks.info

45

http://www.it-ebooks.info

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

object implementations as well) is the database itself. The front ends to the data change almost yearly,
and as they do, the applications that have all of the security built inside themselves, not in the database,
become obstacles, roadblocks to future progress.

The Oracle database provides a feature called fine-grained access control (FGAC). In a nutshell, this
technology allows developers to embed procedures in the database that can modify queries as they are
submitted to the database. This query modification is used to restrict the rows the client will receive or
modify. The procedure can look at who is running the query, when they are running the query, what
application is requesting the data, what terminal they are running the query from, and so on, and can
constrain access to the data as appropriate. With FGAC, we can enforce security such that, for example:

* Any query executed outside of normal business hours by a certain class of users
returns zero records.

* Anydata can be returned to a terminal in a secure facility but only non-sensitive
information can be returned to a remote client terminal.

Basically, FGAC allows us to locate access control in the database, right next to the data. It no longer
matters if the user comes at the data from a bean, a JSP, a Visual Basic application using ODBC, or
SQL*PLUS—the same security protocols will be enforced. You are well-situated for the next technology
that comes along.

Now I ask you, which implementation is more “open?” The one that makes all access to the data
possible only through calls to the Visual Basic code and ActiveX controls (replace Visual Basic with Java
and ActiveX with EJB if you like—I’'m not picking on a particular technology but an implementation
here) or the solution that allows access from anything that can talk to the database, over protocols as
diverse as SSL, HTTP, and Oracle Net (and others) or using APIs such as ODBC, JDBC, OCI, and so on?I
have yet to see an ad hoc reporting tool that will “query” your Visual Basic code. I know of dozens that
can do SQL, though.

The decision to strive for database independence and total openness is one that people are
absolutely free to take, and many try, but I believe it is the wrong decision. No matter what database
you are using, you should exploit it fully, squeezing every last bit of functionality you can out of that
product. You'll find yourself doing that in the tuning phase (which again always seems to happen
right after deployment) anyway. It is amazing how quickly the database independence requirement
can be dropped when you can make the application run five times faster just by exploiting the
software’s capabilities.

How Do I Make It Run Faster?

The question in the heading is one I get asked all the time. Everyone is looking for the fast = true switch,
assuming “database tuning” means that you tune the database. In fact, it is my experience that more
than 80 percent (frequently 100 percent) of all performance gains are to be realized at the application
design and implementation level—not the database level. You can’t tune a database until you have
tuned the applications that run on the database.

As time goes on, there are some switches we can throw at the database level to help lessen the
impact of egregious programming blunders. For example, Oracle 8.1.6 added a new parameter,
CURSOR_SHARING=FORCE. This feature implements an auto binder, if you will. It will silently take a query
written as SELECT * FROM EMP WHERE EMPNO = 1234 and rewrite it for us as SELECT * FROM EMP WHERE EMPNO = :x.
This can dramatically decrease the number of hard parses, and decrease the library latch waits we
discussed in the Architecture sections—but (there is always a but) it can have some side effects. A
common side effect with cursor sharing is something like this:

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

ops$tkyte%ORA11CR2> select /* TAG */ substr(username, 1, 1)
2 from all users aul
3 where rownum = 1;

S

S

ops$tkyte%ORA11GR2> alter session set cursor_sharing=force;
Session altered.

ops$tkyte%ORA11CR2> select /* TAG */ substr(username, 1, 1)
2 from all _users au2
3 where rownum = 1;

SUBSTR (USERNAME, 1,1)

What happened there? Why is the column reported by SQL*Plus suddenly so large for the second
query, which is arguably the same query? If we look at what the cursor sharing setting did for us, it (and
something else) will become obvious:

ops$tkyte%ORA11GR2> select sql_text from v$sql where sql_text like 'select /* TAG */ %';

SOL_TEXT
select /* TAG */ substr(username, 1, 1) from all users aul where rownum =
1

select /* TAG */ substr(username, :"SYS B 0", :"SYS B 1") from all users
au2 where rownum = :"SYS B 2"

The cursor sharing removed information from the query. It found every literal, including the substr
constants we were using. It removed them from the query and replaced them with bind variables. The
SQL engine no longer knows that the column is a substr of length 1—it is of indeterminate length. Also,
you can see that where rownum = 1is now bound as well. This seems like a good idea; however, the
optimizer has just had some important information removed. It no longer knows that “this query will
retrieve a single row;” it now believes “this query will return the first N rows and N could be any number
at all.” This can have a negative impact on your generated query plans.

Additionally, I have shown that while CURSOR_SHARING = FORCE runs much faster than parsing and
optimizing lots of unique queries (refer to the section on bind variables above), I have also found it to be
slower than using queries where the developer did the binding. This arises not from any inefficiency in
the cursor-sharing code, but rather in inefficiencies in the program itself. In many cases, an application
that does not use bind variables is not efficiently parsing and reusing cursors either. Since the
application believes each query is unique (it built them as unique statements), it will never use a cursor
more than once. The fact is that if the programmer had used bind variables in the first place, she could
have parsed a query once and reused it many times. It is this overhead of parsing that decreases the
overall potential performance.

Basically, it is important to keep in mind that simply turning on CURSOR_SHARING = FORCE will not
necessarily fix your problems. It may very well introduce new ones. CURSOR_SHARING is, in some cases, a
very useful tool, but it is not a silver bullet. A well-developed application would never need it. In the long
term, using bind variables where appropriate, and constants when needed, is the correct approach.

www.it-ebooks.info

47

http://www.it-ebooks.info

48

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Note There are no silver bullets, none. If there were, they would be the default behavior and you would never
hear about them.

Even if there are some switches that can be thrown at the database level, and they are truly few and
far between, problems relating to concurrency issues and poorly executing queries (due to poorly
written queries or poorly structured data) can’t be fixed with a switch. These situations require rewrites
(and frequently a re-architecture). Moving data files around, adjusting parameters, and other database-
level switches frequently have a minor impact on the overall performance of an application. Definitely
not anywhere near the two, three, ... n times increase in performance you need to achieve to make the
application acceptable. How many times has your application been 10 percent too slow? 10 percent too
slow, no one complains about. Five times too slow, people get upset. I repeat: you will not get a five
times increase in performance by moving data files around. You will only achieve large increments in
performance by fixing the application, perhaps by making it do significantly less I/O.

Note This is just to note how things change over time. I've often written that you will not get a five times
increase in performance by moving data files around. With the advent of hardware solutions such as Oracle
Exadata—a storage area network device designed as an extension to the database—you can in fact get a five
times, ten times, fifty times or more decrease in response time by simply moving data files around. But that is
more of a “we completely changed our hardware architecture” story than a “we reorganized some of our storage.”

Performance is something you have to design for, build to, and test for continuously throughout the
development phase. It should never be something to be considered after the fact. I am amazed at how
often people wait until the application has been shipped to the customer, put in place, and is actually
running before they even start to tune it. I've seen implementations where applications are shipped with
nothing more than primary keys—no other indexes whatsoever. The queries have never been tuned or
stress-tested. The application has never been tried out with more than a handful of users. Tuning is
considered to be part of the installation of the product. To me, that is an unacceptable approach. Your
end users should be presented with a responsive, fully tuned system from day one. There will be enough
“product issues” to deal with without having poor performance be the first thing users experience. Users
expect a few bugs from a new application, but at least don’t make the users wait a painfully long time for
those bugs to appear on screen.

The DBA-Developer Relationship

It’s certainly true that the most successful information systems are based on a symbiotic relationship
between the DBA and the application developer. In this section I just want to give a developer’s
perspective on the division of work between developer and DBA (assuming that every serious
development effort has a DBA team).

As a developer, you should not necessarily have to know how to install and configure the software.
That should be the role of the DBA and perhaps the system administrator (SA). Setting up Oracle Net,
getting the listener going, configuring the shared server, enabling connection pooling, installing the
database, creating the database, and so on—these are functions I place in the hands of the DBA/SA.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1 © DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

In general, a developer should not have to know how to tune the operating system. I myself
generally leave this task to the SAs for the system. As a software developer for database applications, you
will need to be competent in the use of your operating system of choice, but you shouldn’t expect to
have to tune it.

The single largest DBA responsibility is database recovery. Note I did not say “backup.” I said
“recovery,” and I would say that this is the sole responsibility of the DBA. Understanding how rollback
and redo work—yes, that is something a developer has to know. Knowing how to perform a tablespace
point-in-time recovery is something a developer can skip over. Knowing that you can do it might come
in handy, but actually having to do it—no.

Tuning at the database instance level and figuring out what the optimum PGA_AGGREGATE_TARGET
should be—that’s typically the job of the DBAs (and the database is quite willing and able to assist them
in determining the correct figure). There are exceptional cases where a developer might need to change
some setting for a session, but at the database level, the DBA is responsible for that. A typical database
supports more than just a single developer’s application. Only the DBA who supports all of the
applications can make the right decision.

Allocating space and managing the files is the job of the DBA. Developers will contribute their
estimations for space (how much they feel they will need) but the DBA/SA will take care of the rest.

Basically, developers do not need to know how to run the database. They need to know how to run
in the database. The developer and the DBA will work together on different pieces of the same puzzle.
The DBA will be visiting you, the developer, when your queries are consuming too many resources, and
you will be visiting the DBA when you can’t figure out how to make the system go any faster (that’s when
instance tuning can be done, when the application is fully tuned).

This will all vary by environment, but I would like to think that there is a division. A good developer
is usually a very bad DBA, and vice versa. They are two different skill sets, two different mind-sets, and
two different personalities in my opinion.

Summary

In this chapter, we have taken a somewhat anecdotal look at why you need to know the database. The
examples I presented are not isolated—they happen every day, day in and day out. I observe a
continuous cycle of such issues happening, over and over.

Let’s quickly recap the key points. If you are developing with Oracle:

* Youneed to understand the Oracle architecture. You don’t have to know it so well
that you are able to rewrite the server, but you should know it well enough that
you are aware of the implications of using a particular feature.

* You need to understand locking and concurrency control and that every database
implements these features differently. If you don’t, your database will give
“wrong” answers and you will have large contention issues, leading to poor
performance.

* Do not treat the database as a black box—something you need not understand.
The database is the most critical piece of most applications. Trying to ignore it
would be fatal.

* Do notreinvent the wheel. I've seen more than one development team get into
trouble, not only technically but on a personal level, due to a lack of awareness as
to what Oracle provides for free. This happens when someone points out that the
feature they just spent the last couple of months implementing was actually a core
feature of the database all along. Read the Oracle Database Concepts Guide—the
New Features guide—the documentation that comes free with the software!

www.it-ebooks.info

49

http://www.it-ebooks.info

50

CHAPTER 1 " DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

* Solve problems as simply as possible, using as much of Oracle’s built-in
functionality as possible. You paid a lot for it.

* Software projects come and go, as do programming languages and frameworks.
We developers are expected to have systems up and running in weeks, maybe
months, and then move on to the next problem. If you reinvent the wheel over
and over, you will never come close to keeping up with the frantic pace of
development. Just as you would never build your own hash table class in Java—
since it comes with one—you should use the database functionality you have at
your disposal. The first step to being able to do that, of course, is to understand
what it is you have at your disposal. Read on.

And building on that last point, software projects and programming languages may come and
go—but the data is here forever. We build applications that use data, and that data will be
used by many applications over time. It is not about the application—it is about the data. Use
techniques and implementations that permit the data to be used and reused. If you use the
database as a bit bucket, making it so that all access to any data must come through your
application, you have missed the point. You can’t “ad hoc query” your application. You can’t
build a new application on top of your old application. But if you use the database, you'll find
adding new applications, reports, or whatever to be much easier over time.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2

Architecture Overview

Oracle is designed to be a very portable database—it is available on every platform of relevance, from
Windows to UNIX to mainframes. However, the physical architecture of Oracle looks different on
different operating systems. For example, on a UNIX operating system, you'll see Oracle implemented as
many different operating system processes, virtually a process per major function. On UNIX, this is the
correct implementation, as it works on a multiprocess foundation. On Windows, however, this
architecture would be inappropriate and would not work very well (it would be slow and nonscalable).
On the Windows platform, Oracle is implemented as a single process with multiple threads. On IBM
mainframe systems, running 0S/390 and z/OS, the Oracle operating system-specific architecture
exploits multiple OS/390 address spaces, all operating as a single Oracle instance. Up to 255 address
spaces can be configured for a single database instance. Moreover, Oracle works together with 0S/390
Workload Manager (WLM) to establish the execution priority of specific Oracle workloads relative to
each other and relative to all other work in the OS/390 system. Even though the physical mechanisms
used to implement Oracle from platform to platform vary, the architecture is sufficiently generalized
that you can get a good understanding of how Oracle works on all platforms.

In this chapter, I present a broad picture of this architecture. We’ll take a look at the Oracle server
and define some terms such as “database” and “instance” (terms that always seem to cause confusion).
We'll take a look at what happens when you “connect” to Oracle and, at a high level, how the server
manages memory. In the subsequent three chapters, we’ll look in detail at the three major components
of the Oracle architecture:

* Chapter 3 covers files. Here we’ll look at the five general categories of files that
make up the database: parameter, data, temp, control, and redo log files. We'll
also cover other types of files, including trace, alert, dump (DMP), data pump, and
simple flat files. We’ll look at the new file area (Oracle 10g and above) called
Flashback Recovery, and we’ll also discuss the impact that Automatic Storage
Management (ASM) has on file storage.

* Chapter 4 covers the Oracle memory structures referred to as the System Global
Area (SGA), Process Global Area (PGA), and User Global Area (UGA). We'll
examine the relationships between these structures, and we’ll also discuss the
shared pool, large pool, Java pool, and various other SGA components.

* Chapter 5 covers Oracle’s physical processes or threads. We'll look at the three
different types of processes that will be running on the database: server processes,
background processes, and slave processes.

It was hard to decide which of these components to cover first. The processes use the SGA, so
discussing the SGA before the processes might not make sense. On the other hand, when discussing the
processes and what they do, I'll need to make references to the SGA. These two components are closely

www.it-ebooks.info

51

http://www.it-ebooks.info

52

CHAPTER 2 " ARCHITECTURE OVERVIEW

tied: the files are acted on by the processes and won’t make sense without first understanding what the
processes do.

What I'll do, then, is define some terms and give a general overview of what Oracle looks like (if you
were to draw it on a whiteboard). You'll then be ready to get into some of the details.

Defining Database and Instance

There are two terms that, when used in an Oracle context, seem to cause a great deal of confusion:
“database and “instance.” In Oracle terminology, the definitions of these terms are as follows:

* Database: A collection of physical operating system files or disks. When using
Oracle Automatic Storage Management (ASM) or RAW partitions, the database
may not appear as individual, separate files in the operating system, but the
definition remains the same.

* Instance: A set of Oracle background processes or threads and a shared memory
area, which is memory that is shared across those threads or processes running on
a single computer. This is the place for volatile, nonpersistent stuff, some of which
gets flushed to disk. A database instance can exist without any disk storage
whatsoever. It might not be the most useful thing in the world, but thinking about
it that way definitely helps draw the line between the instance and the database.

The two terms are sometimes used interchangeably, but they embrace very different concepts. The
relationship between them is that a database may be mounted and opened by many instances. An
instance may mount and open just a single database at any point in time. In fact, it is true to say that an
instance will mount and open at most a single database in its entire lifetime! We’ll look at an example of
that in a moment.

Confused even more? Some further explanation should help clear up these concepts. An instance is
simply a set of operating system processes, or a single process with many threads, and some memory.
These processes can operate on a database, which is just a collection of files (data files, temporary files,
redo log files, and control files). At any time, an instance will have only one set of files (one database)
associated with it. In most cases, the opposite is true as well: a database will have only one instance
working on it. However, in the special case of Oracle Real Application Clusters (RAC), an Oracle option
that allows it to function on many computers in a clustered environment, we may have many instances
simultaneously mounting and opening this one database, which resides on a set of shared physical
disk. This gives us access to this single database from many different computers at the same time.
Oracle RAC provides for extremely highly available systems and has the potential to architect extremely
scalable solutions.

Let’s start by taking a look at a simple example. Say we’ve just installed Oracle 11g version 11.2.0.1
on our Linux-based computer. We did a software-only installation. No starter databases, nothing—just
the software.

The pwd command shows the current working directory, dbs (on Windows, this would be the
database directory) and the 1s -1 command shows the directory is empty. There is no init.ora file and
no SPFILES (stored parameter files; these will be discussed in detail in Chapter 3).

[orai1gr2@dellpe dbs]$ pwd
/home/ora1igr2/dbs
[oraiigr2@dellpe dbs]$ 1s -1
total 0

Using the ps (process status) command, we can see all processes being run by the user oraiigr2 (the
Oracle software owner in this case). There are no Oracle database processes whatsoever at this point.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2 "/ ARCHITECTURE OVERVIEW

[oraiigr2@dellpe dbs]$ ps -aef | grep oraligr2
oraligr2 4447 4446 0 13:15 pts/1 00:00:00 -bash
oraligr2 4498 4447 0 13:17 pts/1 00:00:00 ps -aef
orallgr2 4499 4447 0 13:17 pts/1 00:00:00 grep orallgr2
We then enter the ipcs command, a UNIX command that is used to show interprocess
communication devices, such as shared memory, semaphores, and the like. Currently there are none in
use on this system at all.
[orai1gr2@dellpe dbs]$ ipcs -a

—————— Shared Memory Segments --------
key shmid owner perms bytes nattch status

—————— Semaphore Arrays --------
key semid owner perms nsems

—————— Message Queues --------
key msqid owner perms used-bytes messages

We then start up SQL*Plus (Oracle’s command-line interface) and connect as sysdba (the account
that is allowed to do virtually anything in the database). Initially, assuming you haven’t yet set the
environment variable ORACLE_SID, you'll see:

[orai1gr2@dellpe dbs]$ sqlplus / as sysdba

SQL*Plus: Release 11.2.0.1.0 Production on Fri Dec 11 14:07:14 2009
Copyright (c) 1982, 2009, Oracle. All rights reserved.

ERROR:

ORA-12162: TNS:net service name is incorrectly specified

Enter user-name:

This error occurs because the database software has no idea what to try to connect to. When you
connect, the Oracle software will look for a TNS connect string (a network connection). If, as in our
example, the connect string is not supplied, the Oracle software will look at the environment for a
variable named ORACLE_SID (on Windows, it would look also in the registry for the ORACLE_SID variable).
The ORACLE_SID is the Oracle “site identifier;” it is sort of a key to gain access to an instance. If we set our
ORACLE_SID:

[oraiigr2@dellpe dbs]$ export ORACLE_SID=oralilg

the connection is successful and SQL*Plus reports we are connected to an idle instance:
[orai1gr2@dellpe dbs]$ sqlplus / as sysdba

SQL*Plus: Release 11.2.0.1.0 Production on Fri Dec 11 13:48:01 2009

Copyright (c) 1982, 2009, Oracle. All rights reserved.

www.it-ebooks.info

53

http://www.it-ebooks.info

54

CHAPTER 2 1 ARCHITECTURE OVERVIEW

Connected to an idle instance.
SoL>

Our “instance” right now consists solely of the Oracle server process shown in bold in the following
output. There is no shared memory allocated yet and no other processes.

SOL> !ps -aef | grep orallgr2

oraligr2 4447 4446 0 13:15 pts/1 00:00:00 -bash

oraligr2 4668 4667 0 13:48 pts/2 00:00:00 sqlplus as sysdba

orallgr2 4669 4668 0 13:48 ? 00:00:00 oracleorallg«
(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))

oraligr2 4678 4668 0 13:48 pts/2 00:00:00 /bin/bash -c ps -aef | grep oraligr2

oraligr2 4679 4678 0 13:48 pts/2 00:00:00 ps -aef

oraligr2 4680 4678 0 13:48 pts/2 00:00:00 grep oraligr2

SQL> lipcs -a

—————— Shared Memory Segments --------
key shmid owner perms bytes nattch status

—————— Semaphore Arrays --------
key semid owner perms nsems

—————— Message Queues --------
key msqid owner perms used-bytes messages

Note On Windows, Oracle executes as a single process with threads; you won’t see separate processes as on
Linux. Moreover, the Windows threads will not have the same names as the processes just shown. | am using
Linux specifically here so we can differentiate the individual processes and “see” them clearly.

One interesting thing to note from this ps output is the process named oracle orallg. No matter how
hard you look on your system, you will not find an executable by that name. The Oracle binary that is
executing is really the binary file $ORACLE_HOME/bin/oracle.

Note It is assumed that the environment variable (on UNIX) or registry setting (on Windows) named
ORACLE_HOME has been set and represents the fully qualified path to where the Oracle software is installed.

The Oracle developers simply rename the process as it is loaded into memory. The name of the
single Oracle process that is running right now (our dedicated server process; more on what a dedicated
server process is later) is oracle$ORACLE_SID. That naming convention makes it very easy to see what
processes are associated with which instances and so on. So, let’s try to start the instance now:

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2 "/ ARCHITECTURE OVERVIEW

SQL> startup

ORA-01078: failure in processing system parameters

LRM-00109: could not open parameter file '/home/oraiigr2/dbs/initoraiigr2.ora’
SoL>

Notice the error about a missing file named initoraligr2.ora. That file, referred to colloquially as
an init.ora file, or more properly as a parameter file, is the sole file that must exist to start up an
instance—we need either a parameter file (a simple flat file that I'll describe in more detail shortly) or a
stored parameter file.

We’'ll create the parameter file now and put into it the minimal information we need to actually start
a database instance. (Normally, we’d specify many more parameters, such as the database block size,
control file locations, and so on). By default, this file is located in the $ORACLE_HOME/dbs directory and has
the name init${ORACLE_SID}.ora:

[oraiigr2@dellpe ~]$ cd $ORACLE_HOME/dbs

[oraiigr2@dellpe dbs]$ echo db_name=orallg > initorallg.ora
[oraiigr2@dellpe dbs]$ cat initoralig.ora

db_name=oralig

and then, once we get back into SQL*Plus:

SQL> startup nomount
ORACLE instance started.

Total System Global Area 150667264 bytes

Fixed Size 1335080 bytes
Variable Size 92274904 bytes
Database Buffers 50331648 bytes
Redo Buffers 6725632 bytes
SoL>

We used the nomount option to the startup command since we don’t actually have a database to
mount yet (the SQL*Plus documentation includes all of the startup and shutdown options).

Note On Windows, prior to running the startup command, you’ll need to execute a service creation statement
using the oradim.exe utility

Now we have what I'd call an instance. The background processes needed to actually run a database
are all there, including process monitor (pmon), log writer (1gwr), and so on (these processes are covered
in detail in Chapter 5). Let’s take a look:

SOL> !ps -aef | grep orallgr2
orallgr2 4447 4446 0 13:15 pts/1 00:00:00 -bash

orallgr2 4900 4899 0 14:15 pts/2 00:00:00 /home/oraligr2/bin/sqlplus
oraligr2 4904 1 0 14:16 ? 00:00:00 ora_pmon_orallg
oralligr2 4906 1 0 14:16 ? 00:00:00 ora_vktm oralig
oraligr2 4910 1 0 14:16 ? 00:00:00 ora_genO_oralilg
orallgr2 4912 1 0 14:16 ? 00:00:00 ora_diag oralilg
orallgr2 4914 1 0 14:16 ? 00:00:00 ora_dbrm oralig

www.it-ebooks.info

55

http://www.it-ebooks.info

CHAPTER 2 1 ARCHITECTURE OVERVIEW

oraligr2 4916 1 0 14:16 ? 00:00:00 ora_pspO_orallg
oraligr2 4918 1 0 14:16 ? 00:00:00 ora_dia0_oralilg
oraligr2 4920 1 0 14:16 ? 00:00:00 ora_mman_orallg
oraligr2 4922 1 0 14:16 ? 00:00:00 ora_dbw0_oralilg
oraligr2 4924 1 0 14:16 ? 00:00:00 ora_lgwr oralig
oraligr2 4926 1 0 14:16 ? 00:00:00 ora_ckpt_oralig
oraligr2 4928 1 0 14:16 ? 00:00:00 ora_smon_orallg
oraligr2 4930 1 0 14:16 ? 00:00:00 ora_reco_oralilg
oraligr2 4932 1 0 14:16 ? 00:00:00 ora_mmon_orallg
oraligr2 4934 1 0 14:16 ? 00:00:00 ora_mmnl_oralig
oraligr2 4935 4900 O 14:16 ? 00:00:00 oracleorallg «

(DESCRIPTION=(LOCAL=YES) (ADDRESS=(PROTOCOL=beq)))

oraligr2 4953 4900 O 14:18 pts/2 00:00:00 /bin/bash -c ps -aef | grep oraligr2
oraligr2 4954 4953 0 14:18 pts/2 00:00:00 ps -aef

oraligr2 4955 4953 0 14:18 pts/2 00:00:00 grep oraligr2

Additionally, ipcs, for the first time, reports the use of shared memory and semaphores—two
important interprocess communication devices on UNIX:

SQL> lipcs -a

—————— Shared Memory Segments --------

key shmid owner perms bytes nattch status
0x873d6bdc 753667 oraligr2 660 153092096 16

—————— Semaphore Arrays --------

key semid owner perms nsems

0x420a82a0 1015808 oraligr2 660 104

—————— Message Queues --------

key msqid owner perms used-bytes messages

SoL>

Note we have no “database” yet. We have the name of a database (in the parameter file we created),
but no actual database. If we try to “mount” this database, it would fail because, quite simply, the
database does not yet exist. Let’s create it. I've been told that creating an Oracle database involves quite
a few steps, but let’s see:

SQL> create database;
Database created.

That is actually all there is to creating a database. In the real world, however, we’d use a slightly
more complicated form of the CREATE DATABASE command because we would want to tell Oracle where
to put the log files, data files, control files, and so on. But we do now have a fully operational database.
We still need to run the $0RACLE_HOME/rdbms/admin/catalog.sql script and other catalog scripts to build
the rest of the data dictionary we use every day (the views we use such as ALL_OBJECTS are not yet
present in this database), but we have an actual database here. We can use a simple query against
some Oracle V$ views, specifically V$DATAFILE, V$LOGFILE, and V$CONTROLFILE, to list the files that make
up this database:

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2 " ARCHITECTURE OVERVIEW

SQL> select name from v$datafile;

/home/oraligr2/dbs/dbsioralig.dbf
/home/ora1igr2/dbs/dbxiorallg.dbf
/home/ora1igr2/dbs/dbuioraiig.dbf

SOL> select member from v$logfile;

MEMBER

/home/oraligr2/dbs/logloraliig.dbf
/home/oraligr2/dbs/log2orallg.dbf

SQL> select name from v$controlfile;

/home/oraligr2/dbs/cntrloralig.dbf
SoL>

Oracle used defaults to put everything together and created a database as a set of persistent files. If
we close this database and try to open it again, we’ll discover that we can’t:

SQL> alter database close;
Database altered.

SQL> alter database open;
alter database open
*

ERROR at line 1:
ORA-1619c6: database has been previously opened and closed

An instance can mount and open at most one database in its life. Remember, the instance consists
simply of the processes and shared memory. This is still up and running. All we did was close the
database, that is, the physical files. We must discard this instance (shutdown) and create a new one
(startup) in order to open this or any other database.

To recap,

* Aninstance is a set of background processes and shared memory.
* Adatabase is a collection of data stored on disk.
* Aninstance can mount and open only a single database, ever.

* Adatabase may be mounted and opened by one or more instances (using RAC)
and the number of instances mounting a single database can fluctuate over time.

As noted earlier, in most cases there’s a one-to-one relationship between an instance and a
database. This is probably why the confusion surrounding the terms arises. In most peoples’ experience,
a database is an instance, and an instance is a database.

In many test environments, however, this is not the case. On my disk, I might have five separate
databases. On the test machine, at any point in time there is only one instance of Oracle running, but the

57

www.it-ebooks.info

http://www.it-ebooks.info

58

CHAPTER 2 " ARCHITECTURE OVERVIEW

database it is accessing may be different from day to day or hour to hour, depending on my needs. By
simply having many different parameter files, I can mount and open any one of these databases. Here, I
have one instance at a time but many databases, only one of which is accessible at any time.

So now when people talk about an instance, you’ll know they mean the processes and memory of
Oracle. When they mention the database, they are talking about the physical files that hold the data. A
database may be accessible from many instances, but an instance will provide access to exactly one
database at a time.

The SGA and Background Processes

You're probably ready now for an abstract picture of what an Oracle instance and database look like, so
take a look at Figure 2-1.

Instance
Bac| ¢ Bac Backg” Background
Prd P Prod Procs Process
SGA
A
Database
--

s

Figure 2-1. Oracle instance and database

Figure 2-1 shows an Oracle instance and database in their simplest form. Oracle has a large chunk of
memory called the SGA that it uses, for example, to do the following:

* Maintain many internal data structures that all processes need access to.
* Cache data from disk; buffer redo data before writing it to disk.

* Hold parsed SQL plans.

* Andsoon.

Oracle has a set of processes that are “attached” to this SGA, and the mechanism by which they
attach differs by operating system. In a UNIX environment, the processes will physically attach to a large
shared memory segment, a chunk of memory allocated in the OS that may be accessed by many
processes concurrently (generally using shmget() and shmat()).

Under Windows, these processes simply use the C call, malloc() to allocate the memory, since they
are really threads in one big process and hence share the same virtual memory space.

Oracle will also have a set of files that the database processes or threads read and write (and Oracle
processes are the only ones allowed to read or write these files). These files hold all of our table data,
indexes, temporary space, redo logs, and so on.

If you were to start up Oracle on a UNIX-based system and execute a ps command, you'd see that
many physical processes are running, with various names. You saw an example of that earlier when you

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2

ARCHITECTURE OVERVIEW

observed the pmon, smon, and other processes. I cover these processes in Chapter 5, so just be aware for
now that they are commonly referred to as the Oracle background processes. They are persistent
processes that make up the instance, and you'll see them from the time you start the instance until you

shut it down.

It is interesting to note that these are processes, not individual programs. There is only one Oracle
binary executable on UNIX; it has many “personalities,” depending on what it was told to do when it
starts up. The same binary executable that was run to start ora_pmon_oral1g was also used to start the
process ora_ckpt_oraiig. There is only one binary executable program, named simply oracle. It is just
executed many times with different names.

On Windows, using the pstat tool (part of the Windows XP Resource Kit; search for “pstat
download” using your favorite search engine if you don’t have it), we’ll find only one process,
oracle.exe. Again, on Windows there is only one binary executable (oracle.exe). Within this process,
we’ll find many threads representing the Oracle background processes.

Using pstat (or any of a number of tools, such as tasklist, which comes with many Windows

versions), we can see these processes:

C:\WINDOWS> pstat

Pstat version 0.3:

PageFile: \??\C:\pagefile.sys

Current Size: 678912 kb Total Used: 228316 kb

memory: 523760 kb

Memory: 523760K Avail: 224492K TotalWs:

User Time

0:00:00.000
0:00:00.000
0:00:00.015
0:00:33.234
0:00:00.343
0:00:00.078
0:00:00.218
0:00:00.015
0:00:00.093
0:00:00.062
0:00:00.828
0:00:00.046
0:00:00.015
0:00:00.015
0:00:01.312
0:00:00.250
0:00:00.812
0:00:00.015
0:00:00.109
0:00:02.015
0:00:00.031
0:00:00.062
0:04:00.359
0:00:00.093
0: 00.015
0:

0
0
00:00.015

0:
0:

Kernel Time Ws

56860
2:23.109 28
1:50.812 32
0:00.109 60
0:32.046 2144
0:01.750 3684
.734 1948
0:03.515 1896
0:00.078 80
0:00.359 1416
0:00.453 1340
1:16.593 9632
0:00.640 1020
0:00.234 736
0:00.218 128
0:19.828 13636
0:00.937 956
0:04.562 1044
.156 88
0:04.640 744
0:12.078 1476
0:00.093 124
:00.937 2648
:57.734164844
:00.437 6736
:00.031 2668
:00.000 964

o
O
H

o
O
O

OOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOI—\
OOONO

Faults
2348193
0

4385
224
33467
6811
3022
5958
804
2765
3566
36387
2315
2330
1959
35525
1705
4619
1049
1229
17578
1004
13977
2009785
2316
701
235

uptime:

0 1:37:54.375

Peak Used 605488 kb

276932K InRam Kernel:
Commit: 418468K/ 372204K Limit:1169048K Peak:1187396K Pool N:

Commit Pri Hnd Thd

00

28 8

172 11

1980 13

7792 13
1680
3932
592
3016
1764
11708
1300
1492
3788
14732
856
3800
1192
2432

1904 1
1172
22656
279168
2720
1992
336

00 00 00 G0 00 00 W 00 OO0 00 00 00 00 OO 00 OO0 00 00 OO0 O O

0
694
19
396
578
275
363
25
195
244
1206
81
165
117
575
29
165
88
81
139
105
101
550
141
34
11

www.it-ebooks.info

N
P ROVWOTWWEPDNPR

87
1062

Pid

0

4
332
556
580
624
636
812
828
896
1024
1100
1272
1440
1952
228
240
396
460
600
192
720
1928
1224
804
2856

2K P:20540K
OK P:24588K

Name
File Cache
Idle Process
System
SMSS.exe
CSTSS.exe
winlogon.exe
services.exe
lsass.exe
vmacthlp.exe
svchost.exe
svchost.exe
svchost.exe
svchost.exe
svchost.exe
spoolsv.exe
explorer.exe
VMwareTray.exe
VMwareUser.exe
svchost.exe
cvpnd.exe
VMwareService.exe
alg.exe
TNSLSNR. EXE
oracle.exe
msiexec.exe
cmd.exe
pstat.exe

59

http://www.it-ebooks.info

CHAPTER 2 1 ARCHITECTURE OVERVIEW

Here we can see there are 29 threads (Thd in the display) contained in the single Oracle process.
These threads represent what were processes on UNIX—they are the pmon, arch, 1gwr, and so on. They
each represent a separate bit of the Oracle process. Paging down through the pstat report, we can see
more details about each thread:

pid:788 pri: 8 Hnd: 550 Pf:2009785 Ws: 164844K oracle.exe
tid pri Ctx Swtch StrtAddr User Time Kernel Time State

498 9 651 7C810705 0:00:00.000 0:00:00.203 Wait:Executive
164 8 91 7C8106F9 0:00:00.000 0:00:00.000 Wait:UserRequest
a8 8 42 7C8106F9 0:00:00.000 0:00:00.031 Wait:UserRequest

We can't see the thread “names” like we could on UNIX (ora_pmon_orallg and so on), but we can see
the thread IDs (Tid), priorities (Pri), and other operating system accounting information about them.

Connecting to Oracle

In this section, we’ll take a look at the mechanics behind the two most common ways to have requests
serviced by an Oracle server: dedicated server and shared server connections. We’ll see what happens on
the client and the server in order to establish connections, so we can log in and actually do work in the
database. Lastly, we’ll take a brief look at how to establish TCP/IP connections; TCP/IP is the primary
networking protocol used to connect over the network to Oracle. And we’ll look at how the listener
process on our server, which is responsible for establishing the physical connection to the server, works
differently in the cases of dedicated and shared server connections.

Dedicated Server

Figure 2-1 and the pstat output presented a picture of what Oracle looks like immediately after starting.
If we were now to log into this database using a dedicated server, we would see a new thread get created
just to service us:

C:\Documents and Settings\tkyte>sqlplus tkyte/tkyte

SQL*Plus: Release 11.1.0.7.0 - Production on Fri Dec 11 18:05:32 2009

Copyright (c) 1982, 2008, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Enterprise Edition Release 11.1.0.7.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options

SQL> host pstat

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

Pstat version 0.3: memory: 523760 kb uptime: 0 1:40:36.687

PageFile: \??\C:\pagefile.sys
Current Size: 678912 kb Total Used: 227744 kb Peak Used 605488 kb

Memory: 523760K Avail: 194928K TotalWs: 315172K InRam Kernel: 876K P:20616K

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2 " ARCHITECTURE OVERVIEW

Commit: 447888K/ 401420K Limit:1169048K Peak:1187396K Pool N:10636K P:24628K

User Time Kernel Time Ws Faults Commit Pri Hnd Thd Pid Name
' -(.):04:00. 515 0:02:58.546166948 2020411 279216 8 549 30 1928 oracle.exe
soL>

Now you can see there are 30 threads instead of 29, the extra thread being our dedicated server
process (more information on what exactly a dedicated server process is shortly). When we log out, the

extra thread will go away. On UNIX, we would see another process get added to the list of Oracle
processes running, and that would be our dedicated server.

[tkyte@dellpe ~]$ ps -aef | grep oracle$ORACLE_SID
tkyte 26935 19699 0 16:05 pts/5 00:00:00 grep oracleorallgr2
[tkyte@dellpe ~]$ sqlplus /

SQL*Plus: Release 11.2.0.1.0 Production on Mon May 10 16:05:22 2010

Copyright (c) 1982, 2009, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options

ops$tkyte%ORA11GR2> !ps -aef | grep oracle$ORACLE_SID

oraligr2 26938 26937 1 16:05 ? 00:00:00 oracleoraligr2«~
(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))

tkyte 26947 26945 0 16:05 pts/2 00:00:00 grep oracleorallgr2

This brings us to the next iteration of our diagram. If we were to connect to Oracle in its most
commonly used configuration, we would see something like Figure 2-2.

Instance
7" Bac ¢ Bac Backg Background
Prd P Prod Procy Process
SGA
A
bl Database
Access
C > 3
Client Dedicated) mm
Connectio Disk 1/0 “-ﬁ

Figure 2-2. Typical dedicated server configuration

www.it-ebooks.info

61

http://www.it-ebooks.info

CHAPTER 2 " ARCHITECTURE OVERVIEW

As noted, typically Oracle will create a new process for me when Ilog in. This is commonly referred
to as the dedicated server configuration, since a server process will be dedicated to me for the life of my
session. For each session, a new dedicated server will appear in a one-to-one mapping. This dedicated
server process is not (by definition) part of the instance. My client process (whatever program is trying to
connect to the database) will be in direct communication with this dedicated server over some
networking conduit, such as a TCP/IP socket. It is this server process that will receive my SQL and
execute it for me. It will read data files if necessary, and it will look in the database’s cache for my data. It
will perform my update statements. It will run my PL/SQL code. Its only goal is to respond to the SQL
calls I submit to it.

Shared Server

Oracle can also accept connections in a manner called shared server, in which you wouldn'’t see an
additional thread created or a new UNIX process appear for each user connection.

Note In Version 7.x and 8.x of Oracle, shared server was known as Multi-Threaded Server or MTS. That legacy
name is not in use anymore.

In shared server, Oracle uses a pool of shared processes for a large community of users. Shared
servers are simply a connection pooling mechanism. Instead of having 10,000 dedicated servers (that’s a
lot of processes or threads) for 10,000 database sessions, shared server lets us have a small percentage of
this number of processes or threads, which would be (as the name implies) shared by all sessions. This
allows Oracle to connect many more users to the instance than would otherwise be possible. Our
machine might crumble under the load of managing 10,000 processes, but managing 100 or 1,000
processes is doable. In shared server mode, the shared processes are generally started up with the
database and appear in the ps list.

A big difference between shared and dedicated server connections is that the client process
connected to the database never talks directly to a shared server, as it would to a dedicated server. It
can’t talk to a shared server because that process is, in fact, shared. In order to share these processes, we
need another mechanism through which to “talk.” Oracle employs a process (or set of processes) called a
dispatcher for this purpose. The client process will talk to a dispatcher process over the network. The
dispatcher process will put the client’s request into the request queue in the SGA (one of the many
things the SGA is used for). The first shared server that is not busy will pick up this request and process it
(e.g., the request could be UPDATE T SET X = X+5 WHERE Y = 2). Upon completion of this command, the
shared server will place the response in the invoking dispatcher’s response queue. The dispatcher
process monitors this queue and, upon seeing a result, will transmit it to the client. Conceptually, the
flow of a shared server request looks like Figure 2-3.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2 " ARCHITECTURE OVERVIEW

@ ——— Shared Server
SGA @
Request Response *
Queue Queue
A

Client @

Connection
Dispatcher (—@

Figure 2-3. Steps in a shared server request

As shown in Figure 2-3, the client connection will send a request to the dispatcher. The dispatcher
will first place this request onto the request queue in the SGA (1). The first available shared server will
dequeue this request (2) and process it. When the shared server completes, the response (return codes,
data, and so on) is placed into the response queue (3), subsequently picked up by the dispatcher (4), and
transmitted back to the client.

As far as the developer is concerned, there is conceptually no difference between a shared server
connection and a dedicated server connection. Architecturally they are quite different, but that’s not
apparent to an application.

Now that you understand what dedicated server and shared server connections are, you may have
the following questions:

* HowdoIget connected in the first place?
* What would start this dedicated server?
* How mightI get in touch with a dispatcher?

The answers depend on your specific platform, but the sections that follow outline the process in
general terms.
Mechanics of Connecting over TCP/IP

We'll investigate the most common networking case: a network-based connection request over TCP/IP.
In this case, the client is situated on one machine and the server resides on another, with the two
connected on a TCP/IP network. It all starts with the client. The client makes a request using the Oracle
client software (a set of provided application program interfaces, or APIs) to connect to a database. For
example, the client issues the following:

[tkyte@dellpe ~]$ sqlplus scott/tiger@orcl

SQL*Plus: Release 11.2.0.1.0 Production on Fri Dec 11 16:00:31 2009
Copyright (c) 1982, 2009, Oracle. All rights reserved.

Connected to:

Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

scott%0RA11GR2>

www.it-ebooks.info

http://www.it-ebooks.info

64

CHAPTER 2 1 ARCHITECTURE OVERVIEW

Note The string orcl used above is unique to my configuration. | have a thsnames.ora entry (more on that
below) named orcl. It is a TNS connect string that points to an existing, installed configured Oracle Database 11g
Release 2 instance on my network. You will be using your own TNS connect strings, unique to your installation.

Here, the client is the program SQL*Plus, scott/tiger is the username and password, and orcl is a
TNS service name. TNS stands for Transparent Network Substrate and is “foundation” software built
into the Oracle client that handles remote connections, allowing for peer-to-peer communication. The
TNS connection string tells the Oracle software how to connect to the remote database. Generally, the
client software running on your machine will read a file called tnsnames.ora. This is a plain-text
configuration file commonly found in the $ORACLE_HOME/network/admin directory ($0RACLE_HOME
represents the full path to your Oracle installation directory). It will have entries that look like this:

[tkyte@dellpe ~]$ cat $ORACLE_HOME/network/admin/tnsnames.ora

ORCL =
(DESCRIPTION =
(ADDRESS =
(PROTOCOL = TCP)
(HOST = somehost.somewhere.com)
(PORT = 1521)

)

(CONNECT DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = orcl)

)
)
[tkyte@dellpe ~]$

This configuration information allows the Oracle client software to map the TNS connection string
we used, orcl, into something useful—namely, a hostname, a port on that host on which a listener
process will accept connections, the service name of the database on the host to which we wish to
connect, and so on. A service name represents groups of applications with common attributes, service
level thresholds, and priorities. The number of instances offering the service is transparent to the
application, and each database instance may register with the listener as willing to provide many
services. So, services are mapped to physical database instances and allow the DBA to associate certain
thresholds and priorities with them.

This string, orcl, could have been resolved in other ways. For example, it could have been resolved
using Oracle Internet Directory (OID), which is a distributed Lightweight Directory Access Protocol
(LDAP) server, similar in purpose to DNS for hostname resolution. However, use of the tnsnames.ora file
is common in most small to medium installations where the number of copies of such a configuration
file is manageable.

Now that the client software knows where to connect to, it will open a TCP/IP socket connection to
the server with the hostname somehost. somewhere.com on port 1521. If the DBA for our server has
installed and configured Oracle Net, and has the listener listening on port 1521 for connection requests,
this connection may be accepted. In a network environment, we will be running a process called
the TNS listener on our server. This listener process is what will get us physically connected to our
database. When it receives the inbound connection request, it inspects the request and, using its
own configuration files, either rejects the request (because there is no such service, for example, or

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2 " ARCHITECTURE OVERVIEW

perhaps our IP address has been disallowed connections to this host) or accepts it and goes about
getting us connected.

If we are making a dedicated server connection, the listener process will create a dedicated server
for us. On UNIX, this is achieved via fork() and exec() system calls (the only way to create a new process
after initialization in UNIX is via fork()). The new dedicated server process inherits the connection
established by the listener, and we are now physically connected to the database. On Windows, the
listener process requests the database process to create a new thread for a connection. Once this thread
is created, the client is “redirected” to it, and we are physically connected. Diagrammatically in UNIX, it
would look as shown in Figure 2-4.

@ client

Connection
Request

@ fork (1

exec()

Dedicated
Server

Figure 2-4. The listener process and dedicated server connections

®)client

Connection

However, the listener will behave differently if we are making a shared server connection request.
This listener process knows the dispatcher(s) we have running in the instance. As connection requests
are received, the listener will choose a dispatcher process from the pool of available dispatchers. The
listener will either send back to the client the connection information describing how the client can
connect to the dispatcher process or, if possible, hand off the connection to the dispatcher process (this
is OS- and database version—-dependent, but the net effect is the same). When the listener sends back the
connection information, it is done because the listener is running on a well-known hostname and port
on that host, but the dispatchers also accept connections on randomly assigned ports on that server. The
listener is made aware of these random port assignments by the dispatcher and will pick a dispatcher for
us. The client then disconnects from the listener and connects directly to the dispatcher. We now have a
physical connection to the database. Figure 2-5 illustrates this process.

(Dclient

Connection
Request

Dispatcher on
Port 24356
Dispatcher on
Port 12754

Figure 2-5. The listener process and shared server connections

(@Tells Client to
Connect to Port
12754

(®)client

Connection

www.it-ebooks.info

65

http://www.it-ebooks.info

66

CHAPTER 2 " ARCHITECTURE OVERVIEW

Summary

This completes our overview of the Oracle architecture. In this chapter, we defined the terms “instance”
and “database” and saw how to connect to the database through either a dedicated server connection or
a shared server connection. Figure 2-6 sums up the material covered in the chapter and shows the
interaction between a client using a shared server connection and a client using a dedicated server
connection. It also shows that an Oracle instance may use both connection types simultaneously. (In
fact, an Oracle database always supports dedicated server connections—even when configured for
shared server.)

Instance
Backy” Backg” Backg” Backg¢” Backg” Background
Prod._ Pro Procs_ Pro Procw_ Process
. Shared
Dispatcher >
SGA Server
b 4

A
LI Database
Shared Access
Connection gy G

Dedicated
Server

Dedicated
Connection

Disk I/0

Figure 2-6. Connection overview

Now you’re ready to take a more in-depth look at the files that comprise the database and the
processes behind the server—what they do and how they interact with each other. You're also ready to
look inside the SGA to see what it contains and what its purpose is. You'll start in the next chapter by
looking at the types of files Oracle uses to manage the data and the role of each file type.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3

Files

In this chapter, we will examine the eight major file types that make up a database and instance. The
files associated with an instance are simply

* Parameter files: These files tell the Oracle instance where to find the control files,
and they also specify certain initialization parameters that define how big certain
memory structures are, and so on. We will investigate the two options available for
storing database parameter files.

* Trace files: These are diagnostic files created by a server process, generally in
response to some exceptional error condition.

* Alert files: These are similar to trace files, but they contain information about
“expected” events, and they also alert the DBA in a single, centralized file of many
database events.

The files that make up the database are

* Data files: These are for the database; they hold your tables, indexes, and all other
data segment types.

* Temp files: These are used for disk-based sorts and temporary storage.

* Control files: These tell you where the data files, temp files, and redo log files are,
as well as other relevant metadata about their state. They also contain backup
information maintained by RMAN (Recovery Manager, the backup and recovery
tool).

* Redo log files: These are your transaction logs.

* Password files: These are used to authenticate users performing administrative
activities over the network. We will not discuss these files in any great detail as
they are not a necessary component of any Oracle database.

In Oracle 10gand above, there are a couple of new optional file types that are used by Oracle to
facilitate faster backup and faster recovery operations. These two new files are

* Change-tracking file: This file facilitates a true incremental backup of Oracle data.
It does not have to be located in the Flash Recovery Area, but as it relates purely to
database backup and recovery, we’ll discuss it in the context of that area.

* Flashback log files: These files store “before images” of database blocks in order to
facilitate the new FLASHBACK DATABASE command.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3 I FILES

We’ll also take a look at other types of files commonly associated with the database, such as

* Dump (DMP) files: These files are generated by the Export database utility and
consumed by the Import database utility.

* Data Pump files: These files are generated by the Oracle Data Pump Export
process and consumed by the Data Pump Import process. This file format may
also be created and consumed by external tables.

* Flat files: These are plain old files you can view in a text editor. You normally use
these for loading data into the database.

The most important files in the previous lists are the data files and the redo log files, because they
contain the data you worked so hard to accumulate. I can lose any and all of the remaining files and still
get to my data. If I lose my redo log files, I may start to lose some data. If lose my data files and all of
their backups, I've definitely lost that data forever.

We will now take a look at the types of files, where they are usually located, how they are named and
what we might expect to find in them.

Parameter Files

There are many different parameter files associated with an Oracle database, from a tnsnames.ora file on
a client workstation (used to “find” a server on the network), to a 1istener.ora file on the server (for the
network listener startup), to the sqlnet.ora, cman.ora, and ldap.ora files, to name a few. The most
important parameter file, however, is the database’s parameter file—without this, we can’t even get an
instance started, as demonstrated in Chapter 2 “Architecture Overview.” The remaining files are
important; they are all related to networking and getting connected to the database. However, they are
beyond the scope of our discussion. For information on their configuration and setup, I refer you to the
Net Services Administrator’s Guide. Since you're a developer, typically these files would be set up for you,
not by you.

The parameter file for a database is commonly known as an init file, or an init.ora file. This is due
to its historic default name, which is init<ORACLE_SID>.ora. I call it “historic” because starting with
Oracle9i Release 1, a vastly improved method of storing parameter settings for the database was
introduced: the server parameter file, or simply SPFILE. This file has the default name of
spfile<ORACLE_SID>.ora. We'll take a look at both kinds of parameter files.

Note For those who are unfamiliar with the term SID or ORACLE_SID, a full definition is called for. The SID is a
site identifier. It and ORACLE_HOME (where the Oracle software is installed) are hashed together in UNIX to create a
unique key name for creating or attaching a Shared Global Area (SGA) memory region. If your ORACLE_SID or
ORACLE_HOME is not set correctly, you'll get the ORACLE NOT AVAILABLE error, since you can’t attach to a shared
memory segment that is identified by this unique key. On Windows, shared memory isn’t used in the same fashion
as on UNIX, but the SID is still important. You can have more than one database under the same ORACLE_HOME, S0
you need a way to uniquely identify the instance associated with each one, along with their configuration files.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3 ' FILES

Without a parameter file, you can’t start an Oracle database. This makes the parameter file fairly
important, and as of Oracle9i Release 2 (versions 9.2 and above), the backup and recovery tool Recovery
Manager (RMAN) recognizes this file’s importance and will allow you to include the server parameter file
(but not the legacy init.ora parameter file type) in your backup set. However, since the init.ora file is
simply a plain text file that you can create with any text editor, it is not a file you have to necessarily
guard with your life. You can re-create it, as long as you know what was in it (e.g., you can retrieve that
information from the database’s alert log, if you have access to that, and reconstruct your entire
init.ora parameter file).

We will now examine both types of database startup parameter files (init.ora and SPFILE) in turn,
but before we do that, let’s see what a database parameter file looks like.

What Are Parameters?

In simple terms, a database parameter may be thought of as a key/value pair. You saw an important
parameter, db_name, in the preceding chapter. The db_name parameter was stored as db_name = orailig.
The key here is db_name and the value is oraiig. This is our key/value pair. To see the current value of an
instance parameter, you can query the V$ view V$PARAMETER. Alternatively, in SQL*Plus you can use the
SHOW PARAMETER command, for example:

ops$tkyte’0RA11GR2> select value
2 from v$parameter
3 where name = 'db_block size'
4 /

db_block size integer 8192

Both outputs show basically the same information, although you can get more information from
V$PARAMETER (there are many more columns to choose from than displayed