
www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Contents at a Glance

 Contents .. v

 About the Authors .. xiii
 About the Technical Reviewer ... xiv

 Acknowledgments .. xv

 Chapter 1: Oracle Indexes ...1

 Chapter 2: B-tree Indexes ...19

 Chapter 3: Bitmap Indexes ...49

 Chapter 4: Index-Organized Tables ..69

 Chapter 5: Specialized Indexes ..85

 Chapter 6: Partitioned Indexes ...115

 Chapter 7: Tuning Index Usage ...141

 Chapter 8: Maintaining Indexes ..171

 Chapter 9: SQL Tuning Advisor ...205

 Chapter 10: SQL Access Advisor ...233

 Index ...249

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

■ ■ ■

1

Oracle Indexes

An index is an optionally created database object used primarily to increase query performance. The
purpose of a database index is similar to an index in the back of a book. A book index associates a topic
with a page number. When you’re locating information in a book, it’s usually much faster to examine the
index first, find the topic of interest, and identify associated page numbers. With this information, you
can navigate directly to specific page numbers in the book. If the topic only appears on a few pages
within the book, then the number of pages to read is minimal. In this manner, the usefulness of the
index decreases with an increase in the number of times a topic appears in a book.

Similar to a book index, a database index stores the column value of interest along with its row
identifier (ROWID). The ROWID contains the physical location of the table row on disk that stores the
column value. With the ROWID in hand, Oracle can efficiently retrieve table data with a minimum of disk
reads. In this way, indexes function like a shortcut to the table data. If there is no available index, then
Oracle reads each row in the table to determine if the row contains the desired information.

 Note In addition to improving performance, Oracle uses indexes to help enforce enabled primary key and
unique key constraints. Additionally, Oracle can better manage table locking scenarios when indexes are placed on
foreign key columns.

While it’s possible to build a database application devoid of indexes, without them you’re almost
guaranteeing poor performance. Indexes allow for excellent scalability even with very large data sets. So
if indexes are so important to database performance, why not place them on all tables and column
combinations? The answer is short: indexes are not free. They consume disk space and system resources.
As column values are modified, any corresponding indexes must also be updated. In this way, indexes
use storage, I/O, CPU, and memory resources. A poor choice of indexes leads to wasted disk usage and
excessive consumption of system resources. This results in a decrease in database performance.

For these reasons, when you design and build an Oracle database application, expert consideration
must be given to your indexing strategy. As an application architect, you must understand the physical
properties of an index, what types of indexes are available, and strategies for choosing which table and
column combinations to index. A correct indexing methodology is central to achieving maximum
performance for your database.

This chapter introduces you to Oracle indexing concepts. We begin with a to-the-point example of
how an index improves query performance. We then explain index types available within Oracle and

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

2

provide guidelines and recommendations for choosing which columns to index. If you’re new to indexes
or require a refreshing, start here.

Improving Performance with Indexes
How exactly does an index improve query performance? To understand how an index works, consider
the following simple example. Suppose you create a table to hold customer information, like so:

create table cust
(cust_id number
,last_name varchar2(30)
,first_name varchar2(30));

Your business grows quickly; after a short time, millions of customers are created. You run daily

reports against this table and notice that performance has progressively decreased when issuing queries
like this:

select cust_id, last_name, first_name
from cust
where last_name = 'STARK';

When there was hardly any data in the table, this query returned in sub-seconds. Now, with over a

million rows and growing, this query is taking longer and longer. What’s going on here?
When a SQL select statement executes, the Oracle query optimizer quickly calculates a step-by-step

execution plan detailing how it will retrieve column values specified in the query. In calculating the plan,
the optimizer determines which tables and indexes will be used to retrieve data.

When no index exists, the table itself is the only access path available to satisfy the results of the
query. In this scenario, Oracle has no choice but to inspect every row within every used block in the table
(this is known as a full table scan) to see if there are rows with the last name of STARK. As more data is
inserted into this table, the query takes longer. The cost of this query (as a measure of CPU, memory, and
I/O resources consumed) is proportional to the number of table blocks. The only way to make this query
run faster is to buy better hardware...or use a performance enhancing feature such as an index.

You can peak ahead in this chapter and determine that an index on columns that appear in the
WHERE clause of a SQL query might improve performance and decide to create an index on the CUST
table’s LAST_NAME column, like so:

create index cust_idx1
on cust(last_name);

This statement creates a B-tree index (more on this later). This is the default index type in Oracle.

After creating the index, the performance of queries selecting by last name returns to sub-second timing.
Life is good.

To understand how the index improves performance, recall that an index stores two types of
information: the value of the table column(s) and the corresponding ROWID. The ROWID uniquely
identifies a row (for heap-organized tables) within a database and contains its physical location (datafile,
block, and row position within block). Once the index is created and subsequent queries execute, the
query optimizer considers whether the index will reduce the amount of resources required to return the
results of the query.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

3

 Tip The ROWID uniquely identifies a row for heap-organized tables. However, with table clusters, it is possible
to have rows in different tables that are physically located in the same block and have identical ROWIDs.

In the prior example, suppose there are millions of records in the CUST table but only one record in
the table with the last name of STARK. The query optimizer can inspect the index and within a few disk
reads locate the exact location (via the ROWID) of the one block within the table that contains the record
of interest. This results in very fast performance. In this case, it wouldn’t matter if there were millions
and millions more records in the table; as long as the value contained in the index is fairly unique, Oracle
will be able to return the required rows with a minimal amount of disk reads.

Conversely, consider if the value in the LAST_NAME column wasn’t very unique. Suppose millions of
records in the CUST table had the value of LEE. If the query optimizer did use the index, it would have to
read from the index millions of times, retrieve the ROWIDs, and then also read from the table millions of
times. In this situation, it’s faster to bypass the index and instead scan every block in the table. For this
reason, sometimes the optimizer calculates that the index isn’t beneficial to performance and ignores it.

 Tip The higher the degree of uniqueness, the more efficient a B-tree index becomes. In database jargon, a very
selective (unique) column value compared to the total number of rows in a table is said to have high cardinality.
Conversely, low cardinality refers to few unique values compared to the total rows for the table.

There’s another interesting scenario we should point out. Suppose instead of selecting all column
values out of the CUST table, you only select the LAST_NAME column.

select last_name
from cust
where last_name = 'STARK';

In this scenario, since the index contains all of the values in the SELECT clause, Oracle is able to

satisfy the results of the query by only accessing the index. Oracle doesn’t have to read the table
structure itself. When the SELECT clause columns are all contained with an index, this is known as a
covering index. These indexes are particularly efficient because only the index blocks need to be read.

Before reading on, let’s review the concepts introduced up to this point in the chapter.

• Indexes are optional objects defined on a table and one or more columns.

• Indexes consume resources.

• A B-tree index is the default index type in Oracle.

• A fairly unique column value compared to all other rows in a table results in a
more efficient B-tree index.

• When appropriately created, indexes improve performance.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

4

• In some scenarios, the query optimizer will choose not to use an index. In other
words, the query optimizer calculates that the cost of a full table scan is less than
the cost when using an index.

• In some situations, Oracle can retrieve data for a query by only accessing the
index; the table doesn’t have to be accessed.

An understanding of these index fundamentals provide a good foundation for the rest of the
concepts introduced in this chapter and book. We now turn our attention to determining which type of
index to use.

Determining Which Type of Index to Use
Oracle provides a wide range of index types and features. The correct use of indexes results in well
performing and scalable database application. Conversely, if you incorrectly or unwisely implement a
feature, there may be detrimental performance implications. Table 1-1 summarizes the various Oracle
index types available. At first glance, this is a long list and may be somewhat overwhelming to somebody
new to Oracle. Deciding which index type to use isn’t as daunting as it might initially seem. For most
applications, you should simply use the default B-tree index type.

 Note Several of the index types listed in Table 1-1 are actually just variations on the basic, B-tree index. A
reverse-key index, for example, is merely a B-tree index optimized for evenly spreading I/O when the index value
is sequentially generated and inserted with similar values.

Table 1-1. Oracle Index Types and Feature Descriptions

Index Type Usage

B-tree Default, balanced tree index; good for high-cardinality (high degree of distinct
values) columns. Use a normal B-tree index unless you have a concrete reason
to use a different index type or feature.

Index organized table Efficient when most of the column values are included in the primary key. You
access the index as if it were a table. The data is stored in a B-tree like
structure.

Unique A form of B-tree index; used to enforce uniqueness in column values. Often
used with primary key and unique key constraints, but can be created
independently of constraints.

Reverse-key A form of B-tree index; useful to balance I/O in an index that has many
sequential inserts.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

5

Index Type Usage

Key-compressed Good for concatenated indexes where the leading column is often repeated;
compresses leaf block entries. This feature applies to a B-tree or an IOT index.

Descending A form of B-tree index; used with indexes where corresponding column values
are sorted in a descending order (the default order is ascending). You can’t
specify descending for a reverse key index and Oracle ignores descending if
the index type is bitmap.

Bitmap Excellent in data warehouse environments with low-cardinality columns and
SQL statements using many AND or OR operators in the WHERE clause. Bitmap
indexes aren’t appropriate for online transaction processing (OLTP) databases
where rows are frequently updated. You can’t create a unique bitmap index.

Bitmap join Useful in data warehouse environments for queries that utilize Star schema
structures that join fact and dimension tables.

Function-based Good for columns that have SQL functions applied to them. This can be used
with either a B-tree or bitmap index.

Indexed virtual column An index defined on a virtual column (of a table); useful for columns that have
SQL functions applied to them; viable alternative to using a function-based
index.

Virtual Allows you to create an index with no physical segment or extents via the
NOSEGMENT clause of CREATE INDEX; useful in tuning SQL without consuming
resources required to build the physical index. Any index type can be created
as virtual.

Invisible The index is not visible to the query optimizer. However, the structure of the
index is maintained as table data is modified. Useful for testing an index
before making it visible to the application. Any index type can be created as
invisible.

Global partitioned Global index across all partitions in a partitioned table or regular table. This
can be a B-tree index type and can’t be a bitmap index type.

Local partitioned Local index based on individual partitions in a partitioned table. This can be
either a B-tree or bitmap index type.

Domain Specific for an application or cartridge.

B-tree cluster Used with clustered tables.

Hash cluster Used with hash clusters.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

6

The B-tree index and other index types are briefly introduced in the following subsections. Where
appropriate we’ll indicate where a particular index type is fully discussed in subsequent chapters in this
book.

B-tree Indexes
We should point out that B-tree indexes are the entire focus of Chapter 2. We introduce them in this
section so that you can juxtapose them with other index types. As mentioned, the default index type in
Oracle is a B-tree index. This index type is very efficient for high cardinality column values. For most
applications, this index type is appropriate.

Without specifying any options, a B-tree is created with the CREATE INDEX statement; all you need to
provide is the index name, table name, and column(s).

create index cust_idx2
on cust(first_name);

Unless you have verifiable performance reasons to use a different index type, use a B-tree. Too

often DBAs or developers read about a new indexing feature and assume that the vendor’s exaggeration
of a feature matches the actual realized benefits. Always validate your reasons for choosing to
implement a new index type or feature.

There are several subtypes of B-tree indexes.

• Index-organized table

• Unique

• Reverse key

• Key compressed

• Descending

These B-tree subtypes are briefly introduced in the next several subsections.

Index-Organized Table
An index-organized table (IOT) stores the entire contents of the table’s row in a B-tree index structure.
An IOT provides fast access for queries that have exact matches and/or range searches on the primary
key.

Even though an IOT is implemented as a B-tree index structure, it is created via the CREATE
TABLE...ORGANIZATION INDEX statement. For example,

create table prod_sku
(prod_sku_id number
,sku varchar2(256),
constraint prod_sku_pk primary key(prod_sku_id, sku)
) organization index;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

7

 Note See Chapter 4 for implementation details regarding an index-organized table.

Unique Indexes
When creating a B-tree index you can define it to be a unique index. In this regard it acts like a unique
key constraint. When inserting into the corresponding table, the unique index will guarantee that any
non-null values inserted into the table are distinct. For this reason, unique indexes are commonly used
in conjunction with primary key and unique key constraints (see Chapter 2 for complete details).

A unique index is specified via the CREATE UNIQUE INDEX statement.

create unique index cust_uidx1
on cust(last_name, first_name);

 Note See Chapter 2 for a complete discussion on the advantages and disadvantages to creating a unique
index versus allowing Oracle to automatically create the index when defining a primary key or unique key
constraint.

Reverse Key Indexes
Reverse key indexes are useful to balance I/O in an index that has many sequential inserts. These
indexes can perform better in scenarios where you need a way to evenly distribute index data that would
otherwise have similar values clustered together. Thus, when using a reverse-key index, you avoid
having I/O concentrated in one physical disk location within the index during large inserts of sequential
values. This type of index is discussed further in Chapter 5.

A reverse key index is specified with the REVERSE clause, like so:

create index cust_ridx1
on cust(cust_id) reverse;

 Note You can’t specify REVERSE for a bitmap index or an index-organized table. Also, a reverse key index can’t
be of type descending.

Key Compressed Indexes
A key compressed index is useful in reducing the storage and I/O requirements of concatenated indexes
where the leading column is often repeated. Use the COMPRESS N clause to create a compressed index.

create index cust_cidx_1
on cust(last_name, first_name) compress 2;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

8

 Note You can’t create a key-compressed index on a bitmap index.

Descending Indexes
By default, Oracle stores B-tree indexes in an ascending order. For example, if you have an index on
column with a number data type, the smallest number would appear first in the index (left-most leaf
node) and the highest numbers would be stored in the right-most leaf nodes.

You can instruct Oracle to reverse this order to be descending by specifying the DESC keyword with a
column. This creates a descending index. For example,

create index cust_didx1
on cust(cust_id desc);

Descending indexes are useful for queries that sort some columns in an ascending order and other
columns in a descending order.

Specialized Index Types
Sometimes a B-tree index isn’t enough to provide the desired performance improvement. The following
are indexes that should be used under specialized circumstances:

• Bitmap

• Bitmap join

• Function-based

• Indexed virtual column

• Invisible

• Global partitioned

• Local partitioned

• Domain

• B-tree cluster

• Hash cluster

Each of these types of indexes is briefly introduced in the following subsections. Many of these index
types are discussed in full detail later in subsequent chapters in this book.

Bitmap Index
Bitmap indexes are commonly used in data-warehouse environments. These indexes are recommended
for columns with a relatively low number of distinct values (low cardinality). Bitmap indexes also are

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

9

efficient for SQL statements that use multiple AND or OR join operators in the WHERE clause (which is
typical in a data warehouse environment).

You should not use bitmap indexes in OLTP databases with high INSERT/UPDATE/DELETE activities.
This is because the structure of the bitmap index results in many locked rows during singular DML
operations (which results in locking problems for high-transaction OLTP systems).

A bitmap index is created using the keyword BITMAP. For completeness, we also show the table
creation script upon which the bitmap index is built.

create table f_sales(
 sales_amt number
,d_date_id number
,d_product_id number
,d_customer_id number);

create bitmap index f_sales_fk1
on f_sales(d_date_id);

 Note Bitmap indexes and bitmap join indexes are available only with the Oracle Enterprise Edition of the
database.

Bitmap Join
A bitmap join index stores the results of a join between two tables in an index. These indexes are
beneficial because they avoid joining tables to retrieve results. Bitmap join indexes are appropriate in
situations where you’re joining two tables using the foreign-key column(s) in one table that relate to
primary-key column(s) in another table.

Bitmap join indexes are usually suitable for data warehouse environments that have tables
periodically batch loaded and then are not updated. When updating tables that have bitmap join
indexes, this potentially results in several rows being locked. Therefore, this type of index is not suitable
for an OLTP database. A bitmap join index is specified with the keyword BITMAP and a join condition
must be provided. The following is an example (for completeness, we also show the join table creation
statement):

create table d_customers
(d_customer_id number primary key
,cust_name varchar2(30));

create bitmap index f_sales_bmj_idx1
on f_sales(d_customers.cust_name)
from f_sales, d_customers
where f_sales.d_customer_id = d_customers.d_customer_id;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

10

 Note Bitmap and bitmap join indexes are the focus of Chapter 3.

Function-Based Indexes
Function-based indexes are created with SQL functions or expressions in their definitions. Function-
based indexes allow index lookups on columns referenced by SQL functions in the WHERE clause of a
query. Here’s an example of creating a function-based index:

create index cust_fidx1
on cust(upper(last_name));

These types of indexes are necessary because Oracle won’t use a normal B-tree index when a query
references a column with a SQL function applied to it.

 Note Function-based indexes can be either B-tree, unique, or bitmap.

Indexed Virtual Column
An alternative to a function based index is to add a virtual column to a table and then create an index on
that virtual column. You’ll have to test and determine whether a function-based index or an index on a
virtual column better suits your performance requirements.

Listed next is a brief example. Suppose you have an INV table created with a virtual column.

create table inv(
 inv_id number
,inv_count number
,inv_status generated always as (
 case when inv_count <= 100 then 'GETTING LOW'
 when inv_count > 100 then 'OKAY'
 end)
);

Now you can create a regular index on the virtual column.

create index inv_idx1
on inv(inv_status);

 Note Virtual columns are only available in Oracle Database 11g and higher.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

11

Virtual Index
You can instruct Oracle to create an index that will never be used and won’t have any extents allocated to
it via the NOSEGMENT clause.

create index cust_idx1
on cust(first_name) nosegment;

Even though this index is not physically instantiated, you can instruct Oracle to determine if the
index might be used by the optimizer via the _USE_NOSEGMENT_INDEXES initialization parameter. For
example,

SQL> alter session set "_use_nosegment_indexes"=true;

When would this be useful? If you have a very large index that you want to create without allocating
space, to determine if the index would be used by the optimizer, creating an index with NOSEGMENT allows
you to test that scenario. If you determine that the index would be useful, you can drop the index and re-
create it without the NOSEGMENT clause.

Invisible Index
An invisible index means the optimizer doesn’t use the index when retrieving data for a query. However,
the index structure is still maintained as the underlying table has records inserted, updated, or deleted.
This feature is used when you want to test the viability of an index without impacting existing
application code. Use the INVISIBLE keyword to create an invisible index.

create index cust_iidx1
on cust(last_name) invisible;

 Note Invisible indexes are only available in Oracle Database 11g and higher.

Globally and Locally Partitioned Indexes
A partitioned index is one where you have one logical index, but physically the index is implemented in
several different segments. This allows for good performance even with very large databases. A
partitioned index can be either global or local.

 Note Partitioning is an extra-cost option available only with the Oracle Enterprise Edition of the database.

A globally partitioned index is where the index uses a partitioning strategy that is not mapped to the
underlying table’s segments. You can build a globally partitioned index on a regular table or a

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

12

partitioned table. Globally partitioned indexes are implemented as type B-tree and can be defined as
unique. Use the GLOBAL PARTITION clause to create a globally partitioned index. This example creates a
globally partitioned index by a range:

create index f_sales_gidx1 on f_sales(sales_amt)
global partition by range(sales_amt)
(partition pg1 values less than (25)
,partition pg2 values less than (50)
,partition pg3 values less than (maxvalue));

A locally partitioned index must be built on a partitioned table. This index type follows the same

partitioning strategy as its underlying table. A given partition of a locally partitioned index only contains
values from its corresponding partition of the table. A locally partitioned index can be either B-tree or
bitmap. Use the keyword LOCAL to create this type of index. For completeness, we show the creation of a
partitioned table upon which the locally partitioned index is built.

create table f_sales(
 sales_amt number
,d_date_id number
,d_product_id number
,d_customer_id number)
partition by range(sales_amt)(
 partition p1 values less than (100)
,partition p2 values less than (1000)
,partition p3 values less than (maxvalue));

create index f_sales_idx2
on f_sales(d_date_id, sales_amt) local;

 Note Partitioned indexes are the focus of Chapter 6.

Domain, B-tree Cluster, and Hash Cluster Indexes
An application domain index is custom to a specific application. This accommodates indexes on custom
data types, documents, images, video, and spatial data.

A B-tree cluster index is an index defined on a cluster table key. The B-tree cluster index associates a
cluster key with a database block address. This index type is used with table clusters. A hash cluster is
similarly used with cluster tables, the difference being a hash cluster uses a hash function instead of the
index key.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

13

 Note Domain indexes, B-tree cluster indexes, and hash clusters are not covered extensively in this book. If you
need more information regarding these index types, see Oracle’s SQL Reference Guide at
http://otn.oracle.com.

Determining Which Columns to Index
Now we turn our attention to figuring out which columns should be indexed. For starters, we
recommend for most applications you create indexes in the following situations:

• Define a primary key constraint for each table: This results in an index
automatically being created on the columns specified in the primary key.

• Create unique key constraints on columns that are required to be unique and are
different from the primary key columns: Each unique key constraint results in an
index automatically being created on the columns specified in the constraint.

• Manually create indexes on foreign key columns: This is done for better
performance to avoid certain locking issues (see Chapter 2 for complete details).

Each of these bulleted items is detailed in the following subsections.

 Tip See Chapter 9 for obtaining indexing advice from the SQL Tuning Advisor. See Chapter 10 for generating
indexing recommendations from the SQL Access Advisor.

Indexes on Primary Key and Unique Key Columns
In most situations, you should create a primary key constraint for every table. If there is not already an
index defined on the primary key columns, then Oracle will automatically create a B-tree index for you.

Similarly, for any unique key constraints you define on a table, if there is not already an index
defined on the unique key columns, Oracle will create an appropriate B-tree index. Here’s a simple
example:

create table cust
(cust_id number primary key
,last_name varchar2(30)
,first_name varchar2(30)
,ssn varchar2(16) unique);

See Chapter 2 for complete details regarding primary key and unique key constraints and how they
related to indexes.

www.it-ebooks.info

http://otn.oracle.com
http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

14

Indexes on Foreign Key Columns
Oracle doesn’t automatically create indexes on foreign key columns. We recommend that you do create
B-tree indexes on foreign key columns, one reason being that foreign key columns are often referenced
in WHERE clauses and therefore performance can be improved with these queries

When indexes exist on foreign key columns this also reduces locking issues. Namely, when inserting
or deleting from the child table, this will put a table level lock on the parent table, which will prevent
other processes from inserting or deleting from the parent table. In OLTP databases, this can be an issue
when you have multiple processes inserting and deleting data simultaneously from parent and child
tables. In data warehouse environments, it’s less of an issue because data is loaded in a more systematic
manner (scheduled batch jobs) and data is typically not deleted.

Here’s a simple example of creating a table that has a foreign key and then manually creating an
index:

create table address
(address_id number primary key
,cust_id number references cust(cust_id)
,address varchar2(1000)
);

create index address_fk1 on address(cust_id);

Other Suitable Columns
When choosing an index, keep in mind this basic rule: the indexing strategy should be based on the
columns you use when querying the table. You can create more than one index on a table and have an
index contain multiple columns. You will make better decisions if you first consider what types of
queries you execute on a table. If you’ve identified a poorly performing SQL query, also consider creating
indexes for the following columns:

• Create indexes on columns used often as predicates in the WHERE clause; when
multiple columns from a table are used in the WHERE clause, consider using a
concatenated (multi-column) index.

• Create a covering index on columns used in the SELECT clause.

• Consider creating indexes on columns used in the ORDER BY, GROUP BY, UNION, or
DISTINCT clauses.

Oracle allows you to create an index that contains more than one column. Multicolumn indexes are
known as concatenated indexes (sometimes referred to as composite indexes). These indexes are
especially effective when you often use multiple columns in the WHERE clause when accessing a table.
Concatenated indexes are oftentimes more efficient in this situation than creating separate single
column indexes.

Columns included in the SELECT and WHERE clauses are also potential candidates for indexes. Recall
that a covering index is one that includes all columns returned by the query. In this situation, Oracle can
use the index structure itself (and not the table) to satisfy the results of the query. Also, if the column
values are selective enough, Oracle can use an index on columns referenced in the WHERE clause to
improve query performance.

Also consider creating indexes on columns used in the ORDER BY, GROUP BY, UNION, or DISTINCT
clauses. This may result in more efficient queries that frequently use these SQL constructs.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

15

It’s okay to have multiple indexes per table. However, the more indexes you place on a table, the
slower DML statements will run (as Oracle has more and more indexes to maintain when the table
column values change). Don’t fall into the trap of randomly adding indexes to a table until you stumble
upon the right combination of indexed columns. Rather, verify the performance of an index before you
create it in a production environment. (See Chapter 7 for details on validating performance benefits.)

 Note You can have a column appear in multiple indexes on the same table. However, Oracle doesn’t allow
multiple indexes in one table on the exact same combination of columns.

Indexing Guidelines
Oracle indexes provide efficient access to large data sets. Deciding on using an index involves
determining whether the improvement in performance SELECT statements is worth the cost of space
consumed and overhead when the table is updated. Table 1-2 summarizes the guidelines for efficiently
using indexes.

Table 1-2. Guidelines for Creating Indexes

Guideline Reasoning

Create as many indexes as you need, but try to keep
the number to a minimum. Add indexes
judiciously. Test first to determine quantifiable
performance gains.

Indexes increase performance, but also consume
disk space and processing resources. Don’t add
indexes unnecessarily.

The required performance of queries you execute
against a table should form the basis of your
indexing strategy.

Indexing columns used in SQL queries will help
performance the most.

Consider using the SQL Tuning Advisor or the SQL
Access Advisor for indexing recommendations.

These tools provide recommendations and a
second set of eyes on your indexing decisions.

Create primary key constraints for all tables. This will automatically create a B-tree index (if
the columns in the primary key aren’t already
indexed).

Create unique key constraints where appropriate. This will automatically create a B-tree index (if
the columns in the unique key aren’t already
indexed).

Create indexes on foreign-key columns. Foreign-key columns are usually included in the
WHERE clause when joining tables and thus
improve performance of SQL SELECT statements.
Creating a B-tree index on foreign key columns

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

16

also reduces locking issues when updating and
inserting into child tables.

Carefully select and test indexes on small tables
(small being less than a few thousand rows).

Even on small tables, indexes can sometimes
perform better than full table scans.

Use the correct type of index. Correct index usage maximizes performance. See
Table 1-1 for more details.

Use the basic B-tree index type if you don’t have a
verifiable performance gain from using a different
index type.

B-tree indexes are suitable for most applications
where you have high cardinality column values.

Consider using bitmap indexes in data warehouse
environments.

These indexes are ideal for low cardinality
columns where the values aren’t updated often.
Bitmap indexes work well on foreign key columns
on Star schema fact tables where you often run
queries that use AND and OR join conditions.

Consider using a separate tablespace for indexes
(separate from tables).

Table and index data may have different storage
and/or backup and recovery requirements. Using
separate tablespaces lets you manage indexes
separately from tables.

Let the index inherit its storage properties from the
tablespace.

This makes it easier to manage and maintain
index storage.

Use consistent naming standards. This makes maintenance and troubleshooting
easier.

Don’t rebuild indexes unless you have a solid
reason to do so.

Rebuilding indexes is generally unnecessary
unless an index is corrupt or you want to move an
index to different tablespace.

Monitor your indexes, and drop indexes that aren’t
used.

Doing this frees up physical space and improves
the performance of data manipulation language
(DML) statements.

Before dropping an index, consider marking it as
unusable or invisible.

This allows you to better determine if there are
any performance issues before you drop the
index. These options let you rebuild or re-enable
the index without requiring the data definition
language (DDL) creation statement.

Refer to these guidelines as you create and manage indexes in your databases. These

recommendations are intended to help you correctly use index technology.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ORACLE INDEXES

17

Summary
Indexes exist primarily to increase query performance, so it’s critical that you think carefully about how
to implement indexes. A well planned indexing strategy results in a well performing database
application. Conversely, a careless plan will result in poor performance.

Indexes consume space on disk and are stored separately from tables. However, indexes are defined
on a table and one or more columns; in this sense, an index can’t exist without the table.

Oracle provides a wide number of indexing types and features. In most situations, the default B-tree
index is appropriate. Before using other index types, make sure you understand the performance
benefits. You should be aware of the indexing features that Oracle provides and under what
circumstances you should employ specialized index types.

We recommend that you place indexes on primary key, unique key, and foreign key columns. This is
a good starting point. Furthermore, analyze slowly performing SQL statements to see which columns are
used. This will provide you additional candidate columns for indexing. These indexing
recommendations lay the foundation for maximizing SQL query performance.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■ ■ ■

19

B-tree Indexes

The B-tree index is the default index type in Oracle. This index type is known as B-tree because the table
row identifier (ROWID) and associated column values are stored within index blocks in a balanced tree-
like structure. Oracle B-tree indexes are used for the following reasons:

• Improving SQL statement performance.

• Enforcing uniqueness of primary key and unique key constraints.

• Reducing potential locking issues with parent and child table tables associated via
primary and foreign key constraints.

If a table column value (or combination of columns) is fairly unique within all rows in a table, then
creating a B-tree index usually results in faster query performance. Additional performance
improvements are realized when the index structure itself contains the required table column values to
satisfy the result of the query. In this situation, the table data blocks need not be accessed.
Understanding these concepts will help you determine which columns to index and whether a
concatenated index might be more efficient for certain queries and less optimal for others.

B-tree indexes also play a pivotal role in application design because these indexes are closely
associated with certain types of constraints. Namely, Oracle uses B-tree indexes to enforce primary key
and unique key constraints. In most scenarios, B-tree indexes are automatically created for you when
implementing primary key and unique key constraints.

Indexes are often manually created to match foreign key constraint columns to improve
performance of queries that join tables on primary key and foreign key columns. Also, in certain
circumstances, the lack of a B-tree index on a foreign key column(s) can cause locking problems.

We start this chapter by describing how Oracle uses B-tree indexes. Then we cover typical strategies
for implementing and managing B-tree indexes. The last major section of this chapter deals with B-tree
indexes and how they are related to constraints.

Understanding How Oracle Uses B-tree Indexes
This section will help you understand how Oracle uses B-tree indexes. The goal is to help you fully
comprehend B-tree index internals to enable intelligent indexing decisions when building database
applications. An example with a good diagram will help illustrate the mechanics of a B-tree index. Even
if you’ve been working with B-tree indexes for quite a while, this example may illuminate technical
aspects of using an index. To get started, suppose you have a table created as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

20

create table cust(
 cust_id number
,last_name varchar2(30)
,first_name varchar2(30));

You also anticipate that queries will frequently execute against the table using the LAST_NAME
column. Therefore, you create a B-tree index as follows:

create index cust_idx1
on cust(last_name);

 Note You need the create index system privilege to create an index. You also need privileges for consuming
space in the tablespace the index is placed within.

Next, thousands of rows are inserted into the table (not all of the rows are shown here):

insert into cust (cust_id, last_name, first_name) values(7, 'ACER','SCOTT');
insert into cust (cust_id, last_name, first_name) values(5, 'STARK','JIM');
insert into cust (cust_id, last_name, first_name) values(3, 'GREY','BOB');
insert into cust (cust_id, last_name, first_name) values(11,'KHAN','BRAD');
.....
insert into cust (cust_id, last_name, first_name) values(274, 'ACER','SID');

After the rows are inserted, ensure that the table statistics are up to date so as to provide the query
optimizer sufficient information to make good choices on how to retrieve the data, like so:

SQL> exec dbms_stats.gather_table_stats(ownname=>'MV_MAINT', -
 tabname=>'CUST',cascade=>true);

 Note Oracle strongly recommends that you don’t use the ANALYZE statement (with the COMPUTE and ESTIMATE
clauses) to collect statistics. Oracle only provides this functionality for backward compatibility. Oracle does support
using the ANALYZE statement for non-statistics gathering uses such as validating objects and listing chained rows.

As rows are inserted into the table, Oracle will allocate extents that consist of physical database
blocks. Oracle will also allocate blocks for the index. For each record inserted into the table, Oracle will
also create an entry in the index that consists of the ROWID and column value (the value in LAST_NAME in
this example). The ROWID for each index entry points to the data file and block in which the table column
value is stored. Figure 2-1 shows a graphical representation of how data is stored in the table and the
corresponding B-tree index. For this example, data files 10 and 15 contain table data stored in associated
blocks and data file 22 stores the index blocks.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

21

Figure 2-1. Physical layout of a table and B-tree index

There are two dotted lines in Figure 2-1. These lines depict how the ROWID (in the index structure)
points to the physical row in the table for the column values of ACER. These particular values will be
used in the scenarios described next. When selecting data from a table and its corresponding index,
there are three basic situations.

• All table data required by the SQL query is contained in the index structure.
Therefore, only the index blocks need to be accessed. The blocks from the table
are not read.

• All of the information required by the query is not contained in the index blocks.
Therefore, the query optimizer chooses to access both the index blocks and the
table blocks to retrieve the data needed to satisfy the results of the query.

• The query optimizer chooses not to access the index. Therefore, only the table
blocks are accessed.

These situations are covered in the next three subsections.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

22

Scenario 1: All Data Lies in the Index Blocks
This section will describe two scenarios. In each, all data required for query execution, including data
returned to the user as well as data evaluated in the WHERE clause, is present in the index.

• Index range scan: This occurs when the optimizer determines it is efficient to use
the index structure to retrieve multiple rows required by the query. Index range
scans are used extensively in a wide variety of situations.

• Index fast full scan: This occurs when the optimizer determines that most of the
rows in the table will need to be retrieved. However, all of the information
required is stored in the index. Since the index structure is usually smaller than the
table structure, the optimizer determines that a full scan of the index is more
efficient (than a full scan of the table). This scenario is common for queries that
count values.

First, the index range scan is demonstrated. In this situation, you run the following query:

SQL> select last_name from cust where last_name='ACER';

Before reading on, look at Figure 2-1 and try to answer this question: “What are the minimal
number of blocks Oracle will need to read to return the data for this query?” In other words, what is the
most efficient way to access the physical blocks in order to satisfy the results of this query? The optimizer
could choose to read through every block in the table structure. However, that would result in a great
deal of I/O and thus is not the most optimal way to retrieve the data.

For this example, the most efficient way to retrieve the data is to use the index structure. To return
the rows that contain the value of ACER in the LAST_NAME column, Oracle will need to read three index
blocks: block 20, block 30, and block 39. You can verify that this is occurring by using Oracle’s Autotrace
utility.

SQL> set autotrace on;
SQL> select last_name from cust where last_name='ACER';

Here is a partial snippet of the output:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 11 | 1 (0)| 00:00:01 |
|* 1 | INDEX RANGE SCAN| CUST_IDX1 | 1 | 11 | 1 (0)| 00:00:01 |
--

This output shows that Oracle needed to use only the CUST_IDX1 index to retrieve the data to satisfy

the result set of the query. The table data blocks were not accessed; only the index blocks were required.
This is a particularly efficient indexing strategy for the given query.

 Tip When an index contains all column values required by the query, this is referred to as a covering index.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

23

Listed next are the statistics displayed by Autotrace for this example:

Statistics
--
 1 recursive calls
 0 db block gets
 3 consistent gets
 0 physical reads
 0 redo size
 585 bytes sent via SQL*Net to client
 524 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 2 rows processed

The consistent gets value indicates there were three read operations from memory (db block gets

plus consistent gets equals the total read operations from memory). Since the index blocks were
already in memory, no physical reads were required to return the result set of this query. Additionally,
two rows were processed, which matches the number of records in the CUST table with a last name of
ACER.

An example that results in an index fast full scan is demonstrated next. Consider this query:

SQL> select count(last_name) from cust;

Using SET AUTOTRACE ON, an execution plan is generated. Here is the corresponding output:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	11	102 (2)	00:00:02
1	SORT AGGREGATE		1	11		
2	INDEX FAST FULL SCAN	CUST_IDX1	103K	1108K	102 (2)	00:00:02

This output shows that only the index structure was used to determine the count within the table. In

this situation, the optimizer determined that a full scan of the index was more efficient than a full scan of
the table.

Scenario 2: All Information Is Not Contained in the Index
Now consider this situation: suppose you need more information from the CUST table. Let’s begin with
the previous section’s query and additionally return the FIRST_NAME column in the query results. Now
you need to access the table itself for that one data element. Here’s the new query:

SQL> select last_name, first_name from cust where last_name = 'ACER';

Using SET AUTOTRACE ON and executing the prior query results in the following execution plan:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

24

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	39	2 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	CUST	1	39	2 (0)	00:00:01
* 2	INDEX RANGE SCAN	CUST_IDX1	1		1 (0)	00:00:01

This output indicates that the CUST_IDX1 index was accessed via an INDEX RANGE SCAN. The INDEX
RANGE SCAN identifies the index blocks required to satisfy the results of this query. Additionally, the table
is read by TABLE ACCESS BY INDEX ROWID. The access to the table by the index’s ROWID means that Oracle
uses the ROWID (stored in the index) to locate the corresponding rows contained within the table blocks.
In Figure 2-1, this is indicated by the dotted lines that map the ROWID to the appropriate table blocks that
contain the value of ACER in the LAST_NAME column.

Again, looking at Figure 2-1, how many table and index blocks need to be read in this scenario? The
index requires that blocks 20, 30, and 39 must be read. Since FIRST_NAME is not included in the index,
Oracle must read the table blocks to retrieve these values. Oracle must read block 39 twice because there
are two corresponding rows in the table. Oracle knows the ROWID of the table blocks and directly reads
blocks 11 and 2500 to retrieve that data.

 That makes a total of six blocks. With that number in mind, take a look at the statistics generated by
Autotrace.

Statistics
--
 1 recursive calls
 0 db block gets
 5 consistent gets
 0 physical reads
 0 redo size
 681 bytes sent via SQL*Net to client
 524 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 2 rows processed

Notice that these statistics indicate that only five blocks were read (consistent gets), yet six were
predicted. This is because some block reads are not accounted for in the Autotrace-generated statistics.
Oracle will pin some blocks and re-read them. In this scenario, block 39 is read once, pinned, and then
re-read for a second time (because there are two ROWIDs associated with the value of ACER). The count of
re-reads of blocks is collected in the buffer is pinned count statistic (which is not displayed in the
Autotrace statistics).

Regardless, the point here is that when the index is accessed there is a back-and-forth read process
between index blocks and data blocks. The number of blocks read when an index is used to provide
ROWIDs for a table will be at least double the number of rows returned (because the index block with the
ROWID is read and then the corresponding table block is read). And in many scenarios, the consistent
gets statistic doesn’t accurately reflect the actual number of buffer reads.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

25

Oracle ROWID

Every row in every table has an address. The address of a row is determined from a combination of the
following:

You can display the address of a row in a table by querying the ROWID pseudo-column. For example,

SQL> select rowid, cust_id from cust;

Here is some sample output:

ROWID CUST_ID
------------------ ----------
AAA3AIAABAAAHtQADE 27105

The ROWID pseudo-column value isn’t physically stored in the database. Oracle calculates its value when
you query it. The ROWID contents are displayed as base 64 values that can contain the characters A–Z, a–
z, 0–9, +, and /. You can translate the ROWID value into meaningful information via the DBMS_ROWID
package. For example, to display the relative file number in which a row is stored, issue this statement:

SQL> select dbms_rowid.rowid_relative_fno(rowid), cust_id from cust where cust_id=27105;

Here is some sample output:

DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) CUST_ID
------------------------------------ ----------
 5 27105

You can use the ROWID value in the SELECT and WHERE clauses of a SQL statement. In most cases, the
ROWID uniquely identifies a row. However, it’s possible to have rows in different tables that are stored in
the same cluster and so contain rows with the same ROWID.

Scenario 3: Only the Table Blocks Are Accessed
In some situations, even if there is an index, Oracle will determine that it’s more efficient to use only the
table blocks. When Oracle inspects every row within a table, this is known as a full table scan. For
example, take this query:

SQL> select * from cust;

• Data file number

• Block number

• Location of the row within the block

• Object number

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

26

Here are the corresponding execution plan and statistics:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 103K| 4435K| 133 (3)| 00:00:02 |
| 1 | TABLE ACCESS FULL| CUST | 103K| 4435K| 133 (3)| 00:00:02 |
--

Statistics
--
 1 recursive calls
 0 db block gets
 7206 consistent gets
 0 physical reads
 0 redo size
 6259463 bytes sent via SQL*Net to client
 76215 bytes received via SQL*Net from client
 6883 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 103217 rows processed

This output shows that several thousand block reads were required (consistent gets). Oracle
searched every row in the table to bring back the results required to satisfy the query. In this situation, all
used blocks of the table must be read, and there is no way for Oracle to use the index to speed up the
retrieval of the data.

 Note For the examples in this section, your results may vary slightly depending on how many rows you initially
insert into the table. We inserted a little over 100,000 rows to seed the table.

Prepping for B-tree Indexes
Before creating a B-tree index, it’s prudent to make a few architectural decisions that will impact
maintainability and availability. The following are manageability features that you should consider
before building indexes:

• Estimate the size of the index before creating it.

• Consider designating a tablespace just for indexes (separate from tables). This
allows you to more easily manage indexes separately from tables for tasks such as
backup and recovery.

• Allow objects to inherit storage parameters from their tablespace.

• Define naming standards to be used when creating indexes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

27

These decision points are detailed in the following subsections.

Estimating the Size of an Index Before Creation
Before creating an index on a large table, you may want to estimate the space it will consume. The best
way to predict the size of an index is to create it in a test environment that has a representative set of
production data. If you can’t build a complete replica of production data, a subset of data can often be
used to extrapolate the size required in production. If you don’t have the luxury of using a cut of
production data, you can also estimate the size of an index using the DBMS_SPACE.CREATE_INDEX_COST
procedure. For example, this code estimates the size of creating an index on the FIRST_NAME column of
the CUST table:

SQL> set serverout on
SQL> exec dbms_stats.gather_table_stats(user,'CUST');
SQL> variable used_bytes number
SQL> variable alloc_bytes number
SQL> exec dbms_space.create_index_cost('create index cust_idx2 on cust(first_name)', -
 :used_bytes, :alloc_bytes);
SQL> print :used_bytes

Here is some sample output for this example:

USED_BYTES

 2890104

SQL> print :alloc_bytes

ALLOC_BYTES

 4440064

The used_bytes variable gives you an estimate of how much room is required for the index data. The

alloc_bytes variable provides an estimate of how much space will be allocated within the tablespace.
Next, go ahead and create the index.

SQL> create index cust_idx2 on cust(first_name);

The actual amount of space consumed is shown by this query:

SQL> select bytes from user_segments where segment_name='CUST_IDX2';

The output indicates that the estimated amount of allocated bytes is in the ballpark of the amount

of space actually consumed.

 BYTES

 4718592

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

28

Your results may vary depending on the number of records, the number of columns, the data types,
and the accuracy of statistics.

In addition to the initial sizing, keep in mind that the index will grow as records are inserted into the
table. You’ll have to monitor the space consumed by the index and ensure that there’s enough disk
space to accommodate future growth requirements.

Creating Separate Tablespaces for Indexes
For critical applications you must give some thought to how much space tables and indexes will
consume and how fast they grow. Space consumption and object growth has a direct impact on
database availability. If you run out of space, your database will become unavailable. The best way to
manage this is by creating tablespaces tailored to space requirements and explicitly creating objects
naming the tablespaces. With that in mind, we recommend that you separate tables and indexes into
separate tablespaces. Consider the following reasons:

• This allows for differing backup and recovery requirements. You may want the
flexibility of backing up the indexes at a different frequency than the tables. Or you
may choose not to back up indexes because you know that you can re-create
them.

• If you let the table or index inherit its storage characteristics from the tablespace,
when using separate tablespaces you can tailor storage attributes for objects
created within the tablespace. Tables and indexes often have different storage
requirements (such as extent size, logging, and so on).

• When running maintenance reports, it’s sometimes easier to manage tables and
indexes when the reports have sections separated by tablespace.

If these reasons are valid for your environment, it’s probably worth the extra effort to employ
different tablespaces for tables and indexes. If you don’t have any of the prior needs, then it’s fine to put
tables and indexes together in the same tablespace.

We should point out that DBAs often consider placing indexes in separate tablespace for
performance reasons. If you have the luxury of setting up a storage system from scratch and can set up
mount points that have their own sets of disks and controllers, you may see some I/O benefits by
separating tables and indexes into different tablespaces. Nowadays, storage administrators often give
you a large slice of storage in a SAN, and there’s no way to guarantee that data and indexes will be stored
physically on separate disks (and controllers). Thus you typically don’t gain any performance benefits by
separating tables and indexes into different tablespaces. In other words, the benefit isn’t caused by
having separate tablespaces but by achieving evenly distributed I/O across all available devices.

The following code shows an example of building a separate tablespaces for tables and indexes. It
creates locally managed tablespaces using a fixed extent size and automatic segment space management
(ASSM).

create tablespace reporting_data
 datafile '/ora02/DWREP/reporting_data01.dbf'
 size 1G
 extent management local
 uniform size 1M
 segment space management auto;
--
create tablespace reporting_index

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

29

 datafile '/ora02/DWREP/reporting_index01.dbf'
 size 500M
 extent management local
 uniform size 128K
 segment space management auto
 nologging;

We prefer to use uniform extent sizes because that ensures that all extents within the tablespace will
be of the same size, which reduces fragmentation as objects are created and dropped. The ASSM feature
allows Oracle to automatically manage many storage attributes, which previously had to manually
monitored and maintained by the DBA.

Inheriting Storage Parameters from the Tablespace
When creating a table or an index, there are a few tablespace-related technical details to be aware of. For
example, if you don’t specify storage parameters when creating tables and indexes, then the table and
index inherit storage parameters from the tablespace. This is the desired behavior in most
circumstances. This saves you from having to manually specify these parameters. If you need to create
an object with different storage parameters from its tablespace, then you can do so within the CREATE
TABLE/INDEX statement.

Also, keep in mind if you don’t explicitly specify a tablespace, by default tables and indexes are
created in the default tablespace for the user. This is acceptable for development and test environments.
For production environments, you should consider explicitly naming tablespaces in the CREATE
TABLE/INDEX statements.

Naming Standards
When you’re creating and managing indexes, it’s highly desirable to develop some standards regarding
naming. Consider the following motives:

• Diagnosing issues is simplified when error messages contain information that
indicates the table, index type, and so on.

• Reports that display index information are more easily grouped and therefore are
more readable and make it easier to spot patterns and issues.

Given those needs, here are some sample index-naming guidelines:

• Primary-key index names should contain the table name and a suffix such as _PK.

• Unique-key index names should contain the table name and a suffix such as _UKN,
where N is a number.

• Indexes on foreign-key columns should contain the foreign-key table and a suffix
such as _FKN, where N is a number.

• For indexes that aren’t used for constraints, use the table name and a suffix such
as _IDXN, where N is a number.

• Function-based index names should contain the table name and a suffix such as
_FCN, where N is a number.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

30

Some shops use prefixes when naming indexes. For example, a primary key index would be named
PK_CUST (instead of CUST_PK). All of these various naming standards are valid.

 Tip It doesn’t matter what the standard is, as long as everybody follows the same standard.

Implementing B-tree Indexes
This section describes typical tasks you’ll encounter when working with B-tree indexes. Typical tasks
include:

• Creating indexes.

• Reporting on indexes.

• Displaying code required to re-create an index.

• Dropping indexes.

These tasks are detailed in the following subsections.

Creating a B-tree Index
Listed next is a sample script that creates a table and its associated indexes in separate tablespaces. The
tables and indexes inherit their storage attributes from the tablespace; this is because no storage
parameters are specified in either the CREATE TABLE or CREATE INDEX statements.

Also, you want the primary key and unique key constraints to automatically create B-tree indexes
(for more details on this topic, see the subsequent section “Managing B-tree Indexes with Constraints”).

CREATE TABLE cust(
 cust_id NUMBER
,last_name VARCHAR2(30)
,first_name VARCHAR2(30))
TABLESPACE reporting_data;
--
ALTER TABLE cust ADD CONSTRAINT cust_pk PRIMARY KEY (cust_id)
USING INDEX TABLESPACE reporting_index;
--
ALTER TABLE cust ADD CONSTRAINT cust_uk1 UNIQUE (last_name, first_name)
USING INDEX TABLESPACE reporting_index;
--
CREATE TABLE address(
 address_id NUMBER
,cust_id NUMBER
,street VARCHAR2(30)
,city VARCHAR2(30)
,state VARCHAR2(30))
TABLESPACE reporting_data;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

31

--
ALTER TABLE address ADD CONSTRAINT addr_fk1
FOREIGN KEY (cust_id) REFERENCES cust(cust_id);
--
CREATE INDEX addr_fk1 ON address(cust_id)
TABLESPACE reporting_index;

In this script, two tables are created. The parent table is CUST and its primary key is CUST_ID. The

child table is ADDRESS and its primary key is ADDRESS_ID. The CUST_ID column exists in ADDRESS as a foreign
key mapping back to the CUST_ID column in the CUST table.

Three B-tree indexes are also created; one is automatically created when the primary key constraint
is created. A second index is automatically created when the unique constraint is created. A third index
is explicitly created in the ADDRESS table on the CUST_ID foreign key column. All three indexes are created
in the REPORTING_INDEX tablespace whereas the tables are created in the REPORTING_DATA tablespace.

Reporting on Indexes
The index creation details for the example in the prior section can be verified by querying the data
dictionary.

select index_name, index_type, table_name, tablespace_name, status
from user_indexes
where table_name in ('CUST','ADDRESS');

Here is some sample output:

INDEX_NAME INDEX_TYPE TABLE_NAME TABLESPACE_NAME STATUS
-------------------- ---------- ---------- --------------- ----------
CUST_PK NORMAL CUST REPORTING_INDEX VALID
CUST_UK1 NORMAL CUST REPORTING_INDEX VALID
ADDR_FK1 NORMAL ADDRESS REPORTING_INDEX VALID

Run the following query to verify the columns on which the indexes are created:

select index_name, column_name, column_position
from user_ind_columns
where table_name in ('CUST','ADDRESS')
order by index_name, column_position;

Here is some sample output:

INDEX_NAME COLUMN_NAME COLUMN_POSITION
-------------------- -------------------- ---------------
ADDR_FK1 CUST_ID 1
CUST_PK CUST_ID 1
CUST_UK1 LAST_NAME 1
CUST_UK1 FIRST_NAME 2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

32

To display the number of extents and space used, run the following query:

select a.segment_name, a.segment_type, a.extents, a.bytes
from user_segments a, user_indexes b
where a.segment_name = b.index_name
and b.table_name in ('CUST','ADDRESS');

Notice that for this example the output shows there are no segments, extents, or space allocated for

the index.

no rows selected

Starting with Oracle Database 11g Release 2, when you create a table, the creation of the associated

segment (and extents) is deferred until the first row is inserted into the table. This means that any
associated indexes also don’t have segments created until rows are inserted into the related tables. To
illustrate this, let’s insert one row into the CUST table and one in the ADDRESS table, like so:

insert into cust values(1,'STARK','JIM');
insert into address values(100,1,'Vacuum Ave','Portland','OR');

Rerunning this query (that reports on segment usage) yields the following output:

SEGMENT_NAME SEGMENT_TYPE EXTENTS BYTES
-------------------- -------------------- ---------- ----------
CUST_PK INDEX 1 1048576
CUST_UK1 INDEX 1 1048576
ADDR_FK1 INDEX 1 1048576

Displaying Index Code
From time to time you’ll need to drop an index. This could be because of an obsolete application or
you’ve established that an index is no longer used. Prior to dropping an index, we recommend that you
generate the data definition language (DDL) that would be required to re-create the index. This allows
you to re-create the index (as it was before it was dropped) in the event that dropping the index has a
detrimental impact on performance and needs to be re-created.

Use the DBMS_METADATA.GET_DDL function to display an object’s DDL. Make sure you set the LONG
variable to an appropriate value so that the returned CLOB value is displayed in its entirety. For example,

SQL> set long 1000000
SQL> select dbms_metadata.get_ddl('INDEX','ADDR_FK1') from dual;

Here is the output:

DBMS_METADATA.GET_DDL('INDEX','ADDR_FK1')
--
CREATE INDEX "MV_MAINT"."ADDR_FK1" ON
"MV_MAINT"."ADDRESS" ("CUST_ID") PCTFREE 10 INITRANS 2 MAXTRANS 255
COMPUTE STATISTICS STORAGE(INITIAL 1048576
NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0
FREELISTS 1 FREELIST GROUPS 1

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

33

BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
TABLESPACE "REPORTING_INDEX"

This code shows all of the aspects of the index that would be required to re-create it. Many of these
values reflect default settings or storage parameters that were inherited from the index tablespace.

If you want to display all index metadata for the currently connected user, run the following code:

SQL> select dbms_metadata.get_ddl('INDEX', index_name) from user_indexes;

If the currently connected user has many indexes, this query will produce a great deal of output.

Dropping a B-tree Index
If you determine that you aren’t using an index anymore, then it should be dropped. Before you drop an
index, take the necessary precautions to ensure that there won’t be an adverse impact on performance.
If possible, the best way to determine adverse performance implications is by dropping an index in a test
environment that reflects the production environment (in terms of hardware, data, load, and so on). If
it’s not possible to thoroughly test, then consider doing one of the following before dropping:

• Enable monitoring for the index.

• Make the index invisible.

• Make the index unusable.

The idea is to try to determine beforehand that the index is not used for any purpose before actually
dropping it. See Chapter 7 for details on monitoring an index. Monitoring an index will give you an idea
if the application is using it for SELECT statements. Index monitoring will not tell you if the index is used
for other internal purposes, like enforcing a constraint or preventing locking issues.

Making an index invisible requires Oracle Database 11g. An invisible index is still maintained by
Oracle but isn’t considered by the query optimizer when determining the execution plan. Be aware that
an invisible index may still be used internally by Oracle to prevent locking issues or to enforce
constraints. So just making an index invisible isn’t a completely reliable way to determine if it’s used.

Here’s an example of making an index invisible:

SQL> alter index addr_fk1 invisible;

This code makes the index invisible to the query optimizer so that it can’t be used to retrieve rows for a
query. However, the index structure is still maintained by Oracle as records are modified in the table. If
you determine that the index was critical for performance, you can easily make it visible to the optimizer
again via

SQL> alter index addr_fk1 visible;

Your other option before dropping an index is to make it unusable.

SQL> alter index addr_fk1 unusable;

This code renders the index unusable, but doesn’t drop it. Unusable means that the optimizer won’t use
the index and Oracle won’t maintain the index as DML statements operate on its table. Furthermore, an
unusable index can’t be used internally to enforce constraints or prevent locking issues.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

34

If you need to re-enable an unusable index, then you’ll have to rebuild it. Be aware that rebuilding a
large index can take a considerable amount of time and resources.

SQL> alter index addr_fk1 rebuild;

After you’re sure an index isn’t required, use the DROP INDEX statement to remove it. This

permanently drops the index. The only way to get the index back is to re-create it.

SQL> drop index addr_fk1;

Managing B-tree Indexes with Constraints
B-tree indexes and primary key and unique key constraints are inseparable. This is because Oracle uses
these indexes to enforce primary key and unique key constraints. You can’t have an enabled primary key
or unique key constraint without an associated B-tree index.

When you create a primary key or unique key constraint, you have the option of having Oracle
automatically create the corresponding index. In this scenario, if you drop or disable the constraint,
Oracle will also automatically drop the corresponding index.

You can also create the index separately from the constraint. When you create the index and
constraint separately, this allows you to drop or disable the constraint without automatically dropping
the corresponding index. If you work with big data, you may want the flexibility of disabling a constraint
without dropping the corresponding index.

Oracle doesn’t automatically create an index when a foreign key constraint is defined, so you must
manually create an index on columns associated with a foreign key constraint. In most scenarios it’s
beneficial to create a B-tree index on foreign key columns because it helps prevent locking issues and
assists with performance of queries that join parent/child tables via the primary key and foreign key
columns.

Figure 2-2 displays the various decision paths associated with creating indexes associated with
constraints. Refer back to this diagram as you read through the following sections dealing with indexes
related to primary keys, unique keys, and foreign keys.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

35

Figure 2-2. Index decision flowchart

 Note Sometimes people confuse the terms indexes and keys. An index is the underlying physical object
created in the database. Oracle uses indexes to enforce primary key and unique key constraints. The key
(constraint) is the business rule being enforced.

Creating B-tree Index on Primary Key Columns
A primary key constraint guarantees that values in a column (or combination of columns) can be used to
always uniquely identify a record within a table. There can be only one primary key constraint per table.
A primary key constraint can’t contain null values. You can think of a primary key constraint as a
combination of unique and not null constraints. There are several good reasons to create a primary key
index for each table.

• This enforces the business requirement that the primary key columns must be
unique within a table. Yes, in some cases you may have a table (like a logging
table) where you don’t need a primary key, but for most situations a primary key is
required for each table.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

36

• Many of the columns in the primary key are frequently used within the WHERE
clause of queries accessing the application. An index on these columns will
improve the query performance.

• Oracle won’t allow you to create foreign key constraints on a child table unless a
primary key or unique key constraint has been defined for the parent table.
Therefore, if you require foreign key constraints, you must use primary key or
unique key constraints.

Oracle requires a corresponding index for any enabled primary key. There are several techniques for
creating a primary key constraint and its corresponding index.

• First, create the table. Then, in a separate ALTER TABLE statement, add the primary
key constraint. The ALTER TABLE statement creates both the primary key constraint
and an index.

• Specify the primary key constraint inline (with the column) or out-of-line in a
CREATE TABLE statement.

• Create the table, then use a CREATE INDEX statement to create an index that
contains the primary key columns, and then use ALTER TABLE...ADD CONSTRAINT to
add the primary key constraint.

We will show examples of each of these techniques in the following subsections.

Use ALTER TABLE to Create a Primary Key Constraint and Index
In our opinion, the technique shown next is the most preferable method for creating a primary key
constraint and the associated index. This approach allows you to manage the table creation separate
from the constraint and index definition. When you work with applications that contain thousands of
tables, constraints, and indexes, it’s often easier to manage and diagnose installation issues when you
separate the creation of tables from corresponding constraints and indexes. This isn’t a written-in-stone
guideline; rather, it’s a preference that has evolved from troubleshooting problems.

In this example, the primary key constraint is created separately from the table creation. First, the
table is created without any constraint definitions.

create table cust(
 cust_id number
,first_name varchar2(200)
,last_name varchar2(200));

Now a primary key constraint is added.

alter table cust
add constraint cust_pk
primary key (cust_id)
using index tablespace users;

In this code example, the ALTER TABLE...ADD CONSTRAINT statement creates both a primary key
constraint and a unique index. Both the constraint and index are named CUST_PK.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

37

Use CREATE TABLE to Create a Primary Key Constraint and Index
Another common way to create a primary key constraint and index is with the CREATE TABLE statement.
You can directly specify a constraint inline (with the column). The advantage of this approach is that it’s
very simple. If you’re experimenting in a development or test environment, this approach is quick and
effective. One downside to this approach is that it doesn’t allow for a primary key to be defined on
multiple columns. Here’s an example:

create table cust(
 cust_id number primary key
,first_name varchar2(30)
,last_name varchar2(30));

In this code, Oracle creates both a primary key constraint and a corresponding unique index. Oracle
automatically generates a random name like SYS_C123456 (both the constraint and index are given the
same name).

If you want to explicitly provide a name (for the constraint and index), you can do so as follows:

create table cust(
 cust_id number constraint cust_pk primary key
,first_name varchar2(30)
,last_name varchar2(30));

You can also specify the placement of the tablespace for the index as shown:

create table cust(
 cust_id number constraint cust_pk primary key
 using index tablespace users
,first_name varchar2(30)
,last_name varchar2(30));

You can also define the primary key constraint out-of-line (from the column) within the CREATE

TABLE statement. Here’s an example of defining a primary key constraint out-of-line:

create table cust(
 cust_id number
,first_name varchar2(30)
,last_name varchar2(30)
,constraint cust_pk primary key (cust_id)
using index tablespace users);

This technique is called out-of-line because the constraint declaration is separated (by a comma)

from the column definition. The out-of-line approach has one advantage over the inline approach in
that you can specify multiple columns for the primary key.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

38

Create a B-tree Index and Primary Key Constraint Separately
You have the option of first creating an index and then altering the table to apply the primary key
constraint. For completeness of this example, the CREATE TABLE statement is shown.

create table cust(
 cust_id number
,first_name varchar2(30)
,last_name varchar2(30));

create unique index cust_pk
on cust(cust_id);

alter table cust
add constraint cust_pk
primary key (cust_id);

The advantage to this approach is that you can drop or disable the primary key constraint

independently of the index. Sometimes in large database environments, you may want to drop or disable
constraints while loading data for performance reasons. You may need the flexibility of being able to
drop the constraint but not the index. In large database environments, recreating an index can take a
long time and consume considerable system resources.

Another slight twist to this scenario is that it is possible to create an index with columns defined
differently than the primary key constraint. For example,

create index cust_pk
on cust(cust_id, first_name, last_name);

alter table cust
add constraint cust_pk
primary key (cust_id);

We’re not recommending that you create primary key indexes with different columns than the

constraint; rather we’re pointing out that it’s possible. You should be aware of these scenarios so that
you’re not confused when troubleshooting issues.

Viewing Primary Key Constraint and Index Details
You can confirm the details of the index as follows:

select index_name, index_type, uniqueness
from user_indexes
where table_name = 'CUST';

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

39

Here is the output for this example:

INDEX_NAME INDEX_TYPE UNIQUENES
-------------------- --------------- ---------
CUST_PK NORMAL UNIQUE

Here is a query to verify the constraint information:

select constraint_name, constraint_type
from user_constraints
where table_name = 'CUST';

Here is the corresponding output:

CONSTRAINT_NAME CONSTRAINT_TYPE
-------------------- ---------------
CUST_PK P

Dropping Primary Key Constraint and Index
An index that was automatically created (when the primary key constraint was created) can’t be directly
dropped. In this scenario, if you attempt to drop the index

SQL> drop index cust_pk;

you’ll receive this error

ORA-02429: cannot drop index used for enforcement of unique/primary key

To remove the index, you must do so by dropping or disabling the primary key constraint. For

example, any of the following statements will drop an index that was automatically created when the
constraint was created:

SQL> alter table cust disable constraint cust_pk;
SQL> alter table cust drop constraint cust_pk;
SQL> alter table cust drop primary key;

When you drop or disable a primary key constraint, you have the option of not dropping the

associated index. Use the KEEP INDEX clause of the DROP/DISABLE CONSTRAINT clause to retain the index.
For example,

SQL> alter table cust drop constraint cust_pk keep index;

This code instructs Oracle to drop the constraint but keep the index. If you’re working with large

tables, you may want to disable or drop the constraint for performance reasons while loading or
manipulating the data. Dropping the index associated with a large table may take considerable time and
resources to re-create.

One other aspect to be aware of is that if a primary key or unique key is referenced by an enabled
foreign key, and you attempt to drop the constraint on the parent table

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

40

SQL> alter table cust drop primary key;

you’ll receive this error

ORA-02273: this unique/primary key is referenced by some foreign keys

In this situation you’ll need to first drop or disable the referenced foreign key, or use the CASCADE
clause to automatically drop the foreign key constraint when the primary key constraint is dropped or
disabled. For example,

SQL> alter table cust drop constraint cust_pk cascade;
SQL> alter table cust disable constraint cust_pk cascade;
SQL> alter table cust drop primary key cascade;

 Note Cascading the dropping of constraints only drops any dependent foreign key constraints, it doesn’t delete
any data from children tables.

Creating a B-tree Index on Unique Key Columns
The main purpose of a unique key constraint is to enforce uniqueness on columns that aren’t part of the
primary key. If there is a business requirement that non-primary key columns be unique within a table,
then a unique key constraint should be used. For example, you may have a primary key defined on
CUST_ID in the customer table, but may also require a unique key constraint on a combination of the
LAST_NAME and FIRST_NAME columns.

 Note Unique keys differ from primary keys in two ways. First, a unique key can contain NULL values. Second,
there can be more than one unique key defined per table (whereas there can only be one primary key defined per
table).

If you have a requirement for a unique constraint on a column, you can implement this requirement
in several different ways.

• Use the ALTER TABLE statement to create a unique constraint. This will
automatically create a unique B-tree index.

• Use the CREATE TABLE statement to create a unique constraint. This will
automatically create a unique B-tree index.

• Create a B-tree index and constraint separately. Use this approach if you want to
manage the index and constraint separately when disabling or dropping the
constraint.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

41

• Create a unique B-tree index only; don’t bother with a unique key constraint. Use
this approach if the columns within the index won’t ever be referenced by a child
table foreign key.

These topics are discussed in detail in the following subsections.

Use the ALTER TABLE to Create a Unique Constraint and Index
This approach is our preferred method for enabling unique key constraints and creating the
corresponding index. As mentioned with primary key constraints and indexes, it’s often easier to
troubleshoot installation issues when the table creation statement is separated from the constraint and
index creation.

The following example demonstrates how to create a table and then add a unique key constraint on
non-primary key columns. For example, suppose you have a CUST table created as follows:

create table cust(
 cust_id number
,first_name varchar2(30)
,last_name varchar2(30));

Next, use the ALTER TABLE statement to create a unique constraint named CUST_UX1 on the
combination of the LAST_NAME and FIRST_NAME columns of the CUST table.

alter table cust add constraint cust_uk1 unique (last_name, first_name)
using index tablespace users;

This statement creates the unique constraint. Additionally, Oracle automatically creates an associated
index with the same name.

Use CREATE TABLE to Create a Unique Constraint and Index
The advantage of using the CREATE TABLE approach is that it’s simple and encapsulates the constraint
and index creation within one statement. When you define a unique constraint within the CREATE TABLE
statement, it can be either inline or out-of-line.

This first example shows how to create a unique key constraint and index on a column inline. Since
an inline unique key constraint can be defined on only one column, we’ve added a SSN column that has a
unique key constraint defined on it inline.

create table cust(
 cust_id number constraint cust_pk primary key
 using index tablespace users
,first_name varchar2(30)
,last_name varchar2(30)
,ssn varchar2(15) constraint cust_uk1 unique
 using index tablespace users);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

42

This next example creates a unique constraint using the out-of-line technique on the combination
of the FIRST_NAME and LAST_NAME columns:

create table cust(
 cust_id number constraint cust_pk primary key
 using index tablespace users
,first_name varchar2(30)
,last_name varchar2(30)
,ssn varchar2(15)
,constraint cust_uk1 unique (first_name, last_name)
 using index tablespace users);

The out-of-line definition has the advantage of allowing you to create a unique key constraint on
multiple columns.

Create a B-tree Index and Unique Key Constraint Separately
If you need to manage the index and constraint separately, then first create the index and then the
constraint. For example,

SQL> create unique index cust_uk1 on cust(first_name, last_name) tablespace users;
SQL> alter table cust add constraint cust_uk1 unique(first_name, last_name);

The advantage of creating the index separate from the constraint is that you can drop or disable the

constraint without dropping the underlying index. When working with big data, you may want to
consider this approach. If you need to disable the constraint for any reason and then re-enable it later,
you can do so without dropping the index (which may take a long time for large indexes).

Creating Only a Unique Index
You can also create just a unique index without adding the unique constraint. If you never plan on
referencing a unique key from a foreign key, then it’s okay to only create a unique index without defining
the unique constraint. Here’s an example of creating a unique index without an associated constraint:

SQL> create unique index cust_uk1 on cust(first_name, last_name) tablespace users;

When you create only a unique index explicitly (as in the prior statement), Oracle creates a unique

index but doesn’t add an entry for a constraint in DBA/ALL/USER_CONSTRAINTS. Why does this matter?
Consider this scenario:

SQL> insert into cust values (1, 'JAMES', 'STARK');
SQL> insert into cust values (2, 'JAMES', 'STARK');

Here’s the corresponding error message that is thrown:

ORA-00001: unique constraint (MV_MAINT.CUST_UK1) violated

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

43

If you’re asked to troubleshoot this issue, the first place to look is in DBA_CONSTRAINTS for a constraint
named in the error message. However, there is no information.

select
 constraint_name
from dba_constraints
where constraint_name='CUST_UK1';

no rows selected

The “no rows selected” message can be confusing: the error message thrown when you insert into

the table indicates that a unique constraint has been violated, yet there is no information in the
constraint-related data-dictionary views. In this situation, you have to look at DBA_INDEXES to view the
details of the unique index that has been created. For example,

select index_name, uniqueness
from dba_indexes where index_name='CUST_UK1';

Here’s some sample output:

INDEX_NAME UNIQUENES
-------------------- ---------
CUST_UK1 UNIQUE

If you want to be able to use the constraint related data dictionary views to report on unique key

constraints, you should also define a constraint.

Dropping a Unique Key Constraint and Index
If an index was automatically created when the unique key constraint was created, then you can’t
directly drop the index. In this scenario, you must drop or disable the unique key constraint and the
associated index will automatically be dropped. For example,

SQL> alter table cust drop constraint cust_uk1;

This line drops both constraint and the index. If you want to keep the index, then specify the KEEP

INDEX clause.

SQL> alter table cust drop constraint cust_uk1 keep index;

If you created the index and unique key constraint separately, or if there is no unique key constraint

associated with a unique index, then you can directly drop the index.

Indexing Foreign Key Columns
Foreign key constraints ensure that when inserting into a child table, a corresponding parent table
record exists. This is the mechanism to guarantee that data conforms to parent/child business
relationship rules. Foreign keys are also referred to as referential integrity constraints.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

44

Unlike primary key and unique key constraints, Oracle doesn’t automatically create indexes on
foreign key columns. Therefore, you must manually create a foreign key index based on the columns
defined as the foreign key constraint. In most scenarios, you should create indexes on columns
associated with a foreign key. Here are two good reasons:

• Oracle can often make use of an index on foreign key columns to improve the
performance of queries that join a parent table and child table (using the foreign
key columns).

• If no B-tree index exists on the foreign key columns, when you insert or delete
from a child table, it locks all rows in the parent table. For applications that
actively modify both parent and child tables, this will cause locking and deadlock
issues

We’ll first cover creating a B-tree index on a foreign key column and then show you some
techniques for detecting un-indexed foreign key columns.

Implementing an Index on a Foreign Key Column
Say you have a requirement that every record in the ADDRESS table be assigned a corresponding CUST_ID
column that exists in the CUST table. To enforce this relationship, you create a foreign key constraint on
the ADDRESS table as follows:

alter table address add constraint addr_fk1
foreign key (cust_id) references cust(cust_id);

 Note A foreign key column must reference a column in the parent table that has a primary key or unique key
constraint defined on it. Otherwise you’ll receive the error “ORA-02270: no matching unique or primary key for this
column-list.”

You realize the foreign key column is used extensively when joining the CUST and ADDRESS tables and
that an index on the foreign key column will increase performance. You have to manually create an
index in this situation. For example, a regular B-tree index is created on the foreign key column of
CUST_ID in the ADDRESS table.

create index addr_fk1
on address(cust_id);

You don’t have to name the index the same as the foreign key name (as we did in these lines of code). It’s
a personal preference as to whether you do that. We feel it’s easier to maintain environments when the
constraint and corresponding index have the same name.

When creating an index, if you don’t specify the tablespace name, Oracle places the index in the
user’s default tablespace. It’s usually a good idea to explicitly specify which tablespace the index should
be placed in.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

45

For example,

create index addr_fk1
on address(cust_id)
tablespace reporting_index;

 Note An index on foreign key columns doesn’t have to be of type B-tree. In data warehouse environments, it’s
common to use bitmap indexes on foreign key columns in star schema fact tables. Unlike B-tree indexes, bitmap
indexes on foreign key columns don’t resolve parent/child table locking issues. Applications that use star schemas
typically are not deleting or modifying the child record from fact tables; therefore locking is less of an issue in data
warehouse environments that use bitmap indexes on foreign key columns.

Determining if Foreign Key Columns are Indexed
If you’re creating an application from scratch, it’s fairly easy to create the code and ensure that each
foreign key constraint has a corresponding index. However, if you’ve inherited a database, it’s prudent to
check if the foreign key columns are indexed.

You can use data dictionary views to verify if all columns of a foreign key constraint have a
corresponding index. The basic idea is to check each foreign key constraint to see if there is a
corresponding index. The task isn’t as simple as it might first seem. For example, here’s a query that gets
you started in the right direction:

SELECT DISTINCT
 a.owner owner
 ,a.constraint_name cons_name
 ,a.table_name tab_name
 ,b.column_name cons_column
 ,NVL(c.column_name,'***Check index****') ind_column
FROM dba_constraints a
 ,dba_cons_columns b
 ,dba_ind_columns c
WHERE constraint_type = 'R'
AND a.owner = UPPER('&&user_name')
AND a.owner = b.owner
AND a.constraint_name = b.constraint_name
AND b.column_name = c.column_name(+)
AND b.table_name = c.table_name(+)
AND b.position = c.column_position(+)
ORDER BY tab_name, ind_column;

This query, while simple and easy to understand, doesn’t correctly report on un-indexed foreign

keys for all situations. For example, in the case of multi-column foreign keys, it doesn’t matter if the
constraint is defined in a different order from the index columns, as long as the indexed columns are in
the leading edge of the index. In other words, if the constraint is defined to be COL1 and COL2, then it’s
okay to have a B-tree index defined on leading edge COL2 and then COL1.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

46

Another issue is that a B-tree index protects you from locking issues, but a bitmap index does not. In
this situation, the query should also check the index type.

In these scenarios you’ll need a more sophisticated query to detect indexing issues related to foreign
key columns. The following example is a more sophisticated query that uses the LISTAGG analytical
function to compare columns (returned as a string in one row) in a foreign key constraint to
corresponding indexed columns:

SELECT
 CASE WHEN ind.index_name IS NOT NULL THEN
 CASE WHEN ind.index_type IN ('BITMAP') THEN
 '** Bitmp idx **'
 ELSE
 'indexed'
 END
 ELSE
 '** Check idx **'
 END checker
,ind.index_type
,cons.owner, cons.table_name, ind.index_name, cons.constraint_name, cons.cols
FROM (SELECT
 c.owner, c.table_name, c.constraint_name
 ,LISTAGG(cc.column_name, ',') WITHIN GROUP (ORDER BY cc.column_name) cols
 FROM dba_constraints c
 ,dba_cons_columns cc
 WHERE c.owner = cc.owner
 AND c.owner = UPPER('&&schema')
 AND c.constraint_name = cc.constraint_name
 AND c.constraint_type = 'R'
 GROUP BY c.owner, c.table_name, c.constraint_name) cons
LEFT OUTER JOIN
(SELECT
 table_owner, table_name, index_name, index_type, cbr
 ,LISTAGG(column_name, ',') WITHIN GROUP (ORDER BY column_name) cols
 FROM (SELECT
 ic.table_owner, ic.table_name, ic.index_name
 ,ic.column_name, ic.column_position, i.index_type
 ,CONNECT_BY_ROOT(ic.column_name) cbr
 FROM dba_ind_columns ic
 ,dba_indexes i
 WHERE ic.table_owner = UPPER('&&schema')
 AND ic.table_owner = i.table_owner
 AND ic.table_name = i.table_name
 AND ic.index_name = i.index_name
 CONNECT BY PRIOR ic.column_position-1 = ic.column_position
 AND PRIOR ic.index_name = ic.index_name)
 GROUP BY table_owner, table_name, index_name, index_type, cbr) ind
ON cons.cols = ind.cols
AND cons.table_name = ind.table_name
AND cons.owner = ind.table_owner
ORDER BY checker, cons.owner, cons.table_name;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

47

This query will prompt you for a schema name and then will display foreign key constraints that
don’t have corresponding indexes. This query also checks for the index type; bitmap indexes may exist
on foreign key columns but don’t prevent locking issues.

Table Locks and Foreign Keys

Here’s a simple example that demonstrates the locking issue when foreign key columns are not indexed.
First, create two tables (DEPT and EMP) and associate them with a foreign key constraint.

create table emp(emp_id number primary key, dept_id number);
create table dept(dept_id number primary key);
alter table emp add constraint emp_fk1 foreign key (dept_id) references dept(dept_id);

Now insert some data.

insert into dept values(10);
insert into dept values(20);
insert into dept values(30);
insert into emp values(1,10);
insert into emp values(2,20);
insert into emp values(3,10);
commit;

Open two terminal sessions. From one, delete one record from the child table (don’t commit).

delete from emp where dept_id = 10;

Now attempt to delete from the parent table some data not impacted by the child table delete.

delete from dept where dept_id = 30;

The delete from the parent table hangs until the child table transaction is committed. Without a regular B-
tree index on the foreign key column in the child table, any time you attempt to insert or delete in the child
table, it places a table-wide lock on the parent table, which prevents deletes or updates in the parent table
until the child table transaction completes.

Now run the prior experiment, except this time additionally create an index on the foreign key column of
the child table.

create index emp_fk1 on emp(dept_id);

You should be able to independently run the prior two delete statements. When you have a B-tree index on
the foreign key columns, if deleting from the child table, Oracle will not excessively lock all rows in the
parent table.

Summary
B-tree indexes are the default index type used in Oracle databases. For most applications, B-tree indexes
are sufficient. With high cardinality columns, a B-tree index will usually provide considerable
performance benefits.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ B-TREE INDEXES

48

When creating an index, we recommend that you place the index in a tablespace separate from its
corresponding table. This allows you more options for storage management and backup and recovery.
This isn’t a hard-and-fast rule, but rather a guideline to help with maintenance and manageability.

B-tree indexes are closely associated with primary key and unique key constraints. Oracle will
automatically create a B-tree index for you when the primary key or unique key constraint is created.
When an index is automatically created with the constraint, the index is also automatically dropped
when you drop or disable the constraint. You have the option of creating the index and constraint
separately if you are required to manage these two objects separately.

Oracle doesn’t automatically create an index for you when creating a foreign key constraint. Indexes
on foreign key columns must be manually created. It’s usually advisable to create an index on foreign
key columns as this helps prevent locking issue and helps with the performance of queries that join
parent/child tables on primary key and foreign key columns.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 3

■ ■ ■

49

Bitmap Indexes

Bitmap indexes are best suited for data warehouse or decision support systems (DSS). Common to the
data warehouse is the star schema, in which a central fact table contains all the detailed information for
a particular subject such as customer revenue, and number of related dimension tables containing
associated reference type data on a particular dimension such as time or geography. In a star schema,
the dimension tables are the parent and the central fact table is the child table. See Figure 3-1 for a
sample data model of a simple star schema.

With Oracle, the database configuration specific for the star schema is called star transformation.
This configuration is specifically designed to help performance with querying against the star schema.
With star transformation, there are some Oracle initialization parameters that need to be configured. In
addition, in order to get the star transformation to occur, it is essential to place, at a minimum, bitmap
indexes on the foreign keys in the fact table of the star schema.

As mentioned, star transformation is built to aid in the performance of queries against star schemas.
Improving performance of such queries is one of the most common uses of bitmap indexes, although
not the only manner in which they can or should be used. While there are distinct advantages to bitmap
indexes, bitmap indexes have drawbacks and limitations in certain applications. Some of the guidelines
for bitmap indexes are as follows:

• Should generally be used on low cardinality columns.

• Best used in data warehouse or DSS systems.

• Best used on star schemas (common in the data warehouse environment).

• Efficient when there are many queries that join or filter on indexed columns.

• Data manipulation language (DML) activity on tables with bitmap indexes
enabled should be minimized or avoided.

• To perform DML on tables, drop the bitmap indexes prior to the updating the
tables and recreate the bitmap indexes after the DML activity is complete.

• To perform DML on partitioned tables, set the given partitions on which DML is
occurring to unusable and rebuild the index partitions after the DML activity is
complete.

For online transaction processing systems (OLTP), bitmap indexes are not appropriate as there are
many DML operations that occur consistently; also row locking issues can occur with bitmap indexes.
This can greatly impede update performance, which for OLTP systems is crucial.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

50

The next section discusses the makeup of bitmap indexes, when they should be used, and why they
are useful.

Figure 3-1. Sample star schema

Understanding Bitmap Indexes
Bitmap indexes differ greatly from the traditional B-tree index discussed in Chapter 2. A bitmap index is
composed of several strings of bits. Each bit string represents one of the valid distinct values in the
underlying column. Each bit is either on or off, indicating whether the value applies to a given row.
Table 3-1 shows an example involving the GENDER column from the EMPLOYEES table. Notice how the index
has a bit string for each value: male and female. Individual bits in each string indicate whether a given
row has the value of male or female.

Bitmap indexes can be created very quickly and can end up being very small in relation to a
comparable B-tree index. Bitmap indexes are built for columns with low cardinality (a low number of

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

51

distinct, valid values). The GENDER column in Table 3-1 is an appropriate column for a bitmap index, as
there are only two valid values: male and female.

Table 3-1. Bitmap Index on the GENDER column of the EMPLOYEES Table

 Bitmap Index on GENDER Column

Row Number Employee_ID Employee Name GENDER/Male
Bitmap

GENDER/Female
Bitmap

1 107 Lorentz,Diana 0 1

2 108 Greenberg,Nancy 0 1

3 109 Faviet,Daniel 1 0

4 110 Chen,John 1 0

5 111 Sciarra,Ismael 1 0

It is also possible to create a bitmap index on the combination of several columns from the

underlying table. The rules still apply, as each column of a composite bitmap index should be a low
cardinality column. Table 3-2 shows a composite bitmap index on the GENDER column, which only has
two valid values, and on the REGION column, which only has four valid values.

Table 3-2. Composite Bitmap Index on the GENDER and REGION columns of the EMPLOYEES Table

 Composite Bitmap Index on Gender and Region Columns

Row Employee_ID Employee Name
Gender

Male
Gender
Female

Region
East

Region
West

Region
North

Region
South

1 107 Lorentz,Diana 0 1 1 0 0 0

2 108 Greenberg,Nancy 0 1 0 1 0 0

3 109 Faviet,Daniel 1 0 1 0 0 0

4 110 Chen,John 1 0 0 0 1 0

5 111 Sciarra,Ismael 1 0 0 1 0 0

When choosing whether or not a column is appropriate for a bitmap index, the basic rule that it

should be a low cardinality column needs to be put into perspective. Based on your application, the
makeup of your data, and the tables in your database, what is appropriate for a bitmap index may vary
greatly. One basic rule of thumb that can be used is that if the valid values for a column make up less

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

52

than 1% of the overall rows in the table, it is a feasible candidate for a bitmap index. It’s better to use a
percentage rather than strictly go off of the number of valid values for a given column. For example, let's
say your table contains 1,000 rows. If you use the 1% guideline, it means if a column's valid values
number 10 or less, it would be a viable candidate as a column for a bitmap index. On a much grander
scale, if you have a one billion row table, 1% of that is 10 million rows. While some may not believe that
10 million valid values for a column is a good candidate for a bitmap index, it actually may be a viable
candidate. You need to look at that cardinality in relation to the data volume as a whole.

With bitmap indexes, nulls are handled differently than with B-tree indexes. Unlike B-tree indexes,
null values with an indexed column are stored within a bitmap index. In B-tree indexes, null values are
not stored, at least within single-column indexes. To clarify, nulls can be stored in composite or
multiple-column B-tree indexes as long as one of the columns contains a non-null value.

Because the bitmap index stores a value for each row in your table, it will include any null values
that exist on the indexed column. This has performance implications when issuing queries on columns
that have a bitmap index associated with that column. Since B-tree indexes may not store null values, if a
query on a column with a single-column index that contains null values is issued, it needs to either
perform a full table scan or use another existing index and then filter the null value after the row has
been retrieved. This is not the case with bitmap indexes. The index can still be used in certain
circumstances where functions such as COUNT are used.

See the following example of a query against the GENDER column of your EMPLOYEES table, which has
been indexed using a bitmap index. You can see from this query that the GENDER column has not yet been
populated for any of the rows and thus is null.

SQL> select count(*), count(gender) from employees_nulltest;

 COUNT(*) COUNT(GENDER)
---------- -------------
 42074112 0

When you issue a query against the GENDER column, the explain plan shows that even with null
values in the table an index is used.

SELECT count(*) FROM employees_nulltest
WHERE gender = 'F';

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT AGGREGATE	
2	BITMAP CONVERSION COUNT	
3	BITMAP INDEX SINGLE VALUE	EMPLOYEES_B9
--

If you index the same column on the same table with a B-tree index, the explain plan shows that the
query will perform a full table scan.

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT AGGREGATE	
2	TABLE ACCESS FULL	EMPLOYEES_NULLTEST
--

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

53

If you decide to implement bitmap indexes within your application, it’s a good idea to occasionally

check the makeup of the data within the columns that are bitmap indexed. This is especially important if
you have bitmap index maintenance operations as part of your overall application. If you miscalculate
the cardinality of any columns with bitmap indexes, it could cause negative ramifications for your
application, such as:

• Storage for the bitmap indexes will increase.

• Query performance will degrade.

• Rebuild operation times will increase.

It is especially important to review the makeup of the data with new applications where the makeup
of the data isn't known initially. Sometimes you have to make assumptions during application design,
which you should reassess after you start seeing "real" data. After the initial implementation of your
application, take time to reassess cardinality on columns at least once to validate any assumptions you
relied upon for bitmap indexes. You can then take steps to modify your application appropriately, which
may include converting some bitmap indexes to B-tree indexes or vice versa. Modifications also may
include restructure or removal index maintenance operations if you need to remove bitmap indexes or
add some index maintenance operations if you need to add bitmap indexes.

Creating a Bitmap Index
Once you have determined that bitmap indexes are appropriate for your environment, it is fairly
straightforward to create a bitmap index. The syntax is the same as it is for a B-tree index, except that
you need to include the keyword BITMAP when creating the index. For example,

CREATE BITMAP INDEX EMPLOYEES_B1
ON EMPLOYEES (GENDER)
NOLOGGING;

Because the physical structure of a bitmap index is so simple, and therefore much smaller than a B-

tree index, you can create them much faster than a B-tree index. Note that the NOLOGGING keyword is used
in the previous example. We recommend you always create bitmap indexes with NOLOGGING because
DML operations on bitmap indexes perform so poorly that it’s a good idea to destroy and rebuild them
rather than maintain them. Of course, as with any database objects with NOLOGGING specified, you will
need to rebuild any bitmap indexes if any database recovery is required. In the following example, you
create an index on the GENDER column of the EMPLOYEES table. Note the time it took to create the bitmap
index.

SQL> CREATE BITMAP INDEX EMPLOYEES_B2
 2 ON EMPLOYEES (GENDER)
 3* NOLOGGING;

Index created.

Elapsed: 00:00:10.01

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

54

Creating the same index on the gender column using a B-tree index takes about 18 times longer,
and this is with the NOLOGGING option, which is not recommended for B-tree indexes. Note the following
example:

SQL> CREATE INDEX EMPLOYEES_I2
 2 ON EMPLOYEES (GENDER)
 3* NOLOGGING;

Index created.

Elapsed: 00:03:01.24

Not only do you save time in creating bitmap indexes, you save space over B-tree indexes as well, as
long as your bitmap index column(s) are low cardinality. If bitmap indexes are created on columns with
somewhat higher cardinality, the space used by the bitmap indexes will increase and the space savings
over the equivalent B-tree indexes will be reduced.

Using the previous example of the indexes you created on the GENDER column, note the size
difference between a B-tree and bitmap index using the following query from DBA_SEGMENTS. Noting the
size in megabytes, the B-tree index took 37 times more space than the bitmap index.

SQL> SELECT sum(bytes)/1048576
 2 FROM dba_segments
 3* WHERE segment_name = 'EMPLOYEES_B2';

SUM(BYTES)/1048576

 16

SQL> SELECT sum(bytes)/1048576
 2 FROM dba_segments
 3* WHERE segment_name = 'EMPLOYEES_I2';

SUM(BYTES)/1048576

 600

Creating a Partitioned Bitmap Index
Bitmap indexes can be created on partitioned tables, but they must be created as local partitioned
indexes. For example,

CREATE BITMAP INDEX employees_part_1i
ON employees_part (department_id)
LOCAL;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

55

Oracle will not allow you to create bitmap indexes on partitioned tables unless they are local
partitioned indexes. If you attempt to create a non-partitioned bitmap index on a partitioned table, you
will receive the following error:

SQL> CREATE BITMAP INDEX employees_part_1i
2 ON employees_part (department_id);

on employees_part (department_id)
 *
ERROR at line 2:
ORA-25122: Only LOCAL bitmap indexes are permitted on partitioned tables

In the same manner, globally partitioned bitmap indexes are also not allowed on partitioned tables.

SQL> CREATE BITMAP INDEX employees_part_1i
2 ON employees_part (department_id)
3 GLOBAL;

GLOBAL
*
ERROR at line 3:
ORA-25113: GLOBAL may not be used with a bitmap index

Creating a Bitmap Index on an Index-Organized Table
Bitmap indexes can be created on index-organized tables (IOT) as secondary indexes on the IOT, but
they must be created with a mapping table. See the following example of creating the IOT:

CREATE TABLE employees_part
(
 EMPLOYEE_ID NUMBER(6) NOT NULL
 ,FIRST_NAME VARCHAR2(20)
 ,LAST_NAME VARCHAR2(25) NOT NULL
 ,EMAIL VARCHAR2(25) NOT NULL
 ,PHONE_NUMBER VARCHAR2(20)
 ,HIRE_DATE DATE NOT NULL
 ,JOB_ID VARCHAR2(10) NOT NULL
 ,SALARY NUMBER(8,2)
 ,COMMISSION_PCT NUMBER(2,2)
 ,MANAGER_ID NUMBER(6)
 ,DEPARTMENT_ID NUMBER(4)
 ,CONSTRAINT employees_part_pk PRIMARY KEY (employee_id, hire_date)
)
ORGANIZATION INDEX
MAPPING TABLE;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

56

Since the mapping table has been specified on the IOT, bitmap indexes can be created on the IOT.

SQL> CREATE BITMAP INDEX employees_part_1i
2 ON employees_part (department_id)
3 NOLOGGING
3 LOCAL;

Index created.

If no mapping table is specified on the IOT, you will receive the following error when attempting to
create the bitmap index:

ON employees_part (department_id)
 *
ERROR at line 2:
ORA-28669: bitmap index can not be created on an IOT with no mapping table

If you are trying to create a bitmap index on an existing IOT with no mapping, simple alter the table.
For example,

SQL> alter table employees_part move mapping table;

Table altered.

■ Note You can’t use bitmap indexes in conjunction with reverse key indexes.

Performance Implications Querying with Bitmap Indexes
Bitmap indexes are primarily built to aid in performance, especially in the data warehouse environment.
The key performance benefits of using bitmap indexes include the following:

• Query speed improves with the use of a bitmap index over the traditional B-tree
index.

• Creation speed of a bitmap index is far faster than that of a comparable B-tree
index.

• Maintenance operations such as rebuilding indexes are much faster with a bitmap
index.

One of the key reasons for some of these benefits is simply because the bitmap index is so much
smaller than its B-tree equivalent. Of course this assumes you have created the bitmap index on lower
cardinality columns. All these benefits being said, the primary reason to build a bitmap index is to get
superior query performance. See the following example of a query against your table using two
scenarios; the first is a query against a B-tree indexed column and the second is a query against the same
column indexed with a bitmap index.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

57

In the following example, you are querying against the EMPLOYEES_BIG_TREE table with a B-tree index
on the GENDER column. Note that there is a filter on the indexed GENDER column. The optimizer does use
the B-tree index and runs in 5.1 seconds. In the statistics for the query, the database performed 124,685
physical reads.

SQL> SELECT count(*) FROM employees_big_btree
 2* WHERE gender = 'F';

 COUNT(*)

 21233664

Elapsed: 00:00:05.10

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		1	2	20366 (3)	00:04:05
1	SORT AGGREGATE		1	2		
* 2	INDEX FAST FULL SCAN	EMPLOYEES_I2	21M	40M	20366 (3)	00:04:05
--

Predicate Information (identified by operation id):

 2 - filter("GENDER"='F')

Statistics
--
 0 recursive calls
 0 db block gets
 124904 consistent gets
 124865 physical reads
 0 redo size
 529 bytes sent via SQL*Net to client
 523 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 1 rows processed

Now perform the exact same query on a table with the exact same number of rows, but instead the
table has a bitmap index on the GENDER column rather than a B-tree index. As you can see, the query uses
an index, runs in less than 1 second, and performed only 996 physical reads, rather than 124,685 physical
reads performed against a similar table with a B-tree index on the GENDER column.

SQL> SELECT count(*) FROM employees_big_bitmap
 2* WHERE gender = 'F';

 COUNT(*)

 21233664

Elapsed: 00:00:00.02

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

58

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
|
--
0	SELECT STATEMENT		1	2	975 (0)	00:00:12
1	SORT AGGREGATE		1	2		
2	BITMAP CONVERSION COUNT		21M	40M	975 (0)	00:00:12
* 3	BITMAP INDEX SINGLE VALUE	EMPLOYEES_B2				
--

Predicate Information (identified by operation id):

 3 - access("GENDER"='F')

Statistics
--
 0 recursive calls
 0 db block gets
 996 consistent gets
 996 physical reads
 0 redo size
 529 bytes sent via SQL*Net to client
 523 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 1 rows processed

With the star schema, bitmap indexes are essential to obtain successful query performance, and
bitmap indexes are, at a minimum, needed on all foreign key columns in the fact table. In addition, you
should have your database configured for star transformation. See Table 3-3 for the Oracle initialization
parameters that should be configured or analyzed for the proper value.

Table 3-3. Initialization Parameters for Star Transformation

Parameter Name Value

star_transformation TRUE (FALSE is the default)

memory_target Variable. This parameter is used to configure both System Global Area (SGA)
and Program Global Area (PGA). Star transformation needs PGA memory
configured.

pga_aggregate_target Configure this parameter if operating in versions 9i or 10g of Oracle
Database.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

59

See the following "star query," which notes a query against a star schema that uses star
transformation. This can be verified by running an explain plan on your query.

SQL> show parameter star_transformation

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
star_transformation_enabled string TRUE

SELECT pr.prod_category, c.country_id,
t.calendar_year, sum(s.quantity_sold), SUM(s.amount_sold)
FROM sales s, times t, customers c, products pr
WHERE s.time_id = t.time_id
AND s.cust_id = c.cust_id
AND pr.prod_id = s.prod_id
AND t.calendar_year = '2011'
GROUP BY pr.prod_category, c.country_id, t.calendar_year;

| Id | Operation | Name |

0	SELECT STATEMENT	
1	HASH GROUP BY	
2	HASH JOIN	
3	HASH JOIN	
4	HASH JOIN	
5	PARTITION RANGE ALL	
6	TABLE ACCESS BY LOCAL INDEX ROWID	SALES
7	BITMAP CONVERSION TO ROWIDS	
8	BITMAP AND	
9	BITMAP MERGE	
10	BITMAP KEY ITERATION	
11	BUFFER SORT	
12	TABLE ACCESS FULL	CUSTOMERS
13	BITMAP INDEX RANGE SCAN	SALES_CUST_BIX
14	BITMAP MERGE	
15	BITMAP KEY ITERATION	
16	BUFFER SORT	
17	VIEW	index$_join$_016
18	HASH JOIN	
19	INDEX FAST FULL SCAN	PRODUCTS_PK
20	INDEX FAST FULL SCAN	PRODUCTS_PROD_CAT_IX
21	BITMAP INDEX RANGE SCAN	SALES_PROD_BIX
22	TABLE ACCESS FULL	TIMES
23	TABLE ACCESS FULL	CUSTOMERS
24	VIEW	index$_join$_004
25	HASH JOIN	
26	INDEX FAST FULL SCAN	PRODUCTS_PK
27	INDEX FAST FULL SCAN	PRODUCTS_PROD_CAT_IX

Note

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

60

 - star transformation used for this statement

Keep in mind that the optimizer may choose to ignore star transformation if it determines a cheaper
cost alternative to execute your query. If you think you should be achieving star transformation and
you’re not, try adding a STAR_TRANSFORMATION hint, and if needed, also a FACT hint, and see if the
query then uses star transformation. Sometimes both hints are needed for the query to achieve star
transformation. Then you can compare the performance between the results using star transformation
to the one that is not to see which of the two is the better performing query. See the following examples
of how to use the hints related to star transformation:

SELECT /*+ star_transformation */ pr.prod_category, c.country_id, ...

SELECT /*+ fact(s) */ pr.prod_category, c.country_id, ...

SELECT /*+ star_transformation fact(s) */ pr.prod_category, c.country_id, ...

If you executed this query without star transformation enabled, then you can see from the following
explain plan output that the optimizer bypassed the use of star transformation in the execution plan and
the bitmap indexes were not utilized:

| Id | Operation | Name |

0	SELECT STATEMENT	
1	HASH GROUP BY	
2	NESTED LOOPS	
3	NESTED LOOPS	
4	NESTED LOOPS	
5	NESTED LOOPS	
6	PARTITION RANGE ALL	
7	TABLE ACCESS FULL	SALES
8	TABLE ACCESS BY INDEX ROWID	PRODUCTS
9	INDEX UNIQUE SCAN	PRODUCTS_PK
10	TABLE ACCESS BY INDEX ROWID	CUSTOMERS
11	INDEX UNIQUE SCAN	CUSTOMERS_PK
12	INDEX UNIQUE SCAN	TIMES_PK
13	TABLE ACCESS BY INDEX ROWID	TIMES

Performance Implications Loading Data with Bitmap Indexes
The biggest payoff for using bitmap indexes is that they help the speed of queries. The bitmap indexes
can be created very quickly in comparison to B-tree indexes, and they consume much less space than a
B-tree index. The trade-off for gains with these distinct advantages is the impact bitmap indexes have on
DML operations on tables containing bitmap indexes. Bitmap indexes can be created quickly and can be
scanned quickly to help query performance, but they are not designed to support DML operations very
well.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

61

What the following example demonstrates is that it is actually much faster to simply drop and
recreate bitmap indexes before and after a load operation. In the following example, you have a star
schema with a central fact table, with dimension tables surrounding the fact table. In order to achieve
star transformation, at minimum you need foreign keys on the fact tables pointing back to the parent
dimension primary keys. In this example, you have a total of 11 bitmap indexes on the fact table that are
created on the foreign key columns from the dimension tables. There is also a primary key index and two
B-tree indexes. Columns with date-based datatypes are not good candidates for bitmap indexes because
of their cardinality, so for date-based columns, a normal B-tree index is recommended.

The following query shows your indexes:

SQL> select index_name, index_type, partitioned
 2 from user_indexes
 3* where table_name = 'BILLING_FACT';

INDEX_NAME INDEX_TYPE PAR
------------------------------ --------------------------- ---
BILLING_FACT_PK NORMAL YES
BILLING_FACT_IXFK01 NORMAL YES
BILLING_FACT_BIXFK102 BITMAP YES
BILLING_FACT_BIXFK103 BITMAP YES
BILLING_FACT_BIXFK104 BITMAP YES
BILLING_FACT_BIXFD105 BITMAP YES
BILLING_FACT_BIXFK106 BITMAP YES
BILLING_FACT_BIXFK107 BITMAP YES
BILLING_FACT_BIXFK108 BITMAP YES
BILLING_FACT_BIXFK109 BITMAP YES
BILLING_FACT_BIXFK110 BITMAP YES
BILLING_FACT_BIXFK111 BITMAP YES
BILLING_FACT_BIXFK112 BITMAP YES
BILLING_FACT_IX01 NORMAL YES

14 rows selected.

 It is very common to have many bitmap indexes on a fact table, and the number increases as the

number of dimension tables increases in a star schema. It is cases like this where performance suffers
with DML operations on tables with a large number of bitmap indexes. This degradation occurs, of
course, in a typical star schema configured for star transformation.

 For demonstration purposes, insert one million rows into the fact table. See the following DML
operation and note the time it takes to complete the operation:

SQL> INSERT INTO BILLING_FACT
 2 *SELECT * FROM BILLING_FACT_201107;

1000000 rows created.

Elapsed: 00:02:19.29

You can see that it took 2 minutes and 19 seconds to insert the rows into your fact table. At a glance,
the time taken appears reasonable. Keep in mind that in the data warehouse environment, it is common
to process hundreds of millions of rows a day. If you extrapolated this number to 100 million rows, it
could take over 2 hours to load 100 million rows.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

62

In contrast, the preferred mechanism for DML when operating with bitmap indexes is simply to
drop the bitmap indexes prior to a DML operation, or, if you have large, partitioned tables in the data
warehouse environment, mark the indexes for the given partitions(s) that are being loaded unusable
prior to the load.

The steps required to perform bitmap index maintenance in this regard are as follows:
1. Drop all bitmap indexes, or, for a partitioned table, mark the bitmap indexes for the

targeted partitions for DML operations unusable.
2. Perform the DML load operation.
3. Rebuild all bitmap indexes, or, for a partitioned table, rebuild the bitmap indexes for the

affected partitions.

In the following example, follow these steps using the BILLING_FACT table and the same data as used
in the prior test. Use the 2 minutes and 19 seconds as a benchmark for comparison. The
BILLING_FACT table is a partitioned table, and you are loading July 2011 data. You will therefore mark
all bitmap indexes unusable for the July partition.

Starting marking index partitions unusable at 20110915.2348.31

alter index billing_fact_bixfk102 modify partition billing_fact11_07p unusable;
alter index billing_fact_bixfk103 modify partition billing_fact11_07p unusable;
alter index billing_fact_bixfk104 modify partition billing_fact11_07p unusable;
alter index billing_fact_bixfk105 modify partition billing_fact11_07p unusable;
alter index billing_fact_bixfk106 modify partition billing_fact11_07p unusable;
alter index billing_fact_bixfk107 modify partition billing_fact11_07p unusable;
alter index billing_fact_bixfk108 modify partition billing_fact11_07p unusable;
alter index billing_fact_bixfk109 modify partition billing_fact11_07p unusable;
alter index billing_fact_bixfk110 modify partition billing_fact11_07p unusable;
alter index billing_fact_bixfk111 modify partition billing_fact11_07p unusable;
alter index billing_fact_bixfk112 modify partition billing_fact11_07p unusable;

Completed marking index partitions unusable at 20110915.2348.56

The operation to mark the indexes unusable took a total of 25 seconds. Next, perform the identical
DML operation that took the 2 minutes and 19 seconds—only this time all affected partitions for the
bitmap indexes have been marked unusable and therefore the load operation doesn’t build the index
entries for the new rows inserted.

 SQL> INSERT INTO BILLING_FACT
 2* SELECT * FROM BILLING_FACT_201107;

1000000 rows created.

Elapsed: 00:00:16.20

The load operation is obviously significantly faster without the bitmap indexes, taking only 16
seconds. Lastly, you need to rebuild the index partitions for the bitmap indexes that you marked
unusable in the first step.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

63

 See the rebuild syntax that follows and the associated time it took to rebuild the affected July 2011

partition for the 11 bitmap indexes:

Starting index rebuilds at 20110915.2318.28

alter index billing_fact_bixfk102 rebuild partition billing_fact11_07p;
alter index billing_fact_bixfk103 rebuild partition billing_fact11_07p;
alter index billing_fact_bixfk104 rebuild partition billing_fact11_07p;
alter index billing_fact_bixfk105 rebuild partition billing_fact11_07p;
alter index billing_fact_bixfk106 rebuild partition billing_fact11_07p;
alter index billing_fact_bixfk107 rebuild partition billing_fact11_07p;
alter index billing_fact_bixfk108 rebuild partition billing_fact11_07p;
alter index billing_fact_bixfk109 rebuild partition billing_fact11_07p;
alter index billing_fact_bixfk110 rebuild partition billing_fact11_07p;
alter index billing_fact_bixfk111 rebuild partition billing_fact11_07p;
alter index billing_fact_bixfk112 rebuild partition billing_fact11_07p;

Completed index rebuilds at 20110915.2318.53

 It took 25 seconds to rebuild all the July partitions for your bitmap indexes. For partitioned tables,
you have the added flexibility of running many rebuilds at one time, which can also speed the overall
rebuild time. So, although more complex than performing a single DML insert operation on your fact
table, by splitting up the work into three pieces, the total time to insert one million rows took 1 minute
and 6 seconds, which is less than half the time as the straight insert statement. As stated, if you have
bitmap indexes on large partitioned tables, it is recommended to perform partition-level operations on
the indexes rather than completely drop the bitmap indexes. Even though bitmap indexes create very
quickly, if you have millions to billions of rows in a table, it can still take time. Furthermore, if you can
isolate DML operations to a given partition or set of partitions, you can simply mark the indexes
unusable before the DML operation begins and then rebuild only those partitions after the DML
operation is completed.

Alternatively, you can also issue the following command, which can save you from having to issue a
statement for each index:

alter table billing_fact modify partition billing_fact11_07p rebuild unusable local indexes;

The trade-off of the simplicity of this command is that the indexes for a given partition are built serially.
If you issue a command to rebuild a partition for each given index, you have the option to issue multiple
statements at once, which can speed index creation time because you are then essentially rebuilding the
indexes in parallel.

Understanding Bitmap Join Indexes
Bitmap join indexes, like normal bitmap indexes, are useful in data warehouse applications, specifically
with the star schema. One of the key benefits of a bitmap join index is implied in the name of the index:
the join. The basic premise of a bitmap join index is as follows: when creating a bitmap join index, which
is a join of indexed values between two tables, the join results are stored within the index itself. By doing
the join upfront and storing the results, it saves you from having to scan the indexes to get join values
between the two tables.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

64

Within a star schema, the base elements for the bitmap join index are the large fact table and the
dimension table. In a normal star schema, there are foreign keys on the child fact table back to the
parent dimension table. The join piece of the bitmap join index is an equi-inner join between these
foreign key columns between the fact and dimension tables.

To illustrate the situation further, materialized views are also popular in the realm of the data
warehouse. They are typically created to store the results of a join or aggregation for easy and quick
repeated access by the user. Bitmap join indexes are, in essence, a materialized join of indexed columns
between two tables, processed and stored once. They can be accessed over and over by the user without
having to reprocess a given join condition.

Let's say you create an index between your sample billing fact table and the geography dimension.
The join column between these two tables would be the primary key for the geography dimension
(GEO_ID) and the associated foreign key column on the billing fact table (also called GEO_ID).

To illustrate an example of a bitmap join index, refer to Tables 3-4 and 3-5. In Table 3-4, a sample of
rows and values is shown for both the BILLING_FACT and GEOGRAPHY_DIMENSION tables. In Table 3-5, it
shows, based on the sample, the actual makeup of a bitmap join index based on their relationship based
on the GEO_ID column. Table 3-5 shows an example of how the actual bitmap join index would be stored
in the database. There are four unique ROWID values shown for the BILLING_FACT table and two associated
ROWID values for the matching row on the GEOGRAPHY_DIMENSION table. If your query joins the
BILLING_FACT and GEOGRAPHY_DIMENSION tables and is searching for the GEO_ID of 24010 by scanning the
bitmap index, the ROWID values for each table are stored together and the data can quickly be retrieved
from the two tables.

Table 3-4. Foreign Key Relationship Between Fact and Dimension Table

Billing Fact

Row Prod_ID Geo_ID Bill_date_id YYMMDD_DDDATE Bill_Unit Bill_Amt

1 107 10 11011 2011-06-28 US 124.47

2 108 14 10037 2011-06-24 US 252.14

3 109 14 12001 02011-07-01 US 83.16

4 110 12 11021 2011-06-28 US 99.45

5 111 11 10147 2011-06-26 US 157.15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

65

Geography Dimension

Row Geo_ID Country Region State City

1 10 USA East Maine Portland

2 11 USA East Maryland Baltimore

3 12 USA North North Dakota Fargo

4 13 USA South Texas Houston

5 14 USA West Oregon Portland

Table 3-5. Bitmap Join Index Values Between Star Schema Fact Table and Joined Dimension Table

BILLING FACT ROWID GEOGRAHY DIMENSION ROWID Matching GEO_ID

AAARm6ABDAAAMz1ABB AAAUWMABiAAAS9KAAr 23099

AAARm6ABCAAAUiHAA6 AAAUWMABiAAAS9KAAr 23099

AAARm9AAAABAUjBAA9 AAAUWMABiAAAS9CBAm 24010

AAARm9AAAABCUhBACC AAAUWMABiAAAS9CBAm 24010

AAAHm6ACBAABCUbBBB AAAUWMABiAAAS9CBAm 24010

If you employ the star schema within your environment, bitmap join indexes should seriously be

considered. They offer distinct performance benefits in data warehouse environments employing the
star schema. Join operations take time, and when you have a central fact table and many dimensions on
which to join, the time to perform join operations can significantly increase as tables are added to a join
condition. Because the bitmap join index is essentially a materialized join between join columns on the
fact and dimension tables, join operations at execution time are already complete because the join
operation was done and stored in the bitmap join index when the bitmap join index was created. Bitmap
join indexes are tailor-made for star schemas and should be considered to help the query efficiency
when accessing tables within the star schema.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

66

Creating a Bitmap Join Index
Creating a bitmap join index is similar to creating a normal bitmap index in that you need the BITMAP
keyword, but different in that you also need the FROM and WHERE clauses. For example,

CREATE BITMAP INDEX BILLING_FACT_BJIX01
ON BILLING_FACT (GEO.GEO_ID)
FROM BILLING_FACT BF, GEOGRAPHY_DIMENSION GEO
WHERE BF.GEO_ID = GEO.GEO_ID
tablespace BILLING_FACT_S
PCTFREE 5
PARALLEL 4
LOCAL
NOLOGGING;

You can create locally partitioned indexes on bitmap join indexes, as noted in the previous example
with the LOCAL keyword. You can also create bitmap join indexes between the fact table and multiple
dimension tables. For example,

CREATE BITMAP INDEX BILLING_FACT_BJIX02
ON BILLING_FACT (GEO.GEO_ID, TM.YYYYMMDD_DT)
FROM BILLING_FACT BF, GEOGRAPHY_DIMENSION GEO, TIME_DIMENSION TM
WHERE BF.GEO_ID = GEO.GEO_ID
AND BF.YYYYMMDD_DT = TM.YYYYMMMDD_DT
tablespace BILLING_FACT_S
PCTFREE 5
PARALLEL 4
LOCAL
NOLOGGING;

If you have a snowflake schema, which is an extension of a star schema with child entities off of the

dimension tables, you can also create a bitmap join index off of the dimension tables in a snowflake
schema. The syntax is, in essence, identical.

Reporting on Bitmap Indexes
It is fairly simple to get information on bitmap indexes from the data dictionary. See the following query
from the USER_INDEXES view in order to get information on both bitmap and bitmap join indexes:

SELECT index_name, index_type, join_index FROM dba_indexes
WHERE index_type = 'BITMAP';

INDEX_NAME INDEX_TYPE JOI
------------------------------ --------------------------- ---
BILLING_FACT_BIXFK102 BITMAP NO
BR_FACT_BJIX002 BITMAP YES

If you want to get the specific join information on any bitmap join indexes you have in your

database, you can get this information from the USER_JOIN_IND_COLUMNS data dictionary view. This view

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3  BITMAP INDEXES

67

will show the tables used in the join condition for bitmap join indexes, as well as the columns joined. See
the following example:

SQL> SELECT index_name, inner_table_name inner_table, inner_table_column inner_column,
 2 outer_table_name outer_table, outer_table_column outer_column
 3 FROM user_join_ind_columns
 4* WHERE index_name = 'BR_FACT_BJIX002';

INDEX_NAME INNER_TABLE INNER_COLUMN OUTER_TABLE OUTER_COLUMN
--------------- --------------- ---------------- --------------- ----------------
BL_FACT_BJIX002 BILLING_FACT GEO_ID GEOGRAPHY_DIM GEO_ID

Summary
The bitmap and bitmap join indexes are most commonly used in the data warehouse environment.

The simple bitmap index can also be used outside of the data warehouse but the bitmap join index is
really specifically designed to be used within the star schema, which is a data model built for the data
warehouse environment.

They key advantages with bitmap indexes are that they can be created very quickly and generally
take up much less space than a B-tree counterpart index. This fact makes rebuild operations much more
attractive, as they can be rebuilt very quickly. Query performance is aided by bitmap indexes, as they can
be scanned quickly because they are smaller.

The biggest drawback of bitmap indexes is that DML operations can be much slower. If you use
bitmap indexes, the DML performance problems can be avoided simply by disabling or dropping the
indexes prior to the DML operation(s), and then enabling or rebuilding them after the DML operation is
complete.

The existence of bitmap join indexes within your star schema can aid query performance because
joined columns between the fact and dimension tables were stored at index creation time, which helps
query performance at execution time.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

■ ■ ■

69

Index-Organized Tables

The simplest explanation of an index-organized table is that it is accessed like any other Oracle table
(typically a heap-organized table) but is physically stored like an Oracle B-tree index. Index-organized
tables are typically created on "thin" tables (tables without too many columns). Typically, multiple
columns of the table make up the primary key of the index-organized table. The non-key columns can
also be stored as part of the B-tree index. The proper configuration and use of index-organized tables is
fairly specific and does not meet all application needs.

Understanding the Structure
From a user or developer perspective, an index-organized table (IOT) appears like a normal table. IOTs
are stored in a B-tree structure. There must be a primary key on an index-organized table, as the data is
stored in primary key order. Since there is no data segment, there is no physical ROWID values for index-
organized tables. See Figure 4-1 for an example of an IOT.

Figure 4-1. Structure of an index-organized table

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

70

IOTs support many of the same features found in heap-organized tables, such as

• Constraints

• Partitioning

• Triggers

• LOB columns

• Parallelism

• Indexes (e.g. secondary indexes on IOTs)

• Global hash-partitioned indexes

• Online reorganization

Because all of the data within an index-organized table is stored within the index itself, there are
physical differences in the way an index-organized table is stored, as compared to a normal B-tree index
that supports a normal heap-organized table. Some of the unique aspects of IOT's are as follows:

• Secondary indexes use logical ROWIDs rather than physical ROWIDs.

• They require a primary key.

• Primary key compression can be used to save storage and reduce size of an IOT.

• An overflow segment can be used for non-key column data.

• Secondary bitmap indexes require a defined mapping table.

• Non-key column data is stored in the leaf blocks of an IOT.

There are limitations on index-organized tables, although many of the limitations will not affect
their use in the majority of applications. Some of these limitations include:

• Rows exceeding 50% of a block must use an overflow segment.

• IOTs can’t use virtual columns.

• Tables with more than 255 columns must have an overflow segment.

• Tables can’t have more than 1,000 total columns.

• The primary key can’t be more than 32 columns.

Understanding the Advantages
There are specific advantages of IOTs, including the following:

• Storage space can be saved because the data is the index, so there is only one
segment or set of segments in the database for an index-organized table, rather
than the normal two segments that come with a heap-organized table and
associated index(es).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

71

• Query performance benefits can occur because there are less I/O requirements.
Since the data is stored as part of the index, there is a potentially significant I/O
reduction.

• DML performance benefits can occur because there is only the need to update the
index segment(s), as there is no data segment(s) as part of the structure. There is
no need to update the table and then any associated index as with heap-organized
tables. Only the index needs to be updated.

Index-organized tables are most beneficial in OLTP environments for the following reasons:

• IOTs allow fast primary key access.

• They allow online reorganization, which is essential in an OLTP environment.

• IOTs allow fast data retrieval in applications such as Internet search engines.

The biggest challenge with index-organized tables is deciding when to use them. If you have tables
that have several columns that make up the primary key, and the table itself is not dense as far as
number of columns, it may be a candidate as an IOT. However, this by itself is not reason enough to
make a table into an index-organized table. There should be a tangible benefit gained from having a
table structure be index-organized, and this may require some testing of your application. Generally,
index-organized tables provide fast lookup of the primary key. They can be slower for inserts. Likewise,
secondary index access isn't as fast as a normal B-tree index because index-organized table rows don’t
have the physical ROWID that would be found in a heap-organized table. Instead, IOTs use a logical ROWID,
which isn't as exact as a physical ROWID and can become outdated over time. All in all, the use of index-
organized tables should be limited and specific to a particular need. They are best used when fast
primary key access is required.

Creating an Index-Organized Table
The data definition language (DDL) for an index-organized table is very similar to the DDL for a heap-
organized table. The key difference is the use of the ORGANIZATION INDEX clause, which tells Oracle you
are creating an index-organized table. For example,

SQL> CREATE TABLE locations_iot
 2 (LOCATION_ID NUMBER(4) NOT NULL
 3 ,STREET_ADDRESS VARCHAR2(40)
 4 ,POSTAL_CODE VARCHAR2(12)
 5 ,CITY VARCHAR2(30) NOT NULL
 6 ,STATE_PROVINCE VARCHAR2(25)
 7 ,COUNTRY_ID CHAR(2)
 8 ,CONSTRAINT locations_iot_pk PRIMARY KEY (location_id)
 9)
 10 ORGANIZATION INDEX;

Table created.

As previously stated, you must have a primary key defined on an IOT. Since the IOT is stored in a B-
tree index structure, there is no physical ROWID stored with each row. That’s why you must have a
primary key on an IOT—so that each row can be uniquely identified.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

72

The B-tree structure of an index-organized table is based on the primary key values. If you don't
specify a primary key, you will get the following error:

SQL> CREATE TABLE locations_iot
 2 (LOCATION_ID NUMBER(4) NOT NULL
 3 ,STREET_ADDRESS VARCHAR2(40)
 4 ,POSTAL_CODE VARCHAR2(12)
 5 ,CITY VARCHAR2(30) NOT NULL
 6 ,STATE_PROVINCE VARCHAR2(25)
 7 ,COUNTRY_ID CHAR(2)
 8)
 9 ORGANIZATION INDEX;

organization index
 *
ERROR at line 10:
ORA-25175: no PRIMARY KEY constraint found

For the most part, index-organized tables can be partitioned just like a heap organized table. You
can partition index-organized tables using the following partitioning methods: range, list, or hash
partitioning. Using the LOCATIONS_IOT from the previous example, you can list partition the table by
STATE_PROVINCE based on whether it is a domestic or international state province. See the following DDL:

SQL> CREATE TABLE locations_iot
 2 (LOCATION_ID NUMBER(4) NOT NULL
 3 ,STREET_ADDRESS VARCHAR2(40)
 4 ,POSTAL_CODE VARCHAR2(12)
 5 ,CITY VARCHAR2(30) NOT NULL
 6 ,STATE_PROVINCE VARCHAR2(25) NOT NULL
 7 ,COUNTRY_ID CHAR(2)
 8 ,constraint locations_iot_pk primary key (location_id, state_province)
 9)
 10 ORGANIZATION INDEX
 11 partition by list(STATE_PROVINCE)
 12 (partition p_intl values
 13 ('Maharashtra','Bavaria','New South Wales', 'BE','Geneve',
 14 'Tokyo Prefecture', 'Sao Paulo','Manchester','Utrecht',
 15 'Ontario','Yukon','Oxford'),
 16 partition p_domestic values ('Texas','New Jersey','Washington','California'));

Table created.

You can’t use composite partitioning in relation to index-organized tables. See this DDL snippet,
where you are attempting to create a composite range-list partitioned table:

SQL> CREATE TABLE locations_iot
 2 ...
 17 organization index
 18 partition by range(hire_date)
 19 subpartition by list(DEPARTMENT_ID)
 20 subpartition template

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

73

 21 (SUBPARTITION JOB10 VALUES ('10')
 22 ,SUBPARTITION JOB20 VALUES ('20')
 23 ,SUBPARTITION JOB30 VALUES ('30')
 24 ,SUBPARTITION JOB40 VALUES ('40')
 25 ,SUBPARTITION JOB50 VALUES ('50')
 26 ,SUBPARTITION JOB60 VALUES ('60')
 27 ,SUBPARTITION JOB70 VALUES ('70')
 28 ,SUBPARTITION JOB80 VALUES ('80')
 29 ,SUBPARTITION JOB90 VALUES ('90')
 30 ,SUBPARTITION JOB100 VALUES ('100')
 31 ,SUBPARTITION JOB110 VALUES ('110')
 32 (
 33 partition p1990 values less than ('1991-01-01'),
 ...
 45);

subpartition template
*
ERROR at line 20:
ORA-25198: only range, list, and hash partitioning are supported for
index-organized table

This error clearly indicates that composite partitioning is not supported. For more information on the
features of IOT's and their limitations, see the Oracle Database Administrator's Guide for your release of
the database.

Adding an Overflow Segment
For index-organized tables, it is common, and even recommended, to create an overflow area for row
data as part of the overall index-organized table structure. The typical index-organized table that
includes an overflow area is structured as follows:

• B-tree index entry, which includes the following:

• Primary key columns

• Some non-key columns depending on PCTTHRESHOLD and
INCLUDING clause values specified

• Physical ROWID pointer to overflow segment

• Overflow segment, which contains the remaining non-key column values

In a normal B-tree index, the leaf node contains the index column key value, and then the ROWID for the
row in the data segment. With index-organized tables, all the non-key column values are stored within
the leaf blocks of the index by default. If the row data becomes very wide, the B-tree entries can become
very large. This can slow data retrieval simply because the index must traverse more index blocks.

The overflow segment can aid in the efficiency of the overall B-tree index of an index-organized
table by storing some of the non-key column values in an overflow data segment of the IOT, which is
used solely to store these non-key column values. Associated with the overflow area is the PCTTHRESHOLD
parameter, which specifies how column data goes to the overflow segment. If the length of a row is

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

74

greater than the percentage of the index block specified by the PCTTHRESHOLD parameter (the default is
50), every column that exceeds the threshold will be stored in the overflow area. Also, you can specify the
overflow segment to a specific tablespace, if desired.

■ Tip Use ANALYZE TABLE...LIST CHAINED ROWS command to determine if you have set PCTTHRESHOLD
appropriately.

In contrast to the PCTTHRESHOLD parameter, there is the INCLUDING clause, which specifies the last
table column for the row data that will be stored in the B-tree index segment. All columns after the
column specified by the INCLUDING clause will be stored in the overflow area. It is possible to specify both
the PCTTHRESHOLD and INCLUDING clauses, as shown in the following example:

SQL> CREATE TABLE employees
 2 (
 3 EMPLOYEE_ID NUMBER(6) NOT NULL
 4 ,FIRST_NAME VARCHAR2(20)
 5 ,LAST_NAME VARCHAR2(25) NOT NULL
 6 ,EMAIL VARCHAR2(25) NOT NULL
 7 ,PHONE_NUMBER VARCHAR2(20)
 8 ,HIRE_DATE DATE NOT NULL
 9 ,JOB_ID VARCHAR2(10) NOT NULL
 10 ,SALARY NUMBER(8,2)
 11 ,COMMISSION_PCT NUMBER(2,2)
 12 ,MANAGER_ID NUMBER(6)
 13 ,DEPARTMENT_ID NUMBER(4)
 14 ,CONSTRAINT employees_pk PRIMARY KEY (employee_id)
 15)
 16 ORGANIZATION INDEX
 17 TABLESPACE empindex_s
 18 PCTTHRESHOLD 40
 19 INCLUDING salary
 20 OVERFLOW TABLESPACE overflow_s

Table created.

See Figure 4-1 for an illustration of an index-organized EMPLOYEES table row as stored in the table, as
well as the overflow segment. In the example, you can see that the primary key in the EMPLOYEES table is
the EMPLOYEE_ID, and the root block, branch blocks, and leaf blocks are structured based on the primary
key. Within the leaf blocks themselves is the primary key, as well as all of the non-key columns up
through the SALARY column, which corresponds to the INCLUDING clause in the CREATE TABLE DDL
statement. All column data after the SALARY column is therefore stored in the overflow segment.

For performance reasons, the order of columns within an index-organized table is important, unlike
normal heap-organized tables. This is simply because of the overflow segment. The most queried
columns should not be placed in the overflow segment, simply because it is an extra I/O operation to
retrieve the remaining column data for a given row. For this reason, the least queried columns should be
placed on the trailing end of the table DDL, especially those after the column specified in the INCLUDING

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

75

clause. In the table example, let's say you determine through user interviews that the most queried
columns on your EMPLOYEES table will be the JOB_ID, DEPARTMENT_ID, and MANAGER_ID column. The initial
DDL placed the DEPARTMENT_ID and MANAGER_ID columns in the overflow segment.

Based on the user interviews, it may be beneficial to move these two columns above the INCLUDING
clause and possibly shift some other columns below the INCLUDING clause. It may also mean, based on
the necessary queries against the EMPLOYEES table, that you decide not to create an overflow segment for
the EMPLOYEES table. Creation of the overflow segment, and which columns to place there, should be
done after careful analysis based on the proposed usage of the table columns.

If you choose to specify an INCLUDING clause within the DDL for an IOT, you must specify an
OVERFLOW area, else you will receive the following error:

create table employees_iot
*
ERROR at line 1:
ORA-25186: INCLUDING clause specified for index-organized table without
OVERFLOW

Also, the Oracle data dictionary can become cluttered with entries for overflow areas for index-
organized table that have been dropped. Recyclebin objects are normally seen in the DBA_SEGMENTS view,
but for IOT overflow segments, you can see them in the USER_TABLES view (or appropriate ALL or DBA
view), including those which have been dropped. See the following query and results as an example:

SQL> select table_name, iot_type from user_tables
 2 where iot_type like '%IOT%';

TABLE_NAME IOT_TYPE
------------------------------ ------------
SYS_IOT_OVER_77689 IOT_OVERFLOW
SYS_IOT_OVER_77692 IOT_OVERFLOW
SYS_IOT_OVER_77697 IOT_OVERFLOW
EMPLOYEES_IOT IOT

Therefore, purge the recyclebin to get rid of superfluous overflow entries.

SQL> purge recyclebin;

Recyclebin purged.

After you purge the recyclebin, the dropped overflow objects no longer show in the data dictionary.

SQL> select table_name, iot_type from user_tables
 2 where iot_type like '%IOT%''

TABLE_NAME IOT_TYPE
------------------------------ ------------
SYS_IOT_OVER_77697 IOT_OVERFLOW
EMPLOYEES_IOT IOT

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

76

■ Tip Always attempt to keep the most frequently accessed columns within the table itself—and outside of the
overflow segment—for better access performance.

Compressing an Index-Organized Table
You can use a concept called key compression on index-organized tables in order to save storage space
and compress data. It’s called “key compression” because it can eliminate repeated values of the key
columns. You can use key compression either with a CREATE TABLE statement or an ALTER TABLE
statement. See the following sample DDL of a CREATE TABLE statement with key compression enabled:

SQL> CREATE TABLE employees_iot
 2 (
 3 EMPLOYEE_ID NUMBER(7) NOT NULL
 4 ,FIRST_NAME VARCHAR2(20)
 5 ,LAST_NAME VARCHAR2(25) NOT NULL
 6 ,EMAIL VARCHAR2(25) NOT NULL
 7 ,PHONE_NUMBER VARCHAR2(20)
 8 ,HIRE_DATE DATE NOT NULL
 9 ,JOB_ID VARCHAR2(10) NOT NULL
 10 ,SALARY NUMBER(8,2)
 11 ,COMMISSION_PCT NUMBER(2,2)
 12 ,MANAGER_ID NUMBER(6)
 13 ,DEPARTMENT_ID NUMBER(4)
15 ,CONSTRAINT employees_iot_pk PRIMARY KEY (employee_id, job_id)
17)
18 ORGANIZATION INDEX COMPRESS 1
19 TABLESPACE empindex_s
20 PCTTHRESHOLD 40
21 INCLUDING salary
22 OVERFLOW TABLESPACE overflow_s;

Table created.

If you have a pre-existing table on which you want to enable key compression, you can simply use

the ALTER TABLE...MOVE statement to enable the compression.

SQL> ALTER TABLE employees_iot MOVE TABLESPACE empindex_s COMPRESS 1;

Table altered.

You can only use key compression when there are multiple columns as part of the primary key, or

else will you receive the following message when creating the table:

CREATE TABLE employees_iot
*
ERROR at line 1:
ORA-25193: cannot use COMPRESS option for a single column key

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

77

For obvious reasons, you can’t use the same number of key columns as is within the primary key for
the key compression factor specified in the COMPRESS clause because that represents a unique value, and
therefore no key compression is possible. You will receive the following error if you attempt to create the
table with the same compression factor as the number of primary key columns:

CREATE TABLE employees_iot
*
ERROR at line 1:
ORA-25194: invalid COMPRESS prefix length value

The compression occurs when there are duplicates within the columns of the primary key. For

instance, if the employee with EMPLOYEE_ID 100 worked several jobs over the years, they would have
several entries for the EMPLOYEE_ID/JOB_ID combination. For rows with duplicates of the EMPLOYEE_ID
itself, all repeated values would be compressed. See Table 4-1 for a brief example of the results from key
compression.

Table 4-1. Example of Key Compression for Employee_ID 100

Employee_ID Job_ID Employee_ID Value Compressed?

100 AD_ASST NO (first entry)

100 IT_PROG YES

100 AD_VP YES

100 ... YES for all subsequent entries

Building Secondary Indexes
The index-organized table can be viewed the same as a heap-organized table in that if other indexes are
needed to speed query performance, secondary indexes can be added to index-organized tables because
they can be added on heap-organized tables. See the following example to create a secondary index on
DEPARTMENT_ID of the EMPLOYEES_IOT table:

SQL> CREATE INDEX employees_iot_1i
 2 ON employees_iot (department_id);

You can also create secondary indexes on partitioned IOTs.

SQL> CREATE INDEX employees_iot_1i
 2 on employees_iot (department_id)
 3 LOCAL;

The key difference between secondary indexes on heap-organized tables and secondary indexes on

index-organized tables is that there is no physical ROWID for each row in an index-organized table

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

78

because the table data is stored as part of the B-tree index. Therefore, all access to data within an index-
organized table is based on the primary key.

Instead of the normal physical ROWIDs to locate table rows, index-organized tables use a logical
ROWID, which is used by any secondary indexes on the IOT in order to retrieve data. The logical ROWID is
the equivalent to a physical guess of the row location based on the ROWID when the index entry was first
created. Based on the physical guess, Oracle will scan through leaf blocks searching for a match. The
physical guess doesn’t change over time, even if a row's physical location changes. For instance, leaf
block splits can occur over time, which can fragment the index and change a row's physical location.
Because the physical guess is not updated even if a row location changes, the physical guesses can
become outdated or stale over time.

You can get information from the data dictionary to determine if the physical guesses for an IOT are
stale by querying the PCT_DIRECT_ACCESS column of USER_INDEXES. For example,

SQL> select index_name, index_type, pct_direct_access
 2 from user_indexes;

INDEX_NAME INDEX_TYPE PCT_DIRECT_ACCESS
------------------------------ --------------------------- -----------------
EMPLOYEES_IOT_PK IOT - TOP 0
EMPLOYEES_PART_1I NORMAL 100

If the PCT_DIRECT_ACCESS value falls below 100, it means the secondary index entries are becoming

migrated, and the physical guess can start to be inaccurate enough that extra I/O operations will start
occurring and performance will start to degrade. Once the PCT_DIRECT_ACCESS falls below 80,
performance degradation will start becoming more noticeable and the index may be a good candidate
for a rebuild operation.

In order to refresh the logical ROWIDs over time, there are two primary ways to address the issue.

• Rebuild the secondary index.

• Update the block references for the index.

The first way to refresh the logical ROWIDs within secondary indexes is simply by rebuilding the
index(es). Rebuilding secondary indexes built on index-organized tables is no different than rebuilding
indexes on heap organized tables.

SQL> ALTER INDEX employees_1i REBUILD;

Of course, depending on the size of the table, rebuilding one or more secondary indexes can take
time, and with shrinking maintenance windows and ever increasing availability windows on databases,
it can be problematic to rebuild indexes on large tables on a regular basis.

An alternative to rebuilding your secondary indexes and a quick way to fix stale physical guesses
within your secondary indexes is by using the ALTER INDEX...UPDATE BLOCK REFERENCES command,
which is a fast way to realign stale physical guesses without having to rebuild an entire index.

SQL> ALTER INDEX employees_part_1i UPDATE BLOCK REFERENCES;

You can also place bitmap indexes on IOTs as secondary indexes. Refer to Chapter 3 for examples of

creating bitmap indexes on an IOT. Within the bitmap index, since there is an entry for each row in a
given table, there is normally a ROWID, along with the bitmap and data value corresponding to the
indexed column. Since there are no physical ROWID values with an index-organized table, a bitmap index

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

79

that is built on an index-organized table must be managed differently. When creating the bitmap index
on the IOT, you must include a mapping table within the bitmap index. Again, see Chapter 3 for an
example of how to build a bitmap index on an index-organized table.

A mapping table is simply a heap-organized table that is used to store the logical ROWID values. The
mapping table is essentially an object that replaces the physical ROWID representation with a logical ROWID
representation for the rows in the table. So, within the bitmap index itself, the physical ROWID is from the
mapping table, rather than from the base table. Then the mapping table is accessed to retrieve the
logical ROWID in order to access the data from the index-organized table. See Figure 4-2 for an example of
a bitmap index with a mapping table.

Figure 4-2. A bitmap index within an index-organized table

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

80

Rebuilding an Index-Organized Table
An index-organized table is a B-tree index. It can become fragmented over time and can incur the same
issues as a normal B-tree index: expanded index depth over time, an unbalanced tree, and sparse blocks,
to name a few. Therefore, you can rebuild an index-organized table as you would a normal B-tree index.
The obvious difference is that because it is regarded as a table, you rebuild an IOT with the ALTER TABLE
command. See the following example:

SQL> ALTER TABLE employees_iot MOVE;

Table altered.

If you want to move the IOT to a different tablespace, simply specify the tablespace within the ALTER
TABLE clause, as shown in the following examples:

SQL> ALTER TABLE employees_iot MOVE TABLESPACE emp_s;

Table altered.

When an IOT is rebuilt, the overflow segment is not rebuilt by default. Since similar fragmentation
issues can occur with the overflow segment, it’s a good idea to always rebuild the overflow segment
whenever you rebuild the IOT itself. See the following examples:

SQL> ALTER TABLE employees_iot MOVE overflow;

SQL> ALTER TABLE employees_iot MOVE tablespace emp_s
 2 overflow tablespace overflow_s;

Table altered.

You can also rebuild an IOT with the ONLINE clause, meaning the existing structure can be accessed
during the rebuild operation.

22:39:15 SQL> alter table employees_iot move tablespace users online;

Table altered.

An index organized table can be partitioned just as any other heap-organized table can be
partitioned. If you are rebuilding a partitioned IOT, you can’t rebuild it in one step—that is, the entire
table—or you will receive the following error:

SQL> ALTER TABLE employees_iot MOVE;
ALTER TABLE employees_iot MOVE
 *
ERROR at line 1:
ORA-28660: Partitioned Index-Organized table may not be MOVEd as a whole

If you wish to rebuild an entire partitioned IOT, you must do it one partition at a time. You will need
to get the partition names from the index itself using the USER_IND_PARTITIONS view (or, of course,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

81

optionally the equivalent ALL or DBA views), and then issue the ALTER TABLE...MOVE PARTITION command
in order to move each partition of an IOT. See the following example:

SQL> select partition_name
 2 from user_ind_partitions
 3* where index_name = 'EMPLOYEES_IOT_PK';

PARTITION_NAME

P1990
...
P1999
P2000
PMAX

SQL> ALTER TABLE employees_iot MOVE PARTITION p1990;

Table altered.

You must rebuild the IOT with an ALTER TABLE command. If you attempt to rebuild an IOT via the
primary key index, you will receive the following error:

SQL> alter index employees_iot_pk rebuild;
alter index employees_iot_pk rebuild
*
ERROR at line 1:
ORA-28650: Primary index on an IOT cannot be rebuilt

Reporting on Index-Organized Tables
Getting information from the Oracle data dictionary on index-organized tables is straightforward.

Look at the following query, which gives the fundamental information regarding the IOT's within your
database:

SQL> select i.table_name, i.index_name, i.index_type, i.pct_threshold,
 2 nvl(column_name,'NONE') include_column
 3 from user_indexes i left join user_tab_columns c
 4 on (i.table_name = c.table_name)
 5 and (i.include_column = c.column_id)
 6 where index_type = 'IOT - TOP';

TABLE_NAME INDEX_NAME INDEX_TYPE PCT_THRESHOLD INCLUDE_COLUMN
--------------- ------------------ ---------- ------------- ------------------
LOCATIONS_IOT LOCATIONS_IOT_PK IOT - TOP 50 NONE
EMPLOYEES_PART EMPLOYEES_PART_PK IOT - TOP 50 NONE
COUNTRIES COUNTRY_C_ID_PK IOT - TOP 50 NONE
EMPLOYEES_IOT EMPLOYEES_IOT_PK IOT - TOP 40 SALARY

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

82

From this query, you get the following information:

• The table name

• The index name(s), which includes the primary key and any secondary indexes on
the table

• The index type, which will be designated as 'IOT - TOP' for index-organized tables

• The PCTTHRESHOLD for the table

• The INCLUDING column, if specified

You need to do an outer join to the USER_TAB_COLUMNS view in order to get the column name for the
column specified by the INCLUDING clause, which is optional when creating an index-organized table.
The COLUMN_ID column on the USER_INDEXES view specifies the column number of the column for the
INCLUDING clause. If there is no INCLUDING clause specified on the index-organized table, the COLUMN_ID
column will be populated with a default value of '0' or it will be populated with the value from the
USER_TAB_COLUMNS COLUMN_ID column.

If you look at the USER_TABLES view, both the IOT itself and the overflow segment are shown.

SQL> select table_name, iot_type, segment_created from user_tables;

TABLE_NAME IOT_TYPE SEG
------------------------------ ------------ ---
SYS_IOT_OVER_77704 IOT_OVERFLOW YES
EMPLOYEES_IOT IOT YES

If querying DBA_SEGMENTS to get actual physical characteristics of the IOT itself, as well as the
overflow segment, remember to use the primary key segment_name; the table name itself will not be
specified within the DBA_SEGMENTS view, since the IOT is essentially an index segment.

 1 select segment_name, segment_type
 2 from dba_segments
 3* where segment_name like '%IOT%'
SQL> /

SEGMENT_NAME SEGMENT_TYPE
------------------------------ ------------------
SYS_IOT_OVER_77704 TABLE
EMPLOYEES_IOT_PK INDEX

Summary
Index-organized tables have a specific niche in applications and are not really suitable for extensive use.
The guidelines to see if a table is a good candidate for an IOT include:

• Is it a table with a small number of columns?

• Is it a table made up of a composite primary key (several columns of the table)?

• Does the table require fast primary key access?

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ INDEX-ORGANIZED TABLES

83

IOTs are generally better suited for OLTP applications than data warehouse applications, simply
because OLTP applications often have a requirement for very fast lookup of primary key data. IOTs are
generally avoided in the data warehouse simply because a data warehouse typically does bulk loading of
data, and the performance of inserts on IOTs is slower. This is especially noticeable with a large volume
of data. Also, if there are access requirements to place many secondary indexes on the IOT, it can
generally be slower just because no physical ROWID exists within an IOT; this can slow access of data,
especially over time as physical guesses become stale. Of course, these are guidelines. Deciding whether
or not to use IOTs within your application depends on your specific data loading and data retrieval
requirements. You should also consider your available maintenance windows, which can be used in part
to rebuild IOTs when they become fragmented.

All this said, the index-organized table is a valuable tool. Knowing their features, advantages, and
disadvantages can help you decide where and when to implement them properly within your
application.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

■ ■ ■

85

Specialized Indexes

Thus far you've learned how to create normal Oracle indexes, which include both B-tree indexes as well
as bitmap indexes. You also learned how to create and manage index organized tables, This chapter
explains several specialized indexes that you can create for serving various needs. Most of these
specialized indexes are actually B-tree indexes, so it's not the organization of the index itself that makes
them special. For example, an invisible index is an index that's not automatically available to the cost-
based optimizer, unless you make it available by setting a specific initialization parameter. You use
invisible indexes mainly for testing the use of an index and to make sure an index is redundant before
you drop it.

The chapter explains how to use function-based indexes when your application applies functions to
a column value. Besides using Oracle-provided functions, you can create custom functions and create
indexes based on those functions. Function-based indexes let you create indexes based on arithmetical
expressions. You will also learn how to use the CASE construct to generate indexes based only on some
rows in a table. Reverse key indexes are a great solution in a high-volume Oracle RAC environment. This
chapter explains the rationale behind the use of reverse key indexes and discusses alternatives to these
indexes when dealing with index contention in an Oracle RAC environment. The chapter also introduces
application domain indexes, which help you create your own index structures to implement index types
that Oracle doesn't currently provide.

Invisible Indexes
When you create any index, by default, the optimizer is aware of the index and it starts taking account of
the index in all its cost estimations. However, there are occasions when you may want to create an index
but control when the optimizer can use the index. You can hide an index from the optimizer by creating
an index as an "invisible" index. You can also alter the status of an existing index by making it invisible.
You can toggle the status of the index between visible and invisible as you please.

 Note Since the database must continue to maintain a visible index when inserts, deletes, and updates occur, it
is important that you're fully aware of any invisible indexes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

86

When to Create an Invisible Index
In Chapter 7, you'll learn how to monitor the usage of an index by using the monitoring clause in an
alter index (or create index) statement. If your analysis reveals that a certain index isn't being used by
any queries, you may want to get rid of that index. You can use invisible indexes in any situation where
you're considering either dropping an index or making it unusable. Both of these actions are very
expensive if you need to use the index later on. If you drop the index, you have to recreate it; if you made
an index unusable, you have to rebuild it. Invisible indexes are very helpful when you have a situation
where specific modules of an application benefit from an index but the index adversely affects other
parts of the application. In this case, you can make the index visible only to those modules of the
application where the index is beneficial.

The biggest use of an invisible index is when you want to test if you should drop an index. There are
times when an index helps just one or two queries perform better but degrades the performance of a
bunch of other queries. In cases like this, you're faced with a dilemma as to whether to retain the index
or get rid of it. Well, invisible indexes let you eat the cake and eat it, too: you can specify the use of the
index only when you want to and let the index remain invisible the rest of the time! Before Oracle
introduced invisible indexes, you had to make an index unusable first and then test the performance of
your queries. If you decided that performance was better without the index, you could then drop the
index. If you decided to keep the index, you had to rebuild the unusable index to make it usable again.
All this takes time and effort. Of course, invisible indexes make all this work unnecessary. You simply
alter the status of a normal index to that of an invisible index and test.

A good time to use an invisible index is when one or two adhoc queries require an index. You can
make the index visible only to these queries and change its status to an invisible index for all other
queries.

Often you find that an application is running slow because of a large full table scan. You figure out
that you can avoid the full table scan by creating an index. However, this is not a simple decision in most
cases because that index, while it helps avoid the full table scan for the specific query you are
troubleshooting, may adversely affect other queries. Invisible indexes are perfect for cases such as this
where you want to selectively expose an index to the optimizer.

Creating an Invisible Index
You can create an invisible index by including the INVISIBLE clause in an index creation statement, like
so:

SQL> create index test_idx1 on products(prod_src_id) invisible;

Index created.

You can make an existing index invisible by using the following alter index statement:

SQL> alter index test_idx_1 invisible;

Index altered.

SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

87

And you can toggle the status of the index back to visible by doing this:

SQL> alter index test_idx visible;

Index altered.

SQL>

Finding Invisible Indexes In Your Database
You can check the visibility status of an index by executing the following query:

SQL> select index_name, visibility from dba_indexes
 2* where visibility='INVISIBLE';

INDEX_NAME VISIBILIT
------------------------------ ---------
TEST_IDX1 INVISIBLE

SQL>

This query helps you easily keep track of all invisible indexes in your database. You should know about
them because the database engine does need to maintain them. They are invisible, not free of cost.

Making an Invisible Index Available to the Optimizer
Once you make an index invisible, the optimizer doesn't use that index. Even specifying the INDEX hint
won't make the optimizer see an invisible index. However, you can make an invisible index available to
the optimizer at the session level or the system level by setting the optimizer_use_invisible_indexes
parameter to true. The optimizer_use_invisble_indexes parameter controls the use of an invisible
index. When you set this parameter to true, an invisible index is considered the same as a normal, visible
index. If you set this parameter to false (the default value), the optimizer ignores the invisible index. By
default, the optimizer_use_invisble_indexes initialization parameter is set to false, as shown here:

SQL> show parameter invisible

NAME TYPE VALUE
-- ----------- -------------
optimizer_use_invisible_indexes boolean FALSE
SQL>

If you have an invisible index on a column, the optimizer by default won't use that index. You can
confirm this by running an explain plan for a SQL statement that involves the index. You'll notice that
the database does a full table scan instead of using the invisible index.

You can make an invisible index available to the optimizer by using an index hint in a query. But
first you must set the optimizer_use_invisible_indexes parameter to true at the session or system level
before you can specify the INDEX hint.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

88

 You can make all invisible indexes available to the optimizer by issuing the following alter session
command:

SQL> alter session set optimizer_use_invisible_indexes=true;
Session altered.
SQL>

Once you set the optimizer_use_invisible_indexes parameter to true, you’re ready to specify the
index hint in a query so as to let the optimizer make use of the invisible index. For example,

SQL> select /*+ index(test_idx1) */ * from products where prd_id=9999;

If you've created a new index that you want to introduce into production but aren't quite sure how
it's going to affect the queries that use the index, you can first test the efficacy of the index by making it
visible to the optimizer through the alter session set optimizer_use_invisible_indexes=true
statement, as explained earlier. Once you're satisfied with your testing, you can make the index visible to
the optimizer in all sessions by issuing the alter index …visible statement. You can issue the following
alter system statement to make all invisible indexes available to the optimizer:

SQL> alter system set optimizer_use_invisible_indexes=true;

This statement makes all invisible statements available to all the users in the database.

Maintaining an Invisible Index
The database maintains an invisible index the same way it does a normal visible index. You can also
collect optimizer statistics on an invisible index, as shown here:

SQL> exec dbms_stats.gather_index_stats(user,'TEST_IDX1');
PL/SQL procedure successfully completed.
SQL>

Note that it's immaterial whether an index has the visible or invisible status when you collect
statistics for that index. You can also rebuild an invisible index just as you would a regular index, as
shown here:

SQL> alter index test_idx1 rebuild;

As you can see from these examples, there's absolutely no difference between visible and invisible
indexes with regards to their maintenance.

Function-Based Indexes
Oracle Database lets you create function-based indexes to facilitate queries that use values returned by a
function. You can actually use a function or an expression to create a function-based index. The
advantage to using a function-based index is that the database will compute the value of the function (or
expression) that involves one or more columns ahead of time and stores it in the index that you create
on the function. Since queries can use the precomputed values of expressions by looking up the index
rather than having to compute the values at runtime, performance will improve when using these
indexes. Function-based indexes increase the probability of the database using the more efficient index

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

89

range scan rather than an expensive full table scan. Note that while we classify a function-based index as
a “specialized" index, it is still a regular B-tree index that is created on the basis of a function (or
expression) rather than a column.

Let's say you've the following SQL statement with the WHERE clause specifying UPPER(LAST_NAME):

SQL>select first_name,last_name,phone_number
 from employees
 where UPPER(last_name) = UPPER('alapati');

As the query's explain plan output shows, the optimizer ignores the index on the LAST_NAME
column and performs a full table scan.

Execution Plan
--
Plan hash value: 1445457117

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 30 | 3 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| EMPLOYEES | 1 | 30 | 3 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 1 - filter(UPPER("LAST_NAME")='ALAPATI')

The column LAST_NAME is indexed, but the optimizer will skip the index and instead perform a full
table scan. The reason for this is that the search is really not on the LAST_NAME; it's on UPPER(last_name).
The database treats this as a different search and since there's no index on the UPPER function, it goes
for a full table scan. In order for this query to use an index, you must create an index on the actual search
expression, a function-based index. You can create the following function to make the database use an
index on the last_name column:

SQL> create index emp_up_name
 on employees (upper(last_name));

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

90

If you issue the previous query now, the database will use your function-based index to retrieve the
values of the LAST_NAME column. The following explain plan output shows that the query this time uses
the function-based index:

Execution Plan
--
Plan hash value: 3983250699
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time
|--
| 0 | SELECT STATEMENT | | 1 | 42 | 2 (0) |00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 1 | 42 | 2 (0) |00:00:01 |
|* 2 | INDEX RANGE SCAN | EMP_UPP_NAME | 1 | | 1 (0) |00:00:01 |
--
Predicate Information (identified by operation id):

 2 - access(UPPER("FIRST_NAME")='ALAPATI')

Creating a Function-Based Index
Function-based indexes are ideal for making queries run faster without changing the application logic
and code. Function-based indexes are highly useful in case-sensitive searches and sorts and in searches
on columns that have computations performed on them. The following are some examples that
illustrate how to create a function-based index. Not only can you use Oracle-provided functions in a
function-based index, but you can use any type of function you create as well. Case-insensitive searches
are probably one of the most common reasons for creating a function-based index. The following
example shows how to speed up case-insensitive searches by creating a function on the LAST_NAME
column:

SQL> create index emp_lstname on employees (UPPER(LAST_NAME));

Index created.

SQL>

Once you create the function-based index as shown here, you can use the index expression in a
query such as the following:

SQL> select *
 2 from employees
 3* where UPPER(LAST_NAME) LIKE 'S%_A'

4
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

91

The execution plan for this query shows that the optimizer is using the function-based index you
created.

Execution Plan
--
Plan hash value: 1134195146
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT	5	425	2 (0)	00:00:01	
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	5	425	2 (0)	00:00:01
* 2	INDEX RANGE SCAN	EMP_LSTNAME	1		1 (0)	00:00:01
--
Predicate Information (identified by operation id):

 2 - access(UPPER("LAST_NAME") LIKE 'S%_A')
 filter(UPPER("LAST_NAME") LIKE 'S%_A')
SQL>

This example showed how to create a function-based index using the Oracle function UPPER. You

can create a function-based index based on expressions without ever using any function, as shown in
the following example:

SQL> create index test_idx
 on weather ((maxtemp-mintemp) desc, maxtemp);

The index test_idx materializes the values of the expressions and stores the differences between
maxtemp and mintemp. If you want to find all the rows where the difference in temperatures is less than 25
and the maximum temperature is greater than 80, you can do so by issuing the following statement:

SQL> select * from weather
 where ((maxtemp-mintemp) < '25' and maxtemp > '80');

You can also create an index on a CASE statement (or function) by using the following syntax:

SQL> create index case_tab_idx1 on case_tab (case source_tran when 'PO'
 then po_id when 'VOUCHER' then voucher_id else journal_id end)
SQL> /

Index created.

This example shows how to use a function-based index for indexing only specific rows in a table.
You can issue a query such as the following to query the case_tab table:

select source_tran, case when source_tran like 'GL%' then journal_id
when source_tran like 'PO%' then po_id
when source_tran like 'VO%' then voucher_id
…

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

92

The function case_tab will return a NULL for some rows, which aren't indexed. It also returns a non-
null value for other rows that you want to index. In this case, you're interested only in the 'PO' and
'VOUCHER' values, and it's only these two values that are stored in the index case_idx. You usually do this
when you're dealing with large tables. In this case, the table contains millions of records, but only a few
of them have the value of 'PO' or 'VOUCHER' for the SOURCE_TRAN column. In essence, you are shrinking a
potentially very large index into a much smaller, more manageable index that takes very little space
compared the index on all the values for the column. More importantly, there will be a significant
improvement in performance because the index you create will have a smaller height in terms of the
number of index branches (BLEVEL).

The CASE construct can also be used to great benefit when you want to enforce a constraint such as
preventing certain columns from having the same values. Let's say you have a situation where you want
all currently published books to have a distinct name, but you don't care what the book names in the
publisher's backlist (list of previously published but currently selling books) are. You can then create the
following function-based index:

SQL> create unique index current_books on books
 (case when publish_date ='CURRENT' then list_name end);

As another example of a function-based index, consider the case where you create an index for
precomputing arithmetic expressions. The following shows a test table and an index that is created on
an arithmetic expression:

SQL> create table tt(
2 a integer,
3 b integer,
4 c integer);

Table created.

SQL> create index tt_idx1 on tt(a+b*(c-1),a,b);

Index created.

SQL>

If you issue a SQL statement such as the following, the query will use an index range scan instead of
a full table scan because it uses the precomputed expression values created and stored in the index
you've created on the arithmetic expression:

SQL> select a from tt where a+b*(c-1) <200;

no rows selected

SQL>

Following is an explain plan for a simple query that utilizes the index that was created on the basis
of the arithmetic expression.

SQL> set autotrace on explain
SQL> select a from tt where
 2 a + b * (c -1) < 100;

no rows selected

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

93

Execution Plan
--
Plan hash value: 1814671983
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 26 | 1 (0)| 00:00:01 |
|* 1 | INDEX RANGE SCAN| TT_IDX1 | 1 | 26 | 1 (0)| 00:00:01 |
--
Predicate Information (identified by operation id):

 1 - access("A"+"B"*("C"-1)<100)
SQL>

Note that when you create a user-defined function, the function must be deterministic, which
means that it should return the same value always for the same input. In the case of a user-defined
function, you must ensure that you use the SUBSTR operator to limit the values returned by a function
that returns VARCHAR2 or RAW types. The length of the value that a function returns is limited by the
maximum length of the data type returned. If a function returns a VARCHAR2 value, Oracle will truncate
the value and return the result without any error message if the length of the return value is over the
maximum length. Note that you can create a function-based index on an object column or REF column.

Limitations of Function-Based Indexes
Function-based indexes come with a few limitations or restrictions.

• The data type of the index expression can't be VARCHAR2, RAW, LONGRAW, or a PL/SQL
data type of indeterminate length.

• The database ignores function-based indexes while doing an OR expansion.
• The index expression must not invoke an aggregate function such as SUM.

Probably the biggest restriction or condition on the usage of a function-based index when you're

creating the function yourself is that the function should be deterministic. That is, the function must
return the same result always for the same parameters, In other words, the result of the function
shouldn't be determined by the parameters. You must explicitly declare the function as deterministic in
order for you to be able to use that function as the basis of a function-based index. By including the
DETERMINISTIC keyword in your function definition, Oracle will assume that you’ve done your due
diligence to make sure your function is actually deterministic. Oracle won't verify that the code really is
deterministic. Therefore, you could actually include the DETERMINISTIC keyword in a function that
returned non-deterministic results. In other words, Oracle won’t catch your mistake.

Note also that when using a complex user-defined function-based index, inserts (and updates) will
definitely run slower, but the big payoff is that the queries will run much faster. The increase in response
time to complete the DML will be proportionate to how long it takes the function to execute and store
the answer in the index. Plus, the more rows that are affected by the statement, the more likely the time
difference will be noticed. On single row DML statements, the “slowness” may not even be noticeable.
But on large inserts/updates, the slowness may rear its head in a more noticeable way.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

94

 Tip Behind the scenes, the Oracle Database represents expressions of function-based indexes as virtual
columns. This enables you to gather statistics on these indexes. The database can also build histograms on such
virtual columns.

Collecting Statistics for Function-Based Indexes
Oracle automatically collects statistics for an index upon its creation and thus you don't have to
explicitly collect fresh statistics after creating an index. However, in the case of a function-based index,
things work a bit differently. Oracle Database creates a hidden virtual column on the parent table when
it creates a function-based index. The database creates this virtual column on the table to help the
optimizer more accurately determine the function's selectivity and cardinality, thus helping it compute
a more accurate cost of using the function-based index you've created.

When you create a function-based index, Oracle automatically computes index statistics such as the
number of leaf blocks, BLEVEL, and clustering factor, but it won't compute other more critical statistics
such as the number of distinct values (NDV) associated with the virtual column. The following example
illustrates this fact:

SQL> create index emp_total_sal_idx
 on employees (12 * salary * commission_pct, salary, commission_pct);

Index created.
SQL>

Once you create the function-based index as shown here, check the statistics on the new hidden
virtual column created by the database.

SQL> select column_name,num_distinct, hidden_column,virtual_column
 from dba_tab_ cols where table_name='EMPLOYEES';

COLUMN_NAME NUM_DISTINCT HID VIR
------------------- ------------ ---- ----
SYS_NC00012$ YES YES
DEPARTMENT_ID 11 NO NO
MANAGER_ID 18 NO NO
…
12 rows selected.

SQL>

As the query's output shows, a new virtual column (SYS_NC00012$) was created following the
creation of the function-based index. This column is both virtual and hidden. The NUM_DISTINCT column
is empty, meaning that the database has no idea of the selectivity associated with this function-based
index. The cost-based optimizer may thus end up with wrong execution plans, even though it uses your
new function-based index. To avoid this problem, you must always collect statistics on the hidden
virtual column after creating a function-based index.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

95

You can collect statistics for this hidden virtual column by using the following syntax:

SQL> exec dbms_stats.gather_table_stats(ownname=>null,tabname=>'EMPLOYEES',
 estimate_percent=>null,cascade=>true,method_opt=>'FOR ALL HIDDEN COLUMNS SIZE
 1');

PL/SQL procedure successfully completed.

SQL>

You can check once again to confirm that the database has collected statistics for the hidden virtual
column.

SQL> select column_name,num_distinct, hidden_column,virtual_column
 2* from dba_tab_cols where table_name='EMPLOYEES';

COLUMN_NAME NUM_DISTINCT HID VIR
---------------- -------------- --- ---
SYS_NC00012$ 31 YES YES
DEPARTMENT_ID 11 NO NO
MANAGER_ID 18 NO NO
…
12 rows selected.

SQL>

Alternately, you can directly collect statistics on the function expression, as shown in the following
example:

SQL> execute dbms_stats.gather_table_stats (ownname=> USER, -
> tabname=>'EMPLOYEES',-
> method_opt=>'FOR ALL COLUMNS FOR COLUMNS-
> (12 * salary * commission_pct)');

PL/SQL procedure successfully completed.

SQL>

Indexes on Virtual Columns
Before we discuss creating an index on a virtual column, it's a good idea to clarify exactly what a virtual
column is. A virtual column represents data in a table just as a normal table, but it's not stored on disk
(or elsewhere!). Instead, the database computes the values for the virtual column on the fly by
computing a set of expressions or functions. It is important to understand that the value of a virtual
column is computed only when that value is queried. That is, virtual columns are evaluated when a
WHERE clause refers to the column in a SELECT statement.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

96

The following is a simple example that shows how to create a virtual column named TOTAL_AMOUNT, which
is calculated as the total value of a sale by taking the product of the AMOUNT_SOLD and QUANTITY_SOLD
columns:

SQL> create table sales
 2 (prod_id number(6) not null,
 3 cust_id number not null,
 4 time_id date not null,
 5 channel_id char(1) not null,
 6 quantity_sold number(3) not null,
 7 amount_sold number(10,2) not null,
 8* total_amount AS (quantity_sold * amount_sold))
SQL> /

Table created.

SQL>

This example used the shorter syntax for defining a virtual column. The full syntax for creating a
virtual column is as follows:

column_name [datatype] [GENERATED ALWAYS] AS (expression) [VIRTUAL]

So, for example, you can use both the following types of syntax to generate a virtual column:

salary as (ROUND(salary*(1+commission/100),2))
salary NUMBER GENERATED ALWAYS AS (ROUND(salary*(1+commission)/100),2))

The GENERATED ALWAYS clause means that the column value is generated at runtime based on the
values of the columns it is based on. A virtual column can also be derived from a constant instead of
table's columns. The column can include SQL or user-defined PL/SQL functions.

Once you create a virtual column, you can use it as any regular column. Virtual columns reduce the
need for using triggers. You can create an index on a virtual column just as you'd for a regular column.
The index you create will be a function-based index; in fact, you can add a virtual column and index it as
an alternative to creating a function-based index on one or more columns in a table.

SQL> create index test_virtual_indx1 on sales(total_amount);

Index created.

SQL>

SQL> select a.index_name,a.index_type,
 2 b.column_expression
 3 from user_indexes a
 4 inner join user_ind_expressions b
 5 on a.index_name=b.index_name
 6* where a.index_name='TEST_VIRTUAL_INDX1'
SQL> /

INDEX_NAME INDEX_TYPE COLUMN_EXPRESSION
-------------------- -------------------- -------------------------------
TEST_VIRTUAL_INDX1 FUNCTION-BASED NORMAL "QUANTITY_SOLD"*"AMOUNT_SOLD"

SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

97

The function-based index TEST_VIRTUAL_INDX1 stores the results of the virtual column's expression. The
index type is shown as FUNCTION-BASED NORMAL. The query also shows the expression that created the
virtual column.

 Tip You can't manipulate the values of a virtual column through DML commands, but you can reference the
column in the WHERE clause of an UPDATE or DELETE statement.

Alternatively, you can use the following query if you just want to ascertain the index type:

SQL> select index_name,index_type from user_indexes
 2* where table_name='SALES'
SQL> /

INDEX_NAME INDEX_TYPE
------------------- --------------------------
TEST_PK FUNCTION-BASED NORMAL

SQL>

You can also create constraints on a virtual column, as shown here:

SQL> create unique index test_pk on sales(total_amount);
Index created.
SQL>

SQL> alter table sales add
 2 constraint test_pk
 3 primary key(total_amount)
 4 using index;

Table altered.
SQL>

You can also reference the virtual column from a foreign key constraint. Simply create a foreign key
on the child table that references the virtual column AMOUNT_SOLD in the SALES table. Any function you
use in an expression must be deterministic, but you can recompile the function after the creation of the
index to make it non-deterministic without making the virtual column invalid. You may want to do this
when using a virtual column as a partitioning key because you normally can't use a deterministic
function as a virtual column expression in this case. Once you recompile the function, you must rebuild
the index on the virtual column. In addition, if you've any constraints on the virtual column, you must
reenable them after first disabling them. Finally, you must regather the table statistics.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

98

Key-Compressed Indexes
Often, an index includes multiple occurrences of key column prefix values. Oracle Database's key
compression feature lets you separate an index key into two entries, a prefix and a suffix. Key
compression lets the suffix entries in an index block share the prefix entries, thus letting you store more
keys per index block. Of course, you save on storage and you improve performance as a result.
Performance may be improved since there are fewer leaf blocks that may need to be accessed due to the
compression. While it's obvious that compression saves storage space, it's natural to wonder if the
overhead of compression is going to negate the benefits of compressing data. In Oracle Database 11g,
the new online transaction processing (OLTP) table compression feature enables the compression of
data during all DML operations and minimizes overhead during write operations, thus making it usable
in online environments. Oracle doesn't have to uncompress the compressed data before reading it and
the data stays in a compressed form in the cache, thus taking up a smaller amount of cache space.

You can use key compression to compress parts of primary key column in either a regular B-tree
index or an index-organized table. Each index key has two components: a grouping piece and a unique
piece. When you compress index keys, the database breaks the index key into a prefix entry (grouping
piece) and a suffix entry (unique piece). The number of key columns determines the maximum prefix
length in a nonunique index. In a unique index, it is the number of key columns minus one.

When Key Compression is Useful
Key compression is useful in any situation where the database needs to deal with duplicate values in the
index keys. For example, if you have a unique index on two columns such as STOCK_TICKER and
TRANSACTION_TIME, you can envisage numerous rows with the same stock ticker, such as NYT, but with
different TRANSACTION_TIME values. When you compress this index, the database stores the value of the
STOCK_TICKER column only once in each index block, as a prefix entry. It stores the TRANSACTION_TIME
column values as suffix entries that reference the same STOCK_TICKER prefix entry.

In the case of a non-unique index, the database appends a ROWID to duplicate keys to distinguish
between the rows. When you compress such an index, the database stores the duplicate key as a prefix
entry in the index block. All the duplicate entries are stored as suffix entries, which consist only of a
ROWID.

You can use key compression when dealing with indexing a VARRAY or a NESTED TABLE data type
because the database repeats the same object ID for each of a collection data type's elements. In this
case, you can employ key compression to reduce storage for the repeating object ID values.

 Note Oracle Database will compress only leading columns in an index. In the case of a non-unique index, this
can be all columns in an index. In the case of a unique index, it can be all but the last column.

There are cases when key compression will actually have a negative impact on index storage. Note
that the prefix table stores the unique compressed column values in an index leaf block. If your index's
leading column or the compressed columns are extremely selective, the prefix table will have many
distinct values. Oracle Database is forced to create a large prefix table to store the individual column
values. The prefix entries aren't shared by many index row entries. Compressing such an index is
actually counterproductive because the compression factor and thus the storage savings are very low.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

99

The database also has to deal with the additional burden of maintaining the large prefix table. You can
potentially end up in a situation where the compressed index is larger than the uncompressed index!

 An extreme example of a very selective index is a single column unique index where by definition
there can't be duplicate column values. Each index row entry will have a separate prefix index entry, and
thus the compressed index will be larger than the uncompressed version. Actually, Oracle doesn't even
allow you to do this, because it issues an error if you try to use the COMPRESS option for a single column
unique index, as the following two examples demonstrate. In the first example, you can compress an
unique index on two columns (name,id) without a problem, but the database won't allow you to
compress a single column (column name in this example) unique index.

SQL> create unique index tt2_idx1 on tt2(name,id) compress
SQL> /

Index created.

SQL> create unique index tt2_idx3 on tt2(name) compress;
create unique index tt2_idx3 on tt2(name) compress
 *
ERROR at line 1:
ORA-25193: cannot use COMPRESS option for a single column key

SQL>

 In general, remember that the more heavily repeated a column value, the higher the storage savings
when you compress the index. In a composite index, ensure that the low cardinality columns are the
leading columns for compression to show good results.

Creating a Compressed Index
 Let's make use of the following example to understand how key compression helps reduce storage in an
index. Let's create a composite index on the ORDERS table (OE schema) on the columns ORDER_MODE and
ORDER_STATUS.

SQL> create index orders_mod_stat_idx on orders(order_mode,order_status);

Index created.

SQL>

Once you create this composite index, an index block will have the following entries:

Online,0,AAAPvCAAFAAAAFaAAa
Online,0,AAAPvCAAFAAAAFaAAg
Online,0,AAAPvCAAFAAAAFaAAl
Online,2,AAAPvCAAFAAAAFaAAm
Online,3,AAAPvCAAFAAAAFaAAq
Online,3,AAAPvCAAFAAAAFaAAt

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

100

The index block shows that the key prefix is a concatenation of the ORDER_MODE and ORDER_STATUS
values. Now, compress the ORDERS_MOD_STAT_IDX index using default key compression, as shown here:

SQL> create index orders_mod_stat_idx on orders(order_mode,order_status)
 2 compress;

Index created.

SQL>

As a result of the compression, the key prefix, consisting of the concatenation of the ORDER_MODE and
ORDER_STATUS column values, is compressed. All duplicate key prefixes such as online, 0 and online, 2 are
represented by a single, non-repeating value as a result of compression, as shown here:

Online,0
AAAPvCAAFAAAAFaAAa
AAAPvCAAFAAAAFaAAg
AAAPvCAAFAAAAFaAAl
Online,2
AAAPvCAAFAAAAFaAAm
Online,3
AAAPvCAAFAAAAFaAAq
AAAPvCAAFAAAAFaAAt

Compression of the index results in multiple suffix values referencing a single prefix entry. Note that
both the prefix and suffix values are stored in the same index block. This example used default key
compression, which compresses all the columns in the prefix.

Instead, you can specify a prefix length of 1, in which case the prefix would be just the value of the
ORDER_MODE column. The suffix entry will include both the values of the ORDER_STATUS column and the
ROWID. Here is how to specify a prefix length of 1 when compressing the index key:

SQL> create index orders_mod_stat_idx on orders(order_mode,order_status)
 compress 1;

Index created.

SQL>

The number after the COMPRESS command (1 in this case) tells Oracle Database how many columns it
should compress. In the case of a non-unique index, the default is all columns. In the case of a unique
index, it is all columns minus one.

The index block will now compress all repeated occurrences of the ORDER_MODE column, as shown
here:

0,AAAPvCAAFAAAAFaAAa
0,AAAPvCAAFAAAAFaAAg
0,AAAPvCAAFAAAAFaAAl
2,AAAPvCAAFAAAAFaAAm
3,AAAPvCAAFAAAAFaAAq
3,AAAPvCAAFAAAAFaAAt

In this case, at most, the index will store a prefix once per leaf block.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

101

You can disable key compression any time by rebuilding the index with the nocompress clause, as

shown here:

SQL> alter index orders_mod_stat_idx rebuild nocompress;

Index altered.

SQL>

You can use key compression to compress one or more partitions of an index, so long as it's a B-tree
index. Here is an example:

SQL> create indexi_cost1 on costs_demop (prod_id) compress local
 (partition costsold,partition costs_q1_2003,
 partition costs_q2_2003, partition costs_recednt nocompress);

You can specify a number after the COMPRESS keyword to tell Oracle how many columns to compress,
as in the following example:

SQL> create index tt2_idx1 on tt2(name,id) compress 2;

Index created.

SQL>

If you don't specify a number after the COMPRESS keyword, by default Oracle Database compresses all
columns in a non-unique index. In a unique index, it will compress all columns except the last column.

Key Compression and Storage
Key compression can reduce the number of leaf blocks in an index, as shown in the following example.
First, let's create a regular uncompressed index on two columns in the table objects.

SQL> create index normal_idx on objects(owner,object_name);
Index created.
SQL>

Check the number of leaf blocks in the index with the following command:

SQL> select num_rows,blevel,leaf_blocks from user_indexes
 2 where index_name='NORMAL_IDX';

NUM_ROWS BLEVEL LEAF_BLOCKS
---------- ---------- -----------
2555200 2 14589

SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

102

Now, drop the uncompressed index and create a new compressed index on the same columns.

SQL>create index compress_idx on objects(owner,object_name) compress;
Index created.

SQL>

Check the BLEVEL and the number of leaf blocks in the index.

SQL> select num_rows,blevel,leaf_blocks from user_indexes
 2 where index_name='COMPRESS_IDX';

 NUM_ROWS BLEVEL LEAF_BLOCKS
---------- ---------- -----------
 2555200 2 4327

SQL>

Notice that compressing the index reduced the number of leaf blocks to 4327 from 14589. This
reduction in the number of leaf blocks means range scans might perform better. In addition, due to the
reduction in the number of leaf blocks, the index will require a much larger number of rows to be
inserted into the index before the BLEVEL height grows to 3. As you know, the higher the BLEVEL height,
the more blocks the database will have to read to traverse from the root of the B-tree to the leaf nodes.
Note that since the same number of index rows are now stored in fewer leaf blocks, each leaf block will
contain a much larger number of rows stored in it,

Obviously, reducing storage for a large index is the primary reason for compressing an index. Can
you tell how much space you might save before you actually compress the index? Yes, you can do this by
validating an index, as shown here:

SQL> create index nocompress_idx on objects(owner,object_name);

Index created.

SQL> validate index nocompress_idx;

Index analyzed.

SQL> select opt_cmpr_count,opt_cmpr_pctsave from index_stats;

OPT_CMPR_COUNT OPT_CMPR_PCTSAVE
-------------- ----------------
 2 70

SQL>

The index_stats shows the optimal key compression length (opt_cmpr_count) is 2. The
OPT_CMPR_PCTSAVE column value is 70 (percent), which is the corresponding space savings in the index
after it's compressed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

103

Composite Indexes
You can create an index on multiple columns in a table. If you want to create an index on the
EMPLOYEE_ID and DEPARTMENT_ID columns in the employees table, for example, you can do so, and the
result is called a composite or concatenated index. Here's an example:

SQL> create index test_idx1 on employees(employee_id,department_id);
Index created.

SQL>

You can create composite B-tree indexes as well bitmap indexes. The optimizer will take into
account a composite index when the WHERE clause in a query refers to all the columns in the index or
even the leading column. The previous example showed a composite index with just two columns, but
you can have even more columns if you wish. The following example shows a composite index created
by using three columns (LAST_NAME, JOB_ID , and SALARY) from the employees table in the HR schema.
You do this when you have an application that frequently refers to these three columns.

 SQL> create index employees_idx1
 2* on employees (last_name,job_id,salary);

Index created.

SQL>

Once you create this index, any query that refers to the LAST_NAME column, or the LAST_NAME and
JOB_ID columns, or all three columns is likely to cause the optimizer to use the index. A query that
doesn't include the leading column in a composite index (LAST_NAME, in this example) will ignore the
index. At least, this was the traditional behavior. The introduction of index skip scans changes this
default behavior.

Understanding Index Skip Scans and Composite Indexes
In earlier releases of the Oracle Database, a SQL statement used a composite index only if the
statement's constructs used a leading portion of the index. The leading portion of an index is one or
more columns in the index that are specified first in the list of columns. For example, say you have the
following composite index:

create index mycomp_idx
on table mytable(a,b,c);

In this index, a, ab, and abc are all considered leading portions of an index. The column or column
combinations b, c, and bc aren't considering leading portions. However, the introduction of the index
skip scan feature (in the Oracle 9i release) has changed this behavior. An index skip scan eliminates or
skips through a composite index by using logical subindexes. Logical subindexes mean just that: you
don't create those indexes. The skip scanning feature assumes that the composite index is indeed
composed of multiple subindexes. When does the database perform a skip scan? It may do so when your
query predicate doesn’t specify the leading column of a composite index.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

104

If the leading portion of a composite index has a small number of distinct values and the non-
leading portion of the index contains a large number of distinct values, skip scanning proves useful.
Let's use a simple example to demonstrate how index skip scanning works. The test query is as follows:

select * from customers where cust_email='Sam@mycompany.com';

The customers table also has a column named GENDER, which can, of course, take just two values: M
and F. Here's a sample of the composite index's entries from an index block:

F,Wolf@company.com,rowid
F,Wolsey@company.com,rowid
F,Wood@company.com,rowid
F,Woodman@company.com,rowid
F,Yang@company.com,rowid
F,Zimmerman@company.com,rowid
M,Abbassi@company.com,rowid
M,Alapati@company.com,rowid

Say you issue a query that only specifies the CUST_MAIL column, and not the leading column GENDER,
in its WHERE clause. Since the leading column gender has only two distinct values, it really doesn't matter
if you don't specify it in the query. The database divides your composite index into two logical
subindexes, one with the key M and the other with the key F. Even though you haven't specified the
leading column gender, the database searches the two logical subindexes one after the other and gets
you the results. In other words, the database treats the query as this:

select * from sh.customers where cust_gender = 'F'
 and cust_email = 'Alapati@company.com'
union all
select * from sh.customers WHERE cust_gender = 'M'
 and cust_email = 'Alapati@company.com';

Ordering the Columns in a Composite Index
When creating a composite index, a big question is how to order the columns in the multi-column index.
Oracle recommends that you place the most commonly accessed column first in the index.

Traditionally, it was thought that you should avoid using a low cardinality column (a column with
few distinct values) as the leading column in a composite index. However, regardless of the index order,
the database can navigate straight to the leaf block containing the indexed column values because the
index leaf branch entries contain column entries based on all indexed columns.

In fact, a leading column with lower cardinality may have more advantages, as the optimizer is likely
to at least consider using an index skip scan in these cases. It has also been suggested to use the
clustering factor as a criterion when deciding which column should be the leading index column in a
composite index. The clustering factor indicates how well ordered the table’s rows are in comparison to
the way the index entries are ordered in an index. For example, an arrangement that would "guarantee"
the order of the table rows to match the order of the index entries (and therefore be reflected by the
resulting clustering factor), would be if you loaded a table from a sorted set of input data in a single
action. One of the most common reasons you use a composite index is when an important query refers
to two or more columns, none of which have a high degree of selectivity. By constructing a composite
index, you increase the odds of the optimizer choosing to use that composite index, whereas it would

www.it-ebooks.info

mailto:Sam@mycompany.com
mailto:Wolf@company.com
mailto:Wolsey@company.com
mailto:Wood@company.com
mailto:Woodman@company.com
mailto:Yang@company.com
mailto:Zimmerman@company.com
mailto:Abbassi@company.com
mailto:Alapati@company.com
mailto:Alapati@company.com
mailto:Alapati@company.com
http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

105

probably have bypassed any indexes you created separately on the two columns, both of which have a
very low selectivity.

 Note Selectivity is a computation based on column statistics (particularly on the number of distinct values and
high/low values). The optimizer computes selectivity for multiple columns in an “ANDed” predicate by computing
the individual selectivity (1/number of distinct values) for each column and then multiplying those results together
to get the overall selectivity. For example, if you have WHERE GENDER = ‘F’ AND STATUS = ‘ACTIVE’ where both
gender and status have only 2 distinct values, each column will have a selectivity of .5. The total predicate
selectivity is then .5 * .5 or .25. If a composite index exists that has both columns, the optimizer will compute
index selectivity using the .25 combined predicate selectivity along with the index stats (like the clustering factor)
to make its final cost calculation for using the index.

A big advantage of using a composite index is that if all the columns required by a query are in the
composite index itself, the database returns the values of the columns from the index without
subsequently having to access the table. Thus, you'll see a reduced I/O when using composite indexes in
most cases since you're avoiding the scan of the table itself using the ROWIDs, as is the case when you use
an index on a single column.

A key criterion in deciding how to order keys in a composite index is to ensure that the leading
portion of the index consists of keys used in WHERE clauses. If some of the keys are often specified in WHERE
clauses, make sure that these keys make up the leading portion of the index. This ensures that queries
that specify only these keys will use the index.

Choosing Keys for Composite Indexes
You can create a composite index with its columns in any order you want, but your goal should be to
create a composite index only when the different keys appear frequently together in an application's
WHERE clauses and you're currently using an AND operator to combine the columns. A composite index
would be a better choice in this case. The one thing you must do is get a rough estimate of the selectivity
of the columns you want to include in a composite index. If the combined selectivity of the columns is
better than the individual selectivity of the columns, the composite index will be beneficial. You can also
consider a composite index in cases where key queries do a select of the same set of keys based on
multiple key values. Simply create a composite index with all the keys for better performance.

Let's use a couple of simple examples to drive home our point as to how a composite index will
benefit you by reducing I/O when all the columns required to satisfy a query are in the index itself. In the
first example, you create a single column index and check the explain plan.

SQL> create table test_tab
 2 (a number, b varchar2(10), c varchar2(10));

Table created.

SQL> create index single_idx1 on test_tab (a);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

106

Index created.

SQL>
SQL> select b,c,a from test_tab where b='pc-5895' and c='pc-2893' and a=564;

no rows selected
Execution Plan
--
Plan hash value: 3182375932

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) Time |

0	SELECT STATEMENT		1	20	2 (0)	00:00:01
* 1	TABLE ACCESS BY INDEX ROWID	TEST_TAB	1	20	2 (0)	00:00:01
* 2	INDEX RANGE SCAN	SINGLE_IDX1	1		1 (0)	00:00:01

Predicate Information (identified by operation id):

 1 - filter("B"='pc-5895' AND "C"='pc-2893')
 2 - access("A"=564)
SQL>

The optimizer uses an index scan, but it also has to scan the table rows since all the required
columns are not part of your single column index. This means more I/O and more time to complete the
query in most cases. You now drop the index on the single column and create a composite index using
all three columns this time.

SQL> drop index single_idx1;

Index dropped.

SQL> create index comp_idx1 on test_tab(a,b,c)
SQL> /

Index created.

SQL> select b,c,a from test_tab where b='pc-5895' and c='pc-2893' and a=564;

no rows selected
Execution Plan
--
Plan hash value: 1685463053
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 20 | 1 (0)| 00:00:01 |
|* 1 | INDEX RANGE SCAN| COMP_IDX1 | 1 | 20 | 1 (0)| 00:00:01 |
--
Predicate Information (identified by operation id):

 1 - access("A"=564 AND "B"='pc-5895' AND "C"='pc-2893')
SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

107

Since all the requisite data is found within the new composite index, the database doesn't have to
perform the additional table scan.

Creating Virtual Indexes
Creating a virtual index is just what it sounds like: you create an index but it has no physical existence! A
virtual index is also referred to as a nosegment index or even a fake index, and you create it by specifying
the nosegment clause when creating an index, as shown here:

SQL> create index fake_idx on employees(last_name) nosegment;

Index created.

SQL>

You can issue the following query to confirm that the index is present:

SQL> select index_name,column_name,table_name from dba_ind_columns
 2* where index_name like 'FAKE%';

INDEX_NAME COLUMN_NAME TABLE_NAME
------------ ------------------ ------------
FAKE_IDX LAST_NAME EMPLOYEES
SQL>

The virtual index that you've created doesn't take up any storage—and isn't available to the cost
optimizer by default. If you query the DBA_INDEXES view, you won't see the fake indexes you've
created, as shown here:

SQL> select index_name,table_name from dba_indexes
 2* where index_name like 'FAKE%'
SQL> /

no rows selected

SQL>

The reason this query returns no rows is that the DBA_INDEXES view shows information only about
actual index segments, and since a fake index doesn’t really use storage, it doesn't show up in this view.

You make the index visible to the optimizer by setting the following undocumented initialization
parameter:

SQL> alter session set "_use_nosegment_indexes" = true;

Session altered.

SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

108

Setting the _use_nosegment_indexes parameter doesn’t mean that the database will actually use the
index; after all, the index doesn’t really exist. You can use this parameter to check if an execution plan
for a query will use the index or not, as shown in the following example:

 Tip Even after creating a virtual index on a column, you can create a regular index on the same column.

SQL> create index virtual_idx
 2 on emp(ename) nosegment;

Index created.

SQL> set autotrace on explain
SQL> alter session set "_use_nosegment_indexes"=true
SQL> /

Session altered.
SQL> select ename from emp where ename='KING';
ENAME

KING

Execution Plan
--
Plan hash value: 1165707112
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 5 | 2 (0)| 00:00:01 |
|* 1 | INDEX RANGE SCAN| VIRTUAL_IDX | 1 | 5 | 2 (0)| 00:00:01 |
--
Predicate Information (identified by operation id):

 1 - access("ENAME"='KING')
SQL>

Once you have completed your testing with the virtual index in place, you can drop it in the
following way:

SQL> drop index virtual_idx;

Index dropped.

SQL>

The proceeding explain plan shows that the optimizer considers the virtual index virtual_idx.
While the virtual or fake index feature seems enticing, especially in development environments, it's good
to remember that the optimizer may or may not really use it because the index doesn't have as much

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

109

information about the column data as a real index does. The database doesn't collect optimizer statistics
for an index while it's in the invisible state. The optimizer uses the same basic default optimizer statistics
(such as index level, leaf blocks, distinct keys, and clustering factor) for a virtual index as it does for any
normal index for which you haven't collected any statistics. You can gather statistics on an invisible
index by either converting the index into a "visible" index so the optimizer can "see" it, or set the
optimizer_use_invisible_indexes parameter to true. We much prefer using an invisible index wherever
possible when you want to test the efficacy of a potential index. The one place where we do see a use for
the virtual index is when we’re dealing with large tables and want to quickly find out if the optimizer will
use a potential index on that table. Developers can then run an explain plan as if the index actually exists
without having to wait for the creation of a large index.

You create a virtual index only when you want to explore what happens if you create an index—but
don't want to go through the mechanics of actually creating an index. When you create a nosegment
index, Oracle doesn’t create an index segment as it does for a normal index; it simply creates an index
definition. Also, you can’t rebuild or alter the index as you can in the case of a real index. Note that when
you create a nosegment index, the database populates only a few data dictionary tables and, of course,
there's no index tree associated with the index.

Several Oracle tuning tools, such as the Oracle Tuning Pack and other third-party tools, make use of
the hidden parameter _use_nosegment_indexes to simulate the presence of an index. The virtual indexes
let you evaluate whether the cost-based optimizer will actually use the indexes in its execution plans.
You can thus use the fake or virtual index to test whether an index may help performance without
actually using up the space for the index on disk.

Reverse Key Indexes
You can create an index as a reverse key index for performance reasons; they're especially suited for
Oracle RAC environments. A reverse key index stores the index entries with their bytes reversed. The
ROWIDs are stored in the same format as a regular index. When you insert rows in a column where the
database populates one of the columns using an increasing sequence, each new entry will be inserted
into the same index block. When each new key value in an index is greater than the previous value, it is
said to be a monotonically increasing value. In a RAC database, when multiple sessions simultaneously
insert data into monotonically increasing index nodes, it leads to contention for the same index block. A
reverse key index will prevent this contention because the database inserts the successive index entries
into indexed blocks that are spread out. Although RAC environments usually use reverse key indexes,
any high volume transaction processing system that is experiencing contention for index blocks could
potentially benefit from this type of an index.

A reverse key index is actually simple: it simply reverses the index column values before inserting
(storing) into the index. In a normal B-tree index, the database inserts index values sequentially. If the
next two primary key value generated by an Oracle sequence are 12345 and 12346, for example, the
database stores both values in the same index block. While this makes for efficient index lookups and for
faster index range scans, the key point is that each insert statement must be able to access the newest
block in the index to do the insertion of the new values. If index key values are being concurrently
inserted into leaf blocks or branches of the B-tree, a leaf or branch block split could become a
serialization point. A reverse key index, on the other hand, when faced with the same index values in this
example, reverses them into 54321 and 64321 before inserting them into the index. Similarly, if a column
value is ORACLE, the database stores it in the indexed in reverse order, as ELCARO. As you can see, while
the index values 12345 and 12346 would have been stored next to each other, the values 54321 and 64321
are stored in different index leaf blocks that are spread throughout the index structure. Consequently,
even in a busy database, the insertion of sequential key values won't result in contention for the
rightmost index block (the index is also said to have a right growing tree in this case). Instead of storing

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

110

new values in the same "hot" index block, the database spreads around the new entries across a number
of blocks, reducing contention for a busy block and thus, buffer contention(denoted by the buffer busy
wait event).

You can see how an index that's populated with sequentially increasing values results in all values
going to the rightmost index leaf block. Let's say you create a primary key with the following values:

696900
696901
696902
696903
696904
…

In a regular B-tree index, these sequential index values are all stored in an identical rightmost index
block, increasing contention for that block. In a reverse key index, Oracle Database will insert the same
values in the following manner:

009696
109696
209696
309696
409696
…

As you can see, the index values aren't in sequential order, although the actual values of the primary
key are. Oracle reverses the bytes in the data before inserting into the index. This reversing of the values
naturally spreads the key values by storing them non-sequentially all through the index blocks instead of
storing them in sequential order. During an insertion, the reverse key index distributes insertions across
all the leaf keys in the index, thus avoiding hotspots and enhancing performance.

Using a reverse key index will often speed up data loads in an Oracle RAC environment during batch
loads. While reverse key indexes are often mentioned in the context of an Oracle RAC environment, you
can consider them even for a single instance databases if you notice contention for index blocks, shown
by the buffer busy wait event. There are many applications where a primary key column is populated by
an increasing sequence. Often, you'll notice a significant buffer busy wait time for the index segments.
Consider a reverse key index for these kinds of situations. The reverse key index has the potential to
dramatically reduce the buffer busy waits and speed up performance.

Disadvantages of a Reverse Key Index
A big disadvantage to using a reverse key index is that you can't perform range scans on these indexes.
This is because the index entries are scattered all over instead of being stored sequentially. Reversing the
index key values randomly distributes the index blocks across the index leaf nodes. You can certainly use
the index to fetch by specific index key values and for a full index scan, however. Use reverse key indexes
when your queries have equality predicates. Note also that even though the database doesn't perform a
range scan when you use a reverse key index, it can perform a fast full scan of the index. There could be a
slight overhead in terms of CPU usage when the database searches on a reverse key index. The reason, of
course, is that the database has to reverse the order of bytes in the values of the index so they represent
the actual values stored in the table.

Remember that the main purpose of using a reverse key index is to eliminate contention caused
when the database is inserting rows with index key values generated by a sequence. Other solutions are

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

111

possible. For example, you can you can partition a hot index rather than make it into a reverse index,
using the partitioning to mitigate the input/output hotspot that you otherwise would have.

You can make the decision whether to implement a reverse key index by comparing the benefits
they provide (the faster insert rates due to the reduction in contention) with the biggest drawback (their
inability to support range-based predicates). If your application uses a primary key that is always used
through an equality predicate, a reverse key index is helpful, especially in an Oracle RAC environment.
Reverse key indexes are very helpful if your application is suffering from a hot right-hand side index
block. If the contention is due to a hot index root block, partitioning the index is potentially helpful
because the index will end up with multiple index root blocks.

If you create a reverse key index and your query specifies WHERE ind_col = value, the database will
certainly use the reverse key index. However, since the index values in a reverse key index aren't stored
in their natural order, the optimizer sometimes has a problem with the index. For example, the index
values 54321 and 64321are more likely to be in different index life blocks than they are to be together in
the same block. The database thus has to search for the two values independently as the values are most
likely stored in different data blocks. Thus, the database will be unable to use a reverse index when
handling a range predicate, such as BETWEEN, <=, <, <, and <=. Regardless of whether you use an
index hint, the database, when confronted with a reverse key index in the context of a range predicate,
will perform a full table scan, ignoring your index.

You can overcome the limitation described here by replacing the range predicate where possible
with an IN clause. The database will then transform each IN clause into an OR clause, which is compatible
with a reverse key index. That is, instead of specifying BETWEEN (12345, 12346, 12347), you can specify IN
(12345, 12346, 12347). The database will change this to 12345 OR 12346 OR 12347 and will be able to use
your reverse key index. Oracle Database can do this because reverse key indexes are fully compatible
with an equality predicate.

There are a couple of exceptions to the technical fact that Oracle can’t perform an index range scan
when dealing with a reverse key index. The first is when you use a non-unique index rather than a
unique index. Since duplicate values are stored in the index structure, the database will perform an
index range scan when it does an equality search with the non-unique reverse key index. However, this
is an unlikely event anyway, since the primary reason for using reverse key indexes is to eliminate
contention caused by insertions into a primary key that's populated using monotonically increasing
sequence values. During batch inserts, a reverse key index will usually help make the insertion of data
faster.

As explained earlier, a reverse key index is often considered an ideal solution in cases where a
generated or sequential key causes severe contention on the index leaf blocks. Whenever you use a date
or a sequence with values that increase monotonically, you are likely to encounter this contention,
especially in a RAC environment. However, before you go in for a reverse key index, do consider
alternatives such as a hash-partitioned global index. In a multi-user RAC environment, a hash-
partitioned global index can improve the performance of inserts by spreading out the inserts. Oracle's
hashing algorithm determines the location of the index values in each of the global index's partitions.
The algorithm uses the index's keys to generate unique values that it places in different partitions. When
your application is inserting frequently into segments with indexes that are right-growing, a hash-
partitioned global index can reduce contention.

In a RAC environment, Oracle recommends that you use the NOORDER and the CACHE options when
creating a sequence in order to reduce index contention. The rowlock cache statistics from the
V$SYSTEM_EVENT view tells you if monotonically increasing sequences are causing contention in the
database. You can examine the EQ_TYPE column in the GV$ENQUEUE_STAT view to determine if sequences
are causing any index enqueue waits. If you see a value of SQ Enqueue for the EQ_TYPE column, it is
usually an indication of contention for a sequence. If the index key values are derived from a sequence,
you can increase the size of the sequence cache to reduce index contention. You can easily raise the
cache size for a sequence with an alter sequence statement.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

112

When to Use a Reverse Key Index
You can make the best case for using a reverse key index when you're facing index block contention,
which reveals itself through the well known “buffer busy” and “read by other session” wait events. This is
usually due to a situation where you're dealing with an Oracle RAC OLTP environment and there are
large numbers of concurrent inserts. If your application uses monotonically increasing indexes, such as
when you use a primary key generated by an Oracle sequence, you will often encounter these types of
contention. In this context, inserts are said to contend for the rightmost index block because that where
the highest values of the sequentially primary key are stored. In a RAC environment especially, this
rightmost index leaf block contention leads to block transfers among the instances, leading to slow
performance.

Using sequences to generate primary key values is often the cause of contention, especially in an
Oracle RAC environment. Unlike table entries, index entries must be stored in order. Thus, entries are
sequentially stored in the index structure, and if multiple uses are concurrently inserting into the same
index block, you end up with high buffer busy waits.

Creating a Reverse Key Index
It's easy to create a reverse key index. Simply add the clause reverse at the end of a regular index
creation statement, as shown here:

SQL> create index dept_idx on emp(department_id) reverse;
Index created.

SQL>

You can also convert a normal index into a reverse key index by rebuilding it with the reverse
clause, as shown by the following alter index statement:

SQL> alter index my_idx1 rebuild reverse;
Index altered.

SQL>

You can change a reverse key index into a regular index by specifying the noreverse clause in an
alter index statement, like so:

SQL> alter inde myidx1 rebuild norverse;
Index altered.

SQL>

Application Domain Indexes
Of all the specialized types of indexes discussed in this book, application domain indexes are the least
known and the least used by most developers and DBAs. Application domain indexes let you create your
own index structures in order to implement new index types that don't currently exist in the Oracle
Database. A good example of an application domain index is the way Oracle Database itself implements

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ SPECIALIZED INDEXES

113

text indexes, which are commonly used to facilitate searching on large text items. In order to create a text
index, you include the indextype clause in a create index statement, as shown here:

SQL> create index test_idx2 on test_tab(desc)
 2* indextype is ctxsys.context;

Index created.
SQL>

Once you create a text index, you can use text operators to query the text columns.

SQL>select * from test_tab where contains(desc,'word pattern') >0;

You can gather statistics on the text index just as you would with a regular index, by invoking the
DBMS_STATS.GATHER_INDEX_STATS procedure. Although we discuss application domain indexes briefly
here, for the most part, these indexes are of more interest to third-party solution providers that need to
use innovative indexing solutions to access various types of non-traditional data, such as text and
images. When you're using certain types of data such as video clips, for example, they may not fit very
well into Oracle data types. In addition, these special types of data may need special kinds of operators,
for example, to grade the colors in images. You can define these special types of operators using
comparison operators that enable the grading of colors in an image.

Domain indexes are mostly relevant to applications you implement with Oracle's data cartridges.
For more information on implementing domain indexes, check out the Oracle Database Cartridge
Developer's Guide.

Summary
This chapter provided an introduction to various specialized indexes that you can create in an Oracle
Database to enhance performance and make index management simpler. You learned how to use
invisible indexes to test the efficiency of indexes. This chapter showed you how to take advantage of
function-based indexes to influence the optimizer's choice of indexes during the execution of queries
where the predicates involve a function on a column. This chapter also explained the benefits of key
compression and how and when to compress indexes. Composite indexes are very important in many
applications and you learned the advantages of using composite indexes. This chapter showed you both
how to create and manage indexes on virtual columns, as well as how to create a virtual or fake index
that doesn't utilize any storage. Reverse keys are critical in avoiding contention on hot blocks, especially
in an Oracle RAC environment. This chapter explained in detail when and how to create reverse key
indexes. It also listed the disadvantages involved in the use of reverse key indexes.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 6

■ ■ ■

115

Partitioned Indexes

If you use partitioned tables as part of your application, it is likely, if not imperative, that you use
partitioned indexes to complement the advantages gained by using table partitioning. Usually, having
partitioned table and indexes go hand in hand—when there’s one, there’s usually both. This is common,
but not essential. It is possible to have partitioned tables without partitioned indexes, and it is possible
to have a non-partitioned table with partitioned indexes. There are several factors that affect the design
of the database tables and indexes, including:

• Application data loading requirements (DML)

• Is it an OLTP system?

• Is it a data warehouse?

• Client query requirements

• Data volume

• Data purging requirements

Deciding on whether your indexes should be partitioned will largely be based on the answers to the
aforementioned factors. All of the above factors are important, but often it boils down to data volume.
The volume of your data affects load speed, query speed, and data purging speed. Obviously, as volume
increases, design considerations must include factors to improve the speed of all these factors. All this
said, some key reasons to have partitioned indexes include:

• You can perform maintenance on only a portion of the index based on activity in
the table.

• You can rebuild only portions of an index.

• You can spread an index out evenly—that is, you can always have a balanced
index.

 Within this chapter are examples of how to create partitioned indexes. In addition, there are some
examples of partitioned index usage, along with examples of operations that are performed on the
database that can affect partitioned indexes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

116

Understanding Partitioned Indexes
Partitioned indexes offer many advantages over their non-partitioned counterparts. The key advantages
of using partitioned indexes include:

• Performance benefits

• Loading data via DML operations.

• Loading data via DDL operations.

• Querying data via SELECT statements.

• Maintenance benefits

• Rebuilding indexes.

• Setting indexes unusable or invisible at a partition-level.

You can create partitioned indexes either as locally partitioned or globally partitioned. Locally
partitioned indexes can only exist on partitioned tables, while globally partitioned indexes can be
created on partitioned or non-partitioned tables. You can also create non-partitioned indexes on
partitioned tables. The most common configuration for partitioned indexes is to create locally
partitioned indexes on a partitioned table, simply because the overall benefits and trade-offs of this
configuration generally beat out both globally partitioned and non-partitioned indexes on partitioned
tables.

■ Note Creating non-partitioned indexes on partitioned tables is identical to creating non-partitioned indexes on
non- partitioned tables. Refer to the “Maintaining Indexes on Partitioned Tables” section for more information on
the use of non-partitioned indexes on partitioned tables.

Creating a Locally Partitioned Index
The most common type of partitioned index is the locally partitioned index. Locally partitioned indexes
can only be created on partitioned tables. As specified by the name, “local” means there is a direct
relationship between entries for an index and the corresponding data. There is a one-to-one relationship
between data partitions and index partitions. If you have a table partitioned by range based on dates and
you have a partition for every month of the year, then for all the data for the January 2012 partition, you
have, for each index created, the corresponding index entries in the January 2012 index partition(s). See
Figure 6-1 for an example of the architecture between data and index partitions for a locally partitioned
index.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

117

Figure 6-1. Locally partitioned index architecture

The Simplest Form
Creating a locally partitioned index is, at its most basic form, identical to creating a non-partitioned

index—except for the LOCAL keyword.

SQL> CREATE INDEX employees_part_1i
 2 ON employees_part (hire_date)
 3 TABLESPACE empindex_s
 4 LOCAL;

Index created.

For this example, the partition names Oracle will create will have the same names as the data partitions.
Furthermore, all partitions will be created in the EMPINDEX_S tablespace.

Based on the requirements of your application you may need to specify partition-specific
information, such as the following:

• Partition name

• Tablespace name

• Storage parameters

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

118

Partition-Level Requirements
If you have specific partition-level requirements, you will need to specify each partition within your

CREATE INDEX DDL. For example,

SQL> CREATE INDEX employees_part_i1
 2 ON employees_part (hire_date)
 3 LOCAL
 4 (partition pi1990 tablespace EMP1990_S
 5 ,partition pi1991 tablespace EMP1991_S
 6 ,partition pi1992 tablespace EMP1992_S
 7 ,partition pi1993 tablespace EMP1993_S
 8 ,partition pi1994 tablespace EMP1994_S
 9 ,partition pi1995 tablespace EMP1995_S
 10 ,partition pi1996 tablespace EMP1996_S
 11 ,partition pi1997 tablespace EMP1997_S
 12 ,partition pi1998 tablespace EMP1998_S
 13 ,partition pi1999 tablespace EMP1999_S
 14 ,partition pi2000 tablespace EMP2000_S
 15 ,partition pimax tablespace EMPMAX_S);

In this example, the partition names were modified to insert an 'I' to note index partition. In order to
have different partition names for indexes, each partition needs to be specified in the CREATE INDEX
DDL. You also specified different tablespaces for each partition, which represents a year's worth of data.
By putting each year in its own tablespace, now tablespaces for previous years' data can be made read-
only. This can help both in query speed and backup speed, as you won’t need to back up read-only
tablespaces with each backup of a database.

Again, to create a local partitioned index, it must be on top of a partitioned table. If not, you’ll
receive the following error:

SQL> CREATE INDEX EMPLOYEES_I1
ON EMPLOYEES (HIRE_DATE)
TABLESPACE EMPINDEX_S
LOCAL;
 2 3 4 ON EMPLOYEES (HIRE_DATE)
 *
ERROR at line 2:
ORA-14016: underlying table of a LOCAL partitioned index must be partitioned

Prefixed and Non-Prefixed Options
Locally partitioned indexes can be created as prefixed or non-prefixed. When you create a prefixed

locally-partitioned index, it means that the partitioning column(s) for the table are on the leading edge
of the index. If the partitioning column(s) are not on the leading edge, it is regarded as a non-prefixed
index. In earlier versions of Oracle, having a local index as prefixed offered performance advantages over
its non-prefixed counterpart. With later versions of Oracle, including version 11gR2, the advantages of
creating local indexes as prefixed have diminished. However, if your database environment is an OLTP
system, it still benefits query performance to have local prefixed indexes over non-prefixed indexes, as
the optimizer will potentially scan less index partitions in order to retrieve the data for a query. Refer to

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

119

the Oracle Database VLDB and Partitioning Guide for your specific database release to get more
information on using prefixed and non-prefixed locally partitioned indexes.

When creating a unique locally-partitioned index, the partitioning column(s) must be included as
part of the index or you will receive the following error:

SQL> CREATE UNIQUE INDEX employees_part_pk
 2 ON employees_part (employee_id)
 3 LOCAL
 4 /
ON employees_part (employee_id)
 *
ERROR at line 2:
ORA-14039: partitioning columns must form a subset of key columns of a UNIQUE
index

After adding the partitioning column (in this case, HIRE_DATE) to the unique index definition, you
can now create the unique index on the EMPLOYEES_PART TABLE.

SQL> CREATE UNIQUE INDEX employees_part_pk
 2 ON employees_part (employee_id, hire_date)
 3 LOCAL
 4 /

Index created.

Managing Primary Keys and Unique Indexes
It is generally regarded as good practice when a primary key constraint is needed on a table to first

create a unique index using the columns to be used for the primary key constraint, and then add the
constraint after the index has been created. For example,

CREATE UNIQUE INDEX employees_part_pk
ON employees_part (employee_id, hire_date)
LOCAL;

alter table employees_part add constraint employees_part_pk
primary key (employee_id, hire_date);

The advantage of doing this is it allows you to disable and re-enable the constraint when necessary
without dropping the underlying index. For a large table, that ability can represent a substantial time
savings when having to perform constraint management on a table. Disabling and then re-enabling
constraints is very common in data warehouse environments where a large volume of data is bulk
loaded into tables. In this scenario, constraints are disabled prior to loading and re-enabled after
loading. This can save substantial overall data processing time.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

120

If you have created your UNIQUE INDEX first, and then enabled your primary key constraint, you can
see in the following example that your constraint and index still exist in the database:

SQL> alter table employees_part disable constraint employees_part_pk;

Table altered.

SQL> select i.index_name, c.constraint_type, i.partitioned
 2 from user_indexes i left join user_constraints c
 3 on (i.index_name = c.constraint_name)
 4 where i.index_name = 'EMPLOYEES_PART_PK';

INDEX_NAME C PAR
------------------------------ - ---
EMPLOYEES_PART_PK P YES

If you created your primary key inline with the CREATE TABLE statement or a single ALTER TABLE
statement, this will create the underlying unique index. If you disable your primary key constraint in this
case, you can see it drops the underlying index.

SQL> alter table employees_part disable constraint employees_part_pk;

Table altered.

SQL> select i.index_name, c.constraint_type, i.partitioned
 2 from user_indexes i left join user_constraints c
 3 on (i.index_name = c.constraint_name)
 4 where i.index_name = 'EMPLOYEES_PART_PK';

no rows selected

When this becomes very useful with locally partitioned indexes is when you need to perform
partition-level operations on your table, which would render the index for a partition UNUSABLE—such as
performing a partition split on a table. In the case of your primary key, you could simply disable the
primary key constraint (in which case the underlying index would remain intact), perform your
partition-level operation, rebuild the index(es) for that partition, and then re-enable the primary key
constraint. In this case, the only part of the index that would be rebuilt is the partition(s) affected by the
operation.

Another common issue with the limitation of having the partitioning column as part of a unique
index, which in turns becomes the primary key, is that sometimes the user requirements are such that
the partitioning column is not desired as one of the primary key columns on a table. As shown in the
following example, you can simply alter the EMPLOYEES table to create a primary key constraint using the
unique index created previously:

SQL> alter table employees_part add constraint employees_part_pk
 2 primary key (employee_id);

Table altered.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

121

If your client requirement states that the partitioning column, in this case HIRE_DATE, can’t be part of
the primary key, you can also simply create the constraint using the same syntax, which creates the
constraint along with a non-partitioned underlying index. The following query demonstrates the result:

SQL> select i.index_name, c.constraint_type, i.partitioned
 2 from user_indexes i join user_constraints c
 3 on (i.index_name = c.constraint_name)
 4* where i.index_name = 'EMPLOYEES_PART_PK';

INDEX_NAME C PAR
------------------------------ - ---
EMPLOYEES_PART_PK P NO

An index did indeed get built for your table, but it is non-partitioned. The advantage of this is that

the limitation of the partitioning column having to be part of a unique index has been lifted, and you can
create the "natural" primary key constraint on the single EMPLOYEE_ID column. The disadvantage is that
now you have a non-partitioned index on top of your partitioned EMPLOYEES table. If you need to perform
any partition-level operations now on your table—such as truncating a partition, moving a partition, or
splitting a partition, to name a few—the entire underlying non-partitioned index is marked UNUSABLE and
must be rebuilt after any partition-level operation. Refer to the "Maintaining Indexes on Partitioned
Tables" section for more information.

Creating a Globally Partitioned Index
Globally partitioned indexes essentially mean that the index has a different partitioning scheme and is
partitioned based on a different column or set of columns than the data. This is primarily done to
increase the performance of queries against the data in the database. Based on user queries against a
given table, it may lend itself to having a globally partitioned index on a given queried column in order to
improve query performance. See Figure 6-2 for an example of how a globally partition is constructed
based on the data in a given table.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

122

Figure 6-2. Globally partitioned index architecture

You can create the following types of globally partitioned indexes:

• Range

• Hash

To show an example for a range-based globally partitioned index, for your EMPLOYEES table, you find
out there are many requirements to query by MANAGER_ID, so you can therefore create a partitioned index
on the MANAGER_ID column, with the partitioning being completely independent of the table. See the
following example of a range partitioned index:

SQL> CREATE INDEX employees_gi2
 2 ON employees (manager_id)
 3 GLOBAL
 4 partition by range(manager_id)
 5 (partition manager_100 values less than (100),
 6 partition manager_200 values less than (200),
 7 partition manager_300 values less than (300),

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

123

 8 partition manager_400 values less than (400),
 9 partition manager_500 values less than (500),
 10 partition manager_600 values less than (600),
 11 partition manager_700 values less than (700),
 12 partition manager_800 values less than (800),
 13 partition manager_900 values less than (900),
 14* partition manager_max values less than (maxvalue));

Index created.

You can create a globally partitioned index on a partitioned table or a non-partitioned table. In
other words, there is no requirement for the table to be partitioned in order to create a globally
partitioned index. Because of the maintenance considerations on globally partitioned indexes on
partitioned tables discussed later in the chapter, globally partitioned indexes are not often used. They
are therefore often underutilized or ignored as an option to improve query performance, especially on
non-partitioned tables.

For range-based globally partitioned indexes, there must always be a maximum specified for the
index, with a high value of MAXVALUE. This assures that any new insertions into the corresponding table
will have a place in the globally partitioned index. In other words, with a globally partitioned index, you
can never have an "out of bounds" condition on the index. If you don’t specify a high-bound partition on
a globally partitioned index, Oracle will simply not allow you to create the index, and you will receive the
following error:

SQL> CREATE INDEX employees_gi2
 2 ON employees (manager_id)
 3 GLOBAL
 4 partition by range(manager_id)
 5 (partition manager_100 values less than (100),
 6 partition manager_200 values less than (200),
 7 partition manager_300 values less than (300),
 8 partition manager_400 values less than (400),
 9 partition manager_500 values less than (500),
 10 partition manager_600 values less than (600),
 11 partition manager_700 values less than (700),
 12 partition manager_800 values less than (800),
 13* partition manager_900 values less than (900))
SQL> /
partition manager_900 values less than (900))
 *
ERROR at line 13:
ORA-14021: MAXVALUE must be specified for all columns

Because of having to have to include a high-bound partition within every globally partitioned index,
the only manner in which you can add a partition to a globally partitioned index is with the ALTER INDEX
... SPLIT partition command. For example,

SQL> alter index employees_12
 2 split partition manager_max at (1000)
 3 into (partition manager_max, partition manager_1000);

Index altered.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

124

You can also drop partitions of a globally partitioned index. However, when doing so, if the partition

being dropped contains index entries, the higher adjacent partition will be marked unusable. In the
following code, you are querying the status of the index partitions prior to dropping partition
MANAGER_125:

SQL> SELECT partition_name, status from user_ind_partitions
 2* WHERE index_name = 'EMPLOYEES_GI2';

PARTITION_NAME STATUS
------------------------------ --------
MANAGER_100 USABLE
MANAGER_125 USABLE
MANAGER_200 USABLE
MANAGER_300 USABLE
MANAGER_400 USABLE
MANAGER_500 USABLE
MANAGER_600 USABLE
MANAGER_700 USABLE
MANAGER_800 USABLE
MANAGER_900 USABLE
MANAGER_MAX USABLE

Then you drop partition MANAGER_125.

SQL> ALTER index employees_i2
 2 DROP partition manager_125;

Index altered.

When you query USER_IND_PARTITONS again, you can see it marked the higher partition UNUSABLE.

SQL> select partition_name, status from user_ind_partitions
 2* where index_name = 'EMPLOYEES_GI2';

PARTITION_NAME STATUS
------------------------------ --------
MANAGER_100 USABLE
MANAGER_200 USABLE
MANAGER_300 UNUSABLE
MANAGER_400 USABLE
MANAGER_500 USABLE
MANAGER_600 USABLE
MANAGER_700 USABLE
MANAGER_800 USABLE
MANAGER_900 USABLE
MANAGER_MAX USABLE

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

125

Once you have already dropped the global index partition, you must issue an ALTER INDEX command
to rebuild the partition that was marked UNUSABLE due to the DROP PARTITION operation.

SQL> ALTER INDEX employees_i2 rebuild partition manager_300;

Index altered.

 Since it is a requirement to specify a partition with MAXVALUE on a globally partitioned index, you can
never drop the highest partition. For example,

SQL> ALTER INDEX employees_i2
 2 DROP PARTITION manager_max;
DROP PARTITION manager_max
 *
ERROR at line 2:
ORA-14078: you may not drop the highest partition of a GLOBAL index

Globally partitioned indexes can be unique or non-unique. So far, you have only created a non-

unique index. See the following to create a unique globally partitioned index on a table:

SQL> create unique index employees_uk1
 2 on employees (manager_id, employee_id)
 3 global
 4 partition by range(manager_id)
 5 (partition manager_100 values less than (100),
 6 partition manager_200 values less than (200),
 7 partition manager_300 values less than (300),
 8 partition manager_400 values less than (400),
 9 partition manager_500 values less than (500),
 10 partition manager_600 values less than (600),
 11 partition manager_700 values less than (700),
 12 partition manager_800 values less than (800),
 13 partition manager_900 values less than (900),
 14* partition manager_max values less than (maxvalue));

Index created.

Unlike locally partitioned indexes that can be defined as prefixed or non-prefixed, all globally
partitioned indexes must be created as prefixed; that is, the partitioning column must be on the leading
edge of the index. If you try to create a non-prefixed globally partitioned index, you will receive the
following error:

SQL> create unique index employees_uk1
 2 on employees (employee_id)
 3 global
 4 partition by range(manager_id)
 5 (partition manager_100 values less than (100),
 6 partition manager_200 values less than (200),
 7 partition manager_300 values less than (300),
 8 partition manager_400 values less than (400),
 9 partition manager_500 values less than (500),

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

126

 10 partition manager_600 values less than (600),
 11 partition manager_700 values less than (700),
 12 partition manager_800 values less than (800),
 13 partition manager_900 values less than (900),
 14* partition manager_max values less than (maxvalue));
partition by range(manager_id)
 *
ERROR at line 4:
ORA-14038: GLOBAL partitioned index must be prefixed

The second type of globally partitioned that can be created is the hash partitioned index. This is
typically done for performance reasons and keeps the index more evenly spread between the partitions.
See the following example to create a hash-based globally partitioned index:

SQL> CREATE INDEX employees_ih1
 2 ON employees (department_id)
 3 GLOBAL
 4 PARTITION BY HASH(department_id) partitions 4;

Index created.

■ Note Globally partitioned indexes must be created on heap-organized tables. Also, you can’t create globally
partitioned bitmap indexes.

Choosing the Type of Index for Your Application
Using locally partitioned indexes is the most popular implementation of indexes on partitioned tables,
especially in the data warehouse environment. One of the primary reasons is that locally partitioned
indexes reduce the amount of index partition maintenance necessary overall when you perform table-
level partition operations. Locally partitioned indexes are easy to create and much easier to maintain
than their counterparts, the non-partitioned index and the globally partitioned index. While their use
does reduce the amount of maintenance and time it takes to perform partition maintenance, using
locally partitioned indexes doesn’t eliminate maintenance entirely. That said, implementing locally
partitioned indexes offer the strongest advantages over both globally partitioned indexes and non-
partitioned indexes.

One of the key drawbacks of globally partitioned indexes is that performing table-level operations
will generally make the entire globally partitioned index unusable. The same is true for non-partitioned
indexes that exist on partitioned tables—that is, any partition-level operations at the table level will mark
the entire non-partitioned index unusable.

If you have partitioned tables, it is best to implement a guideline to simply use locally partitioned
indexes on all partitioned tables. Of course, there are always exceptions to any rule or guideline. When
these exceptions occur, you simply need to weigh the advantages and disadvantages of implementing a
certain kind of index. This can vary greatly based on the type of application. For instance, the answer for
an OLTP system will greatly vary from a data warehouse system.

It's hard to find reasons not to use locally partitioned indexes, but the following are a couple of
possible reasons to use non-partitioned indexes or globally partitioned indexes:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

127

• Globally partitioned index scans may offer significant query performance benefits.

• During database design, your application team decides it’s not possible to include
the table partitioning column as part of the table primary key (therefore primary
key index would need to be non-partitioned).

See Table 6-1 for a quick synopsis of the effect table-level partition operations have on the different
types of indexes, whether it be non-partitioned, locally partitioned, or globally partitioned. You’ll see
clearly that locally partitioned indexes are the easiest to maintain.

Table 6-1. Index Partition Maintenance Comparison on Table-Level Partition Operations

Table-Level Partition

Operation

Non-Partitioned Index Locally Partitioned Index Globally Partitioned Index

Add partition Index is unaffected. Index is unaffected. Index is unaffected.

Split partition Entire index marked
UNUSABLE.

Index for affected
partitions from split
operation marked
UNUSABLE.

All partitions of index marked
UNUSABLE.

Move partition Entire index marked
UNUSABLE.

Index for partition being
moved marked
UNUSABLE.

All partitions of index marked
UNUSABLE.

Exchange partition Entire index marked
UNUSABLE.

Index for partition being
exchanged marked
UNUSABLE.

All partitions of index marked
UNUSABLE.

Merge partition Entire index marked
UNUSABLE.

Index for affected
partitions from merge
operation marked
UNUSABLE.

All partitions of index marked
UNUSABLE.

Truncate partition Entire index marked
UNUSABLE.

Index is unaffected. All partitions of index marked
UNUSABLE.

Drop partition Entire index marked
UNUSABLE.

Local index partition is
dropped, remaining index
partitions are unaffected.

All partitions of index marked
UNUSABLE.

Making data

read-only

Not possible unless
entire table is static
(no DML activity ever
on table).

Can make partition-level
index data read-only via
tablespace isolation.

Conceptually possible to
make partition-level index
data read-only. Practically
speaking, not possible unless
entire table is static.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

128

Maintaining Indexes on Partitioned Tables
Having partitioned tables and indexes offer many advantages, but there are maintenance implications
when creating partitioned tables and indexes that must be considered and taken into account when
designing your application. The maintenance activities vary based on the circumstances and your
specific application design and database design. For your specific application, this includes the DML
patterns of your application and the volume of data that is being insert, updated, and deleted. DML
activity is slowed by the presence of indexes. In some applications, particularly in the data warehouse
arena, it is beneficial to perform partition-level operations in order to speed up the overall application
processing time. Partition-level operations can have significant impact on indexes, depending on what
type of indexes you are using within your application.
In the examples that follow, you can see the effect partition-level operations have on the different types
of indexes. Each of the examples uses a test table containing employee data. On this table, there are
three indexes: one non-partitioned index (EMPLOYEES_PART_I1), one locally partitioned index
(EMPLOYEES_PART_LI1), and one globally partitioned index (EMPLOYEES_PARTTEST_GI1). You’ll see
the impact a partition-level operation on the table has on each index within the table.

■ Note If any of the following operations are performed on an empty partition, all associated indexes are
unaffected. This is true regardless of whether they are locally partitioned, globally partitioned, or non-partitioned
indexes.

Adding a Partition
Adding partitions to a table is the least intrusive to existing indexes on your table. In fact, regardless of
the type of index you choose to use (be it locally partitioned, globally partitioned, or non-partitioned),
none of the index partitions that exist are affected, and there are no specific index-level operations
needed after the partition add operation. In the following example, you are adding a partition to the test
employees table for historical 2010 data:

SQL> alter table employees_parttest add partition p2010
 2 values less than ('2011-01-01') tablespace users;

Table altered.

After adding the partition, you can run the following query to determine the impact the add

partition operation had on the existing indexes on the table:

SQL> SELECT index_name, null partition_name, status
 2 FROM user_indexes
 3 WHERE table_name = 'EMPLOYEES_PARTTEST'
 4 AND partitioned = 'NO'
 5 UNION
 6 SELECT index_name, partition_name, status
 7 FROM user_ind_partitions
 8 WHERE index_name in

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

129

 9 (SELECT index_name from user_indexes
 10 WHERE table_name = 'EMPLOYEES_PARTTEST')
 11 ORDER BY 1,2,3;

INDEX_NAME PARTITION_NAME STATUS
------------------------------ ------------------------------ --------
EMPLOYEES_PARTTEST_GI1 MANAGER_100 USABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_500 USABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_900 USABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_MAX USABLE
EMPLOYEES_PARTTEST_I1 VALID
EMPLOYEES_PART_LI1 P2010 USABLE
EMPLOYEES_PART_LI1 PI1990 USABLE
EMPLOYEES_PART_LI1 PI1995 USABLE
EMPLOYEES_PART_LI1 PI2000 USABLE

Truncating a Partition
Truncating a partition is a simple way to remove all the data for a table partition. And, for tables with
locally partitioned indexes, truncating a partition has no impact on the underlying index partitions,
including the truncated partition. However, if you have either non-partitioned indexes or globally
partitioned indexes, truncating a partition makes it impossible for Oracle to be able to know which index
entries have been affected by the truncate operation. Therefore, Oracle has no choice but to simply mark
the entire index UNUSABLE. For example,

SQL> ALTER TABLE employees_parttest truncate partition p1995;

Table truncated.

INDEX_NAME PARTITION_NAME STATUS
------------------------------ ------------------------------ --------
EMPLOYEES_PARTTEST_GI1 MANAGER_100 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_500 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_900 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_MAX UNUSABLE
EMPLOYEES_PARTTEST_I1 UNUSABLE
EMPLOYEES_PART_LI1 PI1990 USABLE
EMPLOYEES_PART_LI1 PI1995 USABLE
EMPLOYEES_PART_LI1 PI2000 USABLE

Moving a Partition
There are various reasons to move a table partition. You may need to move some tables or partitions to a
different tablespace, you may decide to compress a partition's data, or you may need to reorganize the
table's partition because rows have become migrated due to heavy update activity.

When doing partition move operations, you again see that locally partitioned indexes are the least
impacted. A key difference for a locally partitioned index over a partition-level truncate operation is that
the index for the partition being moved has been marked UNUSABLE. This needs to be done by Oracle
because by moving each row in the partition, each row now has a different ROWID value; thus the index

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

130

entries for that partition are now invalid because they now contain obsolete ROWID entries. The index
partition needs to be rebuilt to reflect the new ROWID values.

As with the truncate example, Oracle has no knowledge of the table partition boundaries for the
globally partitioned and non-partitioned indexes on the table, and therefore needs to mark the entire
index UNUSABLE, and the entire index needs to be rebuilt. For the locally partitioned index, only the index
partition of the partition being moved needs to be rebuilt.

In the following example, you’re moving the older 1995 employee data to its own tablespace,
presumably so it can be made read-only:

SQL> alter table employees_parttest move partition p1995 tablespace emp1995_s;

Table altered.

INDEX_NAME NULL STATUS
------------------------------ ------------------------------ --------
EMPLOYEES_PARTTEST_GI1 MANAGER_100 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_500 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_900 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_MAX UNUSABLE
EMPLOYEES_PARTTEST_I1 UNUSABLE
EMPLOYEES_PART_LI1 PI1990 USABLE
EMPLOYEES_PART_LI1 PI1995 UNUSABLE
EMPLOYEES_PART_LI1 PI2000 USABLE

Splitting a Partition
Splitting a partition is usually done because a table's partition no longer meets the application
requirements or needs to be split for maintenance reasons. One of the most common reasons is simply
to add a partition to a table when it is not the high-end partition of a table, and because of that, it needs
to be done via a split rather than a partition add operation.

The following example splits the MAXVALUE partition in order to add a partition for data older than
January 2000. For your locally partitioned index, since the split operation touches the PIMAX index
partition and also creates a new one (P1999), the rows in the PMAX partition have been split between the
two partitions. Therefore, the index entries for the PMAX partition are obsolete since some data
presumably moved from the PMAX table partition to the new P1999 table partition. In the case of this split
operation, then, both local index partitions have been marked UNUSABLE. Since the new partition
previously did not exist, there really isn't an existing local index partition, so Oracle creates one and it is
automatically marked UNUSABLE.

As with previous operations such as truncate and move, all globally partitioned and non-partitioned
indexes have been marked entirely UNUSABLE.

SQL> ALTER TABLE employees_parttest SPLIT PARTITION Pmax at ('2000-01-01') INTO
 2 (partition P1999 tablespace users,
 3 partition pmax tablespace users);

Table altered.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

131

INDEX_NAME NULL STATUS
------------------------------ ------------------------------ --------
EMPLOYEES_PARTTEST_GI1 MANAGER_100 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_500 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_900 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_MAX UNUSABLE
EMPLOYEES_PARTTEST_I1 UNUSABLE
EMPLOYEES_PART_LI1 PI1990 USABLE
EMPLOYEES_PART_LI1 PI1995 USABLE
EMPLOYEES_PART_LI1 P1999 UNUSABLE
EMPLOYEES_PART_LI1 PIMAX UNUSABLE

An important note to stress is that if a partition split operation is necessary to essentially add
partitions to a table because there is a need for high-end partition to hold default data of some kind,
partition split operations just to add an empty partition can take quite a bit of time. Oracle needs to
analyze every row in an existing partition in order to effectively perform the split correctly. In this case,
for tables with a high-end value or one where MAXVALUE is specified, it may be beneficial to add an unused
"dummy" partition below the high-end partition that is always empty. Then, if you add historical
partitions to your table, you can always use the empty "dummy" partition to split the partition. This
offers two key benefits: the partition split operation will be fast, as there is no data to analyze. Second, no
indexes will be marked unusable because there is no data in either partition, the partition being split or
the new partition.

See the following CREATE TABLE DDL statement. For the EMPLOYEES_PART table, once employees
left the company, their HIRE_DATE was altered to MAXVALUE and left in the table for historical purposes. In
this case, you will always have data in the PMAX partition. When you add partitions to the table for future
years by doing a partition split on the PMAX partition, it will always take time to do, and the underlying
index partitions will be marked UNUSABLE. By creating the P9999 partition as a "dummy" partition, you
will never add any rows into this partition. Then when you split the P9999 partition to add a partition for
2001 data and beyond, it will always be split on an empty partition. Thus, the split operation will be fast,
and all underlying local index partitions will be usable because the split operation occurred on an empty
partition.

CREATE TABLE employees_part
(
 EMPLOYEE_ID NUMBER(6) NOT NULL
 ,FIRST_NAME VARCHAR2(20)
 ,LAST_NAME VARCHAR2(25) NOT NULL
 ,EMAIL VARCHAR2(25) NOT NULL
 ,PHONE_NUMBER VARCHAR2(20)
 ,HIRE_DATE DATE NOT NULL
 ,JOB_ID VARCHAR2(10) NOT NULL
 ,SALARY NUMBER(8,2)
 ,COMMISSION_PCT NUMBER(2,2)
 ,MANAGER_ID NUMBER(6)
 ,DEPARTMENT_ID NUMBER(4)
 ,constraint employees_part_pk primary key (employee_id, hire_date)
)
partition by range(hire_date)
(
partition p1990 values less than ('1991-01-01'),
partition p1991 values less than ('1992-01-01'),

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

132

partition p1992 values less than ('1993-01-01'),
partition p1993 values less than ('1994-01-01'),
partition p1994 values less than ('1995-01-01'),
partition p1995 values less than ('1996-01-01'),
partition p1996 values less than ('1997-01-01'),
partition p1997 values less than ('1998-01-01'),
partition p1998 values less than ('1999-01-01'),
partition p1999 values less than ('2000-01-01'),
partition p2000 values less than ('2001-01-01'),
partition p9999 values less than ('9999-12-31'),
partition pmax values less than (MAXVALUE);

Exchanging a Partition
Especially in the data warehouse environment, partition exchanges are common for large batch loads.
The loads are performed into a standalone table, so read operations are not affected during the load
operation. Then a partition exchange is done, which is essentially a data dictionary change to repoint a
standalone table segment to be part of a partitioned table and make the associated affected table
partition a standalone table segment.

A partition exchange is similar to performing a partition move in that only the affected, exchanged
partition of a locally partitioned index is marked unusable.

For the globally partitioned and non-partitioned indexes, you can see again that both entire indexes
have been marked UNUSABLE.

SQL> ALTER TABLE employees_parttest EXCHANGE PARTITION p1995
 2 WITH TABLE employees_parttest_exch;

Table altered.

INDEX_NAME NULL STATUS
------------------------------ ------------------------------ --------
EMPLOYEES_PARTTEST_GI1 MANAGER_100 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_500 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_900 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_MAX UNUSABLE
EMPLOYEES_PARTTEST_I1 UNUSABLE
EMPLOYEES_PART_LI1 PI1990 USABLE
EMPLOYEES_PART_LI1 PI1995 UNUSABLE
EMPLOYEES_PART_LI1 PIMAX USABLE

Dropping a Partition
Dropping a partition usually occurs for date- or timestamp-based partitioned tables and occurs when
the data is no longer needed because the data retention for the data has expired.

For locally partitioned indexes, there is no impact on any of the remaining local index partitions. All
local partitioned indexes remain in USABLE status. Once again, however, for the globally partitioned and
non-partitioned indexes, the entire indexes have been marked unusable, as Oracle can’t determine for
either of these indexes which rows have been dropped via the partition drop operation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

133

SQL> ALTER TABLE employees_parttest DROP PARTITION p1995;

Table altered.

INDEX_NAME NULL STATUS
------------------------------ ------------------------------ --------
EMPLOYEES_PARTTEST_GI1 MANAGER_100 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_500 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_900 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_MAX UNUSABLE
EMPLOYEES_PARTTEST_I1 UNUSABLE
EMPLOYEES_PART_LI1 PI1990 USABLE
EMPLOYEES_PART_LI1 PIMAX USABLE

Merging a Partition
The partition merge operation is essentially the opposite of a partition split, and like a partition split, is
performed to meet some application requirement or maintenance reasons.

The following example merges the P1995 and PMAX partitions into a single PMAX partition. In this
scenario, all the rows for the two partitions are combined into one essentially new partition. For your
locally partitioned index, there is a matching PMAX index partition. Since the row makeup changed
because of the merge, the locally partitioned PMAX index partition has been marked UNUSABLE.

Because again, the globally partitioned index and non-partitioned indexes have no knowledge of the
table partition make-up, the entire indexes have been marked UNUSABLE.

SQL> ALTER TABLE employees_parttest MERGE PARTITIONS p1995 , pmax
 2 into PARTITION pmax;

Table altered.

INDEX_NAME NULL STATUS
------------------------------ ------------------------------ --------
EMPLOYEES_PARTTEST_GI1 MANAGER_100 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_500 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_900 UNUSABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_MAX UNUSABLE
EMPLOYEES_PARTTEST_I1 UNUSABLE
EMPLOYEES_PART_LI1 PI1990 USABLE
EMPLOYEES_PART_LI1 PIMAX UNUSABLE

■ Tip Most partition-level table operations will not affect any underlying indexes if the affected partition(s) are
empty.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

134

Rebuilding Globally Partitioned and Non-Partitioned Indexes
Almost any partition-level operation on a table will render any globally partitioned or non-partitioned
index unusable. Essentially, the indexes always must be rebuilt. One built-in feature in Oracle 11g is to
allow you to rebuild the indexes as part of the partition-level table operation. Using the partition-level
merge operation example in the previous “Merge Partition” section, you can see that you can add the
UPDATE INDEXES clause as part of the ALTER TABLE...MERGE command. This instructs Oracle to rebuild any
indexes marked unusable by the partition-level operation. See the following example:

SQL> ALTER TABLE employees_parttest merge PARTITIONS p1995 , pmax
 2 INTO PARTITION pmax
 3 UPDATE INDEXES;

Table altered.

Using the same query to see index partition status information, you can see that the globally
partitioned index and the non-partitioned index are now usable, even after the merge operation.

INDEX_NAME NULL STATUS
------------------------------ ------------------------------ --------
EMPLOYEES_PARTTEST_GI1 MANAGER_100 USABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_500 USABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_900 USABLE
EMPLOYEES_PARTTEST_GI1 MANAGER_MAX USABLE
EMPLOYEES_PARTTEST_I1 VALID
EMPLOYEES_PART_LI1 PI1990 USABLE
EMPLOYEES_PART_LI1 PIMAX USABLE

A key advantage to using the UPDATE INDEXES clause when rebuilding an index is that it remains

online and available during the rebuild operation. While the aforementioned example is extremely
simple, one drawback of using the UPDATE INDEXES clause is that by packaging the partition-level
operation with the index rebuild operation, you lose some flexibility in how you rebuild your indexes.
For instance, if you have multiple indexes to rebuild, it may be faster to issue each index rebuild
separately. By doing this, you can run multiple ALTER INDEX...REBUILD commands concurrently. This is
a more complex method, but it may be necessary simply for speed.

 For non-partitioned indexes, you simply need to issue an ALTER INDEX...REBUILD command.

SQL> ALTER INDEX EMPLOYEES_PARTTEST_I1 REBUILD;

Index altered.

 Also, for each index, you can optionally decide to use parallelism, as shown in the following

example:

SQL> alter index EMPLOYEES_PARTTEST_I1 rebuild parallel(degree 4);

Index altered.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

135

As always, you need to use judgment and common sense using this approach. If you have many
indexes to rebuild at once, and you want to also use parallelism at the same time, there comes a point of
diminishing returns with concurrent operations. This decision needs to be made based on your specific
environment. Initially, it’s best to use a cautious approach to start. Operations can be submitted slowly
at first to ensure concurrent operations don’t become an I/O or CPU bottleneck, as well as a temporary
tablespace bottleneck. If not, you can then run more rebuild commands concurrently.

You also always have the option of simply dropping the non-partitioned unusable indexes and
recreating the index(es) using the CREATE INDEX command.

For globally partitioned indexes, in order to rebuild the index, you can also just drop and recreate
the index as a whole by using the CREATE INDEX command, or you can rebuild each global partition one
at a time. See the following example:

 1 ALTER INDEX employees_parttest_gi1
 2* rebuild partition MANAGER_MAX
SQL> /

Index altered.

You would need to execute this statement for every global index partition using the ALTER

INDEX...REBUILD command.
 You can’t rebuild a globally-partitioned index as a whole. See the following example:

SQL> ALTER INDEX EMPLOYEES_PARTTEST_GI1 REBUILD;
ALTER INDEX EMPLOYEES_PARTTEST_GI1 REBUILD
 *
ERROR at line 1:
ORA-14086: a partitioned index may not be rebuilt as a whole

Because of this, when an entire globally partitioned index has been marked UNUSABLE, it may be simpler
to drop and recreate the index using the CREATE INDEX command.

Setting Index Partitions as Unusable and Then Rebuilding
In a data warehouse environment, when loading large volumes of data, the speed of bulk DML

operations can be slowed tremendously by the presence of indexes. One of the key advantages of the
partitioned index is the ability to set portions of the index UNUSABLE prior to a bulk data load, and then
simply rebuild on the portion of the index after the load based on the partitions impacted.

At its most basic, it is fairly simple to mark an index unusable and then rebuild an index. For
example,

SQL> alter table employees_parttest
 2 modify partition pmax
 3 unusable local indexes;

Then, after the bulk load operation, you can issue the following command to rebuild the indexes for
the given partition(s) affected by the bulk load operation:

SQL> alter table employees_parttest
 2 modify partition pmax
 3 rebuild unusable local indexes;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

136

One significant drawback of rebuilding indexes using this command is that if you have many

indexes on your table, the index partitions are built serially—one index partition at a time. This can slow
the rebuild process and can become prohibitive if this operation occurs as part of a regular process. One
way to alleviate the serial limitation of the ALTER INDEX...REBUILD UNUSABLE LOCAL INDEXES command is
to parallelize the rebuild of each affected partition.

There are several ways to accomplish the parallelization of the rebuild operations. For example, this
may be especially useful if you have a subpartitioned table with locally-subpartitioned indexes. One
example, shown next, is a korn shell script, which submits many index partition rebuild operations in
the background. The following specific shell script is an example of rebuilding many subpartitioned
index partitions for many indexes:

#!/bin/ksh

typeset -Z4 YEAR=${1:-2011}
typeset -Z2 MM=${2:-08}
YY=`echo $YEAR|cut -c3-4`

LOGDIR=$HOME/logs
DT=`date +%Y%m%d.%H%M`
LOG="$LOGDIR/`echo \`basename $0\`|cut -d'.' -f1`_${YEAR}${MM}_${DT}"

IDXFILE=/tmp/bf_i.$$.out
PARTFILE=/tmp/bf_p.$$.out

Get list of subpartitions for an index

sqlplus -s $CONNECT_STRING@$ORACLE_SID <<EOT > /dev/null
set echo off
set pages 0
set head off
set feedback off
spool $PARTFILE

select subpartition_name from user_ind_subpartitions
where index_name = 'BILLING_FACT_PK'
and subpartition_name like '%${YY}_${MM}%'
order by 1;

quit;
EOT

Get list of indexes for a table

sqlplus -s $CONNECT_STRING@$ORACLE_SID <<EOT > /dev/null
set echo off
set pages 0
set head off
set feedback off
spool $IDXFILE

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

137

select index_name
from user_ind_columns
where table_name = 'BILLING_FACT'
and index_name != 'BILLING_FACT_PK'
order by 1;

quit;
EOT

DT=`date +%Y%m%d.%H%M`
echo "Starting index rebuilds at $DT" >> $LOG

Loop through each subpartition of every index and rebuild the index subpartitions.
All indexes for table are done all at once, subpartition at a time (in the background)

for p in `cat $PARTFILE`
do
 for i in `cat $IDXFILE`
 do
 DT=`date +%Y%m%d.%H%M`
 sqlplus -s $CONNECT_STRING@$ORACLE_SID <<EOT >> $LOG &
 prompt Rebuilding index $i, subpartition $p at $DT
 $PROMPT alter index $i rebuild subpartition $p;
 quit;
 EOT
 done
 wait
done

DT=`date +%Y%m%d.%H%M`
echo "Completed index rebuilds at $DT" >> $LOG

Index Implications for Interval Partitioning
Interval partitioning, which is available as of Oracle 11g, is a wonderful feature that has Oracle
automatically create partitions on a table when incoming data doesn’t match the partition boundaries
on a table. In early versions of Oracle, trying to insert new data would have generated an Oracle error
and the DML operation fail. With interval partitioning, Oracle now simply adds new partitions as needed
to match the incoming data.

In regards to indexes on interval-based table partitioning, similar rules apply as if you were using
other partitioning methods, such as locally partitioned indexes. On your interval-based partitioned local
indexes, if you want your new index partitions to be placed in a specific tablespace, you need to make
sure that each index points to that tablespace. As with table partitions, you can also modify the default
attributes for an index to accomplish the same task.

 SQL> alter index test_i3 modify default attributes tablespace test09index_s;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

138

If you then insert a row in the table that is outside the existing partition boundaries, a new local
index partition will be generated in the desired tablespace.

SQL> insert into testtab values (1,'2009-05-01');

SQL> select partition_name, tablespace_name from user_ind_partitions;

PARTITION_NAME TABLESPACE_NAME
------------------------------ ------------------------------
SYS_P74 TEST08INDEX_S
TEST307_11P TEST08INDEX_S
TEST307_12P TEST08INDEX_S
SYS_P75 TEST08INDEX_S
SYS_P76 TEST09INDEX_S

Making Older Data Read-Only
Especially within the data warehouse environment, it is important to be able to make older data read-
only because it speeds up query time. It can also assist in reducing the backup times on very large
databases (VLDBs), as data and indexes that reside in read-only tablespaces only have to be backed up
occasionally.

If you are using date- or timestamp-based partitioning on your tables and indexes, it is important to
segregate both the data and index partitions into tablespaces based on that date-based interval. Once
data becomes static and no longer updated, you can then make those tablespaces read-only. So, during
physical database design, the DBA needs to consider whether making data read-only is a necessity for
the environment based on the size of the database. If so, it is important to isolate local data and index
partitions into date-based tablespaces.

Reporting on Partitioned Indexes
There are many things you can glean from the data dictionary regarding index portions, including the
following:

• Partition names

• Type of index

• Status of index partitions (need to query appropriate view)

• Size of the index partitions

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

139

In the following example, you simply want to get a list of the index name, partition names, and
status for your EMPLOYEES_PARTTEST table. On this table, since you have both partitioned and non-
partitioned indexes, you UNION two queries together.

SQL> select table_name, index_name, partition_name, p.status
 2 from user_ind_partitions p join user_indexes i using(index_name)
 3 where table_name = 'EMPLOYEES_PARTTEST'
 4 union
 5 select table_name, index_name, null, status
 6 from user_indexes
 7 where table_name = 'EMPLOYEES_PARTTEST'
 8* order by 2,3;

TABLE_NAME INDEX_NAME PARTITION_NAME STATUS
------------------------- ------------------------- --------------- --------
EMPLOYEES_PARTTEST EMPLOYEES_PARTTEST_GI1 MANAGER_100 USABLE
EMPLOYEES_PARTTEST EMPLOYEES_PARTTEST_GI1 MANAGER_500 USABLE
EMPLOYEES_PARTTEST EMPLOYEES_PARTTEST_GI1 MANAGER_900 USABLE
EMPLOYEES_PARTTEST EMPLOYEES_PARTTEST_GI1 MANAGER_MAX USABLE
EMPLOYEES_PARTTEST EMPLOYEES_PARTTEST_GI1 N/A
EMPLOYEES_PARTTEST EMPLOYEES_PARTTEST_I1 VALID
EMPLOYEES_PARTTEST EMPLOYEES_PART_LI1 PI1990 USABLE
EMPLOYEES_PARTTEST EMPLOYEES_PART_LI1 PIMAX USABLE
EMPLOYEES_PARTTEST EMPLOYEES_PART_LI1 N/A

Note that the STATUS column shows N/A on partitioned indexes when querying the USER_INDEXES
view. The status column is only populated on the most granular data dictionary view based on
partitioning of the index. That is, for partitioned indexes, the STATUS column will be populated on the
USER_IND_PARTITIONS view. If you had any subpartitioned indexes, the STATUS column would only be
populated on the USER_IND_SUBPARTITIONS view, and the status column of USER_INDEXES and
USER_IND_PARTITIONS would be N/A.

Next, you want to issue a query to determine all the types of index partitions you have on your
tables.

 1 select table_name, index_name, partitioning_type, locality, alignment
 2* from user_part_indexes
00:37:56 SQL> /

TABLE_NAME INDEX_NAME PARTITION LOCALI ALIGNMENT
---------------------- ------------------------- --------- ------ ------------
EMPLOYEES EMPLOYEES_UK1 RANGE GLOBAL PREFIXED
EMPLOYEES EMPLOYEES_IH1 HASH GLOBAL PREFIXED
EMPLOYEES EMPLOYEES_I2 RANGE GLOBAL PREFIXED
EMPLOYEES_PART EMPLOYEES_PART_PK RANGE LOCAL NON_PREFIXED
EMPLOYEES_PART EMPLOYEES_PART_LI1 RANGE LOCAL PREFIXED
EMPLOYEES_PARTTEST EMPLOYEES_PART_LI1 RANGE LOCAL PREFIXED
EMPLOYEES_PARTTEST EMPLOYEES_PARTTEST_GI1 RANGE GLOBAL PREFIXED

A distinction needs to be noted for subpartitioned indexes when querying for segment information.
For subpartitioned indexes, there is a subpartition column on most data dictionary views in order to get
information on subpartitions. One exception to that is when you want to get segment information from
a view such as DBA_SEGMENTS, only the actual partition or subpartition_name that is an actual segment

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6  PARTITIONED INDEXES

140

will be represented in DBA_SEGMENTS. In other words, for subpartitioned indexes, the subpartition_name
will appear as the column PARTITION_NAME in DBA_SEGMENTS. In the following example, you want to get the
index subpartitions for your BILLING_FACT table that are greater than 8GB in size. You perform a
subquery against USER_IND_SUBPARTITIONS, and this demonstrates that the PARTITION_NAME column in
DBA_SEGMENTS actually represents the SUBPARTITION_NAME in USER_IND_SUBPARTITIONS.

1 select segment_name, partition_name, round(bytes/1048576) meg
 2 from dba_segments
 3 where (segment_name, partition_name) in
 4 (select index_name, subpartition_name
 5 from user_ind_subpartitions
 6 where index_name in
 7 (select index_name from user_indexes
 8 where table_name = 'BILLING_FACT'))
 9 and bytes > 1048576*8192
10* order by 3 desc;

SEGMENT_NAME PARTITION_NAME MEG
------------------------------ ------------------------------ ----------
BILLING_FACT_PK BILLING_FACT11_08P_EAST 9687
BILLING_FACT_PK BILLING_FACT11_09P_EAST 9591
BILLING_FACT_PK BILLING_FACT11_07P_EAST 8951

For partitioned indexes, the partition names between DBA_SEGMENTS and USER_IND_PARTITIONS will match.

Summary
As a guideline, partitioned indexes should be used on partitioned tables. More specifically, locally
partitioned indexes should be used whenever possible. Index maintenance on partitioned tables is far
easier when using locally partitioned indexes, as noted in Table 6-1. There are, of course, exceptions
based on application requirements. For instance, application requirements may dictate that the
partitioning column(s) can’t be part of a unique index that becomes the primary key. In cases such as
these, you may simply have to implement a non-partitioned index. Alternatively, query performance
using a globally partitioned index may be beneficial to warrant their use in certain circumstances.

As with many aspects of software development, the trade-offs between the different types of indexes
need to be analyzed before making a final determination. During application and database design, it is
important to understand all the ramifications and impacts of using each type of index. This includes
weighing the following factors:

• Data model requirements

• Data access requirements

• Data volume

• Time needed to perform index maintenance operations

• Available maintenance windows

Once you take all the aforementioned items into consideration, you can make an informed decision as
to what is best for your application.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 7

■ ■ ■

141

Tuning Index Usage

In order to tune index usage, it is important to understand the various types of index access paths
available to the cost optimizer. The chapter summarizes the most important index access paths available
to the optimizer. Often, Oracle database administrators are bewildered when the optimizer chooses not
to use what they believe is a very useful index but does a full table scan instead. This chapter devotes
attention to exploring some reasons why the optimizer might prefer a full table scan to using an index.
You’ll also learn how to force the optimizer to use (or not to use) an index. Oracle provides a large
number of index-related hints to enable you to control the behavior of the optimizer regarding index
usage. You’ll find descriptions of the key index-related hints in this chapter.

Before we plunge into the various ways you can direct the optimizer to access (or not to access) an
index, let's review the different access paths the optimizer can choose from.

Optimizer Access Paths
An access path is the path chosen by the optimizer to retrieve data from the database. There are two
basic types of access paths: index access paths and a full table scan. A full table scan is simply a scan of
all the rows in a table, and the optimizer uses it mostly when a query requests a large portion of a table's
blocks. Sometimes the percentage of rows retrieved by a query is relatively small, but due the way the
table's data is distributed among the blocks in the table segment, rows that satisfy the query are present
in the majority of blocks. Oracle reads blocks, and block selectivity is critical to access path selection.
Index scans, on the other hand, are typically used to retrieve a small set of a table's rows, and thus the
query needs to access fewer index (if all the data is present in the index itself) or data blocks (if the query
needs to access the table as well to retrieve all the data).

 Note The optimizer is often concerned with blocks rather than rows. It is really when a query must touch the
larger portion of the blocks assigned to a table and below the high water mark that a table scan is often used.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

142

Generally, the optimizer prefers a full table scan under the following conditions, even in the
presence of an index on the table:

• The table being accessed is small, consisting of few blocks.

• A large amount of data is requested from a table.

• Very few distinct values exist in an indexed column being referenced in the WHERE
clause.

• There is a high degree of parallelism defined for the table.

Of course, absence of an index on a table guarantees a full table scan, and so does the specifying of
the FULL hint in the query in most cases.

 ROWIDs

While a full table scan requires reading all the data in a table, specifying the ROWID of a row is the fastest
way to retrieve a single row from a table. The ROWID specifies the exact location of the row and the
database goes straight to the row to fetch it. However, you rarely specify a ROWID directly in a query.
Instead, the database gets ROWID(s) from an index scan of a table's index.

Index Scans
An index on a column contains two types of data: the indexed column value and the ROWID of the row.
Each leaf block of a B-tree index contains the indexed data value and the corresponding ROWID that is
used to locate the actual row in the table. The optimizer sorts the index entries by (key, ROWID). An index
scan occurs whenever the database retrieves column values from an index for a specific column or
columns. If your SQL statement refers only to the indexed columns, the database retrieves the column
values from the index itself and it doesn't need to access the table. If the query refers to columns other
than the indexed column(s), the database accesses the table as well in the next step, using the ROWIDs it
reads during the index access.

Index Unique Scan
If a query requires only a single row from a table, the database performs an index unique scan. The
database uses an index unique scan when the query contains only columns from a unique index. It also
does so when the query specifies an equality condition along with a primary key constraint.

In the following example, there's a primary key constraint on column A. Therefore, the query
guarantees that only a single row is accessed via the predicate "where A=2000".

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

143

SQL> select * from test where a=2000;

Execution Plan
--
Plan hash value: 2199568159

| Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		1	113	2 (0)	0:00:01
1	TABLE ACCESS BY INDEX ROWID	TEST	1	113	2 (0)	0:00:01
* 2	INDEX UNIQUE SCAN	TEST_PK1	1		1 (0)	0:00:01
--
Predicate Information (identified by operation id):

 2 - access("A"=2000)
SQL>

In this example, the database uses the primary key on column A (TEST_PK1). Note that the database is
likely to perform an index unique scan when you specify all columns of a unique index as well.

Index Range Scan
The database performs an index range scan when it needs to access highly selective data. The database
returns the values of the indexed column in ascending order. If the indexed column is identical for all
rows, the output is ordered according to ROWID.

The optimizer chooses an index range scan when dealing with the following types of conditions,
where col1 is the leading column for an index:

col1 =:b1
col1 < :b1
col1 > :b1

Additionally, any AND combinations of these three conditions involving a leading column in an index will
result in an index range scan.

Index data is stored in an ascending order. If the database needs to return data in a descending
order, as when it needs to return the latest data first or when it needs to retrieve values less than a
specific value, the database uses an index range scan descending.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

144

The following example shows how the database will use an index range scan when you specify a
"less than" condition such as "a <50":

SQL> select * from test where a < 50;

Execution Plan
--
Plan hash value: 1880612405

| Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT		49	5537	3 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	TEST	49	5537	3 (0)	00:00:01
* 2	INDEX RANGE SCAN	TEST_PK1	49		2 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("A"<50)
SQL>

Reading from the bottom, the explain plan shows that the optimizer performs an index range scan
first and uses the ROWIDs from the index range scan to perform the table access (table access by index
rowid operation). The database is also likely to use the index range scan when you specify a condition
such as a > 10,000, for example, as shown in the following example:

SQL> select * from test where a > 10000;
Execution Plan
--
Plan hash value: 1880612405

| Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT		1	113	1 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	TEST	1	113	1 (0)	00:00:01
* 2	INDEX RANGE SCAN	TEST_PK1	1		1 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("A">10000)
SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

145

The database also performs an index range scan when you use the BETWEEN operator, as shown in the
following example:

SQL> select * from test where a between 1000 and 2000;
Execution Plan
--
Plan hash value: 1880612405

| Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT		1001	110K	11 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	TEST	1001	110K	11 (0)	00:00:01
* 2	INDEX RANGE SCAN	TEST_PK1	1001		4 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("A">=1000 AND "A"<=2000)
SQL>

Note that while the database uses an index range scan when you specify the condition WHERE a < 50
as well as the condition WHERE a > 9000, it reverts to a full table scan when you modify the query
predicate to WHERE a < 2000. The reason is simple: there are far fewer values for the database to scan
when you specify the conditions a < 50 and a > 9000 as compared to when you specify the condition a
< 2000. It is more likely that there are a far larger number of values that satisfy the condition a < 2000,
and consequently the database performs a full table scan to retrieve the data when you specify this
condition, as shown in the following example:

SQL> select * from test where a < 2000;
Execution Plan
--
Plan hash value: 1357081020
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1999 | 220K| 15 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| TEST | 1999 | 220K| 15 (0)| 00:00:01 |
--
Predicate Information (identified by operation id):

 1 - filter("A"<2000)
SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

146

The following is another example that shows how the database prefers to perform a full table scan
when the query predicate requires searching a large proportion of a table's rows; the condition a > 8000
obviously requires scanning more data than the condition a > 20000.

SQL> select * from test where a > 8000;
Execution Plan
--
Plan hash value: 1357081020
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 2000 | 220K| 15 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| TEST | 2000 | 220K| 15 (0)| 00:00:01 |
--
Predicate Information (identified by operation id):

 1 - filter("A">8000)
SQL>

An index range scan descending operation is very similar to an index range scan; the difference is
that the database engine reads the results in descending order. One reason the optimizer might make
that choice is to avoid a sort down the road. The cost optimizer will use an index range scan descending
operation when you specify the ORDER BY <column_name> DESC clause and the index can satisfy the
clause, thereby avoiding a descending sort operation. An INDEX RANGE SCAN DESCENDING operation reads
the index backwards in order to avoid having to read it in its normal order (ascending) and then execute
a sort operation.

SQL> select * from test where a between 1000 and 2000 order by a desc;

Execution Plan
--
Plan hash value: 1184130301

--
| Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		1001	110K	11 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	TEST	1001	110K	11 (0)	00:00:01
* 2	INDEX RANGE SCAN DESCENDING	TEST_PK1	1001		4 (0)	00:00:01
--
Predicate Information (identified by operation id):

 2 - access("A">=1000 AND "A"<=2000)
SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

147

Index Skip Scan
An index skip scan occurs when a query "skips" the leading column of a composite index when a query
doesn't specify that column in, say, a WHERE clause predicate. The database splits the composite index
into logical subindexes. The fewer the distinct values in the leading column of a composite index and the
larger the distinct values in the other keys that are part of the composite index, the better the
performance of an index skip scan. For example, if the leading column has just three distinct values, the
database divides the composite index into three logical subindexes and searches for the values of the
non-leading indexed columns. Chapter 5 explains the index skip scan in detail in the context of a
composite index.

In the following example, the database uses the composite index test_idx1, which was created on
columns (b, e). The query specifies the condition e=10. The query’s WHERE clause doesn't use the leading
column of the composite index, thus skipping that column.

SQL> select b,e from test where e=10;

Execution Plan
--
Plan hash value: 3001938079
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 7 | 3 (0)| 00:00:01 |
|* 1 | INDEX SKIP SCAN | TEST_IDX1 | 1 | 7 | 3 (0)| 00:00:01 |
--
Predicate Information (identified by operation id):

 1 - access("E"=10)
 filter("E"=10)
SQL>

The number of logical subindexes into which the database splits the composite index will depend
on the number of distinct values of the leading column. In this example, the leading column B of the
composite index has very few distinct values:

SQL> select distinct b from test;

 B

 1
 2
SQL>

As the output shows, there are only two distinct values for the leading column of your composite
index. The database splits the composite index on (b,e) into two subindexes, the first with the key "1"
and the second with the key "2". The database searches the first subindex with the key "1" and then
searches the second subindex with the key "2". The nonleading column of the index, E, on the other
hand, has 10,000 distinct values (same as the number of rows in the table). In cases such as this, the
database finds it cheaper to perform an index skip scan due to the low number of distinct values in the
leading column of the composite index. Note that instead of performing a full table scan when you don't

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

148

specify the leading column of a composite index (as in previous releases of the database—that is, pre
Oracle 9i), the database uses a skip scan of the composite index in this case.

Index Full Scan
An index full scan is the operation of reading all the entries in a given index. In that sense, a full index
scan is analogous to a full table scan. A full index scan is a good alternative to doing a full table scan first
and sorting the data afterwards. Oracle Database is likely to use a full index scan in any of the following
conditions:

• A query requires a sort merge join: All columns referenced by the query must exist
in the index and the order of the leading index columns must be identical to the
columns specified in the query.

• The query contains an ORDER BY clause: All the columns in the clause must be
present in the index.

• The query contains a GROUP BY clause: The index and the GROUP BY clause must
contain the same columns, although not necessarily in the same order.

The following is an example that shows how the database utilizes an index full scan operation to
retrieve the data without performing a sort. The full index scan avoids a sort operation because the index
is already sorted. Full index scans read single data blocks and don't perform a multiblock read operation.

SQL> select * from test order by a;

Execution Plan
--
Plan hash value: 3311708430

| Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT		9433	1040K	79 (0)	00:00:03
1	TABLE ACCESS BY INDEX ROWID	TEST	9433	1040K	79 (0)	00:00:03
2	INDEX FULL SCAN	TEST_PK1	9433		21 (0)	00:00:01

SQL>

In this query, the database performs an index full scan first and then performs a table access by index
ROWID operation. This is so because the query requests columns besides the indexed column (SELECT *
FROM …). However, if a query requests just the indexed column along with an ORDER BY clause, the
database skips the table access and gets the data back by accessing the index alone, without having to
read the table values.

Index Fast Full Scan
Oracle Database performs an index fast full scan as an alternative to a full table scan, when the index
itself contains all the columns that you specify in the query. In the following example, notice that there's
only an index fast full scan operation to retrieve the data and that the table itself isn't accessed at all:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

149

SQL> select b,e from test where e > 100;
Execution Plan
--
Plan hash value: 703934364

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 9901 | 69307 | 7 (0)|00:00:01|
|* 1 | INDEX FAST FULL SCAN| TEST_IDX1 | 9901 | 69307 | 7 (0)|00:00:01|
--
Predicate Information (identified by operation id):

 1 - filter("E">100)
SQL>

Note that unlike in the case of a full index scan, an index fast full scan uses a multiblock read
operation to read the index. Thus, this type of scan tends to be faster both due to the multiblock I/O as
well as to the fact that this type of scan can run in parallel, just as a full table scan.

Determining Whether a Query Uses an Index
DBAs and developers often wonder if the database is using a certain index. Your explain plans may
indicate the use of the index, but you may want to make sure that the database is actually using the
index. You can easily track the usage of an index by enabling the monitoring of index usage in your
database. By default, Oracle Database doesn't monitor index usage. You can make the database monitor
an index by altering the index you're interested in with the monitoring usage clause, as shown here:

SQL> alter index employees_idx1 monitoring usage;
Index altered.

SQL>

Once you turn index monitoring on, the database tracks the usage of the index EMPLOYEES_IDX1. You
can query the V$OBJECT_USAGE view to see if the database is using the index.

SQL> select index_name,monitoring,used from v$object_usage;

INDEX_NAME MONITORING USED
------------------- ------------------ -----------
EMPLOYEES_IDX1 YES YES

SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

150

Both the MONITORING and the USED columns take either of two possible valuses: YES and NO. You can
monitor all indexes that the database has used by querying the V$OBJECT_USAGE view.

Once you're done examining the index usage, you can turn the montoring off.

SQL> alter index employees_idx1 nomonitoring usage;

Index altered.

SQL>

While monitoring indexes in the way shown here works well for the most part, index monitoring
only tells you whether the optimizer has planned the use of an index. It doesn’t tell you whether the
query execution has actually used the index! Therefore, be very cautious before you drop an index after a
cursory glance at the V$OBJECT_USAGE view after turning index monitoring on.

 Note The database refreshes the V$OBJECT_USAGE view each time you turn monitoring on for a specific index.
Each time you turn on index monitoring for a specific index, the database removes the current usage information
and records a new start time for the monitoring.

You can also use the DBA_HIST_SQL_PLAN and the DBA_HIST_SQLSTAT views to find out the number of
times the database has accessed an index, as well as the type of index access, such as an index range scan
or a unique index scan. Here’s an example:

SQL> select
 2 d.object_name,
 3 d.operation,
 4 d.options,
 5 count(1)
 6 from
 7 dba_hist_sql_plan d,
 8 dba_hist_sqlstat h
 9 where
 10 d.object_owner <> 'SYS'
 11 and
 12 d.operation like '%INDEX%'
 13 and
 14 d.sql_id = h.sql_id
 15 group by
 16 d.object_name,
 17 d.operation,
 18 d.options
 19 order by
 20* 1,2,3;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

151

object_name operation options count
------------------------------ --------------- --------------- -------
ACHTRANSACTION_NU1 INDEX RANGE SCAN 209
ACHTRANSACTION_NU2 FULL SCAN 6
ACHTRANSACTION_NU2 RANGE SCAN 38
ACH_DETAIL_NU1 INDEX RANGE SCAN 4
ACH_DETAIL_NU2 FAST FULL SCAN 10
ACH_DETAIL_NU2 RANGE SCAN 9
ACH_DETAIL_PK INDEX RANGE SCAN 19
ACH_DETAIL_PK UNIQUE SCAN 6
…
SQL>

Avoiding an Index
It is much more likely that you'll be looking for ways for the cost optimizer to use the indexes you've
created, rather than for it to ignore existing indexes. However, there are times when you want to do
exactly this: you want to keep the optimizer from using an index.

Avoiding All Use of an Index
You may want to avoid an index, for example, when you are dealing with an unselective index. That’s
because if an index is not selective enough, it can sometimes be more efficient to scan the entire
underlying table.

If a SQL statement contains a construct such as a WHERE clause that includes an indexed column, the
optimizer is likely to use the index on that column. To preclude that from happening, you can specify the
NO_INDEX hint to let the optimizer disallow the use of a certain index. For example,

SQL> select /*+ NO_INDEX(employees emp_emp_id) */employee_id
 from employees
 where employee_id >200;

This example lists a specific index that you want the optimizer to ignore. If there are other indexes on the
table, the optimizer will still consider the use of those indexes.

Instead of specifying a single index, you can also list a set of indexes that the optimizer must ignore.
If you just specify the NO_INDEX hint without listing any indexes, the optimizer will ignore all indexes on
the table you specify. As with the INDEX hint that you'll encounter later in this chapter, the NO_INDEX hint
applies to B-tree, function-based, cluster, or domain indexes.

Avoiding Only the Fast Full Scan
You can use the NO_INDEX_FFS hint to direct the optimizer to avoid a fast full index scan of an index. Note
that you must specify the name of a specific index along with this hint, as in the case of an INDEX hint.
For example,

SQL> select /*+ no_index_ffs (items item_order_ix) +/ order_id from order_items;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

152

Similarly, you can include the NO_INDEX_SS hint to tell the optimizer to exclude a skip scan of a
specific index on a table.

Forcing a Table Scan
Another way to avoid index usage is to come at the problem from the opposite direction by demanding a
table scan. Use the FULL hint to instruct the optimizer to choose a full table scan instead of an index scan.
Here is an example of how you specify the FULL hint:

SQL> select /*+ FULL(e) */ employee_id, last_name
 from employees
 where last_name like :b1;

Choosing Between an Index and a Table Scan
Users are often bewildered as to why the optimizer chooses a full table scan when they believe it ought
to be using an index. In a later section, this chapter explains several scenarios where the optimizer
prefers a full table scan to an index. Before we delve into these scenarios, however, let's understand the
essentials of how the cost-based optimizer works.

The job of the cost-based optimizer is to select the best or optimal execution plan from among a set
of possible plans. The cost-based optimizer uses information such as the number of rows in a table or
index, the number of distinct values for each column, and much more to estimate the cost of alternative
execution plans. It then picks the execution plan with the lowest cost.

For demonstration purposes, let's focus on one of the most important factors in determining the
cost of a query: the number of rows in a table and the number of rows the optimizer needs to read from
that table. It's all but certain that the optimizer will fully read a table if its size is very small. Say your
table contains 10,000,000 (10 million) rows and that the table uses 100,000 table blocks because each
block holds on the average about 100 rows. Now, create an index on this table with the index requiring
roughly 20,000 leaf blocks to store the index entries for each indexed column. The index requires fewer
blocks than the table because it holds just one column value (and the ROWID for the associated table
column). Assume that this index has a height of 3, meaning it has a BLEVEL of 2, and that there are 100
distinct values in each indexed column, with those values evenly distributed. Thus, the index will
contain 100,000 occurrences (10 million divided by 100) of each index value. Let's use a test query such
as the following to demonstrate how the optimizer decides among multiple execution plans:

SQL> select * from test_table where test_code='ABCDE';

Does the optimizer choose an index or a full table scan, and why? Let's analyze the cost of the index
access first. Since the index on the test_code column is evenly distributed among all possible values, the
optimizer needs to select one out of the 100 distinct values in the index on the test_code column. This
works out to one percent of the data in the index. To do this, the database needs to first read the root and
the branch block (BLEVEL =2 in this example). Therefore, the optimizer starts with the cost of these two
block reads. Next, the database has to read 1 percent of the index leaf blocks, which amounts to (20,000 X
0.01) = 200 leaf blocks. You thus have 202 index block accesses for the index reads.

Since the query asks for the values of all the columns in the table, the database must next read the
table rows itself. Here, the crucial variable is the clustering factor of the index; that is, how well clustered
the index column values are in the table. The more well clustered the index column values are, the fewer
block accesses it will take to read all the necessary table rows. Let's say the clustering factor is the worst

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

153

possible, meaning that it's almost the same as the number of rows in the table (10,000,000). With each of
the table's 100,000 data blocks containing 100 rows, the database selects 10 rows, or 1 percent from each
data block. Thus, the total cost of accessing the table data is going to be the selectivity times the
clustering factor, which is 0.1* 10,000,000, which comes to 100,000. So the approximate cost of the index-
based read is 202 index block accesses plus 100,000 table block accesses, for a grand total cost of 100,202
blocks altogether.

When it comes to the full table scan costs, remember that unlike an index read, which is always
done in single block I/Os, a full table scan uses multiblock reads. Since this example assumes that each
table block contains 100 rows, the database needs to scan roughly 100,000 data blocks during a full table
scan. Let's assume the multi_block_read_count value is set at 10. The database will then have to perform
a total of 100,000/10; that is 10000 reads. If you want to be more precise, you can also add the read of the
segment header block to the total, making it 10,001.

Clearly the full table scan in this case is much cheaper (10,001 block reads compared to 100,202
block reads for the index access), even after assuming the worst possible index clustering factor. In
addition, you can parallelize this full table scan, making it perform even faster. Note that in the previous
example, the query is fetching only 1 percent of the data in a large table, yet the full table scan is much
cheaper. This is a simple demonstration to show that the choice of the index or full table scan by the
optimizer doesn't always depend on the percentage of rows a query must retrieve. Rather, it depends on
critical factors such as the data distribution, the number of table and leaf blocks, the average number of
rows in a table block, the average number of leaf entries in an index leaf block, the index clustering
factor, and the size of the multiblock read count, There simply is no magic percentage of rows that a
query must retrieve, such as 1, 5, 10, 25 or 50 percent, that by itself tells the optimizer it must use an
index or a full table scan. This simple example here shows that the optimizer is likely to go for a full table
scan even when a query retrieves a very small percent (1 percent) of a table's rows.

Why the Optimizer May Ignore Indexes
Creating an index is never a guarantee that the optimizer will use the index when evaluating an
execution plan. If a query is selecting a high percentage of rows from a table, the optimizer might
determine that it can get the results faster through a full table scan instead of an index scan. Remember
that when the database uses an index first, it looks up the index to obtain the ROWIDs and then uses those
ROWIDs to retrieve the requested rows. If a query selects a large percentage of rows from a table, leading
to a large percentage of the table’s blocks being read, the database might perform a full table scan to
avoid reading both the index and the table, which could end up being more expensive than just scanning
the table once.

Many factors determine the usage of an index by the optimizer, as the following sections in this
chapter explain.

Number of Distinct Rows
A crucial factor that determines the choice between a full table scan and an index scan is the number of
distinct rows in a table matching a given query predicate vis-à-vis the number of total rows in the table.
You can find the number of rows in a table by querying the NUM_ROWS column in the DBA_TABLES view. You
can similarly find the number of distinct values in any column by querying the NUM_DISTINCT column
from the DBA_TAB_COLUMNS view. The closer the value of the NUM_DISTINCT column to the NUM_ROWS
column, the more likely it is for the optimizer to prefer accessing an index on that column to performing
a full table scan; in other words, the more selective an index, the more likely the database is to use it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

154

The selectivity of an index has probably the biggest impact on whether the database will use an
index or not. Selectivity refers to how many distinct values there are for each column value. If an index is
very selective, it has few rows for each index entry. If an index is unselective, on the other hand, there are
many rows for each index entry.

Do remember that the optimizer multiplies the selectivity of the column with the leaf_blocks
statistics to get an estimate of the index blocks the database must access during an index read. While it's
true that most of the time highly selective columns will indeed use an index, it isn't always the case since
the ultimate deciding factor in the choice of an index versus full table scans is block selectivity.

In the Oracle Database 10g release (but not in the 11g release), the use of the
DBMS_STATS.AUTO_SAMPLE_SIZE constant to get the estimates of the number of rows to be used by the
DBMS_STATS package may lead to wrong estimates of the number of distinct values (NDV). This is often
true if the table is large and there is a significant amount of skewness in the data. You’re better off using
your own estimate of the sample size in order to get a more accurate value for the value of the NDV.

Index Clustering Factor
You can find the value of an index's clustering factor by querying the CLUSTERING_FACTOR column from
the DBA_INDEXES view. The clustering factor tells you how well ordered a table’s rows are in comparison
with an index’s rows. If the clustering factor is close to the number of rows in a table, the rows are likely
to be more randomly ordered and it's less likely that the index entries in an index block are located in the
same data block. The table's selectivity (with filtering) multiplied by the index clustering factor
determines the cost of the table access by index. This is actually the table selectivity used in this portion
of the calculation. Although most of the time, the index selectivity (multiplied by leaf_blocks and
discussed in the previous section) and table selectivity are the same, it is actually a computation
intended to determine how many table data blocks will need to be accessed. Often, the index clustering
factor is assumed to be a guarantee of randomness, but it isn't. For example, what about the case where
each row in the index refers to only two distinct blocks, but the entries are ROWID ordered as block 1,
block 2, block 1, block 2, and so on? If there were 10,000 entries in the index, the clustering factor would
be 10,000 but in reality only 2 blocks would be accessed. Therefore, the computation for the clustering
factor isn't guaranteed to prove randomness in quite the same way that most people may think of it.

In an index with a “good” clustering factor, the index values in a specific index leaf block point to
rows distributed in the same data blocks. On the other hand, in an index with a ‘bad” clustering factor,
index values in a specific leaf block point to multiple data blocks. A well organized index structure has a
good clustering factor and it can read data with fewer I/Os. A poorly organized index with the same
amount of data will require a much larger number of I/Os to read the data from a larger set of data
blocks. In this context, it's crucial to note that only one index per table is likely to be ideally organized
and that is actually only true if the table data was loaded in a specific order. For instance, perhaps the
table was loaded by a column such as order_date. In that case, the clustering factor for the index on
order_date will be almost identical to the number of blocks in the table. But, since the table can only be
present in one order, all other indexes will be “less optimally” ordered. So, in the end, “good” and “bad”
become more relative and less absolute. This is probably one of the reasons why the cost calculation for
an index use is comprised of multiple elements that include both table and index selectivity so that one
component doesn’t get an extremely heavy weighting.

A rule of thumb is that a good clustering factor is closer to the number of blocks in a table and a poor
clustering factor is closer to the number or rows in a table.

In addition to the two factors discussed here, the value of the multiblock read count has a bearing
on the usage of indexes. The higher the value of the multiblock read count
(DB_FILE_MULTIBLOCK_READ_COUNT), the lower the cost of a full table scan from the optimizer's point of
view.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

155

The following sections describe the most common scenarios that can potentially lead to the
optimizer ignoring an index. First, here’s a short explanation of how index access paths can change
without new optimizer statistics.

How Index Access Paths Can Change Without New Statistics
In a production environment, an execution path for queries often changes, even in the absence of any
related changes. You confirm that no new statistics were collected (in fact, you might even have locked
the statistics to prevent changes in execution plans). Prior to Oracle Database 11g and the cardinality
feedback feature and automatic query tuning capabilities, if nothing truly changed (i.e. stats, instance
parameters, etc.), and something such as bind peeking with histograms present wasn’t in play, then
plans pretty much stayed the same. However, even if you're absolutely positive that the optimizer
shouldn't change any execution plans, it does. How's this possible? Well, most databases are living
organisms with a continual change in data due to ongoing transactions. In fact, if the underlying data
undergoes significant modifications and if you don't collect fresh statistics to reflect those changes, it's
quite likely that execution plans will change because the optimizer bases its decisions on the cost of
various access paths, and the cost may change because of the changes made to the data.

If you don't update optimizer statistics in tune with the changes in the data, in some cases it's quite
possible that the optimizer will have wrong estimates of the cardinality, which is the expected number of
rows that will be returned by the query. If your applications are adding large amounts of data to the
tables and you don't collect new statistics, you may think that since the optimizer isn't aware of the new
data, it'll go on using the same execution plans (the plans that are currently efficient). The cost-based
optimizer can sometimes change its execution plans over time if it miscalculates the true selectivity and
cardinality of a query. In order to execute the same query after a very large infusion of new data, the
optimizer may use a different plan because it underestimates the number of rows that the query will
retrieve now. If a full table scan was the optimal strategy before the adding of the massive amounts of
data, after the addition of the data, the optimizer may wrongly assume that an index will work better,
whereas the full table scan is probably still is the best way to go. You can find an interesting example that
illustrates this possibility at richardfoote.wordpress.com/category/index-access-path. If you think that
by not collecting fresh statistics on a table, you are forcing the optimizer to continue to use current
execution plans in the future as well, think again!

Using the NOT EQUAL Condition
Using a condition such as NOT EQUAL, such as in the statement select * from mytable where last_name
<>'ALAPATI' may sometimes result in the optimizer not using an index. The reason is that the optimizer
tends not to use an index if it surmises that the query will select a high percentage of values from a table.
Doing a full table scan of the table is likely to be more efficient if this is the case. Normally, the optimizer
estimates the cardinality as (1 - (1/num_distinct)) * num_rows. In other words, if the column had 4
distinct values and 1,000 rows, the cardinality would be 750. Let's assume that a huge percentage of rows
in the table do satisfy the value you specify for the NOT EQUAL condition. In such a case, you'd think that
the optimizer is likely to go in for an index scan because, after all, you're asking to retrieve all rows that
don't have the value you specified with the NOT EQUAL condition. However, when you specify the <>
operator, the optimizer simply ignores any index you may have, even if the data is distributed unevenly
and the <> condition will result in the retrieval of a very small percentage of rows from the table. In such
a case, the optimizer simply prefers to do a full table scan instead of "correctly" choosing the index.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

156

Take the query in this example, which is as follows:

SQL> select id from mytab where last_name <> 'ALAPATI';
Execution Plan
--
Plan hash value: 2134733830
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1739 | 19129 | 4 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| MYTAB| 1739 | 19129 | 4 (0)| 00:00:01 |
--
Predicate Information (identified by operation id):

 1 - filter("NAME"<>'ALAPATI')
SQL>

The <>(NOT EQUAL) clause here results in the optimizer skipping the index on the last_name column. You
may try an index hint, as shown here:

SQL> select /*+ index (mytab name_idx) */ id from mytab where name <> 'ALAPATI'
Execution Plan
--
Plan hash value: 332134091
--
| Id|Operation |Name | Rows | Bytes|Cost (%CPU)| Time |
--
0	SELECT STATEMENT		1739	19129	12 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	MYTAB	1739	19129	12 (0)	00:00:01
* 2	INDEX FULL SCAN	NAME_IDX	1739		8 (0)	00:00:01
--
Predicate Information (identified by operation id):

 2 - filter("NAME"<>'ALAPATI')

The index hint made the optimizer replace a full table scan with an index full scan, which is better,

but not as good as an index range scan. An index full scan must read all the leaf nodes that contain the
value you specified with the <> operator, and thus is not a very efficient approach. (However, in other
cases, it may be possible for the optimizer to perform an index range scan as a result of your specifying
the INDEX hint.) The problem with specifying the <> condition is that the optimizer is likely to skip the
index even if the query returns a very small percentage of the rows in a table—it simply ignores any
indexes on the column in the WHERE predicate. Ignoring the index means that the optimizer will not even
calculate the costs of the index scan before producing the "optimal" plan; it figures it'll save all the
overhead involved in doing so because it assumes that the <> condition will result in the retrieval of a
large percentage of rows from the table. In cases such as this you can try to rewrite the query to avoid the
<> operator.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

157

 Note You can't force the database to perform a parallel index range scan. However, the database does
perform a parallel index lookup when it performs a parallel nested loop join.

Your only option here is to rewrite your query to eliminate the NOT EQUAL clause. This is more true if
you have multiple predicates and less so when you're dealing with a single predicate. Remember that the
optimizer's behavior is the same when you specify the NOT IN clause as well. Another good solution in
some cases is to replace the NOT EQUAL predicate with a CASE construct. Remember that if you use a CASE
construct, you'd need a function-based index to match it.

Querying with Wild Characters
If you issue a query that includes a leading wildcard-based search, the optimizer is likely to ignore the
index and perform a full table scan. Take, for example, the following query:

SQL> select * from employees where last_name like'%lapati';

The optimizer is more likely to use an index when the leading character in the pattern is not % or an
underscore (_). Using a % or _ wildcard for the initial character with the LIKE operator means that the
database may have to read a significant proportion of a table's rows. If it were to use an index, it would
need to access every index block, and after the index reads were completed, it might also need to scan a
majority of the table blocks as well. A full table scan is potentially more efficient in this case. The
optimizer skips the index on the last_name column because it has to check each value in the column to
determine if it ends with the value "lapati". It ends up choosing a full table scan instead, as shown by the
following explain plan for this statement:

SQL> set autotrace on explain
SQL> select * from employees
 2 where last_name like '%lapati';
no rows selected

Execution Plan
--
Plan hash value: 1445457117

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 72 | 3 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| EMPLOYEES | 1 | 72 | 3 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 1 - filter("LAST_NAME" LIKE '%lapati')
SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

158

If you modify the statement as shown next, the optimizer chooses an index scan.

SQL> select * from employees where last_name like 'alapati%';

no rows selected

Execution Plan
--
Plan hash value: 1147874131
--
|Id|Operation |Name |Rows|Bytes|Cost(%CPU)|Time |
--
0	SELECT SATEMENT		1	72	2 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	1	72	2 (0)	00:00:01
*2	INDEX RANGE SCAN	EMPLOYEES_IDX1	1		1 (0)	00:00:01
--
Predicate Information (identified by operation id):

 2 - access("LAST_NAME" LIKE 'alapati%')
 filter("LAST_NAME" LIKE 'alapati%')
SQL>

Note that the first example uses a leading wildcard-based search. In fact, to force the use of an
index, moving the wildcard (%) from the leading position by even one space (select * from employees
where last_name like 'a%lapati%) makes the optimizer use the index EMPLOYEES_IDX1 on the
EMPLOYEES table in the example. The use of wildcards later in the search string doesn’t inhibit index
use as frequently as this example demonstrates. So how many characters before the % will allow the
index to be used? As additional characters are added to the search string prior to the specification of the
wildcard (%,_), the optimizer naturally expects the database to read fewer index and table rows and it's
more likely to choose the index. Thus, if you're searching for “ABC%” instead of “%ABC”, the database
will be more likely to use an index range scan, so long it figures that a full table scan is more expensive.

Referencing Null Values in Predicates
Suppose you have a table with two columns, both of which are allowed to have NULL values. Let's also
assume that there are, in fact, several rows in the table that do have NULLs in both rows. Say you issue the
following statement:

SQL> select * from mytable where a is null;

The optimizer won't use a unique index on this table because anytime you have NULL values for all
columns of a unique index, the database lets you add the row to the table, but doesn't include it in the
index. In fact, you can add multiple rows with NULL values for all the columns, even if you have a unique
index on the table, because Oracle Database considers two rows with all NULL values as different so far as
uniqueness is considered. The result is that the table will have more values than the index, because the
rows with all NULL values for its columns won’t be inserted into the index. When you issue the previous
query, the database ignores the index since that index doesn't include the rows with all NULL values. To
avoid giving you a wrong answer, the database ignores the index.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

159

The only way you can get the database to use the index in this case is to make sure at least one of the
two columns in this table is defined as NOT NULL, as shown here:

SQL>create table mytab1 (a int, b int NOT NULL);

Table created.

SQL> create unique index mytab1_idx on mytab1(a,b);

Index created.

SQL>

If all index columns are NULL, Oracle Database doesn't include rows into an index. However, you can
actually index NULL values by simply adding another column to the index, like so:

SQL> create index with_null on employees(nullable_column, '1');

Writing Functions in a Query
If a query contains a function on an indexed column in the WHERE clause, the optimizer skips the index.
Note that the optimizer ignores an index if you explicitly apply a function, or if the database applies a
function implicitly without your knowledge. Let's discuss the use of explicit functions first. For example,
say you issue the following query:

SQL> select * from testtab where UPPER(LAST_NAME)='ALAPATI';

In this case, the optimizer skips the index on the column LAST_NAME due to the presence of the UPPER
function. (Chapter 5 explains how to use function-based indexes to get around this problem). If your
applications need to frequently apply a function to an indexed column, you're better off creating a
function-based index to allow the use of an index.

Note that even if a query doesn't explicitly apply a function to a column, it may be implicitly doing
so under some conditions. For example, if you define a number column in a table and then query the
column's values by specifying a character instead of a number, the optimizer ignores the index. That is,
if you issue the statement select * from mytab where emp_id=’999’ instead of select * from mytab
where emp_id=999, the optimizer needs to apply the TO_NUMBER function behind the scenes to get you the
answer. Again, the use of a function means that the optimizer will not use the index. Even if you specify
the INDEX hint in such a case, the optimizer might perform an index full scan, but not an index unique
scan. An index full scan has to scan the entire index, so it is much slower than an index unique scan.

Dates present many opportunities for implicit conversions to inhibit index use. It's very common to
see expressions such as the following:

SQL> select * from employees where trunc(start_date) = trunc(sysdate);

The use of the TRUNC function is often subconscious in writing statements like this. We truncate our dates
to eliminate time-of-day components, often without thinking of the consequences to query execution.
However, as far as Oracle Database is concerned, it only notices that you haven't actually indexed the
expression TRUNC (START_DATE); you have only indexed the START_DATE column. Therefore, the database
ignores the index.

A function-based index on the column TRUNC (SYSDATE)will make the optimizer choose the index,
but there's a simpler way to get around this problem without having to create the function-based index.

6
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

160

Just use the TRUNC function for the SYSDATE values and replace the equality operator with a range
comparison operator such a GREATER THAN or LESS THAN in order to eliminate the need to apply the TRUNC
function on the START_DATE column. That is, instead of this statement

select * from employees where trunc(start_date) = trunc(sysdate);

use this statement

select * from employees where start_date >= trunc(sysdate)
and start_date < trunc(sysdate+1);

The removal of the TRUNC function on the indexed column START_DATE will make the optimizer use the
index on that column.

Skipping the Leading Portion of an Index
If you have a composite index on two or more columns and you don't use the leading portion of the
index in your query, the optimizer is very likely to ignore the index on the table and do a full a table scan.
Let’s say you have an index on the columns A, B in the table mytab, with A the leading column. If you
then issue a SQL statement such as select * from mytable where b=999, the database ignores the index
on the columns A, B because it has to check every single index entry in the table for all possible values of
A.

Note that if you issue a query such as select A, B from mytable, the optimizer is more likely to use
the index on (A,B) because it realizes that both columns are part of the index. An index being much more
compact than the table, and because the database can get all the values that are requested by the query
from the index itself, the optimizer likely will perform a fast full scan of the index.

Even if a query leaves out the leading portion of the index, the database can still use the index,
provided the leading column in a composite index has very few distinct values. In such a case, the
database will perform an index skip scan, as explained in Chapter 5.

There can be multiple leading columns in the index prior to the column used in the predicate when
the optimizer chooses a skip scan. We've seen cases where as many as six columns preceded the
predicate column and the optimizer still used a skip scan. DBAs tend to think of skip scans as only being
feasible when the number of values in the leading columns is small, but “small” is a relative thing. If the
optimizer deems a skip scan to be a lower cost than a full table scan, then the optimizer will choose the
skip scan. In the end, it’s the cost estimate that matters and that drives the choice.

Forcing the Optimizer to Use an Index
You can force the optimizer to use an index by using several techniques. You can use an INDEX hint
(there are several of these, as explained later) to tell the optimizer to use a specific index or even any
index the optimizer finds best. You can also adjust the initialization parameter
optimizer_index_cost_adj, which, by making a direct adjustment to the computed cost of the index
access, makes it very likely to cause the database to use an index instead of doing a full table scan.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

161

 Note The effect of adjusting optimizer_index_cost_adj parameter is not really to force an index use per se.
Rather, it forces an adjustment to the query cost, which makes it more likely that the resulting cost will be such
that the optimizer chooses to use an index.

A note of caution is appropriate here: it's our experience that in the overwhelming majority of cases,
the cost optimizer does know best. If you create primary and unique keys on all tables, and index all
foreign keys as well as any non-unique columns that are likely to figure in your SQL queries, you've
already provided the optimizer all the information that it needs. Of course, you must ensure that you
gather timely optimizer statistics with the correct settings. If you follow the recommendations here,
chances are that the cost optimizer will produce optimal plans just about all the time. You may
occasionally find the need to intervene and override the optimizer's choices, but it'll be somewhat of a
rare event.

Applying the INDEX Hint
Sometimes, the optimizer won't use an index, although you're certain the index will really help
performance. The cost-based optimizer isn't perfect; it doesn't always have an accurate understanding
of the nature and distribution of data. Developers and DBAs often possess a better understanding of
their application and the nature of their data. In cases where you think the optimizer ought to use an
index, you can force it to use an index by specifying an INDEX hint in the query.

An INDEX hint instructs the optimizer to use an index scan for a specific table. The optimizer will
respect the hint for all types of indexes, such as normal. B-tree indexes as well as function-based,
bitmap, bitmap join, and domain indexes.

You specify an INDEX hint in the following way:

SQL> select /*+ index (employees emp_dept_idx) +/
 employee_id, department_id from employees;
 where department_id > 50;

When you specify that the optimizer must use a specific index, remember that the optimizer will
honor your instruction and not perform a full table scan, but it also will ignore other potential indexes it
may have considered. Thus, specifying the INDEX hint will force the optimizer to use only the index you
specify with the hint.

You can also specify the INDEX hint without specifying an index, as shown here:

SQL> select /*+ index (employees) +/
 employee_id, department_id from employees;
 where department_id > 50;

Since the INDEX hint in this example doesn't specify an index to use, the optimizer has the leeway to
select the best index—the index resulting in the least cost. The optimizer may also decide to use multiple
indexes and merge the results. The optimizer is unlikely to use a full table scan, however, though it will
use one if no indexes exist to be used! Note that if you have multiple indexes on a table and you just
specify the index hint, hoping that the query will perform better because the optimizer might use one of
the indexes, you may be in for a surprise sometimes. There is the possibility that the optimizer may

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

162

choose the wrong index if you've multiple indexes and just specify the index hint without specifying an
index. In fact, the optimizer will sometimes choose a far superior full table scan if you don't specify any
index hints whatsoever. All you may end up doing by specifying the INDEX hint without telling the
optimizer which index you want to use is forcing the usage of an inefficient index.

If you want to specify more than one index within the INDEX hint, Oracle recommends that you
specify the INDEX_COMBINE hint rather than the INDEX hint. You specify the INDEX_COMBINE hint in the
following way:

SQL> select /*+ index_combine(e emp_manager_ix emp_department_ix) */ *
 from employees e
 where manager_id = 108
 or department_id=110;

In this case, the optimizer will use the combination of the two indexes you specify that has the lowest
cost. If you specify the INDEX_COMBINE hint without providing a list of indexes, the optimizer will use the
best combination of indexes based on its cost estimates.

Applying Related Hints
INDEX and the INDEX_COMBINE aren't the only hints you can use to instruct the optimizer to use an index.
Oracle Database allows you to use a number of index-related hints, which are briefly described in the
following sections. In addition to the hints discussed here, there are additional index-related hints such
as the INDEX_FFS hint, which tells the optimizer to perform a fast full index scan instead of a full table
scan. If an index contains all the columns necessary to satisfy a query, a fast full index scan is a good
alternative to a full table scan. The fast full index scan needs to access just the index and not both the
index and the table together, as is the case with a normal index range scan. The database scans the entire
index using multiblock reads. In most cases, a fast full index scan runs faster than a full index scan
because it can use multiblock I/O. You can also parallelize this type of scan just as a table scan. The
INDEX_FFS_DESC hint instructs the optimizer to do the fast full scan in a descending order. Sometimes you
may want to the optimizer to perform an index range scan (by specifying the INDEX hint), but it goes
ahead and does a full scan. Oracle offers you the two hints INDEX_RS_ASC and INDEX_RS_DESC to explicitly
direct the optimizer to perform an index range scan in the ascending or descending order. The cost
optimizer uses the value of the DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter to determine
the relative costs of full table scans and index fast full scans. A large value for this parameter can
influence the optimizer to choose a full table scan in preference to an index scan.

The following is a brief explanation of some additional index-related hints.

INDEX_ASC Hint
By default, the database scans indexes in ascending order of the index entries during an index range
scan. If you created a descending index, the database scans the index in the descending order. You can
use the INDEX_ASC hint to explicitly specify an ascending range scan.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

163

INDEX_DESC Hint
If a SQL statement performs an index range scan, specifying the INDEX_DESC hint makes the database
scan an ascending order index in descending order of the indexed values. Note that if you specify this
hint for an index sorted in the descending order, the database scans the index entries in ascending order.

 Tip Don't rush to add a hint to your queries just because you can! See if you have the correct optimizer
statistics for the objects and also check the way your SQL statement is framed before resorting to the use of a
hint. Hints should be a last-ditch alternative.

INDEX_JOIN Hint
 If two indexes contain all the columns required to return a query's results, you can specify that the
database use an index join. The index join is simply a hash join of the individual indexes that together
will return all the columns requested by the query. The database doesn't need to access the table data in
this case, as all data is returned from the indexes themselves. You specify the index join with the
INDEX_JOIN hint, as in this example:

SQL> select /*+ INDEX_JOIN(e emp_manager_ix emp_department_ix) */ department_id
 from employees e
 where manager_id < 110
 and department_id < 50;

Make sure that you have indexes on both the manager_id and the department_id columns before
incorporating the INDEX_JOIN hint. The indexes that you specify must contain all the columns required to
satisfy the query. The preceding SELECT statement results in two index range scans: one on the
emp_manager_ix index and the other on the emp_department_ix index.

INDEX_SS Hint
The INDEX_SS hint tells the optimizer to perform an index skip scan. By default, the database scans the
index in the ascending order of the index values.

Troubleshooting a Failed INDEX Hint
You must be aware that specifying an INDEX hint doesn't guarantee that Oracle will definitely use an
index or indexes. Remember that that the choice of the access path (index or full table scan, for example)
is only part of what the optimizer takes into account when deciding upon an optimal execution plan for
a query. Besides the access path (along with any alternative paths), the optimizer also must evaluate join
methods. In some cases, based on the join methods the optimizer selects, it may decide not to use any
index. Another reason why the database still ends up performing a full table scan even after you specify
the INDEX hint is when you're dealing with a unique index, which has many NULL values. The optimizer

1
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

164

realizes that it might end up with wrong results because there may be some rows that don’t appear in the
index. To avoid this, Oracle Database simply ignores the INDEX hint you provide.

There is a way to get around this inability of the optimizer to honor your index hint. You do so by
adding more hints to the query! You must endeavor to specify a full set of hints to make sure that the
optimizer has no choice but to use the index. The additional hints that you specify control things such as
the precise join order between the tables and the exact join methods as well. The following example
illustrates this:

SQL> select /*+ leading(e2 e1) use_nl(e1) index(e1 emp_emp_id_pk)
 use_merge(j) full(j) */
 e1.first_name, e1.last_name, j.job_id, sum(e2.salary) total_sal
 from employees e1, employees e2, job_history j
 where e1.employee_id = e2.manager_id
 and e1.employee_id = j.employee_id
 and e1.hire_date = j.start_date
 group by e1.first_name, e1.last_name, j.job_id
 order by total_sal;

And here's the execution plan for the previous statement:

FIRST_NAME LAST_NAME JOB_ID TOTAL_SAL
-------------------- ------------------------- ---------- ----------
Michael Hartstein MK_REP 6000
Lex De Haan IT_PROG 9000
Execution Plan
--
Plan hash value: 4097587549
--
| Id| Operation |Name |Rows|Bytes|Cost(%CPU)|Time |
--
0	SELECT STATEMENT		105	5880	117 (5)	00:00:04
1	SORT ORDER BY		105	5880	117 (5)	00:00:04
2	HASH GROUP BY		105	5880	117 (5)	00:00:04
3	MERGE JOIN		105	5880	115 (3)	00:00:03
4	SORT JOIN		105	3675	111 (2)	00:00:03
5	NESTED LOOPS					
6	NESTED LOOPS		105	3675	110 (1)	00:00:03
7	VIEW	index$_join$_002	107	856	3 (34)	00:00:01
* 8	HASH JOIN					
9	INDEX FAST FULL SCAN	EMP_MANAGER_IX	107	856	1 (0)	00:00:01
10	INDEX FAST FULL SCAN	EMPLOYEES_IDX1	107	856	1 (0)	00:00:01
*11	INDEX UNIQUE SCAN	EMP_EMP_ID_PK	1		0 (0)	00:00:01
12	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	1	27	(0)	00:00:01
*13	SORT JOIN		10	210	4 (25)	00:00:01
14	TABLE ACCESS FULL	JOB_HISTORY	10	210	3 (0)	00:00:01

Predicate Information (identified by operation id):

 8 - access(ROWID=ROWID)
 11 - access("E1"."EMPLOYEE_ID"="E2"."MANAGER_ID")
 13 - access("E1"."EMPLOYEE_ID"="J"."EMPLOYEE_ID" AND "E1"."HIRE_DATE"="J"."STA

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

165

RT_DATE")
 filter("E1"."HIRE_DATE"="J"."START_DATE" AND "E1"."EMPLOYEE_ID"="J"."EMPL
OYEE_ID")
SQL>

In this example, the query includes additional hints besides the INDEX hint that specifies an index on the
table EMPLOYEES that you'd like the optimizer to use. The query also includes the LEADING hint to specify
the exact join order. The USE_NL and USE_MERGE hints specify the join method the database must use.

Adjusting the optimizer_index_cost_adj Parameter
You can influence the optimizer to use an index by adjusting the value of the optimizer_index_cost_adj
initialization parameter. You can set this parameter at the system or session level. Here’s an example
that shows how to set this parameter at the session level:

SQL> alter session set optimizer_index_cost_adj=50;

Session altered.
SQL>

The default value for the optimizer_index_cost_adj parameter is 100, and you can set the parameter to a
value between 0 and 10,000. The lower the value of the parameter, the more likely it is for the optimizer
to use an index.

The optimizer_index_cost_adj parameter lets you adjust the cost of an index access. The optimizer
uses a default value of 100 for this parameter, which means that it evaluates an indexed access path
based on the normal costing model. Based on the optimizer’s estimate of the cost of performing an
indexed read, it makes the decision as to whether to use the index. Usually this works fine. However, in
some cases, the optimizer doesn’t use an index even if it leads to a better execution plan because the
optimizer’s estimates of the cost of the indexed access path may be off.

The optimizer uses a default value of 100 for the optimizer_index_cost_adj parameter, so you make
the index cost seem lower to the optimizer by setting this parameter to a smaller value. Any value less
than 100 makes the use of an index look cheaper (in terms of the cost of an indexed read) to the
optimizer. Often, when you do this, the optimizer starts using the index you want it to use. In this
example, you set the optimizer_index_cost_adj parameter to 50, making the cost of an index access path
appear half as expensive as its normal cost (100). The lower you set the value of this parameter, the
cheaper an index cost access path appears to the optimizer, and the more likely it will be to prefer an
index access path to a full table scan.

 We recommend that you set the optimizer_index_cost_adj parameter only at the session level for a
specific query because the parameter has the potential to change the execution plans for many queries if
you set it at the database level. By default, if you set the ALL_ROWS optimizer goal, there’s a built-in
preference for full table scans on part of the optimizer. By setting the optimizer_index_cost_adj
parameter to a value less than 100, you’re inducing the optimizer to prefer an index scan over a full table
scan. Use the optimizer_index_cost_adj parameter with confidence, especially in an OLTP environment
where you can experiment with low values such as 5 or 10 for the parameter in order to force the
optimizer to use an index.

By default, the optimizer assumes that the cost of a multiblock read I/O associated with a full table
scan and the single block read cost associated with an indexed read are identical. However, a single
block read is likely to be less expensive than a multiblock read. The optimizer_index_cost_adj
parameter lets you adjust the cost of a single block read associated with an index read more accurately to

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

166

reflect the true cost of an index read relative to the cost of a full table scan. The default value of 100
means that a single block read is 100% of a multiblock read—so the default value is telling the optimizer
to treat the cost of an indexed read as identical to the cost of a multiblock I/O full table scan. When you
set the parameter to a value of 50, as in this example, you’re telling the optimizer that the cost of a single
block I/O (index read) is only half the cost of a multiblock I/O. This is likely to make the optimizer
choose the index read over a full table scan.

Accurate system statistics (mbrc, mreadtim, sreadtim, etc.) have a bearing on the use of indexes vs. full
table scans. Ideally, you should collect workload system statistics and leave the
optimizer_index_cost_adj parameter alone. You can also calculate the relative costs of a single block
read and a multiblock read, and set the optimizer_index_cost_adj parameter value based on those
calculations. However, the best strategy is to simply use the parameter at the session level for a specific
statement and not at the database level. Simply experiment with various levels of the parameter until the
optimizer starts using the index.

You can also use a more “scientific” way to figure out the correct setting for the
optimizer_index_cost_adj parameter by setting it to a value that reflects the “true” difference between
single and multiblock reads. You can compare the average wait times for the db file sequential read
wait event (represents a single block I/O) and the db file scattered read wait event (represents
multiblock I/O) to arrive at an approximate value for the optimizer_index_cost_adj parameter. Issue the
following query to view the average wait times for both of the wait events:

 SQL> select event, average_wait from v$system_event
 where event like 'db file s%read';
EVENT AVERAGE_WAIT
--------------------------------- -------------------------------
db file sequential read .91
db file scattered read 1.41

SQL>

Based on the output of this query, single block sequential reads take roughly 75% of the time it takes
to perform a multiblock (scattered) read. This indicates that the optimizer_index_cost_adj parameter
should be set to somewhere around 75. However, as mentioned earlier, setting the parameter at the
database level isn’t recommended—instead, use this parameter sparingly for specific statements where
you want to force the use of an index. Note that setting the parameter at the session level requires the
DBA to grant the user privileges to issue the alter session command (or you must do it through some
other procedural mechanism). A good alternative to having to issue the alter session statement is to
specify the OPT_PARAM hint to change the parameter for a specific query, such as /*+
opt_param(‘optimizer_index_cost_adj’,50) */. That way, it is only for the specific query and doesn’t
require any special privileges. Note that an OPT_PARAM hint allows you to set the value of an initialization
parameter for just the duration of the current query, and you can use it to set values for a handful of
initialization parameters, including the optimizer_index_cost_adj parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

167

Collecting Accurate Statistics for an Index
Gathering accurate statistics is probably the single biggest factor that influences the optimizer's
selection of an index scan. You collect optimizer statistics for an index just as you do for a table. Note
that unlike in the case of a table, Oracle Database automatically collects an index's statistics when you
create the index, as shown here:

SQL> create index test_idx on mytab2(employee_id,first_name);

Index created.

SQL> select index_name,last_analyzed, num_rows, sample_size from user_indexes
 where table_name='MYTAB2';

INDEX_NAME LAST_ANAL NUM_ROWS SAMPLE_SIZE
-------------------- ------------- --------- ------------------
TEST_IDX 20-AUG-11 107 107

SQL>

When dealing with optimizer statistics you must ensure that the scheduling of your statistics
gathering jobs is in tune with the amount of changes in a table's data. The frequency of statistics
gathering should depend on the frequency and amount of changes in your data. When you collect
optimizer statistics for a table with the DBMS_STATS procedure GATHER_TABLE_STATS, the cascade
parameter determines if the database gathers statistics for the indexes as well. The default value for this
parameter is the constant DBMS_STATS.AUTO_CASCADE, which means that the database will
determine if it should collect index statistics when it collects the table's statistics. Specify cascade=>true
to ensure that the database collects statistics on the indexes along with the table statistics or change the
value of the constant AUTO_CASCADE with the help of the SET_PARAM procedure.

You can also gather index statistics by themselves without collecting the table statistics by executing
the DBMS_STATS.GATHER_INDEX_STATS procedure, as shown here:

SQL> execute dbms_stats.gather_index_stats(USER,'EMPLOYEES_IDX1',
 estimate_percent=>100, degree=>12);

PL/SQL procedure successfully completed.

SQL>

You can get index-related optimizer statistics information by querying the
dbms_stats.get_index_stats procedure. You can also set index-related information by using the
SET_INDEX _STATS procedure from the DBMS_STATS package.

Parallelizing Index Access
When dealing with partitioned indexes, you can direct the optimizer to use multiple concurrent parallel
servers to parallelize several types of index operations. The operations you can parallelize include index
range scans, full index scans, and fast full scans.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

168

Here's an example that shows how you can specify the PARALLEL_INDEX hint to specify a parallel scan
operation on a partitioned index:

SQL> select /*+parallel_index (employees, employee_id_idx, 4) */ last_name,
 employee_id
 from employees;

The integer 4 specifies the degree of parallelism for the index scan.

There is also a NO_PARALLEL_INDEX hint that overrides the degree of parallelism you specified for an
index. Note that the PARALLEL_INDEX as well as the NO_PARALLEL_INDEX hints are object level hints that
have been superseded by the statement level PARALLEL and NOPARALLEL hints in Oracle Database 11g
Release 2. You can specify the degree of parallelism for a statement level PARALLEL hint in various ways,
as explained through the following examples. Note that if you don't specify the degree of parallelism, the
optimizer calculates its own degree of parallelism:

SQL>select /*+ parallel */ last_name from employees;

If you specify the PARALLEL (AUTO) hint, the database calculates the degree of parallelism, which
could end up being just 1 (serial execution).

SQL> select /*+ PARALLEL (AUTO) */ last_name from employees;

If you specify the PARALLEL (MANUAL) hint, the optimizer uses the degree of parallelism in force for
the object. If you specify PARALLEL (integer), the optimizer uses the degree of parallelism you specify. If
you’re using the PARALLEL_INDEX hint, the database will not adjust the cost of a parallel index full scan by
the degree of parallelism you specify unless you've also declared the table as parallel.

You can execute DDL statements in parallel for both partitioned and nonpartitioned indexes. For a
partitioned index, the parallel DDL statements can be used for the following operations:

CREATE INDEX
ALTER INDEX …[REBUILD|SPLIT] PARTITION

By default, Oracle Database uses a degree of parallelism of 1, as you can see from the following
example:

SQL> create table testtab (x int, y int);

Table created.

SQL> create index testtab_idx1 on testtab(x,y);

Index created.

SQL> select degree from user_indexes where index_name='TESTTAB_IDX1';

DEGREE
--
1
SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7  TUNING INDEX USAGE

169

You can parallelize an index access by altering an index with the PARALLEL clause, as shown here:

SQL> alter index testtab_idx1 parallel;

Index altered.

SQL>

Since you didn't specify the degree of parallelism, Oracle Database uses the default degree of
parallelism, as shown here:

SQL>select degree from user_indexes where index_name='TESTTAB_IDX1';

DEGREE
--
DEFAULT

SQL>

You can specify a non-default degree of parallelism by specifying the degree as follows:

SQL> alter index testtab_idx1 parallel 12;

Index altered.
SQL>

You can specify the degree of parallelism for an index when you create one, as shown in the
following example:

SQL> create index testtab_idx2 on testtab(x)
 2 parallel (degree 8);

Index created.

SQL>

You can disable a parallel degree setting by doing the following:

SQL>alter index mtab_idx noparallel;

You can also specify the parallel degree when you rebuild an index.

Summary
This chapter started off with a discussion of the various types of index access paths, such as a fast full
scan and an index range scan, and their implications. You also learned under what conditions the
optimizer might select various index access paths. On occasion, it may better to force a full table scan for
some queries and this chapter showed you how to do that. This chapter discussed several reasons why
the optimizer may not choose to use an index and how you can use various strategies to influence the
optimizer's choice of an index. Finally, this chapter showed you how to parallelize index access and how
to specify the parallel option when creating an index.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 8

■ ■ ■

171

Maintaining Indexes

Maintaining indexes is always a big part of an Oracle DBA's workload. There are many aspects to
maintaining indexes, and often there are multiple ways to achieve the same goals. This chapter explains
several key aspects of index maintenance to help you improve the performance of your indexes and to
efficiently manage index space usage.

Collecting optimal index statistics is, of course, a crucial part of index maintenance and so we start
with the collection of index statistics. The database sometimes makes an index unusable, following
certain index maintenance operations or some error conditions. The chapter explains the implications
of unusable indexes and shows how to deal with them. Often Oracle DBAs wonder if index
fragmentation is something that affects performance and space usage, and how to deal with it. The
chapter explains the various techniques Oracle offers—such as the ability to rebuild, coalesce, and
shrink indexes—and when each of them is appropriate.

The chapter briefly explains the various ways in which you can create indexes faster, as well as how
you can conserve index space usage. Finally, you'll learn how to efficiently extract complex index
creation statements from the database when you need to recreate indexes in other environments.

Gathering Statistics for Indexes
Optimizer statistics for indexes include things such as statistics relating to the number of rows, number
of leaf blocks in the index, the number of levels of the B-tree, and the clustering factor of the index. Use
the DBMS_STATS package to collect statistics for your indexes. As with tables, the frequency of statistics
collection depends on the amount of changes your data is going through.

The DBMS_STATS Package
You can specify the collection of index statistics by specifying the CASCADE option with the
GATHER_DATABASE_STATS, GATHER_SCHEMA_STATS, and GATHER_TABLE_STATS procedures, as shown in the
following examples.

When collecting schema statistics:

SQL> execute dbms_stats.gather_schema_stats('HR', cascade=>TRUE);

PL/SQL procedure successfully completed.

SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

172

When collecting table statistics:

SQL> execute dbms_stats.gather_table_stats(ownname=>'HR', tabname=>'EMPLOYEES',
 cascade=>TRUE);

PL/SQL procedure successfully completed.

SQL>

Specifying cascade=>true will result in the database always collecting statistics for all indexes on a
table. If you don't specify cascade=>true, Oracle may or may not collect statistics for the indexes. By
default, the constant DBMS_STATS.AUTO_CASCADE determines whether the database must collect index
statistics. Of course, you can change the default value of the CASCADE parameter at the table, schema, or
database level. Here's an example of how to do so at the database level:

SQL> exec dbms_stats.set_database_prefs('CASCADE','TRUE');

PL/SQL procedure successfully completed.

SQL>

Setting the CASCADE parameter to TRUE is the same as executing the GATHER_INDEX_STATS procedure to
gather index statistics. Alternatively, you can just run the GATHER_INDEX_STATS procedure to gather index
statistics, as shown here:

SQL> execute dbms_stats.gather_index_stats ('HR','EMP_EMP_ID_PK');

PL/SQL procedure successfully completed.

SQL>

The following is a simple script that lets you generate all the necessary commands to generate
statistics collection commands for all indexes in a schema:

set serveroutput on
begin
for ind in
(select object_name
from user_objects
where object_type='INDEX')
 loop
 dbms_output.put_line(
 'Gathering Index Statistics for'||ind.object_name||'.....');
 dbms_stats.gather_index_stats(user, ind.object_name
 , estimate_percent=>100);
 dbms_output.put_line('Gathering Index Statistics for '
 ||ind.object_name||' is Complete!');
 end loop;
end;
/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

173

Gathering Statistics During a Rebuild

You can gather statistics on an index while rebuilding the index, as the following example shows:

SQL> alter index hr.emp_emp_id_pk rebuild compute statistics;

Index altered.

You save time by having the database gather statistics while it’s rebuilding the index.

The METHOD_OPT Parameter
 A parameter named METHOD_OPT gives you control over statistics collection as it relates to columns. You
specify the METHOD_OPT parameter of the DBMS_STATS package in order to tell the database two things:

• The columns for which it should collect statistics.

• If it should collect a histogram for any column, and if so, how many buckets
should be in the histogram.

Often, DBAs specify the for all indexed columns size auto value for the METHOD_OPT parameter
when collecting table statistics. Greg Rahn shows why this may be really a bad idea in most cases in his
interesting article on the use of this parameter (/http://structureddata.org/2008/10/14/dbms-stats-
method_opt-and-for-all-indexed_columns/).

Specifying the value for all indexed columns size auto for the METHOD_OPT parameter has the
following implications:

• It tells the database to collect statistics only for those columns that are indexed.

• It lets the database determine if it should collect histograms, as well as the number
of buckets it should allocate for a histogram.

When you specify the for all indexed columns size auto option, the database collects no statistics
on the unindexed columns; it simply uses default values for the number of default values and
cardinality. As a result, it may often end up with a vastly underestimated number of rows. When you get
an explain plan with the help of the DBMS_XPLAN.DISPLAY_CURSOR procedure (run with the ALLSTATS LAST
option), it'll show that the number of estimated rows (E-rows) is often underestimated when compared
to the number of actual rows (A-rows). The wrong cardinality estimates are very likely to play havoc with
the selection of the access paths, join methods, and join order, leading to poor SQL execution times. The
whole idea behind collecting optimizer statistics is to collect representative statistics. The database
doesn't really know your data; you do! (If you really want to understand how to collect good statistics,
please read the excellent article on the use of the DBMS_STATS package by Karen Morton titled “Managing
Statistics for Optimal Query Performance,” available on the method-r.com web site)

The cost optimizer is very likely to produce suboptimal execution plans when it isn't fed accurate
statistics. Inaccurate cardinality estimates are a good example of the consequences of the database
collecting nonrepresentative statistics. For example, a wrong cardinality estimate can lead to the
optimizer selecting the wrong driving table. Alternatively, the optimizer may decide that a NL join is
better when a hash join would be more appropriate, especially when dealing with large data sets.

www.it-ebooks.info

http://structureddata.org/2008/10/14/dbms-stats-method_opt-and-for-all-indexed_columns/
http://structureddata.org/2008/10/14/dbms-stats-method_opt-and-for-all-indexed_columns/
http://structureddata.org/2008/10/14/dbms-stats-method_opt-and-for-all-indexed_columns/
http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

174

The bottom line is that you must collect statistics on all columns, not just the indexed columns, and
specifying the for all indexed columns size auto option makes this impossible. Data warehouses use
fewer indexes in general compared to OLTP systems, so specifying the for all indexed columns size
auto option in those environments is especially likely to lead to poor execution plans. The default value
for the METHOD_OPT parameter starting with Oracle Database 11g is FOR ALL COLUMNS SIZE AUTO. Use this
default value wherever possible.

 Note Regardless of the value you assign to the METHOD_OPT parameter, if you specify cascade=>true, the
database collects statistics on all indexes.

Working with Unusable Indexes
The database may mark an index unusable in various situations, including when an index creation or
rebuild fails midway. For example, when the table data becomes more up-to-date than the indexes on
that table, SQL*Loader leaves the index in an unusable state. A direct path load may leave an index in an
unusable state when any of the following occur:

• SQL*Loader fails to update the index because the index runs out of space.

• The instance fails during the building of the index.

• A unique key has duplicate values.

• An index isn't in the same order as that specified by a sorted indexes clause.

In addition to these reasons, an index can also acquire a status of UNUSABLE following various
maintenance operations. For example, all of the following will result in an index becoming unusable:

• Moving a table or a table partition (alter table move and alter table move
partition).

• Performing an online redefinition of a table.

• Truncating a table partition (alter table truncate partition).

• Importing a partition.

• Dropping a table partition.

• Splitting a table partition or a subpartition (alter table split partition).

• Maintenance operation on a partitioned index (alter index split partition).

Any time you move a table or reorganize a table, internally the database uses a different set of ROWIDs
to point to the rows on disk, and this makes the indexes unusable since they're still pointing to the old
ROWIDs. A ROWID is an Oracle pseudo column that uniquely identifies a row in a table. You must make the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

175

index usable by rebuilding the index, which makes the index entries use the new set of ROWIDs for the
table rows.

Unlike in the case of a valid index, the database doesn’t maintain an unusable index when DML
operations occur. In Oracle Database 11.2, unusable indexes and index partitions are segment-less; the
index or index partition ceases to occupy its allocated space once the database marks its status as
UNUSABLE. The space previously occupied by the index or index partition is immediately returned to the
database. In Oracle Database 11g Release 2, when you create an unusable index, the database doesn’t
allocate a segment for the index.

 Note In the Oracle Database 11.2 release, the database drops the index segment when its status is marked
UNUSABLE.

While the database will mark an index as UNUSABLE following some events, you can also make an
index unusable. You can either mark an existing index UNUSABLE or create an index in the UNUSABLE state.
A reason for making an index unusable is to make a bulk load go faster, since the database doesn't need
to maintain the indexes while inserting data into the table. You can make the index unusable and
recreate it after the bulk load completes. Note that when dealing with partitioned indexes, even though a
partition may be marked UNUSABLE, the remaining partitions of the index continue to be usable. That is,
you can issue SQL statements that require the use of the index with an unusable partition, so long as the
statement doesn't access an unusable partition.

Once the database marks an index as UNUSABLE, the optimizer ignores the index and the database no
longer maintains the indexes following DML changes in the table. An index must have a USABLE status in
order for the database to use it. In order to “use” an unusable index, you must take the index out of the
UNUSABLE mode; you can rebuild the index or drop and recreate the index before you can use the index.

 Tip Truncating a table makes an unusable index usable again.

Making an Index Unusable
Oracle gives you the ability to change an index status to UNUSABLE, obviously, because there may be times
when it's advantageous to do so. One of the best reasons for making an index unusable is in a data
warehouse environment when you have to perform a huge data load into a table with indexes. Leaving
the indexes in place makes the data load extremely slowly. To avoid this, it’s common to set the indexes
to UNUSABLE, load the data, and make the indexes usable again by rebuilding them. In effect, you're
recreating the index, but it beats dropping and recreating an index because the storage is already
allocated to the index and you don't have to specify the index creation statement when you do this. In
effect, making the index unusable "hides" the index from the optimizer until you rebuild it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

176

You can change the status of an existing index to that of an unusable index by specifying the
keyword unusable, as shown here:

SQL> alter index emp_email_uk unusable;

Index altered.
SQL>

The following example shows how to make a partition of an index unusable:

SQL> alter index i_emp_name modify partition p2_i_emp ename unusable;

Index altered.
SQL>

The following is an example that shows how to specify one of the partitions of a local index as
UNUSABLE when you’re creating the index.

SQL> create index i_emp_ename ON employees_part (employee_id)
 2 local (partition p1_i_emp_ename UNUSABLE, partition
 p2_i_emp_ename);

Index created.
SQL>

In this example, the database creates a locally partitioned index with two partitions: p1–
_i_empname and p2_i_empname. However, the index creation statement creates the second partition
(p2_i_empname) as unusable. You can confirm the status of the two index partitions by executing the
following query:

SQL> select index_name as "INDEX OR PARTITION NAME", status
 2 from user_indexes
 3 where index_name = 'I_EMP_ENAME'
 4 union all
 5 select partition_name as "INDEX OR PARTITION NAME", status
 6 from user_ind_partitions
 7 where partition_name like '%I_EMP_ENAME%';

 INDEX OR PARTITION NAME STATUS
------------------------------ --------
P1_I_EMP_ENAME UNUSABLE
P2_I_EMP_ENAME USABLE
SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

177

The following query shows how the database allocates storage only for the usable index:

SQL> select p.partition_name, p.status as "part_status",
 2 p.segment_created as "seg_created",
 3 from user_ind_partitions p, user_segments s
 4 where s.segment_name = 'I_EMP_ENAME';

PARTITION_NAME PART_STA SEG_CREATED
-------------- -------- -----------
P2_I_EMP_ENAME USABLE YES
P1_I_EMP_ENAME UNUSABLE NO
SQL>

Regardless of whether the index is partitioned or not, once you make an index or part of a
partitioned index unusable, the segment that the index occupied will no longer exist. The following
query confirms this:

SQL> select segment_name,bytes from dba_segments
 where segment_name in ('HR.I_EMP_ENAME','HR.EMP_EMAIL_UK');

no rows selected
SQL>

Once you mark an index UNUSABLE, you must rebuild it in order to mark it usable again, as shown in
the following examples:

SQL> alter index EMP_GLOBAL_HASH_IDX modify partition P2 unusable;

Index altered.

SQL> alter index EMP_GLOBAL_HASH_IDX rebuild partition P2;

Index altered.

SQL>

Specifying the SKIP_UNUSABLE_INDEXES Parameter
How the database handles an unusable index depends on the setting of the skip_unusable_indexes
parameter. By default, the skip_unusable_indexes parameter is set to TRUE, meaning that when the
database encounters an unusable index, it simply ignores it and doesn't issue an error. The
skip_unusable_indexes parameter, when set to TRUE, allows you perform inserts, deletes, updates, and
selects on a table with an unusable index or an index partition(s). Any DML statements you issue against
the unusable index will work fine, but the database stops maintaining the index. You can check the
skip_unusable_indexes parameter's value thus:

SQL> show parameter skip_unusable_indexes

NAME TYPE VALUE
------------------------------------ ----------- ---------
skip_unusable_indexes boolean TRUE
SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

178

The following example shows how the database performs a full table scan and ignores the index
when its status becomes unusable. First, let's make the index unusable by issuing the following alter
index statement:

SQL> alter index test_idx1 unusable;

Index altered.
SQL>

The execution plan shows that the database will ignore the index and perform a full table scan.

SQL> set autotrace on explain
SQL> select * from test where id > 10;
 ID TEX
---------- ---
 100000 Sam
Execution Plan
--
Plan hash value: 1357081020
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 7 | 41 (0)| 00:00:02 |
|* 1 | TABLE ACCESS FULL| TEST | 1 | 7 | 41 (0)| 00:00:02 |
--
Predicate Information (identified by operation id):

 1 - filter("ID">10)
SQL>

Now rebuild the index and recheck the query's explain plan.

SQL> set autotrace off
SQL> alter index test_idx1 rebuild tablespace dev_oim;

Index altered.

SQL> set autotrace on explain
SQL> select * from test where id > 10;

 ID TEX
---------- ---
 100000 Sam

Execution Plan
--
Plan hash value: 2624864549
--
| Id|Operation |Name |Rows |Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		1	7	2 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	TEST	1	7	2 (0)	00:00:01
* 2	INDEX RANGE SCAN	TEST_IDX1	1		1 (0)	00:00:01

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

179

--
Predicate Information (identified by operation id):

 2 - access("ID">10)

SQL>

Once the index is usable again, the database uses the index. As the two previous examples show,
when dealing with a nonpartitioned index, the optimizer ignores an unusable index. In the case of a
partitioned index, the database ignores the index if the optimizer can't determine at query compile time
that any of the index partitions can be pruned. However, you can override the default behavior of the
database where it ignores an unusable index by specifying an index hint in the query.

Now check what happens when you set the skip_unusable_indexes parameter to FALSE and execute
the same query, after first rendering the index unusable.

SQL> alter system set skip_unusable_indexes=false;

System altered.

SQL>

SQL> alter index test_idx1 unusable;

Index altered.

SQL>

SQL> select * from test where id > 10;
select * from test where id > 10
*
ERROR at line 1:
ORA-01502: index 'HR.TEST_IDX1' or partition of such index is in unusable state

SQL>

This example shows how when you set the skip_unusable_indexes parameter to FALSE, the database
issues an error when any statement tries to use the index in a SELECT statement. This is true also when a
statement tries to update the index. The database won't permit any insert, update, or delete
operations on a table with an unusable index or index partition(s).

Oracle database will let you perform your select (or insert/delete/update) operations on the table
as long as you set the skip_unusable_indexes parameter to TRUE. However, this is applicable only to non-
unique indexes. Let's see what happens when you're dealing with an unique index.

SQL> drop index test_idx1;

Index dropped.

SQL> create unique index test_idx1 on test(id);

Index created.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

180

SQL> sho parameter skip

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
skip_unusable_indexes boolean TRUE

SQL> insert into test values (2222);

SQL> alter index test_idx1 unusable;

Index altered.

SQL>

Even though the skip_unusable_indexes parameter is set to TRUE, the database issues an error when
you try to insert some data.

SQL> insert into test values (3333);
insert into test values (3333)
*
ERROR at line 1:
ORA-01502: index 'HR.TEST_IDX1' or partition of such index is in unusable state

SQL>

As this example shows, the database will issue an error and terminate any DML statement involving an
unusable index that enforces a unique constraint. The reason for this is simple: allowing insert or
update operations on a table where the unusable index is used to enforce a unique constraint might
violate the constraint.

Managing Index Space Usage
Over time, indexes can potentially experience fragmentation due to large numbers of deletions (as well
as some types of insertions). DBAs often wonder about the correct approach to handling the space usage
by indexes, especially large ones. Oracle provides three ways to handle fragmentation within an index—
rebuilding, coalescing, and shrinking an index—and each of them serves a different purpose. The
following sections discuss three index reorganization techniques and provide some insight into when a
certain approach is appropriate and when it isn't.

Rebuilding to Reduce Fragmentation
Rebuilding an index recreates an existing index. You can rebuild an entire index, a partition, or a
subpartition of a partitioned index without having to recreate the entire index. In order to rebuild an
index, use the alter index statement in the following way:

SQL> alter index test_idx1 rebuild;

Index altered.

SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

181

This statement makes the test_idx1 index unavailable for use until the rebuild operation completes. You
can optionally rebuild an index online, as shown here:

SQL> alter index test_idx1 rebuild online;

Index altered.

SQL>

Rebuilding an index online allows the database to use the index during its rebuild, thus enhancing
availability. The online index rebuild capability, although available in earlier releases, didn't always work
as advertised. In the Oracle Database 11g release, however, an online rebuild doesn't lead to any locking
of the underlying table when you rebuild an index.

Rebuilding Reverse-Key Indexes
When you rebuild an index with the reverse option, the database excludes the ROWID and stores the bytes
of the index blocks in reverse order. For example,

SQL> alter index test_idx1 rebuild reverse;

Index altered.

SQL>

Chapter 5 explains reverse key indexes in detail. As that chapter explains, reverse key indexes are
beneficial in some specific circumstances, especially in Oracle RAC environments, but have the
drawback of not enabling the use of index range scans.

Reclaiming Unused Space
DBAs sometimes rebuild indexes in order to reclaim unused space. You can actually deallocate space
from an index by executing the alter index …deallocate statement. For example,

SQL> alter index test_idx1 deallocate unused;

Index altered.

SQL>

When you deallocate space like this, the Oracle database deallocates unused space at the end of an

index (or table) segment. Unused space within the segment caused by entries that have been deleted or
moved is not released. Only space at the end of the segment is released.

Rebuilding a Partitioned Index
Several maintenance operations on tables mark any corresponding indexes or index partitions as
invalid. If a local index partition is marked invalid, you must rebuild just the associated local index

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

182

partition. A global index is invalidated if the rows of data in a partition are affected by DDL on that
partition. Unlike in the case of a local index, you must rebuild all index partitions of a global index
following a partition maintenance operation such as moving a table partition.

Rebuilding Global Partitioned Indexes
When dealing with global index partitions, the best strategy probably is to drop the index and recreate it
because the database needs to scan the table just once when you do this. The other alternative is to
individually rebuild the global indexes partitions by issuing the alter index … rebuild partition
statement. Since you can rebuild multiple partitions simultaneously in parallel, this may not take as
much time as it would if you perform the operation serially.

Rebuilding Local Partitioned Indexes
You can rebuild a local index by issuing either the alter table or alter index statement. If you want to
rebuild an index regardless of whether the index is marked unusable or not, use the alter index …
rebuild partition statement. This statement rebuilds a single partition or a subpartition.

You can't use the alter index…rebuild statement to rebuild a composite-partitioned table. You
must instead use the alter index …rebuild subpartition statement for any composite-partitioned
tables. Here's an example:

SQL> alter index test1
 rebuild subpartition prod_types
 tablespace tbs2 parallel (degree 8);

Use the alter table statement if you want to rebuild only those indexed partitions and
subpartitions that have been marked unusable. Here's the general syntax for the alter table statement
to rebuild just the unusable partitions or subpartitions:

alter table … modify partition/subpartition … rebuild unusable local indexes

This alter table syntax will rebuild all unusable indexes in a table partition or subpartition.

Specifying the UPDATE INDEXES Clause
You can specify the update indexes clause with any of the alter partition statements during a partition
maintenance operation, so the database can update the index while it's performing the maintenance
operation on the partitions. This means that you avoid having to rebuild indexes following any
maintenance operations on partitioned tables with indexes. You can specify the update indexes clause
for most maintenance operations on partitioned tables. The following partition maintenance operations
mark all global indexes as unusable:

• Add (for hash partitions) or drop partitions

• Coalesce (for hash partitions), merge, move partitions

• Split partitions

• Truncate partitions

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

183

You can specify the update indexes clause with any of the preceding partition maintenance
operations. In case you're using a global partitioned index, you can specify the update global indexes
clause to prevent the global index from being marked as unusable. The two big advantages in specifying
the update global indexes clause is that the index remains online and available during the maintenance
operation and you don't have to rebuild it after the maintenance operation.

You specify the update global indexes clause in order to automatically maintain a global index
during a DDL operation. You can specify the update global indexes clause only for adding a partition to
a hash partitioned table or a subpartition to a hash partitioned table. You can't specify it for adding
partitions to a range partitioned table. Here's an example that shows how to specify the clause when
performing a table maintenance operation on a hash partitioned table:

SQL> create table emp_hpart(
 2 empno number(4) not null,
 3 ename varchar2(10),
 4 sal number(7,2))
 5 partition by hash(sal)
 6* (partition H1, partition H2, partition H3, partition H4)
SQL> /

Table created.

SQL> create index emp_global_HASH_idx on emp_hpart(ename)
 2 global partition by range (ename)
 3 (partition p1 values less than ('N') ,
 4* partition p2 values less than (maxvalue))
SQL> /

Index created.

SQL> insert into emp_hpart values (1,'AAA',100);

1 row created.

SQL> commit;

Commit complete.

SQL> alter table emp_hpart add partition q5
 2* update global indexes
SQL> /

Table altered.

SQL>

SQL> select substr(index_name,1,20) index_name, substr(partition_name,1,20)
 2 part_name , status
 3 from dba_ind_partitions
 4* where index_name= 'EMP_GLOBAL_HASH_IDX' order by partition_name
SQL> /

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

184

INDEX_NAME PART_NAME STATUS
--------------------- ------------- --------
EMP_GLOBAL_HASH_IDX P1 USABLE

EMP_GLOBAL_HASH_IDX P2 USABLE

SQL>

Notice that if you add a partition to the table, the indexes become unusable if you don't specify the
update global indexes clause in your add partition statement.

SQL> alter table emp_hpart add partition q7;

Table altered.

SQL> select substr(index_name,1,20) index_name, substr(partition_name,1,20)
 2 part_name , status
 3 from dba_ind_partitions
 4* where index_name= 'EMP_GLOBAL_HASH_IDX' order by partition_name
SQL> /

INDEX_NAME PART_NAME STATUS
-------------------- ----------- -----------
EMP_GLOBAL_HASH_IDX P1 UNUSABLE
EMP_GLOBAL_HASH_IDX P2 UNUSABLE

SQL>

Rebuilding Indexes Frequently
Oracle itself has changed its stand on the advisability of rebuilding indexes. Until recently, Oracle
Support used to offer a standard script to identify candidates for an index rebuild. The script included an
analyze index ...validate structure statement to populate the INDEX_STATS view. Once the indexes
are analyzed, you use two simple criteria to identify the indexes that could potentially benefit from a
rebuild. The summary of Oracle's advice was to rebuild any index that met the following two criteria:

• The index depth is more than 4 levels.

• The deleted index entries are at least 20% of the total current index entries.

 Note The database implements an index update internally by performing a delete first and then an insert.

Many practitioners still rely on these outmoded and wrong rebuild criteria to determine whether
they should rebuild their indexes. The latest Oracle documentation continues to recommend regular
rebuilding of indexes. It urges you to "develop a history of average efficiency of index usage" by
frequently running the validate index …analyze structure command and rebuilding indexes based on

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

185

the results of the analyze command. It further recommends you to rebuild or coalesce an index "when
you find that index space usage drops below its average." These recommendations are definitely at odds
with those currently offered on the Oracle support site (MOSC). On that site, Oracle no longer advises
frequent index rebuilds, notwithstanding the latest version of Oracle's documentation (Performance
Tuning Manual for Oracle Database 11.2) which still contains the older advice to run the analyze ...
validate statement to identify index rebuild candidates.

The following sections examine in detail the INDEX_STATS view and the analyze index…validate
structure command that are at the heart of the whole rebuilding strategy that Oracle still half-heartedly
recommends.

The Role of the INDEX_STATS View in Index Rebuilds
The INDEX_STATS view by default has no rows. You populate this view by executing the analyze index...
validate structure command. Once you do this, the INDEX_STATS will supposedly have the necessary
data to guide your index rebuild decisions.

Benefits from the INDEX_STATs view
Once you have the view populated, you can use it to look at and compute a number of useful items of
information that can help you stay on top of indexing in your database. The key columns you need to
pay attention to are the following:

• HEIGHT: Height of the index, which begins at 1 for root only index.

• BLOCKS: Number of blocks allocated to the index.

• LF_ROWS: Number of leaf row entries (includes deleted row entries).

• DEL_LF_ROWS: Number of deleted leaf row entries not yet cleaned out.

• USED_SPACE: Total space used within the index (includes deleted entries).

• PCT_USED: Percentage of space used within the index (includes deleted entries).
This is derived by the following formula: (USED_SPACE/BTREE_SPACE)*100.

• BTREE_SPACE: Total size of the index (includes deleted entries).

You can estimate the non-deleted rows in an index by subtracting the DEL_LF_ROWS value from
the LF_ROWS value. You can estimate the percentage of space used by the non-deleted rows of an
indexed by using the following formula:

 ((USED_SPACE - DEL_LF_ROWS_LEN)/BTREE_SPACE) * 100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

186

The following example shows how the optimizer is always aware of the deleted rows in a table and
makes the correct choice, even when you delete a large percentage of a table's rows. Let's create a simple
table with 100,000 rows and create an index on it.

SQL> create table test as select rownum id, 'Sam' text from dual
 2* connect by level <=100000
SQL> /

Table created.

SQL> create index test_idx1 on test(id);

Index created.
SQL>

Run the analyze index validate structure statement to check the number of lf_rows and lf_blks.

SQL> analyze index test_idx1 validate structure
SQL> /

Index analyzed.

Query the INDEX_STATS view to check the number of deleted leaf rows.

SQL> select lf_rows, lf_blks, del_lf_rows from index_stats;

 LF_ROWS LF_BLKS DEL_LF_ROWS
---------- ---------- -----------
 100000 222 0
SQL>

Delete a large number of rows from the table and run the analyze index validate structure
command again.

SQL> delete test where id <=99999;

99999 rows deleted.

SQL> commit;

Commit complete.

SQL> analyze index test_idx1 validate structure;

Index analyzed.

SQL> select lf_rows, lf_blks, del_lf_rows from index_stats;

LF_ROWS LF_BLKS DEL_LF_ROWS
---------- ---------- -----------
 100000 222 99999
SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

187

Gather statistics on both the table and the index.

SQL> execute dbms_stats.gather_table_stats(ownname=>'HR',tabname=>'TEST',
cascade=>TRUE);

PL/SQL procedure successfully completed.

SQL>

Query the DBA_INDEXES view.

SQL> select index_name, num_rows, leaf_blocks from dba_indexes where
 index_name = 'TEST_IDX1'
SQL> /

OWNER INDEX_NAME NUM_ROWS LEAF_BLOCKS
------- ----------------------- ---------- -----------
HR TEST_IDX1 1 1
SH TEST_IDX1 0 0

SQL>

The DBA_INDEXES views shows that only one leaf block is being utilized by the index to host the single
column value that remains in the table. The optimizer correctly chooses the index, as expected.

SQL> set autotrace traceonly explain
SQL> select * from test where id > 10;

Execution Plan
--
Plan hash value: 2624864549
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		1	7	3 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	TEST	1	7	3 (0)	00:00:01
* 2	INDEX RANGE SCAN	TEST_IDX1	1		2 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("ID">10)

SQL>

Once your rebuild the index and analyze the index (validate structure), this is what you get:

SQL> select lf_rows, lf_blks, del_lf_rows from index_stats;

LF_ROWS LF_BLKS DEL_LF_ROWS
---------- - --------- ---------------------
 1 1 0
SQL>

6
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

188

Problems with the INDEX_STATS view
There are several problems with the analyze index ...validate structure command, including the fact
that the command locks the table until the index is analyzed. The real problem with using the analyze
index …validate structure command to determine whether you should rebuild an index is that Oracle
does automatically reuse deleted space in an index in most cases. The following is a simple example that
illustrates this fact.

Create a test table.

SQL> create table reb_test (cust_id number, cust_code number, cust_name
varchar2(20));

Table created.
SQL>

Insert a few test rows (nine rows in this example).

SQL> insert into reb_test select rownum, rownum, 'Groucho Marx' from dual
 2 connect by level < 10;

9 rows created.

SQL> commit;

Commit complete.
SQL>

Create an index on the CUST_ID column.

SQL> create index reb_test_cust_id_idx on reb_test(cust_id);

Index created.
SQL>

Delete four of the nine rows from the table.

SQL> delete from reb_test where cust_id in (1,2,3,4);

4 rows deleted.

SQL> commit;

Commit complete.
SQL>

Analyze the index with the analyze index …validate structure command.

SQL> analyze index reb_test_cust_id_idx validate structure;

Index analyzed.
SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

189

Query the INDEX_STATS view to find the value of the DEL_PCT column, which shows the percentage of
the deleted leaf rows in the index.

SQL> select lf_rows,del_lf_rows,del_lf_rows/lf_rows*100 del_pct from index_stats;

 LF_ROWS DEL_LF_ROWS DEL_PCT
 -------- ----------- ----------
 9 4 44.4444444
SQL>

As expected, the DEL_PCT column has a value of a little over 44%. Insert a single row into the table.

SQL> insert into reb_test values (999,1,'Franco Marx');

1 row created.

SQL> commit;

Commit complete.
SQL>

Analyze the index again.

SQL> analyze index reb_test_cust_id_idx validate structure;

Index analyzed.
SQL>

Check the percentage of the deleted rows now.

SQL> select lf_rows,del_lf_rows,del_lf_rows/lf_rows*100 del_pct from index_stats;

 LF_ROWS DEL_LF_ROWS DEL_PCT
 -------------- ---------------------- --------------
 6 0 0

SQL>

As you can see, the deleted percentage of rows, which was about 44%, is now zero. The reason for
this is that while you've inserted a single row, that is still a quarter of the four rows initially deleted. If you
insert a small number of rows into a large table after deleting a high percentage of rows, don't expect to
see Oracle immediately reclaim the deleted space. The real point we're trying to make here is that the
Oracle database does in most cases utilize the space left free by deleted rows for inserting fresh rows; the
space doesn't necessarily end up as deadwood. If you're rebuilding indexes simply based on an arbitrary
cutoff point for the percentage of deleted space in an index, you may not see any real gains over time,
since the index itself may very well reuse all of the so-called wasted space. The final size of the index may
very well grow back to its "natural" state anyway. In addition, depending on the percentage of rows
currently marked as deleted based on the DEL_IF_ROWS statistic from the INDEX_STATS view means that
you may actually miss potential opportunities for a valid rebuild. This is so because under some
circumstances, the DEL_IF_ROWS statistic actually vastly underestimates the actual percentage of deleted
rows in an index.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

190

Blindly using the DEL_IF_ROWS statistic as an index-rebuilding criterion means that you may both be
rebuilding indexes that don't need a rebuild and missing out on real opportunities to gain from
rebuilding an index. You really must make the rebuild decision based on the nature of the data in a
column (sequence based, for example) and the pattern of deletes and inserts. We also recommend that
you actually test the performance before and after a rebuild to see if it proves beneficial to you.

Index Rebuilding: The Debate
There’s a fair bit of debate over the question of whether to rebuild indexes, especially on a routine basis.
There are many reasons why DBAs rebuild. Some are valid; some are based upon myth or
misunderstanding.

Arguments for Rebuilding
In this section, we summarize the arguments traditionally advanced to support regular rebuilding of
indexes.

• Oracle B-tree indexes become unbalanced over time: One of the most common
reasons advanced by proponents of frequent rebuilds is that Oracle B-tree indexes
become unbalanced over time if they're subject to a heavy amount of updates and
deletes. This is not true as the height between the root block and all the leaf blocks
is always consistent.

• Deleted space in an index is deadwood: A common misconception is that
deleted space in an index is wasted space that the database can't reuse. This is a
false conception; in most cases the database does automatically clean up the
empty blocks for reuse without your having to perform an index rebuild. We
presented a simple example in the previous section to demonstrate this point.

• Indexes that reach a set number of levels are inefficient: Another argument is
that indexes that reach a certain number of levels somehow are inefficient. There's
no valid reasoning behind this argument. If the index is performing well, it really
doesn't matter how many levels there are in the index tree. Since Oracle keeps the
index balanced, B-tree levels are simply a result of having lots of entries in the
index. If you had a 200 billion entry index vs a 200,000 entry index, you’d expect
there to likely be more levels. The levels in an index tree simply depend on how
many index entries are present and how many branch blocks are necessary to
contain the ranges of entries that lead to the leaf blocks.

• Indexes with a poor clustering factor can be fixed by a rebuild: Some have put
forth the argument that indexes with a poor clustering factor make "obvious"
candidates for a rebuild. However, when you rebuild an index, it doesn't change
the table or the index order; therefore the clustering factor is completely
unaffected by your index rebuild. If you want to improve the clustering factor, you
must actually rebuild (and thus reorder) the table.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

191

 Caution If you rebuild the table to “fix” the clustering factor for one index, you may mess up the clustering
factor for another index. Since the table can only be rebuilt in one order, any index that doesn’t match that order
will have a less than perfect clustering factor. In our opinion, you need a really good reason (backed with proof) to
rebuild a table to try to achieve a “good” clustering factor.

Arguments Against Rebuilding
This section summarizes the most important reasons why you should not be doing automatic index
rebuilds based on the deleted percentage of index entries.

• Locking issues during rebuilds: The analyze index …validate structure
command could result in massive locking issues, so this is something to keep in
mind if you're using the DEL_IF_ROWS statistics as your criterion for rebuilding
indexes. In previous releases, even an online rebuild meant that the database
applied locks, thus blocking users from doing their work until the index rebuilds
were completed. Starting with Oracle 10g, an online rebuild of an index doesn't
involve locking of the index.

• Excessive redo generation: Index rebuilds generate massive amounts of redo. If
you use the nologging option, however, this is a non-issue.

Our Advice
There are numerous discussions on various blogs as to whether one should rebuild indexes or not on a
frequent basis. Most of these discussions relate to the points we mentioned under the arguments for and
against rebuilding of indexes. The following is our advice without rehashing all the discussions in favor
and against rebuilding indexes.

Despite Oracle's own advice, there's a strong perception among developers and DBAs (and their
managers!) that index rebuilds are strongly correlated with performance. One of the most common
reasons put forward by DBAs to rebuild indexes on a regular basis is that rebuilding improves
performance and recovers space. In fact, Oracle documentation itself mentions these as the two top
reasons to rebuild indexes.

It is not uncommon for a DBA to be asked how frequently they schedule index rebuilds when a
serious performance issue crops up. At an intuitive level, an index "rebuild" seems to be something that
is "good" for the database. However, we urge you to read Richard Foote's well-documented (and
extremely well detailed) presentation on why an automatic index rebuild isn't necessary:
http://www.dbafan.com/book/oracle_index_internals.pdf..

If most of the queries in your database read only single rows via an index access, an index rebuild
isn't likely to make any impact on performance. However, if you have a case where you identify extreme
index fragmentation with heavy deletions from the same portion of the index and the queries read
numerous index rows each time, and the index is heavily utilized, it makes sense to rebuild the index.
Note that these are rare cases and usually involve an index with a lefthand (older) side "brown" leaves
with heavy deletion of index entries. The index will become more compact and your queries will run
much faster in such a case. Note that if all index entries are deleted from the lefthand side, Oracle
database automatically moves the index leaf blocks from the left (older) side to the right (newer) side.

www.it-ebooks.info

http://www.dbafan.com/book/oracle_index_internals.pdf
http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

192

Even in a case with an index structure with a lot of brown leaves, most range scans will still run fine. Only
those range scans that start from the far left of the index (those that query the earliest data) will
deteriorate in performance due to the deletion of the index entries. In any case, don't blindly rebuild
indexes on a regular basis as part of a "database maintenance" effort. You may end up with minimal
gains for all the extra work. If you determine the root cause of a performance issue is that an index needs
rebuilding, rebuild the index—just don't schedule automatic index rebuilds based on the wrong
criterion (DEL_LF_ROWS). If your before and after performance measurements show improvements (say, in
reducing the number of index block reads), the rebuild helped; otherwise it didn't.

We can, however, see several specific situations where a DBA may rightly rebuild an index. Here are
some of the most common scenarios:

• If an index or an index partition is damaged by media failure, index building may
be the only alternative in some cases.

• Rebuild index partitions that have been marked UNUSABLE.

• Rebuild indexes if you want to quickly move them to a different tablespace, or if
you want to change certain storage parameters.

• Rebuild an index partition following a data load of the table partition with
SQL*Loader utility.

• Rebuild an index to enable key compression.

• Unlike B-tree indexes, a bitmap index can grow very large very quickly and may
benefit from a rebuild.

Instead of rebuilding an index, you can shrink the space used by an index by coalescing or shrinking
an index. Using the alter index ...shrink space compact command gets you the same results as when
you execute the alter index...coalesce command. Both the shrink and coalesce commands are
alternative ways to compact an index segment. Both operations achieve the same purpose and are in
essence identical, but the shrink command offers more options, as explained in the following sections.

Coalescing Indexes to Reduce Fragmentation
The coalesce command tells the database to merge the contents of the index blocks to free blocks for
reuse later, where it is possible to do so. Here's an example:

SQL> alter index test_idx1 coalesce;

Index altered.

SQL>

Coalescing an index doesn't release space back to the database. The purpose of the coalesce

command is to reduce fragmentation in an index. It doesn't deallocate space that has been allocated to
an index segment. Coalescing an index performs an in-place reorganization of the index data. It
combines adjacent leaf blocks into a single leaf block and puts the newly empty leaf blocks on the free
list of the index segment. The freed up index leaf blocks are reused by the database during subsequent
block splits. The goal here is to reduce the free space within the leaf blocks of an index. The database

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

193

scans the index leaf blocks to compare the free space in neighboring index blocks. If there's free space in
a block, the block’s contents are merged with the contents of another block, thus freeing up index leaf
blocks where possible. The database removes any freed index blocks from the index structure and places
them on the free list of index blocks.

Coalescing an index keeps the space you allocated for the index intact; it doesn't return the unused
space to the database. If you have a case where you're dealing with an index with monotonically
increasing values such as on a sequence or a date and you delete a lot of the old values, coalescing might
be helpful. Many shops regularly purge older data based on the sequence number or a data range.
Coalescing indexes in such cases helps you reclaim the unused space, which is not going to be reused by
the indexes anyway. If you're performing a select of all the rows in a table with such an index and are
ordering the results by the indexed column, the database will have to read the mostly empty index leaf
blocks. Queries might perform better when you coalesce such an index. Coalescing rather than
rebuilding the index is the right action to take here. Unlike in the case of an index rebuild, coalescing an
index doesn't require additional disk space; rebuilding an index requires space both for the original and
the new index structures until the index is rebuilt. Coalesce also runs much faster than an index rebuild
in most cases, freeing up unused leaf blocks for reuse.

 Note Both the coalesce and the shrink commands result in the same number of leaf blocks in the index. The
index height remains unchanged, unlike in the case of an index rebuild where the index height is sometimes
shortened.

Shrinking Indexes to Reduce Fragmentation
Instead of coalescing an index, you can shrink an index segment by specifying the shrink space clause
as shown here:

SQL> alter index test_idx1 shrink space;

Index altered.
SQL>

Shrinking an index compacts the index segment and the database will immediately release any
space that has been freed up. You can specify the shrink space clause to reduce space usage in not only
an index, or index partition/subpartition, but also in a table. For the primary keys of an index organized
table, you must use the alter table statement instead and specify the coalesce clause.

For a large index, the database may take quite a bit of time to complete the shrink operation.
Therefore, Oracle lets you perform a shrink operation in two steps. If you specify the compact clause with
the shrink space command, the database only performs a defragmentation of the segment space. It
compacts the index but doesn't immediately release the free space. You must issue a separate alter
index ...shrink space command to make the index release the free space. Since compacting an index
segment may require the database to perform row movement, you must first enable row movement for a
table before you specify the compact clause.

When you shrink an index, the database returns all the freed up space to the tablespace holding the
index—if you specified autoallocate for the tablespace. If you specified uniform extent allocation, on the
other hand, the database won't return any extent that contains even a single block of index data.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

194

During an index shrink operation, in the first phase the database scans the index segment from the
back to locate the position of the last row. Next, the database scans the index segment from the
beginning to locate the position of the first free slot in an index block. If the two positions are identical,
there's no need to do anything further. As long as the database finds that the two positions are different,
it continues to remove rows from the back of the index and insert them into the free blocks at the front of
the index segment. The shrink space command is inherently more expensive than a coalesce operation
because the command actually deallocates empty index blocks and places them on the free list. It must
empty all index blocks from the physical end of the index segment for this deallocation to occur and all
this requires more work on part of the database and the generation of more redo. Use the shrink space
command only if you want to permanently reduce the size of the index segment, say because of a large
number of permanent deletions from a large table; you won't need that space ever, so you can shrink the
index segment. If your goal is merely to defragment an index, coalesce the index instead of shrinking it;
you'll have all the freed up index blocks for subsequent use by the index and the operation requires far
fewer resources.

Although both the coalesce and shrink commands achieve the same purpose of defragmenting an
index by rearranging existing index entries to reduce the number of blocks in an index structure, you use
the two commands for different purposes. Whether you must coalesce or shrink an index depends on
what is happening with the index. If you think the index is unlikely to grow much and has a lot of free
space, you may want to shrink the index to reclaim the free space. However, if you think the index will
probably need the free space in the future, you may want to just coalesce the index. Coalescing has an
advantage over shrinking an index because the database never locks the index during the index
coalescing operation (coalesce is always an online operation), while it does lock the table briefly during a
shrink operation to release the free space.

Large indexes sometimes get fragmented over time and you may have a valid reason to reduce the
fragmentation. Whether you employ the coalesce or rebuild operation depends on exactly how the index
is getting fragmented. If you have an index on a sequence, for example, and the rows are deleted from an
older part of the index, then you may have a case where the deleted space does become deadwood in the
sense that it can't be used by new index entries that are being inserted into the newer, rightmost part of
the index. In a case such as this, where the deletions are all occurring from a small portion of the index, a
rebuild is overkill in general; you're better off with a coalesce (or shrink operation). The coalesce
operation will just go through the small portion of the index that's fragmented and leave the rest of the
index alone; it takes far less time and resources to get the job down via coalescing the index in this case.
However, if there are numerous deletions through the index, and not from a specific part of the index
structure, you are better off rebuilding the index completely. Rebuilding is far more efficient because,
unlike a coalesce operation, it has to perform only a single scan of the index structure in order to create a
new structure. Since the deletions are large and are all over the index structure, coalescing an index is far
less efficient, as it has to keep moving the same index blocks through multiple leaf blocks to defragment
them. The choice between rebuilding and coalescing an index can also depend on whether you need to
avoid downtime. If you can’t have downtime, then you’ve got to coalesce since, as mentioned earlier,
coalescing is always an online operation.

Moving Tables and Indexes
Whenever you move a table to a different tablespace (or perform any one of several table maintenance
procedures), any indexes that depend on the table are rendered unusable. Here is an example:

SQL> alter table test move tablespace dev_oim;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

195

Table altered.

SQL> select index_name, status from dba_indexes where table_name='TEST';

INDEX_NAME STATUS
------------------------------ --------
TEST_IDX1 UNUSABLE
SQL>

Once you rebuild the index, it becomes usable again.

SQL> alter index test_idx1 rebuild
 2 parallel 12
 3 nologging;

Index altered.

SQL> select index_name, status from dba_indexes where table_name='TEST';

INDEX_NAME STATUS
------------------------------ --------
TEST_IDX1 VALID

SQL>

Unlike in the case of a table, you can't move an index by using a "move index" command. You move
an index to a different tablespace by rebuilding the index. So, if you want to move the index test_idx1
from the USERS Tablespace to a different tablespace (DEV_OIM in the example), here is what you need to
do:

SQL> alter index test_idx1 rebuild
 2 parallel 12
 3 nologging
 4* tablespace dev_oim
SQL> /

Index altered.

Improving Index Creation Efficiency
The speed with which you can create an index is always critical when you're creating indexes on large
tables. You can adopt several strategies to minimize the index creation time, as summarized in the
following sections. Often, you can combine several of these strategies to cut short the time for creating
an index.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

196

Parallelizing Index Creation
Using the parallel option during index creation will help speed up the creation of a large index. In order
to create an index, the database needs to perform a full table scan. Specifying the parallel clause makes
the database perform the full table scan in parallel, thus making the index creation finish much faster.
There is no hard and fast rule, of course, as to the appropriate degree of parallelism; it depends on the
number of CPUs on your system. Here's an example that shows how to specify the parallel option:

SQL> create index text_idx1
 on employees (last_name,first_name)
 parallel 12;

You can also specify the parallel option when rebuilding an index, as shown here:

SQL> alter index text_idx1 rebuild parallel 12;

Index altered.

SQL>

Specifying parallelism during the creation or rebuilding of an index will definitely make the index
creation/rebuild process finish much faster than otherwise, provided you have the necessary I/O
bandwidth and CPU resources to handle the demands of the parallel processes. A word of caution,
however: the parallelism you specify during the creation or rebuilding of an index doesn't end there!
Such a parallel operation will persist the parallelism degree of the index, as can be shown by the
following query.

SQL> select index_name,degree from user_indexes where degree > 1;

INDEX_NAME DEGREE
------------------------------ --
TEXT_IDX1 12

SQL>

What this query's output is telling you is that even though you had merely intended to speed up
your index creation or rebuild with the parallel option (parallel 12), the database has permanently
modified the parallelism degree of the index text_index1 to 12 from its default value of 1. Any query
operations involving that index will begin defaulting to parallel execution. This is not always a good
thing!

By the way, the same is also true with tables. If you specify the parallel option during an alter
table …move or a create table … as operation, the database will permanently modify the existing
parallelism of the table (default is 1) to the degree you specify for the operation on the table.

 Tip Creating or rebuilding an index in parallel will change the degree of parallelism for that index. The optimizer
will take into account this fact when it calculates the cost of alternative execution paths.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

197

If you really intend the database to use parallelism when dealing with your index, you’re fine.
However, if you don't intend the database to use parallelism during query execution, disable parallelism
on an index after any parallel maintenance operation such as a create index or a alter index rebuild
operation, as shown here:

SQL> alter index text_idx1 noparallel;

Index altered.

SQL>

If you forget to put the degree of parallelism of an index back to its default value of 1 (no
parallelism), you may get bit you when you least expect it, especially in an OLTP application. All of a
sudden you may be confronted with heavy contention and a slowdown in processing due to the totally
unintended use of parallelism.

When you encounter this situation, a check of the tables involved in the query may show that the
degree of parallelism is at the default of 1. However, when you check the parallelism of all the indexes
involved in the query, you'll find the culprit: the index you've created or rebuilt with a parallel option has
its parallel degree set to greater than 1. Even the presence of a single object in a query with a parallel
degree greater than 1 means that the optimizer may choose to parallelize all operations on the query. So
be careful. Don’t leave a degree of parallelism set unless you mean for it to be set.

Avoiding Redo Generation During Index Creation
You can achieve dramatic reductions in index creation times by choosing not to write the index creation
entries to the redo log. Since you can always rebuild an index with the table data, you're not risking
anything by creating indexes with the nologging option. The nologging option is especially helpful when
creating very large indexes during short windows of time.

 Simply specify the nologging option when creating an index to speed up the index creation process,
as shown here:

SQL> create index hr.emp_name_idx on hr.employees (last_name, first_name)
 2 nologging
 3* tablespace example
SQL> /

Index created.
SQL>

When used for creating large indexes, the nologging option not only dramatically increase performance,
but also saves space by not filling up several redo log files.

Using Larger Block Sizes
According to Oracle (MOSC Note 46757.1), a large block size can save disk space for indexes. As an
example, Oracle states that by moving from a 2KB block size to an 8KB block size, you can save about 4
percent in data storage. In order to create an index with a non-standard block size, first create a
tablespace with the block size you need. For example, if you want to create the index with a block size of

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

198

32KB when the database block size is 8KB, use the block size 32KB option when creating the tablespace.
Once you do this, create the index by specifying the tablespace with the large block size, as shown here:

SQL> create index cust_idx1 on customer (cust_id)
 tablespace large_ts;

Using larger block sizes for indexes may offer some storage benefits because large block sizes
provide more space for storing index keys in the branch node of a B-tree index. This certainly reduces
the height of the index tree. However, the most important reason to use large block sizes is to enhance
the performance of certain types of queries— more specifically, queries that require large scans of an
index. For example, a select statement that utilizes a fast full scan of an index will perform much better
with an index using a large block size than with an index that uses a smaller block size. However, most
queries in an OLTP application, where index usage is highly critical, don't seek to retrieve large amounts
of data. These queries are typically designed to retrieve a specific value or a range of values from an
index. For these types of queries, a small block size is the right choice, and a very large block size actually
slows down the response time.

Compressing Indexes
You can avoid the duplication of keys in a non-unique index by specifying the compress option when
creating an index. When using a composite index, you can specify the prefix length, as explained in
Chapter 7. Here's an example that shows how to create a non-unique index on a composite index, where
the first two columns have a low cardinality and the third column (cust_id) has a high cardinality:

SQL> create index cust_idx1
 on customer(sex,state, cust_id)
 compress 2;

Using Multiple Options Together
In the previous sections, you learned how specifying various options such as parallel, nologging, and
compress that can help you speed up index creation or reduce index storage. You can specify multiple
options together, as shown in the following example:

SQL> create index a on x(y)
 nologging
 parallel 12
 compress 2;

Generating the DDL for Creating an Index
DBAs often need to recreate an index or create new indexes in a different environment, such as a pre-
production database. There are actually a couple of ways you can do this (if you're not using a third-
party tool such as TOAD or even Oracle's SQL Developer, which can get you the same information
without having to run any script whatsoever).

Generating the DDL for a simple index might seem somewhat of a trivial task. However, if you
consider the fact that many database uses partitioned indexes, and that the these indexes may have a

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

199

large number of partitions and even subpartitions, it makes more sense as to why you'd want to extract
the DDL using some kind of a tool or utility. Let's review the ways you can extract DDL for indexes in the
following sections.

Using the DBMS_METADATA Package
The easiest way to get the DDL for getting the DDL for the creation of an existing index is to use the
DBMS_METADATA package supplied by Oracle. You can employ the DBMS_METADATA package to extract the
DDL for other objects besides indexes. The following is an example that shows how to get the DDL for
creating an index named EMP_NAME_IDX that's part of the HR schema:

SQL> select dbms_metadata.get_ddl('INDEX','SALES_PROMO_BIX') from dual;

DBMS_METADATA.GET_DDL('INDEX','SALES_PROMO_BIX')
--

 CREATE BITMAP INDEX "SYS"."SALES_PROMO_BIX" ON "SYS"."SALES" ("PROMO_ID")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(
 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) LOCAL
 (PARTITION "SALES_1995"
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DE

FAULT CELL_FLASH_CACHE DEFAULT)
 TABLESPACE "USERS" ,

 PARTITION "SALES_1996"
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DE

FAULT CELL_FLASH_CACHE DEFAULT)
 TABLESPACE "USERS" ,

 ...
SQL>

Once you get the DDL for an index, use that DDL to create your index.

 SQL> CREATE INDEX "HR"."EMP_NAME_IX" ON "HR"."EMPLOYEES" ("LAST_NAME",
"FIRST_NAME")

 2 PCTFREE 10 INITRANS 2 MAXTRANS 255 NOLOGGING COMPUTE STATISTICS
 3 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 4 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 5* TABLESPACE "EXAMPLE"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

200

SQL> /

Index created.

SQL>

The GET_DDL procedure of the DBMS_METADATA packages provides a quick way to generate the DDL for
recreating both indexes as well as tables. If you want to generate the DDL for creating all indexes in a
schema, execute the DBMS_METADATA.GET_DDL procedure in the following way:

SQL> select dbms_metadata.get_ddl('INDEX', d.index_name)
 2 from dba_indexes d
 3* where owner='HR'
SQL>

One thing you'd want to do when executing the DBMS_METADATA package is to set the following SQL*Plus
parameters to get nicely formatted (wrapped without inconvenient word breaks) output. If you're
generating the DDL for creating all the indexes in a schema, you'll thank yourself!

set linesize 80 (or some reasonable number)
column xyz format a100 word_wrapped
column x format a200 word_wrapped

A big advantage of using the DBMS_METADATA package is that just about anyone can execute the package
through SQL*Plus. As shown in this example, you use the GET_DDL procedure to extract the DDL for an
index. The DBMS_METADATA package contains several other procedures as well, and the following sections
explain how to use two important procedures: SESSION_TRANSFORM and SET_FILTER.

Using the SESSION_TRANSFORM Procedure
You can use the SESSION_TRANSFORM procedure to modify or customize the output generated by the
GET_DDL procedure. You can specify various controls such as the following (note that some of the
“transform parameters” are applicable to only certain object types):

• PRETTY formats output with indentation and line feeds.

• SQLTERMINATOR appends a SQL terminator to each DDL statement.

• STORAGE outputs the storage clause

• CONSTRAINTS outputs all non-referential constraints.

• BODY outputs the package body for a package.

Several of the transform parameters are set to the value of TRUE by default, but some, such as the
value of the SQLTERMINATOR parameter, are set to FALSE. The following code chunk shows how to set
various transform parameters before you run the GET_DDL procedure to generate the DDL for an index:

SQL> begin
 2 dbms_metadata.set_transform_param(DBMS_METADATA.SESSION_TRANSFORM,
'STORAGE', false);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

201

 3 dbms_metadata.set_transform_param(DBMS_METADATA.SESSION_TRANSFORM,
'CONSTRAINTS', false);
 4 dbms_metadata.set_transform_param(DBMS_METADATA.SESSION_TRANSFORM,
'REF_CONSTRAINTS', false);
 5 dbms_metadata.set_transform_param(DBMS_METADATA.SESSION_TRANSFORM,
'SQLTERMINATOR', TRUE);
 6 end;
 7 /

PL/SQL procedure successfully completed.

SQL>

Using the SET_FILTER Procedure
The SET_FILTER procedure helps you restrict the objects to be retrieved by the DBMS_METADATA package.
You can specify individual object names or restrict the objects by schema names. The SET_FILTER
procedure comes in handy in various situations, such as when you're trying to extract the DDL for an
index you've created on an index organized table (IOT). IOTs always include a primary key constraint, so
when you invoke the GET_DEPENDENT_DDL procedure, it gets the index creation statements for both the
primary key as well as the index you've created. The following example shows how to invoke the
SET_FILTER procedure to get just the DDL for the index you've created:

SQL> set serveroutput on
SQL> declare
 2 l_myHandle number;
 3 l_transHandle number;
 4 l_ddl clob;
 5 begin
 6 l_myHandle := dbms_metadata.open('INDEX');
 7 dbms_metadata.set_filter(l_myHandle, 'SYSTEM_GENERATED', FALSE);
 8 dbms_metadata.set_filter(l_myHandle, 'BASE_OBJECT_SCHEMA',user);
 9 dbms_metadata.set_filter(l_myHandle, 'BASE_OBJECT_NAME', 'IOT_TAB_TST');
 10 l_transHandle := dbms_metadata.add_transform(l_myHandle, 'DDL');
 11 loop
 13 l_ddl := dbms_metadata.fetch_clob(l_myHandle);
 14 EXIT WHEN L_DDL IS NULL;
 15 dbms_output.put_line(l_ddl);
 16 end loop;
 17 dbms_metadata.close(l_myHandle);
 18* end;
SQL> /

 CREATE INDEX "SYS"."IOT_IDX1" ON "SYS"."IOT_TAB_TST" ("B")
 PCTFREE 10 INITRANS
2 MAXTRANS 255 COMPUTE STATISTICS
 STORAGE(INITIAL 65536 NEXT 1048576
MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1
BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 TABLESPACE

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

202

"USERS" ;

PL/SQL procedure successfully completed.

SQL>

Using Data Pump
You can also use the data pump utility to extract DDL for indexes as well as other database objects.
Underneath, the data pump actually uses the DBMS_METADATA package to extract DDL for database
objects. Generating DDL with data pump is easy. Make sure you use the following syntax to do so:

$ expdp content=metadata_only

When you specify the content=metadata_only option, Oracle database doesn't export any data; it
merely extracts the DDL for all database objects. If you are recreating all the indexes in your test
environment to your development environment, invoke the expdp utility first to get the dump file. You
can then copy the dump file to the development environment and run the impdp utility, as shown here:

$ impdp sqlfile=myfile

The advantage to using the DBMS_METADATA package to extract the DDL for your objects is that you get

to control the formatting of the output, making it much easier to run the index creation script. On the
other hand, the data pump output has line size problems. In addition, running the data pump utility
requires more privileges than executing procedures from the DBMS_METADATA package.

Dropping an Index
On occasion, you may find that you don't need an index because the index isn't providing any real
performance gains or because your application doesn't use the index. You can drop an index by using
the drop index command. You may also drop an index because the index is invalid and you want to
rebuild it. You must first drop the index before rebuilding it. You'll also find that if an index is too
fragmented, it is better to drop it and create a brand new index instead of rebuilding it; as you recall,
rebuilding an index requires twice the space of the index.

You execute the drop index command in the following manner:

SQL> drop index test_idx
SQL> /

Index dropped.
SQL>

You can drop any index that you have explicitly created through the drop index command.
However, you can't drop any implicitly created index, such as those created by defining a key constraint

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

203

on a table, with the drop index command. For example, you can only drop any index that the database
has created to support a unique key or a primary key constraint by dropping (or disabling) the constraint
itself. Here's what happens when you try to drop an index that supports a primary key constraint:

SQL> drop index test_pk1;
drop index test_pk1
 *
ERROR at line 1:
ORA-02429: cannot drop index used for enforcement of unique/primary key
SQL>

In order to drop a constraint, issue the drop constraint command, as shown here:

SQL> alter table test
 2 drop constraint test_pk1;

Table altered.
SQL>

If you drop a table, the database drops all indexes defined on that table as well.

The Hazards of Dropping an Index
While the V$OBJECT_USAGE view tells you if an index has been used or not, be leery about dropping an
index just because the INDEX_USAGE column shows a value of NO. There could very well be unexpected
side effects of dropping or modifying a multi-column composite index. Several writers have
demonstrated that Oracle can potentially use an index for a sanity check, even if the index itself remains
"unused"! Starting with Oracle Database 11g, Oracle uses certain index statistics even when it doesn't
use the index per se in retrieving a query's output. For example, if you create a composite index on two
columns that are related, Oracle can potentially arrive at different results with and without the presence
of the index, even if it doesn't use the index. There is some evidence that Oracle uses the DISTINCT_KEYS
index statistic to determine the correct selectivity and the related cardinality estimates for a query. So, if
you drop an index because your index monitoring shows that the index isn't being used, the optimizer
could potentially lose vital information it needs to estimate the selectivity and cardinality of the indexed
columns.

Finally, as Chapter 5 explains, using Oracle's invisible indexes feature is quite often a smarter
alternative to just dropping an index.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8  MAINTAINING INDEXES

204

Summary
This chapter explained some of the most common index maintenance operations. You learned how to
collect statistics for indexes. In this connection, it's important to specify correct values for the
METHOD_OPT parameter and this chapter explained how to do this. Rebuilding indexes is often a
troublesome part of index maintenance due to the many arguments for and against regular index
rebuilds. The chapter discusses both arguments and explains why an automatic rebuild of indexes may
really be unnecessary. The chapter also explains shrinking and coalescing operations and offered
guidelines as to when these operations are appropriate. The chapter explained when Oracle makes an
index unusable and how to deal with it. You also learned how to render an index unusable and when to
do this. Finally, the chapter explained how to use the DBMS_METADATA package in order to efficiently
extract the DDL for creating indexes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

■ ■ ■

205

SQL Tuning Advisor

The last couple of chapters in this book deal with Oracle tools that generate recommendations to
improve performance, namely

• SQL Tuning Advisor

• SQL Access Advisor

Both of these utilities generate advice regarding the implementation of indexes. Therefore, it’s
appropriate to discuss these tools in a book that focuses on indexing strategies. The emphasis of this
chapter is the SQL Tuning Advisor, while Chapter 10 discusses the SQL Access Advisor. We’ll briefly
introduce the SQL Access Advisor here so that you can compare its features with the SQL Tuning Advisor
and gain a better understanding of which tool to use based on your requirements.

How the Tools Relate
The SQL Access Advisor examines a group of SQL statements and provides advice to improve
performance in the form of

• Creating indexes.

• Creating materialized views and materialized view logs.

• Implementing partitioning strategies.

One key feature of the SQL Access Advisor is that it analyzes the entire SQL workload as a set and
makes recommendations that improve the overall performance of the workload. In other words, this tool
will recommend creating an index that improves the performance of SQL statement, but only if it does
not significantly reduce the performance of other INSERT, UPDATE, and DELETE statements contained in
the workload.

Segue to the SQL Tuning Advisor; this tool analyzes one or more SQL statements and provides
advice in the form of

• Creating indexes.

• Creating SQL profiles.

• Establishing plan baselines.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

206

• Generating fresh statistics.

• Restructuring a query.

SQL Access Advisor and SQL Tuning Advisor both generate performance advice regarding indexes.
The differences are significant; other than indexes, these tools provide recommendations regarding
entirely different sets of Oracle features. Additionally, the SQL Access Advisor analyzes the overall impact
of changes to a group of SQL statements whereas the SQL Tuning Advisor provides recommendations to
improve a query without considering the systemic effect on a given workload.

At this point, you’re probably wondering which tool you should use to obtain indexing advice. We
have found that both tools provide valid and viable suggestions in regards to index creation. If you want
to quickly obtain indexing advice for a specific SQL statement, use the SQL Tuning Advisor. If you want
to further verify the impact of a new index in respect to the entire system, run the SQL Access Advisor.
Keep in mind that these two tools are not mutually exclusive; you can run one or both to obtain advice.
Each tool will most likely provide a slightly different approach to solving your performance issues.

To fully understand how the SQL Tuning Advisor tool works, we need to lay some groundwork and
explain a few terms. Firstly, the Oracle query optimizer operates in two different modes: normal and
tuning. When a SQL statement executes, the optimizer operates in normal mode and quickly identifies a
reasonable execution plan. In this mode, the optimizer spends only a fraction of a second to determine
the optimal plan.

When analyzing SQL statements, the SQL Tuning Advisor invokes the optimizer in tuning mode.
When executing in this manner, the optimizer can take several minutes to analyze each step of a SQL
statement’s execution plan and generate a new plan that is potentially much more efficient than what is
generated under normal mode.

 Tip The optimizer running in tuning mode is somewhat analogous to a computer chess game. When you allow
the chess software to spend only a second or less on each move, it’s easy to beat the game. However, if you allow
the chess game to spend a minute or more on each move, the game makes much more optimal decisions.

The tuning mode of the optimizer is invoked whenever you execute the SQL Tuning Advisor. The
SQL Tuning Advisor runs automatically and can also be manually invoked. Starting with Oracle
Database 11g, Automatic SQL tuning is a preset background database job that by default runs the SQL
Tuning Advisor every day. This task identifies high resource-consuming statements in the Automatic
Workload Repository (AWR) and then runs the optimizer in tuning mode and generates tuning advice (if
any) for each statement analyzed. The output often contains advice regarding indexes, SQL profiles,
restructuring the query, and so on.

You can also run the SQL Tuning Advisor manually and provide as input either a single SQL
statement or several SQL statements. The SQL Tuning Advisor is manually invoked from the
DBMS_SQLTUNE package, SQL Developer, or Enterprise Manager.

One key way to group SQL statements for input to the SQL Tuning Advisor is through a SQL tuning
set. A SQL tuning set (STS) is a database object that contains one or more SQL statements and the
associated execution statistics. You can populate a SQL tuning set from resource-intensive SQL recorded
in the AWR or SQL currently in memory. Because SQL tuning sets are often used as inputs to Oracle
tuning tools, we also cover the SQL tuning set feature in this chapter.

We should note that the SQL Access Advisor requires an extra license from Oracle. If you don’t have
a license, we still recommend that you know how this tool functions for two reasons.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

207

• You may want to determine if the advice the tool recommends is worth the cost of an extra
license.

• You may eventually find yourself in a shop that uses this tool, so you should know how to
operate and manage the recommendations.

In the examples in this chapter, we focus on showing you how to use features via SQL and built-in
PL/SQL packages. While we do show some screenshots from Enterprise Manager, we don’t focus on the
graphical tool usage. You should be able to use SQL and PL/SQL regardless of whether Enterprise
Manager is installed. Furthermore, the manual approach allows you to understand each piece of the
process and will help you to diagnose issues when problems arise.

The first section of this chapter deals with the Automatic SQL Tuning feature. You’ll be shown how
to determine if and when the automated job is running and how to modify its characteristics. The
middle section of this chapter focuses on how to create and manage SQL tuning sets. Lastly, you’ll learn
how to manually run the SQL Tuning Advisor to generate indexing recommendations for SQL
statements.

Automatic SQL Tuning Job
When you create a database in Oracle Database 11g or higher, there is an automatic SQL tuning job that
routinely runs the SQL Tuning Advisor for you and generates advice on how to improve performance.
This advice can be in the form of creating indexes, restructuring SQL, creating a SQL profile, and so
forth. This architecture is depicted in Figure 9-1.

Figure 9-1. Architecture of the automatic SQL tuning job

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

208

Notice that the automatic SQL tuning job uses as its input the high resource statements found in the

AWR. Also, the job can be configured to automatically accept SQL profiles (more on this later).

Verifying Automatic Jobs Running
You can check on the status of the automatic SQL tuning job via this query:

SELECT client_name, status, consumer_group
FROM dba_autotask_client
ORDER BY client_name;

Here is some sample output showing that there are three automatically configured jobs:

CLIENT_NAME STATUS CONSUMER_GROUP
----------------------------------- ---------- -------------------------
auto optimizer stats collection ENABLED ORA$AUTOTASK_STATS_GROUP
auto space advisor ENABLED ORA$AUTOTASK_SPACE_GROUP
sql tuning advisor ENABLED ORA$AUTOTASK_SQL_GROUP

These tasks are automatically configured to run in regularly scheduled maintenance windows. A

maintenance window is a specified time and duration for the task to run. You can view the maintenance
window details with this query:

SELECT window_name,TO_CHAR(window_next_time,'DD-MON-YY HH24:MI:SS')
,sql_tune_advisor, optimizer_stats, segment_advisor
FROM dba_autotask_window_clients;

Here’s a snippet of the output for this example:

WINDOW_NAME TO_CHAR(WINDOW_NEXT_TIME SQL_TUNE OPTIMIZE SEGMENT_
---------------- ------------------------ -------- -------- --------
THURSDAY_WINDOW 28-APR-11 22:00:00 ENABLED ENABLED ENABLED
FRIDAY_WINDOW 29-APR-11 22:00:00 ENABLED ENABLED ENABLED
SATURDAY_WINDOW 30-APR-11 06:00:00 ENABLED ENABLED ENABLED
SUNDAY_WINDOW 01-MAY-11 06:00:00 ENABLED ENABLED ENABLED

Viewing Automatic SQL Tuning Job Advice
Now that you’ve established that the automatic SQL tuning job is running, you can view the advice it
generates via SQL*Plus, as follows:

SQL> SET LINESIZE 80 PAGESIZE 0 LONG 100000
SQL> SELECT DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK FROM DUAL;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

209

 Note Starting with Oracle Database 11g Release 2, the DBMS_AUTO_SQLTUNE package should be used
(instead of DBMS_SQLTUNE) for administrating automatic SQL tuning features. If you are using an older release of
Oracle, use DBMS_SQLTUNE.REPORT_AUTO_TUNING_TASK to view automated SQL tuning advice.

Depending on the activity in your database, there may be a great deal of output. Here’s a small
sample of output from a very active database:

 Global SQL Tuning Result Statistics

Number of SQLs Analyzed : 99
Number of SQLs in the Report : 3
Number of SQLs with Findings : 3
Number of SQLs with SQL profiles recommended : 2
Number of SQLs with Index Findings : 1

Looking further down in the output, here is the specific advice in regards to creating an index:

 Recommendation (estimated benefit: 99.98%)
 --
 - Consider running the Access Advisor to improve the physical schema design
 or creating the recommended index.
 create index STAR2.IDX$$_17F5F0001 on
 STAR2.D_PRODUCT_INSTANCES("CREATE_DTT","D_PRODUCT_INSTANCE_ID");

 Rationale

 Creating the recommended indices significantly improves the execution plan
 of this statement. However, it might be preferable to run "Access Advisor"
 using a representative SQL workload as opposed to a single statement. This
 will allow you to get comprehensive index recommendations which takes into
 account index maintenance overhead and additional space consumption.

This output provides a strong recommendation to create an index. Before following the advice, we

recommend that you create the index in a test or development environment and verify that the benefit is
worth the cost. Additionally, you should adjust the index creation script so that you follow your naming,
storage, and tablespace placement standards.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

210

Automatically E-mailing Tuning Advice

On Linux/Unix systems, it’s quite easy to automate the e-mailing of output from a SQL script. First,
encapsulate the SQL in a shell script, and then use a utility such as cron to automatically generate and e-
mail the output. Here’s a sample shell script that generates and sends automatic SQL tuning advice:

#!/bin/bash
if [$# -ne 1]; then
 echo "Usage: $0 SID"
 exit 1
fi
source oracle OS variables
. /var/opt/oracle/oraset $1

BOX=`uname -a | awk '{print$2}'`
OUTFILE=$HOME/bin/log/sqladvice.txt

sqlplus -s <<EOF
mv_maint/foo
SPO $OUTFILE
SET LINESIZE 80 PAGESIZE 0 LONG 100000
SELECT DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK FROM DUAL;
EOF
cat $OUTFILE | mailx -s "SQL Advice: $1 $BOX" larry@oracle.com
exit 0

Here’s the corresponding cron entry that runs the report on a daily basis:

#---
SQL Advice report from SQL auto tuning
16 11 * * * /orahome/oracle/bin/sqladvice.bsh DWREP
 1>/orahome/oracle/bin/log/sqladvice.log 2>&1
#---

(In this cron entry, the command was broken into two lines to fit on a page within this book.)

Depending on the activity and load on your database, the report may contain no suggestions or may

provide a great deal of advice. You can adjust what is reported by the automatic SQL tuning job via
parameters passed to the REPORT_AUTO_TUNING_TASK function. The parameters for the
REPORT_AUTO_TUNING_TASK function are described in detail in Table 9-1. These parameters allow you a
great deal of flexibility in customizing the advice output.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

211

Table 9-1. Parameter Details for the REPORT_AUTO_TUNING_TASK Function

Parameter Name Description Default Value

BEGIN_EXEC
Name of beginning task execution; NULL means the most
recent task is used.

NULL

END_EXEC
Name of ending task; NULL means the most recent task is
used.

NULL

TYPE Type of report to produce; TEXT specifies a text report. TEXT

LEVEL Level of detail; valid values are BASIC, TYPICAL, and ALL. TYPICAL

SECTION
Section of the report to include; valid values are ALL,
SUMMARY, FINDINGS, PLAN, INFORMATION, and ERROR.

ALL

OBJECT_ID
Used to report on a specific statement; NULL means all
statements.

NULL

RESULT_LIMIT
Maximum number of SQL statements to include in
report

NULL

For example, if you want to generate a report with the greatest amount of detail, then set the LEVEL

parameter to ALL.

set long 10000000
variable advice_out clob;
begin
 :advice_out := DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK(LEVEL=>'ALL');
end;
/
print :advice_out

Generating a SQL Script to Implement Automatic Tuning Advice
Oracle provides the DBMS_SQLTUNE.SCRIPT_TUNING_TASK function that will output only the SQL required to
implement the advice generated by the automatic SQL tuning job. Before generating the SQL, first
determine the name of the tuning task via this query:

select task_name, execution_start from dba_advisor_log
where task_name='SYS_AUTO_SQL_TUNING_TASK'
order by 2;

Here is some sample output:

TASK_NAME EXECUTION
------------------------------ ---------
SYS_AUTO_SQL_TUNING_TASK 25-AUG-11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

212

Now use the DBMS_SQLTUNE.SCRIPT_TUNING_TASK function to generate the SQL statements to
implement the advice of a tuning task. In this example, the name of the task is
SYS_AUTO_SQL_TUNING_TASK.

SQL> SET LINESIZE 132 PAGESIZE 0 LONG 10000
SQL> SELECT DBMS_SQLTUNE.SCRIPT_TUNING_TASK('SYS_AUTO_SQL_TUNING_TASK')
FROM dual;

For this database, the output is an index creation script.

create index STAR2.IDX$$_17F5F0001
on STAR2.D_PRODUCT_INSTANCES("CREATE_DTT","D_PRODUCT_INSTANCE_ID");

If the tuning task doesn’t have any advice to give, there won’t be any SQL statements generated in

the output. Before creating an index in a production environment, you should test whether or not an
index actually increases performance and doesn’t have any adverse impacts on the performance of other
SQL statements. Also consider adjusting the index name, storage, and tablespace placement as per your
standards.

Disabling and Enabling Automatic SQL Tuning
You might desire to disable the automatic SQL tuning job because you have a very active database and
want to ensure that this job doesn’t impact the overall performance of the database. The
DBMS_AUTO_TASK_ADMIN.ENABLE/DISABLE procedures allow you to turn on and off the automatic SQL
tuning job. These procedures take three parameters (see Table 9-2 for details). The behavior of the
procedures varies depending on which parameters you specify.

• If CLIENT_NAME is provided and both OPERATION and WINDOW_NAME are NULL, then the
client is disabled.

• If OPERATION is provided, then the operation is disabled.

• If WINDOW_NAME is provided, and OPERATION is NULL, then the client is disabled in the
provided window name.

These parameters allow you to control at a granular detail the schedule of the automatic task. Given
the prior rules, you would disable the automatic SQL tuning job during the Tuesday maintenance
window as follows:

BEGIN
 dbms_auto_task_admin.disable(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => 'TUESDAY_WINDOW');
END;
/

You can verify that the window has been disabled via this query:

SELECT window_name,TO_CHAR(window_next_time,'DD-MON-YY HH24:MI:SS')
,sql_tune_advisor
FROM dba_autotask_window_clients;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

213

Here is a snippet of the output:

WINDOW_NAME TO_CHAR(WINDOW_NEXT_TIME SQL_TUNE
---------------- ------------------------ --------
TUESDAY_WINDOW 03-MAY-11 22:00:00 DISABLED

Table 9-2. Parameter Descriptions for DBMS_AUTO_TASK_ADMIN.ENABLE and DISABLE Procedures

Parameter Description

CLIENT_NAME
Name of client; query DBA_AUTOTASK_CLIENT for details.

OPERATION
Name of operation; query DBA_AUTOTASK_OPERATION for details.

WINDOW_NAME
Operation name of the window

To completely disable the Automatic SQL Tuning job, use the DBMS_AUTO_TASK_ADMIN.DISABLE
procedure, like so:

BEGIN
 DBMS_AUTO_TASK_ADMIN.DISABLE(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => NULL);
END;
/

As mentioned, you can report on the status of the automatic tuning job by querying the STATUS

column of DBA_AUTOTASK_CLIENT.

SQL> select client_name, status from dba_autotask_client;

Here is some sample output:

CLIENT_NAME STATUS
-- --------
auto optimizer stats collection ENABLED
auto space advisor ENABLED
sql tuning advisor DISABLED

To re-enable the job, use the ENABLE procedure as shown:

BEGIN
 DBMS_AUTO_TASK_ADMIN.ENABLE(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => NULL);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

214

END;
/

Managing SQL Tuning Sets
Before detailing how to manually run the SQL Tuning Advisor, let’s first cover SQL tuning sets. As
mentioned, SQL tuning sets are a grouping of SQL statements and associated execution metrics. SQL
tuning sets are used as inputs to many of Oracle’s tuning tools (such as the SQL Tuning Advisor and SQL
Access Advisor). Therefore, it’s critical that you understand how to create and manage SQL tuning sets.
Figure 9-2 displays the SQL tuning set architecture.

Figure 9-2. SQL tuning set srchitecture

To fully comprehend how a SQL tuning set is populated, it’s instructional to manually run queries
that retrieve high-resource SQL from the AWR and/or memory. The basic idea is that the result sets from
these queries can be used as input to populate a SQL tuning set.

Viewing Resource-Intensive SQL in the AWR
The DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY function can be used to extract resource-intensive SQL
stored in the AWR. Before querying this function, first determine which snapshot IDs you want to select
from.

SQL> select snap_id from dba_hist_snapshot order by 1;

For example, this particular query selects queries in the AWR between snapshots 8200 and 8201
ordered by the top 10 in the disk reads usage category:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

215

SELECT
 sql_id
,substr(sql_text,1,20)
,disk_reads
,cpu_time
,elapsed_time
FROM table(DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY(8200,8201,
 null, null, 'disk_reads',null, null, null, 10))
ORDER BY disk_reads DESC;

Here is a small snippet of the output:

SQL_ID SUBSTR(SQL_TEXT,1,20 DISK_READS CPU_TIME ELAPSED_TIME
-------------- -------------------- ---------- ------------- -------------
achffburdff9j delete from "MVS"." 101145 814310000 991574249
5vku5ap6g6zh8 INSERT /*+ BYPASS_RE 98172 75350000 91527239

You have a great deal of flexibility in how you use the SELECT_WORKLOAD_REPOSITORY function (see
Table 9-3 for descriptions of parameters). A few examples will help illustrate this. Say you want to
retrieve SQL from the AWR that was not parsed by the SYS user. Here is the SQL to do that:

SELECT sql_id, substr(sql_text,1,20)
,disk_reads, cpu_time, elapsed_time, parsing_schema_name
FROM table(
DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY(8200,8201,
'parsing_schema_name <> ''SYS''',
NULL, NULL,NULL,NULL, 1, NULL, 'ALL'));

The following example retrieves the top ten queries ranked by buffer gets for non-SYS users:

SELECT
 sql_id
,substr(sql_text,1,20)
,disk_reads
,cpu_time
,elapsed_time
,buffer_gets
,parsing_schema_name
FROM table(
DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY(
 begin_snap => 21730
,end_snap => 22900
,basic_filter => 'parsing_schema_name <> ''SYS'''
,ranking_measure1 => 'buffer_gets'
,result_limit => 10
));

In the prior queries, the SYS keyword is enclosed by two single quotes (in other words, those aren’t
double quotes around SYS).

Table 9-3. Parameter Descriptions of the SELECT_WORKLOAD_REPOSITORY Function

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

216

Parameter Description

BEGIN_SNAP
Non-inclusive beginning snapshot ID.

END_SNAP
Inclusive ending snapshot ID.

BASELINE_NAME
Name of AWR baseline.

BASIC_FILTER
SQL predicate to filter SQL statements from workload; if not set, then only
SELECT, INSERT, UPDATE, DELETE, MERGE, and CREATE TABLE statements are
captured.

OBJECT_FILTER
Not currently used.

RANKING_MEASURE(n)
Order by clause on selected SQL statement(s), such as elapsed_time,
cpu_time, buffer_gets, disk_reads, and so on; N can be 1, 2, or 3.

RESULT_PERCENTAGE
Filter for choosing top N% for ranking measure.

RESULT_LIMIT
Limit of the number of SQL statements returned in the result set.

ATTRIBUTE_LIST
List of SQL statement attributes (TYPICAL, BASIC, ALL, and so on).

RECURSIVE_SQL
Include/exclude recursive SQL (HAS_RECURSIVE_SQL or NO_RECURSIVE_SQL).

Notice from the prior queries in this section that there are several ranking measures of resources

consumed by SQL statements, such as CPU time, buffer gets, and so on. The resource ranking measures
and units of measurement are detailed the following bulleted list:

• cpu_time: Number of seconds

• elapsed_time: Number of seconds

• disk_reads: Number of reads from disk

• buffer_gets: Number of reads from memory

• rows_processed: Average number of rows

• optimizer_cost: Calculated optimizer cost

• executions: Total execution count of SQL statement

These values allow you to retrieve SQL by the criteria that you’re concerned with the most. They are
valid for filtering SQL in the AWR and memory.

Viewing Resource-Intensive SQL in Memory
Similar to querying the AWR, you can also view current high resource usage SQL in memory. The
DBMS_SQLTUNE.SELECT_CURSOR_CACHE function is used to view current high resource-consuming SQL
statements in memory. This query selects SQL statements in memory that have required more than a
million disk reads:

SELECT
 sql_id

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

217

,substr(sql_text,1,20)
,disk_reads
,cpu_time
,elapsed_time
FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE('disk_reads > 1000000'))
ORDER BY sql_id;

Here is some sample output:

SQL_ID SUBSTR(SQL_TEXT,1,20 DISK_READS CPU_TIME ELAPSED_TIME
------------- -------------------- ---------- ---------- ------------
0s6gq1c890p4s delete from "MVS"." 3325320 8756130000 1.0416E+10
b63h4skwvpshj BEGIN dbms_mview.ref 9496353 1.4864E+10 3.3006E+10

You have a great deal of flexibility in how you use this function (see Table 9-4 for a description of the
SELECT_CURSOR_CACHE function parameters). Here’s an example that selects SQL in memory, but excludes
statements parsed by the SYS user and also returns statements with a total elapsed time greater than
100,000 seconds:

SELECT sql_id, substr(sql_text,1,20)
,disk_reads, cpu_time, elapsed_time
FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE('parsing_schema_name <> ''SYS''
 AND elapsed_time > 100000'))
ORDER BY sql_id;

In the prior query, the SYS keyword is enclosed by two single quotes (in other words, those aren’t

double quotes around SYS). The SQL_TEXT column is truncated to 20 characters so that the output can be
displayed on the page more easily. Here is some sample output:

SQL_ID SUBSTR(SQL_TEXT,1,20 DISK_READS CPU_TIME ELAPSED_TIME
------------- -------------------- ---------- ---------- ------------
byzwu34haqmh4 SELECT /* DS_SVC */ 0 140000 159828

This next example selects the top ten queries in memory in terms of CPU time for non-SYS users:

SELECT
 sql_id
,substr(sql_text,1,20)
,disk_reads
,cpu_time
,elapsed_time
,buffer_gets
,parsing_schema_name
FROM table(
DBMS_SQLTUNE.SELECT_CURSOR_CACHE(
 basic_filter => 'parsing_schema_name <> ''SYS'''
,ranking_measure1 => 'cpu_time'
,result_limit => 10
));

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

218

Once you have identified a SQL_ID for a resource-intensive SQL statement, you can view all of its
execution details via this query:

SELECT *
FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE('sql_id = ''byzwu34haqmh4'''));

Note that the SQL_ID in the prior statement is enclosed by two single quotes (not double quotes).

Table 9-4. Parameter Descriptions of the SELECT_CURSOR_CACHE Function

Parameter Description

BASIC_FILTER
SQL predicate to filter SQL in the cursor cache.

OBJECT_FILTER
Currently not used.

RANKING_MEASURE(n)
ORDER BY clause for the SQL returned.

RESULT_PERCENTAGE
Filter for the top N percent queries for the ranking measure provided; invalid if
more than one ranking measure provided.

RESULT_LIMIT
Top number of SQL statements filter.

ATTRIBUTE_LIST
List of SQL attributes to return in result set.

RECURSIVE_SQL
Include recursive SQL.

Populating SQL Tuning Set from High-Resource SQL in AWR
High-resource SQL statement information is stored in the AWR. You can use this as input when creating
a SQL tuning set. Here are the steps:

1. Create a SQL tuning set object.

2. Determine begin and end AWR snapshot IDs.

3. Populate the SQL tuning set with high resource SQL found in AWR.

These steps are detailed in the following subsections.

Step 1: Create a SQL Tuning Set Object
This next bit of code creates a tuning set object named MY_TUNING_SET:

BEGIN
 dbms_sqltune.create_sqlset(
 sqlset_name => 'MY_TUNING_SET'
 ,description => 'STS from AWR');
END;
/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

219

Step 2: Determine Begin and End AWR Snapshot IDs
If you’re unsure of the available snapshots in your database, you can run an AWR report or select the
SNAP_ID from DBA_HIST_SNAPSHOTS.

select snap_id, begin_interval_time
from dba_hist_snapshot order by 1;

Step 3: Populate the SQL Tuning Set with High-Resource SQL Found in AWR
Now the SQL tuning set is populated with the top 15 SQL statements ordered by disk reads. The begin
and end AWR snapshot IDs are 29800 and 29802, respectively.

DECLARE
 base_cur dbms_sqltune.sqlset_cursor;
BEGIN
 OPEN base_cur FOR
 SELECT value(x)
 FROM table(dbms_sqltune.select_workload_repository(
 26800,26900, null, null,'disk_reads',
 null, null, null, 15)) x;
 --
 dbms_sqltune.load_sqlset(
 sqlset_name => 'MY_TUNING_SET',
 populate_cursor => base_cur);
END;
/

This code populates the top 15 SQL statements contained in the AWR ordered by disk reads. The
DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY function is used to populate a PL/SQL cursor with AWR
information based on a ranking criterion. Next, the DBMS_SQLTUNE.LOAD_SQLSET procedure is used to
populate the SQL tuning set using the cursor as input.

The DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY function can be used in a variety of ways to
populate a SQL tuning set using queries in the AWR. You can instruct it to load SQL statements by
criteria such as disk reads, elapsed time, CPU time, buffer gets, and so on. See Table 9-3 for descriptions
for parameters of this function.

Populating a SQL Tuning Set from High-Resource SQL in Memory
If you want to analyze a group of SQL statements currently in memory, use the
DBMS_SQLTUNE.SELECT_CURSOR_CACHE function. The following example creates a tuning set named
HIGH_DISK_READS and populates it with high-resource–consuming statements not belonging to the SYS
schema and having more than 1,000,000 disk reads:

-- Create the tuning set
EXEC DBMS_SQLTUNE.CREATE_SQLSET('HIGH_DISK_READS');
-- populate the tuning set from the cursor cache
DECLARE
 cur DBMS_SQLTUNE.SQLSET_CURSOR;
BEGIN
 OPEN cur FOR

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

220

 SELECT VALUE(x)
 FROM table(
 DBMS_SQLTUNE.SELECT_CURSOR_CACHE(
 'parsing_schema_name <> ''SYS'' AND disk_reads > 1000000',
 NULL, NULL, NULL, NULL, 1, NULL,'ALL')) x;
--
 DBMS_SQLTUNE.LOAD_SQLSET(sqlset_name => 'HIGH_DISK_READS',
 populate_cursor => cur);
END;
/

In the prior code, notice that the SYS user is bookended by sets of two single quotes (not double
quotes). The SELECT_CURSOR_CACHE function loads the SQL statements into a PL/SQL cursor, and the
LOAD_SQLSET procedure populates the SQL tuning set with the SQL statements.

The DBMS_SQLTUNE.SELECT_CURSOR_CACHE function (see Table 9-4 for function parameter
descriptions) allows you to extract from memory SQL statements and associated statistics into a SQL
tuning set. The procedure allows you to filter SQL statements by various resource-consuming criteria,
such as elapsed_time, cpu_time, buffer_gets, disk_reads, and so on. This allows you a great deal of
flexibility on how to filter and populate the SQL tuning set.

Populating SQL Tuning Set with All SQL in Memory
If your requirement is to perform a tuning analysis on all SQL statements currently in memory, use the
DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET procedure. This example creates a SQL tuning set named
PROD_WORKLOAD and then populates by sampling memory for 3,600 seconds (waiting 20 seconds between
each polling event):

BEGIN
 -- Create the tuning set
 DBMS_SQLTUNE.CREATE_SQLSET(
 sqlset_name => 'PROD_WORKLOAD'
 ,description => 'Prod workload sample');
 --
 DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET(
 sqlset_name => 'PROD_WORKLOAD'
 ,time_limit => 3600
 ,repeat_interval => 20);
END;
/

The DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET procedure allows you to poll for queries and
memory and to use any queries found to populate a SQL tuning set. This is a powerful technique that
you can use when it’s required to capture a sample set of all SQL statements executing.

You have a great deal of flexibility on instructing the DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET to
capture SQL statements in memory (see Table 9-5 for details on all parameters). For example, you can
instruct the procedure to capture a cumulative set of statistics for each SQL statement by specifying a
CAPTURE_MODE of DBMS_SQLTUNE.MODE_ACCUMULATE_STATS, like so:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

221

BEGIN
 DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET(
 sqlset_name => 'PROD_WORKLOAD'
 ,time_limit => 60
 ,repeat_interval => 10
 ,capture_mode => DBMS_SQLTUNE.MODE_ACCUMULATE_STATS);
END;
/

This is more resource-intensive than the default settings, but it produces more accurate statistics for
each SQL statement.

Table 9-5. CAPTURE_CURSOR_CACHE_SQLSET Parameter Descriptions

Parameter Description Default Value

SQLSET_NAME
SQL tuning set name. none

TIME_LIMIT
Total time in seconds to spend sampling. 1800

REPEAT_INTERVAL
While sampling, amount of time to pause in seconds
before polling memory again.

300

CAPTURE_OPTION
Either INSERT, UPDATE, or MERGE statements when new
statements are detected.

MERGE

CAPTURE_MODE
When capture option is UPDATE or MERGE, either replace
statistics or accumulate statistics. Possible values are
MODE_REPLACE_OLD_STATS or MODE_ACCUMULATE_STATS.

MODE_REPLACE_OLD_STATS

BASIC_FILTER
Filter type of statements captured. NULL

SQLSET_OWNER
SQL tuning set owner; NULL indicates the current user. NULL

RECURSIVE_SQL
Include (or not) recursive SQL; possible values are
HAS_RECURSIVE_SQL, NO_RECURSIVE_SQL.

HAS_RECURSIVE_SQL

Displaying the Contents of a SQL Tuning Set
Once you’ve created a SQL tuning set, you may want to manually view its contents. For example, you
might want to know specifically which queries are in the set or might want to verify various metrics
associated with the queries. There are several methods for viewing SQL tuning set contents.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

222

• Query DBA_SQLSET* data dictionary views (see Table 9-6 for a description of the
applicable views).

• Query the DBMS_SQLTUNE.SELECT_SQLSET function.

• Use Enterprise Manager.

You can determine the name and number of SQL statements for SQL tuning sets in your database
via this query:

SELECT name, created, statement_count
FROM dba_sqlset;

Here is some sample output:

NAME CREATED STATEMENT_COUNT
------------------------------ --------- ---------------
PROD_WORKLOAD 26-APR-11 1128
TOP_SQL_1308346990753 17-JUN-11 5
$$SQLA$$_2 19-AUG-11 4485
HIGH_IO 26-APR-11 0

Recall that a SQL tuning set consists of one or more SQL statements and the corresponding

execution statistics. You can use the following query to display the SQL text and associated statistical
information for each query within the SQL tuning set:

SELECT sqlset_name, elapsed_time, cpu_time, buffer_gets, disk_reads, sql_text
FROM dba_sqlset_statements;

Here is a small snippet of the output (the SQL_TEXT column has been truncated in order to fit the

output on the page):

SQLSET_NAME ELAPSED_TIME CPU_TIME BUFFER_GETS DISK_READS SQL_TEXT
--------------- ------------ ---------- ----------- ---------- ----------------------------
test1 235285363 45310000 112777 3050 INSERT
test1 52220149 22700000 328035 18826 delete from....

Table 9-6. Views Containing SQL Tuning Set Information

View Name Description

DBA_SQLSET
Displays information regarding SQL tuning sets.

DBA_SQLSET_BINDS
Displays bind variable information associated with SQL tuning sets.

DBA_SQLSET_PLANS
Shows execution plan information for queries in a SQL tuning set.

DBA_SQLSET_STATEMENTS
Contains SQL text and associated statistics.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

223

DBA_SQLSET_REFERENCES
Shows whether a SQL tuning set is active.

You can also use the DBMS_SQLTUNE.SELECT_SQLSET function to retrieve information about SQL tuning

sets, like so:

SELECT
 sql_id, elapsed_time, cpu_time, buffer_gets, disk_reads, sql_text
FROM TABLE(DBMS_SQLTUNE.SELECT_SQLSET('&&sqlset_name'));

Whether you use the DBMS_SQLTUNE.SELECT_SQLSET function or directly query the data dictionary

views depends entirely on your personal preference or business requirement.
You can also manage SQL tuning sets from within Enterprise Manager. From the main page

navigate to the Performance page and then to the SQL Tuning Sets (in the Additional Monitoring Links)
section. From there you should see a page similar to the one shown in Figure 9-3.

Figure 9-3. Managing SQL tuning sets

From this screen you can create and manage SQL tuning sets. Clicking on the SQL tuning set name
will display all of the SQL within the tuning set and associated metrics.

Selectively Deleting Statements from a SQL Tuning Set
Once you’ve established a SQL tuning set, you may want to prune statements out of it. For example,
suppose you want to prune SQL statements from an STS that don’t meet a performance measure, such
as queries that have less than two million disk reads. First, view the existing SQL information associated
with an STS, like so:

select sqlset_name, disk_reads, cpu_time, elapsed_time, buffer_gets

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

224

from dba_sqlset_statements;

Here is some sample output:

SQLSET_NAME DISK_READS CPU_TIME ELAPSED_TIME BUFFER_GETS
------------------------------ ---------- ---------- ------------ -----------
IO_STS 3112941 3264960000 7805935285 2202432
IO_STS 2943527 3356460000 8930436466 1913415
IO_STS 2539642 2310610000 5869237421 1658465
IO_STS 1999373 2291230000 6143543429 1278601
IO_STS 1993973 2243180000 5461607976 1272271
IO_STS 1759096 1930320000 4855618689 1654252

Now use the DBMS_SQLTUNE.DELETE_SQLSET procedure to remove SQL statements from the STS based
on the specified criterion. This example removes SQL statements that have less than 2,000,000 disk reads
from the SQL tuning set named IO_STS:

BEGIN
 DBMS_SQLTUNE.DELETE_SQLSET(
 sqlset_name => 'MY_TUNING_SET'
 ,basic_filter => 'disk_reads < 2000000');
END;
/

Because the metrics/statistics are part of the STS, you can remove SQL statements from a SQL
tuning set based on characteristics of the associated metrics/statistics. You can use the
DBMS_SQLTUNE.DELETE_SQLSET procedure to remove statements from the STS based on statistics such as
elapsed_time, cpu_time, buffer_gets, disk_reads, and so on.

If you want to delete all SQL statements from a SQL tuning set, don’t specify a filter.

SQL> exec DBMS_SQLTUNE.DELETE_SQLSET(sqlset_name => 'MY_TUNING_SET');

 Tip You can also use Enterprise Manager to delete SQL statements. Navigate to the Performance tab, and then
click on SQL tuning sets. You should see a screen similar to Figure 9-3. Click on the SQL tuning set of interest and
selectively choose SQL statements that you want to remove.

Adding Statements to an Existing SQL Tuning Set
You can add SQL statements to an existing SQL tuning set. To do this, use the MERGE option of the
LOAD_SQLSET procedure. The MERGE option instructs Oracle to insert any new SQL statements that are
found, and if a SQL statement already exists in the tuning set, to update the execution statistics. Here’s
an example:

DECLARE
 cur dbms_sqltune.sqlset_cursor;
BEGIN
 OPEN cur FOR

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

225

 SELECT value(x)
 FROM table(dbms_sqltune.select_workload_repository(
 26800,26900, null, null,'disk_reads',
 null, null, null, 15)) x;
 --
 dbms_sqltune.load_sqlset(
 sqlset_name => 'MY_TUNING_SET',
 populate_cursor => cur,
 load_option => 'MERGE');
END;
/

This technique allows you to add SQL statements to an existing SQL tuning set without having to drop
and recreate it.

Dropping a SQL Tuning Set
If you need to drop a SQL tuning set object, use the DBMS_SQLTUNE.DROP_SQLSET procedure to drop a
tuning set. The following example drops a tuning set named MY_TUNING_SET:

SQL> EXEC DBMS_SQLTUNE.DROP_SQLSET(sqlset_name => 'MY_TUNING_SET');

You can confirm the tuning set has been dropped by querying the DBA_SQLSET view.

Running the SQL Tuning Advisor
Figure 9-4 shows the SQL Tuning Advisor architecture. This tool takes as input any of the following:

• Single SQL statement

• SQL_ID from a statement in memory or the AWR

• Set of SQL statements contained in a SQL tuning set

This tool provides useful advice regarding the creation of indexes, restructuring the SQL statement,
stale statistics, and so on. You can manually execute the SQL Tuning Advisor from DBMS_SQLTUNE PL/SQL
package, SQL Developer, or Enterprise Manager.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

226

Figure 9-4. The SQL Tuning Advisor archiecture

Let’s focus first on running the SQL Tuning Advisor through the DBMS_SQLTUNE PL/SQL package. To
execute the SQL Tuning Advisor from PL/SQL, follow these steps:

1. Create a tuning task.

2. Execute DBMS_SQLTUNE and view the advice.

z
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

227

These steps are explained in the following subsections.

Creating a Tuning Task
A tuning task allows you to specify the source of the SQL statement(s) to be used for input into the SQL
Tuning Advisor. You can use the following as inputs when creating a SQL tuning task:

• Text for a specific SQL statement

• SQL identifier for a specific SQL statement from the cursor cache in memory

• Single SQL statement from the AWR given a range of snapshot IDs

• SQL tuning set name

We’ll show examples of each of these techniques.

 Note The user creating the tuning task needs the ADMINISTER SQL MANAGEMENT OBJECT system privilege.

Text for a Specific SQL Statement
One simple way to tune a specific statement is to use the SQL query itself when creating a tuning task.
Here’s an example:

DECLARE
 tune_task VARCHAR2(30);
 tune_sql CLOB;
BEGIN
 tune_sql := 'select count(*) from mgmt_db_feature_usage_ecm';
 tune_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_text => tune_sql
 ,user_name => 'MV_MAINT'
 ,scope => 'COMPREHENSIVE'
 ,time_limit => 60
 ,task_name => 'tune_test'
 ,description => 'Provide SQL text'
);
END;
/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

228

SQL_ID for a Specific SQL Statement from the Cursor Cache
You can also use the SQL_ID of a statement in memory to identify the SQL statement that you wanted to
tune. If you don’t know which SQL_ID is associated with the query you want to tune, then first query the
V$SQL view.

SELECT sql_id, sql_text
FROM v$sql
where sql_text like '%&&mytext%';

Once you have the SQL_ID, you can provide it as input to DBMS_SQLTUNE.CREATE_TUNING_TASK, like so:

DECLARE
 tune_task VARCHAR2(30);
 tune_sql CLOB;
BEGIN
 tune_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_id => '98u3gf0xzq03f'
 ,task_name => 'tune_test2'
 ,description => 'Provide SQL ID'
);
END;
/

Single SQL Statement from the AWR Given a Range of Snapshot IDs
You can also use the SQL_ID of a statement stored in the AWR. If you’re not sure which SQL_ID (and
associated query) to use, run this query:

SQL> select sql_id, sql_text from dba_hist_sqltext;

If you’re unaware of the available snapshot IDs, run this query:

SQL> select snap_id from dba_hist_snapshot order by 1;

Here’s an example of creating a SQL tuning task by providing a SQL_ID and range of AWR snapshot
IDs:

DECLARE
 tune_task VARCHAR2(30);
 tune_sql CLOB;

BEGIN
 tune_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_id => '1tbu2jp7kv0pm'
 ,begin_snap => 21690
 ,end_snap => 21864
 ,task_name => 'tune_test3'
);
END;
/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

229

 Tip By default, the AWR contains only high resource-consuming queries. You can modify this behavior and
ensure that a specific SQL statement is included in every snapshot (regardless of its resource consumption) by
adding it to the AWR via the following code:

SQL> exec dbms_workload_repository.add_colored_sql('98u3gf0xzq03f');

SQL Tuning Set Name
If you have the requirement of running the SQL Tuning Advisor against multiple SQL queries, then a SQL
tuning set is required. To create a tuning task using a SQL tuning set as input, do so as follows:

SQL> variable mytt varchar2(30);
SQL> exec :mytt := DBMS_SQLTUNE.CREATE_TUNING_TASK(sqlset_name => 'IO_STS');
SQL> print :mytt

Execute DBMS_SQLTUNE and View the Advice
After you’ve created a tuning task, you can generate and view advice by executing the
EXECUTE_TUNING_TASK procedure and provide to it the name of your tuning task, like so:

SQL> exec dbms_sqltune.execute_tuning_task(task_name => 'tune_test');

Next, a report is generated that displays the tuning advice.

SQL> set long 10000 longchunksize 10000 linesize 132 pagesize 200
SQL> select dbms_sqltune.report_tuning_task('tune_test') from dual;

Here is a small snippet of the output:

2- Index Finding (see explain plans section below)
--
 The execution plan of this statement can be improved by creating one or more
 indices.
 Recommendation (estimated benefit: 97.98%)
 --
 - Consider running the Access Advisor to improve the physical schema design
 or creating the recommended index.
 create index MV_MAINT.IDX$$_21E10001 on MV_MAINT.EMP("DEPT_ID");

Note that this output has a specific recommendation for adding an index. You’ll need to test the

recommendations to ensure that performance does improve before implementing them in a production
environment.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

230

Viewing and Dropping Tuning Tasks
The prior techniques provide a variety of ways to identify SQL statements to be analyzed by the SQL
Tuning Advisor. Once you’ve created a tuning task, you can view its details via this query:

select owner, task_name, advisor_name, created
from dba_advisor_tasks
order by created;

If you need to drop the tuning task, you can do so as follows:

SQL> exec dbms_sqltune.drop_tuning_task(task_name => '&&task_name');

Running SQL Tuning Advisor from SQL Developer
If you have access to SQL Developer 3.0 or higher, it’s very easy to run the SQL Tuning Advisor for a
query. Follow these simple steps:

1. Open a SQL worksheet.

2. Type in the query.

3. Click the button associated with the SQL Tuning Advisor.

You will be presented with any findings and recommendations. If you have access to SQL Developer
(it’s a free download), this is the easiest way to run the SQL Tuning Advisor.

 Note Before running SQL Tuning Advisor from SQL Developer, ensure the user that you’re connected to has
the ADVISOR system privilege granted to it.

Running SQL Tuning Advisor from Enterprise Manager
You can also run the advisor from within Enterprise Manager. Log into Enterprise Manager and follow
these steps:

1. From the main database page, click the Advisor Central link (near the bottom).

2. Under the Advisors section, click the SQL Advisors link.

3. Click the SQL Tuning Advisor link.

You should be presented with a page similar to the one shown in Figure 9-5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ SQL TUNING ADVISOR

231

Figure 9-5. Scheduling SQL Tuning Advisor jobs from Enterprise Manager

From here you can run a SQL Tuning Advisor tuning task on the top SQL statements or SQL in the
AWR, or provide a SQL tuning set as input.

Summary
The SQL Tuning Advisor is a flexible tool that provides performance tuning advice regarding indexes,
SQL profiles, statistics, restructuring queries, and so on. Because this tool generates advice regarding
indexes, we felt it was appropriate to cover the use of the SQL Tuning Advisor in this book.

One key input to the SQL Tuning Advisor is through SQL tuning sets. Therefore, we also covered the
management of SQL tuning sets in this chapter. Briefly, a SQL tuning set is a collection of one or more
SQL statements and the associated execution metrics. You can populate a SQL tuning set either from
high resource SQL in the AWR or in memory.

The SQL Tuning Advisor can be invoked from the DBMS_SQLTUNE PL/SQL package, SQL Developer, or
Enterprise Manager. Which tool you use depends on what you have installed in your environment and
your comfort level with a manual approach versus a graphical interface.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

■ ■ ■

233

SQL Access Advisor

Oracle’s SQL Access Advisor is a flexible tuning tool that analyzes either a single SQL statement or a
group of SQL statements and generates advice on how to improve performance by recommending the
creation of the following types of objects:

• Indexes

• Materialized views

• Materialized view logs

• Partitions for tables, indexes, and materialized views

SQL Access Advisor provides advice on implementing B-tree, bitmap, and function-based indexes.
The tool provides specific SQL index creation statements as part of its output. Also provided are
recommendations on optimizing materialized views through fast refreshes and query rewrite
capabilities. When applicable, partitioning advice is provided for base tables, indexes, and materialized
views.

 Note The SQL Access Advisor currently requires a license for the Oracle Tuning Pack and the Oracle
Diagnostics Pack.

Since the focus of this book is on indexes, this chapter will demonstrate how to use the SQL Access
Advisor tool to generate indexing advice. The SQL Access Advisor is invoked from either the
DBMS_ADVISOR package or the Enterprise Manager SQL Access Advisor Wizard. You can use the following
types of inputs to the SQL Access Advisor:

• SQL tuning set (populated from SQL in AWR or memory)

• SQL in memory

• User-defined workload

• Single SQL statement

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

234

The inputs and outputs of SQL Access Advisor are visually displayed in Figure 10-1. Central to the
SQL Access Advisor is the Oracle-supplied DBMS_ADVISOR PL/SQL package. This package contains the
QUICK_TUNE procedure. The QUICK_TUNE procedure provides a straightforward method to generate
indexing advice for a specific SQL statement.

Figure 10-1. SQL Access Advisor architecture

When tuning a group of SQL statements, it is possible to manually cobble together the PL/SQL to
call SQL Access Advisor from the DBMS_ADVISOR package. However, it is much more efficient to use the
Enterprise Manager screens to choose from a wide variety options/features, and then automatically
generate the PL/SQL. Therefore, if you have a requirement to tune a set of SQL statements, we
recommend you use the Enterprise Manager SQL Access Advisor Wizard. If you need to, you can view
the PL/SQL that the graphical tool generates and manually tweak the output as required.

Note that Chapter 9 covered using the SQL Tuning Advisor for generating indexing advice; this
chapter describes the SQL Access Advisor. So what is the difference between these two tools in regards to
indexing advice? The main difference is the SQL Tuning Advisor provides advice for tuning SQL
statements in isolation; its advice doesn’t consider the impact an index might have on other SQL
statements in a given workload whereas the SQL Access Advisor considers the impact of adding an index
across all SQL statements in the given workload. In other words, if adding an index speeds up one query
but adversely impacts other queries in the workload, then index creation is not recommended.

 Tip The Oracle documentation states the SQL Access Advisor is able to make suggestions for a workload by
analyzing structural statistics for a table, index cardinalities of dimension level columns, join key columns, and fact
table key columns. Therefore, before running the SQL Access Advisor, it’s critical that accurate statistics exist for
objects used in the SQL workload set.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

235

We begin this chapter by showing how to use the QUICK_TUNE procedure to provide indexing advice
for one SQL statement. Then we demonstrate how to access SQL Access Advisor through Enterprise
Manager to obtain indexing advice for a group of SQL statements.

Generating Advice for a Single SQL Statement
If you want indexing advice for one specific SQL statement, use the SQL Access Advisor’s QUICK_TUNE
procedure of the DBMS_ADVISOR package. Before running the QUICK_TUNE procedure, ensure the following
preparatory tasks have been performed:

• Tables referenced in the query should have accurate statistics. Use the DBMS_STATS
package to generate statistics (if required).

• The user executing the QUICK_TUNE procedure must also have SELECT privileges on
the tables referenced in the SQL query.

• The ADVISOR role must be granted to the user executing the DBMS_ADVISOR package.
For example, the following statement grants the ADVISOR role to the MV_MAINT user:

SQL> grant advisor to mv_maint;

After the initial setup, using the QUICK_TUNE procedure is fairly straightforward. In fact, it’s a two-step
process.

1. Execute the QUICK_TUNE procedure.

2. Generate recommendations.

For the first step, you need to provide as input to the QUICK_TUNE procedure the advisor name, a task
name, and the SQL statement. In this example, the first parameter is the name of the advisor, the second
parameter is the name of the task, and the third parameter is the text of the SQL statement (see Table 10-
1 for descriptions of the QUICK_TUNE procedure parameters):

SQL> exec dbms_advisor.quick_tune(dbms_advisor.sqlaccess_advisor, -
 'QUICK_SQL_TUNE', -
 'select last_name from emp where upper(last_name) = ''stark''');

PL/SQL procedure successfully completed.

In this code, the dashes “-” at” the end of the first two lines are required for line continuation when
executing a PL/SQL package/procedure directly from SQL*Plus. You could also directly embed the prior
code in an anonymous block of PL/SQL, as shown:

BEGIN
 dbms_advisor.quick_tune(dbms_advisor.sqlaccess_advisor,
 'QUICK_SQL_TUNE',
 'select last_name from emp where upper(last_name) = ''stark''');
END;
/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

236

Since this code is encapsulated within a block of PL/SQL, no line continuation dashes “-” are
required (on the second and third lines).

The second step involves displaying recommendations generated by the prior step. If you’re
executing the function from SQL*Plus, set the LONG variable to a large number so that the output is fully
displayed. Also, you must provide as input to the GET_TASK_SCRIPT the name of the task defined in the
prior step (see Table 10-2 for a description of all GET_TASK_SCRIPT parameters). For example,

SQL> SET LONG 100000
SQL> select dbms_advisor.get_task_script('QUICK_SQL_TUNE') from dual;

Here is some sample output for this example:

DBMS_ADVISOR.GET_TASK_SCRIPT('QUICK_SQL_TUNE')
--
Rem SQL Access Advisor: Version 11.2.0.2.0 - Production
Rem
Rem Username: MV_MAINT
Rem Task: QUICK_SQL_TUNE
Rem Execution date:
Rem

CREATE BITMAP INDEX "MV_MAINT"."EMP_IDX$$_099B0000"
 ON "MV_MAINT"."EMP"
 (UPPER("LAST_NAME"))
 COMPUTE STATISTICS;

This output indicates that a bitmap function-based index may help with performance. You will need
to carefully analyze the output and test the recommendations to determine the actual benefit. You
should also consider factors such as whether a bitmap index is appropriate for your environment. Also,
we recommend you modify the script to incorporate your index naming standards and include a
tablespace name for the placement of the index.

If you want to re-execute a tuning task, you must first drop it. You can do so via the DELETE_TASK
procedure.

SQL> exec dbms_advisor.delete_task('QUICK_SQL_TUNE');

PL/SQL procedure successfully completed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

237

Table 10-1. Parameters of DBMS_ADVISOR.QUICK_TUNE Procedure

Parameter Description

advisor_name Advisor that performs the analysis. For example,
DBMS_ADVISOR.SQL_ACCESS_ADVISOR.

task_name Name of the task.

attr1 For SQL Access Advisor, this is a CLOB that holds the SQL statement being
analyzed.

attr2 For SQL Access Advisor, this is the user account name. This parameter is optional;
the default is the currently connected user.

attr3 Optional advisor attribute in the form of a number.

task_or_template
Optional task name of an existing task or template.

Table 10-2. Parameters of the DBMS_ADVISOR.GET_TASK_SCRIPT Function

Parameter Description

task_name Unique task name that identifies the task for which advice is being reported.

Type Type of script. Default value is IMPLEMENTATION; the other valid value is UNDO.

rec_id Recommendation identifier used to display a subset of the implementation
script. Default is NULL.

act_id Value used to specify whether all recommendations should be included.
Default is NULL.

owner_name Task owner name. If omitted, the currently connected user is assumed to be
the task owner.

execution_name Identifies a specific execution of the task. Default is NULL.

object_id Identifier of an advisor object for the task. Default is NULL.

Obtaining Advice for a Group of SQL Statements
To make full use of the SQL Access Advisor features, we strongly recommend you use the Enterprise
Manager SQL Access Advisor Wizard. This browser-based interface allows you to visually select from a
vast number of features and options. Using this graphical tool is much more efficient than trying to
manually generate the code required when using the DBMS_ADVISOR PL/SQL package. Keep in mind that

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

238

you can always view and modify the PL/SQL that Enterprise Manager generates if you need to fine-tune
the code to meet your requirements.

In the next several paragraphs we demonstrate an example that generates indexing advice for the
SQL currently running in memory. First, log in to Enterprise Manager and navigate to the Advisor
Central page. Next, click the SQL Advisors link. Then click the SQL Access Advisor link. You should be
presented with a screen similar to the one shown in Figure 10-2. From this page you can verify the use of
existing objects or get advice on new objects. In this example, we want to get recommendations on new
indexes so the “Recommend new access structures” radio button is selected.

Figure 10-2. SQL Access Advisor initial options

Click the Continue button. You should see a screen similar to the shown in Figure 10-3. You have the
option of instructing SQL Access Advisor to analyze the SQL statements from one of the following
sources:

• SQL in the buffer cache

• A previously configured SQL tuning set (populated with SQL from memory or the
AWR)

• A hypothetical workload

From this screen you can additionally choose to filter SQL by schema or by specific objects. For this
example, you want the SQL Access Advisor to analyze the SQL currently in memory with no filters.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

239

Figure 10-3. Selecting the source of SQL Statements

Click the Next button. You should see a page similar to the one shown in Figure 10-4. This page
offers the option of choosing to obtain advice on indexes, materialized views, and partitioning. You can
also choose advanced options such as imposing space restrictions, tuning priority criteria, and storage
options.

For this example, you want to obtain advice regarding indexes that might improve performance.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

240

Figure 10-4. SQL Access Advisor recommendation options

Click the Next button. You should see a display similar to the one shown in Figure 10-5. This screen
allows you to modify the maximum time for the analysis and specify whether the task should
immediately be submitted.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

241

Figure 10-5. Scheduling options for the SQL Advisor Task

If everything looks okay, click the Next button. You should see a screen similar to the one shown in
Figure 10-6. One important feature to notice on this screen is the Show SQL button. This allows you to
preview the SQL and PL/SQL that SQL Access Advisor will run when you submit the job. The amount of
code produced can be quite voluminous. The following lines of code show just a small snippet of the
PL/SQL produced:

DECLARE
taskname varchar2(30) := 'SQLACCESS2522132';
task_desc varchar2(256) := 'SQL Access Advisor';
task_or_template varchar2(30) := 'SQLACCESS_EMTASK';

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

242

task_id number := 0;
wkld_name varchar2(30) := 'SQLACCESS2522132_wkld';
saved_rows number := 0;
failed_rows number := 0;
num_found number;
BEGIN
/* Create Task */
dbms_advisor.create_task(DBMS_ADVISOR.SQLACCESS_ADVISOR,
 task_id,taskname,task_desc,task_or_template);
..................
<dozens of lines of code here...>
..................
dbms_advisor.set_task_parameter(taskname,'CREATION_COST','TRUE');
dbms_advisor.set_task_parameter(taskname,'JOURNALING','4');
dbms_advisor.set_task_parameter(taskname,'DAYS_TO_EXPIRE','30');
/* Execute Task */
dbms_advisor.execute_task(taskname);
END;

Figure 10-6. Reviewing options before submitting job

If everything looks good, click on the Submit button. You should now be able to view the status of
the SQL Advisor Task from the Advisor Central screen. Figure 10-7 shows that the task has been
CREATED. This status will change to RUNNING, and then COMPLETED when it is finished. Depending
on the workload, this task may several minutes to complete.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

243

Figure 10-7. Advisor Central status page

When the task reaches the COMPLETED state, click on the task name to view the recommended
advice. You should be presented with a screen similar to Figure 10-8.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

244

Figure 10-8. SQL Access Advisor recommendations summary

From this screen you can click on the Recommendations tab. You should see a screen similar to
Figure 10-9, which has action item numbers from which you can view specific recommendations.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

245

Figure 10-9. Action items for improving performance

For this example, click on the action ID of 42 to view specific SQL statements that will be impacted
by the recommendation. You should now see a screen similar to Figure 10-10.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

246

Figure 10-10. Performance improvement of SQL statements impacted by index creation

After reviewing the SQL statements and degree of performance improvement, click on CREATE_INDEX
to view the index creation script. You should see information similar to that show in Figure 10-11.

Figure 10-11. Index creation script recommended by SQL Access Advisor

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

247

After reviewing the SQL statement, copy the text from this screen, paste it into a SQL*Plus session,
and run it. You might want to do this if you prefer to modify the script before executing it. For example,
you might want to apply your index naming standards or modify the tablespace in which the index is
created.

If you want to schedule the implementation script to be run by Enterprise Manager, then navigate
back to the screen shown in Figure 10-9 and click on the Schedule Implementation button.

These steps illustrate the most basic usage of the SQL Access Advisor. We recommend that you run
through these screens to familiarize yourself with the tool and its full capabilities.

Querying Advisor Views
There are several data dictionary views you can query to display information regarding SQL Access
Advisor activities (refer to Table 10-3 for commonly used advisor view names and descriptions). For
example, to report on tasks and execution details, query the DBA_ADVISOR_TASKS view.

select
 owner
,task_name
,advisor_name
,created
,execution_start
,status
from dba_advisor_tasks
where advisor_name = 'SQL Access Advisor'
order by 1, 2;

Here is some sample output for this example:

OWNER TASK_NAME ADVISOR_NAME CREATED EXECUTION STATUS
------- ----------------- -------------------- --------- --------- --------
SYS SQLACCESS2522132 SQL Access Advisor 22-JUL-11 22-JUL-11 COMPLETED
SYS SQLACCESS4159181 SQL Access Advisor 19-AUG-11 19-AUG-11 EXECUTING

To report on advisor usage statistics, run this query:

select
 advisor_name
,last_exec_time
,num_db_reports
from dba_advisor_usage
order by 1, 2;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ SQL ACCESS ADVISOR

248

Here is the output for this database:

ADVISOR_NAME LAST_EXEC NUM_DB_REPORTS
------------------------- --------- --------------
ADDM 13-MAY-11 0
Compression Advisor 13-MAY-11 0
SQL Access Advisor 18-AUG-11 0
SQL Performance Analyzer 13-MAY-11 0
SQL Repair Advisor 13-MAY-11 0
SQL Tuning Advisor 13-MAY-11 1
SQL Workload Manager 13-MAY-11 0
Segment Advisor 18-AUG-11 0
Tune MView 13-MAY-11 0
Undo Advisor 13-MAY-11 0

Table 10-3. Common Advisor View Descriptions

View Description

DBA_ADVISOR_TASKS Displays task name, owner, associated advisor, and execution
information.

DBA_ADVISOR_LOG Shows current status of tasks in the database.

DBA_ADVISOR_FINDINGS Findings discovered by advisors.

DBA_ADVISOR_RECOMMENDATIONS Results and analysis of recommendations from advisors.

DBA_ADVISOR_USAGE Usage information for each type of advisor.

Summary
The SQL Access Advisor tool can be invoked to tune one SQL statement or a group of statements. This
tool provides advice regarding the creation of indexes, materialized views, materialized view logs, and
partitioning strategies. Because one of the main outputs of this tool is index creation advice, we decided
it should be covered in this book on indexing strategies.

The DBMS_ADVISOR.QUICK_TUNE procedure specifically provides tuning advice for a single query. If
you are required to tune a collection of SQL statements, use the Enterprise Manager SQL Access Advisor
Wizard. This tool allows you to efficiently choose from a vast set of SQL Access Advisor options when
tuning a group of SQL statements. As part of its output, you can view the PL/SQL code that is used to
invoke the SQL Access Advisor. This allows you to manually adjust the code if you require more fine-
grained control over the various features.

Keep in mind the SQL Access Advisor considers the impact an index might have on the entire
workload. If an index speeds up one query but slows down several other statements in the group, then
an index may not be recommended. This is different from the behavior of the SQL Tuning Advisor
(Chapter 9). The SQL Tuning Advisor recommends indexing advice on isolated SQL statements without
consider the influence an index might have on other SQL statements in the system.

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ ■ ■

249

Index

A
Automated SQL tuning

architecture, 208
DBMS_AUTO_SQLTUNE package, 209
e-mailing tuning advice, 210
ENABLE/DISABLE procedure, 212–214
maintenance window, 208
REPORT_AUTO_TUNING_TASK

function, 210
SCRIPT_TUNING_TASK function, 212

Automatic Workload Repository (AWR),
206, 214–216, 218–219

B
Bitmap indexes, 5, 8–9, 49

advantages, 67
benefits, 56
bitmap join indexes

benefits, 63
geography dimension (GEO_ID), 64
index creation, 66

composite bitmap index, 51
data dictionary, 66
DML mechanism, 62
drawbacks, 67
drawbacks and limitations, 49
GENDER column, 50–51, 52
index creation, 53–54
index partitions, 62
maintenance operations, 53
OLTP, 49

on index-organized table, 55–56
partitioned bitmap index, 54–55
performance implications, 52
query performance, 60–61
rule of thumb, 51
star schema, 49, 50
star transformation, 58–60

Bitmap join indexes, 5, 9–10, 63–66
B-tree cluster, 5

index, 12
B-tree indexes

displaying index code, 32–33
dropping an index, 33–34
foreign key constraints

data dictionary views, 45–46
index implementation, 44–45
table locks, 47

index blocks, 22
index fast full scan, 22
index range scan, 22
Oracle’s Autotrace utility, 22–23

index creation, 30–31
INDEX RANGE SCAN, 24
inheriting storage parameters, 29
manageability features, 26
naming standards, 29–30
primary key constraint

advantages, 38
ALTER TABLE, 36
CREATE TABLE, 37
drop the index, 39–40
viewing index details, 38

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

250

reporting on indexes, 31–32
ROWID and column value, 20
separate tablespaces, 28–29
size estimation, 27–28
table blocks, 25–26
table layout, 21
technical aspects, 19
unique key constraint

advantages, 42
ALTER TABLE, 41
CREATE TABLE, 41–42
dropping an index, 43
implementation, 40
index creation, 42–43

C
Composite indexes

advantages, 105
choosing keys, 105
index scan, 106
index skip scan feature, 103
low cardinality column, 104–105

D, E
Descending indexes, 5
Domain indexes, 5, 12, 112–113

F
Function-based indexes, 5, 10

G
Globally partitioned indexes, 5, 11–12

architecture, 122
drawbacks, 126
hash partitioned index, 126
range partitioned index, 122–126
rebuilding indexes, 134–135

H
Hash cluster, 5

indexes, 12
Heap-organized tables, 70

I, J
Index maintenance

drop index command, 202–203
index creation

compress option, 198
data pump utility, 202
DBMS_METADATA package, 199–

200
larger block sizes, 197
nologging option, 197
parallelism, 196–197
SESSION_TRANSFORM procedure,

200–201
SET_FILTER procedure, 201–202

moving tables and indexes, 194–195
optimizer statistics

DBMS_STATS package, 171–172
METHOD_OPT parameter, 173–174

rebuilding indexes
deleted space, 190
excessive redo generation, 191
global partitioned indexes, 182
INDEX_STATS view (see

INDEX_STATS view)
ineffecient levels, 190
local partitioned indexes, 182
locking issues, 191
Oracle B-tree indexes, 190
poor clustering factor, 190
reclaim unused space, 181
reduce fragmentation, 180
reverse-key indexes, 181
update indexes clause, 182–184

reducing fragmentation
coalescing indexes, 192–193
rebuilding indexes, 190–192
shrinking indexes, 193–194

space usage, rebuilding, 180
unusable indexes

advantages, 175
locally partitioned index, 176
maintenance operations, 174
partitioned indexes, 175
ROWIDs, 174

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

251

skip_unusable_indexes parameter,
177–180

SQL*Loader, 174
storage allocation, usable index, 177

Index organized table (IOT), 4
Index scans

index fast full scan, 148–149
index full scan, 148
index range scan, 143–146
index skip scan, 147–148
index unique scan, 142

INDEX_STATs view
benefits, 185–187
problems, 188–190

Indexed virtual column, 5, 10
Indexes

bitmap indexes, 5, 8–9
bitmap join indexes, 5, 9–10
B-tree cluster, 5, 12
B-tree indexes

descending indexes, 8
index-organized table (IOT), 6–7
key compressed index, 7
reverse key indexes, 7
unique indexes, 7

concepts, 3–4
domain index, 5, 12
function-based indexes, 5, 10
global partitioned index, 5, 11–12
guidelines, 15–16
Hash cluster, 5, 12
indexed virtual column, 5, 10
invisible index, 11
local partitioned index, 5, 11–12
multiple column indexes, 14
on foreign key columns, 14
on primary key and unique key

columns, 13
query performance, 2–3
recommendations, 13
types and features, 4
virtual index, 11

Index-organized table (IOT)
advantages, 70
ALTER TABLE, 80–81

bitmap indexes, 55–56
challenges, 71
data definition language (DDL), 71–73
database information, 81–82
heap-organized tables, 70
key compression, 76–77
limitations, 70
in OLTP, 71
overflow segment, 73–76
secondary indexes, 77–79
structure, 69

Invisible indexes, 5, 11, 85
database maintenance, 88
index creation, 86
optimizer, 87
uses, 86
visibility status, 87

IOT. See Index organized table (IOT)

K
Key-compressed indexes

features, 98
ORDER_MODE and ORDER_STATUS,

100
storage, 101–102
uses, 98

L, M, N
Locally partitioned index, 5, 11–12, 116

architecture, 117
partition-level requirements, 118
prefixed and non-prefixed options, 118
simplest form, 117

O
Online transaction processing systems

(OLTP), 49
Optimizer access path

full table scan, 141
index access path, 141

Oracle’s Autotrace utility, 22–23, 23

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

252

P, Q
Partitioned indexes

advantages, 116, 128
data read-only, 138
design considerations, 115
factors affecting, 115
globally partitioned indexes

architecture, 122
drawbacks, 126
hash partitioned index, 126
range partitioned index, 122–126
rebuilding indexes, 134–135

index size, 140
interval partitioning, 137–138
locally partitioned index, 116

advantages, 126
architecture, 117
partition-level requirements, 118
prefixed and non-prefixed options,

118
simplest form, 117

maintenanace activities
adding partitions, 128–129
partition drop operation, 132–133
partition exchange, 132
partition merge operation, 133
partition move operation, 129–130
partition split operation, 130–132
truncated partition, 129

maintenance benefits, 116
non-partitioned indexes

rebuilding indexes, 134–135
partition names, 139
performance benefits, 116
primary key constraint and unique

index, 119–121
status column, 139
table-level partition operations, 127
types of index, 139
as unusable and rebuild, 135–137

R
Reverse key indexes, 4, 109

disadvantages, 110–111

index block contention, 112
index creation, 112

Row identifier (ROWID), 1

S
Specialized indexes

composite indexes. (see Composite
indexes)

domain indexes, 112–113
function-based indexes, 88

advantages, 88
arithmetic expressions, 92–93
CASE statement, 91
case-insensitive searches, 90
last_name column, 89
limitations, 93–94
statistics, 94–95
UPPER function, 91

invisible indexes. (see Invisible indexes)
key-compressed indexes. (see Key-

compressed indexes)
reverse key index. (see Reverse key

indexes)
virtual columns, 107–109
virtual indexes, 107–109

SQL Access Advisor, 233
Advisor Central status page, 243
analyze SQL statements, 238–239
architecture, 234
DELETE_TASK procedure, 236
Enterprise Manager, 237
features, 205
index creation script, 246
initial options, 238
inputs and outputs, 233
parameters

DBMS_ADVISOR.GET_TASK_SCRIP
T function, 237

DBMS_ADVISOR.QUICK_TUNE
procedure, 237

performance improvements, 245–246
QUICK_TUNE procedure, 234

DBMS_ADVISOR package, 235
PL/SQL package execution, 235–236
preparatory tasks, 235

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

253

recommendations, 236
recommendations, 240
reviewing options, 242
scheduling options, 241
vs. SQL Tuning Advisor, 234
view descriptions, 247–248

SQL Tuning Advisor
architecture, 226
automatic SQL tuning feature, 207

architecture, 208
DBMS_AUTO_SQLTUNE package,

209
e-mailing tuning advice, 210
enable and disable procedure, 212–

214
maintenance window, 208
REPORT_AUTO_TUNING_TASK

function, 210
SCRIPT_TUNING_TASK function,

212
from Enterprise Manager, 230–231
from SQL developer, 230
normal mode, 206
PL/SQL package, 226
SQL tuning sets. (see SQL tuning sets

(STS))
tuning mode, 206
tuning tasks, 227–229

EXECUTE_TUNING_TASK
procedure, 229

viewing and dropping, 230
SQL tuning sets (STS), 206

adding statements, 224
architecture, 214
CAPTURE_CURSOR_SQLSET

procedure, 220–221
deleting statements, 223–224
displaying contents, 221–223
DROP_SQLSET procedure, 221–223
high-resource SQL

in AWR, 218–219
in memory, 219–220

viewing resource-intensive SQL

in AWR, 214–216
in memory, 216–218

T
Tuning index usage

avoiding index usage
fast full scan, 151
NO_INDEX hint, 151
table scan, 152

cost-based optimizer
changing execution plans, 155
clustering factor, 154
demonstration purposes, 152
gathering accurate statistics, 167
INDEX hint, 161–162, 163–165
INDEX_ASC hint, 162
INDEX_DESC hint, 163
INDEX_JOIN hint, 163
INDEX_SS hint, 163
leading portion, 160
multiblock read count, 153
NOT EQUAL condition, 155–157
NULL values, 158
number of distinct rows, 153
optimizer_index_cost_adj

parameter, 165–166
query functions, 159
test_code column, 152
TRUNC function, 159
wildcard-based search, 157–158

monitoring index usage, 149–150
optimizer access paths. (see Optimizer

access path)
PARALLEL_INDEX hint, 167–169

U
Unique indexes, 4

V, W, X, Y, Z
Virtual indexes, 5, 11, 107–109

www.it-ebooks.info

http://www.it-ebooks.info/

Expert Indexing in Oracle
Database 11g

Maximum Performance for Your Database

■ ■ ■

Darl Kuhn
Sam R. Alapati
Bill Padfield

www.it-ebooks.info

http://www.it-ebooks.info/

Expert Indexing in Oracle Database 11g: Maximum Performance for your Database

Copyright © 2012 by Darl Kuhn, Sam R. Alapati, and Bill Padfield

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or
material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use
by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-3735-8

ISBN-13 (electronic): 978-1-4302-3736-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Karen Morton
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Mary Behr
Compositor: Apress Production (Christine Ricketts)
Indexer: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.it-ebooks.info/

To Heidi, Brandi, and Lisa

—Darl Kuhn

To my uncles Alapati Ranga Rao and Alapati Kanakayya
With love and affection

—Sam R. Alapati

To Oyuna and Evan for putting up with me and all the evenings and
weekends spent with my computer instead of with them!!

To my wonderful family: Carol, Gerry, Susan, Doug, Scott, Chris, Leslie, Jaimie, Jeremy V.,
Katie, Jenny, Jeremy P., Sean, Riley, and Blake.

—Bill Padfield

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents

 Contents at a Glance .. iv

 About the Authors .. xiii
 About the Technical Reviewer ... xiv

 Acknowledgments .. xv

Personal Acknowledgments .. xvi

 Chapter 1: Oracle Indexes ...1

Improving Performance with Indexes ... 2

Determining Which Type of Index to Use ... 4
B-tree Indexes .. 6
Specialized Index Types ... 8

Determining Which Columns to Index ... 13
Indexes on Primary Key and Unique Key Columns ... 13
Indexes on Foreign Key Columns ... 14
Other Suitable Columns .. 14

Indexing Guidelines ... 15

Summary ... 17

 Chapter 2: B-tree Indexes ...19

Understanding How Oracle Uses B-tree Indexes ... 19
Scenario 1: All Data Lies in the Index Blocks ... 22
Scenario 2: All Information Is Not Contained in the Index .. 23
Scenario 3: Only the Table Blocks Are Accessed ... 25

Prepping for B-tree Indexes .. 26
Estimating the Size of an Index Before Creation .. 27

www.it-ebooks.info

http://www.it-ebooks.info/

vi

Creating Separate Tablespaces for Indexes ... 28
Inheriting Storage Parameters from the Tablespace ... 29
Naming Standards .. 29

Implementing B-tree Indexes .. 30
Creating a B-tree Index .. 30
Reporting on Indexes ... 31
Displaying Index Code .. 32
Dropping a B-tree Index ... 33

Managing B-tree Indexes with Constraints ... 34
Creating B-tree Index on Primary Key Columns ... 35
Creating a B-tree Index on Unique Key Columns ... 40
Indexing Foreign Key Columns ... 43

Summary ... 47

 Chapter 3: Bitmap Indexes ...49

Understanding Bitmap Indexes ... 50

Creating a Bitmap Index .. 53

Creating a Partitioned Bitmap Index ... 54

Creating a Bitmap Index on an Index-Organized Table 55

Performance Implications Querying with Bitmap Indexes 56

Performance Implications Loading Data with Bitmap Indexes 60

Understanding Bitmap Join Indexes ... 63

Creating a Bitmap Join Index .. 65

Reporting on Bitmap Indexes .. 66

Summary ... 67

 Chapter 4: Index-Organized Tables ..69

Understanding the Structure ... 69

Understanding the Advantages ... 70

Creating an Index-Organized Table ... 71

Adding an Overflow Segment .. 73

Compressing an Index-Organized Table.. 76

www.it-ebooks.info

http://www.it-ebooks.info/

 CONTENTS

vii

Building Secondary Indexes .. 77

Rebuilding an Index-Organized Table ... 80

Reporting on Index-Organized Tables ... 81

Summary ... 82

 Chapter 5: Specialized Indexes ..85

Invisible Indexes ... 85
When to Create an Invisible Index .. 86
Creating an Invisible Index ... 86
Finding Invisible Indexes In Your Database .. 87
Making an Invisible Index Available to the Optimizer ... 87
Maintaining an Invisible Index .. 88

Function-Based Indexes .. 88
Creating a Function-Based Index ... 90
Limitations of Function-Based Indexes .. 93
Collecting Statistics for Function-Based Indexes ... 94

Indexes on Virtual Columns ... 96

Key-Compressed Indexes .. 98
When Key Compression is Useful ... 98
Creating a Compressed Index .. 99
Key Compression and Storage ... 101

Composite Indexes .. 103
Understanding Index Skip Scans and Composite Indexes 103
Ordering the Columns in a Composite Index .. 104
Choosing Keys for Composite Indexes ... 105

Creating Virtual Indexes .. 107

Reverse Key Indexes ... 109
Disadvantages of a Reverse Key Index .. 111
When to Use a Reverse Key Index .. 112
Creating a Reverse Key Index ... 112

Application Domain Indexes .. 113

www.it-ebooks.info

http://www.it-ebooks.info/

viii

Summary ... 114

 Chapter 6: Partitioned Indexes ...115

Understanding Partitioned Indexes ... 116

Creating a Locally Partitioned Index ... 116
The Simplest Form ... 117
Partition-Level Requirements ... 118
Prefixed and Non-Prefixed Options .. 118

Managing Primary Keys and Unique Indexes .. 119

Creating a Globally Partitioned Index .. 121

Choosing the Type of Index for Your Application .. 126

Maintaining Indexes on Partitioned Tables ... 128
Adding a Partition ... 128
Truncating a Partition ... 129
Moving a Partition .. 129
Splitting a Partition ... 130
Exchanging a Partition ... 132
Dropping a Partition ... 132
Merging a Partition ... 133

Rebuilding Globally Partitioned and Non-Partitioned Indexes 134

Setting Index Partitions as Unusable and Then Rebuilding 135

Index Implications for Interval Partitioning .. 137

Making Older Data Read-Only ... 138

Reporting on Partitioned Indexes .. 138

Summary ... 140

 Chapter 7: Tuning Index Usage ...141

Optimizer Access Paths ... 141

Index Scans ... 142
Index Unique Scan .. 142
Index Range Scan ... 143
Index Skip Scan .. 146

www.it-ebooks.info

http://www.it-ebooks.info/

 CONTENTS

ix

Index Full Scan ... 147
Index Fast Full Scan ... 148

Determining Whether a Query Uses an Index .. 149

Avoiding an Index .. 151
Avoiding All Use of an Index ... 151
Avoiding Only the Fast Full Scan .. 151
Forcing a Table Scan .. 151

Choosing Between an Index and a Table Scan .. 152

Why the Optimizer May Ignore Indexes .. 153
Number of Distinct Rows .. 153
Index Clustering Factor .. 154

How Index Access Paths Can Change Without New Statistics 154
Using the NOT EQUAL Condition ... 155
Querying with Wild Characters ... 157
Referencing Null Values in Predicates ... 158
Writing Functions in a Query .. 159
Skipping the Leading Portion of an Index ... 160

Forcing the Optimizer to Use an Index .. 160
Applying the INDEX Hint ... 161
Applying Related Hints ... 162
Troubleshooting a Failed INDEX Hint .. 163
Adjusting the Optimizer_index_cost_adj Parameter .. 164
Collecting Accurate Statistics for an Index .. 166

Parallelizing Index Access .. 167

Summary ... 169

 Chapter 8: Maintaining Indexes ..171

Gathering Statistics for Indexes .. 171
The DBMS_STATS Package .. 171
The METHOD_OPT Parameter .. 173

Working with Unusable Indexes .. 174

www.it-ebooks.info

http://www.it-ebooks.info/

x

Making an Index Unusable ... 175
Specifying the SKIP_UNUSABLE_INDEXES Parameter ... 177

Managing Index Space Usage ... 180
Rebuilding to Reduce Fragmentation ... 180
Rebuilding Reverse-Key Indexes .. 181
Reclaiming Unused Space .. 181
Rebuilding a Partitioned Index ... 181
Rebuilding Indexes Frequently ... 184

The Role of the INDEX_STATS View in Index Rebuilds 185
Benefits from the INDEX_STATs view .. 185
Problems with the INDEX_STATS view ... 188

Index Rebuilding: The Debate .. 190
Arguments for Rebuilding .. 190
Arguments Against Rebuilding ... 191
Our Advice .. 191

Coalescing Indexes to Reduce Fragmentation .. 192

Shrinking Indexes to Reduce Fragmentation .. 193

Moving Tables and Indexes ... 195

Improving Index Creation Efficiency ... 196
Parallelizing Index Creation .. 196
Avoiding Redo Generation During Index Creation... 197
Using Larger Block Sizes .. 198
Compressing Indexes ... 198
Using Multiple Options Together .. 198

Generating the DDL for Creating an Index ... 199
Using the DBMS_METADATA Package ... 199
Using the SESSION_TRANSFORM Procedure ... 200
Using the SET_FILTER Procedure ... 201
Using Data Pump .. 202

Dropping an Index ... 202

www.it-ebooks.info

http://www.it-ebooks.info/

 CONTENTS

xi

The Hazards of Dropping an Index ... 203
Summary ... 204

 Chapter 9: SQL Tuning Advisor ...205

How the Tools Relate ... 205

Automatic SQL Tuning Job .. 207
Verifying Automatic Jobs Running ... 208
Viewing Automatic SQL Tuning Job Advice .. 208
Generating a SQL Script to Implement Automatic Tuning Advice 211
Disabling and Enabling Automatic SQL Tuning .. 212

Managing SQL Tuning Sets .. 214
Viewing Resource-Intensive SQL in the AWR ... 214
Viewing Resource-Intensive SQL in Memory ... 216
Populating SQL Tuning Set from High-Resource SQL in AWR 218
Populating a SQL Tuning Set from High-Resource SQL in Memory 219
Populating SQL Tuning Set with All SQL in Memory ... 220
Displaying the Contents of a SQL Tuning Set ... 221
Selectively Deleting Statements from a SQL Tuning Set .. 223
Adding Statements to an Existing SQL Tuning Set ... 224
Dropping a SQL Tuning Set .. 225

Running the SQL Tuning Advisor ... 225
Creating a Tuning Task .. 227
Execute DBMS_SQLTUNE and View the Advice.. 229
Viewing and Dropping Tuning Tasks .. 230
Running SQL Tuning Advisor from SQL Developer ... 230
Running SQL Tuning Advisor from Enterprise Manager ... 230

Summary ... 231

 Chapter 10: SQL Access Advisor ...225

Generating Advice for a Single SQL Statement ... 235

Obtaining Advice for a Group of SQL Statements .. 237

Querying Advisor Views .. 247

www.it-ebooks.info

http://www.it-ebooks.info/

xii

Summary ... 248

 Index ...249

www.it-ebooks.info

http://www.it-ebooks.info/

xiii

About the Authors

■ Darl Kuhn is a senior database administrator working for Oracle. He handles all
facets of database administration from design and development to production
support. He also teaches advanced database courses at Regis University in Colorado.
Darl does volunteer DBA work for the Rocky Mountain Oracle Users Group. He has a
graduate degree from Colorado State University and lives near Spanish Peaks,
Colorado with his wife, Heidi, and daughters Brandi and Lisa.

■ Sam R. Alapati is an Oracle ACE and an experienced Oracle database
administrator (OCP Oracle Database 11g). Sam is currently a Senior Database
Architect and Manager at Cash America International in Fort Worth, Texas. Sam has
written several books on Oracle database management, including Expert Oracle
Database 11g Administration, Oracle Database 11g: New Features for DBAs and
Developers and RMAN Recipes for Oracle Database 11g (with Darl Kuhn and Arup
Nanda), all published by Apress. Sam lives in Dallas, Texas with his wife, Valerie, and
children Shannon, Nina, and Nicholas.

■ Bill Padfield is an Oracle Certified Professional working for a large
telecommunications company in Denver, Colorado as a lead database
administrator. Bill helps administer and manage a large data warehouse
environment consisting of more than 75 databases. Bill has been an Oracle Database
administrator for more than 14 years and has been in the IT industry since 1985. Bill
also teaches graduate database courses at Regis University and currently resides in
Aurora, Colorado with his wife, Oyuna, and son, Evan.

www.it-ebooks.info

http://www.it-ebooks.info/

xiv

About the Technical Reviewer

■ Karen Morton is a consultant and educator specializing in application
optimization in both shoulder-to-shoulder consulting engagements and
classroom settings. She is a Senior DBA Performance and Tuning Specialist for
Fidelity Information Services. For over 20 years, Karen has worked in
information technology. Starting as a mainframe programmer and developer,
she has been a DBA, a data architect, and now is a researcher, educator, and
consultant. Having used Oracle since the early 90s, she began teaching others
how to use Oracle over a decade ago. Karen is a frequent speaker at conferences
and user groups, an Oracle ACE, and a member of the OakTable network (an
informal association of “Oracle scientists” that are well known throughout the
Oracle community). She blogs at karenmorton.blogspot.com.

www.it-ebooks.info

http://www.it-ebooks.info/

xv

Acknowledgments

Special thanks go to lead editor Jonathan Gennick for providing vision and numerous recommendations
on both the content and organization of this book. A huge thanks goes to Karen Morton for countless
suggestions that greatly improved the quality and technical content. It really is an honor for the authors
to have a person of such consummate skill and wisdom (and fame) as Karen help out with the technical
vetting of the book. Any remaining errors are, of course, the authors' alone. Thanks also to the
tremendous extra effort from coordinating editor Anita Castro to get this book completed on schedule,
which, in addition to her “normal” tasks, entailed juggling multiple versions of the chapters among the
three authors—a demanding task in itself. Thanks as well to the excellent copy editing performed by the
copy editor Mary Behr. It takes a dedicated and talented team to produce a book like this.

Personal Acknowledgments
Thanks to hard working fellow co-authors, Sam R. Alapati and Bill Padfield, and also thanks to the
numerous DBAs and developers who I’ve learned from over the years: Scott Schulze, Dave Jennings, Bob
Suehrstedt, Ken Toney, Pete Mullineaux, Janet Bacon, Sue Wagner, Mohan Koneru, Arup Nanda, Charles
Kim, Bernard Lopuz, Barb Sannwald, Tim Gorman, Shawn Heisdorffer, Sujit Pattanaik, Ken Roberts,
Roger Murphy, Mehran Sowdaey, Kevin Bayer, Guido Handley, Dan Fink, Nehru Kaja, Tim Colbert,
Glenn Balanoff, Bob Mason, Mike Nims, Brad Blake, Ravi Narayanaswamy, Abdul Ebadi, Kevin Hoyt,
Trent Sherman, Sandra Montijo, Jim Secor, Maureen Frazzini, Sean Best, Patrick Gates, Krish Hariharan,
Buzzy Cheadle, Lori Beer, Liz Brill, Ennio Murroni, Gary Smith, Dan Truman, Joey Canlas, Eric Wendelin,
Mark Lutze, Kevin Quinlivan, Dave Bourque, John Lilly, Dave Wood, Laurie Bourgeois, Steve Buckmelter,
Casey Costley, John DiVirgilio, Valerie Eipper, John Goggin, Brett Guy, Kevin O'Grady, Peter Schow, Jeff
Shoup, Mike Tanaka, Todd Wichers, Doug Cushing, Kye Bae, Will Thornburg, Ambereen Pasha, Steve
Roughton, Sudha Verma, Dinesh Neelay, Ann Togasaki, Thom Chumley, Lea Wang, Steve Odendahl, Ken
Kadonaga, Vasa Dasan, Erik Jasiak, Tae Kim, Jeff Sherard, Aaron Isom, Kristi Jackson, Karolyn Vowles,
Terry Roam, Darin Christensen, Max Rose, Doug Drake, Jim Johnson, Marilyn Wenzel, Doc Heppler,
Mert Lovell, Ken Sardoni, Kimball Moore, Brian Beasly, Clair Larsen, Odean Bowler, Jim Stark, Robbie
Robertson, Gary Plessinger, Donna Zwiller, Brighton Bigler, Kit Ashworth, Lasse Jansen, Debra Rimmer,
and Harmon Faleono.

Darl Kuhn

www.it-ebooks.info

http://www.it-ebooks.info/

■

 ACKNOWLEDGMENTS

xvi

This is the second book that I wrote with Bill and Darl, and I’m truly fortunate to have had the
opportunity of working with such great professionals on this project. Both of them are superb Oracle
database administrators and they’re also personally great. Constant cheer and good humor on behalf of
my two co-authors, not to speak of their extreme generosity and willingness when I requested their
assistance, has made writing this book a very cheerful task.

I’d like to (quite belatedly) acknowledge the great help provided in my career by Ram Janardhanan
and Anil Sinha of Citicorp, New York.

As is usual when I write a book, my family has made quite a few sacrifices to enable me to put my
best possible effort into the planning and writing of the book. I gratefully acknowledge the wonderful
support and help from my wife, Valerie, and my children Shannon, Nicholas, and Nina. Finally, I’d like
to thank my other family: my mother, Swarna Kumari; my father, Appa Rao; my brothers, Hari Hara
Prasad and Siva Sankara Prasad; as well as Aruna, Vanaja, Ashwin, Teja, Aparna, and Soumya for their
constant support, encouragement, affection, and love.

Sam R. Alapati

I’d like to thank my gracious co-authors, Sam R. Alapati and Darl Kuhn, for all of their help and support
and for taking on a rookie for this project. I couldn’t have made it without their help.

There are so many people I can thank that have helped me over the years in my career, so please
know that I appreciate every single individual who has encouraged and helped me along. First of all, I’d
like to thank Bob Ranney for giving me the opportunity to be a DBA. I also would like to thank some of
my key managers over the years that have helped me, including Beth Bowen, Larry Wyzgala, John
Zlamal, Linda Scheldrup, Amy Neff, and Maureen Frazzini.

Of course, there are many DBAs, developers, system administrators, and architects that have helped
me greatly in my career. First, I need to thank the DBAs on my current team who make the everyday
grind a blast. These folks have helped me so much professionally and have become great friends over the
many years we have worked together. This includes Dave Carter, Debbie Fitzgerald, Pankaj Guleria, Pete
Sardaczuk, Brad Strom, and Rebecca Western.

Over the years, I’ve learned an awful lot from the following folks, who have always been generous
with their time and help, and patient with my questions: Mark Nold, Mick McMahon, Sandra Montijo,
Jerry Sanderson, Glen Sanderson, Jose Fernandez, Mike Hammontre, Pat Cain, Dave Steep, Gary
Whiting, Ron Fullmer, Becky Enter, John Weber, Avanish Gupta, Scott Bunker, Paul Mayes, Bill Read,
Rod Ermish, Rick Barry, Sun Yang, Sue Wagner, Glenn Balanoff, Linda Lee Burau, Deborah Lieou-
McCall, Bob Zumpf, Kristi Sargent, Sandy Hass, George Huner, Pad Kail, Curtis Gay, Ross Bartholomay,
Carol Rosenow, Scott Richards, Sheryl Gross, Lachelle Shambe, John Piel, Rob Grote, Rex Ellis, Zane
Warton, Steve Pearson, Jim Barclay, Jason Hermstad, Shari Plantz-Masters, Denise Duncan, Bob Mason,
Brad Blake, Mike Nims, Cathie Wilson, Rob Coates, Shirley Amend, Rob Bushlack, Cindy Patterson,
Debbie Chartier, Blair Christensen, Meera Ganesan, Kedar Panda, Srivatsan Muralidaran, Kevin
Tomimatsu, John Townley, and Brent Wagner.

Bill Padfield

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Contents at a Glance

	Contents

	About the Authors

	About the Technical Reviewer

	Acknowledgments

	Oracle Indexes
	Improving Performance with Indexes
	Determining Which Type of Index to Use
	B-tree Indexes
	Index-Organized Table
	Unique Indexes
	Reverse Key Indexes
	Key Compressed Indexes
	Descending Indexes

	Specialized Index Types
	Bitmap Index
	Bitmap Join
	Function-Based Indexes
	Indexed Virtual Column
	Virtual Index
	Invisible Index
	Globally and Locally Partitioned Indexes
	Domain, B-tree Cluster, and Hash Cluster Indexes

	Determining Which Columns to Index
	Indexes on Primary Key and Unique Key Columns
	Indexes on Foreign Key Columns
	Other Suitable Columns

	Indexing Guidelines
	Summary

	B-tree Indexes
	Understanding How Oracle Uses B-tree Indexes
	Scenario 1: All Data Lies in the Index Blocks
	Scenario 2: All Information Is Not Contained in the Index
	Scenario 3: Only the Table Blocks Are Accessed

	Prepping for B-tree Indexes
	Estimating the Size of an Index Before Creation
	Creating Separate Tablespaces for Indexes
	Inheriting Storage Parameters from the Tablespace
	Naming Standards

	Implementing B-tree Indexes
	Creating a B-tree Index
	Reporting on Indexes
	Displaying Index Code
	Dropping a B-tree Index

	Managing B-tree Indexes with Constraints
	Creating B-tree Index on Primary Key Columns
	Use ALTER TABLE to Create a Primary Key Constraint and Index
	Use CREATE TABLE to Create a Primary Key Constraint and Index
	Create a B-tree Index and Primary Key Constraint Separately
	Viewing Primary Key Constraint and Index Details
	Dropping Primary Key Constraint and Index

	Creating a B-tree Index on Unique Key Columns
	Use the ALTER TABLE to Create a Unique Constraint and Index
	Use CREATE TABLE to Create a Unique Constraint and Index
	Create a B-tree Index and Unique Key Constraint Separately
	Creating Only a Unique Index
	Dropping a Unique Key Constraint and Index

	Indexing Foreign Key Columns
	Implementing an Index on a Foreign Key Column
	Determining if Foreign Key Columns are Indexed

	Summary

	Bitmap Indexes
	Understanding Bitmap Indexes
	Creating a Bitmap Index
	Creating a Partitioned Bitmap Index
	Creating a Bitmap Index on an Index-Organized Table
	Performance Implications Querying with Bitmap Indexes
	Performance Implications Loading Data with Bitmap Indexes
	Understanding Bitmap Join Indexes
	Creating a Bitmap Join Index
	Reporting on Bitmap Indexes
	Summary

	Index-Organized Tables
	Understanding the Structure
	Understanding the Advantages
	Creating an Index-Organized Table
	Adding an Overflow Segment
	Compressing an Index-Organized Table
	Building Secondary Indexes
	Rebuilding an Index-Organized Table
	Reporting on Index-Organized Tables
	Summary

	Specialized Indexes
	Invisible Indexes
	When to Create an Invisible Index
	Creating an Invisible Index
	Finding Invisible Indexes In Your Database
	Making an Invisible Index Available to the Optimizer
	Maintaining an Invisible Index

	Function-Based Indexes
	Creating a Function-Based Index
	Limitations of Function-Based Indexes
	Collecting Statistics for Function-Based Indexes

	Indexes on Virtual Columns
	Key-Compressed Indexes
	When Key Compression is Useful
	Creating a Compressed Index
	Key Compression and Storage

	Composite Indexes
	Understanding Index Skip Scans and Composite Indexes
	Ordering the Columns in a Composite Index
	Choosing Keys for Composite Indexes

	Creating Virtual Indexes
	Reverse Key Indexes
	Disadvantages of a Reverse Key Index
	When to Use a Reverse Key Index
	Creating a Reverse Key Index

	Application Domain Indexes
	Summary

	Partitioned Indexes
	Understanding Partitioned Indexes
	Creating a Locally Partitioned Index
	The Simplest Form
	Partition-Level Requirements
	Prefixed and Non-Prefixed Options

	Managing Primary Keys and Unique Indexes
	Creating a Globally Partitioned Index
	Choosing the Type of Index for Your Application
	Maintaining Indexes on Partitioned Tables
	Adding a Partition
	Truncating a Partition
	Moving a Partition
	Splitting a Partition
	Exchanging a Partition
	Dropping a Partition
	Merging a Partition

	Rebuilding Globally Partitioned and Non-Partitioned Indexes
	Setting Index Partitions as Unusable and Then Rebuilding
	Index Implications for Interval Partitioning
	Making Older Data Read-Only
	Reporting on Partitioned Indexes
	Summary

	Tuning Index Usage
	Optimizer Access Paths
	Index Scans
	Index Unique Scan
	Index Range Scan
	Index Skip Scan
	Index Full Scan
	Index Fast Full Scan

	Determining Whether a Query Uses an Index
	Avoiding an Index
	Avoiding All Use of an Index
	Avoiding Only the Fast Full Scan
	Forcing a Table Scan

	Choosing Between an Index and a Table Scan
	Why the Optimizer May Ignore Indexes
	Number of Distinct Rows
	Index Clustering Factor

	How Index Access Paths Can Change Without New Statistics
	Using the NOT EQUAL Condition
	Querying with Wild Characters
	Referencing Null Values in Predicates
	Writing Functions in a Query
	Skipping the Leading Portion of an Index

	Forcing the Optimizer to Use an Index
	Applying the INDEX Hint
	Applying Related Hints
	INDEX_ASC Hint
	INDEX_DESC Hint
	INDEX_JOIN Hint
	INDEX_SS Hint

	Troubleshooting a Failed INDEX Hint
	Adjusting the optimizer_index_cost_adj Parameter
	Collecting Accurate Statistics for an Index

	Parallelizing Index Access
	Summary

	Maintaining Indexes
	Gathering Statistics for Indexes
	The DBMS_STATS Package
	The METHOD_OPT Parameter

	Working with Unusable Indexes
	Making an Index Unusable
	Specifying the SKIP_UNUSABLE_INDEXES Parameter

	Managing Index Space Usage
	Rebuilding to Reduce Fragmentation
	Rebuilding Reverse-Key Indexes
	Reclaiming Unused Space
	Rebuilding a Partitioned Index
	Rebuilding Global Partitioned Indexes
	Rebuilding Local Partitioned Indexes
	Specifying the UPDATE INDEXES Clause

	Rebuilding Indexes Frequently

	The Role of the INDEX_STATS View in Index Rebuilds
	Benefits from the INDEX_STATs view
	Problems with the INDEX_STATS view

	Index Rebuilding: The Debate
	Arguments for Rebuilding
	Arguments Against Rebuilding
	Our Advice

	Coalescing Indexes to Reduce Fragmentation
	Shrinking Indexes to Reduce Fragmentation
	Moving Tables and Indexes
	Improving Index Creation Efficiency
	Parallelizing Index Creation
	Avoiding Redo Generation During Index Creation
	Using Larger Block Sizes
	Compressing Indexes
	Using Multiple Options Together

	Generating the DDL for Creating an Index
	Using the DBMS_METADATA Package
	Using the SESSION_TRANSFORM Procedure
	Using the SET_FILTER Procedure
	Using Data Pump
	The Hazards of Dropping an Index

	Summary

	SQL Tuning Advisor
	How the Tools Relate
	Automatic SQL Tuning Job
	Verifying Automatic Jobs Running
	Viewing Automatic SQL Tuning Job Advice
	Generating a SQL Script to Implement Automatic Tuning Advice
	Disabling and Enabling Automatic SQL Tuning

	Managing SQL Tuning Sets
	Viewing Resource-Intensive SQL in the AWR
	Viewing Resource-Intensive SQL in Memory
	Populating SQL Tuning Set from High-Resource SQL in AWR
	Step 1: Create a SQL Tuning Set Object
	Step 2: Determine Begin and End AWR Snapshot IDs
	Step 3: Populate the SQL Tuning Set with High-Resource SQL Found in AWR

	Populating a SQL Tuning Set from High-Resource SQL in Memory
	Populating SQL Tuning Set with All SQL in Memory
	Displaying the Contents of a SQL Tuning Set
	Selectively Deleting Statements from a SQL Tuning Set
	Adding Statements to an Existing SQL Tuning Set
	Dropping a SQL Tuning Set

	Running the SQL Tuning Advisor
	Creating a Tuning Task
	Text for a Specific SQL Statement
	SQL_ID for a Specific SQL Statement from the Cursor Cache
	Single SQL Statement from the AWR Given a Range of Snapshot IDs
	SQL Tuning Set Name

	Execute DBMS_SQLTUNE and View the Advice
	Viewing and Dropping Tuning Tasks
	Running SQL Tuning Advisor from SQL Developer
	Running SQL Tuning Advisor from Enterprise Manager

	Summary

	SQL Access Advisor
	Generating Advice for a Single SQL Statement
	Obtaining Advice for a Group of SQL Statements
	Querying Advisor Views
	Summary

	Index
	A
	B
	C
	D, E
	F
	G
	H

	I, J
	K
	L, M, N
	O
	P, Q
	R

	S
	T
	U
	V, W, X, Y, Z

