
www.it-ebooks.info

http://www.it-ebooks.info/

Nagios Core
Administration
Cookbook

Develop an integrated monitoring solution for virtually
any kind of network

Tom Ryder

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Nagios Core Administration Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1180113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-556-6

www.packtpub.com

Cover Image by Gavin Doremus (gdoremus24@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Tom Ryder

Reviewers
Emmanuel Dyan

John C. Kennedy

Pierguido Lambri

Acquisition Editor
Jonathan Titmus

Commissioning Editor
Shreerang Deshpande

Lead Technical Editor
Kedar Bhat

Technical Editor
Lubna Shaikh

Project Coordinator
Abhishek Kori

Proofreaders
Bernadette Watkins

Maria Gould

Indexer
Monica Ajmera

Graphics
Aditi Gajjar

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Tom Ryder is a systems administrator and former web developer from New Zealand.
He uses Nagios Core as part of his "day job" as a systems administrator, monitoring the
network for a regional Internet Service Provider. Tom works a great deal with UNIX-like
systems, being a particular fan of GNU/Linux, and writes about usage of open source
command line development tools on his blog Arabesque: http://www.blog.sanctum.
geek.nz.

Thanks are of course due to Ethan Galstad and the Nagios Core
development team for writing and maintaining Nagios Core, along with
the reference manual against which the book's material was checked.

Thanks are also due to my loving partner Chantelle Potroz for her patience
and support as this book was being written, and to my employer James
Watts of Inspire Net Limited for permission to write it.

Thanks also to Shreerang Deshpande and Kedar Bhat from Packt for
their patience and technical guidance during the book's development.

The map of Australia used for the background to the network map
in Chapter 8, Managing Network Layout, is sampled from the public
domain images available on the superb Natural Earth website, viewable
at http://www.naturalearthdata.com/.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Emmanuel Dyan is an expert in web development and in all the technologies gravitating
around the Web: servers, network infrastructures, languages, and software.

He has been managing his own company, iNet Process, since 2004. He opened a branch
in India in 2006 for its development needs, and recruited the staff. He then had to define
the working procedures as well as the tools and set up the work environment. iNet Process
implements and hosts CRM solutions based on SugarCRM. Its clients are mainly from France
and are big, medium, as well as small companies.

Emmanuel teaches development languages, IT strategies, and CMS (Drupal) in a French
University (Paris-Est Marne-la-Vallée) for students preparing for a Master's degree.

John C. Kennedy has been administering UNIX and Linux servers and workstations since
1997. He has experience with Red Hat, SUSE, Ubuntu, Debian, Solaris, and HP-UX. John is
also experienced in BASH shell scripting and is currently teaching himself Python and Ruby.
John has also been a technical editor for various publishers for over 10 years specializing
in open source related books.

When John is not geeking out in front of either a home or work computer, he helps out with
a German Shepherd rescue centre in Virginia by fostering some great dogs or helping the
centre with their IT needs.

I would like to thank my family (my wonderful wife, Michele, my intelligent
and caring daughter Denise, and my terrific and smart son, Kieran) for
supporting the (sometimes) silly things and not so silly things I do. I'd also
like to thank my current foster dogs for their occasional need to keep their
legs crossed a little longer while I test things out from the book and forget
they are there.

www.it-ebooks.info

http://www.it-ebooks.info/

Pierguido Lambri has more than 10 years of experience with GNU/Linux and with the
system administration side. He has worked with many operating systems (proprietary and
open source), but he's a fan of the open source movement. Interested in everything that
has to do with IT, he always likes to learn about new technologies.

Thanks to Abhishek Kori and Kedar Bhat for the opportunity of the
book review.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Understanding Hosts, Services, and Contacts 7

Introduction 7
Creating a new network host 8
Creating a new HTTP service 13
Creating a new e-mail contact 17
Verifying configuration 20
Creating a new hostgroup 22
Creating a new servicegroup 25
Creating a new contactgroup 29
Creating a new time period 32
Running a service on all hosts in a group 34

Chapter 2: Working with Commands and Plugins 37
Introduction 37
Finding a plugin 38
Installing a plugin 40
Removing a plugin 43
Creating a new command 44
Customizing an existing command 47
Using an alternative check command for hosts 50
Writing a new plugin from scratch 53

Chapter 3: Working with Checks and States 61
Introduction 61
Specifying how frequently to check a host or service 62
Changing thresholds for PING RTT and packet loss 66
Changing thresholds for disk usage 69
Scheduling downtime for a host or service 72

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Managing brief outages with flapping 77
Adjusting flapping percentage thresholds for a service 80

Chapter 4: Configuring Notifications 83
Introduction 83
Configuring notification periods 84
Configuring notification for groups 87
Specifying which states to be notified about 90
Tolerating a certain number of failed checks 95
Automating contact rotation 98
Defining an escalation for repeated notifications 103
Defining a custom notification method 106

Chapter 5: Monitoring Methods 111
Introduction 111
Monitoring PING for any host 112
Monitoring SSH for any host 115
Checking an alternative SSH port 119
Monitoring mail services 122
Monitoring web services 126
Checking that a website returns a given string 131
Monitoring database services 134
Monitoring the output of an SNMP query 138
Monitoring a RAID or other hardware device 141
Creating an SNMP OID to monitor 143

Chapter 6: Enabling Remote Execution 147
Introduction 147
Monitoring local services on a remote machine with NRPE 148
Setting the listening address for NRPE 155
Setting allowed client hosts for NRPE 157
Creating new NRPE command definitions securely 159
Giving limited sudo privileges to NRPE 164
Using check_by_ssh with key authentication instead of NRPE 167

Chapter 7: Using the Web Interface 173
Introduction 174
Using the Tactical Overview 175
Viewing and interpreting availability reports 177
Viewing and interpreting trends 182
Viewing and interpreting notification history 187
Adding comments on hosts or services in the web interface 192
Viewing configuration in the web interface 195

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Scheduling checks from the web interface 198
Acknowledging a problem via the web interface 201

Chapter 8: Managing Network Layout 207
Introduction 207
Creating a network host hierarchy 208
Using the network map 213
Choosing icons for hosts 217
Establishing a host dependency 221
Establishing a service dependency 224
Monitoring individual nodes in a cluster 227
Using the network map as an overlay 231

Chapter 9: Managing Configuration 237
Introduction 237
Grouping configuration files in directories 238
Keeping configuration under version control 240
Configuring host roles using groups 243
Building groups using regular expressions 247
Using inheritance to simplify configuration 250
Defining macros in a resource file 254
Dynamically building host definitions 257

Chapter 10: Security and Performance 263
Introduction 263
Requiring authentication for the web interface 265
Using authenticated contacts 269
Writing debugging information to a Nagios log file 272
Monitoring Nagios performance with Nagiostats 275
Improving startup times with pre-cached object files 281
Setting up a redundant monitoring host 284

Chapter 11: Automating and Extending Nagios Core 293
Introduction 293
Allowing and submitting passive checks 294
Submitting passive checks from a remote host with NSCA 300
Submitting passive checks in response to SNMP traps 306
Setting up an event handler script 312
Tracking host and service states with Nagiosgraph 315
Reading status into a MySQL database with NDOUtils 323
Writing customized Nagios Core reports 328
Getting extra visualizations with NagVis 333

Index 343

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Nagios Core, the open source version of the Nagios monitoring framework, is an industry
standard for network monitoring hosted on Unix-like systems, such as GNU/Linux or BSD.
It is very often used by network and system administrators for checking connectivity between
hosts and ensuring that network services are running as expected.

Where home-grown scripts performing network checks can rapidly become unmaintainable
and difficult for newer administrators to customize safely, Nagios Core provides a rigorous
and configurable monitoring framework to make checks in a consistent manner and to alert
appropriate people and systems of any problem it detects.

This makes Nagios Core a very general monitoring framework rather than an out-of-the-box
monitoring solution, which is known to make it a little unfriendly to beginners and something of
a "black box", even to otherwise experienced administrators. Busy administrators charged with
setting up a Nagios Core system will often set it up to send PING requests to a set of hosts every
few minutes and send them an e-mail about any problem, and otherwise never touch it. More
adventurous administrators new to the system might instate a few HTTP checks to make sure
that company websites respond.

Nagios Core is capable of a great deal more than that, and this book's recipes are intended to
highlight all of the different means of refining and controlling checks, notifications, and reporting
for Nagios Core, rather than being a list of instructions for using specific plugins, of which there
are many hundreds available online at the Nagios Exchange at http://exchange.nagios.
org/. The book's fundamental aim is to get administrators excited about the possibilities of
Nagios Core beyond elementary default checking behavior, so that they can use much more
of the framework's power, and make it into the centerpiece of their network monitoring.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

This also includes installing and even writing custom plugins beyond the standard Nagios
Plugins set, writing and refining one's own checks, working with the very powerful Simple
Network Management Protocol (SNMP), recording and reporting of performance data,
refining notification behavior to only send appropriate notifications at appropriate times to
appropriate people or systems, basic visualization options, identifying breakages in network
paths, clever uses of the default web interface, and even extending Nagios Core with other
open source programs, all in order to check virtually any kind of host property or network
service on any network.

Where possible, this book focuses on add-ons written by the Nagios team themselves,
particularly NRPE and NSCA. It omits discussion of the popular NRPE replacement check_mk,
and of popular forks of Nagios Core such as Icinga. In the interest of conferring an in-depth
understanding of advanced Nagios Core configuration, it also does not discuss any configuration
frontends or wizards such as NConf. Finally, as a Packt open source series book focusing on
the use of the freely available Nagios Core, it also does not directly discuss the use of Nagios
XI, the commercial version of the software supported by the Nagios team. This is done to instill
a thorough understanding of Nagios Core itself, rather than to reflect personal opinions of the
author; curious administrators should definitely investigate all of these projects (particularly
check_mk).

What this book covers
Chapter 1, Understanding Hosts, Services, and Contacts, explains the basic building blocks
of Nagios Core configurations and how they interrelate, and discusses using groups with
each one.

Chapter 2, Working with Commands and Plugins, explains the architecture of plugins and
commands, including installing new plugins, defining custom uses of existing ones, and
walks us through for writing a new plugin with Perl.

Chapter 3, Working with Checks and States, explains how Nagios Core performs its checks
and how to customize that behavior, including scheduling downtime for hosts and services,
and managing "flapping" for hosts or services that keep going up and down.

Chapter 4, Configuring Notifications, explains the logic of how Nagios Core decides on
what basis to notify, and when and to whom, including examples of implementing a custom
notification method, escalating notifications that aren't fixed after a certain period of time,
and scheduling contact rotation.

Chapter 5, Monitoring Methods, gives examples of usage of some of the standard Nagios
Plugins set, moving from basic network connectivity checks with PING and HTTP to more
complex and powerful checks involving SNMP usage.

Chapter 6, Enabling Remote Execution, shows how to use NRPE as a means of working around
the problem of not being able to check system properties directly over the network, including a
demonstration of the more advanced method of check_by_ssh.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

Chapter 7, Using the Web Interface, shows some less-used features of the web interface to
actually control how Nagios Core is behaving and to see advanced reports, rather than simply
viewing current state information. Use of the network map is not discussed here but in the
next chapter.

Chapter 8, Managing Network Layout, explains how to make Nagios Core aware of the structure
and function of your network, with a focus on hosts and services depending on one another
to function correctly, including monitoring clusters, and using that layout information to build
a network status map, optionally with icons and a background.

Chapter 9, Managing Configuration, shows how to streamline, refine, and control Nagios Core
configuration at a low level without the use of frontends. It focusses on the clever use of groups,
templates, and macros, and gives an example of generating configuration programmatically
with the templating language m4.

Chapter 10, Security and Performance, shows how to manage simple access control,
debugging runtime problems, and keeping tabs on how Nagios Core is performing, as well
as a demonstration of basic monitoring redundancy.

Chapter 11, Automating and Extending Nagios Core, explains how to submit check results
from other programs (including NSCA) to provide information about external processes
via the commands file, and an introduction to a few popular add-ons (NDOUtils, NagVis,
and Nagiosgrapher).

What you need for this book
In an attempt to work with a "standard" installation of Nagios Core, this book's recipes
assume that Nagios Core 3.0 or later and the Nagios plugins set have been installed
in /usr/local/nagios, by following the Nagios Quickstart Guides available at
http://nagios.sourceforge.net/docs/3_0/quickstart.html.

If your system's package repositories include a package for Nagios Core 3.0 or later that
you would prefer to use, this should still be possible, but the paths of all the files are likely
to be very different. This is known to be a particular issue with the nagios3 package on
Debian or Ubuntu systems. If you are familiar with the differences in the installation layout
that your packaging system imposes, then you should still be able to follow the recipes with
only some path changes.

For the screenshots of the web interface, the familiar Nagios Classic UI is used (with white-
on-black menu), which was the default from Version 3.0 for several years before the newer
"Exfoliation" style (with black-on-white menu) became the default more recently. Some of the
graphical elements and styles are different, but everything has the same text and is in the
same place, so it's not necessary to install the Classic UI to follow along with the recipes if
you already have the Exfoliation style installed.

www.it-ebooks.info

http://nagios.sourceforge.net/docs/3_0/quickstart.html
http://www.it-ebooks.info/

Preface

4

If you really want the Classic UI so that what you're seeing matches the screenshots exactly, you
can install it by adding this as the final step of your installation process:

make install-classicui

This book was written while the alpha of Nagios Core 4.0 was being tested. I have reviewed
the change logs of the alpha release so far, and am reasonably confident that all of the
recipes should work in this newer version's final release. If after Nagios Core 4.0 is released
you do find some issues with using some of the recipes for it, please see the "Errata" section
to let the publisher and author know.

Who this book is for
This book is aimed at system and network administrators comfortable with basic Unix-like
system administration via the command line. It is best suited for GNU/Linux administrators, but
should work fine for BSD administrators too. It has particular focus on the kind of administrator
identified in the preface: one who is comfortable working with their Unix-like system, may well
have a basic Nagios Core installation ready with some PING checks, and now wants to learn how
to use much more of the framework's power and understand its configuration in more depth.

Administrators should be comfortable with installing library dependencies for the extensions,
plugins, and add-ons discussed in the book. An effort is made to mention any dependencies;
however, how these are best installed will depend on the system and its package repository.
In almost all cases this should amount to installing some common libraries and their headers
from a packaging system. Debian and Ubuntu package names are given for some more
complex cases.

The easier recipes in the first five chapters involve some recap of the basics of configuring
Nagios Core objects. Users completely new to Nagios Core who have just installed it will almost
certainly want to start with Chapter 1, Understanding Hosts, Services, and Contacts, after
completing the Nagios Quickstart Guide, as latter chapters assume a fair amount of knowledge.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Nagios Core will only need whatever information
the PING tool would need for its own check_ping command".

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

5

A block of code is set as follows:

define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP
 check_command check_http
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

define host {
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 max_check_attempts 3
 check_period 24x7
 check_command check-host-alive
 contacts nagiosadmin
 notification_interval 60
 notification_period 24x7
}

Any command-line input or output is written as follows:

cd /usr/local/nagios/etc/objects
vi sparta.naginet.cfg

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "If the server restarted
successfully, the web interface should show a brand new host in the Hosts list, in PENDING
state as it waits to run a check that the host is alive".

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

6

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any aspect
of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http://www.it-ebooks.info/

1
Understanding Hosts,

Services, and Contacts

In this chapter we will cover the following recipes:

 f Creating a new network host

 f Creating a new HTTP service

 f Creating a new e-mail contact

 f Verifying configuration

 f Creating a new hostgroup

 f Creating a new servicegroup

 f Creating a new contactgroup

 f Creating a new time period

 f Running a service on all hosts in a group

Introduction
Nagios Core is appropriate for monitoring services and states on all sorts of hosts, and one of
its primary advantages is that the configuration can be as simple or as complex as required.
Many Nagios Core users will only ever use the software as a way to send PING requests to a few
hosts on their local network or possibly the Internet, and to send e-mail or pager messages to
the administrator if they don't get any replies. Nagios Core is capable of monitoring vastly more
complex systems than this, scaling from simple LAN configurations to being the cornerstone for
monitoring an entire network.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

8

However, for both simple and complex configurations of Nagios Core, the most basic building
blocks of configuration are hosts, services, and contacts. These are the three things that
administrators of even very simple networking setups will end up editing and probably creating.
If you're a beginner to Nagios Core, then you might have changed a hostname here and there
or copied a stanza in a configuration to get it to do what you want. In this chapter, we're going
to look at what these configurations do in a bit more depth than that.

In a Nagios Core configuration:

 f Hosts usually correspond to some sort of computer. This could be a physical
or virtual machine accessible over the network, or the monitoring server itself.
Conceptually, however, a host can monitor any kind of network entity, such as
the endpoint of a VPN.

 f Services usually correspond to an arrangement for Nagios Core to check
something about a host, whether that's something as simple as getting PING
replies from it, or something more complicated such as checking that the value
of an SNMP OID is within acceptable bounds.

 f Contacts define a means to notify someone when events happen to our services
on our hosts, such as not being able to get a PING response, or being unable to
send a test e-mail message.

In this chapter, we'll add all three of these, and we'll learn how to group their definitions
together to make the configuration more readable, and to work with hosts in groups
rather than having to edit each one individually. We'll also set up a custom time period
for notifications, so that hardworking system administrators like us don't end up getting
paged at midnight unnecessarily!

Creating a new network host
In this recipe, we'll start with the default Nagios Core configuration, and set up a host
definition for a server that responds to PING on our local network. The end result will
be that Nagios Core will add our new host to its internal tables when it starts up, and
will automatically check it (probably using PING) on a regular basis. In this example,
I'll use my Nagios Core monitoring server with a Domain Name System (DNS) name
of olympus.naginet, and add a host definition for a webserver with a DNS name
of sparta.naginet. This is all on my local network – 10.128.0.0/24.

Getting ready
You'll need a working Nagios Core 3.0 or greater installation with a web interface, with
all the Nagios Core Plugins installed. If you have not yet installed Nagios Core, then you
should start with the QuickStart guide: http://nagios.sourceforge.net/docs/
3_0/quickstart.html.

www.it-ebooks.info

http://nagios.sourceforge.net/docs/3_0/quickstart.html
http://nagios.sourceforge.net/docs/3_0/quickstart.html
http://www.it-ebooks.info/

Chapter 1

9

We'll assume that the configuration file that Nagios Core reads on startup is located at
/usr/local/nagios/etc/nagios.cfg, as is the case with the default install. It shouldn't
matter where you include this new host definition in the configuration, as long as Nagios Core
is going to read the file at some point, but it might be a good idea to give each host its own file
in a separate objects directory, which we'll do here. You should have access to a shell on the
server, and be able to write text files using an editor of your choice; I'll use vi. You will need
root privileges on the server via su or sudo.

You should know how to restart Nagios Core on the server, so that the configuration you're
going to add gets applied. It shouldn't be necessary to restart the whole server to do this!
A common location for the startup/shutdown script on Unix-like hosts is /etc/init.d/
nagios, which I'll use here.

You should also get the hostname or IP address of the server you'd like to monitor ready.
It's good practice to use the IP address if you can, which will mean your checks keep
working even if DNS is unavailable. You shouldn't need the subnet mask or anything like
that; Nagios Core will only need whatever information the PING tool would need for its own
check_ping command.

Finally, you should test things first; confirm that you're able to reach the host from the Nagios
Core server via PING by checking directly from the shell, to make sure your network stack,
routes, firewalls, and netmasks are all correct:

tom@olympus:~$ ping 10.128.0.21

PING sparta.naginet (10.128.0.21) 56(84) bytes of data.

64 bytes from sparta.naginet (10.128.0.21): icmp_req=1 ttl=64 time=0.149
ms

How to do it...
We can create the new host definition for sparta.naginet as follows:

1. Change directory to /usr/local/nagios/etc/objects, and create a new file
called sparta.naginet.cfg:
cd /usr/local/nagios/etc/objects

vi sparta.naginet.cfg

2. Write the following into the file, changing the values in bold as appropriate for your
own setup:
define host {
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 max_check_attempts 3

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

10

 check_period 24x7
 check_command check-host-alive
 contacts nagiosadmin
 notification_interval 60
 notification_period 24x7
}

3. Change directory to /usr/local/nagios/etc, and edit the nagios.cfg file:
cd ..

vi nagios.cfg

4. At the end of the file add the following line:
cfg_file=/usr/local/nagios/etc/objects/sparta.naginet.cfg

5. Restart the Nagios Core server:
/etc/init.d/nagios restart

If the server restarted successfully, the web interface should show a brand new host in the
Hosts list, in PENDING state as it waits to run a check that the host is alive:

In the next few minutes, it should change to green to show that the check passed and the host
is UP, assuming that the check succeeded:

If the test failed and Nagios Core was not able to get a PING response from the target
machine after three tries, for whatever reason, then it would probably look similar to
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

How it works...
The configuration we included in this section adds a host to Nagios Core's list of hosts. It will
periodically check the host by sending a PING request, checking to see if it receives a reply,
and updating the host's status as shown in the Nagios Core web interface accordingly. We
haven't defined any other services to check for this host yet, nor have we specified what action
it should take if the host is down. However, the host itself will be automatically checked at
regular intervals by Nagios Core, and we can view its state in the web interface at any time.

The directives we defined in the preceding configuration are explained as follows:

 f host_name: This defines the hostname of the machine, used internally by Nagios
Core to refer to its host. It will end up being used in other parts of the configuration.

 f alias: This defines a more recognizable human-readable name for the host;
it appears in the web interface. It could also be used for a full-text description
of the host.

 f address: This defines the IP address of the machine. This is the actual value that
Nagios Core will use for contacting the server; using an IP address rather than a DNS
name is generally best practice, so that the checks continue to work even if DNS is
not functioning.

 f max_check_attempts: This defines the number of times Nagios Core should try to
repeat the check if checks fail. Here, we've defined a value of 3, meaning that Nagios
Core will try two more times to PING the target host after first finding it down.

 f check_period: This references the time period that the host should be checked.
24x7 is a time period defined in the default configuration for Nagios Core. This is a
sensible value for hosts, as it means the host will always be checked. This defines
how often Nagios Core will check the host, and not how often it will notify anyone.

 f check_command: This references the command that will be used to check whether
the host is UP, DOWN, or UNREACHABLE. In this case, a QuickStart Nagios Core
configuration defines check-host-alive as a PING check, which is a good test
of basic network connectivity, and a sensible default for most hosts. This directive
is actually not required to make a valid host, but you will want to include it under
most circumstances; without it, no checks will be run.

 f contacts: This references the contact or contacts that will be notified about state
changes in the host. In this instance, we've used nagiosadmin, which is defined in
the QuickStart Nagios Core configuration.

 f notification_interval: This defines how regularly the host should repeat
its notifications if it is having problems. Here, we've used a value of 60, which
corresponds to 60 minutes or one hour.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

12

 f notification_period: This references the time period during which Nagios
Core should send out notifications, if there are problems. Here, we're again using
the 24x7 time period; for other hosts, another time period such as workhours
might be more appropriate.

Note that we added the definition in its own file called sparta.naginet.cfg, and then
referred to it in the main nagios.cfg configuration file. This is simply a conventional way of
laying out hosts, and it happens to be quite a tidy way to manage things to keep definitions in
their own files.

There's more...
There are a lot of other useful parameters for hosts, but the ones we've used include everything
that's required.

While this is a perfectly valid way of specifying a host, it's more typical to define a host based
on some template, with definitions of how often the host should be checked, who should be
contacted when its state changes and on what basis, and similar properties. Nagios Core's
QuickStart sample configuration defines a simple template host called generic-host,
which could be used by extending the host definition with the use directive:

define host {
 use generic-host
 name sparta
 host_name sparta.naginet
 address 10.128.0.21
 max_check_attempts 3
 contacts nagiosadmin
}

This uses all the parameters defined for generic-host, and then adds on the details of
the specific host that needs to be checked. Note that if you use generic-host, then you will
need to define check_command in your host definition. If you're curious to see what's defined
in generic-host, then you can find its definition in /usr/local/nagios/etc/objects/
templates.cfg.

See also
 f The Using an alternative check command for hosts recipe in Chapter 2, Working

with Commands and Plugins

 f The Specifying how frequently to check a host recipe in Chapter 3, Working with
Checks and States

 f The Grouping configuration files in directories and Using inheritance to simplify
configuration recipes in Chapter 9, Managing Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

Creating a new HTTP service
In this recipe, we'll create a new service to check on an existing host. Specifically, we'll check our
sparta.naginet server to see if it's responding to HTTP requests on the usual HTTP TCP port
80. To do this, we'll be using a predefined command called check_http, which in turn uses
one of the standard set of Nagios Core plugins, also called check_http. If you don't yet have a
web server defined as a host in Nagios Core, then you may like to try the Creating a new network
host recipe in this chapter.

After we've done this, not only will our host be checked for a PING response by check_
command, but Nagios Core will also run a periodic check to ensure that an HTTP service
on that machine is responding to requests on the same host.

Getting ready
You'll need a working Nagios Core 3.0 or greater installation with a web interface, all the
Nagios Plugins installed, and at least one host defined. If you need to set up a host definition
for your web server first, then you might like to read the Creating a new network host recipe
in this chapter, for which the requirements are the same.

It would be a good idea to test that the Nagios Core server is actually able to contact the web
server first, to ensure that the check we're about to set up should succeed. The standard telnet
tool is a fine way to test that a response comes back from TCP port 80 as we would expect from
a web server:

tom@olympus:~$ telnet sparta.naginet 80

Trying 10.128.0.21...

Connected to sparta.naginet.

Escape character is '^]'.

How to do it...
We can create the service definition for sparta.naginet as follows:

1. Change to the directory containing the file in which the sparta.naginet host is
defined, and edit it as follows:
cd /usr/local/nagios/etc/objects

vi sparta.naginet.cfg

2. Add the following code snippet to the end of the file, substituting in the value of the
host's host_name directive:
define service {
 host_name sparta.naginet

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

14

 service_description HTTP
 check_command check_http
 max_check_attempts 3
 check_interval 5
 retry_interval 1
 check_period 24x7
 notification_interval 60
 notification_period 24x7
 contacts nagiosadmin
}

3. Restart the Nagios Core server:

/etc/init.d/nagios restart

If the server restarted successfully, the web interface should show a new service under the
Services section, in PENDING state as the service awaits its first check:

Within a few minutes, the service's state should change to OK once the check has run and
succeeded with an HTTP/1.1 200 OK response, or similar:

If the check had problems, perhaps because the HTTP daemon isn't running on the target
server, then the check may show CRITICAL instead. This probably doesn't mean the
configuration is broken; it more likely means the network or web server isn't working:

How it works...
The configuration we've added adds a simple service check definition for an existing host,
to check up to three times whether the HTTP daemon on that host is responding to a simple
HTTP/1.1 request. If Nagios Core can't get a response to its check, then it will flag the state of
the service as CRITICAL, and will try again up to two more times before sending a notification.
The service will be visible in the Nagios Core web interface and we can check its state at any
time. Nagios Core will continue testing the server on a regular basis and flagging whether the
checks were successful or not.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

It's important to note that the service is like a property of a particular host; we define a service
to check for a specific host, in this case, the sparta.naginet web server. That's why it's
important to get the definition for host_name right.

The directives we defined in the preceding configuration are as follows:

 f host_name: This references the host definition for which this service should apply.
This will be the same as the host_name directive for the appropriate host.

 f service_description: This is a name for the service itself, something
human-recognizable that will appear in alerts and in the web interface for
the service. In this case, we've used HTTP.

 f check_command: This references the command that should be used to check the
service's state. Here, we're referring to a command defined in Nagios Core's default
configuration called check_http, which refers to a plugin of the same name in the
Nagios Core Plugins set.

 f max_check_attempts: This defines the number of times Nagios Core should
attempt to re-check the service after finding it in a state other than OK.

 f check_interval: This defines how long Nagios Core should wait between checks
when the service is OK, or after the number of checks given in max_check_
attempts has been exceeded.

 f retry_interval: This defines how long Nagios Core should wait between retrying
checks after first finding them in a state other than OK.

 f check_period: This references the time period during which Nagios Core should
run checks of the service. Here we've used the sensible 24x7 time period, as
defined in Nagios Core's default configuration. Note that this can be different from
notification_period; we can check the service's status without necessarily
notifying a contact.

 f notification_interval: This defines how long Nagios Core should wait between
re-sending notifications when a service is in a state other than OK.

 f notification_period: This references the time period during which Nagios Core
should send notifications if it finds a host in a problem state. Here we've again used
24x7, but for some less critical services it might be appropriate to use a time period
such as workhours.

Note that we added the service definition in the same file as defining the host, and directly
after it. We can actually place the definition anywhere we like, but this happens to be a good
way of keeping things organized.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

16

There's more...
The service we've set up to monitor on sparta.naginet is an HTTP service, but that's just
one of many possible services we could monitor on our network. Nagios Core defines many
different commands for its core plugin set, such as check_smtp, check_dns, and so on.
These commands, in turn, all point to programs that actually perform a check and return
the results to the Nagios Core server to be dealt with. The important thing to take away from
this is that a service can monitor pretty much anything, and there are hundreds of plugins
available for common network monitoring checks available on the Nagios Exchange website:
http://exchange.nagios.org/.

There are a great deal more possible directives for services, and in practice it's more likely
for even simple setups that we'll want to extend a service template for our service. This allows
us to define values that we might want for a number of services, such as how long they should
be in a CRITICAL state before a notification event takes place and someone gets contacted
to deal with the problem.

One such template that Nagios Core's default configuration defines is called generic-
service, and we can use it as a basis for our new service by referring to it with the
use keyword:

define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP
 check_command check_http
}

This may work well for you, as there are a lot of very sensible default values set by the
generic-service template, which makes things a lot easier. We can inspect these
values by looking at the template's definition in /usr/local/nagios/etc/objects/
templates.cfg. This is the same file that includes the generic-host definition that
we may have used earlier.

See also
 f The Creating a new servicegroup recipe in this chapter

 f The Specifying how frequently to check a service and Scheduling downtime
for a host or service recipes in Chapter 3, Working with Checks and States

 f The Monitoring web services recipe in Chapter 5, Monitoring Methods

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

Creating a new e-mail contact
In this recipe, we'll create a new contact with which hosts and services can interact, chiefly
to inform them of hosts or services changing states. We'll use the simplest example of setting
up an e-mail contact, and configuring an existing host so that this person receives an e-mail
message when Nagios Core's host checks fail and the host is apparently unreachable. In this
instance, I'll make it e-mail me at nagios@sanctum.geek.nz whenever my host, sparta.
naginet, goes from DOWN to UP state, or vice-versa.

Getting ready
You should have a working Nagios Core 3.0 or greater server running, with a web interface
and at least one host to check. If you need to do this first, see the Creating a new network
host recipe in this chapter.

For this particular kind of contact, you'll also need to have a working SMTP daemon running
on the monitoring server, such as Exim or Postfix. You should verify that you're able to send
messages to the target address, and that they're successfully delivered to the mailserver
you expect.

How to do it...
We can add a simple new contact to the Nagios Core configuration as follows:

1. Change to Nagios Core's object configuration directory; ideally it should contain a
file that's devoted to contacts, such as contacts.cfg here, and edit that file:
cd /usr/local/nagios/etc/objects

vi contacts.cfg

2. Add the following contact definition to the end of the file, substituting your own
values for the properties in bold as you need them:
define contact {
 contact_name spartaadmin
 alias Administrator of sparta.naginet
 email nagios@sanctum.geek.nz
 host_notification_commands notify-host-by-email
 host_notification_options d,u,r
 host_notification_period 24x7
 service_notification_commands notify-service-by-email
 service_notification_options w,u,c,r
 service_notification_period 24x7
}

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

18

3. Edit the definition for the sparta.naginet host, and add or replace the definition
for contacts for the appropriate host to our new spartaadmin contact:
define host {
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 max_check_attempts 3
 check_period 24x7
 check_command check-host-alive
 contacts spartaadmin
 notification_interval 60
 notification_period 24x7
}

4. Restart the Nagios Core server:
/etc/init.d/nagios restart

With this done, the next time our host changes its state, we should receive messages similar
to the following:

When the host becomes available again, we should receive a recovery message similar to
the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

If possible, it's worth testing this setup with a test host that we can safely bring down and then
up again, to check that we receive the appropriate notifications.

How it works...
This configuration adds a new contact to the Nagios Core configuration, and references it in
one of the hosts as the appropriate contact to use when the host has problems.

We've defined the required directives for the contact, and a couple of others as follows:

 f contact_name: This defines a unique name for the contact, so that we can refer to
it in host and service definitions, or anywhere else in the Nagios Core configuration.

 f alias: This defines a human-friendly name for the contact, perhaps a brief
explanation of who the person or group is and/or for what they're responsible.

 f email: This defines the e-mail address of the contact, since we're going to be
sending messages by e-mail.

 f host_notification_commands: This defines the command or commands to
be run when a state change on a host prompts a notification for the contact. In this
case, we're going to e-mail the contact the results with a predefined command called
notify-host-by-email.

 f host_notification_options: This specifies the different kinds of host events for
which this contact should be notified. Here, we're using d,u,r, which means that this
contact will receive notifications for a host going DOWN, becoming UNREACHABLE, or
coming back UP.

 f host_notification_period: This defines the time period during which this
contact can be notified of any host events. If a host notification is generated and
defined to be sent to this contact, but it falls outside this time period, then the
notification will not be sent.

 f service_notification_commands: This defines the command or commands to
be run when a state change on a service prompts a notification for this contact. In
this case, we're going to e-mail the contact the results with a predefined command
called notify-service-by-email.

 f service_notification_options: This specifies the different kinds of service
events for which this contact should be notified. Here, we're using w,u,c,r, which
means we want to receive notifications about the services entering the WARNING,
UNKNOWN, or CRITICAL states, and also when they recover and go back to being in
the OK state.

 f service_notification_period: This is the same as host_notification_
period, except that this directive refers to notifications about services, and not hosts.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

20

Note that we placed the definition for the contact in contacts.cfg, which is a reasonably
sensible place. However, we can place the contact definition in any file that Nagios Core will
read as part of its configuration; we can organize our hosts, services, and contacts any way
we like. It helps to choose some sort of system, so we can easily identify where definitions
are likely to be when we need to add, change, or remove them.

There's more...
If we define a lot of contacts with similar options, it may be appropriate to have individual
contacts extend contact templates, so that they can inherit those common settings. The
QuickStart Nagios Core configuration includes such a template, called generic-contact.
We can define our new contact as an extension of this template, as follows:

define contact {
 use generic-contact
 alias Administrator of sparta.naginet
 email nagios@sanctum.geek.nz
}

To see the directives defined for generic-contact, you can inspect its definition in the
/usr/local/nagios/etc/objects/templates.cfg file.

See also
 f The Creating a new contact group recipe in this chapter

 f The Automating contact rotation and Defining an escalation for repeated notifications
recipes in Chapter 5, Monitoring Methods

Verifying configuration
In this recipe, we'll learn about the most basic step in debugging a Nagios Core configuration,
which is to verify it. This is a very useful step to take before restarting the Nagios Core server
to load an altered configuration, because it will warn us about possible problems. This is a
good recipe to follow if you're not able to start the Nagios Core server at any point because
of configuration problems, and instead get output similar to the following:

/etc/init.d/nagios restart

Running configuration check... CONFIG ERROR! Restart aborted. Check
your Nagios configuration.

Getting ready
You should have a working Nagios Core 3.0 or better server running.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

How to do it...
We can verify the Nagios Core configuration as follows:

1. Run the following command, substituting the path to the Nagios binary file and our
primary nagios.cfg configuration file, if necessary:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

2. If the output is very long, then it might be a good idea to pipe it through a pager
program, such as less:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
| less

3. Inspect the output and look for warnings and problems. Here's an example of part of
the output we can expect, if our configuration is correct:

If there's a problem of some sort, then we might see an output similar to the following,
which is just an example of a possible error; my configuration is wrong because I tried
to add a service for a host called athens.naginet, when I hadn't actually configured
that host yet. So Nagios Core is quite right to yell at me:

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

22

How it works...
The configuration is parsed as though Nagios Core were about to start up, to check that the
configuration all makes sense. It will run basic checks such as looking for syntax errors, and
will also check things like having at least one host and service to monitor. Some of the things
it reports are warnings, meaning that they're not necessarily problems; examples include
hosts not having any services monitored, or not having any contacts defined.

This is the quickest way to get an idea of whether the Nagios Core configuration is sane and
will work correctly. Whenever there's trouble restarting the Nagios Core server, it's a good idea
to check the output of this command first. In fact, it's a good habit to check the configuration
before restarting, particularly if we're unsure about the configuration changes, or if the
monitoring server is checking something very important! This means if it turns out that our
configuration is broken, then the Nagios Core daemon will keep running with the configuration
from the point before we changed it, and we can fix things before we restart.

There's more...
The program at /usr/local/nagios/bin/nagios is actually the same program that
runs the Nagios Core server, but the -v part of the command is a switch for the program
that verifies the configuration instead, and shows any problems with it. The second path
is to the configuration file with which Nagios Core starts, which in turn imports the
configuration files for objects, such as contact, host, and service definitions.

See also
 f The Writing debugging information to Nagios Core log file recipe in Chapter 10,

Security and Performance

Creating a new hostgroup
In this recipe, we'll learn how to create a new hostgroup; in this case, we'll do this to group
together two webservers. This is useful for having distinct groups of hosts that might have
different properties, such as being monitored by different teams, or running different types
of monitored services. It also allows us to view a group breakdown in the Nagios Core web
interface, and to apply a single service to a whole group of hosts, rather than doing so
individually. This means we can set up services for a new host simply by adding it to a
group, rather than having to specify the configuration manually.

Getting ready
You should have a working Nagios Core 3.0 or better server running, with a web interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

You should also have at least two hosts that form a meaningful group; perhaps they're
similar kinds of servers, such as webservers, or are monitored by the same team, or all
at a physical location.

In this example, we have two webservers, sparta.naginet and athens.naginet,
and we're going to add them to a group called webservers.

How to do it...
We can add our new hostgroup webservers to the Nagios Core configuration as follows:

1. Create a new file called /usr/local/nagios/etc/objects/hostgroups.cfg,
if it doesn't already exist:
cd /usr/local/nagios/etc/objects

vi hostgroups.cfg

2. Add the following code into the new file, substituting the names in bold to suit your
own layout:
define hostgroup {
 hostgroup_name webservers
 alias Webservers with Greek names
}

3. Move a directory up, and then edit the nagios.cfg file:
cd ..

vi nagios.cfg

4. Add the following line to the end of the file:
cfg_file=/usr/local/nagios/etc/objects/hostgroups.cfg

5. For each of the hosts we want to add to the group, find their definitions, and
add a hostgroups directive to put them into the new hostgroup. In this case,
our definitions for sparta.naginet and athens.naginet end up looking
as follows:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 hostgroups webservers
}

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

24

define host {
 use linux-server
 host_name athens.naginet
 alias athens
 address 10.128.0.22
 hostgroups webservers
}

6. Restart Nagios:
/etc/init.d/nagios restart

We should now be able to visit the Host Groups section of the web interface, and see a new
hostgroup with two members:

How it works...
The configuration we added includes a new file with a new hostgroup into the Nagios Core
configuration, and inserts the appropriate hosts into the group. At the moment, all this is
doing is creating a separate section in the web interface for us to get a quick overview of
only the hosts in that particular group.

There's more...
The way we've added hosts to groups is actually not the only way to do it. If we prefer, we can
name the hosts for the group inside the group definition, using the members directive, so that
we could have a code snippet similar to the following:

define hostgroup {
 hostgroup_name webservers
 alias Webservers with Greek names
 members athens.naginet,sparta.naginet
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

This extends to allowing us to make a hostgroup that always includes every single host, if we
find that useful:

define hostgroup {
 hostgroup_name all
 alias All hosts
 members *
}

If we're going to use hostgroups extensively in our Nagios Core configuration, then we should use
whichever method is going to be easiest for our configuration. We can use both, if necessary.

It's worth noting that a host can be in more than one group, and there is no limit on the
number of groups we can declare, so we can afford to be quite liberal with how we group our
hosts into useful categories. Examples could be organizing servers by function, manufacturer,
or colocation customer, or routers by BGP or OSPF usage; it all depends on what kind of
network we're monitoring.

See also
 f The Creating a new host and Running a service on all hosts in a group recipes in

this chapter

 f The Using inheritance to simplify configuration recipe in Chapter 9, Managing
Configuration

Creating a new servicegroup
In this recipe, we'll create a new servicegroup. This allows us to make meaningful groups out
of a set of arbitrary services, so that we can view the status of all those services in a separate
part of the web administration area.

Getting ready
You should have a working Nagios Core 3.0 or better server running, with web interface.

You should also have at least two services defined that form a meaningful group; perhaps
they're similar kinds of services, such as mail services, or are monitored by the same team,
or all on the same set of servers at a physical location.

In this example, we have three servers performing mail functions: smtp.naginet, pop3.
naginet, and imap.naginet, running an SMTP, POP3, and IMAP daemon, respectively.
All three of the hosts are set up in Nagios Core, and so are their services. We're going to
add them into a new servicegroup called mailservices.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

26

Here are the definitions of the hosts and services used in this example, so you can see how
everything fits together:

define host {
 use linux-server
 host_name smtp.naginet
 alias smtp
 address 10.128.0.31
 hostgroups webservers
}
 define service {
 use generic-service
 host_name smtp.naginet
 service_description SMTP
 check_command check_smtp
 }
define host {
 use linux-server
 host_name pop3.naginet
 alias pop3
 address 10.128.0.32
 hostgroups webservers
}
 define service {
 use generic-service
 host_name pop3.naginet
 service_description POP3
 check_command check_pop
 }
define host {
 use linux-server
 host_name imap.naginet
 alias imap
 address 10.128.0.33
 hostgroups webservers
}
 define service {
 use generic-service
 host_name imap.naginet
 service_description IMAP
 check_command check_imap
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

How to do it...
We can add our new servicegroup with the following steps:

1. Change to our Nagios Core configuration objects directory, and edit a new file called
servicegroups.cfg:
cd /usr/local/nagios/etc/objects

vi servicegroups.cfg

2. Add the following definition to the new file, substituting the values in bold with your
own values:
define servicegroup {
 servicegroup_name mailservices
 alias Mail services
}

3. Move a directory up, and then edit the nagios.cfg file:
cd ..

vi nagios.cfg

4. Add the following line to the end of the file:
cfg_file=/usr/local/nagios/etc/objects/servicegroups.cfg

5. For each of the services we want to add to the group, find their definitions and add
a servicegroups directive to put them into the new servicegroup. The definitions
may end up looking similar to the following code snippet:
define service {
 use generic-service
 host_name smtp.naginet
 service_description SMTP
 check_command check_smtp
 servicegroups mailservices
}
define service {
 use generic-service
 host_name pop3.naginet
 service_description POP3
 check_command check_pop
 servicegroups mailservices
}

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

28

define service {
 use generic-service
 host_name imap.naginet
 service_description IMAP
 check_command check_imap
 servicegroups mailservices
}

6. Restart Nagios with the following command:
/etc/init.d/nagios restart

We should now be able to visit the Service Groups section of the web interface, and see a
new servicegroup with three members:

How it works...
The configuration we added includes a new file with a new servicegroup into the Nagios
Core configuration, and inserts the appropriate services into the group. This creates a
separate section in the web interface for us to get a quick overview of only the services
in that particular group.

There's more...
The way we've added services to the groups is actually not the only way to do it. If we
prefer, we can name the services (and their applicable hosts) for the group inside the
group definition, using the members directive, so that we could have a code snippet
similar to the following:

define servicegroup {
 servicegroup_name mailservices
 alias Mail services
 members smtp.naginet,SMTP,pop3.naginet,POP3
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

Note that we need to specify both the host that the service is on, and then the services to
monitor on it, comma-separated. The hostname comes first, and then the service.

This extends to allowing us to make a servicegroup that always includes every single service,
if we find that useful:

define servicegroup {
 servicegroup_name all
 alias All services
 members *
}

If we're going to be using servicegroup definitions extensively in our Nagios Core configuration,
we should use whichever of the two methods to add services to groups that we think is going
to be easiest for us to maintain.

It's worth noting that a service can be in more than one group, and there is no limit on the
number of groups we can declare, so we can afford to be quite liberal with how we group
our services into categories. Examples could be organising services by the appropriate
contact for their notifications, for internal functions, or customer facing functions.

See also
 f The Creating a new service and Running a service on all hosts in a group recipes

in this chapter

 f The Using inheritance to simplify configuration recipe in Chapter 9, Managing
Configuration

Creating a new contactgroup
In this recipe, we'll create a new contactgroup into which we can add our contacts.
Like hostgroups and servicegroups, contactgroups mostly amount to convenient shortcuts.
In this case, it allows us to define a contactgroup as the recipient of notifications for a host
or service definition. This means that we could define a group ops, for example, and then
even if people joined or left the group, we wouldn't need to change any definitions for the
hosts or services.

Getting ready
You should have a working Nagios Core 3.0 or better server running.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

30

You should also have at least two contacts that form a meaningful group. In this case, we have
two staff members, John Smith and Jane Doe, who are both a part of our network operations
team. We want both of them to be notified for all the appropriate hosts and services, so we'll
add them to a group called ops. Here are the definitions with which we're working:

define contact {
 use generic-contact
 contact_name john
 alias John Smith
 email john@naginet
}
define contact {
 use generic-contact
 contact_name jane
 alias Jane Doe
 email jane@naginet
}

How to do it...
We can create our new ops contactgroup as follows:

1. Change to our Nagios Core object configuration directory, and edit the contacts.
cfg file:
cd /usr/local/nagios/etc

vi contacts.cfg

2. Add the following definition to the file, substituting your own values in bold
as appropriate:
define contactgroup {
 contactgroup_name ops
 alias Network operators
}

3. For each of the contacts that we want to add to the group, find their definitions and
add the contactgroups directive to them. The definitions will end up looking similar
to the following code snippet:
define contact {
 use generic-contact
 contact_name john
 alias John Smith
 email john@naginet
 contactgroups ops
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

31

define contact {
 use generic-contact
 contact_name jane
 alias Jane Doe
 email jane@naginet
 contactgroups ops
}

4. Restart the Nagios Core server:
/etc/init.d/nagios restart

How it works...
With this group set up, we are now able to use it in the contactgroups directive for hosts
and services, to define the contacts to which notifications should be sent. Notifications are
sent to all the addresses in the group. This can replace the contacts directive where we
individually name the contacts.

There's more...
This means, for example, that instead of having a service definition similar to the following:

define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP
 check_command check_http
 contacts john,jane
}

We could use the following code snippet:

define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP
 check_command check_http
 contact_groups ops
}

If John Smith were to leave the operations team, then we could simply remove his contact
definition, and nothing else would require changing; from then on, only Jane Doe would
receive the service notifications. This method provides a layer of abstraction between
contacts and the hosts and services for which they receive notifications.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

32

See also
 f The Creating a new contact recipe in this chapter

 f The Automating contact rotation recipe in Chapter 4, Configuring Notifications

 f The Using inheritance to simplify configuration recipe in Chapter 9, Managing
Configuration

Creating a new time period
In this recipe, we'll add a new time period definition to the Nagios Core configuration to allow us
to set up monitoring for hosts and services only during weekdays. There's a default configuration
defined as workhours that would almost suit us, except that it doesn't include the evenings.
We'll make a new one from scratch, and we'll make another one to cover the weekends too.

Getting ready
You should have a working Nagios Core 3.0 or better server running.

How to do it...
We can set up our new time period, which we'll call weekdays, as follows:

1. Change to our Nagios Core configuration objects directory, and edit the file called
timeperiods.cfg:
cd /usr/local/nagios/etc/objects

vi timeperiods.cfg

2. Add the following definitions to the end of the file:
define timeperiod {
 timeperiod_name weekdays
 alias Weekdays
 monday 00:00-24:00
 tuesday 00:00-24:00
 wednesday 00:00-24:00
 thursday 00:00-24:00
 friday 00:00-24:00
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

33

define timeperiod {
 timeperiod_name weekends
 alias Weekends
 saturday 00:00-24:00
 sunday 00:00-24:00
}

3. Restart the Nagios Core server:
/etc/init.d/nagios restart

How it works...
In our host and service definitions, there are two directives, check_period and
notification_period. These directives are used to define the times during which a host
or service should be checked, and the times when notifications about them should be sent.
The 24x7 and workhours periods are defined in the timeperiods.cfg file that we just
edited, and are used in several of the examples and templates.

We've just added two more of these time periods, which we can now use in our definitions
for hosts and services. The first is called weekdays, and corresponds to any time during a
weekday; the second is called weekends, and corresponds to any time that's not a weekday.
Note that in both cases, we specified the dates and times by naming each individual day, and
the times to which they corresponded.

There's more...
The definitions for dates are quite clever, and can be defined in a variety of ways. The following
are all valid definitions for days and time periods:

 f june 1 - july 15 00:00-24:00: Any time from June 1st to July 15th, inclusive

 f thursday -1 00:00-24:00: Any time on the last Thursday of every month

 f day 1 - 10 13:00-21:00: From 1 PM to 9 PM on any day from the 1st of any
month to the 10th of any month, inclusive

It's likely that the standard 24x7 and workhours definitions will be fine for day-to-day
monitoring, maybe with a weekdays and weekends definition added. However, there
may well come a time when we need a specific host or service monitored on an unusual
schedule, particularly if we're debugging a specific problem that only manifests around
a certain time, or have a lot of contacts to manage, or a complex on-call roster.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

34

Note that Nagios Core can behave in unusual ways, particularly with uptime reporting, if the
time periods for our monitoring of hosts and services don't add up to 24 hours. Ideally, we
should check and notify all our hosts and services in at least some way around the clock,
but dealing with the notifications in different ways depending on schedule; for example, we
could page the systems administrators about a non-critical system during work hours, but
just e-mail them when they're asleep!

See also
 f The Automating contact rotation, Configuring notification periods, and Configuring

notification groups recipes in Chapter 4, Configuring Notifications

Running a service on all hosts in a group
In this recipe, we'll create a new service, but instead of applying it to an existing host, we'll apply
it to an existing hostgroup. In this case, we'll create a group called webservers. The steps for
this are very similar to adding a service for just one host; only one directive is different.

Getting ready
You should have a working Nagios Core 3.0 or better server running, with a web interface.
You should be familiar with adding services to individual hosts.

You should also have at least one hostgroup defined, with at least one host in it; we'll use
a group called webservers, with the hosts sparta.naginet and athens.naginet
defined in it.

For reference, here is the hostgroup definition and the definitions for the two hosts in it:

define hostgroup {
 hostgroup_name webservers
 alias Webservers
}
define host {
 use linux-server
 host_name athens.naginet
 alias athens
 address 10.128.0.22
 hostgroups webservers
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

35

define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 hostgroups webservers
}

How to do it...
We can create the service definition for the webservers group as follows:

1. Change to the directory containing the file in which the webservers hostgroup is
defined, and edit it:
cd /usr/local/nagios/etc/objects

vi hostgroups.cfg

2. Add the following code snippet just after the hostgroup definition. Change the lines in
bold to suit your own template and hostgroup names:
define service {
 use generic-service
 hostgroup_name webservers
 service_description HTTP
 check_command check_http
}

3. Restart the Nagios Core server:
/etc/init.d/nagios restart

It's important to note that if we are already monitoring those hosts with a per-host service of
the same name, then we will need to remove those definitions as well; Nagios Core may not
start if a service of the same description is already defined on the same host.

How it works...
Adding a service to a hostgroup works in exactly the same way as adding it to an individual
host, except that it only requires one definition, which is then individually applied to all the
hosts in the group. This means it's a very good way to keep a Nagios Core configuration tidier.
If we have a group of 50 different web servers in it and we need to monitor their HTTP services
on the same basis for each one of them, then we don't need to create 50 service definitions;
we can just create one for their hostgroup, which amounts to a smaller and more easily
updated configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hosts, Services, and Contacts

36

There's more...
Like the host_name directive for services, the hostgroup_name directive can actually
have several hostgroups defined, separated by commas. This means that we can apply the
same service to not just one group, but several. For services that we would want to run on
several different groups (for example, basic PING monitoring) this can amount to a much
more flexible configuration.

See also
 f The Creating a new service and Creating a new hostgroup recipe in this chapter

 f The Using inheritance to simplify configuration recipe in Chapter 9,
Managing Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

2
Working with

Commands and Plugins

In this chapter, we will cover the following recipes:

 f Finding a plugin

 f Installing a plugin

 f Removing a plugin

 f Customizing an existing command

 f Using an alternative check command for a host

 f Writing a new plugin from scratch

Introduction
Nagios Core is perhaps best thought of less as a monitoring tool, and more as a monitoring
framework. Its modular design can use any kind of program which returns appropriate values
based on some kind of check, such as a check_command plugin for a host or service. This is
where the concepts of commands and plugins come into play.

For Nagios Core, a plugin is any program that can be used to gather information about a
host or service. To ensure that a host was responding to PING requests, we'd use a plugin,
such as check_ping, which when run against a hostname or address—whether by Nagios
Core or not—would return a status code to whatever called it, based on whether a response
was received to the PING request within a certain period of time. This status code and any
accompanying message is what Nagios Core uses to establish what state a host or service
is in.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Commands and Plugins

38

Plugins are generally just like any other program on a Unix-like system; they can be run
from the command line, are subject to permissions and owner restrictions, can be written
in any programming language, and can take parameters and options to modify how they work.
Most importantly, they are entirely separate from Nagios Core itself (even if programmed by
the same people), and the way that they're used by the application can be changed.

To allow for additional flexibility in how plugins are used, Nagios Core uses these programs
according to the terms of a command definition. A command for a specific plugin defines the
way in which that plugin is used, including its location in the filesystem, any parameters it
should be passed, and any other options. In particular, parameters and options often include
thresholds for WARNING and CRITICAL states.

Nagios Core is usually downloaded and installed along a set of plugins called Nagios Plugins,
available at http://www.nagiosplugins.org/, which this book assumes you have
installed. These plugins were chosen because, as a set, they cover the most common needs
for a monitoring infrastructure quite well, including checks for common services, such as web,
mail services, and DNS services, as well as more generic checks, such as whether a TCP or
UDP port is accessible and open on a server. It's likely that for most of our monitoring needs,
we won't need any other plugins; but if we do, Nagios Core makes it possible to use existing
plugins in novel ways using custom command definitions, adding third-party plugins written
by contributors on the Nagios Exchange website, or even writing custom plugins ourselves
from scratch in some special cases.

Finding a plugin
In this recipe, we'll follow a good procedure for finding a plugin appropriate to a specific
monitoring task. We'll start by checking to see if an existing plugin is already available to
do just what we need. If we can't find one, we'll check to see if we can use another more
generic plugin to solve the problem. If we still find that nothing suits, we'll visit Nagios
Exchange and search for an appropriate plugin there.

Getting ready
You should have a Nagios Core 3.0 or newer server running with a few hosts and services
configured already, and you'll need to have a particular service on one of those hosts,
which you're not sure how to monitor.

We'll use a simple problem as an example; we have a server named troy.naginet that
runs an rsync process that listens on port 873. We're already monitoring the host's network
connectivity via PING, but we'd like to have Nagios Core check whether the rsync server is
available and listening at all times, in case it crashes while running or doesn't start up when
the system is rebooted.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

How to do it...
We can find a new plugin appropriate to any monitoring task as follows:

1. Firstly, since we have the Nagios Core Plugins set installed, we'll check to see if any
of the plugins available in it apply directly to our problem. We'll start by visiting /usr/
local/nagios/libexec on our Nagios Core server, and getting a directory listing:
cd /usr/local/nagios/libexec

ls

check_apt check_ide_smart check_nntp check_simap

check_breeze check_ifoperstatus check_nntps check_smtp

check_by_ssh check_ifstatus check_nt check_spop

...

There's a long list of plugins there, but none of them look like check_rsync or
check_backup, so it doesn't quite seem like there's a plugin in the core to do exactly
what we need.

2. However, there is a plugin called check_tcp. A web search for its name pulls up its
manual page on the Nagios Plugins website as the first result, and a description of
what it does:

"This plugin tests TCP connections with the specified host (or unix socket)."

We need to do more than just check the port, so this doesn't quite suit us either.

3. A web search for check_rsync, which would be an appropriate name for the plugin,
turns up a page on the Nagios Exchange website with a plugin named exactly that.
We've found an appropriate plugin now:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Commands and Plugins

40

How it works...
If all we needed to do was check that rsync was listening on port 873, and we didn't really
need to monitor any of its actual function, then the check_tcp plugin might actually suffice.
However, in our case, we might need to find a way to not only check that a port is open, but
also check that a specific directory or rsync module is accessible.

Reading the description for check_rsync, it looks like it has the exact functionality we
need, checking that a certain rsync module is available on the server. At this point, we
could download the plugin and follow its installation instructions.

There's more...
This recipe is intended to highlight that in addition to having a capable set of plugins as a
part of the Nagios Core Plugins set, the documentation available online on the Nagios Core
Plugins website at http://nagiosplugins.org/ and the other plugins available on
Nagios Exchange at http://exchange.nagios.org/ make it relatively straightforward
to find an appropriate plugin for the particular monitoring problem we need to solve.

Note that when we download third-party plugins, it's important to check that we trust the
plugin to do what we need it to. Nagios Exchange is a moderated community with a coding
standard, but the plugins are provided at our own risk; if we don't understand what a plugin
does, we should be wary of installing it or using it without reading its code, its documentation,
and its reviews.

See also
 f The Installing a plugin, Removing a plugin, and Writing a new plugin from scratch

recipes in this chapter

Installing a plugin
In this recipe, we'll install a custom plugin that we retrieved from Nagios Exchange onto a
Nagios Core server, so that we can use it as a Nagios Core command and hence check a
service with it.

Getting ready
You should have a Nagios Core 3.0 or newer server running with a few hosts and services
configured already, and have found an appropriate plugin to install, to solve some particular
monitoring need. Your Nagios Core server should have internet connectivity to allow you to
download the plugin directly from the website.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

41

In this example we'll use check_rsync, which is available on the Web at http://
exchange.nagios.org/directory/Plugins/Network-Protocols/Rsync/
check_rsync/details.

This particular plugin is quite simple, consisting of a single Perl script with very basic
dependencies. If you want to install this script as an example, then the server will also
need to have a Perl interpreter installed; it's installed in /usr/bin/perl on many systems.

This example will also include directly testing a server running an rsync daemon called
troy.naginet.

How to do it...
We can download and install a new plugin as follows:

1. Copy the URL for the download link for the most recent version of the
check_rsync plugin:

2. Navigate to the plugins directory for the Nagios Core server. The default location is /
usr/local/nagios/libexec:
cd /usr/local/nagios/libexec

3. Download the plugin using wget into a file called check_rsync. It's important to
surround the URL in quotes:
wget 'http://exchange.nagios.org/components/com_mtree/
attachment.php?link_id=307&cf_id=29' -O check_rsync

4. Make the plugin executable using chmod and chown:
chown nagios.nagios check_rsync

chmod 0770 check_rsync

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Commands and Plugins

42

5. Run the plugin directly with no arguments to check that it runs, and to get usage
instructions. It's a good idea to test it as the nagios user using su or sudo:
sudo -s -u nagios

$./check_rsync

Usage: check_rsync -H <host> [-p <port>] [-m
<module>[,<user>,<password>] [-m <module>[,<user>,<password>]...]]

6. Try running the plugin directly against a host running rsync, to see if it works and
reports a status:
$./check_rsync -H troy.naginet

Output normally starts with the status determined, with any extra
information after a colon:

OK: Rsync is up

If all of this works, then the plugin is now installed and working correctly.

How it works...
Because Nagios Core plugins are programs in themselves, installing a plugin amounts to
saving a program or script into an appropriate directory; in this case, /usr/local/nagios/
libexec, where all the other plugins live. It's then available to be used the same way as any
other plugin.

The next step once the plugin is working is defining a command in the Nagios Core configuration
for it, so that it can be used to monitor hosts and/or services. This can be done with the Creating
a new command recipe in this chapter.

There's more...
If we inspect the Perl script, we can see a little bit of how it works. It works like any other Perl
script, except for the fact that its return values are defined in a hash table called %ERRORS,
and the return values it chooses depend on what happens when it tries to check the rsync
process. This is the most important part of implementing a plugin for Nagios Core.

Installation procedures for different plugins vary. In particular, many plugins are written in
languages such as C, and hence need be compiled. One such plugin is the popular check_
nrpe. Rather than simply being saved into a directory and made executable, these sorts of
plugins often follow the usual pattern of configuration, compilation, and installation:

$./configure

$ make

make install

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

43

For many plugins that are built in this style, the last step in that process will often install the
compiled plugin into the appropriate directory for us. In general, if instructions are included
with the plugin, then it pays to read them so that we can ensure we install it correctly.

See also
 f The Finding a plugin, Removing a plugin, and Creating a new command recipes in

this chapter

Removing a plugin
In this recipe, we'll remove a plugin that we no longer need as part of our Nagios Core
installation. Perhaps it's not working correctly, the service it monitors is no longer available,
or there are security or licensing concerns with its usage.

Getting ready
You should have a Nagios Core 3.0 or newer server running with a few hosts and services
configured already, and have a plugin that you would like to remove from the server. In this
instance, we'll remove the now unneeded check_rsync plugin from our Nagios Core server.

How to do it...
We can remove a plugin from our Nagios Core instance as follows:

1. Remove any part of the configuration that uses the plugin, including hosts or services
that use it for check_command, and command definitions that refer to the program.
As an example, the following definition for a command would no longer work after we
removed the check_rsync plugin:
define command {
 command_name check_rsync
 command_line $USER1$/check_rsync -H $HOSTADDRESS$
}

Using a tool such as grep can be a good way to find mentions of the command
and plugin:

grep -R check_rsync /usr/local/nagios/etc

2. Change directory on the Nagios Core server to wherever the plugins are kept.
The default location is /usr/local/nagios/libexec:
cd /usr/local/nagios/libexec

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Commands and Plugins

44

3. Delete the plugin with the rm command:
rm check_rsync

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

How it works...
Nagios Core plugins are simply external programs that the server uses to perform checks
of hosts and services. If a plugin is no longer wanted, all that needs to be done is to remove
references to it in our configuration, if any, and then delete the plugin program from /usr/
local/nagios/libexec.

There's more...
Usually there's not any harm in leaving the plugin's program on the server even if Nagios
Core isn't using it. It doesn't slow anything down or cause any other problems, and it may
be needed later. Nagios Core plugins are generally quite small programs, and should not
really cause disk space concerns on a modern server.

See also
 f The Finding a plugin, Installing a plugin, and Creating a new command recipes in

this chapter

Creating a new command
In this recipe, we'll create a new command for a plugin that was just installed into the
/usr/local/nagios/libexec directory on the Nagios Core server. This will define
the way in which Nagios Core should use the plugin, and thereby allow it to be used as
part of a service definition.

Getting ready
You should have a Nagios Core 3.0 or newer server running with a few hosts and services
configured already, and have a plugin installed for which you'd like to define a new command.
This will allow you to use it as part of a service definition. In this instance, we'll define a
command for an installed check_rsync plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

How to do it...
We can define a new command in our configuration as follows:

1. Change to the directory containing the objects configuration for Nagios Core.
The default location is /usr/local/nagios/etc/objects:
cd /usr/local/nagios/etc/objects

2. Edit the commands.cfg file:
vi commands.cfg

3. At the bottom of the file, add the following command definition:
define command {
 command_name check_rsync
 command_line $USER1$/check_rsync -H $HOSTADDRESS$
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

If the validation passes and the server restarts successfully, we should be able to use the
check_rsync command in a service definition.

How it works...
The configuration we added to the commands.cfg file defines a new command called check_
rsync, which defines a method for using the plugin of the same name to monitor a service.
This enables us to use check_rsync as a value for the check_command directive in a service
declaration, which might look similar to the following code snippet:

define service {
 use generic-service
 host_name troy.naginet
 service_description RSYNC
 check_command check_rsync
}

Only two directives are required for command definitions, and we've defined both:

 f command_name: This defines the unique name with which we can reference the
command when we use it in host or service definitions.

 f command_line: This defines the command line that should be executed by Nagios
Core to make the appropriate check.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Commands and Plugins

46

This particular command line also uses two macros:

 f $USER1$: This expands to /usr/local/nagios/libexec, the location of the
plugin binaries, including check_rsync. It is defined in the sample configuration
in the file /usr/local/nagios/etc/resource.cfg.

 f $HOSTADDRESS$: This expands to the address of any host for which this command
is used as a host or service definition.

So if we used the command in a service checking the rsync server on troy.naginet,
then the completed command might look similar to the following:

$ /usr/local/nagios/libexec/check_rsync -H troy.naginet

We could run this straight from the command line ourselves as the nagios user to see what
kind of results it returns:

$ /usr/local/nagios/libexec/check_rsync -H troy.naginet
OK: Rsync is up

There's more...
A plugin can be used for more than one command. If we had a particular rsync module
to check with the configured name of backup, we could write another command called
check_rsync_backup, as follows, to check this module is available:

define command {
 command_name check_rsync_backup
 command_line $USER1$/check_rsync -H $HOSTADDRESS$ -m backup
}

Or if one or more of our rsync servers was running on an alternate port, say port 5873,
then we could define a separate command, check_rsync_altport, for that:

define command {
 command_name check_rsync_altport
 command_line $USER1$/check_rsync -H $HOSTADDRESS$ -p 5873
}

Commands can thus be defined as precisely as we need them to be. We explore this in more
detail in the Customizing an existing command recipe in this chapter.

See also
 f The Installing a plugin and Customizing an existing command recipes in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

Customizing an existing command
In this recipe, we'll customize an existing command definition. There are a number of
reasons why you might want to do this, but a common one is if a check is "overzealous",
sending notifications for WARNING or CRITICAL states, which aren't actually terribly
worrisome. It can also be useful if a check is too "forgiving" and doesn't detect actual
problems with hosts or services.

Another reason is to account for peculiarities in your own network. For example, if you run
HTTP daemons on a large number of hosts on the alternative port 8080 that you need
to check, it would be convenient to have a check_http_altport command available.
We can do this by copying and altering the definition for the vanilla check_http command.

Getting ready
You should have a Nagios Core 3.0 or newer server running with a few hosts and services
configured already. You should also already be familiar with the relationship between
services, commands, and plugins.

How to do it...
We can customize an existing command definition as follows:

1. Change to the directory containing the objects configuration for Nagios Core.
The default location is /usr/local/nagios/etc/objects:
cd /usr/local/nagios/etc/objects

2. Edit the commands.cfg file, or any file which is at an appropriate location for
the check_http command:
vi commands.cfg

3. Find the definition for the check_http command. In a default Nagios Core
configuration, it should look similar to the following:
'check_http' command_definition

define command {

 command_name check_http

 command_line $USER1$/check_http -H $HOSTADDRESS$ $ARG1$

}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Commands and Plugins

48

4. Copy this definition into a new definition directly below it and alter it to look similar
to the following code snippet, renaming the command and adding a new option to
its command line:
'check_http_altport' command_definition
define command {
 command_name check_http_altport
 command_line $USER1$/check_http -H $HOSTADDRESS$ -p 8080
$ARG1$
}

5. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

If the validation passed and the server restarted successfully, we should now be able to
use the check_http_altport command, which is based on the original check_http
command, in a service definition.

How it works...
The configuration we added to the commands.cfg file reproduces the command definition
for check_http, but changes it in two ways:

 f It renames the command from check_http to check_http_alt, which is necessary
to distinguish the commands from one another. Command names in Nagios Core, just
like host names, must be unique.

 f It adds the option -p 8080 to the command-line call, specifying the time when the
call to check_http is made. The check will be made using TCP port 8080, rather
than the default value for TCP port 80.

The check_http_alt command can now be used as a check command in the same
way as a check_http command. For example, a service definition that checks whether
the sparta.naginet host is running an HTTP daemon on port 8080 might look similar
to the following code snippet:

define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP_8080
 check_command check_http_alt
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

There's more...
This recipe's title implies that we should customize the existing commands by editing them in
place, and indeed, this works fine if we really do want to do things this way. Instead of copying
the command definition, we could just add the -p 8080 or another customization to the
command line and change the original command.

However, this is bad practice in most cases, mostly because it could break the existing
monitoring and be potentially confusing to other administrators of the Nagios Core server.
If we have a special case for monitoring—in this case, checking a non-standard port for
HTTP—then it's wise to create a whole new command based on the existing one with the
customizations we need.

There is no limit to the number of commands you can define, so you can be very liberal in
defining as many alternative commands as you need. It's a good idea to give them instructive
names that say something about what they do, as well as to add explanatory comments to the
configuration file. You can add a comment to the file by prefixing it with a # character:

#

'check_http_altport' command_definition. This is to keep track of

servers that have panels running on alternative ports.

#

define command {

 command_name check_http_altport

 command_line $USER1$/check_http -H $HOSTADDRESS$ -p 8080 $ARG1$

}

See also
 f The Creating a new command recipe in this chapter

 f The Creating a new service recipe in Chapter 1, Understanding Hosts, Services,
and Contacts

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Commands and Plugins

50

Using an alternative check command for
hosts

In this recipe, we'll learn how to deal with a slightly tricky case in network monitoring—
monitoring a server that doesn't respond to PING, but still provides some network service
that requires checking.

It's good practice to allow PING where you can, as it's one of the stipulations in RFC 1122
and a very useful diagnostic tool not just for monitoring, but also for troubleshooting. However,
sometimes servers that are accessed only by a few people might be configured not to respond
to these messages, perhaps for reasons of secrecy. It's quite common for domestic routers to
be configured this way.

Another very common reason for this problem, and the example we'll address here, is
checking servers that are behind an IPv4 NAT firewall. It's not possible to address the
host directly via an RFC1918 address, such as 192.168.1.20, from the public Internet.
Pinging the public interface of the router therefore doesn't tell us whether the host for
which it is translating addresses is actually working.

However, port 22 for SSH is forwarded from the outside to this server, and it's this service
that we need to check for availability.

NAT Router

Nagios Core server

How to monitor the SSH server
from outside the NAT network?

SSH server behind NAT

PING

PING

We'll do this by checking whether the host is up through an SSH check, since we can't PING
it from the outside as we normally would.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

Getting ready
You should have a Nagios Core 3.0 or newer server running with a few hosts and services
configured already. You should also already be familiar with the relationship between services,
commands, and plugins.

How to do it...
We can specify an alternative check method for a host as follows:

1. Change to the directory containing the objects configuration for Nagios Core.
The default location is /usr/local/nagios/etc/objects:
cd /usr/local/nagios/etc/objects

2. Find the file that contains the host definition for the host that won't respond to PING,
and edit it. In this example, our crete.naginet host is the one we want to edit:
vi crete.naginet.cfg

3. Change or define the check_command parameter of the host to the command that
we want to use for the check instead of the usual check-host-alive or check_
ping plugin. In this case, we want to use check_ssh. The resulting host definition
might look similar to the following code snippet:
define host {
 use linux-server
 host_name crete.naginet
 alias crete
 address 10.128.0.23
 check_command check_ssh
}

Note that defining check_command still works even if we're using a host template,
such as generic-host or linux-server. It's a good idea to check that the host
will actually respond to our check as we expect it to:

sudo -s -u nagios

$ /usr/local/nagios/libexec/check_ssh -H 10.128.0.23

SSH OK - OpenSSH_5.5p1 Debian-6+squeeze1 (protocol 2.0)

4. Validate the configuration and restart the Nagios Core server:

/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Commands and Plugins

52

With this done, the next scheduled host check for the crete.naginet server should show
the host as UP, because it was checked with the check_ssh command and not the usual
check-host-alive command.

How it works
The configuration we added for the crete.naginet host uses check_ssh to check whether
the host is UP, rather than a check that uses PING. This is appropriate because the only public
service accessible from crete.naginet is its SSH service.

NAT Router

Nagios Core server

Host monitored
by check_ssh command

SSH server behind NAT

PING

PING

The check_ssh command is normally used to check whether a service is available, rather
than a host. However, Nagios Core allows us to use it as a host check command as well.
Most service commands work this way; you could check a web server behind NAT in the
same way with check_http.

There's more...
Note that for completeness' sake, it would also be appropriate to monitor the NAT router
via PING, or some other check appropriate to its public address. That way, if the host check
for the SSH server fails, we can check to see if the NAT router in front of it is still available,
which assists in troubleshooting whether the problem is with the server or with the NAT
router in front of it. You can make this setup even more useful by making the NAT router a
parent host for the SSH server behind it, explained in the Creating a network host hierarchy
recipe in Chapter 8, Understanding the Network Layout.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

See also
 f The Monitoring SSH for any host and Checking an alternative SSH port recipes in

Chapter 5, Monitoring Methods

 f The Monitoring local services on a remote machine with NRPE recipe in Chapter 6,
Enabling Remote Execution

 f The Creating a network host hierarchy and Establishing a host dependency recipes
in Chapter 8, Understanding the Network Layout

Writing a new plugin from scratch
Even given the very useful standard plugins in the Nagios Plugins set, and the large number
of custom plugins available on Nagios Exchange, occasionally as our monitoring setup grows
more refined, we may find that there is some service or property of a host that we would like
to check, but for which there doesn't seem to be any suitable plugin available. Every network
is different, and sometimes the plugins that others have generously donated their time to
make for the community don't quite cover all your bases. Generally, the more specific your
monitoring requirements get, the less likely it is that there's a plugin available that does
exactly what you need.

In this example, we'll deal with a very particular problem that we'll assume can't be dealt with
effectively by any known Nagios Core plugins, and we'll write one ourselves using Perl. Here's
the example problem:

Our Linux security team wants to be able to automatically check whether any of our servers are
running kernels that have known exploits. However, they're not worried about every vulnerable
kernel, only specific versions. They have provided us with the version numbers of three kernels
having small vulnerabilities that they're not particularly worried about but that do need patching,
and one they're extremely worried about.

Let's say the minor vulnerabilities are in the kernels with version numbers 2.6.19, 2.6.24,
and 3.0.1. The serious vulnerability is in the kernel with version number 2.6.39. Note
that the version numbers in this case are arbitrary and don't necessarily reflect any real kernel
vulnerabilities!

The team could log in to all of the servers individually to check them, but the servers are of
varying ages and access methods, and managed by different people. They would also have
to check manually more than once, because it's possible that a naive administrator could
upgrade to a kernel that's known to be vulnerable in an older release, and they also might
want to add other vulnerable kernel numbers for checking later on.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Commands and Plugins

54

So, the team have asked us to solve the problem with Nagios Core monitoring, and
we've decided the best way to do it is to write our own plugin, check_vuln_kernel,
which checks the output of uname for a kernel version string, and then does the following:

 f If it's one of the slightly vulnerable kernels, then it will return a WARNING state,
so that we can let the security team know that they should address it when they're
next able to.

 f If it's the highly vulnerable kernel version, then it will return a CRITICAL state, so
that the security team knows a patched kernel needs to be installed immediately.

 f If uname gives an error or output we don't understand, then it will return an UNKNOWN
state, alerting the team to a bug in the plugin or possibly more serious problems with
the server.

 f Otherwise, it returns an OK state, confirming that the kernel is not known to be a
vulnerable one.

 f Finally, they want to be able to see at a glance in the Nagios Core monitoring what
the kernel version is, and whether it's vulnerable or not.

For the purposes of this example, we'll only monitor the Nagios Core server itself, but via NRPE
we'd be able to install this plugin on the other servers that require this monitoring, where they'll
work just as well. You should see the Monitoring local services on a remote machine with NRPE
recipe in Chapter 6, Enabling Remote Execution to learn how to do this.

While this problem is very specific, we'll approach it in a very general way, which you'll be able
to adapt to any solution where it's required for a Nagios plugin to:

1. Run a command and pull its output into a variable.

2. Check the output for the presence or absence of certain patterns.

3. Return an appropriate status based on those tests.

All that means is that if you're able to do this, you'll be able to effectively monitor anything on
a server from Nagios Core!

Getting ready
You should have a Nagios Core 3.0 or newer server running with a few hosts and services
configured already. You should also already be familiar with the relationship between services,
commands, and plugins. You should also have Perl installed.

This will be a rather long recipe that ties in a lot of Nagios Core concepts. You should be
familiar with all the following concepts:

 f Defining new hosts and services, and how they relate to one another

 f Defining new commands, and how they relate to the plugins they call

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

55

 f Installing, testing, and using Nagios Core plugins

Some familiarity with Perl would also be helpful, but is not required. We'll include comments to
explain what each block of code is doing in the plugin.

How to do it...
We can write, test, and implement our example plugin as follows:

1. Change to the directory containing the plugin binaries for Nagios Core. The default
location is /usr/local/nagios/libexec:
cd /usr/local/nagios/libexec

2. Start editing a new file called check_vuln_kernel:
vi check_vuln_kernel

3. Include the following code in it; take note of the comments, which explain what each
block of code is doing:
#!/usr/bin/env perl

#

Use strict Perl style and report potential problems to help us
write this

securely and portably.

#

use strict;

use warnings;

#

Include the Nagios utils.pm file, which includes definitions for
the return

statuses that are appropriate for each level: OK, WARNING,
CRITICAL, and

UNKNOWN. These will become available in the %ERRORS hash.

#

use lib "/usr/local/nagios/libexec";

use utils "%ERRORS";

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Commands and Plugins

56

#

Define a pattern that matches any kernel vulnerable enough so
that if we find

it we should return a CRITICAL status.

#

my $critical_pattern = "^(2\.6\.39)[^\\d]";

#

Same again, but for kernels that only need a WARNING status.

#

my $warning_pattern = "^(2\.6\.19|2\.6\.24|3\.0\.1)[^\\d]";

#

Run the command uname with option -r to get the kernel release
version, put

the output into a scalar $release, and trim any newlines or
whitespace

around it.

#

chomp(my $release = qx|/bin/uname -r|);

#

If uname -r exited with an error status, that is, anything
greater than 1,

then there was a problem and we need to report that as the
UNKNOWN status

defined by Nagios Core's utils.pm.

#

if ($? != 0) {

 exit $ERRORS{UNKNOWN};

}

#

Check to see if any of the CRITICAL patterns are matched by the
release

number. If so, print the version number and exit, returning the
appropriate

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

status.

#

if ($release =~ m/$critical_pattern/) {

 printf "CRITICAL: %s\n", $release;

 exit $ERRORS{CRITICAL};

}

#

Same again, but for WARNING patterns.

#

if ($release =~ m/$warning_pattern/) {

 printf "WARNING: %s\n", $release;

 exit $ERRORS{WARNING};

}

#

If we got this far, then uname -r worked and didn't match any of
the

vulnerable patterns, so we'll print the kernel release and
return an OK

status.

#

printf "OK: %s\n", $release;

exit $ERRORS{OK};

4. Make the plugin owned by the nagios user and executable with chmod:
chown nagios.nagios check_vuln_kernel
chmod 0770 check_vuln_kernel

Run the plugin directly to test it:

sudo -s -u nagios

$./check_vuln_kernel

OK: 2.6.32-5-686

We should now be able to use the plugin in a command, and hence in a service check, just
like any other command. Note that the code for this plugin is included in the code bundle of
this book for your convenience.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Commands and Plugins

58

How it works...
The code we added in the new plugin file check_vuln_kernel is actually quite simple:

1. It runs uname -r to get the version number of the kernel.

2. If that didn't work, it exits with a status of UNKNOWN.

3. If the version number matches anything in a pattern containing critical version
numbers, it exits with a status of CRITICAL.

4. If the version number matches anything in a pattern containing warning version
numbers, it exits with a status of WARNING.

5. Otherwise, it exits with a status of OK.

It also prints the status as a string, along with the kernel version number, if it was able to
retrieve one.

We might set up a command definition for this plugin as follows:

define command {
 command_name check_vuln_kernel
 command_line $USER1$/check_vuln_kernel
}

In turn, we might set up a service definition for that command as follows:

define service {
 use local-service
 host_name localhost
 service_description VULN_KERNEL
 check_command check_vuln_kernel
}

If the kernel was not vulnerable, the service's appearance in the web interface might look
similar to the following screenshot:

However, if the monitoring server itself happened to be running a vulnerable kernel, then
it might look more similar to the following screenshot (and send consequent notifications,
if configured to do so):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

59

There's more...
This may be a simple plugin, but its structure can be generalized to all sorts of monitoring
tasks. If we can figure out the correct logic to return the status we want in an appropriate
programming language, then we can write a plugin to do basically anything.

A plugin like this could just as effectively be written in C for improved performance, but we'll
assume for simplicity's sake that high performance for the plugin is not required. Instead, we
can use a language that's better suited for quick ad hoc scripts like this one; in this case, we
use Perl. The file utils.sh, also in /usr/local/nagios/libexec, allows us to write in
shell script if we'd prefer that.

If you write a plugin that you think could be generally useful for the Nagios community at
large, then please consider putting it under a free software license and submitting it to the
Nagios Exchange, so that others can benefit from your work. Community contribution and
support is what has made Nagios Core such a great monitoring platform in such wide use.

Any plugin you publish in this way should conform to the Nagios Plugin Development Guidelines.
At the time of writing, these are available at http://nagiosplug.sourceforge.net/
developer-guidelines.html.

Finally, you should note that the method of including utils.pm, used in this example, may
be deprecated in future versions of Nagios Core. It is used here for simplicity's sake. The new
method of including it in Perl is done with a CPAN module called Nagios::Plugin.

See also
 f The Creating a new command and Customizing an existing command recipes in

this chapter

 f The Creating a new service recipe in Chapter 1, Understanding Hosts, Services,
and Contacts

 f The Monitoring local services on a remote machine with NRPE recipe in Chapter 6,
Enabling Remote Execution

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

3
Working with Checks

and States

In this chapter, we will cover the following recipes:

 f Specifying how frequently to check a host or service

 f Changing thresholds for PING RTT and packet loss

 f Changing thresholds for disk usage

 f Scheduling downtime for a host or service

 f Managing brief outages with flapping

 f Adjusting flapping percentage thresholds for a service

Introduction
Once hosts and services are configured in Nagios Core, its behavior is primarily dictated by
the checks it makes to ensure that hosts and services are operating as expected, and the
state it concludes these hosts and services must be in as a result of those checks.

How often it's appropriate to check hosts and services, and on what basis it's appropriate
to flag a host or service as having problems, depends very much on the nature of the service
and the importance of it running all the time. If a host on the other side of the world is being
checked with PING, and during busy periods its round trip time is over 100ms, then this may
not actually be a cause for concern at all, and perhaps not something to even flag a WARNING
state over, let alone a CRITICAL one.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Checks and States

62

However, if the same host were on the local network where it would be appropriate to expect
round trip times of less than 10ms, then a round trip time of more than 100ms could well be
considered a grave cause for concern, signaling a packet storm or other problem with the local
network, and we would want to notify the appropriate administrators immediately. Similarly, for
hosts such as web servers, we may not be concerned by a response time of more than a second
for a page on a busy budget shared web host for customers. But if the response time for the
corporate website or a dedicated colocation customer was getting that bad, it might well be
something to notify the web server administrator about.

Hosts and services are therefore not all created equal. Nagios Core provides several ways to
define behaviors with more precision, as follows:

 f How often a host or service should be checked with its appropriate
check_command plugin

 f How bad a check's results have to be before a WARNING or CRITICAL
problem is flagged, if at all

 f Defining a downtime period for a host or service, so that Nagios Core
knows not to expect it to operate during a specified period of time, often
for upgrades or other maintenance

 f Whether to automatically tolerate flapping, or hosts and services seeming
to go up and down a lot

This chapter will use some common instances of problems with the preceding behaviors to
give examples showing how to configure them.

Specifying how frequently to check a host
or service

In this recipe, we'll configure a very important host to be checked every three minutes,
and if Nagios Core finds it is DOWN as a result of the check failing, it will check again after
a minute before it sends a notification about the state to its defined contact. We'll do this
by customizing the definition of an existing host.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host configured already.
We'll use the example of sparta.naginet, a host defined in its own file.

You should also understand the basics of commands and plugins, in particular the meaning
of the check_command directive. These are covered in the recipes in Chapter 2, Working with
Commands and Plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

63

How to do it...
We can customize the check frequency for a host as follows:

1. Change to the objects configuration directory for Nagios Core. The default is /usr/
local/nagios/etc/objects. If you've put the definition of your host in a different
file, then move to its directory instead:
cd /usr/local/nagios/etc/objects

2. Edit the file containing your host definition, and find the definition within the file:
vi sparta.naginet.cfg

The host definition may look similar to the following:

define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
}

3. Add or edit the value of the check_interval directive to 3:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 check_interval 3
}

4. Add or edit the value of the retry_interval directive to 1:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 check_interval 3
 retry_interval 1
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Checks and States

64

5. Add or edit the value of max_check_attempts to 2:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 check_interval 3
 retry_interval 1
 max_check_attempts 2
}

6. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, Nagios Core will run the relevant check_command plugin (probably something
like check-host-alive) against this host every three minutes; if it fails, it will flag the host
as down, check again one minute later, and only then send a notification to its defined contact
if the second check fails too.

How it works...
The preceding configuration changed three properties of the host object type to effect the
changes we needed:

 f check_interval: This defines how long to wait between successive checks of the
host under normal conditions. We set this to 3, or three minutes.

 f retry_interval: This defines how long to wait between follow-up checks of the
host after first finding problems with it. We set this to 1, or one minute.

 f max_check_attempts: This defines how many checks in total should be run before a
notification is sent. We set this to 2 for two checks. This means that after the first failed
check is run, Nagios Core will run another check a minute later, and will only send a
notification if this check fails as well. If two checks have been run and the host is still
in a problem state, it will go from a SOFT state to a HARD state.

Note that setting these directives in a host that derives from a template, as is the case with
our example, will override any of the same directives in the template.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

65

There's more...
It's important to note that we can also define the units used by the check_interval and
retry_interval commands. They only use minutes by default, checking the interval_
length setting that's normally defined in the root configuration file for Nagios Core, by default
/usr/local/nagios/etc/nagios.cfg:

interval_length=60

If we wanted to specify these periods in seconds instead, we could set this value to 1 instead
of 60:

interval_length=1

This would allow us, for example, to set check_interval to 15, to check a host every
15 seconds. Note that if we have a lot of hosts with such a tight checking schedule, it might
overburden the Nagios Core process, particularly if the checks take a long time to complete.

Don't forget that changing these properties for a large number of hosts can be tedious, so if
it's necessary to set these directives to some common value for more than a few hosts, then
it may be appropriate to set the values in a host template and then have these hosts inherit
from it. See the Using inheritance to simplify configuration recipe in Chapter 9, Configuration
Management for details on this. Note that the same three directives also work for service
declarations, and have the same meaning. We could define the same notification behavior
for a service on sparta.naginet with a declaration similar to the following:

define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP
 check_command check_http
 address 10.128.0.21
 check_interval 3
 retry_interval 1
 max_check_attempts 2
}

See also
 f The Scheduling downtime for a host recipe in this chapter

 f The Using inheritance to simplify configuration recipe in Chapter 9,
Configuration Management

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Checks and States

66

Changing thresholds for PING RTT and
packet loss

In this recipe, we'll set up a service for a host that monitors PING, and take a look at how
to adjust the thresholds for the WARNING and CRITICAL states, done using command
arguments. We'll accomplish this by setting up a service for an existing host that's already
being checked with a check_command plugin, such as check-host-alive. Our service
will be used to monitor not whether the host is completely DOWN, but whether it's responding
to PING requests within a reasonable period of time.

This could be useful to notify and assist in diagnosing problems with the actual connectivity
of a service or host.

This recipe will therefore serve as a good demonstration of the concepts of supplying arguments
to a command, and adjusting the WARNING and CRITICAL thresholds for a particular service.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host configured already,
and using a check_command plugin of check-host-alive. We'll use the example of
sparta.naginet, a host defined in its own file.

You should also understand the basics of how hosts and services fit together in a Nagios
Core configuration, and be familiar with the use of commands and plugins via the check_
command directive.

How to do it...
We can add our PING service to the existing host with custom round trip time and packet loss
thresholds as follows:

1. Change to the objects configuration directory for Nagios Core. The default is /usr/
local/nagios/etc/objects. If you've put the definition of your host in a different
file, then move to its directory instead:
cd /usr/local/nagios/etc/objects

2. Edit the file containing your host definition:
vi sparta.naginet.cfg

3. Add the following definition to the end of the file. Of most interest here is the value for
the check_command directive:
define service {
 use generic-service

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

67

 host_name sparta.naginet
 service_description PING
 check_command check_ping!100,20%!200,40%
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, Nagios Core will not only run a host check of check-host-alive against
your original host to ensure that it's up, but it will also run a more stringent check of the PING
responses from the machine as a service to check that it's adequately responsive:

 f If the Round Trip Time (RTT) of the PING response is greater than 100ms (but less
than 200ms), Nagios Core will flag a WARNING state.

 f If the RTT of the PING response is greater than 200ms, Nagios Core will flag a
CRITICAL state.

 f If more than 20 percent (but less than 40 percent) of the PING requests receive
no response, Nagios Core will flag a WARNING state.

 f If more than 40 percent of the PING requests receive no response, Nagios Core
will flag a CRITICAL state.

In both cases, a notification will be sent to the service's defined contacts if configured
to do so.

Otherwise, this service works the same way as any other service, and appears in the
web interface.

How it works...
The configuration we added for our existing host creates a new service with a service_
description of PING. For check_command, we use the check_ping command, which
uses the plugin of the same name. The interesting part here is what follows the check_
command definition: the string !100,20%!200,40%.

In Nagios Core, a ! character is used as a separator for arguments that should be passed to
the command. In the case of check_ping, the first argument defines thresholds, or conditions
that, if met, should make Nagios Core flag a WARNING state for the service. Similarly, the second
argument defines the thresholds for a CRITICAL state.

Each of the two arguments are comprised of two comma-separated terms: the first number is
the threshold for the RTT of the PING request and its response that should trigger a state, and
the second number is the percentage of packet loss that should be tolerated before raising
the same state.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Checks and States

68

This pattern of arguments is specific to check_ping; they would not work for other commands
such as check_http.

There's more...
If we want to look in a bit more detail at how these arguments are applied, we can inspect the
command definition for check_ping. By default, this is in the /usr/local/nagios/etc/
objects/commands.cfg file, and looks similar to the following:

define command {

 command_name check_ping
 command_line $USER1$/check_ping -H $HOSTADDRESS$ -w $ARG1$ -c
$ARG2$ -p 5
}

In the value for command_line, four macros are used:

 f $USER1$: This expands to /usr/local/nagios/libexec, or the directory in
which the Nagios Core plugins are normally kept, including check_ping.

 f $HOSTADDRESS$: This expands to the hostname for the host or service definition
in which the command is used. In this case, it expands to 10.128.0.21, the value
of the address directive for the sparta.naginet host.

 f $ARG1$: This expands to the value given for the first argument of the command,
in our recipe's case, the string 100,20%.

 f $ARG2$: This expands to the value given for the second argument of the command;
in our recipe's case, the string 200,40%.

The complete command-line call for our specific check with all these substitutions made
would therefore look similar to the following:

/usr/local/nagios/libexec/check_ping -H 10.128.0.21 -w 100,20% -c 200,
40% -p 5

This command line makes use of four parameters of the check_ping program:

 f -H: This specifies the address of the host to check

 f -w: This specifies the thresholds for raising a WARNING state

 f -c: This specifies the thresholds for raising a CRITICAL state

 f -p: This specifies the number of PING requests to send

We can run this directly from the command line on the Nagios Core server to see what the
results of the check might be:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

69

/usr/local/nagios/libexec/check_ping -H 10.128.0.21 -w 100,20% -c
200,40% -p 5

The preceding command yields an output including the OK result of the check, and also
some performance data, as follows:

PING OK - Packet loss = 0%, RTA = 0.17 ms|rta=0.174000
ms;100.000000;200.000000;0.000000 pl=0%;5;10;0

The arguments specified in the command are therefore used to customize the behavior
of check_command for the particular host or service being edited.

See also
 f The Changing thresholds for disk usage recipe in this chapter

 f The Creating a new service recipe in Chapter 1, Understanding Hosts, Services,
and Contacts

 f The Customizing an existing command and Creating a new command recipes
in Chapter 2, Working with Commands and Plugins

 f The Monitoring PING for any host recipe in Chapter 5, Monitoring Methods

Changing thresholds for disk usage
In this recipe, we'll configure the Nagios Core server to check its own disk usage, and to flag
a WARNING or CRITICAL state depending on how little free space is left on the disk. We'll
accomplish this by adding a new service to the already defined localhost called DISK,
which will run the check_local_disk command to examine the state of mounted volumes
on the server.

Because burgeoning disk usage can creep up on any system administrator, and because of
the dire effect it can have when a disk suddenly fills completely without any warning, this is
amongst the more important things to monitor in any given network.

For simplicity, we'll demonstrate this only for the monitoring server itself, as a host called
localhost on 127.0.0.1. This is because the check_disk plugin can't directly check
the disk usage of a remote server over a network. However, the principles discussed here
could be adapted to running the check on a remote server using check_nrpe. The use
of NRPE is discussed in all the recipes in Chapter 6, Enabling Remote Execution.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Checks and States

70

Getting ready
You should have a Nagios Core 3.0 or newer server with a definition for localhost, so that
the monitoring host is able to check itself. A host definition for localhost is included in the
sample configuration in /usr/local/nagios/etc/objects/localhost.cfg. You should
also understand the basics of how hosts and services fit together in a Nagios Core configuration,
and be familiar with the use of commands and plugins via the check_command directive.

We'll use the example of olympus.naginet as our Nagios Core server checking itself,
with one block device on one disk, with its device file at /dev/sda1.

How to do it...
We can add our DISK service to the existing host with custom usage thresholds as follows:

1. Change to the objects configuration directory for Nagios Core. The default is
/usr/local/nagios/etc/objects. If you've put the definition for your
host in a different file, move to its directory instead:
cd /usr/local/nagios/etc/objects

2. Edit the file containing your host definition:
vi localhost.cfg

3. Add the following definition to the end of the file. Of most interest here is the value
for the check_command directive:
define service {
 use local-service
 host_name localhost
 service_description DISK
 check_command check_local_disk!10%!5%!/dev/sda1
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, a new service is created for localhost that checks the disk usage on /dev/
sda1, and flags a WARNING state for the service if the free space is below 10 percent, and a
CRITICAL state if it is below 5 percent.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

71

In both cases, a notification will be sent to the service's defined contacts, if configured to do so.

How it works
The configuration we added for our existing host creates a new service with a service_
description of DISK. For check_command, we use the check_local_disk command,
which in turn uses the check_disk plugin to check the local machine's disks. The interesting
part here is what follows the check_local_disk definition: the string !10%!5%!/dev/sda1.

In Nagios Core, a ! character is used as a separator for arguments that should be passed to
the command. In the case of check_local_disk, the first two arguments define thresholds,
or conditions that, if met, should make Nagios Core flag a WARNING state (first argument, 10
percent) or a CRITICAL state (second argument, 5 percent) for the service. The third argument
defines the device name of the disk to check, /dev/sda1.

There's more...
If we want to look in a bit more detail at how these arguments are applied, we can inspect
the command definition for check_local_disk. By default, this is in the file /usr/local/
nagios/etc/objects/commands.cfg, and looks similar to the following:

define command {
 command_name check_local_disk
 command_line $USER1$/check_disk -w $ARG1$ -c $ARG2$ -p $ARG3$
}

In this case, command_name and the name of the plugin used in the command_line are not
the same.

In the value for command_line, four macros are used:

 f $USER1$: This expands to /usr/local/nagios/libexec, or the directory in
which the Nagios Core plugins are normally kept, including check_disk.

 f $ARG1$: This expands to the value given for the first argument of the command;
in this case, the string 10%.

 f $ARG2$: This expands to the value given for the second argument of the command;
in this case, the string 5%.

 f $ARG3$: This expands to the value given for the third argument of the command;
in this case, the string /dev/sda1.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Checks and States

72

The complete command-line call for our specific check with all these substitutions made
would therefore be as follows:

/usr/local/nagios/libexec/check_disk -w 10% -c 5% -p /dev/sda1

This command line makes use of three parameters of the check_disk program:

 f -w: This specifies the thresholds for raising a WARNING state

 f -c: This specifies the thresholds for raising a CRITICAL state

 f -p: This specifies the device file for the disk to check

We can run this directly from the command line on the Nagios Core server to see what the
results of the check might be:

/usr/local/nagios/libexec/check_disk -w 10% -c 5% -p /dev/sda1

The output includes both the OK result of the check, and also some performance data:

DISK OK - free space: / 2575 MB (71% inode=78%);|
/=1044MB;3432;3051;0;3814

See also
 f The Changing thresholds for disk usage recipe in this chapter

 f The Creating a new service recipe in Chapter 1, Understanding Hosts, Services,
and Contacts

 f The Customizing an existing command and Creating a new command recipes in
Chapter 2, Working with Commands and Plugins

 f The Monitoring PING for any host recipe in Chapter 5, Monitoring Methods

Scheduling downtime for a host or service
In this recipe, we'll learn how to schedule downtime for a host or service in Nagios Core.
This is useful for elegantly suppressing notifications for some predictable period of time;
a very good example is when servers require downtime to be upgraded, or to have their
hardware checked.

In this example, we'll demonstrate scheduling downtime for a host named sparta.naginet,
and we'll examine the changes it makes in the web interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

73

Getting ready
You should have a Nagios Core 3.0 or newer server with a definition for at least one host and at
least one service, and some idea of when you would like your downtime to be scheduled. You
should also have a working web interface, per the QuickStart installation of Nagios Core 3.0.

You should also have Nagios Core configured to process external commands, and have
given your web interface user the permissions to apply them. If you are logging in as the
nagiosadmin user per the recommended quick start guide, then you can check this is
the case with the following directive in /usr/local/nagios/etc/nagios.cfg:

check_external_commands=1

Permissions to submit external commands from the web interface are defined in /usr/
local/nagios/etc/cgi.cfg; check that your username is included in these directives:

authorized_for_all_service_commands=nagiosadmin
authorized_for_all_host_commands=nagiosadmin

If you have followed the Nagios Core QuickStart guides, then you will probably find this is
already working: http://nagios.sourceforge.net/docs/3_0/quickstart.html.

How to do it...
We can set up a fixed period of scheduled downtime for our host and service as follows:

1. Log into the web interface for Nagios Core.

2. Click Hosts in the left menu:

www.it-ebooks.info

http://nagios.sourceforge.net/docs/3_0/quickstart.html
http://www.it-ebooks.info/

Working with Checks and States

74

3. Click on the host's name in the table that comes up, to view the details for that host:

4. Click on Schedule downtime for this host in the Host Commands menu:

5. Fill out the fields in the resulting form, including the following details:

 � Host Name: The name of the host for which you're scheduling downtime.
This should have been filled out for you.

 � Author: Your name, for records of who scheduled the downtime. This may
be greyed out and just say Nagios Admin; that's fine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

75

 � Comment: Some comment explaining the reason for the downtime.

 � Start Time: The time at which the scheduled downtime should begin,
and when the state notifications end.

 � End Time: The time at which the scheduled downtime should end,
and when the state notifications resume.

In this case, our downtime will be from 8:00 PM to 9:00 PM on the 15th of June, 2012.

6. Click on Commit to submit the downtime definition, and then Done in the screen
that follows.

With this done, we can safely bring the sparta.naginet host down between the nominated
times, and any notifications for the host and any of its services will be suppressed until the
downtime is over.

Note that restarting Nagios Core is not required for this step, as it usually would be for changes
made to Nagios Core's configuration files. The change is done "on the fly".

Note also that comments now appear in the detailed information for both the host and service,
defining the downtime and including the reason specified for it.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Checks and States

76

How it works...
The preceding steps nominate a period of downtime for both the sparta.naginet server
and all of its services. This accomplishes two things:

 f It suppresses all notifications (whether e-mails or anything else) for the host or service
for the appropriate time period, including RECOVERY notifications. The only exceptions
are the DOWNTIMESTART and DOWNTIMEEND notifications.

 f It adds a comment to the host or service showing the scheduled downtime, for the
benefit of anyone else who might be using the web interface.

Nagios Core keeps track of any downtime defined for all the hosts and services, and prevents
the notifications it would normally send out during that time. Note that it will still run its checks
and record the state of both the hosts and services even during downtime. All that is suppressed
are the notifications, and not the actual checks.

There's more...
Note that the downtime for individual services can be applied in much the same way, by clicking
on Schedule downtime for this service in the web interface, under Service Commands.

What was defined in this recipe was a method for defining fixed downtime, where we know
ahead of time when the host or its services are likely to be unavailable. If we don't actually
know what time the unavailability will start, but we do know how long it's likely to last, then
we can define a period of flexible downtime. This means that the downtime can start any time
within the nominated period, and will last for the length of time we specify from that point.

A notification event is also fired when the host or service begins the downtime, called
DOWNTIMESTART, and another when the downtime ends, called DOWNTIMEEND. This may be
a useful notification to send to the relevant contact or contact group if they'd like to be notified
when this happens. This can be arranged by ensuring that the host or service is configured to
send these messages, by including the s flag in the notification_options directive for
both hosts and services, and correspondingly in the contact definition:

notification_options d,u,r,f,s

See also
 f The Managing brief outages with flapping and Adjusting flapping percentage

thresholds for a service recipes in this chapter

 f The Specifying which states to be notified about and Tolerating a certain number
of failed checks recipes in Chapter 4, Configuring Notifications

 f The Adding comments on hosts or services in web interface recipe in Chapter 7,
Working with the Web Interface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

77

Managing brief outages with flapping
In this recipe, we'll learn how to use Nagios Core's state flapping detection and handling to
avoid sending excessive notifications when a host or service changes its state too frequently.
This is useful in circumstances where a host or service is changing between OK to WARNING to
CRITICAL states too frequently within the last 21 checks. If the percentage of state changes
is too high, Nagios Core will suppress further notifications and add an icon and comment to
the host or service showing that it is flapping.

Flap detection is normally enabled in the QuickStart configuration for Nagios Core, and is part
of the sample generic-host host template and the generic-service service template.
It's therefore likely that it's already enabled on most servers, and we only need to check that
it's still working.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host and one service
configured already. You should also have access to a working web interface for the Nagios Core
server. It would be helpful if you are monitoring a test service that you can bring up and down
to trigger the flap detection to test it; an unused webserver might be good for this.

You should be familiar with the way hosts and services change state as a result of their checks
and the different states corresponding to hosts and services in order to understand the basics
of how flap detection works.

How to do it...
We can check whether or not flap detection is enabled for our Nagios Core server, our hosts,
and our services as follows:

1. Change to the configuration directory for Nagios Core. The default is /usr/local/
nagios/etc.
cd /usr/local/nagios/etc

2. Edit the nagios.cfg file.
vi nagios.cfg

3. Look for an existing definition for the enable_flap_detection directive,
and check that it is set to 1:
enable_flap_detection=1

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Checks and States

78

4. If this was not set to 1, then after we've changed it, we will probably also need to
at least temporarily disable the use_retained_program_state directive in the
same file:
use_retained_program_state=0

5. Edit the file for our particular hosts and or services. We should check that at least
one of the following is the case:

 � The host or service inherits from a template that has the enable_flap_
detection directive set to 1. For example, both the generic-host and
generic-service templates defined by default in /usr/local/nagios
/etc/objects/templates.cfg do this.

 � The host or service itself has the enable_flap_detection directive set
to 1 in its own definition.

In the latter case, the configuration for the host or service might look similar
to the following code snippet:

define host {
 ...
 flap_detection_enabled 1
}
define service {
 ...
 flap_detection_enabled 1
}

6. If any of the preceding configuration was changed, validate the new configuration and
restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

7. Check that for the hosts or services for which flap detection is wanted, the word
ENABLED appears in the details for that host or service:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

79

With this done, if a host or service changes its state too frequently within 21 checks, then it will
be flagged as flapping, and will appear with a custom icon in views of that host or service:

A comment is also placed on the host or service explaining what has happened for the benefit
of anyone viewing the host or service in the web interface, who might perhaps be wondering
why notifications have stopped:

There will also be an indicator on the details for the host or service defining whether the host
or service is flapping:

For hosts or services that don't have flap detection enabled, this particular field simply reads
N/A, and the Flap Detection field below it will show as DISABLED.

How it works...
The logic behind determining flap detection is actually quite complex. For our purposes,
it suffices to explain flap detection as being based on whether a host or service has
changed state within its last 21 checks too often—with the thresholds usually expressed
as a percentage.

This is discussed in great detail including the formulae that are used to determine flapping
state in the Nagios Core 3.0 documentation, available online at the following URL:

http://nagios.sourceforge.net/docs/3_0/flapping.html

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Checks and States

80

There's more...
A common cause of flapping is that checks are too stringent. As an example, if you are checking
a shared web server's response time is less than 50ms while the server is busy, checks might
pass and fail without actually giving an accurate reflection of whether the service is doing its
job. In this case, it would be appropriate to loosen the thresholds of the service by increasing
its percentage thresholds, so that it isn't quite so ready to flag a WARNING or CRITICAL state
over things that aren't actually very worrisome. Flap detection can help diagnose these sorts
of cases.

We can also enable or disable flap detection for a host via the web interface; in the details
screen for both hosts and services, a menu item is available under Host Commands labeled
Enable/Disable flap detection for this host, and under Service Commands there's another
labeled Enable/Disable flap detection for this service.

These may be useful when we want to turn flap detection on or off for a particular host or
service temporarily, perhaps because under certain circumstances it is or is not appropriate
to use the feature. For permanent setup and for clarity, it would be best to include it explicitly
in the configuration as shown in the recipe.

See also
 f The Adjusting flapping percentage thresholds for a service recipe in this chapter

 f The Tolerating a certain number of failed checks recipe in Chapter 4,
Configuring Notifications

 f The Adding comments on hosts or services in web interface recipe in
Chapter 7, Working with the Web Interface

Adjusting flapping percentage thresholds for
a service

In this recipe, we'll learn how to adjust the percentage thresholds for host or service flap
detection. This means that we can adjust how frequently a host or service has to change
state within its last 21 checks, before Nagios Core will conclude that it is flapping, and
suppress notifications until its state becomes stable again.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host and one service
configured already. You should also have access to a working web interface for the Nagios
Core server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

You should be familiar with the way hosts and services change state as a result of their
checks and the different states corresponding to hosts and services, to understand the
basics of how flap detection works. Flap detection should also already be enabled and
working for the appropriate hosts and services.

How to do it...
We can adjust the thresholds for flap detection for a specific host or service as follows:

1. Change to the objects configuration directory for Nagios Core. The default is
/usr/local/nagios/etc/objects.
cd /usr/local/nagios/etc/objects

2. Edit the file containing the definition for the host or service for which we want
to set the thresholds:
vi sparta.naginet.cfg

3. Within the host or service definition, set the low_flap_threshold and/or
high_flap_threshold values to appropriate percentages:
define host {
 ...
 high_flap_threshold 50.0
 low_flap_threshold 25.0
}
define service {
 ...
 high_flap_threshold 45.0
 low_flap_threshold 20.0
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, the flapping thresholds for the host or service should be changed appropriately
for future checks.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Checks and States

82

How it works...
The preceding configuration changes include the following directives:

 f high_flap_threshold: A host or service that is changing state by a certain
percentage of the time must exceed this percentage threshold, before it is
determined to be flapping.

 f low_flap_threshold: If a host or service is already in the flapping state,
then its state change percentage must fall below this threshold before the
flapping state will end.

For a detailed breakdown of how the state change percentage is calculated, see the
Nagios Core 3.0 documentation online at the following URL:

http://nagios.sourceforge.net/docs/3_0/flapping.html

There's more...
If appropriate, we can also set a global default for hosts and services' flap thresholds with
the following directives in /usr/local/nagios/etc/nagios.cfg. The following values
are examples:

high_host_flap_threshold=50.0
low_host_flap_threshold=25.0
high_service_flap_threshold=45.0
low_service_flap_threshold=20.0

These values correspond to the percentages of state change, in just the same way that the
per-host and per-service configurations do.

Note that there are separate directives for hosts and services in this case. These values
are also overridden if you specify thresholds for a particular service or host, as we did in
the recipe.

See also
 f The Managing brief outages with flapping recipe in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

4
Configuring

Notifications

In this chapter, we will cover the following recipes:

 f Configuring notification periods

 f Configuring notification for groups

 f Specifying which states to be notified about

 f Tolerating a certain number of failed checks

 f Automating contact rotation

 f Defining an escalation for repeated notifications

 f Defining a custom notification method

Introduction
Notifications in Nagios Core refer to the events fired and the messages generated when
hosts or services change state, for the purposes of informing appropriate people or systems.

For example, when connectivity to a host is lost, it leaves the UP state and goes to the
DOWN state on the next check. This eventually generates a notification event, and provided
the appropriate flags are set and a contact is available, a message about the state change
is generated and dealt with in some way as defined in the configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

84

The default text for such notifications goes into some detail about the problem, including the
output from the appropriate plugin command:

***** Nagios *****

Notification Type: PROBLEM

Host: sparta.naginet

State: DOWN

Address: 10.128.0.21

Info: CRITICAL - Host Unreachable (10.128.0.21)

Date/Time: Sat May 19 16:27:39 NZST 2012

So, with this kind of text generated as a result of the event, the next question is what Nagios
Core should do with it. A common method of notification that will be familiar to most Nagios
Core administrators is sending this text as an e-mail message using the system mailer, but
the same generated message can be used in a wide variety of ways. Just as commands
can be flexibly defined in terms of the command lines they run, the action appropriate for
a particular contact can be defined very flexibly to use the text of any notifications that a
contact is configured to receive.

In this chapter, we'll learn how to refine notifications management in Nagios Core, to make sure
that the appropriate people or systems are notified about appropriate network events, and not
nagged about others which may not matter. We'll also learn how to set up notification methods
beyond the simple e-mail message, and how to escalate notifications when problems remain
unfixed after a certain period of time.

Configuring notification periods
In this recipe, we'll adjust the configuration for a service that has been bugging us with
notifications late at night. We'll arrange to keep checking this host, sparta.naginet,
on a 24x7 basis, but we'll prevent it from sending notifications outside of work hours,
using two of the predefined time periods in the default Nagios Core configuration.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host configured already.
We'll use the example of sparta.naginet, a host defined in its own file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

85

How to do it...
We can define the check_period and notification_period plugins for our host
as follows:

1. Change to the objects configuration directory for Nagios Core. The default is
/usr/local/nagios/etc/objects. If you've put the definition for your
host in a different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Edit the file containing your host definition, and find the definition within the file:
vi sparta.naginet.cfg

The host definition may look similar to the following code snippet:

define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
}

3. Add or edit the value for the check_period directive to 24x7:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 check_period 24x7
}

4. Add or edit the value for the notification_period directive to workhours:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 check_period 24x7
 notification_period workhours
}

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

86

5. Validate the configuration and restart the Nagios Core server:

/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, Nagios Core will run its check of the host all the time (24 hours a day, 7 days
a week), including logging the UP and DOWN states and showing them in the web interface
and reporting, but will only send notifications to the nominated contact for the host during
work hours, by default from 9 AM to 5 PM, Monday to Friday.

How it works...
The preceding configuration changed two properties of the host object type, to affect the
changes we needed:

 f check_period: This defines the time periods during which the host should be
checked; we chose the predefined period 24x7, meaning checks against the host
are always to be run, regardless of the time of day or night.

 f notification_period: This defines the time periods during which the host
should send notifications to the appropriate contact; we chose the predefined
period workhours, meaning that notifications will only be sent from 9 AM to
5 PM, Monday to Friday.

The same configuration could be applied exactly to a service, rather than a host:

define service {
 ...
 check_period 24x7
 notification_period workhours
}

The two time periods to which this new configuration refers are themselves defined in
the Nagios Core configuration. The ones we've used, 24x7 and workhours, are standard
time periods included in the defaults, kept in the /usr/local/nagios/etc/objects/
timeperiods.cfg file. The definition for workhours, for example, looks similar to the
following code snippet:

define timeperiod {
 timeperiod_name workhours
 alias Normal Work Hours
 monday 09:00-17:00
 tuesday 09:00-17:00
 wednesday 09:00-17:00
 thursday 09:00-17:00
 friday 09:00-17:00
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

87

The ones we've used here are just examples of common time periods. We can define
time periods ourselves with great precision; see the Creating a new time period recipe in
Chapter 1, Understanding Hosts, Services, and Contacts for some detail on how to do this.

There's more...
The distinction between the two directives is very important. Under most circumstances,
we will want a check_period directive that corresponds to all times for services that are
up day and night, because it means we can retain information about long-term uptime for
the service. Keeping a distinct notification_period directive simply allows us to control
when notifications should be sent, perhaps because they would otherwise go to a pager and
wake up a grumpy systems administrator for a relatively unimportant system!

It's valid for Nagios Core configuration to set a check_period plugin for a reduced time
period, for example workhours. However, you shouldn't need to do this unless your host
is actually going to be down outside these hours. In most cases, it's appropriate to use the
24x7 time period as a value for check_period.

See also
 f The Configuring notification for groups recipe in this chapter

 f The Creating a new time period recipe in Chapter 1, Understanding Hosts, Services,
and Contacts

 f The Specifying how frequently to check a host or service recipe in Chapter 3, Working
with Checks and States

Configuring notification for groups
In this recipe, we'll learn how to define a contact group for a host. We'll demonstrate this as
part of the general best practice of sending notifications to contact groups, rather than to
individual contacts, which allows for more flexibility in assigning individual contacts to the
appropriate groups for receiving appropriate notifications.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host configured already.
We'll use the example of sparta.naginet, a host defined in its own file, which we'll configure
to send its notifications to an existing contact group called noc.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

88

How to do it...
We can configure notifications to be sent to our contact group as follows:

1. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in a
different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Ensure that an appropriate contact_group definition exists for the group to which
you intend to direct your notifications. A valid definition might look something similar
to the following code snippet, perhaps kept in contacts.cfg:
define contactgroup {
 contactgroup_name noc
 alias Network Operations
 members john,jane
}

3. If any contacts are referenced for the group, then you should ensure those are also
defined. They might look similar to the following code snippet:
define contact {
 use generic-contact
 contact_name john
 alias John Smith
 email john@naginet
}
define contact {
 use generic-contact
 contact_name jane
 alias Jane Doe
 email jane@naginet
}

4. Edit the file containing your host definition, and find the definition within the file:
vi sparta.naginet.cfg

The host definition may look similar to the following code snippet:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 notification_period 24x7
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

89

Add or edit the value for the contact_groups directive to noc:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 notification_period 24x7
 contact_groups noc
}

5. If contacts for the host are already defined, then you may wish to remove them,
though you don't have to.

6. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, all notifications for this host should be sent to each member of the noc group;
in our example, the contacts are jane and john.

How it works...
Defining the contacts that should receive notifications for particular hosts can be done
by referring to them individually, or as groups, or both. We could have managed the same
result as the preceding one by defining the contacts directive for the host as jane,john,
referring to the individual contacts directly, rather than by their group name.

Almost the same configuration process applies for setting the contact group for services, rather
than hosts; we add a value for the contact_groups directive to the service definition:

define service {
 ...
 contact_groups noc
}

When an event takes place for the host or service that prompts a notification, and the valid
notification_option flags are set for that event, Nagios Core will check the values of
both the contacts and the contact_groups directives for the host, to determine to whom
to send the notification. In our case, the server finds the value of contact_groups to be
noc, and so refers to that contact group to identify the individual contacts within it, and then
sends the notification to each of them.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

90

There's more...
Which of the two methods to use for defining contacts for hosts or services, whether by
individual contact references or groups, is up to you. For large numbers of hosts and services,
it tends to be easier to direct notifications to appropriate groups rather than individuals, as it
affords us more flexibility in choosing to whom notifications will be sent simply by changing
the individuals in the group.

You need to define at least one contact or contact group for a host or service, or have it inherit
one through a template, for it to be a valid configuration for Nagios Core.

See also
 f The Configuring notification periods, Specifying which states to be notified about,

and Automating contact rotation recipes in this chapter

 f The Creating a new contact and Creating a new contact group recipes in Chapter 1,
Understanding Hosts, Services, and Contacts

Specifying which states to be notified about
In this recipe, we'll learn how to refine which notifications are sent by a host or service, and
which notifications should be received by a particular contact. We'll do this by changing both
the notification types that hosts and services should generate, and to complement that, the
notification types that a contact should be configured to receive.

Getting ready
You should have a Nagios Core 3.0 or newer server, with at least one host configured already.
We'll use the example of sparta.naginet, a host defined in its own file, which we'll configure
to send only DOWN and RECOVERY notifications, ignoring other notifications such as WARNING
and UNKNOWN. It will send notifications to an existing contact called john; we'll ensure that this
contact is configured to receive those notifications.

How to do it...
We can configure the notification types for our host as follows:

1. Change to the objects configuration directory for Nagios Core. The default is
/usr/local/nagios/etc/objects. If you've put the definition for your host
in a different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

91

2. Edit the file containing the definition for your host. It might look similar to the
following code snippet:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 contacts john
 notification_period 24x7
}

3. Add a value for the notification_options directive. In our case, we'll use d,r,
to correspond to notifications for DOWN and RECOVERY states:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 contacts john
 notification_period 24x7
 notification_options d,r
}

4. We should also ensure that notifications for this host are enabled, specifically that
notifications_enabled is set to 1. An easy way to set this and other relevant
directives is to have the host inherit from a template such as linux-server, as
done previously, but we can set it explicitly if we prefer:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 contacts john
 notification_period 24x7
 notification_options d,r
 notifications_enabled 1
}

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

92

5. Edit the file containing the definition for the host's nominated contacts, or the contacts
within its nominated contact group. In this case, we're editing the host's nominated
contact john. The definition might look similar to the following code snippet:
define contact {
 use generic-contact
 contact_name john
 alias John Smith
 email john@naginet
}

6. Edit or set the directive for host_notification_options, for each contact,
to include the same values that you set for the host. In this case, we set it to
d, u, r, which means that John Smith can receive the DOWN, UNREACHABLE,
and RECOVERY notifications about hosts:
define contact {
 use generic-contact
 contact_name john
 alias John Smith
 email john@naginet
 host_notification_options d,u,r
}

7. Again, you should ensure that the contacts are configured to receive host
notifications, using the host_notifications_enabled directive being
set to 1. We can do this via inheritance from a template such as generic
-contact, which tends to be easier, or we can set it explicitly:
define contact {
 use generic-contact
 contact_name john
 alias John Smith
 email john@naginet
 host_notification_options d,r
 host_notifications_enabled 1
}

The analogous directive for receiving service notifications is service_
notifications_enabled.

8. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

93

With this done, notifications sent when the host enters the DOWN state should be sent to the
contact, and also when it recovers to the OK state, but no other notifications about the host
(such as the UNREACHABLE or DOWNTIMESTART notifications) should be sent about the
sparta.naginet host to the contact john.

How it works...
The kinds of notifications a host should produce is defined in its notification_options
directive, and the kind of host notifications that a defined contact should receive is configured in
its host_notification_options directive. Both take the form of comma-separated values.

The valid values for the notification_options directive for host objects are:

 f d: Notifications for a host being in the DOWN state

 f u: Notifications for a host being in the UNREACHABLE state

 f r: Notifications for a host recovering from problems (becoming UP)

 f f: Notifications for a host beginning or ending the flapping state

 f s: Notifications for a host beginning or ending scheduled downtime

For example, for a host that should only send notifications when entering the DOWN or UP states,
but ignoring notification events for UNREACHABLE or flapping, we might define the following:

define host {
 ...
 notification_options d,r
}

The valid directives are slightly different for service objects:

 f w: Notifications for a service being in the WARNING state

 f u: Notifications for a service being in the UNKNOWN state

 f c: Notifications for a service being in the CRITICAL state

 f r: Notifications for a service recovering from problems (becoming OK)

 f f: Notifications for a service beginning or ending a flapping state

 f s: Notifications for a service beginning or ending scheduled downtime

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

94

For example, for a host that should send notifications for all of these events except for flapping
and scheduled downtime states, we might define the following:

define service {
 ...
 notification_options w,u,c,r
}

All of the preceding values can be used in contact object definitions to restrict the service
notifications a particular contact should receive, through the service_notification_
options directive:

define contact {
 ...
 service_notifications_enabled 1
 service_notification_options w,u,c,r
}

There's more...
Unless we have a specific reason for particular contacts not to accept notifications of a
particular kind, it's a good practice to configure contacts to receive all notifications that
they are sent, by including all the flags in both the directives for the contact:

define contact {
 ...
 host_notification_options d,u,r,f,s
 service_notification_options w,u,c,r,f,s
}

This means that the contact will process any notification dispatched to it, and we can instead
restrict the kinds of notifications that are sent out by the hosts and services for which this is
the delegated contact. With new configurations, it is generally better to start by sending too
much information, and then removing unnecessary notification flags if appropriate, rather
than potentially missing important messages because they're never sent.

If we intend to do this for all of our contacts, it may be appropriate to include these directives
as part of a contact template, and inherit from it using the use directive. The generic-
contact contact template included with the default configuration may be suitable.

If you want to completely disable notifications for a given host, service, or contact, the single
value n for notification_options, host_notification_options, and service_
notification_options will do this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

95

See also
 f The Configuring notification for groups, Automating contact rotation, and Defining

a custom notification method recipes in this chapter

 f The Using inheritance to simplify configuration recipe in Chapter 9, Configuration
Management

Tolerating a certain number of failed checks
In this recipe, we'll learn how to arrange Nagios Core configuration to only send notifications
about problems with a host or service after a check has been repeated a certain number of
times and failed each time.

This can be an ideal arrangement for non-critical hosts that occasionally have "blips" or
short outages for whatever reason, and only become problematic if they remain down
after repeated checks.

Getting ready
You should have a Nagios Core 3.0 or newer server, with at least one host configured already.
We'll use the example of sparta.naginet, a host defined in its own file. We'll arrange for it
to send us notifications only after a total of five failed host checks.

How to do it...
We can configure the number of failed checks to tolerate before sending a notification
as follows:

1. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in a
different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Edit the file containing your host definition, and find the definition within it. It may look
similar to the following code snippet:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 notification_period 24x7
}

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

96

3. Add or edit the value for max_check_attempts to 5:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 notification_period 24x7
 max_check_attempts 5
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, Nagios Core will not send a notification for the host entering the DOWN
state until the check has been attempted a total of five times, and has failed each time.
In the following screenshot, even though four checks have already taken place and failed,
no notification has been sent, and the state is listed as SOFT:

The SOFT state shows that while Nagios Core has flagged the host as DOWN, it will retry the
check until it exhausts max_check_attempts. At this point it will flag the host as being in
a HARD DOWN state and send a notification.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

97

However, if the host were to come back up before the next check, then the state would change
back to UP, without ever having sent a notification:

How it works...
The preceding configuration alters the max_check_attempts directive for the host to
specify the number of checks that need to have failed before the host will flag a HARD DOWN
or UNREACHABLE state, and generate a notification event.

The process for changing the maximum number of attempts before a notification for a service
is identical; we add the same directive and value to the definition for the service:

define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP
 check_command check_http
 max_check_attempts 5
}

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

98

There's more...
The time between successive retry checks of a host before sending any notification can also
be customized with the retry_interval directive. By default, the interval is in minutes, so
if we wanted to configure a two-minute wait between retry checks, we could add this directive
to the host or service:

define host {
 ...
 retry_interval 2
}
define service {
 ...
 retry_interval 2
}

See also
 f The Specifying how frequently to check a host or service and Managing brief outages

with flapping recipes in Chapter 3, Working with Checks and States

Automating contact rotation
In this recipe, we'll learn how to automatically arrange notifications so that they are only
received by certain contacts in a group at certain times.

For companies with more than one person as dedicated network staff, it's a common practice
to have an on-call roster, where one member of staff will be the dedicated on-call person for
a certain period of time, perhaps a week or two. The kind of setup we'll configure here allows
filtering notifications, so that they're only delivered to contacts at appropriate times; notifications
are generated by hosts and services and sent to all the contacts in the nominated group, but
only one (or perhaps more than one) of the contacts actually receives it.

We'll set this up using two properties of contacts that allow us to restrict the time period within
which they should receive notifications: host_notification_period and service_
notification_period.

Getting ready
You should have a Nagios Core 3.0 or newer server, with at least one contact group configured
already, with at least two contacts within it. You should be familiar with configuring time periods
and understand the basics of notifications as discussed earlier in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

99

We'll use the very simple example of three network operators, named as contacts alan,
brenden, and charlotte, taking turns with monitoring duty every week. All three are
members of the group ops, which is specified in the contact_groups directive for all
of the hosts and services on the network.

How to do it...
We can set up a basic alternating schedule for receiving notifications for our operators
as follows:

1. Change to the objects configuration directory for Nagios Core. The default path
is /usr/local/nagios/etc/objects. If you've put the definition for your host
in a different file, move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Check the relevant file or files to ensure your contacts are defined, and that they
are members of the appropriate contact group. A good location for such information
is in the contacts.cfg file. The configuration might look similar to the following
code snippet:
define contactgroup {
 contactgroup_name ops
 alias Network Operations
 members alan,brenden,charlotte
}
 define contact {
 use generic-contact
 contact_name alan
 alias Alan Jones
 email alan@pager.naginet
 }
 define contact {
 use generic-contact
 contact_name brenden
 alias Brenden Peters
 email brenden@pager.naginet
 }
 define contact {
 use generic-contact
 contact_name charlotte
 alias Charlotte Franks
 email charlotte@pager.naginet
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

100

3. In this case, all our hosts and services are configured to send messages to the ops
contact group:
 define host {
 ...
 contact_groups ops
 }
 define service {
 ...
 contact_groups ops
 }

4. Define time periods to correspond to the times during which each of your contacts
should be receiving messages. We'll use the special syntax of time period definitions
to set up the definitions for this rotation:
define timeperiod {
 timeperiod_name alan-pager
 alias Alan pager schedule
 2012-06-05 / 21 00:00-24:00
 2012-06-06 / 21 00:00-24:00
 2012-06-07 / 21 00:00-24:00
 2012-06-08 / 21 00:00-24:00
 2012-06-09 / 21 00:00-24:00
 2012-06-10 / 21 00:00-24:00
 2012-06-11 / 21 00:00-24:00
}
define timeperiod {
 timeperiod_name brenden-pager
 alias Brenden pager schedule
 2012-06-12 / 21 00:00-24:00
 2012-06-13 / 21 00:00-24:00
 2012-06-14 / 21 00:00-24:00
 2012-06-15 / 21 00:00-24:00
 2012-06-16 / 21 00:00-24:00
 2012-06-17 / 21 00:00-24:00
 2012-06-18 / 21 00:00-24:00
}
define timeperiod {
 timeperiod_name charlotte-pager
 alias Charlotte pager schedule
 2012-06-19 / 21 00:00-24:00
 2012-06-20 / 21 00:00-24:00
 2012-06-21 / 21 00:00-24:00
 2012-06-22 / 21 00:00-24:00

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

101

 2012-06-23 / 21 00:00-24:00
 2012-06-24 / 21 00:00-24:00
 2012-06-25 / 21 00:00-24:00
}

5. Go back and configure each of your contacts with the host_notification_period
and service_notification_period directives, to filter notifications to only be
received during their dedicated time period:
define contact {
 use generic-contact
 contact_name alan
 alias Alan Jones
 email alan@pager.naginet
 host_notification_period alan-pager
 service_notification_period alan-pager
}
define contact {
 use generic-contact
 contact_name brenden
 alias Brenden Peters
 email brenden@pager.naginet
 host_notification_period brenden-pager
 service_notification_period brenden-pager
}
define contact {
 use generic-contact
 contact_name charlotte
 alias Charlotte Franks
 email charlotte@pager.naginet
 host_notification_period charlotte-pager
 service_notification_period charlotte-pager
}

6. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, the contacts configured should only receive notifications during their dedicated
pager time. If these are our only contacts, then all the notifications generated will go to only one
person at any given time.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

102

How it works...
The host_notification_period and service_notification_period directives in
the definitions for our contacts are used to limit the times during which these contacts should
receive any notifications. Each of our contacts in this example has their own time period
defined to correspond to their portion of the pager schedule.

Let's take a look at Alan's example:

 define timeperiod {
 timeperiod_name alan-pager
 2012-06-05 / 21 00:00-24:00
 2012-06-06 / 21 00:00-24:00
 2012-06-07 / 21 00:00-24:00
 2012-06-08 / 21 00:00-24:00
 2012-06-09 / 21 00:00-24:00
 2012-06-10 / 21 00:00-24:00
 2012-06-11 / 21 00:00-24:00
 }

The second line of the directive, 2012-06-05 / 21 00:00-24:00, can be broken down
as follows:

 f Starting from the 5th of June,

 f Every 21 days,

 f From midnight to the following midnight (i.e., the entire day).

The configuration then goes on to do the same for the remaining days of the first week
Alan will be on call, and specifies that he will be on call the same day 21 days (3 weeks)
later. A similar configuration, but starting one week and two weeks later, is set up for the
contacts brenden and charlotte respectively.

There's more...
Note that there's no reason time periods can't overlap. If it happens to suit us to arrange
for more than one contact to receive a notification, we can do that. Similarly, we can leave
gaps in the schedule if notifications aren't needed during a certain time period.

Time periods in Nagios Core are highly flexible; to see some examples of the various
syntaxes you can use for defining them, take a look at the Creating a new time period
recipe in Chapter 1, Understanding Hosts, Services, and Contacts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

103

See also
 f The Configuring notification for groups and Specifying which states to be notified

about recipes in this chapter

 f The Creating a new contact, Creating a new contact group, and Creating a new
time period recipes in Chapter 1, Understanding Hosts, Services, and Contacts

Defining an escalation for repeated
notifications

In this recipe, we'll learn how to arrange a Nagios Core configuration such that after a certain
number of repetitions, notifications for problems on hosts or services are escalated to another
contact, instead of (or in addition to) the normally defined contact. This is done by defining a
separate object type called a host or service escalation.

This kind of setup could be useful to alert more senior networking staff to an unresolved
problem that a less experienced person is struggling to fix, and can also function as a
"safety valve" to ensure that problem notifications for hosts eventually do reach someone
else if they remain unfixed.

Getting ready
You should have a Nagios Core 3.0 or newer server, with at least one host or service configured
already, and at least two contact groups—one for the first few notifications, and one for the
escalations. You should understand how notifications are generated and sent to the contacts
and contact_groups for hosts or services.

We'll use the example of a host called sparta.naginet which normally sends notifications
to a group called ops. We'll arrange for all of the notifications after the fourth one to also be
sent to a contact group called emergency.

How to do it...
We can configure an escalation for our host or service as follows:

1. Change to the objects configuration directory for Nagios Core. The default is
/usr/local/nagios/etc/objects. If you've put the definition for your
host in a different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

104

2. Edit the file containing the definition for the host. The definition might
look similar to the following code snippet:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 contact_groups ops
 notification_period 24x7
 notification_interval 10
}

3. Underneath the host definition, add the configuration for a new
hostescalation object:
define hostescalation {
 host_name sparta.naginet
 contact_groups ops,emergency
 first_notification 5
 last_notification 0
 notification_interval 10
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, when problems are encountered with the host that generate notifications, all
the notifications beyond the fifth one will be sent to both the ops contact group and also to the
emergency contact group, expanding the number of people or systems contacted, to make it
more likely the problem will actually be addressed or fixed. Perhaps someone on the ops team
has misplaced their pager.

How it works...
The configuration added in the preceding section is best thought of as a special case or an
override for a particular host, in that it specifies a range of notifications that should be sent
to a different set of contact groups. It can be broken down as follows:

 f host_name: This is the same value of host_name given for the host in its definition;
we specified sparta.naginet.

 f contact_groups: This is the contact groups to which notifications meeting this
special case should be sent. We specify both the emergency group and the ops
group, so that matching notifications go to both. Note that they are comma-separated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

105

 f first_notification: This is the count of the first notification that should match
this escalation; we chose the fifth notification.

 f last_notification: This is the count of the last notification that should match
this escalation. We set this to zero, which means that all notifications after first_
notification should be sent to the nominated contact or contact groups. The
notifications will not stop until they are manually turned off, or the problem is fixed.

 f notification_interval: Like the host and service directives of the same name,
this specifies how long Nagios Core should wait before sending new notifications if
the host remains in a problematic state. Here, we've chosen ten minutes.

Individual contacts can also (or instead) be specified with the contacts directive, rather than
contact_groups.

Service escalations work in much the same way; the difference is that you need to specify
the service by its service_description directive as well as its host name. Everything else
works the same way. A similar escalation for a service check with a service_description
of HTTP running on sparta.naginet might look similar to the following code snippet:

define serviceescalation {
 host_name sparta.naginet
 service_description HTTP
 contact_groups ops,emergency
 first_notification 5
 last_notification 0
 notification_interval 10
}

There's more...
The preceding escalation continues sending notifications both to the original ops group and also
to the members of the emergency group. It's generally a good idea to do it this way rather than
sending notifications only to the escalated group, because the point of escalations is to increase
the reach of the notifications when a problem is not being dealt with, rather than merely to try
contacting a different group of people instead.

This principle applies to stacking escalations, as well; if we had a host group with all of our
contacts in it, perhaps named everyone, we could define a second escalation so that the
tenth notification onwards goes to every single contact:

define hostescalation {
 host_name sparta.naginet
 contact_groups everyone
 first_notification 10
 last_notification 0
 notification_interval 10
}

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

106

Just as we can specify multiple host escalations, it's also fine for the ranges of notifications to
overlap so that more than one escalation applies.

With a little arithmetic, you can arrange escalations such that they work after a host or service
has been in a problematic state for a certain period of time. For example, the escalation we
specified in the recipe will apply after the host has been in a problem state for 40 minutes,
because notification_interval specifies that Nagios Core should wait for 10 minutes
between re-sending notifications.

See also
 f The Configuring notifications for groups recipe in this chapter

 f The Creating a new contact group recipe in Chapter 1, Understanding Hosts,
Services, and Contacts

Defining a custom notification method
In this recipe, we'll learn how to specify an alternative method for a contact to receive
notifications about a service. A very typical method for a contact to receive notifications
is by sending an e-mail to their contact address; e-mail messages could be sent to an
inbox or a paging device.

However, notifications are just text; we can arrange to deal with them via any command
we wish, in much the same way as we can configure host or service checks. In this recipe,
we'll set up a new contact called motd, which when it receives notifications will write them
into the server's /etc/motd directory to be displayed on login.

Getting ready
You should have a Nagios Core 3.0 or newer server, with at least one host or service configured
already. You should understand how notifications are generated and their default behavior in
being sent to the contacts and contact_groups for hosts or services.

We'll use the example of a host called troy.naginet, configured to send notifications to the
ops contact group. We'll add a new contact within this group called motd.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

107

How to do it...
We can arrange our custom notification method as follows:

1. Ensure that your /etc/motd file can be written to by Nagios Core, and that it's a static
file that your system will not overwrite on boot. If you run your Nagios Core server as the
recommended default user and group of nagios, you could do something similar to
the following:
chgrp nagios /etc/motd

chmod g+w /etc/motd

2. It would be a good idea to test that the user can write to the file using su or sudo:
sudo -s -u nagios

$ echo 'test' >>/etc/motd

3. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in a
different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

4. Edit the file containing the definitions for your notification commands. By default, this
is in the file commands.cfg. Append the following definitions to the file:
define command {
 command_name notify-host-motd
 command_line /usr/bin/printf "%s\n" "$SHORTDATETIME$:
$HOSTALIAS$ is $HOSTSTATE$" >>/etc/motd
}
define command {
 command_name notify-service-motd
 command_line /usr/bin/printf "%s\n" "$SHORTDATETIME$:
$SERVICEDESC$ on $HOSTALIAS$ is $SERVICESTATE$" >>/etc/motd
}

5. Edit the file containing the definitions for your contacts. In the QuickStart configuration,
this is in the file contacts.cfg. Append the following definitions to the file:
define contact {
 use generic-contact
 contact_name motd
 contact_groups ops
 alias MOTD
 host_notification_commands notify-host-motd
 service_notification_commands notify-service-motd
}

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

108

6. Edit the file containing the definitions for your host and/or services, to ensure that
they specify ops in their contact_groups directives:
define host {
 host_name troy.naginet
 ...
 contact_groups ops
}
 define service {
 host_name troy.naginet
 ...
 contact_groups ops
 }

7. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, the next notifications that go out for the host and services should not only be
e-mailed to any contacts in the ops group, but should also be written by the motd contact to
/etc/motd, to be presented on login:

06-30-2012 17:24:05: troy is DOWN
06-30-2012 17:24:05: HTTP on troy is CRITICAL
06-30-2012 17:25:07: troy is DOWN
06-30-2012 17:25:07: HTTP on troy is CRITICAL

How it works...
The first part of the configuration that we added is defining new notification commands.
These are actually command definitions, just the same as those used with the check_
command definitions for hosts and services; the difference is that they're used by contacts
to send notifications to people (or in this case, write them to files) in the appropriate way.

If you're using the default Nagios Core configuration, the commands already defined in
commands.cfg should include notify-host-by-email and notify-service-by-
email. I've truncated the complete command line as it's very long:

define command {
 command_name notify-host-by-email
 command_line /usr/bin/printf "%b" "***** Nagios *****\n\
nNotification...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

109

define command {
 command_name notify-service-by-email
 command_line /usr/bin/printf "%b" "***** Nagios *****\n\
nNotification...
}

These commands use the system printf implementation along with many Nagios Core macros
to build an appropriate notification string, which is e-mailed to the appropriate contact using a
shell pipe into the system mailer.

If we inspect the templates.cfg file where the generic-contact template is defined,
we can see these methods are referred to in two directives:

define contact {
 ...
 service_notification_commands notify-service-by-email
 host_notification_commands notify-host-by-email
}

This configuration thus defines a particular notification command to be used for hosts that
derive from the generic-host template.

Our own command definition does something similar in building a string with a call to printf.
But instead of writing the output into a pipe to the system mailer, it appends it to the /etc/
motd file.

The command_line directive that we specified for the motd contact to process host
notifications is as follows:

/usr/bin/printf "%s\n" "$SHORTDATETIME$: $HOSTALIAS$ is $HOSTSTATE$" >>/
etc/motd

The first thing Nagios Core does when a notification event for this contact is successfully fired
is substitute values for its macros, $SHORTDATETIME$, $HOSTALIAS$, and $HOSTSTATE$:

/usr/bin/printf "%s\n" "06-30-2012 17:24:05: troy is DOWN" >>/etc/motd

The resulting string is then executed as a command by the running Nagios Core user, by
default nagios, and providing that user has the appropriate permissions, it's appended
to the end of the MOTD.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Notifications

110

There's more...
Adding messages to the MOTD may not be useful for all network administrators, particularly
for larger or more sensitive networks, for which hundreds of notifications could be generated
daily. The main thing to take away from this is that Nagios Core can be configured to process
notification events in pretty much any way, provided:

 f We can define a command line that will consistently do what is needed with what
the results of the macro substitution Nagios Core will perform for us

 f The nagios user, or whichever user as which the Nagios Core server is running,
has all the relevant permissions it needs to run the command

E-mail notifications, particularly to a mobile paging device, are a very sensible basis for
notifications for most administrators. However, if some other means of notification is needed,
such as inserting into a database or piping into a Perl script, it is possible to do this as well.

Note that it's safest to specify the full paths to any binaries or file we use in these commands,
hence /usr/bin/printf rather than merely printf. This is to ensure that the program we
actually intend to run is run, and avoids having to mess about with the $PATH specifications
for the nagios user.

See also
 f The Configuring notifications for groups recipe in this chapter

 f The Creating a new command and Customizing an existing command recipes in
Chapter 2, Working with Commands and Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

5
Monitoring Methods

In this chapter, we will cover the following recipes:

 f Monitoring PING for any host

 f Monitoring SSH for any host

 f Checking an alternative SSH port

 f Monitoring mail services

 f Monitoring web services

 f Checking that a website returns a given string

 f Monitoring database services

 f Monitoring the output of an SNMP query

 f Monitoring a RAID or other hardware device

 f Creating an SNMP OID to monitor

Introduction
Nagios Core is best thought of as a monitoring framework that uses plugins to perform
appropriate checks on hosts and services, and returns results about their states in a
format that it understands and can use for sending notifications and keeping track of
states on a long-term basis.

The design is quite flexible. As explained in Chapter 2, Working with Commands and Plugins,
Nagios Core can use as a plugin any command-line application that gives appropriate return
values as defined in the Nagios Core header files, Perl library, or shell script. In turn, Nagios
Core can be configured to use the same plugin in many different ways, taking advantage of
any switch provided by the plugin to adjust its behavior, including providing metadata to it in
the form of the values of Nagios Core macros, such as $HOSTADDRESS$.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

112

The collection of plugins available on the Nagios Exchange website at http://exchange.
nagios.org/ is fairly large, and documenting all of them is well out of the scope of this
book. However, some of the most useful plugins are included as part of the Nagios Plugins
set, and are installed as part of the recommended quick start guides for Nagios Core at
http://nagios.sourceforge.net/docs/3_0/quickstart.html. They include
programs to monitor very common network features in typical ways, such as monitoring
basic network connectivity, web services, mail servers, and many others. The plugin site
itself is at http://nagiosplugins.org/.

This chapter will demonstrate the usage of some of the most useful components of this plugin
set, which it assumes you have already installed. The focus will be on monitoring tasks that will
be relevant to most or even all networks of various sizes, hopefully bringing the reader well past
the point of thinking of Nagios Core as merely a process to send PING requests. The last few
recipes will show how you can use the Simple Network Management Protocol (SNMP) as a
method for checking any generic network service or system property that may not be covered
by the standard Nagios Plugins set.

Monitoring PING for any host
In this recipe, we'll learn how to set up PING monitoring for a host. We'll use the check_ping
plugin, and its command of the same name, to send ICMP ECHO requests to a host. We'll use
this as a simple diagnostic check to make sure that the host's network stack is responding
in a consistent and timely fashion, in much the same way as an administrator might use the
ping command interactively to check the same properties.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host configured already.
We'll use the example of corinth.naginet, a host defined in its own file. You should also
understand the basics of how hosts and services relate, which is covered in the recipes of
Chapter 1, Understanding Hosts, Services, and Contacts.

How to do it...
We can add a new PING service check to our existing host as follows:

1. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in
a different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

www.it-ebooks.info

http://nagios.sourceforge.net/docs/3_0/quickstart.html
http://nagios.sourceforge.net/docs/3_0/quickstart.html
http://nagiosplugins.org/
http://www.it-ebooks.info/

Chapter 5

113

2. Edit the file containing the definition for the host. The host definition might look
similar to the following code snippet:
define host {
 use windows-server
 host_name corinth.naginet
 alias corinth
 address 10.128.0.27
}

3. Beneath the definition for the host, place a service definition referring to check_ping.
You may like to use the generic-service template, as follows:
define service {
 use generic-service
 host_name corinth.naginet
 service_description PING
 check_command check_ping!100,20%!200,40%
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, a new service check will start taking place, with the appropriate contacts and
contact groups notified when:

 f The Round Trip Time (RTT) of the request and its response exceeds 200ms,
or more than 40 percent of the packets are lost during the check; a CRITICAL
notification is fired for the service in either case.

 f If a CRITICAL notification was not fired, and the RTT of the request and its
response exceeds 100ms, or more than 20 percent of the packets are lost
during the check; in this case, a WARNING notification is fired for the service.

The information about the thresholds is given in the definition for the check_command
directive, as arguments to the check_ping command.

More information about this service will also be visible in the web interface, under the
Services section.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

114

How it works...
The configuration added in the preceding section defines a new service check on the existing
corinth.naginet host to check that the RTT and the packet loss for an ICMP ECHO request
and response are within acceptable limits.

For most network configurations, it may well be the case that the host itself is also being
checked by check_ping, by way of the command check-host-alive. The difference
is that the thresholds for the RTT and packet loss are intentionally set very high for this
command, because it is intended to establish whether the host is up or down at all, not
how responsive it is.

There's more...
In networks where most of the hosts are configured to respond to ICMP ECHO requests, it
could perhaps be worthwhile to configure service checks on all of the hosts in a configuration.
This can be done using the * wildcard when defining host_name for the service:

define service {
 use generic-service
 host_name *
 service_description PING
 check_command check_ping!100,20%!200,40%
}

This will apply the same check, with a service_description directive of PING, to all
of the hosts configured in the database. This method will save the hassle of configuring
a service separately for all the hosts.

If some of the hosts in a network do not respond to PING, it may be more appropriate
to place the ones that do in a hostgroup, perhaps named something such as icmp:

define hostgroup {
 hostgroup_name icmp
 alias ICMP enabled hosts
 members sparta.naginet,corinth.naginet
}

The single service can then be applied to all the hosts in that group, using the hostgroup_
name directive in the service definition:

define service {
 use generic-service
 hostgroup_name icmp
 service_description PING
 check_command check_ping!100,20%!200,40%
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

115

It's generally a good idea to have network hosts respond to ICMP messages wherever possible,
in order to comply with the recommendations in RFC1122 and to ease debugging.

Finally, note that the thresholds for the RTT and the packet loss are not fixed; in fact, they're
defined in the service definition, in the check_command line. For hosts that have higher latency,
perhaps due to network load or topology, it may be appropriate to adjust these thresholds, which
is covered in the Changing thresholds for ping RTT and packet loss recipe in Chapter 3, Working
with Checks and States.

See also
 f The Creating a new host, Creating a new service, and Creating a new hostgroup

recipes in Chapter 1, Understanding Hosts, Services, and Contacts

 f The Using an alternative check command recipe in Chapter 2, Working with
Commands and Plugins

 f The Changing thresholds for ping RTT and packet loss recipe in Chapter 3,
Working with Checks and States

Monitoring SSH for any host
In this recipe, we'll learn how to check that the SSH daemon on a remote host responds
to requests, using the check_ssh plugin, and the command of the same name. This will
allow us to be notified as soon as there are problems connecting to the SSH service.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host configured
already. We'll use the example of troy.naginet, a host defined in its own file. You
should also understand the basics of how hosts and services relate, which is covered
in the recipes of Chapter 1, Understanding Hosts, Services, and Contacts.

It may be a good idea to first verify that the host for which you want to add monitoring is
presently running the SSH service that requires checking. This can be done by running
the ssh client to make a connection to the host:

$ ssh troy.naginet

We should also check that the plugin itself will return the result required when run against
the applicable host, as the nagios user:

sudo -s -u nagios

$ /usr/local/nagios/libexec/check_ssh troy.naginet

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

116

If you're unable to get a positive response from the SSH service on the target machine, even
if you're sure it's running, then this could perhaps be a symptom of unrelated connectivity or
filtering problems. We may, for example, need to add the monitoring server on which Nagios
Core is running to the whitelist for SSH (normally TCP destination port 22) on any applicable
firewalls or routers.

How to do it...
We can add a new SSH service check to our existing host as follows:

1. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in
a different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Edit the file containing the definition for the host. The host definition might look
similar to the following code snippet:
define host {
 use linux-server
 host_name troy.naginet
 alias troy
 address 10.128.0.25
}

3. Beneath the definition for the host, place a service definition referring to check_ssh.
It may help to use the generic-service template or another suitable template,
as follows:
define service {
 use generic-service
 host_name troy.naginet
 service_description SSH
 check_command check_ssh
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, a new service check will start taking place, with the appropriate contacts and
contact groups notified when an attempt to connect to the SSH server fails. The service check
will be visible in the web interface, on the Services page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

117

How it works...
The preceding configuration defines a new service with a service_description of SSH
for the existing troy.naginet host, using the values in the generic-service template
and additionally defining a check_command directive of check_ssh.

This means that in addition to checking whether the host itself is up with check-host-alive,
as done previously, Nagios Core will also check that the SSH service running on the host is
working by attempting to make a connection with it. It will also notify the applicable contacts
if there are any problems found with the service after the appropriate number of tests.

For example, if the plugin finds that the host is accessible but not responding to client tests,
then it might notify with the following text:

Subject: ** PROBLEM Service Alert: troy.naginet/SSH is CRITICAL **

***** Nagios *****

Notification Type: PROBLEM

Service: SSH
Host: troy.naginet
Address: troy.naginet
State: CRITICAL

Date/Time: Wed May 23 13:35:21 NZST 2012

Additional Info:

CRITICAL - Socket timeout after 10 seconds

Note that we don't need to actually supply credentials for the SSH check; the plugin simply
ensures that the service is running and responding to connection attempts.

There's more...
The definition for the check_ssh command warrants some inspection if we're curious as to
how the plugin is actually applied as a command, as defined in the QuickStart configuration
in /usr/local/nagios/etc/objects/commands.cfg:

define command {
 command_name check_ssh
 command_line $USER1$/check_ssh $ARG1$ $HOSTADDRESS$
}

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

118

This shows that the check_ssh command is configured to run the check_ssh binary file in
$USER1$, a macro that normally expands to /usr/local/nagios/libexec, against the
host address of the applicable server. It adds in any other arguments beforehand. We haven't
used any arguments in this recipe, since we simply want to make a normal check of the SSH
service on its default port.

This check should work with most SSH2 compliant servers, most notably including the popular
OpenSSH server.

Checking SSH accessibility is a common enough thing for servers that you may wish to set
up an SSH service check to apply to a hostgroup, rather than merely to an individual host.
For example, if you had a group called ssh-servers containing several servers that should
be checked with a check_ssh call, then you could configure them all to be checked with one
service definition using the hostgroup_name directive:

define service {
 use generic-service
 hostgroup_name ssh-servers
 service_description SSH
 check_command check_ssh
}

This would apply the same service check to each host in the group, which makes the definition
easier to update if the check needs to be changed or removed in future.

Note that the check_ssh plugin is different from the check_by_ssh plugin, which is used
to run checks on remote machines, much like NRPE.

See also
 f The Checking an alternative SSH port recipe in this chapter

 f The Creating a new host, Creating a new service, and Creating a new hostgroup
recipes in Chapter 1, Understanding Hosts, Services, and Contacts

 f The Using check_by_ssh with key authentication instead of NRPE and Monitoring
local services on a remote machine with NRPE recipes in Chapter 6, Enabling
Remote Execution

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

119

Checking an alternative SSH port
In this recipe, we'll learn how to deal with the common situation of a machine running an SSH
daemon that is listening on an alternative port. So, a service definition that uses check_ssh,
as used in the Monitoring SSH for any host recipe, fails because the plugin defaults to using
the standard SSH TCP port number of 22.

This kind of setup is common in situations where an SSH server should not be open to the
general public and is often employed as a "security by obscurity" method to reduce automated
attacks against the server. The SSH daemon is therefore configured to listen on a different port,
usually with a much higher number; administrators who need to use it are told what the port
number is.

We'll deal with this situation and monitor the service in Nagios Core, even though it's running on
a non-standard port. We'll do this by defining a new command that checks SSH on a specified
port number, and creating a service definition that uses that command. The command will
accept the port number to check as an argument.

The principles here should generalize well to any other situation where checking an alternative
port is necessary, and the Nagios Core plugin being used to make the check supports doing
so on an alternative port.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host configured already.
We'll use the example of troy.naginet, a host defined in its own file, and listening on the
non-standard SSH port of 5022. You should also understand the basics of how hosts and
services relate, which is covered in the recipes of Chapter 1, Understanding Hosts, Services,
and Contacts.

A good first step may be to verify that we're able to access the SSH daemon from the
monitoring server on the specified port. We can do this from the command line using
the ssh client, specifying the port number with the -p option:

$ ssh troy.naginet -p 5022

Alternatively, you can run the check_ssh plugin directly from the command line:

sudo -s -u nagios

$ /usr/local/nagios/libexec/check_ssh -p 5022 troy.naginet

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

120

How to do it...
We can set up a service check for SSH on a non-standard port as follows:

1. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in a
different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Edit a suitable file containing command definitions, and find the definition for
the check_ssh command. In the default installation, this file is commands.cfg.
The check_ssh definition looks similar to the following code snippet:
define command {
 command_name check_ssh
 command_line $USER1$/check_ssh $ARG1$ $HOSTADDRESS$
}

3. Beneath the check_ssh definition, add a new command definition as follows:
define command {
 command_name check_ssh_altport
 command_line $USER1$/check_ssh -p $ARG1$ $HOSTADDRESS$
}

4. Edit the file containing the definition for the host. The host definition might look
similar to the following code snippet:
define host {
 use linux-server
 host_name troy.naginet
 alias troy
 address 10.128.0.25
}

5. Beneath the definition for the host, place a new service definition using our
new command:
define service {
 use generic-service
 host_name troy.naginet
 service_description SSH_5022
 check_command check_ssh_altport!5022
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

121

6. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

With this done, Nagios Core will begin running service checks using the check_ssh plugin,
but will use the alternative destination port 5022 for its connection attempts for the service,
which has a service_description of SSH_5022.

How it works...
The configuration added in the preceding section has almost exactly the same end result as
adding a default check_ssh service; the only difference is that a different port is checked in
order to make the connection. We use the check_ssh_altport command to do this, which
we also defined ourselves in a syntax very similar to the check_ssh definition.

The difference is that the command accepts an argument which is used as a value for the
-p option to the check_ssh plugin, to check the specified port number; in this case, TCP
port 5022, rather than the default of port 22.

There's more...
Since arguments in Nagios Core can include spaces, we could also have defined the service
check as follows, without having to define an extra command:

define service {
 use generic-service
 host_name troy.naginet
 service_description SSH_5022
 check_command check_ssh!-p 5022
}

This is because the $ARG1$ macro representing the argument is still used in the original
check_ssh command, but it needs to have the option included as well as its value.
The difference is mainly one of preference, depending on which we feel is clearer and
more maintainable. It may help to consider whether a well-named command could assist
someone else reading our configuration in understanding what is meant.

See also
 f The Monitoring SSH for any host recipe in this chapter

 f The Creating a new host and Creating a new service recipes in Chapter 1,
Understanding Hosts, Services, and Contacts

 f The Creating a new command recipe in Chapter 2, Working with Commands
and Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

122

Monitoring mail services
In this recipe, we'll learn how to monitor three common mail services for a nominated host:
SMTP, POP, and IMAP. We'll also see how to use the same structure to include additional
checks for secure, encrypted versions of each of these services: SMTPS, POPS, and IMAPS.

For simplicity, we'll assume in this recipe that all three of these services are running on the
same host, but the procedure will generalize easily for the common case where there are
designated servers for one or more of the preceding functions.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host configured
already. We'll use the example of troy.naginet, a host defined in its own file. You
should also understand the basics of how hosts and services relate, which is covered
in the recipes of Chapter 1, Understanding Hosts, Services, and Contacts.

Checking the connectivity for the required services on the target server is also a good idea,
to make sure that the automated connections the monitoring server will be making on the
appropriate protocols and ports will actually work as expected. For the plain unencrypted
mail services, this could be done via Telnet to the appropriate ports. For SMTP:

$ telnet marathon.naginet 25

Trying 10.128.0.34...

Connected to marathon.naginet.

Escape character is '^]'.

220 marathon.naginet ESMTP Postfix

For POP:

$ telnet marathon.naginet 110

Trying 10.128.0.34...

Connected to marathon.naginet.

Escape character is '^]'.

+OK Hello there.

And for IMAP:

$ telnet marathon.naginet 143

Trying 10.128.0.34...

Connected to marathon.naginet.

Escape character is '^]'.

* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

123

For secure services, one possibility for checking is using the openssl client. For SMTPS on
its "classic" port number of 465:

$ openssl s_client -host marathon.naginet -port 465
CONNECTED(00000003)
...
220 marathon.naginet ESMTP Postfix

For POPS:

$ openssl s_client -host marathon.naginet -port 995
CONNECTED(00000003)
...
+OK Hello there.

And for IMAPS:

$ openssl s_client -host marathon.naginet -port 993
CONNECTED(00000003)
...
* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE...

If you prefer, you could instead use a network scanner such as nmap to test whether the
ports are open and responsive.

Once we've verified the connectivity for the mail services that we need, and also verified
whether the host itself is being configured and checked in Nagios Core, we can add the
appropriate service checks.

How to do it...
We can add unencrypted mail service checks for SMTP, POP, and IMAP services on our
host as follows:

1. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in a
different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Edit the file containing the definition for the host. The host definition might look
similar to the following code snippet:
define host {
 use linux-server
 host_name marathon.naginet
 alias marathon
 address 10.128.0.34
}

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

124

3. Beneath the definition for the host, place three new service definitions, one for each
of the appropriate mail services:
define service {
 use generic-service
 host_name marathon.naginet
 service_description SMTP
 check_command check_smtp
}
define service {
 use generic-service
 host_name marathon.naginet
 service_description POP
 check_command check_pop
}
define service {
 use generic-service
 host_name marathon.naginet
 service_description IMAP
 check_command check_imap
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

With this done, three new service checks will start taking place, with the appropriate contacts
and contact groups notified when an attempt to connect to any of the services fails. Details for
these services will also become available in the Services section of the web interface.

How it works...
The configuration added in the preceding section adds three new service checks to the
existing marathon.naginet host:

 f SMTP, which uses the check_smtp command to open an SMTP session

 f POP, which uses the check_pop command to open a POP session

 f IMAP, which uses the check_imap command to open an IMAP session

In all three cases, the connectivity and responsiveness of the service is checked, and
determined to be OK if it returns appropriate values within an acceptable time frame.

It's important to note that the configuration defined here doesn't actually send or receive any
e-mail messages; it merely checks the basic connectivity of the service, and whether it answers
simple requests. Therefore, just because the status is OK does not necessarily mean that e-mail
messages are being correctly delivered; it could just mean that the services are responding.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

125

There's more...
If it's necessary to check the secure SSL/TLS versions of each of these services, then the
configuration is very similar but requires a little extra setup beforehand. This is because
although plugins to check them are included in the Nagios Plugins setup, they are not
configured to be used as commands. Note that this may well change in future versions
of Nagios Core.

To add the appropriate commands, the following stanzas could be added to the commands
configuration file, normally /usr/local/nagios/etc/objects/commands.cfg:

define command {
 command_name check_ssmtp
 command_line $USER1$/check_ssmtp $ARG1$ -H $HOSTADDRESS$
}
define command {
 command_name check_spop
 command_line $USER1$/check_spop $ARG1$ -H $HOSTADDRESS$
}
define command {
 command_name check_simap
 command_line $USER1$/check_simap $ARG1$ -H $HOSTADDRESS$
}

With this done, the following service definitions can be added to the appropriate host, either
replacing or supplementing the checks for the unsecured services. They are just the same
as the unsecured versions, except that an s is added to the service_description and
to check_command:

define service {
 use generic-service
 host_name marathon.naginet
 service_description SSMTP
 check_command check_ssmtp
}
define service {
 use generic-service
 host_name marathon.naginet
 service_description SPOP
 check_command check_spop
}
define service {
 use generic-service
 host_name marathon.naginet
 service_description SIMAP
 check_command check_simap
}

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

126

Finally, note that if you are managing more than one mail server running one or more of the
preceding services, then it's a good practice to apply the service to a hostgroup containing
all the applicable hosts, rather than creating new service definitions for each one. See the
Running a service on all hosts in a group recipe in Chapter 1, Understanding Hosts, Services,
and Contacts to learn how to do this.

See also
 f The Creating a new host, Creating a new service, Running a service on all hosts in

a group, and Creating a new hostgroup recipes in Chapter 1, Understanding Hosts,
Services, and Contacts

 f The Creating a new command recipe in Chapter 2, Working with Commands
and Plugins

Monitoring web services
In this recipe, we'll set up a service check to monitor the responsiveness of an HTTP and HTTPS
server. We'll use the check_http command and the plugin of the same name provided in the
Nagios Plugins set to make HTTP and HTTPS requests of a web server, to ensure that it returns
an appropriate and timely response. This is useful in situations where it's required to check
whether a website is still functioning, particularly if there are times when it comes under heavy
load or suffers denial of service attacks.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host configured already.
We'll use the example of sparta.naginet, a host defined in its own file. You should also
understand the basics of how hosts and services relate, which is covered in the recipes of
Chapter 1, Understanding Hosts, Services, and Contacts.

An appropriate first step is making sure that the services we intend to check are accessible
from the monitoring server running Nagios Core. This can be done from the command line,
using an HTTP client such as curl or wget:

$ wget http://sparta.naginet/
$ curl http://sparta.naginet/

The check_http plugin binary could also be called directly to test this connectivity; we'd be
hoping for an HTTP OK response, with a code of 200:

sudo -s -u nagios
$ /usr/local/nagios/libexec/check_http -I sparta.naginet
HTTP OK: HTTP/1.1 200 OK - 453 bytes in 0.004 second response time
|time=0.004264s;;;0.000000 size=453B;;;0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

127

Optionally, we can check HTTPS the same way, adding the -S option for the plugin:

sudo -s -u nagios
$ /usr/local/nagios/libexec/check_http -S -I sparta.naginet
HTTP OK: HTTP/1.1 200 OK - 453 bytes in 0.058 second response time
|time=0.057836s;;;0.000000 size=453B;;;0

Both may require the installation of a default page to be served by the host, probably something
such as index.html or default.asp, depending on the web server software.

Once the HTTP connectivity to the host from the monitoring server is verified as working with
appropriate responses, we can proceed to add our service check.

How to do it...
We can add web service checks for our host as follows:

1. Change to the objects configuration directory for Nagios Core. The default path
is /usr/local/nagios/etc/objects. If you've put the definition for your host
in a different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Edit the file containing the definition for the host. The host definition might look
similar to the following code snippet:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
}

3. Beneath the definition for the host, place a new service definition for the HTTP check:
define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP
 check_command check_http
}

4. If an HTTPS check is also needed, add an optional second service definition:
define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTPS
 check_command check_http!-S
}

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

128

5. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

With this done, a new service called HTTP and optionally one called HTTPS will be added
to the sparta.naginet host, and HTTP requests will be made from the server regularly,
reporting if connectivity fails or a response comes back with an unexpected status. These
services will both be visible in the Services section of the web interface.

How it works...
The configuration added in the preceding section uses check_http as a plugin to make
scheduled requests of the sparta.naginet server. By default, the index page is requested,
so the request takes the following form:

GET / HTTP/1.0
User-Agent: check_http/v1.4.15 (nagios-plugins 1.4.15)
Connection: close

The plugin awaits a response, and then returns a status based on the following criteria:

 f Whether a well-formed HTTP response was received at all, within acceptable time
bounds. If the response was too slow, it might raise a CRITICAL state when the
plugin times out.

 f Whether the response code for the HTTP response was 200 Found, indicating that
a document was identified and returned. A response code of 404 Not Found would
prompt a CRITICAL state by default.

Inspecting the command definition for the default check_http command in /usr/local/
nagios/etc/objects/commands.cfg gives some insight into how it uses the plugin of
the same name:

define command {
 command_name check_http
 command_line $USER1$/check_http -I $HOSTADDRESS$ $ARG1$
}

This uses three Nagios Core macros:

 f $USER1$: This expands to the directory in which the plugin scripts and binaries are
kept; usually /usr/local/nagios/libexec.

 f $HOSTADDRESS$: This is the value for the address directive defined in the service's
associated host; in this case 10.0.128.21.

 f $ARG1$: This is one extra argument, if defined by the command; it allows us to add
the -S option to the check_http call in order to run an HTTPS check.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

129

There's more...
There are a many other great switches available for the check_http plugin; a list of them is
available by entering the command with no arguments:

./check_http

check_http: Could not parse arguments

Usage:

 check_http -H <vhost> | -I <IP-address> [-u <uri>] [-p <port>]

 [-w <warn time>] [-c <critical time>] [-t <timeout>] [-L] [-a
auth]

 [-b proxy_auth] [-f <ok|warning|critcal|follow|sticky|stickyport>]

 [-e <expect>] [-s string] [-l] [-r <regex> | -R <case-insensitive
regex>]

 [-P string] [-m <min_pg_size>:<max_pg_size>] [-4|-6] [-N] [-M
<age>]

 [-A string] [-k string] [-S] [--sni] [-C <age>] [-T <content-
type>]

 [-j method]

One particularly useful option here is the -u option, which allows us to request specific
URLs other than the default index document from the server. This can be useful if we're
in a situation that requires setting up checks for more than one page on a site, which can
be a nice supplement to code unit testing when a site is deployed or updated.

For example, if we wanted to check that three pages were returning 200 Found responses:
about.php, products.php, and contact.php, then we could set up a new command
similar to the following to check a specific page:

define command {
 command_name check_http_page
 command_line $USER1$/check_http -I $HOSTADDRESS$ -u $ARG1$
}

This would allow us to make three service checks similar to the following, using the
new command:

define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP-about
 check_command check_http_page!/about.php
}

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

130

define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP-products
 check_command check_http_page!/products.php
}
define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP-contact
 check_command check_http_page!/contact.php
}

These service checks would run the same way as the one demonstrated in the recipe, except
they would each request a specific page. Note the leading slashes on the URLs are required.

Similarly, the -H option allows you to specify hostnames, which is helpful on servers hosting
more than one site. This could be done by setting up a command as follows:

define command {
 command_name check_http_host
 command_line $USER1$/check_http -I $HOSTADDRESS$ -H $ARG1$
}

This would allow you to check two sites on the same host, http://www.naginet/ and
http://dev.naginet/, in separate service checks:

define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP-www
 check_command check_http_host!www.naginet
}
define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP-dev
 check_command check_http_host!dev.naginet
}

It's worth noting that the check_http request will show up in your server logs with its regular
requests. If you're concerned about these distorted statistics or the appearance of unwanted
values in reports, then it may be easiest to filter these out using its User-Agent header value,
which includes the string check_http.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

131

See also
 f The Checking a website returns a given string in this chapter

 f The Creating a new host and Creating a new service recipes in Chapter 1,
Understanding Hosts, Services, and Contacts

 f The Creating a new command and Customizing an existing plugin recipes
in Chapter 2, Working with Commands and Plugins

Checking that a website returns a given
string

In this recipe, we'll build on the basic web service monitoring established in the Monitoring web
services recipe in this chapter, and learn how to create a command that uses the check_http
plugin to ensure that a particular string is included as part of an HTTP response.

By default, there's no Nagios Core command defined to use the plugin in this way, so the recipe
will include defining a command before using it as part of a service check.

This may be necessary if we're monitoring a website on a server that may not necessarily return
a 404 Not Found or similar error that will flag a WARNING or CRITICAL state in Nagios; rather
than merely checking if a document was found, we can check if it matches a string, to see if it
resembles the particular document we expected.

This kind of setup is a nice complement to a suite of code unit tests for a website or
web application.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host configured already.
We'll use the example of sparta.naginet, a host defined in its own file, and we'll check
that it's returning the simple string, naginet, in its responses. You should also understand
the basics of how hosts and services relate, which is covered in the recipes of Chapter 1,
Understanding Hosts, Services, and Contacts.

You should set up basic HTTP monitoring for the host first, as established in the Checking
web services recipe in this chapter, to make sure that there is connectivity between the
monitoring server and the host, and that requests and responses are both working correctly
with appropriate error codes.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

132

How to do it...
We can set up a service check that includes an HTTP response content check as follows:

1. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in a
different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Edit a suitable file containing command definitions, and find the definition for the
check_http command. In the QuickStart installation, this file is commands.cfg.
The check_http definition looks similar to the following code snippet:
define command {
 command_name check_http
 command_line $USER1$/check_http -I $HOSTADDRESS$ $ARG1$
}

3. Beneath the check_http definition, add a new command definition as follows:
define command {
 command_name check_http_content
 command_line $USER1$/check_http -I $HOSTADDRESS$ -s $ARG1$
}

4. Edit the file containing the definition for the host. The host definition might look
similar to the following code snippet:
define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
}

5. Beneath the definition for the host and beneath any other checks that might use
check_http, place a new service definition using our new command:
define service {
 use generic-service
 host_name sparta.naginet
 service_description HTTP-content
 check_command check_http_content!naginet
}

6. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

133

With this done, Nagios Core should begin making HTTP requests to monitor the service as
check_http normally does, except that it will only return an OK state if the content of the
website includes the string naginet. Otherwise, it will generate an alert and flag the service
as CRITICAL, with a message similar to the following:

HTTP CRITICAL: HTTP/1.1 200 OK - string 'naginet' not found on
'http://10.128.0.21:80/' - 453 bytes in 0.006 second response time

How it works...
One of the many options for check_http is -s, short for --string, which takes a single
argument specifying a string that must occur in the content for the service check to return
an OK state.

When the HTTP response is received, check_http examines the text in the response to
see if it matches the string specified, on top of its usual behavior of flagging WARNING or
CRITICAL states for connectivity or timeout problems.

Note that in order to make this work, it was necessary to define a new command that uses the
first argument (in this case the string naginet) as the value for the -s option to check_http.
The full command line executed would look similar to the following command:

$ /usr/local/nagios/libexec/check_http -H sparta.naginet -s naginet

There's more...
The check_http plugin allows considerably more than single string checks, if it's necessary
to test for the presence of a regular expression in the content. This can be done using the -r
or --regex options. We could define a command to check for regular expressions as follows:

define command {
 command_name check_http_regex
 command_line $USER1$/check_http -I $HOSTADDRESS$ -r $ARG1$
}

If it's necessary to check that a particular regular expression doesn't match the content,
this is possible by adding the --invert-regex flag:

define command {
 command_name check_http_noregex
 command_line $USER1$/check_http -I $HOSTADDRESS$ -r $ARG1$
--invert-regex
}

A service check using this command would return CRITICAL if the response was found to
match the pattern provided as the first argument to a check_command directive.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

134

Other similar options include -e or --expect, which allows specifying a comma-separated set
of strings, at least one of which must match the first line of the header for the check to pass.

See also
 f The Monitoring web services recipe in this chapter

 f The Creating a new host and Creating a new service recipes in Chapter 1,
Understanding Hosts, Services, and Contacts

 f The Creating a new command and Customizing an existing plugin recipes
in Chapter 2, Working with Commands and Plugins

Monitoring database services
In this recipe, we'll learn how Nagios Core can be used to monitor the status of a database
server. We'll demonstrate this with the popular MySQL as an example, using the check_
mysql plugin, and we'll discuss running an actual test query and specifying a similar check
for PostgreSQL in the There's more section of this recipe.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host configured already.
We'll use the example of delphi.naginet, a host defined in its own file. You should also
understand the basics of how hosts and services relate, which is covered in the recipes of
Chapter 1, Understanding Hosts, Services, and Contacts.

For a check on a remote host to work from the monitoring server, the database server will
need to be listening on an appropriate network interface. It's also necessary to make sure
that an appropriate database user account exists with which the check_mysql plugin may
authenticate. It's a good idea to make this into a dedicated user with no privileges on any
database, because the credentials need to be stored in plain text, which could be a security
risk if more sensitive credentials were used.

For MySQL, we could create a new user with no privileges with the following command,
assuming that the monitoring server olympus.naginet has 10.128.0.11 as an IPv4
address. I've used a randomly generated password here:

mysql> CREATE USER 'nagios'@'10.128.0.11' IDENTIFIED BY 'UVocjPHoH0';

We can then check the connectivity using the mysql client on the monitoring server:

$ mysql --host=delphi.naginet --user=nagios --password=UVocjPHoH0

mysql>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

135

Or alternatively, by running the plugin directly from the command line as the nagios user:

sudo -s -u nagios

$ /usr/local/nagios/libexec/check_mysql -H delphi.naginet -u nagios -p
UVocjPHoH0

Uptime: 1631 Threads: 1 Questions: 102 Slow queries: 0 Opens: 99

Flush tables: 1 Open tables: 23 Queries per second avg: 0.62

If we did not have the MySQL libraries installed when we built the Nagios plugins, we may find
that we do not have the check_mysql and check_mysql_query binaries in /usr/local/
nagios/libexec. We can fix this by installing the MySQL shared libraries on the monitoring
system, and rebuilding and reinstalling the Nagios Plugins package.

By default, it's also necessary to define new commands to actually use these plugins as well,
which we'll do in this recipe.

How to do it...
We can set up some basic database monitoring for our MySQL server as follows:

1. Change to the objects configuration directory for Nagios Core. The default path
is /usr/local/nagios/etc/objects. If you've put the definition for your host
in a different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Edit a suitable file containing command definitions, perhaps commands.cfg, and
add the following definition:
define command {
 command_name check_mysql
 command_line $USER1$/check_mysql -H $HOSTADDRESS$ -u $ARG1$
-p $ARG2$
}

3. Edit the file containing the definition for the host. The host definition might look
similar to the following code snippet:
define host {
 use linux-server
 host_name delphi.naginet
 alias delphi
 address 10.128.0.51
}

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

136

4. Beneath the definition for the host, place a new service definition for the MySQL
check, including the username and password chosen earlier for arguments:
define service {
 use generic-service
 host_name delphi.naginet
 service_description MYSQL
 check_command check_mysql!nagios!UVocjPHoH0
}

5. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

With this done, a new service check with description MYSQL will be added for the delphi.
naginet host, which will employ the check_mysql plugin to report the status of the MySQL
server. The output will also include statistics about its uptime, open tables, and query averages,
and like all service output will be visible in the web interface under Services.

How it works...
This configuration defines a new command named check_mysql to use the plugin of the same
name, accepting two arguments; the first is the username of the test Nagios Core user, in this
case nagios, and the second is the password for that user. The check_mysql plugin acts as
a MySQL client using the credentials provided to it, and requests diagnostic information from
the database, which it returns as part of its check.

If it has problems connecting to or using the MySQL server, it will flag a status of CRITICAL,
and generate appropriate notifications.

There's more...
We can optionally check access to a specific database using the plugin by supplying a value
to the -d parameter. This should be a database to which the nagios user has been given
access, otherwise the check would fail.

If we want to check whether we can actually run a query after connecting, we could extend
this even further to use the check_mysql_query plugin:

define command {
 command_name check_mysql_query
 command_line $USER1$/check_mysql_query -H $HOSTADDRESS$ -u $ARG1$
-p $ARG2$ -d $ARG3$ -q $ARG4$
}
define service {
 use generic-service
 host_name delphi.naginet

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

137

 service_description MYSQL_QUERY
 check_command check_mysql_query!nagios!UVocjPHoH0!exampledb
!"SELECT COUNT(1) FROM exampletbl"
}

The preceding code snippet would attempt to run the SELECT COUNT(1) FROM exampletbl
query on the exampledb database. Note that it is important to wrap the query in quotes so that
it gets processed as one argument, rather than several.

A similar service check to the one specified in this recipe could be configured for PostgreSQL
database servers, using the check_pgsql plugin, also part of the standard Nagios Plugins set.
The command and service check definitions might look similar to the following code snippet:

define command {
 command_name check_pgsql
 command_line $USER1$/check_pgsql -H $HOSTADDRESS$ -p $ARG1$
}
define service {
 use generic-service
 host_name delphi.naginet
 service_description PGSQL
 check_command check_pgsql!N4Nw8o8X
}

In the preceding example, an access would need to be granted on the PostgreSQL server
for the monitoring server's IP address in pg_hba.conf, with access to the default standard
template1 database.

In production environments, it's often the case that for security or programming policy reasons,
database servers are not actually configured to accept direct connections over network
interfaces, even on secure interfaces. Packaged MySQL and PostgreSQL servers on many
systems will in fact default to listening only on the localhost interface on 127.0.0.1.

This can complicate the monitoring setup a little, but it can usually be addressed by installing
a remote Nagios plugin execution agent on the database server, such as NRPE or NSclient++.
NRPE usage is addressed in Chapter 6, Enabling Remote Execution, and uses a MySQL server
configured in this way as its demonstration of the concept.

See also
 f The Creating a new host and Creating a new service recipes in Chapter 1,

Understanding Hosts, Services, and Contacts

 f The Creating a new command recipe in Chapter 2, Working with Commands
and Plugins

 f The Monitoring local services on a remote machine with NRPE recipe in Chapter 6,
Enabling Remote Execution

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

138

Monitoring the output of an SNMP query
In this recipe, we'll learn how to use the check_snmp plugin to monitor the output given by
Simple Network Management Protocol (SNMP) requests.

Despite its name, SNMP is not really a very simple protocol, but it's a very common method for
accessing information on many kinds of networked devices, including monitoring boards, usage
meters, and storage appliances, as well as workstations, servers, and routing equipment.

Because SNMP is so widely supported and typically able to produce such a large volume of
information to trusted hosts, it's an excellent way to gather information from hosts that's not
otherwise retrievable from network services. For example, while checking for a PING response
from a large router is simple enough, there may not be an easy way to check properties, such
as the state of each of its interfaces, or the presence of a certain route in its routing tables.

Using check_snmp in Nagios Core allows automated retrieval of this information from the
devices, and generating alerts appropriately. While its setup is somewhat complex, it is worth
learning how to use it, as it is among the most powerful plugins in Nagios Core for network
administrators, and it is quite typical to see dozens of commands defined for its use in a typical
configuration for a large network. It can often be used to complement or even replace remote
plugin execution daemons such as NRPE or NSclient++.

Getting ready
You should have a Nagios Core 3.0 or newer server with at least one host configured already.
You should also understand the basics of how hosts and services relate, which is covered in
the recipes of Chapter 1, Understanding Hosts, Services, and Contacts.

This recipe assumes a basic knowledge of SNMP, including its general intended purpose,
the concept of an SNMP community, and what SNMP MIBs and OIDs are. In particular,
if you're looking to monitor some property of a network device that's available to you via
SNMP, you should know what the OID for that data is. This information is often available
in the documentation for network devices, or can be deduced by running an appropriate
snmpwalk command against the host to view the output for all its OIDs.

You should check that an SNMP daemon is running on the target host, and also that the
check_snmp plugin is available on the monitoring host. It is included as part of the standard
Nagios Plugins, so provided the Net-SNMP libraries were available on the system when these
were compiled, the plugin should be available. If it is not, you may need to install the Net-SNMP
libraries on your monitoring system and recompile the plugins.

We'll use the example of retrieving the total process count from a Linux server with
hostname ithaca.naginet, and flagging WARNING and CRITICAL states at appropriate
high ranges. We'll also discuss how to test for the presence or absence of strings, rather
than numeric thresholds.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

139

It's a good idea to test that the host will respond to SNMP queries in the expected form.
We can test this with snmpget. Assuming a community name of public, we could write:

$ snmpget -v1 -c public ithaca.naginet .1.3.6.1.2.1.25.1.6.0

iso.3.6.1.2.1.25.1.6.0 = Gauge32: 81

We can also test the plugin by running it directly as the nagios user:

sudo -s -u nagios

$ /usr/local/nagios/libexec/check_snmp -H ithaca.naginet -C public -o
.1.3.6.1.2.1.25.1.6.0

SNMP OK - 81 | iso.3.6.1.2.1.25.1.6.0=81

How to do it...
We can define a command and service check for the Linux process count OID as follows:

1. Change to the objects configuration directory for Nagios Core. The default path
is /usr/local/nagios/etc/objects. If you've put the definition for your host
in a different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Edit a suitable file containing command definitions, perhaps commands.cfg, and
add the following definition to the end of the file.
define command {
 command_name check_snmp_linux_procs
 command_line $USER1$/check_snmp -H $HOSTADDRESS$ -C $ARG1$ -o
.1.3.6.1.2.1.25.1.6.0 -w 100 -c 200
}

3. Edit the file containing the definition for the host. The host definition might look
similar to the following code snippet:
define host {
 use linux-server
 host_name ithaca.naginet
 alias ithaca
 address 10.128.0.61
}

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

140

4. Beneath the definition for the host, place a new service definition using our new
command. Replace public with the name of your SNMP community if it differs:
define service {
 use generic-service
 host_name ithaca.naginet
 service_description SNMP_PROCS
 check_command check_snmp_linux_procs!public
}

5. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

With this done, a new service check with a description of SNMP_PROCS will be added to the
ithaca.naginet host, and the check_snmp plugin will issue a request for the value of the
specified OID as its regular check. It will flag a WARNING state if the count is greater than 100,
and a CRITICAL state if greater than 200, notifying accordingly. All this appears in the web
interface the same way as any other service, under the Services menu item.

How it works...
The preceding configuration defines both a new command based around the check_snmp
plugin, and in turn, a new service check using that command for the ithaca.naginet
server. The community name for the SNMP request, public, is passed into the command
as an argument; everything else, including the OID to be requested, is fixed into the check_
snmp_linux_procs command definition.

A part of the command line defined includes the -w and -c options. For numeric outputs like
ours, these are used to define the limits for the value beyond which a WARNING or CRITICAL
state is raised, respectively. In this case, we define a WARNING threshold of 100 processes,
and a CRITICAL threshold of 200 processes.

Similarly, if the SNMP check fails completely due to connectivity problems or syntax errors,
an UNKNOWN state will be reported.

There's more...
It's also possible to test the output of SNMP checks to see if they match a particular string or
pattern to determine whether the check succeeded. If we needed to check that the system's
hostname was ithaca.naginet, for example (perhaps as a simple test SNMP query that
should always succeed), then we might set up a command definition as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

141

define command {
 command_name check_snmp_hostname
 command_line $USER1$/check_snmp -H $HOSTADDRESS$ -C $ARG1$ -o
.1.3.6.1.2.1.1.5.0 -r $ARG2$
}

With a corresponding service check as follows:

define service {
 use generic-service
 host_name ithaca.naginet
 service_description SNMP_HOSTNAME
 check_command check_snmp_hostname!public!ithaca
}

This particular check would only succeed if the SNMP query succeeds and returns a string
matching the string ithaca, as specified in the second argument.

See also
 f The Creating an SNMP OID to monitor in this chapter

 f The Creating a new host and Creating a new service recipes in Chapter 1,
Understanding Hosts, Services, and Contacts

 f The Creating a new command recipe in Chapter 2, Working with Commands
and Plugins

Monitoring a RAID or other hardware device
In this recipe, we'll learn a general strategy for monitoring the properties of hardware devices.
Because of the different ways that vendors implement their hardware, this tends to be less
straightforward than monitoring standard network services.

There are at least four general approaches to this problem.

Getting ready
You will need to know some specifics about the hardware that you want to monitor, including the
model number. You should preferably also have a Nagios Core 3.0 server that was compiled with
Net-SNMP libraries available to build the check_snmp plugin, part of the Nagios Plugins set.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

142

How to do it...
We can find a way to monitor an arbitrary hardware device on a local or remote machine
as follows:

1. Check if official or unofficial Nagios Core plugins already exist for polling the particular
device. The best place to start is with Nagios Exchange at http://exchange.nagios.org/;
just search for the make of hardware, and see if a plugin already exists, per the Finding
a plugin recipe in Chapter 2, Working with Commands and Plugins. You can then install
it by following the Installing a plugin recipe in the same chapter.

2. Check if any of the values you need from the hardware are or can be exported as
SNMP OIDs, to be checked with the Monitoring the output of an SNMP query recipe
in this chapter.

3. If they aren't, but there's a command-line diagnostic tool with output, or a return
value that can be used as the check, you could consider exporting it as a custom
OID in an SNMP server, by using the Creating a new SNMP OID to monitor recipe
in this chapter.

4. Finally, we may have to resort to writing our own plugin. This is not actually as
difficult as it may seem; it is discussed in the Writing a new plugin from scratch
recipe in Chapter 2, Working with Commands and Plugins. This may be the only
option for custom or very uncommon hardware.

How it works...
If we find an appropriate plugin for the hardware online, the main snag here is that we will
need to not only be sure that the plugin works, by testing it against the hardware in both an
OK and a CRITICAL state (which might be hard to do), but we will also need to make sure
that the plugin is safe to run. The plugins on Nagios Exchange are reviewed before they are
added, but the code for plugins that you find on any other website might not be safe to run.

Using SNMP for these kinds of checks wherever possible has two advantages, in that the
values can be checked using a standard Nagios plugin, check_snmp, and the values can
also be read over the network, meaning that we may not need to rely on remote execution
daemons such as NRPE or NSclient++ to get this information.

See also
 f The Monitoring the output of an SNMP query and Creating a new SNMP OID to

monitor recipes in this chapter

 f The Finding a plugin, Installing a plugin, and Writing a new plugin from scratch
recipes in Chapter 2, Working with Commands and Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

143

Creating an SNMP OID to monitor
In this recipe, we'll learn how to configure a Net-SNMP snmpd server on a Linux server to
return the output of a command in an SNMP OID. This can be useful as an alternative to
NRPE monitoring for information that is not otherwise available in a checkable network
service, so that Nagios Core can check it via its standard check_snmp method.

As an example, this can be a very good way of monitoring hardware devices, such as RAID
arrays on remote servers, where command-line diagnostic tools are available to report a
status as a number or string, but they only work locally and don't otherwise include any
information in an SNMP MIB tree.

Getting ready
The host we intend to check should be running a Net-SNMP snmpd server that allows full read
access to the MIB tree for a specified community string, such as public. This SNMP server
should be capable of using the exec directive in its configuration to return the output of a
command as the value of an SNMP OID when requested by an SNMP client. As such, you will
need to know the basics of SNMP.

You will also need a Nagios Core 3.0 or newer server with SNMP enabled in order to actually
monitor the OID, which is explained in the Monitoring the output of an SNMP query recipe.

In this example, we'll deal with a simple script running on a target host ithaca.naginet
called /usr/local/bin/raidstat that returns an integer: zero for the RAID being in a
good state, and non-zero to signal any problems. We'll assume this tool can be run as any user
and does not require root privileges.

How to do it...
We can set up our custom SNMP OID as follows:

1. Add the following line to the snmpd.conf file on the target host, substituting in the
path of the command that generates the needed output:
exec raidstat /usr/local/bin/raidstat

2. Restart the snmpd server on the target host, which might be done as follows,
depending on the system:
/etc/init.d/snmpd restart

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Methods

144

3. Back on the monitoring server, we can walk the .1.3.6.1.4.1.2021 OID, and find
our raidstat OID and its value in the output:
$ snmpwalk -v1 -c public ithaca.naginet .1.3.6.1.4.1.2021 | less

...

iso.3.6.1.4.1.2021.8.1.2.1 = STRING: "raidstat"

iso.3.6.1.4.1.2021.8.1.3.1 = STRING: "/usr/local/bin/raidstat"

iso.3.6.1.4.1.2021.8.1.100.1 = INTEGER: 0

iso.3.6.1.4.1.2021.8.1.101.1 = STRING: "GOOD"

...

4. We now know which OID we can query for a check using the Monitoring the output of
an SNMP query recipe in this chapter, and can test retrieving it directly with snmpget:
$ snmpget -v1 -c public ithaca.naginet .1.3.6.1.4.1.2021.8.1.100.1

How it works...
The exec call in the snmpd configuration defines a program that should be run to return a
new value in the OID tree. The four OIDs we found in the output are as follows:

 f 1.3.6.1.4.1.2021.8.1.2.1: This is the name of the OID we've assigned,
raidstat

 f 1.3.6.1.4.1.2021.8.1.3.1: This is the full path to the script that was called,
/usr/local/bin/raidstat

 f 1.3.6.1.4.1.2021.8.1.100.1: This is the return value from the call, expressed
as an integer

 f 1.3.6.1.4.1.2021.8.1.101.1: This is any output from the call, expressed as
a string

This setup can therefore be used to check the return value and character output of any
command that the snmpd user is able to execute, a good method for ad hoc monitoring
for very specific cases like this.

There's more...
More than one exec command can be added to the server configuration if required.
For example, if we needed to check the state of the CPU temperature with a command
tempstat, then we might define:

exec raidstat /usr/local/bin/raidstat

exec tempstat /usr/local/bin/tempstat

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

145

The return values and output for both would then show up in the SNMP output,
in separate OIDs.

If necessary, the command definitions can also be followed by arguments:

exec tempstat /usr/local/bin/tempstat --cpu=0

A full discussion of how exec and the similar pass configuration for Net-SNMP works is outside
the scope of this book, but is discussed extensively in its documentation available at the time of
writing at http://www.net-snmp.org/docs/readmefiles.html.

Note that if exporting values via SNMP is unsuitable, an alternative for remote monitoring
is to use Nagios Remote Plugin Executor (NRPE) to run a check on the target server and
return the result to the monitoring server. This is discussed in the recipes of Chapter 6,
Enabling Remote Execution.

See also
 f The Creating an SNMP OID to monitor recipe in this chapter

 f The Creating a new host and Creating a new service recipes in Chapter 1,
Understanding Hosts, Services, and Contacts

 f The Creating a new command recipe in Chapter 2, Working with Commands
and Plugins

 f The Monitoring local services on a remote machine with NRPE recipes in
Chapter 6, Enabling Remote Execution

www.it-ebooks.info

http://www.net-snmp.org/docs/readmefiles.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

6
Enabling Remote

Execution

In this chapter, we will cover the following recipes:

 f Monitoring local services on a remote machine with NRPE

 f Setting the listening address for NRPE

 f Setting allowed client hosts for NRPE

 f Creating new NRPE command definitions securely

 f Giving limited sudo privileges to NRPE

 f Using check_by_ssh with key authentication instead of NRPE

Introduction
For a dedicated Nagios Core server with access to all the relevant parts of the network,
making checks is relatively simple using commands and plugins that make ICMP, TCP, and
UDP connections to network hosts and services, in order to determine their operating state.
These can be used to check any sort of network service, without requiring anything to be
installed on the target machine. As an example, when the check_http plugin is used to
check a web server, it works in the same way as if a browser was making the request.

However, monitoring a network thoroughly usually has more to it than simply checking
network connectivity and availability. It's also a good idea to check properties of the network
that don't directly correspond to a network service, and hence can't be directly checked over
a network connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Remote Execution

148

These are often properties of hardware or the underlying system, such as disk space or
system load average, or processes that are configured only to listen locally, commonly done
for database servers.

We could install Nagios Core on all of the systems, perhaps, but this would make maintenance
difficult. It would be much better to have some means of remote execution of diagnostic
programs, so that they are run directly on the target host to retrieve the information they need,
and the results are returned to a single Nagios Core server via a dedicated network service.

There are three general approaches to managing this problem:

 f Use check_nrpe to run a standard Nagios Core plugin on the target machine and
return its results transparently to the monitoring server.

 f Use check_by_ssh to run an arbitrary command on the target machine from the
monitoring server by first connecting to it with SSH.

 f Use check_snmp to check an SNMP OID that's configured to provide the return
value and output of some command on the target host.

This chapter covers the first two solutions, focusing on the more commonly used Nagios
Remote Plugin Executor (NRPE), and explaining how it differs from the check_by_ssh
solution. For some information on configuring SNMP, see the Monitoring the output of an
SNMP query and Creating an SNMP OID to monitor recipes in Chapter 5, Monitoring Methods.

Monitoring local services on a remote
machine with NRPE

In this recipe, we'll learn how to install and run an NRPE server on a target host, roma.
naginet. We'll use this to check the load average on that host with the check_load plugin.

The plugins for these checks will be executed on the target server by the NRPE daemon,
but the results will be returned to our Nagios Core monitoring server olympus.naginet.
This requires installing the check_nrpe plugin on the monitoring server, and the full Nagios
Plugins set (but not Nagios Core itself) on the target server.

This is a reasonably long and in-depth recipe as it involves installing a total of three software
packages on two servers.

Getting ready
You will need a monitoring server with Nagios Core 3.0 or newer installed. You should also have
a UNIX-like target host that you intend to monitor that can run the NRPE daemon. Most modern
UNIX-like systems including Linux and BSD should be able to do this. Both the monitoring server
and the target host will need internet connectivity, and you should already be monitoring the
target host itself with a host definition, to which we'll be adding service checks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

149

If your servers don't have a direct gateway to the Internet, then you can work around this by
uploading the relevant files after downloading them onto a workstation, or another machine
with Internet access.

You should understand the basics of configuring, compiling, and installing software from
source. In most cases, the usual ./configure, make, and make install process will
be all that's necessary, and the recipe will walk you through this. You will need to have make
installed, along with any other tools needed for the configure and build processes, including
a C compiler such as gcc.

You should also have a good grasp of how hosts and services interrelate in Nagios Core, which
is discussed in the recipes of Chapter 1, and how Nagios Core uses commands and plugins,
discussed in Chapter 2. You should not need an in-depth understanding of the use of any
particular plugin; the recipe will demonstrate the usage of the plugins to which it refers.

Finally, you should be able to configure any firewalls to allow connectivity from the Nagios
Core server to the server being monitored with TCP destination port 5666.

How to do it...
This first part of the recipe is done on the target server:

1. Download and install the latest Nagios Plugins package. At the time of writing, the
link is available at http://nagiosplugins.org/download/.
$ wget http://downloads.sourceforge.net/project/nagiosplug/
nagiosplug/1.4.16/nagios-plugins-1.4.16.tar.gz
$ tar -xzf nagios-plugins-1.4.16.tar.gz

2. Configure, compile, and install the plugins, the same way you would on a new
monitoring server. You will need to have root privileges for the make install call.
$ cd nagios-plugins-1.4.16
$./configure
$ make
make install

You may need to install some shared libraries and headers on the system to do
this for certain plugins, such as a libssl implementation. The output of the
./configure script should alert you to any such problems.

3. Download and install the latest version of NRPE from the Nagios Exchange website.
At the time of writing, the link is available at http://exchange.nagios.org/
directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-
Plugin-Executor/details.
$ wget http://prdownloads.sourceforge.net/sourceforge/nagios/nrpe-
2.13.tar.gz
$ tar -xzf nrpe-2.13.tar.gz

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Remote Execution

150

4. Enter the nrpe-2.13 source directory, and configure, compile, and install the daemon
and a stock configuration for it. You will need to have root privileges for both the make
install-daemon and the make install-daemon-config calls:
$ cd nrpe-2.13

$./configure

$ make all

make install-daemon

make install-daemon-config

If you do not already have a nagios user on the target host, you may need to create
one before the daemon will install properly:

groupadd nagios

useradd -r -g nagios nagios

5. Edit the newly installed file at /usr/local/nagios/etc/nrpe.cfg and find
the line beginning with allowed_hosts. Add a comma and the IP address
of your monitoring server to this line. In this case, we've added the IP address
10.128.0.11:
allowed_hosts=127.0.0.1,10.128.0.11

6. Start the nrpe daemon, and check that it is running by searching the process table
with pgrep or ps:
/usr/local/nagios/bin/nrpe -c /usr/local/nagios/etc/nrpe.cfg -d

pgrep nrpe

18593

ps -e | grep [n]rpe

nagios 18593 1 0 21:55 ? 00:00:01 nrpe

7. If you would like the nrpe daemon to start on boot, add an init script appropriate
to your system. An example init-script is generated at ./configure time in
the source directory. Versions are also generated for Debian-derived systems and
SUSE systems in init-script.debian and init-script.suse. Exactly how
this should be done will depend on your particular system, for which you may need
to consult its documentation.

This next part of the recipe is done on the monitoring server.

1. Again, download the latest version of NRPE, the same way as done for the target server:
$ wget http://prdownloads.sourceforge.net/sourceforge/nagios/nrpe-
2.13.tar.gz

$ tar -xzf nrpe-2.13.tar.gz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

151

2. Again, configure and build the software. However, note that this time the install line is
different, as we're installing the check_nrpe plugin rather than the nrpe daemon:
$ cd nrpe-2.13.tar.gz

$./configure

$ make all

make install-plugin

3. Check that the plugin is installed correctly. It should be saved at /usr/local/
nagios/libexec/check_nrpe:
$ ls /usr/local/nagios/libexec/check_nrpe

/usr/local/nagios/libexec/check_nrpe

4. Move to the directory containing the Nagios Core object configuration. By default,
this is /usr/local/nagios/etc/objects:
$ cd /usr/local/nagios/etc/objects

5. Edit an appropriate file for defining new commands. For the default installation,
/usr/local/nagios/etc/objects/commands.cfg is a good choice.
Add the following definition to the end of this file:
define command {
 command_name check_nrpe
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$
}

6. Edit the file defining the target host as an object. The definition might look something
similar to the following code snippet:
define host {
 use linux-server
 host_name roma.naginet
 alias roma
 address 10.128.0.61
}

7. Beneath the definition for the host, after any other services defined for it, add the
following service definition:
define service {
 use generic-service
 host_name roma.naginet
 service_description LOAD
 check_command check_nrpe!check_load
}

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Remote Execution

152

8. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, a new service with the description LOAD will appear in the web interface ready
to be checked, and will come up with an appropriate status, including the load average as read
from the nrpe daemon on the target host:

We can see more detail about how the check was performed and its results in the details
page for the service:

If the load average on roma.naginet exceeds the limits defined for the check_load
command in /usr/local/nagios/etc/nrpe.cfg on the target host, the service will
enter WARNING or CRITICAL states, and will send notifications if configured to do so, all
in the same manner as a non-NRPE service.

How it works...
The NRPE plugin and daemon are used to run Nagios Core plugins on the target host, rather
than on the monitoring server itself. The results of the check are then passed back to the
monitoring server, and recorded and analyzed by Nagios Core the same way as if the service
was running a plugin on the monitoring server, for example check_http or check_ssh.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

153

The recipe we followed does four main things:

 f We installed the latest Nagios Plugins package to the target host, including the
check_load plugin. This is necessary because the plugin is actually run on the
target host and not on the monitoring server, as is the case with the plugins that
check network services.

 f We installed the nrpe daemon to the target host, along with a stock configuration
file nrpe.cfg. This is the network service through which the check_nrpe plugin
will request commands to be run on the target host. The plugins will be run by this
process, typically as the nagios user.

 f We installed the check_nrpe plugin to the monitoring host, and defined a command
of the same name to use it. The command accepts one argument in the $ARG1$
macro; its value is the command that should be run on the target host. In this case,
we supplied check_load for this argument.

 f We set up a service to monitor the output of the standard check_load plugin,
via check_nrpe.

Like other Nagios Core plugins, the check_nrpe program can be run directly from the
command line. If we wanted to test the response of the configuration that we arranged
in the previous section, then we might run the following command:

$ /usr/local/nagios/libexec/check_nrpe -H roma.naginet -c check_load
OK - load average: 0.00, 0.00, 0.00|load1=0.000;15.000;30.000;0;
load5=0.000;10.000;25.000;0; load15=0.000;5.000;20.000;0;

In this case, the state of OK and the load average values, as retrieved by check_load,
were returned by the nrpe daemon as the result of the check_nrpe call.

It's very important to note that this simple configuration of NRPE is not completely secure
by default. The recipes listed under the See also section for this recipe provide some basic
means to secure NRPE instances from abuse. These should be used in concert with a
sensible firewall policy.

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Remote Execution

154

There's more...
Of course, check_load is not the only plugin that can be run on the target server this way.
If we inspect the /usr/local/nagios/etc/nrpe.cfg file /usr/local/nagios/etc/
nrpe.cfg on the target host, near the end of the file, we find some other example definitions
of commands that check_nrpe will run upon requests issued from the monitoring server:

command[check_users]=/usr/local/nagios/libexec/check_users -w 5 -c 10

command[check_load]=/usr/local/nagios/libexec/check_load -w 15,10,5 -c
30,25,20

command[check_hda1]=/usr/local/nagios/libexec/check_disk -w 20% -c 10% -p
/dev/hda1

command[check_zombie_procs]=/usr/local/nagios/libexec/check_procs -w 5 -c
10 -s Z

command[check_total_procs]=/usr/local/nagios/libexec/check_procs -w 150
-c 200

We recognize check_load as the second of these. Note that it already includes some
thresholds for WARNING and CRITICAL alerts in its -w and -c parameters.

If we also wanted to check the number of processes on this server, we could add a service
check for roma.naginet, defined as follows:

define service {
 use generic-service
 host_name roma.naginet
 service_description PROCS
 check_command check_nrpe!check_total_procs
}

This service will generate a WARNING alert if the number of processes exceeds 150, and a
CRITICAL alert if it exceeds 200. Again, the plugin is run on the target server, and not on
the monitoring server.

Another useful and common application of check_nrpe is to make remote checks on
database servers, with plugins such as check_mysql and check_pgsql, in the case
where servers do not listen on network interfaces for security reasons. Instead, they listen
only on localhost or UNIX sockets, and are hence inaccessible to the monitoring server.
To work around this problem, we could add a new command definition to the end of nrpe.
cfg on the target server as follows:

command[check_mysql]=/usr/local/nagios/libexec/check_mysql -u nagios -d
nagios -p wGG7H233bq

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

155

A corresponding check that uses the check_mysql command can then be made on the
monitoring server:

define service {
 use generic-service
 host_name roma.naginet
 service_description MYSQL
 check_command check_nrpe!check_mysql
}

See the Monitoring database services recipe in Chapter 5, Monitoring Methods, for some
detail on how to use the check_mysql and check_pgsql plugins.

NRPE is thus useful not only for making checks of system properties or hardware, but also for
any plugin that needs to be run on the target host rather than the monitoring host.

Finally, it's important to note that the command definitions included in the default nrpe.cfg
file are intended as examples; you will probably want to fine-tune the parameters for some of
them, and remove the ones you don't use, along with adding your own.

See also
 f The Setting the listening address for NRPE, Setting allowed client hosts for NRPE,

Creating new NRPE command definitions securely, and Giving limited sudo privileges
to NRPE recipes in this chapter

 f The Monitoring database services recipe in Chapter 5, Monitoring Methods

Setting the listening address for NRPE
In this recipe, we'll learn how to make NRPE listen on a specific IP address on a target host.
This might be done on hosts with multiple interfaces in order to prevent spurious requests
made to the nrpe daemon from untrusted interfaces, perhaps the public Internet. It could
also be appropriate for configuring the daemon only to listen on a trusted VPN interface.

This setup can be particularly useful when the server has an interface into a dedicated
management network to which the monitoring server also has access, preventing the
nrpe daemon from responding to requests on other interfaces unnecessarily, and thereby
closing a possible security hole.

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Remote Execution

156

Getting ready
You should have a target host configured for checking in a Nagios Core 3.0 or later monitoring
server. The target host should be running the nrpe daemon, and listening on all interfaces
(which we'll fix). You can verify that nrpe is running with pgrep or ps:

pgrep nrpe
29964
ps -e | grep [n]rpe
nagios 29964 1 0 21:55 ? 00:00:01 nrpe

You can check whether the nrpe daemon is listening on all interfaces by checking the output
of netstat:

netstat -plnt | grep nrpe
tcp 0 0 0.0.0.0:5666 0.0.0.0:* LISTEN 29964/nrpe

The address of 0.0.0.0 shows that nrpe is listening on all interfaces, which is what we'd
like to correct.

How to do it...
We can configure the nrpe daemon only to listen on one address as follows:

1. Edit the nrpe daemon's configuration file. The default location is /usr/local/
nagios/etc/nrpe.cfg. Look for the line beginning with server_address,
which is normally commented out by default:
#server_address=127.0.0.1

If you don't have such a line, then you can add it at the end of the file.

2. Uncomment the line if it's commented by removing the leading # character, and
change the 127.0.0.1 address to the address to which you want to restrict the
nrpe process listening:
server_address=10.128.0.61

3. Restart the nrpe daemon. If you have installed an init script for it, you may be
able to do this with the following:
/etc/init.d/nrpe restart

If not, you can restart the process by sending it a HUP signal with the kill command,
which will prompt it to re-read its configuration file and resume running:

pgrep nrpe
29964
kill -HUP 29964

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

157

With this done, the nrpe daemon should now only be listening on the specified address.
We can verify this using netstat:

netstat -plnt | grep nrpe

tcp 0 0 10.128.0.61:5666 0.0.0.0:* LISTEN 29964/nrpe

How it works...
The configuration we adjusted in the preceding section defines an address on which the nrpe
daemon should listen, and implies that it should not respond to requests on any others.

Because the nrpe server is explicitly designed to run commands at the request of remote
servers, it's very important to take steps like these wherever appropriate to prevent attackers
from exploiting the service.

See also
 f The Monitoring local services on a remote machine with NRPE recipe in this chapter.

Setting allowed client hosts for NRPE
In this recipe, we'll learn how to configure the NRPE daemon to answer requests from a
particular IP address, typically the designated Nagios Core server or servers monitoring
your network. This means that nrpe will not run plugins or return results for any check
_nrpe request made from IP addresses not in this list.

This is an elementary security step in running an NRPE server. This should be done in concert
with a hardware or software firewall and security policy. If your target host has interfaces
or routes into untrusted networks, there is a risk of attackers making spurious requests for
information about the system, clogging up your disk with logs from excessive check requests,
or even possibly exploiting the nrpe daemon or the Nagios Plugins.

Getting ready
You should have a target host configured for checking in a Nagios Core 3.0 or later monitoring
server. The target host should be running the nrpe daemon. You can verify that nrpe is running
with pgrep or ps:

pgrep nrpe

29964

ps -e | grep [n]rpe

nagios 29964 1 0 21:55 ? 00:00:01 nrpe

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Remote Execution

158

We can verify that the target host is not configured to respond to a particular IP address by
attempting to open a telnet or netcat connection to it. If we are not one of the allowed
hosts, nrpe will close the session immediately without waiting for any input:

$ telnet roma.naginet 5666

Trying 10.128.0.61...

Connected to 10.128.0.61.

Escape character is '^]'.

Connection closed by foreign host.

This assumes that NRPE is listening on its default port number 5666. In this example,
we'll add the IP address 10.128.0.12 to the list of hosts allowed to request information
from NRPE.

How to do it...
We can configure the nrpe daemon to respond to a new address as follows:

1. Edit the nrpe daemon's configuration file. The default location is /usr/local
/nagios/etc/nrpe.cfg. Look for the line beginning with allowed_hosts.
It may look similar to the following code snippet:
allowed_hosts=127.0.0.1,10.128.0.11

2. Add or remove IP addresses from the line, separating them with commas. For this
example, we're adding one more address:
allowed_hosts=127.0.0.1,10.128.0.11,10.128.0.12

3. Restart the nrpe daemon. If you have installed an init script for it, you may be able
to this with something similar to the following:
/etc/init.d/nrpe restart

If not, you can restart the process by sending it a HUP signal with the kill command,
which will prompt it to re-read its configuration file and resume running:

pgrep nrpe

29964

kill -HUP 29964

With this done, the nrpe daemon should now respond only to the nominated hosts
making check_nrpe requests, immediately closing the connection otherwise. We can
verify whether our new host is allowed to talk to the nrpe service on roma.naginet
with another telnet test:

$ telnet roma.naginet 5666

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

159

Note that the nrpe daemon is now waiting for input, rather than closing the connection
immediately as it was doing before. This implies that we can now run check_nrpe checks
from 10.128.0.12, if we need to.

How it works...
The configuration we adjusted above defines a set of addresses to which the nrpe daemon
should respond if a request is made, and implies that it should refuse to answer requests
made by any other address.

The nrpe daemon inspects the IP address of incoming connections, and if the allowed_
hosts directive is defined, checks that the address features in that list. If it does not, it closes
the connection and refuses to run any plugins, much less return any output from them.

There's more...
The allowed_hosts directive is actually optional; if we wished, we could set the nrpe
server up to respond to requests from any IP address. The default installation and example
configuration, however, enables it by default, allowing both requests from the localhost IP
127.0.0.1, and any network addresses the host had at the time ./configure was run.

This is a sensible policy because Nagios Core plugins are designed by third parties in an open
source community, for monitoring purposes in trusted networks, and may not necessarily be
very secure. A plugin doesn't actually have to have a security hole to cause such problems;
if the check it makes is very resource-intensive, for example opening a lot of TCP connections
or querying a large database, an attacker could cause problems on the target host, if allowed,
simply by making a large number of such check_nrpe requests in a short period of time.

See also
 f The Monitoring local services on a remote machine with NRPE recipe in this chapter

Creating new NRPE command definitions
securely

In this recipe, we'll learn how to securely create new command definitions for nrpe to run
upon request by a monitoring server. We need to do this because even if we have a huge set of
plugins installed on our target host running nrpe, the daemon will only run commands defined
in its configuration file.

We'll also learn how arguments can be passed to these commands if strictly necessary, and
about the potentially negative security consequences of this.

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Remote Execution

160

Getting ready
You should have a target host configured for checking in a Nagios Core 3.0 or later monitoring
server. The target host should be running the nrpe daemon. You can verify that nrpe is running
with pgrep or ps:

pgrep nrpe

29964

ps -e | grep [n]rpe

nagios 29964 1 0 21:55 ? 00:00:01 nrpe

We can inspect the list of commands that nrpe is already configured to run by looking for
command directives in its configuration file. By default, this file is /usr/local/nagios/
etc/nrpe.cfg, and the default command definitions are near the end of the file:

command[check_users]=/usr/local/nagios/libexec/check_users -w 5 -c 10

command[check_load]=/usr/local/nagios/libexec/check_load -w 15,10,5 -c
30,25,20

command[check_hda1]=/usr/local/nagios/libexec/check_disk -w 20% -c 10% -p
/dev/hda1

command[check_zombie_procs]=/usr/local/nagios/libexec/check_procs -w 5 -c
10 -s Z

command[check_total_procs]=/usr/local/nagios/libexec/check_procs -w 150
-c 200

We'll add another command to this set to check whether the swap space available is above a
specific threshold, using the standard Nagios Core plugin check_swap. We can test whether
it is working first by running it on the target host:

$ /usr/local/nagios/libexec/check_swap -w 10% -c 5%

SWAP OK - 100% free (216 MB out of 217 MB) |swap=216MB;21;10;0;217

For completeness, we'll also show how to define a service check using this new plugin on the
Nagios Core monitoring server.

How to do it...
We can add a new command definition to an nrpe configuration as follows:

1. Edit the nrpe daemon's configuration file. The default location is /usr/local/
nagios/etc/nrpe.cfg. Look for lines beginning with command, which are near
the end of the file by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

161

2. Add the following line to the end of the file:
command[check_swap]=/usr/local/nagios/libexec/check_swap -w 10% -c
5%

3. Restart the nrpe daemon. If you have installed an init script for it, you may be able
to do this with something similar to the following command:
/etc/init.d/nrpe restart

If not, you can restart the process by sending it a HUP signal with the kill command,
which will prompt it to re-read its configuration file and resume running:
pgrep nrpe

29964

kill -HUP 29964

With this done, assuming that our monitoring server is part of the allowed_hosts directive
and can contact the target host, a call to check_nrpe on the monitoring host should return
the status and output of the check_swap plugin on the target host:

$ /usr/local/nagios/libexec/check_nrpe -H roma.naginet -c check_swap

SWAP OK - 100% free (216 MB out of 217 MB) |swap=216MB;21;10;0;217

In turn, this allows us to use the check in a service definition on the monitoring server, with a
check_nrpe command:

define service {
 use generic-service
 host_name roma.naginet
 service_description SWAP
 check_command check_nrpe!check_swap
}

How it works...
The configuration added in the preceding section defines a new command in nrpe.cfg
called check_swap. The definition of new commands in nrpe.cfg takes the following
general form:

command[command_name] = command_line

We defined a command check_swap for NRPE. It doesn't accept any arguments, where the
actual check_swap plugin requires them; instead, the arguments are hard-coded into the
command definition, with the two options -w 10% and -c 5% setting the thresholds for free
swap space.

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Remote Execution

162

Besides checking system properties, such as the load average or the swap space, which might
not otherwise be directly retrievable except via systems such as SNMP, another common use
for NRPE is to report on the state of network services that only listen locally, or are otherwise
unreachable by the monitoring host. Database server monitoring is a good example. We could
define the following command in nrpe.cfg:

command[check_mysql] = /usr/local/nagios/libexec/check_mysql -u nagios -d
nagios -p NFmxenQ5

Assuming that the check_mysql plugin is installed on this target host, which it ought to be
if the MySQL client library and headers were available at compile time, this command would
then enable this check to be run from the monitoring host:

$ /usr/local/nagios/libexec/check_nrpe -H roma.naginet -c check_mysql

Uptime: 420865 Threads: 1 Questions: 172 Slow queries: 0 Opens: 99

Flush tables: 1 Open tables: 23 Queries per second avg: 0.0

This can be configured as a service check using an appropriate command definition for
check_nrpe as follows:

define service {
 use generic-service
 host_name roma.naginet
 service_description MYSQL
 check_command check_nrpe!check_mysql
}

Thus we're able to get the status of the MySQL server on the remote host roma.naginet
without actually connecting directly to the MySQL server itself; we arrange for the NRPE
service on the target host to do it on the monitoring server's behalf.

This is not just useful for network services running on the target host. It can be used to
delegate any kind of check that a remote host can perform where the monitoring server
cannot. Using NRPE is thus also a way to work around the addressability problems of NAT,
because a service running on an address such as 192.168.1.1 would not be addressable
from outside the network. If NRPE were running on the NAT gateway, we could use that to
address the appropriate systems by their local addresses.

There's more...
Also, near the bottom of nrpe.cfg, you'll find some information on providing arguments
to NRPE commands as part of the check_nrpe request, as opposed to hard-coding them.
The comment included in the file makes it quite clear that this carries some risks:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

163

The following examples allow user-supplied arguments and can only be used if the
NRPE daemon was compiled with support for command arguments AND the dont_
blame_nrpe directive in this config file is set to '1'. This poses a potential security
risk, so make sure you read the SECURITY file before doing this.

It's important to understand that, when running NRPE on a target host, you are running a
service that is designed to allow network machines to run commands on the target machine
with no strong authentication, which is why keeping NRPE secure is so important. If you allow
passing arguments to commands, you need to be aware of the full ramifications and risks of
doing so, and the recommended SECURITY file explains these well.

If you really want to use it, it requires reconfiguring and recompiling the nrpe daemon with
the --enable-command-args switch:

$./configure --enable-command-args
$ make all
make install-daemon

Then set the dont_blame_nrpe in nrpe.cfg parameter to 1, where it otherwise defaults
to 0:

dont_blame_nrpe=1

After restarting nrpe (if you have rebuilt it, you will need to restart it completely this time, and
not simply send the process a HUP signal), this allows us to use command definitions similar
to the following:

command[check_mysql_args]=/usr/local/nagios/libexec/check_mysql -H
localhost -u $ARG1$ -d $ARG2$ -p $ARG3$

This command in turn allows checks from the monitoring servers like this, using the -a option
of check_nrpe:

/usr/local/nagios/libexec/check_nrpe -H roma.naginet -c check_mysql_
args -a nagios nagios NFmxenQ5

Because of the security concerns, I would recommend you avoid using command arguments
if at all possible. If you do absolutely need to use them, it's also important to make sure that
the traffic is encrypted, especially if it contains usernames and passwords. Advice on how to
manage this is included in the SECURITY document for the nrpe daemon.

See also
 f The Monitoring local services on a remote machine with NRPE and Giving limited

sudo privileges to NRPE recipes in this chapter

 f The Monitoring database services recipe in Chapter 5, Monitoring Methods

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Remote Execution

164

Giving limited sudo privileges to NRPE
In this recipe, we'll learn how to deal with the difficulty of execution permissions for NRPE.
The majority of the standard Nagios plugins don't require special privileges to run, although
this depends on how stringent your system's security restrictions are. However, some of the
plugins require being run as root, or perhaps as a user other than nrpe. This is sometimes
the case with plugins that need to make requests of system-level resources, such as checking
the integrity of RAID arrays.

There are four general approaches to fixing this:

 f Bad: One method is to change the plugins to setuid, meaning that they will always
be run as the user who owns them, no matter who executes them. The problem with
this is that setting this bit allows anyone to run the program as root, not just nrpe,
a very common vector for exploits.

 f Worse: Another method is to run nrpe as root, or as the appropriate user. This
is done by changing the nrpe_user and nrpe_group properties in nrpe.cfg.
This is even more dangerous, and completely inconsistent with the principle of least
privilege; we should confer a user as little permission as possible to allow it to do its
job. Never do this!

 f Better: A third method is to use command_prefix in nrpe.cfg to prepend /usr/
bin/sudo to all commands, and gives nrpe full sudo privileges to run only the
plugins in /usr/local/nagios/libexec. This is a bit better, but still quite risky
as we probably don't need every single command to be run as root, only one or two.

 f Best: The best method is to use sudo to assign the nrpe user limited privileges for
a subset of commands, only the ones it needs to run, and only as the user by which
it needs to be run.

The last solution is the most likely to be secure, so we'll examine an example here. We'll run
the check_procs plugin as root, to get a process count. In most cases, you wouldn't need
root privileges to get a complete count of all processes, but it might be needed on a system
with a very locked-down grsecurity patch installed.

Getting ready
You should have a target host configured for checking in a Nagios Core 3.0 or later monitoring
server. The target host should be running the nrpe daemon, and listening on all interfaces.
You can verify that nrpe is running with pgrep or ps:

pgrep nrpe
29964
ps -e | grep [n]rpe
nagios 29964 1 0 21:55 ? 00:00:01 nrpe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

165

You should also have sudo installed and working on the target system, and understand
what it does. We'll be editing the /etc/sudoers file to confer root privileges to our nrpe
user, for one program only. This recipe will assume that the nrpe daemon is running as the
nagios user in the nagios group.

How to do it...
We can confer limited root privileges for one command to our nrpe user as follows:

1. Edit the /etc/sudoers file. The safest way to do this is generally with a call
to visudo, which will make a temporary copy of the file and verify its syntax is
correct before installing it:
visudo

2. Add the following line to the file, and save it:
nagios ALL=(ALL) NOPASSWD: /usr/local/nagios/libexec/check_procs

Note that if the requiretty directive appears anywhere in your /etc/sudoers file,
you may need to remove it to make this work.

3. Become the nagios user with sudo, and test whether running the command runs as
root, with no password prompt:
sudo -s -u nagios

$ sudo /usr/local/nagios/libexec/check_procs

PROCS OK: 89 processes

4. Edit the nrpe daemon's configuration file. The default location is /usr/local/
nagios/etc/nrpe.cfg. Look for the command definition for check_total_
procs, and if there isn't one, create it. Note that /usr/bin/sudo has been
added to the start of the command:
command[check_total_procs]=/usr/bin/sudo /usr/local/nagios/
libexec/check_procs -w 150 -c 200

5. Restart the nrpe daemon. If you have installed an init script for it, you may be able
to do this with something similar to the following:
/etc/init.d/nrpe restart

If not, you can restart the process by sending it a HUP signal with the kill command,
which will prompt it to re-read its configuration file and resume running:
pgrep nrpe

29964

kill -HUP 29964

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Remote Execution

166

With this done, we should now be able to run a check_nrpe call from the monitoring server,
and get a successful response:

$ /usr/local/nagios/libexec/check_nrpe -H roma.naginet -c check_total_
procs

PROCS OK: 89 processes

How it works...
The preceding configuration does not change the behavior of nrpe very much; most of the
configuration is actually done on its host system. All we changed was the command definition
for check_total_procs to run it from within sudo.

To make this work without a password, we defined it in the /etc/sudoers file so that no
password was required to execute this particular program as root for the nagios user.
Because nrpe runs as the nagios user, it is therefore able to use sudo with no password
for this command only.

This means that when we call the check_total_procs command from the monitoring
server, it returns us the full output of the plugin as it was run with root privileges, but the
nagios user doesn't have root privileges to run anything else potentially dangerous, such
as rm or halt.

There's more...
While this is a much more secure way of allowing privileges as another user for nrpe, it still
requires trusting that the plugin that is being run with root privileges is secure and can't easily
be exploited. Be very careful before running this with custom code or with stray plugins you find
on the Web!

If you intend to allow the nagios user to run more than a couple of distinct programs, it may
look a little tidier to define them in /etc/sudoers with Cmnd_Alias:

Cmnd_Alias NAGIOS = /usr/local/nagios/libexec/check_procs, /usr/local/
nagios/libexec/check_load
nagios ALL=(ALL) NOPASSWD: NAGIOS

See also
 f The Monitoring local services on a remote machine with NRPE and Using check_by_

ssh with key authentication instead of NRPE recipes in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

167

Using check_by_ssh with key authentication
instead of NRPE

While all of the previous recipes in this chapter show that NRPE can be very effectively tied
down and secured, it may be that we require some means of authentication to a target host
in order to run the appropriate Nagios plugins on it. The nrpe daemon does not require any
authentication to return information about the host's state; as long as the IP addresses all
match, and the command is defined for running, it will return information.

If you already use SSH keys for a public key infrastructure in your network, then you may find
it preferable to use the check_by_ssh plugin instead, which allows you to use public keys
to authenticate with a target host before running any commands. This is only suitable if the
target host runs an ssh daemon.

In this recipe, we'll repeat the setup for the check_load plugin as done in the first recipe
in this chapter, Monitoring local services on a remote machine with NRPE, but we'll use the
check_by_ssh plugin instead.

Getting ready
You should have a Nagios Core 3.0 or newer server ready, with the ssh client software installed,
and a target host running sshd. The OpenSSH implementations should work fine.

The target host should have all of the Nagios Plugins installed; in this case, we're using
check_load.

You should be familiar with public key authentication and its advantages and disadvantages.
Wikipedia has an excellent article about public key cryptography and authentication at
http://en.wikipedia.org/wiki/Public-key_cryptography.

There is a popular introduction to SSH authentication with a key infrastructure at
http://support.suso.com/supki/SSH_Tutorial_for_Linux.

We will be running through a sensible key infrastructure setup, but it would pay to have an
understanding of how it works in case this setup does not suit your configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Remote Execution

168

How to do it...
We can arrange to get the output of check_load from our remote host by way of
check_by_ssh as follows:

1. On the monitoring server, decide on a location for the private and public keys for the
nagios user. I recommend placing them in /usr/local/nagios/keys. Create this
directory and make it owned by the nagios user, and only readable by that user:
KEYSDIR=/usr/local/nagios/keys
mkdir -p $KEYSDIR
chown nagios.nagios $KEYSDIR
chmod 0700 $KEYSDIR

2. Become the nagios user using su or sudo:
su nagios

sudo -s -u nagios

3. Generate a pair of private and public SSH keys using ssh-keygen. Here we've
used 2048-bit RSA; use whichever key length and cipher is appropriate for your
network setup.
$ ssh-keygen -b 2048 -t rsa -f /usr/local/nagios/keys/id_rsa

When prompted for a passphrase, simply press Enter to signal that you don't
want one.

This should create two files in /usr/local/nagios/keys, called id_rsa and
id_rsa.pub. The first one is the private key, and should be kept secret at all times.
The second, the public key, is safe to distribute and to install on other machines.

4. Decide on a location for the authorized_keys file on the target host. The easiest
way to do this is probably to specify a $HOME directory for the nagios user, and to
create it if appropriate:
NAGIOSHOME=/home/nagios
usermod -d $NAGIOSHOME nagios
mkdir -p $NAGIOSHOME/.ssh
chown -R nagios.nagios $NAGIOSHOME
chmod 0700 $NAGIOSHOME/.ssh

5. Copy the /usr/local/nagios/keys/id_rsa.pub file from the monitoring server
to /home/nagios/.ssh/authorized_keys on the target machine. The best way
to do this varies. One possible method is to use scp:
$ whoami
nagios

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

169

$ scp /usr/local/nagios/keys/id_rsa.pub roma.naginet:.ssh/
authorized_keys

You may have to set a password temporarily for the nagios user on the target host
to do this:
passwd nagios
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully.

6. Check that you can now log in from the monitoring server to the target server as the
nagios user with no password:
$ whoami
nagios
$ ssh -i /usr/local/nagios/keys/id_rsa roma.naginet
Linux roma 2.6.32-5-686 #1 SMP Mon Oct 3 04:15:24 UTC 2011 i686
Lost login: Sun Jul 29 18:23:14 2012 from olympus.naginet

7. Back on the monitoring server, check that you're able to run the check_by_ssh
plugin to call one of the installed plugins on the remote server; in this example,
we're calling check_load:
$ whoami
nagios
$ /usr/local/nagios/libexec/check_by_ssh \
 -H roma.naginet \
 -i /usr/local/nagios/keys/id_rsa \
 -C '/usr/local/nagios/libexec/check_load -w 15,10,5 -c
30,24,20'
OK - load average: 0.00, 0.00, 0.00|load1=0.000;15.000;30.000;0;
load5=0.000;10.000;24.000;0; load15=0.000;5.000;20.000;0;

Note that the value for the -C option needs to be surrounded with quotes.

8. Now that we've verified that check_by_ssh works with our infrastructure,
we can define a command to use it in /usr/local/nagios/etc/objects
/commands.cfg:
define command {
 command_name check_by_ssh
 command_line $USER1$/check_by_ssh -H $HOSTADDRESS$ -i /usr/
local/nagios/keys/id_rsa -C '$ARG1$'
}

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Remote Execution

170

9. We can apply that command to a new service check for roma.naginet as follows,
preferably placed beneath the host definition:
define service {
 use generic-service
 host_name roma.naginet
 service_description LOAD_BY_SSH
 check_command check_by_ssh!/usr/local/nagios/libexec/
check_load -w 15,10,5 -c 30,25,20
}

10. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, a new service with the description LOAD_BY_SSH should appear in the web
interface ready to be checked, and will come up with an appropriate status, including the load
average as read via SSH to the target host. To Nagios Core, the results of the check are just
the same as if they'd come via NRPE.

How it works...
Checking services via NRPE and SSH is actually a reasonably similar process; the central idea is
that we're using another network service shared by the monitoring server and the target host to
instruct the target host to run a plugin, and return the results to the monitoring server.

In the case of check_by_ssh, this is done over an SSH connection. It's quite typical for
administrators to run commands on remote hosts using the ssh client, simply by adding
the command to be run to the command line:

$ hostname

olympus.naginet

$ ssh roma.naginet hostname

roma.naginet

All that the check_by_ssh plugin does is formalizes this process into a Nagios plugin
context. The value for the command_line directive for the command we defined can
be broken down as follows:

 f $USER1$/check_by_ssh: This is the path to the plugin, as is typical in command
definitions, using the $USER1$ macro to expand to /usr/local/nagios/
libexec.

 f -H $HOSTADDRESS$: This specifies that the plugin should connect to the applicable
host for any host or service that uses this command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

171

 f -i /usr/local/nagios/keys/id_rsa: This specifies the location of the private
key to be used for identification with the remote host.

 f -C '$ARG1$': This specifies that the command run by check_by_ssh on the
target host is given in the first argument the service defines in its check_command;
in this case, our command is:
/usr/local/nagios/libexec/check_load -w 15,10,5 -c 30,25,20

Note that it's important that $ARG1$ is in quotes, because we want to pass the whole
command as one argument to check_by_ssh.

There's more...
Using check_by_ssh instead of check_nrpe allows full authentication via public key, rather
than merely by having the right IP address. It also encrypts all traffic implicitly, minimizing the
risk of sensitive data, such as usernames or passwords, from being intercepted. Which of the
two plugins you should use will depend very much on the nature of your network and your
security policy. There is no reason you can't use both of them if you wish.

Be careful not to confuse this plugin with check_ssh, which checks that the SSH service
itself is running, and is discussed in the Monitoring SSH for any host recipe in Chapter 5,
Monitoring Methods.

See also
 f The Monitoring local services on a remote machine with NRPE recipe in this chapter

 f The Monitoring SSH for any host recipe in Chapter 5, Monitoring Methods

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

7
Using the Web Interface

In this chapter, we will cover the following recipes:

 f Using the Tactical Overview

 f Viewing and interpreting availability reports

 f Viewing and interpreting trends

 f Viewing and interpreting notification history

 f Adding comments on hosts or services in the web interface

 f Viewing configuration in the web interface

 f Scheduling checks from the web interface

 f Acknowledging a problem via the web interface

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

174

Introduction
The Nagios Core web interface is an administrator's first port of call to see the current status of
the network being monitored. By way of CGI and PHP scripts, it allows an overview of the general
performance of all the hosts and services being monitored. It also provides information about
their current states and how checks are performed. This allows considerably more detail than
that which is normally contained in e-mailed notifications.

In most respects, the Nagios Core web interface (without any addons) is designed for the
display of information rather than controlling or configuring the server, but there are some
things that can be done from it to actually change the way Nagios Core is running. These
include the following:

 f Disabling or enabling active and passive checks, event handlers, notifications,
and flap detection, whether for all hosts and services or specific ones

 f Sending custom notifications about a host or service that don't necessarily
correspond to an actual state change

 f Rescheduling checks, commonly done to prioritize a check when there have been
problems that the administrator thinks are now resolved and wishes to recheck

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

175

 f Acknowledging problems, to allow administrators to suppress further notifications
from problems that they're working on fixing

 f Scheduling downtime to suppress notifications for a certain time period; this was
discussed in the Scheduling downtime for a host or service recipe in Chapter 3,
Working with Checks and States

 f Leaving comments on hosts and services for the information of any other administrator
who inspects them; many of the other actions in this list will do this implicitly

We won't offer a comprehensive survey of the web interface here, as much of its use is
explained in other chapters, or otherwise reasonably self-explanatory. Instead, we'll explore
a few runtime behavior changes that we can arrange through the web interface listed in the
preceding section, and on using and interpreting the reports available under the Reports
heading of the left navigation menu.

Another important and extremely useful part of the web interface, the Network Status Map,
is discussed in several recipes in Chapter 8, Managing Network Layout. We won't discuss it
here, as it's so useful that it merits a chapter in itself.

Using the Tactical Overview
In this recipe, we'll take a look at the Tactical Overview screen of the Nagios Core web interface.
As its name implies, this screen provides a one-page summary of the current operating status of
both the monitored hosts and services and the Nagios Core server itself.

Getting started
You will need access to the Nagios Core web interface. In the QuickStart install,
the nagiosadmin user will have all of the necessary privileges.

How to do it...
We can take a look at Tactical Overview as follows:

1. Log in to the Nagios Core web interface.

2. Click the Tactical Overview item in the left menu:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

176

You should see the Tactical Monitoring Overview screen appear in the right frame:

3. Try clicking on some of the items under Hosts and Services, for example the Up
count under Hosts. Note that you're presented with a listing of all the hosts that
comprise that section.

4. Return to Tactical Overview, and try clicking on some of the items under the
Monitoring Features heading, for example the Enabled item under Flap Detection.
Note that clicking on these brings you to a screen where you can quickly turn the
relevant feature on or off (provided your user has the appropriate privileges).

How it works...
The Tactical Overview is a good first port of call whenever you become aware of problems
with the monitored network, particularly if you've a reason to believe that the problems are on
more than one host. It's also a good place to visit to adjust monitoring features. For example,
if a very large segment of your network is going to be down and it's not practical to schedule
downtime for all of the affected hosts, then you could simply suppress notifications completely
for a while in order to fix the problem with no distractions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

177

Note that the screen includes an overall assessment of the monitoring performance of the
server in the top-right corner; this can be a useful first place to look if you suspect that the
monitoring server is struggling to keep up with its tasks, or want to get some idea of how
many checks it's making.

Beneath that is a simple bar graph showing the general state of the network. It will change
its color depending on the severity of the problems; in the preceding screenshot, there are
serious problems with some of the hosts and services on this network, and as a result the
bar is short and red.

There's more...
If you find the Tactical Overview useful, it may be a good idea to make it the home page for the
web interface, rather than the default page which mostly just shows the Nagios Core branding,
version, and some links. We can arrange this by changing the value of $corewindow in /usr
/local/nagios/share/index.php from main.php to cgi-bin/tac.cgi:

$corewindow=”cgi-bin/tac.cgi”;

With this done, when we visit the /nagios/ URL on the monitoring host, the Tactical
Overview should come up immediately. This can be done with any of the pages in the
menu. The Services item is another good choice for an alternative homepage.

See also
 f The Viewing configuration in the web interface recipe in this chapter

Viewing and interpreting availability reports
In this recipe, we'll learn how to use the Availability Report to build a table showing uptime
statistics for a host, hostgroup, service, or servicegroup. This is useful as a quick metric of
overall availability, perhaps to meet the terms of a service-level agreement.

Getting started
You will need access to the Nagios Core web interface, and permission to run commands
from the CGIs. The sample configuration installed by following the Quick Start Guide grants
all the necessary privileges to the nagiosadmin user when authenticated via HTTP.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

178

If you find that you don't have this privilege, then check the authorized_for_all_
services and authorized_for_all_hosts directives in /usr/local/nagios/etc/
cgi.cfg, and include your username in both; for example, for the user tom, the directives
might look similar to the following:

authorized_for_all_servicess=nagiosadmin,tom
authorized_for_all_hosts=nagiosadmin,tom

Alternatively, you should also be able to see a host or service's information if you are
authenticating with the same username as the nominated contact for the host or service
you want to check. This is explained in the Using authenticated contacts recipe in Chapter 10,
Security and Performance.

In this example, we'll view a month's history for a PING service on troy.naginet,
a Linux server.

How to do it...
We can arrange an availability report for the last month for our troy.naginet server
as follows:

1. Log in to the Nagios Core web interface.

2. Click on the Availability link in the left menu, beneath Reports:

3. Select the type of report, either Host(s), Hostgroup(s), Service(s), or Servicegroup(s):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

179

4. Select a specific host or service on which to report, or optionally choose to run it for
all the hosts, hostgroups, services, or servicegroups:

5. Define some options for the report. The defaults are sensible, so we'll use them for
now; we'll go over the effect of each of the other fields in the next section. Click on
Create Availability Report! when done:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

180

You should be presented with a table showing the percentage of time the host or
service has spent in each state. A healthy service might look similar to the following
screenshot, with a few blips or none at all:

A more problematic service might have large percentages of time in a WARNING or
CRITICAL state:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

181

Above the table appears a quick visual summary of the time spent in each state, which
will link to Trends Report with the same criteria if clicked. Additionally, below the table
are any log entries for the service or host changing state.

How it works...
Nagios Core assembles state changes from its log files for the specified time period,
and constructs the table of state changes by percentage. The availability report, therefore,
only works for times covered by your archived log files. The third step of building the report
involves a lot of possible options:

 f Report Period: This dropdown allows choosing a fixed period for convenience, relative
to the current date; alternatively, a custom time period may be used by selecting the
final CUSTOM TIME PERIOD option and selecting dates in the two fields that follow:

 � Start Date (Inclusive): This field specifies the date on which the report
should start, if the custom time period option has been set.

 � End Date (Inclusive): This field specifies the date on which the report
should end, if the custom time period option has been set.

 f Report Time Period: This is the time period for which the availability should be
assessed. The default is None, meaning that the service or host's state at any
time will be used in the calculations. You could, for example, set this to workhours
to see the percentage of uptime during a time that the server is expected to be busy.

 f Assume State Retention: If Nagios Core was restarted one or more times during the
reporting period, checking this option would make the report assume that the state
before any restart was retained by Nagios Core until it started again; this is enabled
with the retain_state_information directive in nagios.cfg.

 f Assume Initial States: If Nagios Core can't figure out the initial state of the service at
the time the report begins until the first check, it will assume it based on the value of
the First Assumed Host State or First Assumed Service State fields.

 f Assume States During Program Downtime: If Nagios Core finds that it was down for
a period in its log files, it will assume the final state it read from the host or service
before it went down.

 f Include Soft States: Nagios Core will graph SOFT states, meaning that it will include
state changes that occur, but that return to their previous state, before max_check_
attempts is exhausted. Otherwise, it will only graph states that have endured right
through the retry checks, or HARD states.

 f First Assumed Host State or First Assumed Service State: This is the value
Nagios Core should assume for the host or service state, if it can't determine
it from the log files.

 f Backtracked Archives: This specifies the number of archived log files back the Nagios
Core process should check to try and find initial states for the host or service.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

182

There's more...
You can choose to run the report for a hostgroup or servicegroup as well, which will yield an
indexed table showing both the per-host or per-service percentage state time, and also the
average uptime for all the hosts or services in the group.

See also
 f The Viewing and interpreting trends and Viewing and interpreting notification history

recipes in this chapter

 f The Using authenticated contacts recipe in Chapter 10, Security and Performance

Viewing and interpreting trends
In this recipe, we'll learn how to use the Host and Service State Trends reporting tool on a
host or service to show a graph of states over some fixed period of time. This can be useful to
determine not only overall availability, perhaps to meet the terms of a service-level agreement,
but also to ascertain whether there are certain intervals or consistent times that the host
enters a non-OK state. It's a good way to look for patterns in the downtime of your hosts.

Getting started
You will need access to the Nagios Core web interface, and permission to run commands
from the CGIs. The sample configuration installed by following the Quick Start Guide grants
the nagiosadmin user all the necessary privileges when authenticated via HTTP.

If you find that you don't have this privilege, then check the authorized_for_all_
services and authorized_for_all_hosts directives in /usr/local/nagios
/etc/cgi.cfg, and include your username in both; for the user tom, the directives
might look similar to the following:

authorized_for_all_services=nagiosadmin,tom
authorized_for_all_hosts=nagiosadmin,tom

Alternatively, you should also be able to see a host or service's information if you are
authenticating with the same username as a nominated contact for the host or service
you want to check.

In this example, we'll view a month's history for the HTTP service on athens.naginet,
a web server for which we've been running checks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

183

How to do it...
We can arrange a Service State Trends report for the last month for our athens.naginet
server as follows:

1. Log in to the Nagios Core web interface.

2. Click on the Trends link in the left menu, beneath Reports:

3. Select the type of report, either Host or Service:

4. Select a specific host or service on which you would like to report:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

184

5. Define some options for the report. The defaults are sensible, so we'll use them for
now; we'll go over the effect of each of the other fields in the next section. Click on
Create Report when done:

You should be presented with a graph showing the state of the host or service over time,
along with markings of time for when the state changed, and a percentage breakdown of
the relative states on the right.

A healthy service might look similar to the following screenshot, with a few blips or none
at all:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

185

A more problematic service might have long periods of time in a WARNING or CRITICAL state:

You can click on sections of the graph to "zoom in” on it, provided that you did not select the
Suppress image map option on the Select Report Options page.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

186

How it works...
Nagios Core assembles state changes from its log files for the specified time period and
constructs the graph of state changes by color, delineating the dates on the horizontal axis
and at regular intervals. The trends graph, therefore, only works for times covered by your
archived log files. The third step of building the report involves a lot of possible options:

 f Report period: This dropdown allows choosing a fixed period for convenience, relative
to the current date; alternatively, a custom time period may be used by selecting the
final CUSTOM TIME PERIOD option and selecting dates in the two fields that follow:

 � Start Date (Inclusive): This field specifies the date on which the report
should start, if the custom time period option has been set.

 � End Date (Inclusive): This field specifies the date on which the report should
end, if the custom time period option has been set.

 f Assume State Retention: If Nagios Core was restarted one or more times during
the reporting period, checking this option will make the report assume that the state
before any restart was retained by Nagios Core until it started again; this is enabled
with the retain_state_information directive in nagios.cfg.

 f Assume Initial States: If Nagios Core can't figure out the initial state of the
service at the time the report begins until the first check, it will assume it based on
the value of the First Assumed Host State or First Assumed Service State fields.

 f Assume States During Program Downtime: If Nagios Core finds that it was
down for a period in its log files, it will assume the final state it read from the
host or service while it was down.

 f Include Soft States: Nagios Core will graph SOFT states, meaning that it will include
state changes that occur, but that return to their previous states, before max_check_
attempts is exhausted. Otherwise, it will only graph states that have endured right
through the retry checks, or HARD states.

 f First Assumed Host State or First Assumed Service State: This is the value
Nagios Core should assume for the host or service state, if it can't determine
it from the log files.

 f Backtracked Archives: This specifies the number of archived log files back the Nagios
Core process should check to try and find initial states for the host or service.

 f Suppress image map: This prevents the graph from being clickable to zoom in on a
particular region of it, perhaps for reasons of browser compatibility.

 f Suppress popups: This prevents the graph from showing popups when hovering over
sections of it, perhaps for reasons of browser compatibility.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

187

There's more...
Note that it's important to ensure that checks have actually been running for the entire time
for which you're running the report, as otherwise the State Breakdowns section will have
distorted statistics. There is not much point running a yearly report for a host that has only
existed for six months! In general, the more frequent and consistent your checks, the more
accurate the trends graph will be.

See also
 f The Viewing and interpreting availability reports and Viewing and interpreting

notification history recipes in this chapter

Viewing and interpreting notification history
In this recipe, we'll see how to get both complete listings and convenient summaries of the
alerts and notifications being generated by Nagios Core in response to hosts and services
changing state. These options are all available under the Reports section of the sidebar:

It's important to distinguish between alerts and notifications in this section. An alert is
generated in response to an event such as a host or service changing state. A notification,
in turn, may or may not be generated as a response to that alert, and be sent to the
appropriate contacts. SOFT state changes constitute alerts; only HARD state changes
generally make notifications.

It's likely that a production monitoring server will not be sending notifications for every alert,
particularly if you're making good use of the max_check_attempts, scheduled downtime, and
problem acknowledgement features. You should make sure you're checking the correct section.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

188

Getting started
You will need access to the Nagios Core web interface and permission to run commands from
the CGIs. The sample configuration installed by following the Quick Start Guide grants all the
necessary privileges to the nagiosadmin user when authenticated via HTTP.

How to do it...
We can get an overview of the notifications, alerts, and other events being generated on the
Nagios Core server as follows:

1. Start with the Notifications report. The resulting screen should show you the day's
notifications as read from the current log file.

2. Note that if you're using the log rotation feature of Nagios Core, configured with the
log_rotation_method directive, then you can use the arrows above the table to
navigate to the previous period's monitoring (generally 24 hours worth). Additionally,
note that the information includes the following:

 � Links to the hosts and services that generate them

 � The contacts to which they were sent

 � The notification commands that were run

 � The output of the commands that prompted the alert and notification

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

189

Also note that you're able to filter for any particular kind of notification, and change
the sorting order, using the form in the top-right corner:

3. Next, move to the Alerts or Alerts | History report. Rather than a tabular format,
this shows you all of the alerts generated by hosts and services as a list, showing
red exclamation icons for CRITICAL or DOWN states, green icons for OK states,
and others. The list is broken into intervals of one hour:

Note that these alerts also include the server being started or shut down.
Also note that you're again able to filter for specific alert types with the form
in the top-right corner.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

190

4. The other two items in the Alerts menu allow generating complex reports with many
criteria. The first, Summary, presents its results in tabular format according to the
criteria entered in a form. For now, try clicking on Create Summary Report at the
bottom of the first page, with all of the fields on their defaults, to get a feel for the
results it generates:

The Histogram report generates something similar, showing a breakdown of the
alerts generated for nominated hosts or services over a fixed period of time:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

191

How it works...
Nagios Core saves the data for both alerts and notifications on a long-term basis, allowing for
reports like this to be generated dynamically from its archives. Note that the data presented
in these reports is for alerts and notifications, not the actual states of the services over time.
To get useful statistics such as the percentage of uptime, you'll want to generate an availability
report, as discussed in the Viewing and interpreting availability reports recipe in this chapter.

The same notifications data can also be translated into a MySQL database format via the
NDOUtils extension, so that reading the alerts and notifications data programmatically to
generate custom reports is possible. See the Reading status into a MySQL database with
NDOUtils recipe in Chapter 11, Automating and Extending Nagios, for information on how
to do this.

There's more...
The remaining item in the menu is the Event Log, which presents a more comprehensive
summary of Nagios Core's overall activity without filtering only for alerts or notifications.
This screen can include information such as the application of external commands. It tends
to be quite verbose, but it's a useful way to read the nagios.log file from the web interface.
Your username will need to be included in the authorized_for_system_information
directive in /usr/local/nagios/etc/cgi.cfg to use this:

authorized_for_system_information=nagiosadmin,tom

See also
 f The Viewing and interpreting availability reports and Viewing and interpreting

trends recipes in this chapter

 f The Reading status into a MySQL database with NDOUtils recipe in Chapter 11,
Automating and Extending Nagios

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

192

Adding comments on hosts or services in
the web interface

In this recipe, we'll learn how to add comments to hosts or services in the Nagios Core web
interface, to keep track of information about them for all the web interface users.

Getting started
You will need access to the Nagios Core web interface, and permission to run commands from
the CGIs. The sample configuration installed by following the Quick Start Guide grants all the
necessary privileges to the nagiosadmin user when authenticated via HTTP. You will also
need at least one host or service.

If you find that you don't have this privilege, then check the authorized_for_all_service_
commands and authorized_for_all_host_commands directives in /usr/local/
nagios/etc/cgi.cfg, and include your username in both; for example, for the user tom,
the directives might look similar to the following:

authorized_for_all_service_commands=nagiosadmin,tom
authorized_for_all_host_commands=nagiosadmin,tom

How to do it...
We can add a comment to a host or service as follows:

1. Log in to the Nagios Core web interface, and click on the hostname or service
description on which you wish to leave the comment. You can get to this via the Hosts
or Services menu items. Here, I'm leaving a comment on my sparta.naginet host:

2. Click on the Add a new comment link at the bottom of the page:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

193

3. Fill out the resulting form and include the following details:

 � Host Name: This is the host name for the host or service on which
the comment should be made. This should be filled in automatically.

 � Persistent: Check this box if you would like the comment to remain
on the host even after Nagios Core is restarted.

 � Author (Your Name): This is the name of the person acknowledging the
fault. This should default to your name or username; it may be grayed out
and unchangeable, depending on the value of lock_author_names in
/usr/local/nagios/etc/cgi.cfg.

 � Comment: This is the text of the comment itself.

Note that explanatory notes also appear to the right of the command description.
Click on Commit when done:

With this done, a comment should be added to the host or service. It may take a little while for
the command to be processed. You will find that there is an icon added to the host or service's
link in its menu, and that a comment has been added:

How it works...
Like most changes issued from the Nagios Core web interface, adding a comment to a host
or service is a command issued for processing by the server, along with its primary task of
executing plugins and recording states. This is why it can sometimes take a few seconds to apply
even on an idle server. This is all written to the command file, by default stored at /usr/local/
nagios/var/rw/nagios.cmd, which the Nagios Core system regularly reads.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

194

When the command is executed, a comment is added to the host or service that can be viewed
by anyone with appropriate permissions in the web interface.

There's more...
You can view a list of all comments with the Comments link in the sidebar:

This will bring up a complete list of comments for all hosts and services, including both
automated and manual ones:

See also
 f The Acknowledging a problem via the web interface recipe in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

195

Viewing configuration in the web interface
In this recipe, we'll learn how to view a table of all the objects currently configured for
the running Nagios Core instance. This is a very convenient way to view how the system
has understood your configuration. If you use a lot of configuration tricks, such as object
inheritance and patterns for hostnames, this can really help you make sense of things.

Some administrators aren't aware of this feature, because it's tucked away at the bottom
of the Nagios Core web interface's navigation menu. It's very simple to use as there are
only really two steps involved.

Getting started
You will need access to the Nagios Core web interface, and permission to run commands
from the CGIs. The sample configuration installed by following the Quick Start Guide grants
all the necessary privileges to the nagiosadmin user when authenticated via HTTP.

If you find that you don't have this privilege, then check the authorized_for_
configuration_information directive in /usr/local/nagios/etc/cgi.cfg,
and include your username in it; for example, for the user tom, the directives might look
like the following:

authorized_for_configuration_information=nagiosadmin,tom

How to do it...
We can view the configuration of different object types in the web interface as follows:

1. Log in to the Nagios Core web interface, and click on the Configuration item in
the navigation menu:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

196

2. Select the object type you wish to view, and click on Continue. In this example,
I want to view all the hosts I have defined:

You should be presented with a complete table showing the directive values of
all the hosts defined in your system. It will likely be wider than the screen, and
will hence require horizontal scrolling.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

197

How it works...
This is simply a convenient shortcut for viewing the configuration of your hosts as Nagios Core
understands them. The following object types can be viewed:

 f Hosts

 f Host dependencies

 f Host escalations

 f Host groups

 f Services

 f Service groups

 f Service dependencies

 f Service escalations

 f Contacts

 f Contact groups

 f Time periods

 f Commands

 f Command expansion

This shortcut is particularly convenient for definitions that can sometimes be quite complex,
such as hosts and services that inherit from templates, or time period definitions. It's a good
way to check that Nagios Core has interpreted your configuration the way you expected.

There's more...
It's important to note that the output doesn't actually tell you anything about the state of hosts
or services; it only shows how they're configured. If you need to get both the configuration and
state information in an accessible format for processing by a custom script, an excellent way
to arrange this is with the NDOUtils addon, which allows you to translate this information into a
MySQL database format. See the Reading status into a MySQL database with NDOUtils recipe
in Chapter 11, Automating and Extending Nagios Core for information on how to do this.

See also
 f The Reading status into a MySQL database with NDOUtils and Writing customized

Nagios Core reports recipes in Chapter 11, Automating and Extending Nagios Core

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

198

Scheduling checks from the web interface
In this recipe, we'll learn how to manually schedule checks of hosts and services from the
web interface, overriding the automatic scheduling normally done by Nagios Core. This can
be convenient to hurry along checks for hosts or services that have just been added, or
which have just had problems, or to force a check to be made even when active checks
are otherwise disabled on a host for whatever reason.

In this example, we'll schedule a check for a service, but checks for hosts can be established
in just the same way.

Getting started
You will need access to the Nagios Core web interface, and permission to run commands from
the CGIs. The sample configuration installed by following the Quick Start Guide grants all the
necessary privileges to the nagiosadmin user when authenticated via HTTP.

If you find that you don't have this privilege, then check the authorized_for_all_service_
commands and authorized_for_all_host_commands directives in /usr/local/
nagios/etc/cgi.cfg, and include your username in both; for example, for the user tom,
the directives might look like the following:

authorized_for_all_service_commands=nagiosadmin,tom
authorized_for_all_host_commands=nagiosadmin,tom

How to do it...
We can schedule a check for an existing service as follows:

1. Log in to the Nagios Core web interface, and find the link to the host or service for
which you want to schedule a check. In this example, we're forcing a check of the
LOAD service on the sparta.naginet host:

2. Click on the Re-schedule the next check of this service or Re-schedule the next
check of this host link in the menu on the right:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

199

3. Complete the resulting form and include the following details:

 � Host Name: This is the host name for the host or service having the
problem. This should be filled in automatically.

 � Service: This is the service description for the service having problems,
if applicable. This will also be filled in automatically.

 � Check Time: This is the time at which Nagios Core should reschedule
the check.

 � Force Check: This specifies whether it's required to force a check
regardless of active checks being disabled for this host or service.

Note that explanatory notes also appear to the right of the command description.
Click on Commit when done:

With this done, after Nagios Core processes the new command, viewing the service should
show the new time for its next scheduled check, and the check will be run at the nominated
time and its return values processed normally.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

200

How it works...
Scheduling checks in this manner is a means of "jumping the queue” for a particular host or
service. Check scheduling is otherwise an automated process that Nagios Core figures out
based on host and service directives such as check_interval and retry_interval.

Like all external commands issued from the web interface, a command is written to the
commands file, usually at /usr/local/nagios/var/rw/nagios.cmd, for processing
by the system.

There's more...
We can inspect the enqueued checks by clicking on the Scheduling Queue link under the
System section of the sidebar:

This will bring up a list of the pending checks, and the times at which they'll take place:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

201

We can also get more detailed information about the queuing process and performance by
using the -s flag with the nagios command:

/usr/local/nagios/bin/nagios -s /usr/local/nagios/etc/nagios.cfg

This will print a lot of information to the terminal, too much to reproduce here! It is probably
helpful to pipe it through a paging tool like less to read it:

/usr/local/nagios/bin/nagios -s /usr/local/nagios/etc/nagios.cfg | less

See also
 f The Viewing and interpreting notification history recipe in this chapter

 f The Checking Nagios Core performance with Nagiostats recipe in Chapter 10,
Security and Performance

 f The Allowing passive checks, and Running passive checks from a remote host
with NSCA recipes in Chapter 11, Automating and Extending Nagios Core

Acknowledging a problem via the web
interface

In this recipe, we'll learn how to acknowledge problems with a host or service, in order to
prevent further notifications coming from it and to signal that the problem is being worked
on. This is useful if more than one administrator has access to the Nagios Core web interface,
to prevent more than one administrator trying to fix a problem, and to prevent unnecessary
notifications for a longer-term problem after the operations team has been made aware of
it. The exact changes in behavior that the acknowledgement causes are defined at the time
it's submitted.

Getting started
To acknowledge a notification, there needs to be at least one host or service suffering
problems. Any host or service in a WARNING, CRITICAL, or UNKNOWN state can be
acknowledged.

You will need access to the Nagios Core web interface, and permission to run commands
from the CGIs. The Quick Start configuration grants all the necessary privileges to the
nagiosadmin user when authenticated via HTTP.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

202

If you find that you don't have this privilege, check the authorized_for_all_service_
commands and authorized_for_all_host_commands directives in /usr/local/
nagios/etc/cgi.cfg, and include your username in both; for example, for the user
tom, the directives might look like the following:

authorized_for_all_service_commands=nagiosadmin,tom
authorized_for_all_host_commands=nagiosadmin,tom

How to do it...
We can acknowledge a host or service problem as follows:

1. Log in to the Nagios Core web interface, and click on the Hosts or Services section
in the left menu, to visit the host or service having problems. In this example, I'm
acknowledging a problem with the APT service on my machine athens; Nagios Core
is reporting upgrades available, but they're not critical and I can't run them right now.
Hence I'm going to acknowledge them, so that other administrators know I've got a
plan for the problem:

2. Click on the Acknowledge this service problem link under the Service
Commands menu:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

203

3. Complete the resulting form and include the following details:

 � Host Name: This is the host name for the host or service having the
problem. This should be filled in automatically.

 � Service: This is the service description for the service having problems,
if applicable. This will also be filled in automatically.

 � Sticky Acknowledgement: If checked, notifications will be suppressed
until the problem is resolved; the acknowledgement will not go away if
Nagios Core is restarted.

 � Send Notification: If checked, an ACKNOWLEDGEMENT notification will
be sent to all the contacts and contact groups for the host or service.

 � Persistent Comment: Acknowledgements always leave comments on the
host or service in question. By default, these are removed when the host
or service recovers, but if you wish you can check this to arrange to have
them take the form of a permanent comment.

 � Author (Your Name): This is the name of the person acknowledging the fault.
This should default to your name or username; it may be grayed out and
unchangeable, depending on the value of lock_author_names in /usr
/local/nagios/etc/cgi.cfg.

 � Comment: This is an explanation of the acknowledgement; this is generally a
good place to put expected times to resolution, and what's being done about
the problem.

Note that explanatory notes also appear to the right of the command description.
Click on Commit when done:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Web Interface

204

With this done, the effects you chose for the downtime should take effect shortly. It may take
a little while for the command to be processed. You will find that there is an acknowledgement
icon added to the host or service's link in its menu, and that a comment has been added:

Your contacts may also receive an ACKNOWLEDGEMENT notification:

How it works...
Like most changes issued from the Nagios Core web interface, acknowledging a host or
service is a command issued for processing by the server, along with its primary task of
executing plugins and recording states. This is why it can sometimes take a few seconds
to apply even on an idle server. This is all written to the command file, which is by default
stored at /usr/local/nagios/var/rw/nagios.cmd. The Nagios Core system regularly
reads this file, provided external command processing is enabled in /usr/local/nagios/
etc/nagios.cfg.

When the command is executed and the Sticky Acknowledgement option is selected, the
effect is that the filters normally applied by Nagios Core will notice that the host or service
has had its problems acknowledged before dispatching a notification, and will therefore
prevent the notification from being sent.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

205

When the host recovers (a RECOVERY event), a notification to that effect will be sent, and the
acknowledgement will be removed as it's no longer needed. Future problems with the host or
service, even if they're exactly the same problem, will need to be themselves acknowledged.

There's more...
Acknowledging host and service problems is a really good habit to get into for administrators,
particularly if working in a team, as it may prevent a lot of confusion or duplication of work.
It's therefore helpful in the same way comments are, in keeping your team informed about
what's going on with the network.

The distinction between scheduled downtime and acknowledgements is important. Downtime
is intended to be for planned outages to a host or service; an acknowledgement is intended as
a means of notification that an unanticipated problem has occurred, and is being worked on.

If we're getting nagged repeatedly by notifications for problems that we already know
about, as well as using acknowledgements, then it may be appropriate to review the
notification_interval directive for the applicable hosts or services, to limit the
frequency with which notifications are sent. For example, to only send repeat notifications
every four hours, we could write the following code snippet:

define host {
 ...
 notification_interval 240
}

For low-priority hosts, for example, it's perhaps not necessary to send notifications every
10 minutes!

Do not confuse this directive with notification_period, which is used to define the times
during which notifications may be sent, another directive that may require review:

define host {
 ...
 notification_period 24x7
}

See also
 f The Adding comments on hosts or services in the web interface recipe in this chapter

 f The Scheduling downtime for a host or service recipe in Chapter 3, Working with
Checks and States

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

8
Managing Network

Layout

In this chapter, we will cover the following recipes:

 f Creating a network host hierarchy

 f Using the network map

 f Choosing icons for hosts

 f Establishing a host dependency

 f Establishing a service dependency

 f Monitoring individual nodes in a cluster

 f Using the network map as an overlay

Introduction
While Nagios Core is still very useful when configured to monitor only a simple list of hosts
and services, it includes some optional directives that allow defining some structural and
functional properties of the monitored network; specifically, how the hosts and services
interrelate. Describing this structure in the configuration allows some additional intelligent
behavior in the monitoring and notification that Nagios Core performs.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

208

There are two main approaches to working with network structure in Nagios Core:

 f Host parent definitions allow an administrator to define a hierarchy of connectivity to
monitored hosts from the "point of view" of the Nagios Core server. An example might
be a server with the monitored address in another subnet linked to the Nagios Core
server by a router. If the router enters a DOWN state, it triggers Nagios Core's host
reachability logic to automatically determine which hosts become inaccessible, and
flags these as UNREACHABLE rather than DOWN, allowing refined notification behavior.

 f Host and service dependencies allow the formalization of relationships between hosts
or services, usually for the purposes of suppressing unnecessary notifications. An
example might be a service that tests a login to a mail service, that itself requires a
database service to work properly. If Nagios Core finds that the database service and
the login service are both down, a service dependency allows the suppressing of the
notification about the login service; the administrator would therefore only be notified
about the database service being down, which is more likely to be the actual problem.

There is some overlap of functionality here, but the general pattern is that host parent
definitions describe the structure of your network from the vantage point of your monitoring
server, and host and service dependencies describe the way it functions, independent of the
monitoring server. We will define both parent definitions and dependencies in this chapter,
with the primary goal of filtering and improving the notifications that Nagios Core sends in
response to failed checks, which can assist greatly in diagnosing problems.

We'll also look at another, more subtle benefit of establishing host parent definitions in making
the network map of the Nagios Core web interface useful, and once a basic hierarchy is set up,
we'll show how to customize the map's appearance (including defining icons for hosts), to make
it generally useful as a network weather map.

Creating a network host hierarchy
In this recipe, we'll learn how to establish a parent-child relationship for two hosts in a very
simple network, in order to take advantage of Nagios Core's reachability logic. Changing this
configuration is very simple; it involves adding only one directive, and optionally changing
some notification options.

Getting ready
You will need to be running a Nagios Core 3.0 or newer server, and have at least two hosts, one
of which is only reachable via the other. The host that allows communications with the other is
the parent host. You should be reasonably confident that a loss of connectivity to the parent
host necessarily implies that the child host becomes unreachable from the monitoring server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

209

Access to the web interface of Nagios Core would also be useful, as making this change will
change the appearance of the network map, discussed in the Using the network map recipe
in this chapter.

Our example will use a Nagios Core monitoring server, olympus.naginet, monitoring
three hosts:

 f calpe.naginet, a router
 f janus.naginet, another router
 f corsica.naginet, a web server

The hosts are connected as shown in the following diagram:

Note that the Nagios Core server olympus.naginet is only able to communicate with the
corsica.naginet web server if the router calpe.naginet is working correctly. If calpe.
naginet were to enter a DOWN state, we would see corsica.naginet enter a DOWN state too:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

210

This is a little misleading, as we don't actually know whether corsica.naginet is down.
It might be, but with the router in between the hosts not working correctly, Nagios Core has no
way of knowing. A more informative and accurate status for the host would be UNREACHABLE;
this is what the configuration we're about to add will arrange.

How to do it...
We can configure a parent-child relationship for our two hosts as follows:

1. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in a
different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Edit the file containing the definition for the child host. In our example, the child host
is corsica.naginet, the web server. The host definition might look something
similar to the following code snippet:
define host {
 use linux-server
 host_name corsica.naginet
 alias corsica
 address 10.128.0.71
}

3. Add a new parents directive to the host's definition, and give it the same value
as the host_name directive of the host on which it is dependent for connectivity.
In our example, that host is calpe.naginet.
define host {
 use linux-server
 host_name corsica.naginet
 alias corsica
 address 10.128.0.71
 parents calpe.naginet
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

211

With this done, if the parent host enters a DOWN state and the child host can't be contacted,
then the child host will enter an UNREACHABLE state rather than also being flagged as DOWN:

The child host's contacts will also receive UNREACHABLE notifications instead of DOWN
notifications for the child host, provided the u flag is included in notification_options
for the host, and host_notification_options for the contacts. See the Specifying which
states to be notified about recipe in Chapter 4, Configuring Notifications, for details on this.

How it works...
This is a simple application of Nagios Core's reachability logic. When the check to calpe.
naginet fails for the first time, Nagios Core notes that it is a parent host for one child host,
corsica.naginet. If during checks for the child host it finds it cannot communicate with it,
it flags an UNREACHABLE state instead of the DOWN state, firing a different notification event.

The primary advantages to this are twofold:

 f The DOWN notification is only sent for the nearest problem parent host. All other hosts
beyond that host fire UNREACHABLE notifications. This means that Nagios Core's
reachability logic automatically determines the point of failure from its perspective,
which can be very handy in diagnosing which host is actually experiencing a problem.

 f If the host is a parent to a large number of other hosts, the configuration can be
arranged not to send urgent notifications for UNREACHABLE hosts. There may not be
much point sending a hundred pager or e-mail messages to an administrator when
a very central router goes down; they know there are problems with the downstream
hosts, so all we would be doing is distracting them with useless information.

With a little planning and some knowledge of the network, all we need to do is add a few
parents directives to host definitions to build a simple network structure, and Nagios Core
will behave much more intelligently as a result. This is one of the easiest ways to refine the
notification behavior of Nagios Core; it can't be recommended enough!

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

212

There's more...
Note that a child host can itself be a parent to other hosts in turn, allowing a nesting network
structure. Perhaps in another situation, we might find that the corsica.naginet server is
two routers away from the monitoring server:

In this case, not only is corsica.naginet the child host of calpe.naginet, but calpe.
naginet is itself the child host of janus.naginet. We could specify this relationship in
exactly the same way:

define host {
 use linux-router
 host_name calpe.naginet
 alias calpe
 address 10.128.0.129
 parents janus.naginet
}

It's also possible to set multiple parents for a host, if there are two possible paths to the
same machine:

define host {
 use linux-server
 host_name corsica.naginet
 alias corsica
 address 10.128.0.71
 parents calpe.naginet,janus.naginet
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

213

With this configuration, corsica.naginet would only be deemed UNREACHABLE if both of
its parent hosts were down. This kind of configuration is useful to account for redundant paths
in a network; use cases could include spanning tree technologies, or dynamic routing failover.

After you've set up a good basic structure for your network using the parents directive,
definitely check out the Using the network map recipe in this chapter to get some automatic
visual feedback about your network's structure as generated from your new configuration.

See also
 f The Using the network map and Establishing a host dependency recipes in

this chapter

 f The Specifying which states to be notified about and Configuring notification
groups recipes in Chapter 4, Configuring Notifications

Using the network map
In this recipe, we'll examine our network hierarchy in the network map (or status map) in the
Nagios Core web interface. The network map takes the form of a generated graphic showing
the hierarchy of hosts and their current states. You can learn how to establish such a hierarchy
in the recipe Creating a network host hierarchy in this chapter. The network map allows filtering
to show specific hosts, and clicking on hosts to navigate through larger networks.

Getting ready
You will need to be running a Nagios Core 3.0 or newer server, and have access to its web
interface. You will also need permission to view the states of hosts, preferably all hosts. You
can arrange this by adding your username in the authorized_for_all_hosts directive,
normally in /usr/local/nagios/etc/cgi.cfg; for example, for the user tom, we might
configure the directive to read as follows:

authorized_for_all_hosts=nagiosadmin,tom

By default, the nagiosadmin user should have all the necessary permissions to view the
complete map.

The network map is not particularly useful without at least a few hosts configured and
arranged in a hierarchy, so if you have not set any parents directives for your hosts, then
you may wish to read the Creating a network host hierarchy recipe in this chapter first, and
arrange your monitored hosts as it explains.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

214

How to do it...
We can inspect the network map for our newly configured host hierarchy like so:

1. Log in to the Nagios Core web interface.

2. Click on the Map item in the menu on the left:

You should be presented with a generated graphic showing all the hosts in your
network that your user has permissions to view:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

215

3. Hover over any host with the mouse to see a panel breaking down the
host's current state:

4. By default, the network map is centered around the Nagios Process icon.
Try clicking on one of your hosts to recenter the map; in this example,
it's recentered on calpe.naginet:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

216

How it works...
The network map is automatically generated from your host configuration. By default, it arranges
the hosts in sectors, radiating outward from the central Nagios Process icon, using lines to show
dependencies, and adjusting background colors to green for UP states, and red for DOWN or
UNREACHABLE states.

This map is generated via the GD2 library, written by Thomas Boutell. It takes the form of a
linked image map. This means that you can simply right-click the image to save it while the
network is in a particular state for later reference, and also that individual nodes can be clicked
to recenter the map around the nominated host. This is particularly useful for networks with a
large number of hosts and very many levels of parent/child host relationships.

There's more...
Note that the form in the panel in the top-right allows customizing the appearance of the
map directly:

 f Layout Method: This allows you to select the algorithm used to arrange and draw
the hosts. It's worth trying each of these to see which you prefer for your particular
network layout.

 f Scaling factor: Change the value here to reduce or increase the size of the map
image; values between 0.0 and 1.0 will reduce the image's size, and values above
1.0 will increase it.

 f Drawing Layers: If your hosts are organized into hostgroups, you can filter the map
to only display hosts belonging to particular groups.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

217

 f Layer mode: If you selected any host groups in the Drawing Layers option, this
allows you to select whether you want to include hosts in those groups in the map,
or exclude them from it.

 f Suppress popups: If you find the yellow information popups that appear when
hovering over hosts annoying, then you can turn them off by selecting this checkbox.

After selecting or changing any one of these options, you will need to click on Update to
apply them.

The appearance of the status map can be configured well beyond this by changing directives
in the Nagios Core configuration file, and adding some directives to your hosts; take a look at
the recipes under the See also section of this recipe for some examples of how this is done.

See also
 f The Customizing appearance of the network map, Choosing icons for hosts,

Specifying coordinates for a host on the network map, and Using the network
map as an overlay recipes in this chapter

Choosing icons for hosts
In this recipe, we'll learn how to select graphics for hosts, to appear in various parts of the
Nagios Core web interface. This is done by adding directives to a host to specify the paths
to appropriate images to represent it.

Adding these definitions has no effect on Nagios Core's monitoring behavior; they are mostly
cosmetic changes, although it's useful to see at a glance whether a particular node is a server
or a workstation, particularly on the network map.

Getting ready
You will need to be running a Nagios Core 3.0 or newer server, and have access to its web
interface. You must also be able to edit the configuration files for the server.

It's a good idea to check that you actually have the required images installed. The default
set of icons is included in /usr/local/nagios/share/images/logos. Don't confuse
this with its parent directory, images, which contains images used as part of the Nagios
Core web interface itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

218

In the logos directory, you should find a number of images in various formats. In this example,
we're interested in the router and rack-server icons:

$ ls /usr/local/nagios/share/images/logos/{router,rack-server}.*

/usr/local/nagios/share/images/logos/rack-server.gd2

/usr/local/nagios/share/images/logos/rack-server.gif

/usr/local/nagios/share/images/logos/router.gd2

/usr/local/nagios/share/images/logos/router.gif

To get the full benefit of the icons, you'll likely want to be familiar with using the network
map, and have access to view it with the appropriate hosts in your own Nagios Core instance.
The network map is introduced in the Using the network map recipe in this chapter.

How to do it...
We can define images to be used in displaying our host as follows:

1. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in a
different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Add three new directives to each of the hosts to which you want to apply the icons.
In this example, the rack-server icon is assigned to corsica.naginet,
and the router icon to both calpe.naginet and corsica.naginet:
define host {
 use linux-server
 host_name corsica.naginet
 alias corsica
 address 10.128.0.71
 icon_image rack-server.gif
 icon_image_alt Rack Server
 statusmap_image rack-server.gd2
}
define host {
 use linux-router
 host_name janus.naginet
 alias janus
 address 10.128.0.128
 icon_image router.gif
 icon_image_alt Router
 statusmap_image router.gd2
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

219

define host {
 use linux-router
 host_name calpe.naginet
 alias calpe
 address 10.128.0.129
 icon_image router.gif
 icon_image_alt Router
 statusmap_image router.gd2
}

3. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, a visit to the status map should display the appropriate hosts with icons rather
than question marks:

The Hosts list should also include a scaled-down version of the image:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

220

How it works...
When a host list, service list, or network status map is generated, it checks for the presence
of icon_image or statusmap_image values for each host object, reads the appropriate
image if defined, and includes that as part of its processing. The network status map defaults to
displaying only a question mark in the absence of a value for the statusmap_image directive.

Note that for the statusmap_image directive, we chose the .gd2 version of the icon rather
than the .gif version. This is for performance reasons; the status map is generated with the
GD2 library, which deals more efficiently with its native .gd2 format.

The icon_image_alt directive defines the value for the alt attribute when the image is
displaying in an HTML tag. Most web browsers will show the contents of this tag after
briefly hovering over the icon.

Nagios Core 3.0 allows you to put these directives in a separate hostextinfo object, but
this object type is officially deprecated as of Nagios Core 4.0, so it's recommended to avoid it.

There's more
If you have a number of hosts that need to share the same image, it's a good practice to
inherit from a common host template with the appropriate directives set. For our example,
we might define a template as follows:

define host {
 name router-icon
 icon_image router.gif
 icon_image_alt Router
 statusmap_image router.gd2
 register 0
}

We could then apply the image settings directly to both our routers simply by inheriting from
that template, by adding it to the use directive:

define host {
 use linux-router,router-icon
 host_name janus.naginet
 alias janus
 address 10.128.0.128
}
define host {
 use linux-router,router-icon
 host_name calpe.naginet

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

221

 alias calpe
 address 10.128.0.129
}

If you don't like the included icon set, there are many icon sets available online on the Nagios
Exchange site at http://exchange.nagios.org/. If you want, you could even make your
own, out of pictures of your physical hardware, saved in standard PNG or GD2 format.

See also
 f The Using the network map and Specifying coordinates for a host on the network

map recipes in this chapter

Establishing a host dependency
In this recipe, we'll learn how to establish a host dependency between two hosts. This feature
can be used to control how Nagios Core checks hosts and notifies us about problems in
situations where if one host is DOWN, it implies that at least one other host is necessarily DOWN.

Getting ready
First of all, it's very important to note that this is not quite the same thing as a host being
UNREACHABLE, which is what the parents directive is for, as discussed in the Creating a
network host hierarchy recipe in this chapter. Most of the time, a host actually being DOWN
does not mean that other hosts actually go DOWN by definition. It's more typical for a child
host to simply be UNREACHABLE; it might be working fine, but Nagios Core can't check it
because of the DOWN host in its path.

However, there's one particularly broad category where host dependencies are definitely
useful: the host/guest relationship of virtual machines. If you are monitoring both a host
physical machine and one or more guest virtual machines, then the virtual machines are
definitely dependent on the host; if the host machine is actually in a DOWN state and has
no redundant failover, then it would imply that the guests were DOWN as well, and not
simply UNREACHABLE.

We'll use virtualization as an example, with two virtual machines zeus.naginet and
athena.naginet running on a host machine, ephesus.naginet. All three are already
monitored, but we'll establish a host dependency so that Nagios Core doesn't notify anyone
about the guests' state if it determines that the host is DOWN.

You will need a Nagios Core 3.0 or newer server, and have shell access to change its
backend configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

222

How to do it...
We can establish our host dependencies as follows:

1. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in a
different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Create or edit an appropriate file that will be included by the configuration in /usr/
local/nagios/etc/nagios.cfg. A sensible choice could be /usr/local/
nagios/etc/objects/dependencies.cfg:
vi dependencies.cfg

3. Add a hostdependency definition. In our case, the definition looks similar to
the following code snippet. Note that you can include multiple dependent hosts
by separating their names with commas:
define hostdependency {
 host_name ephesus.naginet
 dependent_host_name zeus.naginet,athena.naginet
 execution_failure_criteria n
 notification_failure_criteria d,u
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, if the ephesus.naginet host goes down and takes both the zeus.naginet
and athena.naginet hosts down with it, then checks to all three hosts will continue but
notifications will be suppressed for the two guest hosts.

How it works...
The host dependency object's four directives are as follows:

 f host_name: This is the name of the host on which at least one other host
is dependent. We'll refer to this as the dependency host. This can also be a
comma-separated list of host names.

 f dependent_host_name: This is the name of the dependent host. Again, this can
be a comma-separated list.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

223

 f execution_failure_criteria: This defines a list of states for the dependency
host. If that host is in any of these states, then Nagios Core will skip checks for the
dependent hosts. This can be a comma-separated list of any of the following flags:

 � o: Dependency host is UP

 � d: Dependency host is DOWN

 � u: Dependency host is UNREACHABLE

 � p: Dependency host is PENDING (not checked yet)

Alternatively, the single flag n can be used (as it is in this example), to specify that the
checks should take place regardless of the dependency host's state.

 f notification_failure_criteria: This defines a list of states for the dependency
host. If that host is in any of these states, then notifications for the dependent host will
not be sent. The flags are the same as for execution_failure_criteria; in this
example, we've chosen to suppress the notifications if the dependency host is DOWN
or UNREACHABLE.

When Nagios Core notices that the zeus.naginet or athena.naginet hosts have
apparently gone DOWN as a result of a failed host check, it refers to its configuration to check
if there are any dependencies for the host, and finds that they depend on ephesus.naginet.

It then checks the status of ephesus.naginet and finds it to be DOWN. Referring to the
execution_failure_criteria directive and finding n, it continues to run checks for
both of the dependent hosts as normal. However, referring to the notification_
failure_criteria directive and finding d,u, it determines that notifications should
be suppressed until the host returns to an UP state.

There's more...
We can specify groups rather than host names for dependencies using the hostgroup_name
and dependent_hostgroup_name directives:

define hostdependency {
 hostgroup_name vm-hosts
 dependent_hostgroup_name vm-guests
 execution_failure_criteria n
 notification_failure_criteria d,u
}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

224

We can also provide comma-separated lists of dependency hosts:

define hostdependency {
 host_name ephesus.naginet,alexandria.naginet
 dependent_host_name zeus.naginet,athena.naginet
 execution_failure_criteria n
 notification_failure_criteria d,u
}

If a host depends on more than one host, the check or notification rules apply if any of its
dependencies are not met, rather than all of them. For the previous example, this means that
if ephesus.naginet was DOWN, but alexandria.naginet was UP, then the dependency
would still suppress checks or notifications for all dependent hosts.

This means that host dependencies are not really suitable in redundant scenarios where
the loss of one of the depended-upon hosts does not necessarily imply the loss of all its
dependent hosts. You are likely to find that monitoring nodes as a cluster is a better fit for
this situation; this is discussed in the Monitoring individual nodes as a cluster recipe, also
in this chapter.

See also
 f The Establishing a service dependency, Creating a network host hierarchy,

and Monitoring individual nodes as a cluster recipes in this chapter

Establishing a service dependency
In this recipe, we'll learn how to establish a service dependency between two services.
This feature can be used to control how Nagios Core checks services and notifies us about
problems in situations where if one service is in a PROBLEM state, it implies that at least one
other service is necessarily also in a PROBLEM state.

Getting ready
You will need a Nagios Core 3.0 or newer server, and have shell access to change its backend
configuration. You will also need to have at least two services defined, one of which is by
definition dependent on the other; this means that if the dependency service were to enter
CRITICAL state, then it would imply that the dependent service would also be CRITICAL.

We'll use a simple example: suppose we are testing authentication to a mail server
marathon.naginet with a service MAIL_LOGIN, and also checking a database service
MAIL_DB on the same host, which stores the login usernames and password hashes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

225

In this situation, it might well be the case that if MAIL_DB is not working, then MAIL_LOGIN
will almost certainly not be working either. If so, then we can configure Nagios Core to be
aware that the MAIL_LOGIN service is dependent on the MAIL_DB service.

How to do it...
We can establish our service dependency as follows:

1. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in a
different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Create or edit an appropriate file that will be included by the configuration
in /usr/local/nagios/etc/nagios.cfg. A sensible choice could be
/usr/local/nagios/etc/objects/dependencies.cfg:
vi dependencies.cfg

3. Add a servicedependency definition. In our case, the definition looks similar to
the following code snippet:
define servicedependency {
 host_name marathon.naginet
 service_description MAIL_DB
 dependent_host_name marathon.naginet
 dependent_service_description MAIL_LOGIN
 execution_failure_criteria c
 notification_failure_criteria c
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

With this done, if the MAIL_DB service fails for whatever reason and enters a CRITICAL state,
the MAIL_LOGIN service will skip its checks of that service, and also skip any notifications that
it would normally send about its own problems, if any. Note that the web interface may still show
Nagios Core is scheduling checks, but it won't actually run them.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

226

How it works...
The service dependency object's five directives are as follows:

 f host_name: This is the name of the host with which these services are associated.
We'll refer to this as the dependency host.

 f service_description: This is the description of the service being depended
upon. It can be a comma-separated list. We'll refer to this as the dependency service.

 f dependent_service_description: This is the description of the dependent
service. It can also be a comma-separated list.

 f execution_failure_criteria: This defines a list of states for the dependency
service. If that service is in any of these states, then Nagios Core will skip the
checks for the dependent services. It can be a comma-separated list of any of
the following flags:

 f o: Dependency service is OK

 � w: Dependency service is WARNING

 � c: Dependency service is CRITICAL (as in this example)

 � u: Dependency service is UNKNOWN

 � p: Dependency service is PENDING (not checked yet)

Alternatively, the single flag n can be used to specify that the checks should take
place regardless of the dependency service's state. In this example, we've chosen
the value c to suppress service checks only if the dependency service is CRITICAL.

 f notification_failure_criteria: This defines a list of states for the
dependency service. If that service is in any of these states, then notifications for
the dependent service will not be sent. The flags are the same as for execution_
failure_criteria; in this example, we've again chosen the value c to suppress
the notifications only if the dependency service is CRITICAL.

When Nagios Core notices the MAIL_DB service has gone CRITICAL as a result of a failed
service check, it refers to its configuration to check if there are any dependencies for the
service, and finds that they depend on MAIL_LOGIN.

It then checks the status of MAIL_DB and finds it to be CRITICAL. Referring to the
execution_failure_criteria directive and finding c, it prevents checks for both
of the dependent services. Referring to the notification_failure_criteria directive
and also finding c, it also decides that notifications should be suppressed until the service
returns to any other state.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

227

There's more...
Note that services do not have to be on the same host to depend upon one another. We can add
dependent_host_name or dependent_hostgroup_name directives to specify other hosts:

define servicedependency {
 host_name marathon.naginet
 service_description MAIL_DB
 dependent_host_name sparta.naginet
 dependent_service_description WEBMAIL_LOGIN
 execution_failure_criteria c
 notification_failure_criteria c
}

In this example, the WEBMAIL_LOGIN service on sparta.naginet is defined as dependent
on the MAIL_DB service on marathon.naginet. Note that the values for host_name and
dependent_host_name are different.

In versions of Nagios Core before 3.3.1, the dependent_host_name directive is required,
even if it is the same as the host_name.

See also
 f The Establishing a host dependency and Monitoring individual nodes as a cluster

recipes in this chapter

Monitoring individual nodes in a cluster
In this recipe, we'll learn how to monitor a collection of hosts in a cluster, using the
check_cluster plugin included in the standard Nagios Plugins. Being able to monitor
more than one host collectively is useful in situations with redundancy; one of a set of hosts
being DOWN, perhaps for power conservation or maintenance reasons, is not necessarily a
cause for notification. However, if a larger number or all of the hosts were down, we would
definitely want to be notified. Using check_cluster allows us to arrange this.

Getting ready
You will need a Nagios Core 3.0 or newer server, and have shell access to change its backend
configuration. You will also need to have at least two monitored hosts in a redundant setup for
some function, such as database replication, DNS servers, or load-balanced web servers.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

228

You should also be familiar with the way hosts and services are defined, and in particular
defining commands; these concepts are discussed in Chapter 1, Understanding Hosts,
Services, and Contacts.

For this example, we'll work with three blade servers with hostnames achilles.naginet,
odysseus.naginet, and agamemnon.naginet, running in a redundant cluster to support
a virtual hosting environment. All three hosts are already being monitored to send an e-mail
message if one of them goes down. We will arrange a check_cluster service on a "dummy
host" in such a way that:

 f If none of the blades is down, the service is OK

 f If one of the blades is down, the service enters WARNING state, again notifying
us as appropriate

 f If two or all three of the blades are down, the service enters CRITICAL state,
again notifying us as appropriate

How to do it...
We can arrange a cluster check for our hosts as follows:

1. Change to the objects configuration directory for Nagios Core. The default path is
/usr/local/nagios/etc/objects. If you've put the definition for your host in a
different file, then move to its directory instead.
cd /usr/local/nagios/etc/objects

2. Create or edit an appropriate file for defining a new command. A sensible choice
might be /usr/local/nagios/etc/objects/commands.cfg.

3. Define two new commands in this file, check_dummy and check_host_cluster:
define command {
 command_name check_dummy
 command_line $USER1$/check_dummy $ARG1$ $ARG2$
}
define command {
 command_name check_host_cluster
 command_line $USER1$/check_cluster -h -d $ARG1$ -w $ARG2$ -c
$ARG3$
}

4. Create or edit an appropriate file that will be included by the configuration in /usr/
local/nagios/etc/nagios.cfg. A sensible choice might be /usr/local/
nagios/etc/objects/clusters.cfg.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

229

5. Define a dummy host for the cluster with the following values:
define host {
 use generic-host
 host_name naginet-blade-cluster
 alias Naginet Blade Cluster
 address 127.0.0.1
 max_check_attempts 1
 contact_groups admins
 check_command check_dummy!0!"Dummy host only"
}

Note that the address directive has the value 127.0.0.1; this is deliberate,
as the dummy host itself does not really need to be actively checked or send
any notifications.

6. Add a service for the dummy host:
define service {
 use generic-service
 host_name naginet-blade-cluster
 service_description CLUSTER
 check_command check_host_
cluster!$HOSTSTATEID:achilles.naginet$,$HOSTSTATEID:odysseus.
naginet$,$HOSTSTATEID:agamemnon.naginet$!@1:!@2:
 notification_options c,w,r
}

The suggestion of inheriting from generic-service is only an example; you
will likely want to use your own template or values. Note that the value for check_
command is all on one line, with no spaces. You should substitute the hostnames
of your own machines.

7. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

230

With this done, the CLUSTER service on the naginet-blade-cluster dummy host should
be available for viewing. It will change state and send notifications the same way as any other
service if the hosts in the cluster come up or go down:

How it works...
The host added in this recipe is just a "hook" for the CLUSTER service, which performs the
actual check. This is why we used a command using the check_dummy plugin to always
return an OK state:

/usr/local/nagios/libexec/check_dummy 0 "Dummy host only"
OK: Dummy host only

The check_cluster command is actually quite simple. It performs no actual checks of
its own. Instead, it determines states based on the current state of other hosts or services.

This is why the $HOSTSTATEID:hostname$ macros are used in the check_command
directive for the service; they evaluate to a number indicating the state of the host, with
the hostname specified after the colon.

For example, if achilles.naginet and odysseus.naginet were UP, but agamemnon.
naginet was DOWN, then the command run by Nagios Core for the check would look similar
to the following code snippet after the macros were expanded:

/usr/local/nagios/libexec/check_cluster -h -d 0,0,1 -w @1: -c @2:

We can run this ourselves as the nagios user to check the output:

sudo -s -u nagios
$ /usr/local/nagios/libexec/check_cluster -h -d 0,0,1 -w @1: -c @2:
CLUSTER WARNING: Service cluster: 2 ok, 1 warning, 0 unknown, 0 critical

The comma-separated states given in the -d option to the plugin correspond to two hosts
being UP (state ID of 0), and one host being DOWN (state ID of 1). The -w option's value of @1:
means that a WARNING state will be entered if one or more of the hosts is down. Similarly, the
-c option's value of @2: means that a CRITICAL state will be entered if two or more of the
hosts go down.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

231

This allows you to customize notifications to be sent based on the number of hosts in the DOWN
state, rather than merely monitoring the hosts individually. Once you're confident this is working
correctly, you may even choose to prevent the individual hosts from sending notifications to your
pager, and have the CLUSTER service notify you instead.

There's more...
If you have a cluster of services rather than hosts to monitor, this can be done by using
the -s option to check_cluster, rather than the -h option. In this case, instead of the
$HOSTSTATEID:<host_name>$ macro, you would use the $SERVICESTATEID:<host_
name>:<service_description>$ macro. An example configuration might look similar to
the following code snippet for a cluster of two web servers, sparta.naginet and athens.
naginet, given a dummy host named naginet-http-cluster:

define command {
 command_name check_service_cluster
 command_line $USER1$/check_cluster -s -d $ARG1$ -w $ARG2$ -c
$ARG3$
}
define service {
 use generic-service
 host_name naginet-http-cluster
 service_description CLUSTER_HTTP
 check_command check_service_cluster!$SERVICESTATEID:sparta.
naginet:HTTP$,$SERVICESTATEID:athens.naginet:HTTP$!@1:!@2:
}

See also
 f The Establishing a host dependency recipe in this chapter

Using the network map as an overlay
In this recipe, we'll learn how to use a background for the network map and deliberate
placement of hosts in specific points on it, to make a kind of network status weather map to
see host statuses at a glance in a geographical context.

Getting ready
You will need a Nagios Core 3.0 or newer server, and have shell access to change its backend
configuration. You should also have at least a couple of hosts configured to place on the map,
and understand the basics of using the Nagios network map and icons for hosts. These are
discussed in the Using the network map and Choosing icons for hosts recipes, in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

232

You should also select a background image on which you can meaningfully place hosts. If you
are monitoring an office network, this could be a floor plan of the building or server room. If
you're monitoring a nationwide Internet service provider, then you could use a map of your state
or country. Some administrators even like to use pictures of physical equipment, and place the
Nagios Core hosts over their physical analogues. In this example, we'll use a map of Australia,
640 by 509 pixels in size, a public domain image retrieved from the Natural Earth website at
http://www.naturalearthdata.com/:

The background image can be anything you like, and several graphics formats including PNG
can be used. However, for the sake of quick map rendering, it's recommended to use an image
in the GD2 file format, with extension .gd2. If you have your image in a PNG format, you can
generate a GD2 image from it using the free tool pngtogd2:

$ pngtogd2 australia.png australia.gd2 0 1

This tool is available on Debian-derived systems in the libgd-tools package. Its source
code is also available online at http://www.libgd.org/.

www.it-ebooks.info

http://www.naturalearthdata.com/
http://www.naturalearthdata.com/
http://www.it-ebooks.info/

Chapter 8

233

How to do it...
We can set up a background for our network map as follows:

1. Copy your GD2 format image into the images subdirectory of the physical_html_
path directory. In the default installation, this is /usr/local/nagios/share/
images; if it is different, you can find the definition of physical_html_path in
/usr/local/nagios/etc/cgi.cfg.
cp /home/tom/australia.gd2 /usr/local/nagios/share/images

2. Change to the configuration directory for Nagios Core. In the default installation,
this is /usr/local/nagios/etc. Edit the file cgi.cfg.
cd /usr/local/nagios/etc

vi cgi.cfg

3. Look for the directive statusmap_background_image in this file. Uncomment it
and make its value the name of your image:
statusmap_background_image=australia.gd2

4. Look for the directive default_statusmap_layout in the same file. Change it to
0, which corresponds to the User-defined coordinates layout.
default_statusmap_layout=0

5. Change to the objects configuration directory for Nagios Core. In the default
installation, this is /usr/local/nagios/etc/objects. Add 2d_coords
directives to each of the hosts you want to display on the map. You might like to
include definitions for statusmap_image here too, which is done as follows:
vi australia.cfg
define host {
 use linux-server
 host_name adelaide.naginet
 address 10.128.0.140
 2d_coords 390,360
 statusmap_image rack-server.gd2
}
define host {
 use linux-server
 host_name cairns.naginet
 address 10.128.0.141
 2d_coords 495,100
 statusmap_image rack-server.gd2
}
... etc ...

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Network Layout

234

6. For the directive 2d_coords, supply two comma-separated values describing the
coordinates for the placement of the host. For example, adelaide.naginet is
390 pixels from the left, and 360 pixels from the top. A convenient way to get the
coordinates is by using GIMP, the open source imaging tool, or even a simple tool
such as MS Paint; load the image and hover over the point you wish to use to find
its pixel coordinates.

7. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, on visiting the network map in the Nagios Core web interface by clicking
on Map on the left-hand side menu, your hosts will be placed in their corresponding
positions on the map, including the normal lines and colors to specify child-parent
relationships and reachability:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

235

How it works...
The default_statusmap_layout directive fixes the network map into the User-supplied
coords mode by default. In this mode, only hosts with values for 2d_coords are shown, and
they are displayed at fixed points on the map, rather than being dynamically placed.

It's possible to use this display mode without a background if we wish, but we can give a lot
of useful context to the picture of the network generated by taking the extra step of using an
actual background image.

Note that if you don't have any hosts with coordinates defined, you'll receive an error that
looks similar to the following screenshot:

There's more...
Using the network map with an image background can be particularly helpful for seeing not
only the statuses of individual hosts at a glance, but in the case of outages from multiple
hosts, looking for possible geographical causes. If all of the nodes in one part of the city or
country went down at once, we would be able to see that at a glance. This makes the network
map an excellent choice for a network monitoring display, or as one of the first ports of call in
diagnosing large-scale problems.

The network map is very useful in this way, and graphically it is probably the most impressive
part of the Nagios Core web interface. If you would like even more options and an impressive
range of visualizations for host statuses, you may like to consider looking at the excellent
NagVis extension, which could fill a whole book in itself. There is a brief introduction to its
usage in the Getting extra visualizations with NagVis recipe, in Chapter 11, Automating and
Extending Nagios.

See also
 f The Creating a network host hierarchy, Using the network map, and Choosing icons

for hosts recipes in this chapter

 f The Getting extra visualizations with NagVis recipe in Chapter 11, Automating and
Extending Nagios

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

9
Managing Configuration

In this chapter, we will cover the following recipes:

 f Grouping configuration files in directories

 f Keeping configuration under version control

 f Configuring host roles using groups

 f Building groups using regular expressions

 f Using inheritance to simplify configuration

 f Defining macros in a resource file

 f Dynamically building host definitions

Introduction
A major downside of Nagios Core's configuration being so flexible is that without proper
management, a configuration can easily balloon out into hundreds of files with thousands of
objects, all having unclear dependencies. This can be frustrating when attempting to make
significant changes to a configuration, or even for something as simple as removing a host,
sifting through dependencies to find what's causing errors in the configuration and prevents
you from restarting Nagios Core.

It's therefore important to build your configuration carefully using as much abstraction as
possible, to allow adding, changing, and removing hosts and service definitions from the
configuration painlessly, and to avoid duplication of configuration. Nagios Core provides
a few ways of dealing with this, most notably in the judicious use of groups and templates
for the fundamental objects. Duplication of network-specific and volatile data, such as
passwords, is also to be avoided; it's best done with the use of custom macros defined
in a resource file.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Configuration

238

This chapter's recipes will run through some examples of good practice for the configuration
of a large network. The most important recipes are the first two, Grouping configuration files in
directories and Configuring host roles using groups. If you're looking to untangle and revamp a
messy configuration, then these two recipes would be the best place to start.

At the end of the chapter, the final recipe, Dynamically building host definitions, will show one
of the primary advantages of a tidy configuration in being able to easily generate configuration
according to a list of hosts and services kept in some other external information source, such
as a Configuration Management Database (CMDB).

Grouping configuration files in directories
In this recipe, we'll learn to group configuration files in directories to greatly ease the
management of configuration. We'll do this by configuring Nagios Core to load every file
it can find ending with a .cfg extension in a given directory, including recursing through
subdirectories. The end result will be that to have Nagios Core load a file, we only need
to include it somewhere in that directory with an appropriate extension; we don't need
to define exactly which files are being loaded in nagios.cfg.

Getting ready
You will need to have a server running Nagios Core 3.0 or later, and have access to the
command line to change its configuration. You should be familiar with the loading of individual
configuration files using the cfg_file directive in /usr/local/nagios/etc/nagios.cfg.

In particular, you should have a directory prepared that contains all of the configuration files
you would like to be loaded by Nagios Core. In this example, we'll prepare a new directory
called /usr/local/nagios/etc/naginet, which will contain three configuration files,
each defining information for one host:

ls -1 /usr/local/nagios/etc/naginet

athens.cfg

ithaca.cfg

sparta.cfg

You will need to ensure that the directory, files, and subdirectories within it are all readable
(though not necessarily owned) by the nagios user.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

239

How to do it...
We can arrange for Nagios Core to include all the files in a directory as follows:

1. Change to the directory containing the nagios.cfg file. In the default installation,
it is located at /usr/local/nagios/etc/nagios.cfg.
vi nagios.cfg

2. Edit the file, and below any other cfg_file or cfg_dir directives, add the following
line referring to the absolute path of the directory containing your .cfg files:
cfg_dir=/usr/local/nagios/etc/naginet

Note that this directive is cfg_dir, rather than cfg_file.

3. Remove any cfg_file definitions pointing to .cfg files in the new directory. This is to
prevent loading the same objects twice. In our example, we would need to comment out
our previous rules loading these files individually:
#cfg_file=/usr/local/nagios/etc/naginet/sparta.cfg

#cfg_file=/usr/local/nagios/etc/naginet/athens.cfg

#cfg_file=/usr/local/nagios/etc/naginet/ithaca.cfg

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, Nagios Core should have loaded all of the files with the extension .cfg
found in the naginet directory or any of its subdirectories, saving us the burden of
specifying them individually.

How it works...
At load time, Nagios Core interprets the cfg_dir directive to mean that it should identify
all of the .cfg files in a particular directory, including recursing through its subdirectories.
It ignores the files that do not have that extension, allowing us to include metadata or other
file types (such as version control information directories) without causing problems.

As a result, defining a new host or service becomes as simple as adding the file in an
appropriate included directory, without needing to edit nagios.cfg.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Configuration

240

There's more...
It's important to note that this directive will include all the .cfg files in subdirectories as well.
This might allow us to meaningfully group the configuration files:

$ find /usr/local/nagios/etc/naginet

/usr/local/nagios/etc/naginet

/usr/local/nagios/etc/naginet/hosts

/usr/local/nagios/etc/naginet/hosts/athens.cfg

/usr/local/nagios/etc/naginet/hosts/sparta.cfg

/usr/local/nagios/etc/naginet/hosts/ithaca.cfg

/usr/local/nagios/etc/naginet/commands

/usr/local/nagios/etc/naginet/commands/webserver-checks.cfg

/usr/local/nagios/etc/naginet/services

/usr/local/nagios/etc/naginet/services/webservers.cfg

For large networks, it's worth deciding on some suitable organizing principle for directories.
One common approach is having a separate directory for hosts, services, and command
definitions, relevant to a particular Domain Name System (DNS) zone or larger subnet.

If you want to prevent a file from being included at any point, all you need to do is either move
it out of the directory, or rename it so that it no longer has a .cfg extension. One possibility is
adding the suffix .exclude:

mv unwanted-file.cfg unwanted-file.cfg.exclude

This will prevent Nagios Core from picking it up as part of its cfg_dir searching algorithm.

See also
 f The Using inheritance to simplify configuration and Keeping configuration under

version control recipes in this chapter

Keeping configuration under version control
In this recipe, we'll place a Nagios Core configuration directory under version control, in an
attempt to keep track of changes made to it, and to enable us to reverse changes if there
are problems.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

241

Getting ready
You should choose an appropriate version control system. The recipe will vary considerably
depending on which system you use; there are too many options to demonstrate here, so we'll
use the popular open source content tracker Git, the basics of which are very easy to use for
this kind of version control and do not require an external server. However, there's no reason
you can't use Subversion or Mercurial, if you'd prefer. You should have the client for your
chosen system (git, hg, svn, and so on) installed on your server.

This will all work with any version of Nagios Core. It does not involve directly changing any part
of the Nagios Core configuration, only keeping track of the files in it.

How to do it...
We can place our configuration directory under version control as follows:

1. Change to the root of the configuration directory. In the default installation, this is
/usr/local/nagios/etc:
cd /usr/local/nagios/etc

2. Run git init to start a repository in the current directory:
git init

Initialized empty Git repository in /usr/local/nagios/etc/.git/.

3. Add all the files in the configuration directory with git add:
git add .

4. Commit the files with git commit:
git commit -m "First commit of configuration"

[master (root-commit) 6a2c605] First commit of configuration.

 39 files changed, 3339 insertions(+), 0 deletions(-)

 create mode 100644 naginet/athens.naginet.cfg

 create mode 100644 naginet/ithaca.naginet.cfg

 create mode 100644 naginet/sparta.naginet.cfg

 ...

With this done, we should now have a .git repository in /usr/local/nagios/etc,
tracking all the changes made to the configuration files.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Configuration

242

How it works...
Changes to the configuration files in this directory can now be reviewed for commit with git
status. For example, if we changed the IP addresses of one of our hosts, we might check
the changes by typing the following:

git status -s

M naginet/hosts/sparta.cfg

We could then commit this change with an explanatory message:

git commit -am "Changed IP address of host"

[master d5116a6] Changed IP address of host

1 files changed, 1 insertions(+), 1 deletions(-)

We can review the change with git log:

git log --oneline

d5116a6 Changed IP address of host

6a2c605 First commit of configuration

If we want to inspect exactly what was changed later on, we can use git diff followed by
the short commit ID given in the first column of the preceding output:

git diff 6a2c605

diff --git a/naginet/hosts/sparta.cfg b/naginet/hosts/sparta.cfg

index 0bb3b0b..fb7c2a9 100644

--- a/naginet/hosts/sparta.cfg

+++ b/naginet/hosts/sparta.cfg

@@ -2,7 +2,7 @@ define host {

 use linux-server

 host_name sparta.naginet

 alias sparta

- address 10.128.0.101

+ address 10.128.0.102

}

The full functionality of Git for managing these changes, including reverting to older revisions,
is out of scope here. You can read more about how to use Git in general in Scott Chacon's
excellent book entitled Pro Git, free to read online at http://git-scm.com/book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

243

There's more...
Version control is particularly useful in this way when more than one person is editing a
configuration, because it allows us to determine who made a change and when. It also
allows us to see the exact changeset to review why it was changed, and to undo or edit
it if it is causing problems.

If you're going to use this method, it's a good idea to keep your configuration reasonably
granular, using at least several files rather than just one or two. It will still work if you have
two big files such as hosts.cfg and services.cfg for your network, but the differences
between each commit will not be as clear. This is therefore a very good recipe to combine
with the Grouping configuration files in directories recipe, also in this chapter.

Rather than merely the configuration directory, you may prefer to keep the entire Nagios Core
directory under version control, including the plugins and other scripts and binaries. This could
be particularly handy if you upgrade your installation with new releases and want to see what's
changed in your files, in case it breaks anything. In this case, be careful to use your chosen
version control system's "ignore" functionality to prevent tracking temporary files or log files.
For Git, take a look at the output of git help ignore.

See also
 f The Grouping configuration files in directories recipe in this chapter

Configuring host roles using groups
In this recipe, we'll learn how to use the abstraction of host and service groups to our
advantage in order to build a configuration where hosts and services can be added or
removed more easily. We'll do this by defining roles for hosts by using a hostgroup structure,
and then assigning relevant services to the hostgroup, rather than to the hosts individually.

Getting ready
You will need to have a server running Nagios Core 3.0 or later, have access to the command
line to change its directories, and understand the basics of how host and service groups work.
These are covered in the Creating a new hostgroup and Creating a new servicegroup recipes
in Chapter 1.

In this example, we'll create two simple hostgroups; one called servers, for which a PING
check should be made for its member hosts, and another called webservers, which should
include HTTP checks for its member hosts. Once this is set up, we'll then add an example host
sparta.naginet to both groups, thereby easily assigning all the appropriate services to the
host in one definition, which we can cleanly remove simply by deleting the host.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Configuration

244

How to do it...
We can create our group-based roles for hosts as follows:

1. Change to the objects configuration directory. In the default installation,
this is /usr/local/nagios/etc/objects. If you have already followed the
Grouping configuration files in directories recipe in this chapter, then your own
directory may differ.
cd /usr/local/nagios/etc/objects

2. In an appropriate file, perhaps hostgroups.cfg, define new hostgroups with names
corresponding to the roles for the hosts. Do not assign them any members just yet.
define hostgroup {
 hostgroup_name servers
 alias Servers
}
define hostgroup {
 hostgroup_name web-servers
 alias Web Servers
}

3. In a second appropriate file, perhaps services.cfg, define new services and
assign them hostgroup_name values, corresponding to the hostgroups added
in the previous step:
define service {
 use generic-service
 hostgroup_name servers
 service_description PING
 check_command check_ping!100,10%!200,20%
}
define service {
 use generic-service
 hostgroup_name web-servers
 service_description HTTP
 check_command check_http
}

Note that the use of the generic-service template is an example only; you will
probably want to inherit from your own particular service template.

4. Add or edit your existing hosts to make them a part of the appropriate hostgroups,
using the hostgroups directive:
define host {
 use linux-server

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

245

 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 hostgroups servers,web-servers
}
define host {
 use linux-server
 host_name athens.naginet
 alias athens
 address 10.128.0.22
 hostgroups servers,web-servers
}

5. If you already had services with the same value for their service_description
directives as the ones you're adding in this recipe, you will need to remove them,
as this may cause a conflict with the services added in the previous step.

6. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, you should now find that all of the services you defined for the hostgroups you
created have been attached to the appropriate hosts:

How it works...
The configuration added in the preceding section avoids assigning services directly to hosts,
instead assigning them to hostgroups, thereby creating roles for services that hosts can adopt
or discard simply by becoming part of or leaving the group.

Apart from making the configuration shorter, another advantage to this approach is that if
services are added this way, adding or deleting a host from the Nagios Core configuration
requires nothing but the adding or removing of the host definition. Similarly, if a host takes
on another role (for example, a web server adding some database functionality), then we
can modify the services being checked on it simply by modifying its hostgroups. This ends
up being much easier than adding dependencies in other files.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Configuration

246

Another advantage is that having hostgroups organized by host function is helpful for applying
batch operations such as scheduled downtime in one easy action, or for checking all the
services for one particular type of host. Once a hostgroup is defined, we can run operations
on all the hosts within it by clicking on its name in the brackets, in any of the hostgroup views:

If we had twenty web servers that we knew were going to be down, for example, this would be
much easier than scheduling downtime for each of them individually!

There's more...
It's worth noting that hostgroups can have subgroups, meaning that all of the hosts added to
any of their subgroups are implicitly added to the parent group.

For example, we could define the hostgroup web servers as a subgroup of the servers
hostgroup, using the hostgroup_members directive:

define hostgroup {
 hostgroup_name servers
 alias Servers
 hostgroup_members web-servers
}

This would allow us to implicitly add hosts to both groups, without needing to refer to the
parent group, and with all the services assigned to both groups assigned to the host:

define host {
 use linux-server
 host_name athens.naginet
 alias athens
 address 10.128.0.22
 hostgroups web-servers
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

247

This can be very useful for sorting "subcategories" of services. Other examples might include a
dns-servers group with subgroups dns-authoritative-servers and dns-recursive-
servers, or a database-servers group with subgroups oracle-servers and mysql-
servers.

See also
 f The Building groups using regular expressions and Using inheritance to simplify

configuration recipes in this chapter

 f The Creating a new hostgroup, Creating a new servicegroup, and Running a
service on all hosts in a hostgroup recipes in Chapter 1, Understanding Hosts,
Services, and Contacts

Building groups using regular expressions
In this recipe, we'll learn a shortcut for building groups of hosts using regular expressions
tested against their hostnames.

This recipe is likely only of use to you if you use a naming convention for your hosts that
allows them to be reasonably grouped by location, function, or some other useful metric
by a common string in their hostnames.

Getting ready
You will need to have a server running Nagios Core 3.0 or later, have access to the
command line to change its configuration, and understand the basics of how hostgroups and
servicegroups work. These are covered in the Creating a new hostgroup and Creating a new
servicegroup recipes in Chapter 1.

In this example, we'll group three existing hosts named web-server-01, web-server-02,
and web-server-03 into a new hostgroup, web-servers, based only on their hostnames.

It would help to have some familiarity with regular expressions, but the recipe includes
a simple example, which should meet many use cases for this trick. An excellent site
about regular expressions including tutorials can be found at http://www.regular-
expressions.info/.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Configuration

248

How to do it...
We can build a hostgroup by matching regular expressions to hostnames as follows:

1. Change to the Nagios configuration directory. In the default installation, this is
/usr/local/nagios/etc. Edit the nagios.cfg file in this directory.
cd /usr/local/nagios/etc
vi nagios.cfg

2. Search for the use_regexp_matching directive. Uncomment it if necessary and
set it to 1.
use_regexp_matching=1

3. Search for the use_true_regexp_matching directive. Uncomment it if necessary,
and ensure it's set to 0, which it should be by default.
use_true_regexp_matching=0

4. Change to the objects configuration directory. In the default installation,
this is /usr/local/nagios/etc/objects. If you have already followed the
Grouping configuration files in directories recipe in this chapter, then your own
directory may differ.
cd /usr/local/nagios/etc/objects

5. In an appropriate file, perhaps hostgroups.cfg, add a definition similar to the
following. In this case, .+ means "any string at least one character in length"; you will
probably want a pattern of your own, devising appropriate to your own host names.
define hostgroup {
 hostgroup_name web-servers
 members web-server-.+
 alias Web Servers
}

6. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

With this done, if your regular expression was correctly formed to match all the appropriate
hostnames, then you should find that the hosts become part of the group:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

249

How it works...
With the use_regexp_matching directive set to 1, Nagios Core will attempt to use
hostname strings containing the strings *, ?, +, or \. as regular expressions to match
against hostnames. Because web-server-01, web-server-02, and web-server-03
all match the regular expression web-server-.+ given in the members directive for the
web-servers hostgroup, all three hosts are added to the group.

We keep use_true_regexp_matching off. If it were on, it would use every hostname
pattern as a regular expression, whether or not it had any special regular expression characters.
This is probably not what you want for most configurations.

There's more...
This matching works in other places aside from hostgroup definitions; for example, you can
also use it in the host_name definitions for services:

define service {
 use generic-service
 host_name web-server-.+
 service_description HTTP
 check_command check_http
}

This is one of a number of very good suggestions for simplifying object definitions suggested in
the Nagios Core manual: http://nagios.sourceforge.net/docs/3_0/objecttricks.
html.

See also
 f The Building groups using regular expressions and Using inheritance to simplify

configuration recipes in this chapter

 f The Creating a new hostgroup and Creating a new servicegroup recipes in
Chapter 1, Understanding Hosts, Services, and Contacts

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Configuration

250

Using inheritance to simplify configuration
In this recipe, we'll learn how to use inheritance to handle the situation where hosts and
services share a lot of values in common, amounting to a large amount of undesirable
redundancy in configuration.

Some Nagios Core objects, particularly hosts and services, have a rather long list of possible
directives, and the default values for these are not always suitable. It's therefore worthwhile
to be able to declare the values you want for these directives once, and then spend only a
few lines on the actual host definition by copying those values from a template, making the
configuration shorter and easier to read.

Previous examples in this book have already demonstrated the use of this in suggesting you
inherit from the linux-server host template or the generic-service service template,
for the sake of brevity; in this example, we'll define our own templates, and show how these
can be used to streamline a configuration.

Getting ready
You will need to have a server running Nagios Core 3.0 or later, have access to the command
line to change its configuration, and be familiar with how to define hosts and services. These
are covered in the Creating a new host and Creating a new service recipes in Chapter 1.

In this example, we'll define a template, critical-host, which we'll use as the basis for any
host that needs to be checked and notified around the clock, with a very stringent value for its
check_command directive, and with all notification types enabled. We'll also define two hosts
named phobos.naginet and deimos.naginet that inherit from this template.

How to do it...
We can define a host template and then define hosts to inherit from it as follows:

1. Change to the objects configuration directory. In the default installation,
this is /usr/local/nagios/etc/objects. If you have already followed
the Grouping configuration files in directories recipe in this chapter, then your
own directory may differ.
cd /usr/local/nagios/etc/objects

2. In an appropriate file, perhaps templates.cfg, add the following definition. Note
the use of the special directives name and register:
define host {
 name critical-host
 register 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

251

 check_command check_ping!25,10%!50,20%
 max_check_attempts 3
 check_interval 1
 notification_interval 1
 notification_period 24x7
 notification_options d,u,r,f,s
 check_period 24x7
 contact_groups admins
}

3. In another file, or separate files if you prefer to keep your hosts to one per file, define
hosts to inherit from this template. Add in the remaining required directives for hosts,
and include a use directive referring to the established template:
define host {
 use critical-host
 host_name phobos.naginet
 alias phobos
 address 10.128.0.151
}
define host {
 use critical-host
 host_name deimos.naginet
 alias deimos
 address 10.128.0.152
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

You might receive warnings about no services being defined for the hosts, but you can
ignore those for now.

With this done, two new hosts should be registered in your configuration, phobos.naginet and
deimos.naginet:

No other new hosts should be added, as the template itself was explicitly not registered as an
object with the register directive.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Configuration

252

How it works...
The configuration added in the preceding section defines a new template with the name
directive of critical-host. Because the value for the host's register directive is 0, where
it normally defaults to 1, the host is not registered as an object with Nagios Core. Instead, it
becomes a snippet of configuration that can be referenced by real objects of the same type,
by referring to its name.

Note that in the template, the normally required values of host_name, alias, and address
are missing; this means that the host is not complete and wouldn't work if we tried to register
it as an actual host anyway.

Instead, we use its values as the basis for other hosts, phobos.naginet and deimos.
naginet. Both of these hosts inherit from critical-host, and fill in the rest of the missing
values in their own definitions. This frees us from having to repeat the same directives in two
different hosts.

If an object inherits a value for a directive from its parent, it's possible to override that directive
by redefining it in the inheriting object definition. For example, if we wanted phobos.naginet
to have a different value for max_check_attempts, we can add that to its definition:

define host {
 use critical-host
 host_name deimos.naginet
 alias deimos
 address 10.128.0.152
 max_check_attempts 5
}

There's more...
The most important thing to note about templates is that they work for a variety of Nagios
Core objects, most importantly including hosts, services, and contacts. You can therefore
set up and inherit from a service template in the same way:

define service {
 name critical-service
 register 0
 ...etc...
}
define service {
 use critical-service
 ...etc...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

253

Or a contact template:

define contact {
 name critical-contact
 register 0
 ...etc...
}
define contact {
 use critical-contact
 ...etc...
}

Note that inheritance can stack. For example, critical-host could itself inherit from a
template, perhaps generic-host, by adding its own use directive:

define host {
 use generic-host
 name critical-host
 register 0
 ...etc...
}

This allows the setting up of an inheritance structure of arbitrary complexity, but you
should avoid too much depth to prevent confusing yourself or anyone else trying to read
your configuration. Two levels is probably a sensible limit.

The rules around how inheritance is handled are discussed in more depth in the Nagios
Core manual, including a treatment of multiple inheritance. It's useful to know about this,
but in the interests of keeping configuration clear, it's best used sparingly: http://nagios.
sourceforge.net/docs/3_0/objectinheritance.html.

See also
 f The Configuring host roles using groups recipe in this chapter

 f The Creating a new host, Creating a new service, and Creating a new contact recipes
in Chapter 1, Understanding Hosts, Services, and Contacts

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Configuration

254

Defining macros in a resource file
In this recipe, we'll learn how to define custom user macros in resource files. This is good
practice for strings used in check_command definitions or other directives that are shared
by more than one host or service. For example, in lieu of writing the full path in a command_
name directive as follows:

command_name=/usr/local/nagios/libexec/check_ssh $HOSTADDRESS$

We could instead write:

command_name=$USER1$/check_ssh $HOSTADDRESS$

As a result, if the location of the check_ssh script changes, we only need to change the
value of $USER1$ in the appropriate resource file to update all of its uses throughout the
configuration.

Most of the macros in Nagios Core are defined automatically by the monitoring server,
but up to 32 user-defined macros can be used as well, in the form $USERn$.

Getting ready
You will need to have a server running Nagios Core 3.0 or later, and have access to the
command line to change its configuration, in particular the resource.cfg file.

In this example, we'll add a new macro, $USER2$, to contain the SNMP community name
snagmp, as used for various check_snmp requests.

How to do it...
We can define our user macro as follows:

1. Change to the Nagios configuration directory. In the default installation, this is
/usr/local/nagios/etc. Edit the resource.cfg file in this directory.
cd /usr/local/nagios/etc

vi resource.cfg

2. Ensure that the $USER2$ macro is not already defined in the file. If it is, we could
define $USER3$ instead, and so on.

3. Add the following definition to the end of the file:
$USER2$=snagmp

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

255

4. Change to the objects configuration directory for Nagios Core. In the default
installation, this is /usr/local/nagios/etc/objects.
cd /usr/local/nagios/etc/objects

5. Edit any of the object configuration files in which you wish to use the value of the
macro, and replace the inline values with $USER2$. In our example, we might find
various uses of the literal checksnmp community string:
define command {
 ...
 command_line $USER1$/check_snmp -H $HOSTADDRESS$ -C snagmp -o
.1.3.6.1.2.1.1.5.0 -r $ARG1$
}
define service {
 ...
 check_command check_snmp!snagmp
}

We could swap these out to use the macro instead:
define command {
 ...
 command_line $USER1$/check_snmp -H $HOSTADDRESS$ -C $USER2$
-o .1.3.6.1.2.1.1.5.0 -r $ARG1$
}
define service {
 ...
 check_command check_snmp!$USER2$
}

6. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, all the monitoring should be working the same as it was before, but we're now
using macro expansion to centralize configuration.

How it works...
Before Nagios Core processes directives such as command_line and check_command,
it will first expand all the macros referenced, including the user-defined macros we added
in the resource.cfg resource file.

One common use for the $USERn$ macros is for defining the full path of directories where
Nagios Core resources such as plugins or event handler scripts are located— in fact, the
sample configuration included in Nagios Core defines $USER1$ in resource.cfg as
/usr/local/nagios/libexec, the default location for plugin scripts and binaries.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Configuration

256

It's worth noting that you can load more than one resource file by adding more resource_
file directives in /usr/local/nagios/etc/nagios.cfg. For example, to load another
file called resource-extra.cfg, we could add a second line as follows:

resource_file=/usr/local/nagios/etc/resource.cfg
resource_file=/usr/local/nagios/etc/resource-extra.cfg

There's more...
There's also a security benefit to using resource files—for sensitive information, we can
prevent users other than nagios from reading them by making them readable only to
the nagios user:

cd /usr/local/nagios/etc

chown nagios.nagios resource.cfg

chmod 0600 resource.cfg

This makes it a decent way to store credentials, such as usernames and passwords,
for example to be used in check_command for MySQL:

define command {
 command_name check_mysql_secure
 command_line check_mysql -H $HOSTADDRESS$ -u naguser -d nagdb -p
$USER3$
}

You can also define per-host macros, by using custom directives preceded with an underscore
in the host definition:

define host {
 use critical-host
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 _mac_address 08:00:27:7e:7c:d2
}

In the preceding example, we're able to include the host's MAC address in a custom directive;
this can be referenced in services as $_HOSTMAC_ADDRESS$:

define service {
 use generic-service
 host_name sparta.naginet
 service_description ARP
 check_command check_arp!$_HOSTMAC_ADDRESS$
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

257

The same trick can also apply for contacts and services. This special use of custom
macros is discussed in the Custom Object Variables chapter of the Nagios documentation
at http://nagios.sourceforge.net/docs/3_0/customobjectvars.html.

See also
 f The Monitoring the output of an SNMP query recipe in Chapter 5,

Monitoring Methods

 f The Monitoring individual nodes in a cluster recipe in Chapter 8,
Understanding the Network Layout

Dynamically building host definitions
In this recipe, we'll learn one possible method of building Nagios configuration dynamically,
to avoid having to compose or copy-paste a lot of directives for new hosts or services. In other
words, this recipe is about generating configuration using templates.

To demonstrate how this is useful, we'll use the m4 macro language utility, which should be
available on virtually any UNIX-like system, including GNU/Linux and BSD. As a tool designed
for macro expansion, m4 is particularly well-suited to creating verbose plain text configuration
files such as the ones used by Nagios Core.

The principles here should apply just as easily to your favored programming or templating
language, perhaps Python or Perl, or shell scripts.

Getting ready
You will need to have the m4 macro language tool available to you, preferably but not necessarily
on the same system as the one running Nagios Core. It is a very standard tool and should be
already installed, or available as part of a package. The version used in this example is GNU m4,
documented at http://www.gnu.org/software/m4/manual/m4.html. This recipe does
not assume any familiarity with m4, and will show you the basics.

You may like to work in a new subdirectory in your home directory:

$ mkdir $HOME/nagios-dynamic-hosts

$ cd $HOME/nagios-dynamic-hosts

www.it-ebooks.info

http://nagios.sourceforge.net/docs/3_0/customobjectvars.html
http://nagios.sourceforge.net/docs/3_0/customobjectvars.html
http://www.it-ebooks.info/

Managing Configuration

258

How to do it...
We can create and apply an example Nagios Core configuration template as follows:

1. Create a new file host-service-template.m4 with the following contents:
define(`NAGHOST', `
 define host {
 host_name $1
 alias $2
 address $3
 contact_groups ifelse(`$#', `4', `$4', `admins')
 check_command check-host-alive
 check_interval 5
 check_period 24x7
 max_check_attempts 3
 notification_interval 30
 notification_options d,r
 notification_period 24x7
 }
 define service {
 host_name $1
 contact_groups ifelse(`$#', `4', `$4', `admins')
 check_command check_ping!100,10%!200,20%
 check_interval 5
 check_period 24x7
 max_check_attempts 3
 notification_interval 30
 notification_period 24x7
 retry_interval 1
 service_description PING
 }
')

2. Create a second file in the same directory called sparta.host.m4 with the
following contents:
include(`host-service-template.m4')
NAGHOST(`sparta', `Sparta Webserver', `10.0.128.21')

3. Create a third file in the same directory called athens.host.m4 with the
following contents:
include(`host-service-template.m4')
NAGHOST(`athens', `Athens Webserver', `10.0.128.22', `ops')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

259

4. Run the following commands and note the output:

$ m4 sparta.host.m4

define host {

 host_name sparta

 alias Sparta Webserver

 address 10.0.128.21

 contact_groups admins

 check_command check-host-alive

 check_interval 5

 check_period 24x7

 max_check_attempts 3

 notification_interval 30

 notification_options d,r

 notification_period 24x7

}

define service {

 host_name sparta

 contact_groups admins

 check_command check_ping!100,10%!200,20%

 check_interval 5

 check_period 24x7

 max_check_attempts 3

 notification_interval 30

 notification_period 24x7

 retry_interval 1

 service_description PING

}

$ m4 athens.host.m4

define host {

 host_name athens

 alias Athens Webserver

 address 10.0.128.22

 contact_groups ops

 check_command check-host-alive

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Configuration

260

 check_interval 5

 check_period 24x7

 max_check_attempts 3

 notification_interval 30

 notification_options d,r

 notification_period 24x7

}

define service {

 host_name athens

 contact_groups ops

 check_command check_ping!100,10%!200,20%

 check_interval 5

 check_period 24x7

 max_check_attempts 3

 notification_interval 30

 notification_period 24x7

 retry_interval 1

 service_description PING

}

As seen in the preceding output, we can now generate a basic host and service configuration
with a two-line m4 script referring to a template, simply by writing the output to a .cfg file:

$ m4 sparta.host.m4 > sparta.cfg

How it works...
The files sparta.host.m4 and athens.host.m4 both called an m4 macro with arguments,
after including the template for the host and service in the host-service-template.m4 file.
This was expanded into the full definition, and the arguments given were substituted as follows:

 f $1 was replaced with the first argument, host_name

 f $2 was replaced with the second argument, alias

 f $3 was replaced with the third argument, address

 f $4 was replaced with the fourth argument, contact_group

Note that two of these values, $1 and $4, were used in both the host and the PING
service definitions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

261

Also note that the argument $4 is optional; the if-else construct tests the number of
arguments, and if it finds there are four, it uses the value of the fourth argument; for athens.
naginet, this is the contact group ops. If there is no fourth argument, it defaults instead to
the value admins. This allows us to set default values for arguments if we so choose.

The rest of the directives are all written directly into the template. The configuration made
by this process is valid for Nagios Core, assuming that the check_command and contact_
groups used are defined.

There's more...
To automate things even further, we could use make to automatically generate .cfg files
from anything with the extension .host.m4 with the following Makefile:

%.cfg : %.host.m4
 m4 $< > $*.cfg

Note that correct Makefile syntax usually requires a literal Tab character to indent the
second line, not four spaces.

With this in the same directory as all the preceding files, in order to build the configuration
for the sparta.naginet host, we would only need to use a make call to generate the file:

$ make sparta.cfg

m4 sparta.host.m4 > sparta.cfg

$ make athens.cfg

m4 athens.host.m4 > athens.cfg

Note that it's better practice to avoid repeating directives, and instead to use hostgroups and
host and service templates to define "roles" for new hosts. This makes adding and removing
the hosts much easier, and both processes are explained in this chapter, in the Configuring
host roles using groups and Using inheritance to simplify configuration recipes.

David Douthitt goes into considerably more depth about the possibilities of using m4 for
Nagios configuration at http://administratosphere.wordpress.com/2009/02
/19/configuring-nagios-with-m4/.

See also
 f The Configuring host roles using groups and Using inheritance to simplify

configuration recipes in this chapter

www.it-ebooks.info

http://administratosphere.wordpress.com/2009/02/19/configuring-nagios-with-m4/
http://administratosphere.wordpress.com/2009/02/19/configuring-nagios-with-m4/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10
Security and
Performance

In this chapter, we will cover the following recipes:

 f Requiring authentication for the web interface

 f Using authenticated contacts

 f Writing debugging information to the Nagios log file

 f Monitoring Nagios performance with Nagiostats

 f Improving startup times with pre-cached object files

 f Setting up a redundant monitoring host

Introduction
Most administrators of even mid-size networks will choose to dedicate an entire server to
monitoring software, and sometimes a whole server just for Nagios Core. This is because
of two main factors common to most comprehensive Nagios Core setups:

 f They have a lot of privileges, because in order to inspect the running state of so many
different hosts and services, they need to be conferred appropriate network access.
This often means that their IP addresses are whitelisted all over the network. A user
who is able to assume that privilege could potentially do a lot of damage.

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

264

 f They have a lot of work to do, and hence ideally have dedicated software and
hardware resources to run what can be thousands of host and service checks
smoothly and to promptly notice problems and recoveries. If a Nagios Core server
is not able to keep up with its check schedule, it could cause delays in notifications
about very important services.

It's therefore very important to take into account the security and performance of your
Nagios Core server when building your configuration.

General best network security practices apply to Nagios Core management and will not be
discussed in depth here. The following general guidelines are just as relevant to securing a
Nagios Core server as they are any other kind of server:

 f Don't run the server as root: This is probably not a concern unless you've changed
it yourself, as if you've installed using the Quick Start Guides the server should be
set up to run as the unprivileged nagios user. Nagios Core should not need root
privileges under most circumstances.

 f Use a firewall: The protections offered by Nagios Core, NSCA, and NRPE's host
checking are very basic and are not a replacement for a software or hardware
firewall policy. Even a simple iptables or pf software firewall would be a very
good idea to protect a monitoring server.

 f Use the principle of least privilege: Don't confer Nagios Core or any of its plugins
or processes more privileges than they need, and lock down writable files, such as
logs, and state information only to appropriate users. Similarly, only allow Nagios
Core access through firewalls for what it needs to check, and nothing else.

 f Encrypt sensitive information: Don't put credentials in plain text in any of the
configuration files if you can avoid it, and if you can't avoid it, define them in
resource files that are only readable by the nagios user.

You should therefore not consider this chapter a complete guide to securing and optimizing
your Nagios Core server. For a more comprehensive treatment of security and optimization
procedures, be sure to take a look at these pages in the Nagios Core documentation:

 f Security Considerations: http://nagios.sourceforge.net/docs/3_0/
security.html

 f Enhanced CGI Security and Authentication: http://nagios.sourceforge.
net/docs/3_0/cgisecurity.html

 f Tuning Nagios for Maximum Performance: http://nagios.sourceforge.
net/docs/3_0/tuning.html

In particular, this chapter will focus on securing the CGIs, as the web interface is readily
exposing Nagios Core's information to the world, and is particularly vulnerable to abuse
if misconfigured. It will also include methods to assess how Nagios Core is performing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

265

Requiring authentication for the web
interface

In this recipe, we'll explore the use of basic authentication for the Nagios Core web interface,
probably the single most important configuration step in preventing abuse of the software by
malicious users.

By default, the Nagios Core installation process takes the sensible step of locking down the
authentication by default in its recommended Apache configuration file, with standard HTTP
authentication for a default user named nagiosadmin, with full privileges.

Unfortunately, some administrators take the step of removing this authentication or never
installing it, in spite of the recommendations in the installation guide. It's a good idea to
install it and keep it in place even on private networks, and especially if the server running
Nagios Core is open to the Internet in any way (generally not advised).

This is not just because of the security benefits, but also because it allows you to set up basic
access control, allowing certain users the permission to read state or run commands on certain
resources, but not on others. It also has other more subtle benefits, such as recording the
names of users that carry out actions for logging purposes.

Getting ready
You'll need access to the backend of a Nagios Core server with version 3.0 or greater, to change
its configuration and restart it. You'll also need a functioning web interface. Much of this recipe
will assume the web interface is running on the recommended Apache HTTPD server; you may
also need to be able to edit this configuration. Some familiarity with Apache HTTPD is assumed
here; the documentation available online is excellent if you need to consult it:

https://httpd.apache.org/docs/

This recipe will be in two parts: we'll first ensure that all the recommended settings are in
place to properly require authentication, and we'll then demonstrate adding a user named
helpdesk with read-only permissions for the server's web interface. This user will be able
to read the states of all the hosts and services, but will not be able to (for example) issue
commands, or submit passive check results.

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

266

How to do it...
We can ensure proper authentication is in place for the Nagios Core web interface as follows:

1. Clear your browser of all cookies and saved authentication data, and try to visit the
web interface. If your browser does not challenge you for a username or password as
follows, then it's likely that your authentication is disabled or not working correctly:

2. On the server, move to the Nagios Core configuration directory and open the cgi.
cfg file. In the default installation, this is saved in /usr/local/nagios/etc/
cgi.cfg.
cd /usr/local/nagios/etc

vi cgi.cfg

3. Ensure that the value for use_authentication is uncommented and set to 1:
use_authentication=1

4. Ensure that the default_user_name directive is commented out:
#default_user_name=guest

5. In the nagios.conf file in your Apache configuration, check that the following lines
are included to refer to the htpasswd.users file:
AuthName "Nagios Access"
AuthType Basic
AuthUserFile /usr/local/nagios/etc/htpasswd.users
Require valid-user

This file should be somewhere in the configuration directory for Apache, for example
/etc/apache/conf.d/nagios.conf. If you need to make changes to Apache's
configuration to fix this, you will need to restart Apache to have the changes take effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

267

We can add a read-only user named helpdesk as follows:

1. Add the user to the htpasswd.users file using htpasswd, the Apache HTTPD
password manager. Its location will vary depending on your system; common
locations are /usr/bin and /usr/local/apache/bin.
htpasswd /usr/local/nagios/etc/htpasswd.users helpdesk

New password:

Re-type new password:

Adding password for user helpdesk

You may like to make the htpasswd.users file only readable by the web server user
if you are concerned about the hashes being stolen by users on the system.

2. In cgi.cfg, uncomment the authorized_for_read_only directive and add the
new helpdesk user to its value:
authorized_for_read_only=helpdesk

3. Add the user to the values for the authorized_for_all_services and
authorized_for_all_hosts directives:
authorized_for_all_services=nagiosadmin,helpdesk
authorized_for_all_hosts=nagiosadmin,helpdesk

Be careful not to confuse these with the authorized_for_all_service_
commands and authorized_for_all_host_commands directives.

You should not need to restart the Nagios Core server for these changes to take effect as you
normally would with other .cfg files.

With this done, you should only be able to access the Nagios Core web interface with a valid
username and password. The default nagiosadmin user created on installation should have
full privileges, and the helpdesk user added in this recipe should be able to view host and
service states, but will be unable to issue any commands such as rescheduling checks or
submitting passive check results.

How it works...
It's important to note that it isn't actually Nagios Core itself prompting for the username and
password and running the authentication check; this is a function performed by the web server,
as specified in the nagios.conf file recommended for installation with Apache HTTPD.

After login, however, Nagios Core uses the permissions defined in the cgi.cfg file each
time one of the CGI scripts in the web interface is accessed, to ensure that the user as
authenticated with the web server has permissions to view the requested page, or execute
the requested action.

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

268

We disable the default_user_name directive by commenting it out, because this specifies
a user that Nagios Core will "assume" for users who access the CGIs without authenticating.
This is a potentially dangerous setting and is best avoided in most circumstances, particularly
with a server with publicly accessible addresses.

The following directives in cgi.cfg allow refining permissions for using the CGIs, to form a
simple kind of access control list:

 f authorized_for_configuration_information: The specified users are
allowed to view configuration information for hosts in the web interface

 f authorized_for_system_information: The specified users are allowed to
view Nagios Core process and performance information

 f authorized_for_system_commands: The specified users are allowed to run
commands affecting the Nagios Core process, such as shutdowns and restarts

 f authorized_for_all_services: The specified users are allowed to view status
information and history for all services

 f authorized_for_all_hosts: The specified users are allowed to view status
information and history for all hosts

 f authorized_for_all_service_commands: The specified users are allowed to
run commands on all services, such as rescheduling checks or submitting passive
check results

 f authorized_for_all_host_commands: The specified users are allowed to
run commands on all hosts, such as rescheduling checks or submitting passive
check results

Further refining access per-service and per-host is done with authenticated contacts,
demonstrated in the Using authenticated contacts recipe in this chapter. This is highly
recommended for teams with mixed responsibilities that all require access to the same
Nagios Core web interface.

There's more...
Besides authentication via Apache HTTPD, it's also often sensible to limit the IP addresses
allowed access to the Nagios Core instance, using Order and Allow Apache directives.
We could extend the nagios.conf file loaded by Apache as follows:

<Directory "/usr/local/nagios/sbin">
 Options ExecCGI
 AllowOverride None
 AuthName "Nagios Access"
 AuthType Basic
 AuthUserFile /usr/local/nagios/etc/htpasswd.users

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

269

 Require valid-user
 Order Allow,Deny
 Deny from all
 Allow from 127.0.0.0/16
 Allow from 10.128.0.1
</Directory>

This would only allow local addresses and 10.128.0.1 to access the CGIs, denying access
with 403 Forbidden to anyone else. Similarly, we could arrange to only allow connections
over HTTPS, perhaps with an SSLRequireSSL directive; in general, we can configure Apache
to carefully control even accessing the CGIs, let alone abusing them.

Note that none of this should take the place of an appropriate firewall solution and policy.
A monitoring server should be protected as carefully as any other mission-critical server.

See also
 f The Using authenticated contacts recipe in this chapter

 f The Viewing configuration in the web interface and Scheduling checks from the
web interface recipes in Chapter 7, Working With the Web Interface

Using authenticated contacts
In this recipe, we'll learn how to use authenticated contacts to refine our control of access
to information in the Nagios Core web interface. This recipe is useful in situations where a
particular user requires information on the status of certain hosts and services but should
not be allowed to view others, a setup which can't be managed with the directives in cgi.cfg.

As a simple example, on a given monitoring server, we might have two hosts configured thus:

define host {
 use linux-server
 host_name sparta.naginet
 alias sparta
 address 10.128.0.21
 contacts nagiosadmin
}
define host {
 use linux-server
 host_name athens.naginet
 alias athens
 address 10.128.0.22
 contacts nagiosadmin
}

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

270

We might like to add a new user athensadmin with permissions to view the status of and run
commands on the athens.naginet host and its services, but not the sparta.naginet
host or its services.

Getting ready
You'll need access to the backend of a Nagios Core server with version 3.0 or greater, to
change its configuration and restart it. You'll also need a functioning web interface with
authentication running, and be familiar with how it works; the Requiring authentication
for the web interface recipe in this chapter explains how to do this.

How to do it...
We can add an authenticated contact as follows:

1. Create a new user in the htpasswd.users file named athensadmin, using the
htpasswd tool:
htpasswd /usr/local/nagios/etc/htpasswd.users athensadmin

New password:

Re-type new password:

Adding password for user athensadmin

2. Log in to the Nagios Core web interface with the credentials you just added, and click
on Hosts in the left menu to verify that you are not able to view any information yet:

3. Back on the command line, change to the Nagios Core objects configuration
directory. In the quick start guide installation, this is /usr/local/nagios/
etc/objects.
cd /usr/local/nagios/etc/objects

4. Edit the contacts.cfg file to include a definition for a new contact object,
athensadmin. Here, we've used the generic-contact template. You can
use your own template or values if you prefer; the value for contact_name
is the important part:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

271

define contact {
 use generic-contact
 contact_name athensadmin
 alias Athens Administrator
 email athens@example.com
}

5. Edit the hosts or services to which you want to allow the athensadmin user
access, and add athensadmin to its list of contacts. For our example, this means
the definition for athens.naginet looks similar to the following code snippet:
define host {
 use linux-server
 host_name athens.naginet
 alias athens
 address 10.128.0.22
 contacts nagiosadmin,athensadmin
}

6. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, logging in as the athensadmin user should allow you to view the details of
the athens.naginet host, but nothing else:

You should also be able to issue commands related to that host, such as rescheduling checks
and acknowledging issues.

How it works...
When logging in as an authenticated user with Apache HTTPD, Nagios Core checks the
username to see if it matches the contact_name directive of any configured contacts.
If it does, then privileges to inspect the state of that contact's associated hosts and
services are granted, along with the ability to run commands on only those hosts and
services. The web interface otherwise works in just the same way. To the authenticated
contact, it appears as if no other hosts or services are being monitored.

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

272

If your network includes co-located equipment or teams with mixed monitoring responsibilities,
this will allow you to restrict the Nagios Core interface to certain hosts for certain users. This can
be very useful for confidentiality, transparency, and delegation purposes.

There's more...
If you want to allow an authenticated user read-only access to the details for their associated
hosts or services, you can arrange that by adding their username to the values of the
authorized_for_read_only directive in cgi.cfg:

authorized_for_read_only=athensadmin

The athensadmin user will then still be able to view the same host and service information,
but will not be able to issue any commands:

See also
 f The Requiring authentication for the web interface recipe in this chapter

 f The Creating a new contact recipe in Chapter 1, Understanding Hosts, Services,
and Contacts

Writing debugging information to a Nagios
log file

In this recipe, we'll learn how to use the debugging log file in Nagios Core to get various kinds
of process information from the running program, considerably more than available in the file
specified by the standard log_file directive. This is useful not just for debugging purposes
when Nagios Core is doing something unexpected at runtime, but also to get a better idea of
how the server is working in general and with your particular configuration.

Getting ready
You will need a Nagios Core server with version 3.0 or greater. More debugging options are
available in versions after 3.0, but these will be noted in the recipe. You will need access to
change the nagios.cfg file and to restart the server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

273

In this example, we'll simply log everything we possibly can, and then explain how to refine the
logging behavior if necessary in the How it works… section.

How to do it...
We can enable very verbose debugging for our monitoring server as follows:

1. Change to the configuration directory for Nagios Core. In the default installation,
this is /usr/local/nagios/etc. Edit the file nagios.cfg:
cd /usr/local/nagios/etc

vi nagios.cfg

2. Look for the debug_level, debug_verbosity, and debug_file directives.
Ensure they are uncommented or add them to the end of the file if they don't exist,
and define them as follows:
debug_level=-1
debug_verbosity=2
debug_file=/usr/local/nagios/var/nagios.debug

3. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, the /usr/local/nagios/var/nagios.debug file should start filling with
information about the running process quite quickly. You may find it instructive to watch it for
a while with tail -f, which will show you the contents of the file as it updates:

tail -f /usr/local/nagios/var/nagios.debug

[1347529967.839794] [008.2] [pid=14621] No events to execute at
the moment. Idling for a bit...

[1347529967.839799] [001.0] [pid=14621] check_for_external_
commands()

[1347529967.839805] [064.1] [pid=14621] Making callbacks (type
8)...

[1347529968.089971] [008.1] [pid=14621] ** Event Check Loop

[1347529968.090027] [008.1] [pid=14621] Next High Priority Event
Time: Thu Sep 13 21:52:52 2012

[1347529968.090038] [008.1] [pid=14621] Next Low Priority Event
Time: Thu Sep 13 21:53:00 2012

...

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

274

How it works...
The debug_level directive specifies how much information (and of what kind) should be
written to the debugging log. Here we've used the value -1, which is a shortcut for specifying
that all debugging information should be written to the debugging log file.

In practice, however, we often only want to get information about particular kinds of Nagios
Core tasks. In this case, we can use OR values for debug_level to specify which ones.

The different kinds of debugging information can be specified with the following numbers:

 f 1: Function enter and exit debugging

 f 2: Configuration debugging

 f 4: Process debugging

 f 8: Scheduled event debugging

 f 16: Host and service check debugging

 f 32: Notification debugging

 f 64: Event broker debugging

In version 3.3 and later of Nagios Core, the following can also be specified. There may be
even more added in subsequent versions:

 f 128: External commands debugging

 f 256: Commands debugging

 f 512: Scheduled downtime debugging

 f 1024: Comments debugging

 f 2048: Macros debugging

Rather than comma-separating these values to specify more than one, they are added together.
For example, if we wanted to save process and scheduled event debugging information and
nothing else, we would use 4 + 8 = 12:

debug_level=12

We can turn the debugging off completely by changing debug_level back to 0,
its default value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

275

There's more...
Nagios Core generates a great deal of information at the highest level of debugging, with over
30 lines per second even on minimal configurations, so be careful not to leave this running
permanently if you don't always need it, as it can slowly fill a disk. You can avoid this situation
by using the max_debug_file_size directive to specify a maximum size in bytes for the file.
For example, to restrict the file to one megabyte, we could define the following:

max_debug_file_size=1000000

Nagios Core will "roll" an existing debugging log by adding the extension .old when it exceeds
this size, and will start a new one. It will also automatically delete any previous logs with the
.old extension when it does this.

See also
 f The Monitoring Nagios performance with Nagiostats recipe in this chapter

 f The Viewing and interpreting notification history recipe in Chapter 7, Working With
the Web Interface

Monitoring Nagios performance with
Nagiostats

In this recipe, we'll learn how to use the nagiostats utility to get some statistics about
the performance of a Nagios Core process, and the states of the hosts and services that
it monitors.

Optionally, we'll also show how to use the mrtg.cfg file built in the Nagios Core source
distribution at ./configure time to set up graphs built by mrtg (Multi-Router Traffic
Grapher), and link to the graphs in the menu of the web interface. The Nagios Core source
distribution includes some files to assist with this, which we'll use here.

Getting ready
You will need a Nagios Core 3.0 or newer server installed and running to invoke nagiostats.
Older versions do include the utility, but there is not quite as much information returned.

If you would like to run the mrtg graphing as well, which is highly recommended, you should
have mrtg and its helper program, indexmaker, installed on your system. If you are already
graphing other things with mrtg, don't worry, this recipe should not interfere with that.

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

276

The recipe does not assume any familiarity with mrtg, but if you have any problems with it,
you may like to consult its documentation online at http://oss.oetiker.ch/mrtg/doc/
index.en.html.

You should also have access to the sources from which your installation of Nagios Core was
compiled. If you need to retrieve the sources again, you can download them from the Nagios
Core website (http://www.nagios.org/).

In this case, you will need to run ./configure again to generate the file required,
sample-config/mrtg.cfg.

How to do it...
We can invoke nagiostats itself in one step whenever we want to get some statistics about
the server's performance:

1. Run the following command:
/usr/local/nagios/bin/nagiostats -c /usr/local/nagios/etc/
nagios.cfg

This should give you output beginning with the following:

Nagios Stats 3.4.1

Copyright (c) 2003-2008 Ethan Galstad (www.nagios.org)

Last Modified: 05-11-2012

License: GPL

CURRENT STATUS DATA

--

Status File: /usr/local/nagios/var/
status.dat

Status File Age: 0d 0h 0m 2s

Status File Version: 3.4.1

Program Running Time: 2d 2h 25m 23s

Nagios PID: 2487

Used/High/Total Command Buffers: 0 / 0 / 4096

Total Services: 60

Services Checked: 60

...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

277

2. Run the following command:
/usr/local/nagios/bin/nagiostats -c /usr/local/nagios/etc/
nagios.cfg --help

This should give you a complete list of the names and meanings of all the fields
returned by the output of nagiostats.

If you would like to include mrtg graphs of this data, a good starting point is using the
sample configuration included in the Nagios Core source distribution, in sample-config/
mrtg.cfg.

1. Copy sample-config/mrtg.cfg into /usr/local/nagios/etc:
cp nagios-3.4.1/sample-config/mrtg.cfg /usr/local/nagios/etc

2. Create a directory to store the mrtg pages and graphs, so that they can be viewed
in the Nagios Core web interface:
mkdir /usr/local/nagios/share/stats

3. Edit /usr/local/nagios/etc/mrtg.cfg to include a WorkDir declaration at
the top of the file:
WorkDir: /usr/local/nagios/share/stats

4. Run mrtg to create the graphs:
mrtg /usr/local/nagios/etc/mrtg.cfg

For this first run, we can safely ignore any errors about missing prior data, or backup
log files:
2012-09-16 17:01:04, Rateup WARNING: /usr/bin/rateup could not
read the primary log file for nagios-n

2012-09-16 17:01:04, Rateup WARNING: /usr/bin/rateup The backup
log file for nagios-n was invalid as well

2012-09-16 17:01:04, Rateup WARNING: /usr/bin/rateup Can't remove
nagios-n.old updating log file

2012-09-16 17:01:04, Rateup WARNING: /usr/bin/rateup Can't rename
nagios-n.log to nagios-n.old updating log file

If you are using a UTF-8 locale in your shell, mrtg may fail to run. You can run it in a
standard C locale with an env prefix:

env LANG=C mrtg /usr/local/nagios/etc/mrtg.cfg

5. Run the indexmaker helper installed with mrtg to create an index to the graphs:
indexmaker /usr/local/nagios/etc/mrtg.cfg --output=/usr/local/
nagios/share/stats/index.html

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

278

You should only need to do this once, unless you add or remove graph definitions
from mrtg.cfg later on.

6. Visit http://olympus.naginet/nagios/stats, substituting your own Nagios
Core server's hostname for olympus.naginet. After authenticating (if necessary),
we should be able to see some empty mrtg graphs:

Don't worry that they're empty; we expect that, as we only have one data point for
each graph at the moment.

7. If everything has worked up to this point, we can probably add a cron task to run
every five minutes to add new data points to the graph. Here, we are assuming the
mrtg program is saved in /usr/bin:

*/5 * * * * root /usr/bin/mrtg /usr/local/nagios/etc/mrtg.cfg

The best way to do this will vary between systems. You could put this in /etc/
crontab, or in its own file in /etc/cron.d/nagiostats if you want to be a
little tidier.

It is probably safe to leave it running as root, but if you are concerned about this, you
should also be able to run it as the nagios user by including a --lock-file option:
*/5 * * * * nagios /usr/bin/mrtg --lock-file=/usr/local/nagios/
var/mrtg.cfg.lock /usr/local/nagios/etc/mrtg.cfg

That might require correcting permissions on the graphs already generated:
chown -R nagios.nagios /usr/local/nagios/share/stats

With this done, if the cron task is installed correctly, we should start seeing data being
plotted over the next few hours:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

279

How it works...
The statistics provided by nagiostats provide both performance data about Nagios Core itself,
how long it's taking to complete its round of checks of all objects and the average time it's taking
per check, as well as data such as the number of hosts in various states. By default, running
it will return the data in a terse but human-readable format; you can get a good idea of the
meaning of each of the fields by running it with --help as suggested in the recipe.

The mrtg.cfg file included in the Nagios source distribution, which is tailored to your
particular system at ./configure time, contains example definitions of mrtg graphs
that parse the data retrieved from nagiostats. These are not the only possible graphs
using the information provided by nagiostats, but they are useful examples.

The data used is the same as the data you read if you invoked nagiostats from the
shell, but the format is slightly different. If you want to see the data being passed to mrtg
by nagiostats, you can run it with the --mrtg option and nominate fields to be included
in the output with --data; for example:

/usr/local/nagios/bin/nagiostats -c /usr/local/nagios/etc/nagios.cfg
--mrtg --data=AVGACTSVCPSC,AVGPSVSVCPSC,PROGRUNTIME,NAGIOSVERPID

0

0

1d 2h 43m 43s

Nagios 3.4.1 (pid=1080)

The recipe's call to indexmaker is a separate program that builds an index.html file with
links to all the graphs, just for convenience. Like the mrtg call, it refers to the configuration
file /usr/local/nagios/etc/mrtg.cfg to figure out what it needs to do.

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

280

There's more...
Once you're happy with the way your graph's web pages are being displayed, you might like
to consider including them in your Nagios Core sidebar. This can be done by editing /usr/
local/nagios/share/side.php, and adding a new link to the System section, perhaps
named Performance Reports, below the Performance Info link. The new line might look
similar to the following code snippet:

<a href="/nagios/stats/" target="<?php echo $link_
target;?>">Performance Reports

This would make a link to the graphs show up in the web interface as follows:

Note that customizations to the menu like this will be overwritten if you reinstall Nagios Core.

If you like what mrtg does with this data, you might like to look at Cacti, a very helpful
frontend to rrdtool, which is similar to mrtg. It will allow you a lot of flexibility in defining
graphs, although it takes a while to learn (http://www.cacti.net/).

If you're interested in more graphing for Nagios Core performance and state data you may
like the Nagiosgraph extension, which is discussed in the Tracking host and service states
with NagiosGraph recipe in Chapter 11, Automating and Extending Nagios.

Finally, note that Nagios Core includes some built-in graphing of hosts and states in its reports,
so be sure to check those out as well before you try to build a graph for a report that already
exists! These are all also discussed in Chapter 7, Working With the Web Interface. Check out
the references in the See also section for this recipe.

See also
 f The Using the tactical overview, Viewing and interpreting availability reports,

Viewing and interpreting trends, and Viewing and interpreting notification history
recipes in Chapter 7, Working With the Web Interface

 f The Tracking host and service states with Nagiosgraph recipe in Chapter 11,
Automating and Extending Nagios

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

281

Improving startup times with pre-cached
object files

In this recipe, we'll learn how to shorten startup times for large and/or complex Nagios Core
configurations. This is done by pre-caching the Nagios Core objects from the configuration,
applying all appropriate template and group expansions into a single file that Nagios Core
can read much more quickly than a more modular and human-readable configuration.

This will likely only be of interest to you if you are monitoring more than a hundred hosts or
services with a reasonably complex template and grouping layout, as suggested by some of
the recipes in Chapter 1 and Chapter 9. It will still work on smaller installations, but the gains
in startup speed are likely to be minimal.

If you are only running a small setup, then this recipe might be of interest if you want to better
understand how Nagios Core expands a configuration that uses a lot of templates and other
configuration tricks.

Getting ready
You should be running a Nagios Core 3.0 or newer server, and have access to the server to
change its configuration.

You should check that the precached_object_file directive in /usr/local/nagios
/etc/nagios.cfg is uncommented and defined to an accessible file. The setting in the
Quick Start configuration is sensible:

precached_object_file=/usr/local/nagios/var/objects.precache

Having this directive uncommented doesn't actually generate or use the pre-cached objects
file; that needs to be done explicitly, as will be explained in the recipe.

Don't confuse this with the object_cache_file directive in the same file, which should
be left untouched at its current setting.

For this example, we'll use a fairly large configuration with some 20,000 objects defined on
a rather slow machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

282

How to do it...
We can get some idea of possible performance improvement from using pre-cached object
files as follows:

1. Run nagios with the -s option, and inspect the output. This will print a profile of
the processes normally involved in building complete object definitions from the
configuration files.
/usr/local/nagios/bin/nagios -s /usr/local/nagios/etc/nagios.cfg

In this case, we're particularly interested in the sections of output marked with
asterisks, in the section titled OBJECT CONFIG PROCESSING TIMES, which
denote times that could be improved by pre-cached object files, including an
estimate of the saved time at the end of the TOTAL field:
OBJECT CONFIG PROCESSING TIMES (* = Potential for precache
savings with -u option)

Read: 8.285613 sec

Resolve: 0.001696 sec *

Recomb Contactgroups: 0.000124 sec *

Recomb Hostgroups: 1.972412 sec *

Dup Services: 0.309333 sec *

Recomb Servicegroups: 0.000029 sec *

Duplicate: 0.000168 sec *

Inherit: 0.102685 sec *

Recomb Contacts: 0.000001 sec *

Sort: 0.000000 sec *

Register: 0.826046 sec

Free: 0.102805 sec

 ============

TOTAL: 11.600912 sec * = 2.386448 sec (20.57%)
estimated savings

We might decide that 2.3 seconds is a worthwhile saving from our restart time.
Perhaps we really don't want to miss any important checks!

2. Run nagios with the -p and -v options, to verify the configuration and also write a
pre-cached object file:
/usr/local/nagios/bin/nagios -pv /usr/local/nagios/etc/nagios.
cfg

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

283

3. Run nagios with the -u and -s options to see how long the startup and scheduling
test takes when instructed to use the pre-cached object file:
/usr/local/nagios/bin/nagios -us /usr/local/nagios/etc/nagios.
cfg

4. We may note that the TOTAL time taken is now significantly less (even more of an
improvement than estimated), and that many of the times are now zero seconds,
as Nagios Core did not have to do that step at all:

OBJECT CONFIG PROCESSING TIMES (* = Potential for precache
savings with -u option)

Read: 4.975257 sec

Resolve: 0.000000 sec *

Recomb Contactgroups: 0.000000 sec *

Recomb Hostgroups: 0.000000 sec *

Dup Services: 0.000000 sec *

Recomb Servicegroups: 0.000000 sec *

Duplicate: 0.000000 sec *

Inherit: 0.000000 sec *

Recomb Contacts: 0.000000 sec *

Sort: 0.000000 sec *

Register: 0.828953 sec

Free: 0.000758 sec

 ============

TOTAL: 5.804968 sec

With this done, we should find that restarting Nagios Core with both the -d and the -u flags
should be faster than before. This can be incorporated into any startup scripts (for example,
/etc/init.d/nagios). It also means that if we make changes to the configuration, we must
remember to run nagios -pv again to validate and regenerate the pre-cached object file.

How it works...
When run with the -p option, Nagios Core parses the configuration as normal into objects
with which it can work, expanding out the hostgroups, templates, and other configuration
shortcuts. It writes this information into a single file as specified by the precached_object_
file directive.

The configuration file is human-readable; if you view it in a text editor, you'll see the expanded
definitions that have been built from your configuration, with all of the object inheritance,
regular expression hostgroups, and multi-host service definitions expanded.

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

284

When next restarted, Nagios Core can be instructed to use this file instead of re-parsing the
configuration all over again by including the -u option. You may need to incorporate this in
any init.d scripts you are using.

There's more...
If you don't really have speed problems on Nagios Core restarting, it's best to avoid making
this permanent, as it adds another layer of complexity to building configuration; if you forget
to rebuild the pre-cached object file after making configuration changes and before restarting
Nagios Core, it will continue using the previous configuration, not realizing the difference.
Use this with caution!

See also
 f The Running a service on all hosts in a group recipe in Chapter 1, Understanding

Hosts, Services, and Contacts

 f The Configuring host roles using groups and the Using inheritance to simplify
configuration recipes in Chapter 9, Configuration Management

Setting up a redundant monitoring host
In this recipe, we'll learn how to implement a simple kind of redundancy for Nagios Core, by
running a second Nagios Core instance with a near-identical configuration on another machine.

This may seem like it would not need a recipe to implement. It should be reasonably
straightforward to simply copy over the configuration for a Nagios Core system and
run it concurrently. There are two main problems with this:

 f Every problem detected on the network will fire notifications events twice.
The administrator charged with looking after the pager might well find
this unbearable!

 f Everything will be checked twice. On smaller networks with simple checks,
this may not be too much of a concern, but it could be an issue on larger,
busier networks.

This recipe will solve the first problem by configuring the slave monitoring server to suppress
notifications until it detects an issue with the master server. In the There's more… section,
we'll discuss extending this solution to solve the second problem as well, by preventing the
slave server from making checks as well as sending notifications while the master server
is active.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

285

Getting ready
This is the most complex recipe in this book, and one of the longest, tying in concepts from
many other recipes and chapters. To follow it, you will likely need to have a good working
knowledge of the following:

 f The building blocks of Nagios Core hosts, services, contacts, commands, plugins,
and notifications explained in all recipes in Chapters 1 through 4.

 f Remote execution via check_nrpe explained in all recipes in Chapter 6, Enabling
Remote Execution. The recipe will at one point tell you to install NRPE on the master
server to run a specific plugin, so you should learn how to do this first.

 f Event handlers and writing to the command file with them, explained in the
Setting up an event handler script recipe in Chapter 11.

The event handler scripts, the most complex part of this setup, are fortunately already
written for us; we'll show how to implement them by copying them out of the Nagios Core
source package. You'll therefore need to have the sources available for your particular
version of Nagios Core. If you need to retrieve the sources again, you can download them
again from Nagios Core's website at http://www.nagios.org/.

The recipe will start by assuming we have two monitoring servers: olympus.naginet
(10.128.0.11), which will be the master monitoring server, and everest.naginet
(10.128.0.12), which will be the slave. The two servers are configured to monitor the
same three hosts, with PING service checks:

 f sparta.naginet

 f athens.naginet

 f ithaca.naginet

The Nagios Core configuration of the two servers is completely identical to start with, and both
are sending notifications to an appropriate contact group. However, note that the servers are
not yet monitoring one another; this will be an important part of the recipe.

How to do it...
We can arrange a simple redundancy setup for our two Nagios Core servers as follows:

1. Confirm that the check_nagios plugin is available on the master server, and try
running it:
cd /usr/local/nagios/libexec

./check_nagios -e 5 -F /usr/local/nagios/var/status.dat -C
/usr/local/nagios/bin/nagios

NAGIOS OK: 1 process, status log updated 3 seconds ago

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

286

2. Install the NRPE daemon on the master server, and define a command check_
nagios in nrpe.cfg (see Chapter 6).
command[check_nagios]=/usr/local/nagios/libexec/check_nagios -e
5 -F /usr/local/nagios/var/status.dat -C /usr/local/nagios/bin/
nagios

3. Include the slave server's address in the allowed_hosts directive for nrpe,
in the file /usr/local/nagios/etc/nrpe.cfg:
allowed_hosts=127.0.0.1,10.128.0.12

Don't forget to restart NRPE to include this change to the configuration.

4. On the slave server, verify that a call to check_nrpe can retrieve the results of
check_nagios on the master server:
cd /usr/local/nagios/libexec

./check_nrpe -H olympus.naginet

NRPE v2.13

./check_nrpe -H olympus.naginet -c check_nagios

NAGIOS OK: 1 process, status log updated 2 seconds ago

You will have to install the check_nrpe plugin on the slave server to do this. This is
explained in the Monitoring local services on a remote machine with NRPE recipe in
Chapter 6.

5. On the slave server, copy four files (two event handlers and two helper scripts) from
the source distribution into the /usr/local/nagios/libexec/eventhandlers
directory (which you may need to create first):
EHD=/usr/local/nagios/libexec/eventhandlers

mkdir -p $EHD

cd /usr/local/src/nagios

cp contrib/eventhandlers/enable_notifications $EHD

cp contrib/eventhandlers/disable_notifications $EHD

cp contrib/eventhandlers/redundancy-scenario1/handle-master-
host-event $EHD

cp contrib/eventhandlers/redundancy-scenario1/handle-master-
proc-event $EHD

The preceding command assumes you are keeping the sources for your Nagios Core
distribution in /usr/local/src. We define and use the shell variable $EHD to refer
to the event handlers directory for convenience.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

287

6. In the installed handle-master-proc-event script, find and replace active_
service_checks with notifications. The command line tool sed works well
for this:
sed -i 's/active_service_checks/notifications/g' $EHD/handle-
master-proc-event

This is because the script as provided issues a command to toggle active checks,
rather than notifications. At the time of writing, in Nagios 3.3.1 there is also a bug
in handle-master-proc-event that may need to be corrected, on line 49:
`eventhandlerdir/disable_active_service_checks`

It should have a dollar sign added after the first backtick:
`$eventhandlerdir/disable_active_service_checks`

7. Ensure the event handlers are owned and executable by the nagios user:
chown nagios.nagios $EHD/*

chmod 0755 $EHD/*

8. In /usr/local/nagios/etc/objects/commands.cfg, define two new event
handler commands:
define command {
 command_name handle-master-host-event
 command_line $USER1$/eventhandlers/handle-master-host-event
$HOSTSTATE$ $HOSTSTATETYPE$ $HOSTATTEMPT$
}
define command {
 command_name handle-master-proc-event
 command_line $USER1$/eventhandlers/handle-master-proc-event
$SERVICESTATE$ $SERVICESTATETYPE$ $SERVICEATTEMPT$
}

9. Make a host and service definition on the slave server to monitor the master server. It
might look something similar to the following code snippet; change your host_name,
alias, and address values as appropriate. The templates used are only examples;
you will probably want to choose templates that are defined to run checks often, and
during a 24x7 interval.
define host {
 use critical-host-template
 host_name olympus.naginet
 alias olympus
 address 10.128.0.11
 event_handler handle-master-host-event
}

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

288

 define service {
 use critical-service-template
 host_name olympus.naginet
 service_description NAGIOS
 check_command check_nrpe!check_nagios
 event_handler handle-master-proc-event
 }

You can make the master server monitor the slave server as well if you wish.

10. Note that you will need to have the check_nrpe command defined, which the
Monitoring local services on a remote machine with NRPE recipe in Chapter 6
explains. If you have followed that recipe then you have probably already done
this. If not, the following definition works:
define command {
 command_name check_nrpe
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$
}

11. Finally, in nagios.cfg on the slave server, change enable_notifications to 0:
enable_notifications=0

12. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, the two Nagios Core servers should both be running, but importantly,
notifications on the slave server start out as disabled, as visible in the Tactical Overview:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

289

However, all the systems are still being monitored, as visible in the Services screen, including
the NAGIOS service on the host machine:

This means that notifications will only be sent by the master server, since it still has its
notifications enabled. However, if the master server goes down or its Nagios process stops
working, the event handlers should be called, and notifications on the slave server will
be automatically enabled. When the master server or its NAGIOS service comes back up,
the notifications will be disabled again, with checks and state changes having continued
uninterrupted throughout. We have therefore established a simple kind of redundancy. If you
use this setup, you should test it thoroughly to make sure that the slave Nagios Core server
will enable and disable its notifications for each contingency (host goes down, service goes
down, service comes back, and so on.)

How it works...
The event handlers included in the Nagios Core distribution, which we copied into the
eventhandlers directory, are designed to handle toggling notifications and active
checks based on the status of a given service or host. They are included for the purposes
of demonstrating event handlers and redundancy situations like this one.

We start by setting up the slave server to monitor not just the host on which the master
Nagios Core server is running, but also the Nagios Core service itself, using the check_
nagios plugin. This plugin checks the age of the log file and the system's process tables
to ensure that a Nagios Core service is actually running on the system. Because it's a local
plugin that doesn't work for remote checks, we check it from the slave server via NRPE.

The slave server checks the status of the master server and its NAGIOS service as
part of its normal routine of active checks. When the master server's host or its NAGIOS
service change state, both call their respective event handlers, the two shell scripts
handle-master-host-event and handle-master-proc-event, defined in the
commands of the same name.

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Performance

290

Each time the event handlers are called, they are passed three arguments, in macro form.
For handle-master-host-event, these are:

 f $HOSTSTATE$: This is the new state of the master server

 f $HOSTSTATETYPE$: This specifies whether the state is SOFT or HARD

 f $HOSTATTEMPT$: This is the number of host checks attempted, up to the value
of max_check_attempts for the host

handle-master-proc-event is passed three analogous arguments, the only difference
being they refer to service states rather than host states:

 f $SERVICESTATE$: This is the new state of the NAGIOS service on the master server

 f $SERVICESTATETYPE$: This specifies whether the service state is SOFT or HARD

 f $SERVICEATTEMPT$: This is the number of host checks attempted, up to the value
of max_check_attempts for the host

The event handlers are written in such a way that they only do anything if the new state is
HARD; that is, if the number of max_check_attempts has been reached. It ignores SOFT
state changes until enough consecutive checks have failed that it can be reasonably confident
in concluding that the monitored host or service is suffering a problem.

If the host or service enters a HARD CRITICAL state, the event handlers call the helper
script enable-notifications to write a command to the commands file at /usr/local/
nagios/var/rw/nagios.cmd for the server to process. This command takes the following
form, including the UNIX timestamp for when the command was written:

[1348129155] ENABLE_NOTIFICATIONS;1348129155

When Nagios Core processes this command, the effect is that the previously disabled
notifications are enabled, and all subsequent notifications generated as a result of checks
will be sent.

Similarly, when the host or service recovers from the HARD CRITICAL state, entering
a HARD UP or HARD OK state, the disable-notifications helper script is called,
writing a command in the same manner:

[1348129231] DISABLE_NOTIFICATIONS;1348129231

The effect is that when the master server is noted to be down, the slave server notices and
assumes its notification behavior, and when it recovers, it stops its own notifications again,
allowing the master server to resume its role.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

291

There's more...
If network bandwidth is a concern, we can arrange to leave the slave server more or less
idle when not in use, by keeping not only notifications but also service checks off by default.
Helper scripts for this are also included in the Nagios Core distribution, in the disable_
active_service_checks and enable_active_service_checks scripts.

The primary issue with this change is the loss of state information as the slave server makes
its initial round of checks; this can also be worked around, as explained in the Nagios Core
documentation on redundancy at http://nagios.sourceforge.net/docs/3_0/
redundancy.html.

Once these steps are implemented, the main annoyance with this setup is having to keep the
two configuration directories in sync. It's undesirable and error-prone to have to make changes
on two servers each time the configuration needs to change, so you may like to consider using
a snapshot tool such as rsync to keep the two directories the same. More information about
rsync can be found at http://en.wikipedia.org/wiki/Rsync.

A configuration managed with version control is also help here, as recommended in the Keeping
configuration under version control recipe in Chapter 9. That way you can use git clone or
svn checkout to quickly copy and update configuration files on multiple machines.

See also
 f The Writing debugging information to Nagios log file recipe in this chapter

 f The Monitoring local services on a remote machine with NRPE recipe in
Chapter 6, Enabling Remote Execution

 f The Keeping configuration under version control recipe in Chapter 9,
Configuration Management

 f The Setting up an event handler script recipe in Chapter 11, Automating
and Extending Nagios

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11
Automating and

Extending Nagios Core

In this chapter, we will cover the following recipes:

 f Allowing and submitting passive checks

 f Submitting passive checks from a remote host with NSCA

 f Submitting passive checks in response to SNMP traps

 f Setting up an event handler script

 f Tracking host and service states with Nagiosgraph

 f Reading status into a MySQL database with NDOUtils

 f Writing customized Nagios Core reports

 f Getting extra visualizations with NagVis

Introduction
In addition to being useful as a standalone monitoring framework, Nagios Core has a
modular design that allows both interaction with and extension by other programs and tools,
predominantly using its external command file for controlling the behavior of the server.

One of the most useful ways of interacting with the Nagios Core server in this way is through the
use of passive checks: submitting check results to the server directly, rather than as the result
of the server's own active checks.

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

294

The simplest application of the idea of passive checks is for monitoring some process
that might take an indeterminate amount of time to run, and hence resists active checking;
instead of the service making active checks of its own, it accepts a check result submitted
by another application, perhaps something like a backup script after it has completed its run.
These can be sent and accepted via an addon called the Nagios Service Check Acceptor
(NSCA). Similarly, just as plugins and notifications are actually scripted calls to external
commands, such as check_http, and mail, event handlers can be configured to run a
specified command every time a host or service changes state. This can be used for the
supplementary recording of change state data, or automated attempts at actively resolving
the problem, such as restarting a remote server. We also saw event handlers used in the
Setting up a redundant monitoring host recipe in Chapter 10, Security and Performance.

Finally, this chapter also includes installation procedures and discussion of a few of the more
popular extensions to Nagios Core:

 f Nagiosgraph: This is an advanced web-based graphing solution for Nagios Core,
graphing both server performance and host and service status metrics.

 f NagVis: This is an advanced web-based visualization extension for Nagios Core data,
especially well-suited for administrators who need something more comprehensive
than Nagios Core's built-in networking mapping.

 f NDOUtils: This applies the translations of Nagios Core data into a standard database
system such as MySQL; very useful for performing advanced queries of the Nagios
Core data for custom systems such as monitoring displays, or logging with change
control systems.

We'll discuss NDOUtils, perhaps the most versatile Nagios Core extension of all, in two
separate recipes; first by showing how to install it, and then some ideas on how to apply it
to make custom Nagios Core reporting applications of our own, in the form of a CLI report
written in Perl, and an RSS feed written in PHP.

Allowing and submitting passive checks
In this recipe, we'll learn how to configure Nagios Core to accept passive checks for a service.
This allows both users and external applications to directly submit the results of checks to
Nagios Core, rather than having the application seek them out itself through polling with active
checks, performed via plugins such as check_http or check_ping.

We'll show one simple example of a passive check, flagging a service called BACKUP for
an existing host. We'll show how to do this via the web interface, which is very easy, and
via the external commands file, which is slightly more complex but much more flexible
and open to automation.

The idea is that when a user or process receives confirmation that the backup process on
a host has completed correctly, they are able to supply a check result of OK directly to the
service, without Nagios Core needing to poll anything itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

295

Getting ready
You should be running a Nagios Core 3.0 or newer server. You should also already have
a host configured for which you want to define a service that will accept passive checks.
In this example, we'll use the host ithaca.naginet, which might be defined as follows:

define host {
 use linux-server
 host_name ithaca.naginet
 alias ithaca
 address 10.128.0.21
}

You will also need a working Nagios Core web interface to check that passive checks are
enabled, and to try out the recipe's method of submitting passive checks.

The recipe will be in two parts: enabling and configuring the service for passive checks only,
and actually submitting a passive check via the web interface. In the There's more... section,
we'll show how to submit a check result via the external commands file, which is a little more
complicated, but allows advanced automation behavior.

How to do it...
We can define a new BACKUP service that accepts passive checks only, as follows:

1. Log in to the web interface and ensure that passive checks are enabled. The Tactical
Overview section shows a panel for it near the bottom. Check that it's green:

If it's not green, you should be able to enable the checks again by clicking on the
Disabled bar. In this case, you should also check the /usr/local/nagios/etc/
nagios.cfg file to make sure that the accept_passive_service_checks
option is set to 1 as well, so that Nagios Core allows passive checks on startup.

2. Change to the Nagios Core objects configuration directory. If you're using the
sample configuration, this will likely be /usr/local/nagios/etc/objects.
cd /usr/local/nagios/etc/objects

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

296

3. Edit the commands.cfg file, and add a definition for the check_dummy command:
define command {
 command_name check_dummy
 command_line $USER1$/check_dummy $ARG1$ $ARG2$
}

If you already followed the Monitoring individual nodes in a cluster recipe in Chapter 8,
Understanding the Network Layout, then you may already have defined this command,
in which case you can skip this step, as the definition is the same.

4. Edit the file containing the definition for the existing host. In this example, the host is
defined in a file called ithaca.naginet.cfg.
vi ithaca.naginet.cfg

5. Add the following service definition to the end of the file, substituting the appropriate
value for host_name.
define service {
 use generic-service
 host_name ithaca.naginet
 service_description BACKUP
 active_checks_enabled 0
 passive_checks_enabled 1
 check_command check_dummy!1!"Unwanted active check!"
}

This example uses the generic-service template. You can use any service template
you like; the important directives are active_checks_enabled, passive_checks_
enabled, and check_command.

6. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

With this done, the Nagios Core web interface should show the service as accepting passive
checks only in the Services listing:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

297

It will remain in the PENDING state until a passive check result is submitted for it.

We can submit a passive check result via the web interface as follows:

1. Click on the service's name in the Services listing, and click on Submit passive check
result for this service menu item:

2. Complete the resulting form, with the following values:

 � Host Name: This is the host name for which the passive check result should
be submitted. This should already be filled out for us.

 � Service: This is the service description for which the passive check result
should be submitted. This should also already be filled out with BACKUP.

 � Check Result: This is the particular result you would like to submit for
the check. In this case, we choose OK to signal that the backup completed
successfully. We could just as easily submit a CRITICAL result if we wished.

 � Check Output: This is a message to attach to the status. In this case, we
choose the simple message Nightly backups were successful.

 � Performance Data: This is the optional extra detail about how the service
being checked is performing. We can leave this blank.

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

298

3. Click on Commit to submit the passive check result:

After a short delay, the detail for the service should show it as reflecting the result of the
passive check, along with explicitly showing that active checks are disabled:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

299

How it works...
The configuration added in the preceding section adds a new service called BACKUP
to the existing ithaca.naginet host, and is designed to manage and report the
status of backups for this host. In our example, this isn't something Nagios Core can
check manually; no network service on ithaca.naginet can be checked to see if
the backups have succeeded.

However, suppose as administrators we do receive a backup report in our inbox every
morning, so we know whether the backups have succeeded or failed and would like
to register that status in Nagios Core, perhaps for record-keeping purposes or to alert
other administrators to problems.

To that end, we disable active checks for the service, and put in place a dummy check
command, check_dummy, which we never expect to run. If for whatever reason an active
check is run, it will always flag a WARNING state, with the message Unwanted active check!.
The check_dummy command never actually checks anything; it is configured to always return
the state and output defined in its two arguments.

Instead, we enable passive checks for the service and submit the results manually.
If the backups failed, we could just as easily record that with a passive check result
of WARNING or CRITICAL.

There's more...
It's also possible (and often desirable) to submit active checks via the external commands
file, which is useful for automation purposes. We write details for the check in a single line
into the commands file in the following format:

[<timestamp>] PROCESS_SERVICE_CHECK_RESULT;<host_name>;<service_
description>;<service_status>;<plugin_output>

For our example, the line would be similar to the following code snippet:

[1348806599] PROCESS_SERVICE_CHECK_RESULT;ithaca.
naginet;BACKUP;0;Nightly backups were successful

We can write this directly to the external commands file as follows:

CHECK="[`date +%s`] PROCESS_SERVICE_CHECK_RESULT;ithaca.
naginet;BACKUP;0;Nightly backups were successful"

echo $CHECK >>/usr/local/nagios/var/rw/nagios.cmd

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

300

In this context, the <service_status> field needs to be an integer corresponding to
the appropriate state. If you use the text value OK or WARNING, the command will not
work as expected.

 f 0 for OK

 f 1 for WARNING

 f 2 for CRITICAL

 f 3 for UNKNOWN

If the syntax is correct, then the passive check will be registered just the same way as if it were
submitted via the web interface. Writing to the command file thus allows us to submit passive
check results with scripts and automated systems, with a little knowledge of an appropriate
shell scripting language such as Bash or Perl.

We go into a little more detail about using external commands for passive check results,
including a common application with the NSCA add-on, in the Submitting passive checks from
a remote host with NSCA recipe in this chapter. If you don't want to input your passive checks
manually, then you will most likely find this recipe of interest, along with its accompanying
explanation of freshness checks.

See also
 f The Submitting passive checks from a remote host with NSCA, Submitting passive

checks in response to SNMP traps, and Setting up an event handler script recipes
in this chapter

Submitting passive checks from a remote
host with NSCA

In this recipe, we'll show how to automate the submission of passive checks by a remote host,
using the example of a monitored host, ithaca.naginet, submitting a passive check to a
Nagios Core server with information about how its BACKUP service is performing.

For example, if the backup process completed successfully, we configure the monitored host
to submit a passive check result specifying that the BACKUP service should have the status
OK. However, if there were a problem with the backup, the monitored host could send a passive
check result with a WARNING or CRITICAL status.

In both cases, Nagios Core does no checking of its own; it trusts the results submitted by its
target host.

To do this, we'll use the NSCA add-on. We'll install the NSCA server on the Nagios Core server,
and the NSCA client program send_nsca on the monitored host.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

301

Getting ready
You should already have followed the Allowing and submitting passive checks recipe in this
chapter. In this recipe, we will be building on the configuration established in that recipe;
specifically, we will assume that you already have a host with a service configured only to
accept passive checks.

You will need to be able to install the software on both the monitoring server (the NSCA
server) and on the server that will submit passive checks (the NSCA client), and ideally
be generally familiar with the ./configure, make, and make install process for
installing software from source on UNIX-like systems.

You should also be able to define any necessary firewall configuration to allow the NSCA
client to send information to TCP port 5667 on the NSCA server. A firewall is absolutely
necessary to protect the nsca daemon from abuse.

How to do it...
We can set up the NSCA server on the monitoring server (in this example, olympus.naginet)
as follows:

1. Download the latest version of NSCA using wget or a similar tool. You can find
download links on the Nagios Exchange page for NSCA at http://exchange.
nagios.org/directory/Addons/Passive-Checks/NSCA--2D-Nagios-
Service-Check-Acceptor/details.

In this example, we're downloading and compiling it in our home directory on the
monitoring server.

$ cd

$ wget http://downloads.sourceforge.net/project/nagios/nsca-2.x/
nsca-2.7.2/nsca-2.7.2.tar.gz

2. Inflate the .tar.gz file:
$ tar -xzf nsca-2.7.2.tar.gz

3. Move into the new nsca-2.7.2 directory, and configure and compile the nsca
daemon. Note that this process may prompt you to install the libmcrypt library
and its headers, perhaps in libmcrypt and libmcrypt-dev packages in your
system's package manager:
$ cd nsca-2.7.2

$./configure

$ make

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

302

4. Install the NSCA server files manually; you will likely need root privileges for this:
cp src/nsca /usr/local/nagios/bin

cp sample-config/nsca.cfg /usr/local/nagios/etc

5. Edit the new file /usr/local/nagios/etc/nsca.cfg:
vi /usr/local/nagios/etc/nsca.cfg

6. Uncomment the password directive, and define it. A random password generated by
a tool such as pwgen or makepasswd will work fine. Don't use the one below; it's just
an example!
password=yV3aa6S2o

7. Check that the NSCA daemon runs with no errors:
/usr/local/nagios/bin/nsca -c /usr/local/nagios/etc/nsca.cfg
--single

If it does, you should add this command to an appropriate startup script, perhaps in
/etc/rc.local, so that the daemon starts when the monitoring server boots. You
should consult your system's documentation to find out the best place to add this.

We can set up the NSCA client on the monitored server (in this example, ithaca.naginet)
as follows:

1. Again, download and expand the latest version of NSCA, and configure and compile it:
$ cd

$ wget http://downloads.sourceforge.net/project/nagios/nsca-2.x/
nsca-2.7.2/nsca-2.7.2.tar.gz

$ tar -xzf nsca-2.7.2.tar.gz

$ cd nsca-2.7.2

$./configure

$ make

2. Install the NSCA client files manually; you will likely need root privileges for
this, and may need to create the /usr/local/bin and /usr/local/etc
directories beforehand:
mkdir -p /usr/local/bin /usr/local/etc

cp src/send_nsca /usr/local/bin

cp sample-config/send_nsca.cfg /usr/local/etc

3. Edit the new file /usr/local/etc/send_nsca.cfg:
vi /usr/local/etc/send_nsca.cfg

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

303

4. Uncomment the password directive, and define it to be the same as the password
given in nsca.cfg on the monitoring server:
password=yV3aa6S2o

5. Run the send_nsca program to try and submit a passive check result:
CHECK="ithaca.naginet\tBACKUP\t0\tBackup was successful, this
check submitted by NSCA\n"

echo -en $CHECK | send_nsca -c /usr/local/etc/send_nsca.cfg -H
olympus.naginet

1 data packet(s) sent to host successfully.

Substitute the appropriate host names for the monitoring server (olympus.naginet),
the monitored server (ithaca.naginet), and the service description BACKUP.

Note that the fields are separated by \t characters, which expand to literal Tab
characters with echo -en.

If this worked correctly, you should see that the passive check result in the web interface was
successfully read by the monitoring server and applied appropriately:

How it works...
The nsca daemon installed on the monitoring server is designed to listen for submitted
service checks from the send_nsca client, provided that the password is correct and the
data is in the appropriate format:

<host_name>\t<service_description>\t<check_result>\t<check_output>\n

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

304

Our example passive check took this form:

ithaca.naginet\tBACKUP\t0\tBackup was successful, this check
submitted by NSCA\n

Here, as with locally submitted passive checks, check_result corresponds to a numeric
value, to one of the following:

 f 0 for OK

 f 1 for WARNING

 f 2 for CRITICAL

 f 3 for UNKNOWN

Once received by the nsca daemon on the monitoring server, this is translated into a passive
check result command, written to the Nagios Core external commands file at /usr/local/
nagios/var/rw/nagios.cmd, and processed in the same way as a locally submitted passive
check would be.

This allows us to include calls to send_nsca at the end of scripts such as those managing
backups, to immediately and automatically send a passive check result corresponding to
whether the backup script succeeded.

Because of the NSCA daemon's very simple design and very basic security checks, it's
important to apply a firewall policy to ensure that only the appropriate hosts can write to
the NSCA port on the host monitoring system. A password as implemented here is a good
first step, but is not sufficient to keep things secure. Make sure you read the SECURITY
file included in the NSCA sources to ensure your configuration for the daemon is secure.
Similar security guidelines apply to the installation of NRPE as discussed in Chapter 6.

There's more...
To supplement this setup, it's often a good idea to also have Nagios Core check the freshness
of its services. If we have a process that needs to run regularly, such as backups, we will likely
want to be notified if we haven't received any passive checks from the host in a given period of
time.

This can be managed by configuring the service to run an active check after a certain period of
time has elapsed with no passive checks. The configuration might look similar to the following
code snippet, adding values for check_freshness and freshness_threshold:

define service {
 use generic-service
 host_name ithaca.naginet
 service_description BACKUP

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

305

 active_checks_enabled 0
 passive_checks_enabled 1
 check_freshness 1
 freshness_threshold 86400
 check_command check_dummy!1!"No backups have run for 24
hours"
}

In this case, freshness_threshold is 86400 seconds, or 24 hours; if there have been
no passive checks submitted for 24 hours, check_command will be run, even though active
checks are disabled. check_command is defined to flag a WARNING state for the service
with an appropriate explanatory message using the check_dummy command and plugin,
whenever it is actually run.

Check freshness is discussed in more detail in the Nagios Core documentation, in the
section entitled Service and Host Freshness Checks at http://nagios.sourceforge.
net/docs/3_0/freshness.html.

Note that there's no reason that the status of a service has to come from the same host.
You can send a passive check from one host to submit information about another. In fact,
this is the basis of a distributed monitoring setup; one host can submit check results for
any number of other hosts.

This can be particularly useful for working around network connectivity or routing problems; if
Nagios Core has no connectivity at all to a host it needs to monitor, but does have connectivity
to an intermediate host, that host can be configured to submit checks on behalf of the
unreachable host, a slightly complex but often necessary setup.

See also
 f The Allowing and submitting passive checks, Submitting passive checks in response

to SNMP traps, and Setting up an event handler script recipes in this chapter

 f The Using an alternative check command recipe in Chapter 2, Working with
Commands and Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

306

Submitting passive checks in response to
SNMP traps

In this recipe, we'll learn how to configure Nagios Core to process Simple Network
Management Protocol (SNMP) traps, information sent by monitored network devices
to a central monitoring server.

Because SNMP traps often contain useful or urgent information about how a host is working,
processing them in at least some way can be very helpful, particularly for firmware network
devices that can't use send_nsca to submit a passive check result in a standard form, as
explained in the Submitting passive checks from a remote host with NSCA recipe.

As an example, most SNMP-capable hosts can be configured to send SNMP traps when one
of their network interfaces changes state, perhaps due to a pulled network cable. These are
known as linkUp and linkDown traps. Monitoring this particular kind of trap is especially
useful for devices with a large number of interfaces, such as switches or routers.

Keeping track of these events in Nagios Core is valuable for keeping a unified monitoring
interface, rather than having to monitor SNMP traps with a separate application.

Getting ready
There are quite a few prerequisites for getting this recipe to work. It is among the most powerful
but also most complex methods of Nagios Core monitoring.

First of all, the recipe assumes some knowledge of SNMP. Unfortunately, SNMP is not very
simple, despite its name! You should be familiar with the concepts of SNMP checks and
SNMP traps. The documentation for Net-SNMP (the implementation of SNMP used for this
example) may help (http://www.net-snmp.org/docs/readmefiles.html).

On the same host as your Nagios Core server with version 3.0 or greater, you should
have snmptrapd installed to collect trap information, and snmptt, the SNMP Trap
Translator, to filter useful information from the traps and submit the information to
Nagios Core in a workable format. Documentation for SNMPTT is available at
http://snmptt.sourceforge.net/docs/snmptt.shtml.

Both systems are free software and relatively popular, so check to see if there are packages
available for your particular system to save the hassle of compiling them from source. On
Debian-derived systems such as Ubuntu, for example, they are available in the snmpd and
snmptt packages.

We will use an event handler called submit_check_result, available in the Nagios Core
distribution. You will therefore need to have access to the original sources handy. If you have
misplaced them, you can download them again from Nagios' website: http://www.nagios.
org/download.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

307

It's also necessary to use values of host_name for your hosts that actually correspond to host
names resolvable by DNS from the monitoring server. This is because when the SNMP trap is
received by SNMPTT, the only way it can translate it to a host name is with DNS. host_name
for your host might be crete.naginet, but the trap will arrive from an IP address such as
10.128.0.27. The system will therefore need to be able to resolve this with reverse DNS
lookup. An easy way to test this is working is to use host or dig:

$ host 10.128.0.27

27.0.128.10.in-addr.arpa domain name pointer crete.naginet.

$ dig -x 10.128.0.27 +short

crete.naginet.

Finally, you should, of course, actually have a device configured to send SNMP traps to your
monitoring server, which in turn is configured to listen for SNMP traps with the snmpd daemon.
I don't really want to encourage you to unplug one of your core switches to test this, so we'll
generate a trap manually with snmptrap on the monitored server to demonstrate the principle.

How to do it...
We can configure a new service to receive SNMP traps for an existing host as follows:

1. Copy the event handler script contrib/eventhandlers/submit_check_
result from the Nagios Core source files into /usr/local/nagios/libexec
/eventhandlers. You may need to create the target directory first. Your source
files need not be in /usr/local/src/nagios; this is just an example.
mkdir -p /usr/local/nagios/libexec/eventhandlers

cp /usr/local/src/nagios/contrib/eventhandlers/submit_check_
result /usr/local/nagios/libexec/eventhandlers

This script should be made executable as whatever user the snmptrapd user runs as.

2. Change to the Nagios Core objects configuration directory on the monitoring server.
For the default configuration, this is /usr/local/nagios/etc/objects.
cd /usr/local/nagios/etc/objects

3. Edit the file containing the definition for the SNMP-enabled monitored host. In this
example, the definition for crete.naginet is in its own file, crete.naginet.cfg:
vi crete.naginet.cfg

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

308

The host definition might look similar to the following code snippet:
define host {
 use linux-server
 host_name crete.naginet
 alias crete
 address 10.128.0.21
}

4. Add a service definition for your existing host that accepts only passive checks, and is
flagged as volatile. Here we have used the generic-service template included
in the sample configuration. You may prefer to use a different template, but all of the
values defined here are important.
define service {
 use generic-service
 host_name crete.naginet
 service_description TRAP
 is_volatile 1
 check_command check-host-alive
 active_checks_enabled 0
 passive_checks_enabled 1
 max_check_attempts 1
 contact_groups admins
}

5. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

In the web interface, this service should now be visible in the Services section:

6. Check that the submit_check_result script actually works, by invoking it with a
test string on the monitoring server:
/usr/local/nagios/libexec/eventhandlers/submit_check_result
crete.naginet TRAP 0 "Everything working"

After a short delay, if this has worked correctly, we should see the service change
state in the web interface to reflect the test:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

309

We now need to configure snmptrapd and snmpd to receive traps, and call the submit_
check_result script for us:

1. Configure snmpd to pass received traps to snmptt by changing its configuration file
/etc/snmp/snmptrapd.conf. The following configuration may work:
traphandle default /usr/sbin/snmptt
disableAuthorization yes
donotlogtraps yes

2. Restart snmpd to apply this change:
/etc/init.d/snmpd restart

3. Configure snmptt to convert the IP addresses to hostnames, by changing the value
for dns-enable to 1 in /etc/snmp/snmptt.ini:
dns_enable = 1

4. Configure snmptt to use Net-SNMP at startup in /etc/snmp/snmptt.ini:
net_snmp_perl_enable = 1

5. Configure snmptt to respond to an SNMP event by defining it in /etc/snmp/
snmptt.conf. Here we've used the generic linkDown event defined by the
OID .1.3.t6.1.6.3.1.1.5.3:
EVENT linkDown .1.3.6.1.6.3.1.1.5.3 "Status Events" Normal
FORMAT Link down on interface $1. Admin state: $2. Operational
state: $3
EXEC /usr/local/nagios/libexec/eventhandlers/submit_check_result
$r TRAP 1 "linkDown for interface $1"
SDESC
A linkDown trap signifies that the SNMP entity, acting in
an agent role, has detected that the ifOperStatus object for
one of its communication links is about to enter the down
state from some other state (but not from the notPresent
state). This other state is indicated by the included value
of ifOperStatus.
EDESC

Depending on your distribution, there may already be a definition for a linkDown
event, in which case you may only need to change the EXEC field.

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

310

6. From the monitored host, fire a test trap for a linkDown event. Substitute olympus.
naginet for the name or IP address of your monitoring host. This will require the
snmptrap utility to be installed on that host, and may require root privileges.
snmptrap -v 1 -c public olympus.naginet .1.3.6.1.6.3.1.1.5.3
localhost 2 0 '' .1.3.6.1.2.1.2.2.1.1.1 i 1

Note that we use the public community string here; your own will likely differ.

7. Check the Nagios Core log file located at /usr/local/nagios/var/nagios.log
to see if there's new output from the event handler:

[1348914096] EXTERNAL COMMAND: PROCESS_SERVICE_CHECK_RESULT;crete.
naginet;TRAP;1;linkDown for interface 1

[1348914100] PASSIVE SERVICE CHECK: crete.naginet;TRAP;1;linkDown
for interface 1

[1348914100] SERVICE ALERT: crete.naginet;TRAP;WARNING;HARD;3;link
Down for interface 1

[1348914100] SERVICE NOTIFICATION: nagiosadmin;crete.
naginet;TRAP;WARNING;notify-service-by-email;linkDown for
interface 1

If so, the same state should be reflected for the TRAP service in the web interface:

With this done, we've confirmed that SNMP traps from the crete.naginet host can be
received and processed by the olympus.naginet server. We can apply the same setup for
other hosts that generate SNMP traps in our network by configuring them to send their traps
to the Nagios Core monitoring server, and adding appropriate handlers for the expected traps.

If this didn't work, the first thing to check should be that your monitoring server is actually
listening for checks on the relevant IP address, as snmptrap does not throw errors when
it can not deliver traps. On Debian-derived systems, you should check that the snmptrapd
process is actually running; it may require a change to /etc/defaults/snmp and a restart
of snmpd.

How it works...
When an SNMP trap is generated and delivered to the monitoring server by whatever means,
the snmpd daemon will pass it to the snmptt program for processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

311

The snmptt handler checks if the event OID matches any of the traps for which it has
defined events in snmptt.conf. In our example, it finds a handler defined for the OID
.1.3.6.1.6.3.1.1.5.3, which corresponds to the linkDown event, with the number
of the relevant interface as an additional argument in $1.

Using this information, it fires the submit_check_result handler that we installed in the
first part of the recipe, setting the state of the TRAP service to WARNING, and including the
information linkDown for interface 1, as specified by the final argument to submit_check
_result in the EXEC handler. The service can be set to notify the appropriate contacts or
contact groups, just as it would for an actively monitored service.

If a trap arrives on the Nagios Core server for a host that Nagios Core doesn't know about,
even if it has an event handler defined for snmptt, it will simply ignore it.

There's more...
In order to "clear" the state of the service and return it to OK, we can simply schedule an active
check for it from the web interface, with Force Check selected:

Because check_command is defined as check-host-alive, as long as the monitoring host
is actually responding to PING, the service should assume an OK state:

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

312

See also
 f The Submitting passive checks from a remote host with NSCA, Allowing and

submitting passive checks, and Setting up an event handler scripts recipes
in this chapter

 f The Monitoring the output of an SNMP query and Creating an SNMP OID to
monitor recipes in Chapter 5, Monitoring Methods

Setting up an event handler script
In this recipe, we'll learn how to set up an event handler script for Nagios Core. Event handlers
are commands that are run on every state change for a host or service (whether for all hosts or
services, or just particular ones). They are defined in a similar way to notification commands and
check commands for plugins.

In this example, we'll implement a simple event handler that writes the date, the host state,
and the number of check attempts to a separate file for a single host. This is a trivial example
to demonstrate the concept; a more practical and complex application for the use of event
handlers is given in the Setting up a redundant monitoring host recipe, in Chapter 10.

Getting ready
You will need a server running Nagios Core 3.0 or higher. You should be familiar with defining
new commands, as per the Creating a new command recipe in Chapter 2 and the Writing
low-priority notifications to an MOTD recipe in Chapter 4, Configuring Notifications.

How to do it...
We can set up a new event handler for the Nagios Core server as follows:

1. Change to the objects configuration directory for Nagios Core. In the quick
start guide installation, this is /usr/local/nagios/etc/objects. Edit the
file commands.cfg:
cd /usr/local/nagios/etc/objects

vi commands.cfg

2. Add the following command definition:
define command {
 command_name record_host_data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

313

 command_line /usr/bin/printf "%b" "$LONGDATETIME$:
$HOSTSTATE$ (attempt $HOSTATTEMPT$)\n" >>/usr/local/nagios/var/
states-$HOSTNAME$.log
}

3. Edit the file containing the definition for an existing host, in this example delphi.
naginet. Add the event_handler directive with the value record_host_data
to your host definition:
define host {
 use linux-server
 host_name delphi.naginet
 alias delphi
 address 10.128.0.26
 event_handler record_host_data
}

4. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, the next time the host changes state (whether to a SOFT or HARD state) it
should log the information in the /usr/local/nagios/var/states-delphi.naginet.
log file:

Sat Sept 29 23:53:54 NZST 2012: DOWN (attempt 1)

Sat Sept 29 23:54:04 NZST 2012: DOWN (attempt 2)

Sat Sept 29 23:54:14 NZST 2012: DOWN (attempt 3)

Sat Sept 29 23:57:14 NZST 2012: UP (attempt 1)

How it works...
The event_handler command we defined is configured to use printf to write a line of
text to a file named after the host. Its definition is built out of four macros:

 f $LONGDATETIME$: This specifies the date and time, in a human-readable format

 f $HOSTSTATE$: This specifies the state of the host (UP, DOWN, or UNREACHABLE)

 f $HOSTATTEMPT$: This specifies the number of check attempts made so far for a
host in a problem state

 f $HOSTNAME$: This is the hostname itself (used to build the name of the file)

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

314

Note that this behavior is slightly different from notifications. Notification commands are only
run when the number of max_check_attempts for a host or service has been exceeded,
to alert somebody to the problem. Event handlers are run on SOFT changes as well as HARD
changes, and hence can be used to keep more information about host performance that
might be missed by the routine notifications.

Service event handlers can be defined in just the same way, by adding the event_handler
directive to their definitions:

define service {
 use generic-service
 host_name crete.naginet
 service_description PING
 check_command check_ping!100,10%!200,20%
 event_handler record_service_data
}

In this case, we would probably want to use the macros for service states instead:

define command {
 command_name record_service_data
 command_line /usr/bin/printf "%b" "$LONGDATETIME$:
$SERVICESTATE$ (attempt $SERVICEATTEMPT$)\n" >>/usr/local/nagios/var/
states-$HOSTNAME$-$SERVICEDESC$.log
}

There's more...
As a shortcut, if there's an event handler we want to run on all hosts or all services, we can use
the global_host_event_handler and global_service_event_handler directives in
nagios.cfg:

global_host_event_handler=record_host_data
global_service_event_handler=record_service_data

This will apply the appropriate event handlers to all hosts and services, therefore running
whenever a host or service changes state.

A specialized case of event handler for recording detailed performance data of plugins and
checks is also possible using Nagios Core's Performance Data feature, as documented in
the manual at http://nagios.sourceforge.net/docs/3_0/perfdata.html.

Performance data is written on every check rather than every state change, and is hence
useful for assessing the performance of plugins and checks. Performance data is used by
the Nagiosgraph utility, for example, discussed in the Tracking host and service states with
Nagiosgraph recipe in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

315

See also
 f The Tracking host and service states with Nagiosgraph recipe in this chapter

 f The Creating a new command recipe in Chapter 2, Working with Commands
and Plugins

 f The Writing low-priority notifications to an MOTD recipe in Chapter 4,
Configuring Notifications

Tracking host and service states with
Nagiosgraph

In this recipe, we'll learn how to install and configure Nagiosgraph, a program that integrates
with Nagios Core's performance data tools to produce graphs showing long-term information
about how checks for hosts and services are performing.

Getting ready
You will need to be running a Nagios Core 3.0 or later server. Nagiosgraph will probably still work
with older versions of Nagios Core, but the configuration may be slightly different. The INSTALL
document included in the source for Nagiosgraph explains the differences in detail.

You should have a thorough understanding of defining hosts, services, and commands, and
be able to install new software as the root user on the monitoring server. You should also
be at least familiar with the layout of your Apache HTTPD server on the monitoring system;
this recipe will assume it is installed in /usr/local/apache.

Because Nagiosgraph has many Perl dependencies, you will need to have Perl installed
on your server, and you will likely also need to install a few Perl modules as dependencies.
The package manager for your system may include them, or you may need to download
them using the Comprehensive Perl Archive Network (CPAN): http://www.cpan.org/
modules/INSTALL.html.

The server will need to already be monitoring at least one host with at least one service for
the graphs to be any use. Nagiosgraph includes rule sets that translate known performance
data strings into usable statistics. This means that graphing will work well for familiar plugins
with a predictable output format such as check_ping or check_http, but might not graph
data for less commonly used plugins without a little custom configuration.

This recipe is not a comprehensive survey of everything you can do with Nagiosgraph; if you
like what this does, make sure to check out Nagiosgraph's documentation online at http://
nagiosgraph.sourceforge.net/.

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

316

How to do it...
We can get some basic Nagiosgraph functionality for our monitoring server as follows:

1. Download the latest version of Nagiosgraph from its website at http://
nagiosgraph.sourceforge.net/, directly onto your monitoring server,
using a tool such as wget:
$ cd

$ wget http://downloads.sourceforge.net/project/nagiosgraph/
nagiosgraph/1.4.4/nagiosgraph-1.4.4.tar.gz

2. Inflate the .tar.gz file and change to the directory within it:
$ tar -xzf nagiosgraph-1.4.4.tar.gz

$ cd nagiosgraph-1.4.4

3. As the root user, run the install.pl script with the --check-prereq option.
This will give you a survey of any dependencies you may need to install via packages
or CPAN. When you have installed all the prerequisites, the output should look similar
to the following code snippet:
./install.pl --check-prereq

checking required PERL modules

 Carp...1.11

 CGI...3.43

 Data::Dumper...2.124

 File::Basename...2.77

 File::Find...1.14

 MIME::Base64...3.08

 POSIX...1.17

 RRDs...1.4003

 Time::HiRes...1.9719

checking optional PERL modules

 GD...2.39

checking nagios installation

 found nagios at /usr/local/nagios/bin/nagios

checking web server installation

 found apache at /usr/sbin/apache2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

317

These are all reasonably standard Perl libraries, so don't forget to check if packages
are available for them before you resort to using CPAN. For example, I was able to
install the RRDs and GD modules on my Debian system as follows:
apt-get install librrds-perl libgd-gd2-perl

If you are having trouble getting install.pl to find your Nagios Core or Apache
HTTPD instances, then take a look at the output of install.pl --help to run
an installation specific to your kind of system. This is documented in more detail
in the INSTALL file.

4. As the root user, run the install.pl script with the --install argument. You will
be prompted many times for directory layout options. The default is shown in square
brackets and should be correct for a typical Nagios Core installation, so to start with,
simply press Enter on each option.
./install.pl --install

...
Destination directory (prefix)? [/usr/local/nagiosgraph]

Location of configuration files (etc-dir)? [/usr/local/
nagiosgraph/etc]

Location of executables? [/usr/local/nagiosgraph/bin]

Location of CGI scripts? [/usr/local/nagiosgraph/cgi]

Location of documentation (doc-dir)? [/usr/local/nagiosgraph/doc]

Location of examples? [/usr/local/nagiosgraph/examples]

Location of CSS and JavaScript files? [/usr/local/nagiosgraph/
share]

Location of utilities? [/usr/local/nagiosgraph/util]

Location of state files (var-dir)? [/usr/local/nagiosgraph/var]

Location of RRD files? [/usr/local/nagiosgraph/var/rrd]

Location of log files (log-dir)? [/usr/local/nagiosgraph/var]

Path of log file? [/usr/local/nagiosgraph/var/nagiosgraph.log]

Path of CGI log file? [/usr/local/nagiosgraph/var/nagiosgraph-cgi.
log]

URL of CGI scripts? [/nagiosgraph/cgi-bin]

URL of CSS file? [/nagiosgraph/nagiosgraph.css]

URL of JavaScript file? [/nagiosgraph/nagiosgraph.js]

Path of Nagios performance data file? [/tmp/perfdata.log]

URL of Nagios CGI scripts? [/nagios/cgi-bin]

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

318

username or userid of Nagios user? [nagios]

username or userid of web server user? [www-data]

Modify the Nagios configuration? [n]

Modify the Apache configuration? [n]

...

After the preceding selections are all made, the files should be installed with
appropriate permissions set. The final part of the output gives instructions for
adding configuration to Nagios Core and Apache HTTPD, which we'll do next.

5. Change to the Nagios Core configuration directory. In the quick start guide
installation, this is /usr/local/nagios/etc.
cd /usr/local/nagios/etc

6. Edit the core configuration file nagios.cfg, and add the following directives at
the end of the file:
process nagios performance data using nagiosgraph

process_performance_data=1

service_perfdata_file=/tmp/perfdata.log

service_perfdata_file_template=$LASTSERVICECHECK$||$HOSTNAME$||$SE
RVICEDESC$||$SERVICEOUTPUT$||$SERVICEPERFDATA$

service_perfdata_file_mode=a

service_perfdata_file_processing_interval=30

service_perfdata_file_processing_command=process-service-perfdata-
for-nagiosgraph

7. Change to the Nagios Core objects configuration directory. In the quick start guide
installation, this is /usr/local/nagios/etc/objects.
cd /usr/local/nagios/etc/objects

8. Edit the commands.cfg file, and add the following command definition:
command to process nagios performance data for nagiosgraph

define command {

 command_name process-service-perfdata-for-nagiosgraph

 command_line /usr/local/nagiosgraph/bin/insert.pl

}

9. Edit the httpd.conf file for your Apache HTTPD server to include the following line
at the end:
Include /usr/local/nagiosgraph/etc/nagiosgraph-apache.conf

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

319

In a local install of Apache HTTPD, this file is normally in /usr/local/apache/
conf/httpd.conf, but its location varies by system. On Debian-derived systems
it may be /etc/apache2/apache2.conf.

10. Validate the configuration of both the Apache HTTPD server and the Nagios Core
server, and restart them both:
/usr/local/apache/bin/apachectl configtest
/usr/local/apache/bin/apachectl restart
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

11. Visit http://olympus.naginet/nagiosgraph/cgi-bin/showconfig.cgi
in your browser, substituting your own Nagios Core server's hostname, to test that
everything's working. You should see a long page with configuration information
for Nagiosgraph:

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

320

12. If everything is working up to this point, the only thing left to do is to define an action
URL for the services that you want to graph, so that you can click to go directly to the
graphs for that service from the Nagios Core web interface.

The tidiest and most straightforward way to do this is to define a service template:
define service {
 name nagiosgraph
 action_url /nagiosgraph/cgi-bin/show.cgi?host=$HOSTNAME$&serv
ice=$SERVICEDESC$
 register 0
}

Then, you can have the services you want graphed inherit from it, as well as from any
other templates they use, by adding nagiosgraph to the value for the use directive:
define service {
 use generic-service,nagiosgraph
 host_name corinth.naginet
 service_description PING
 check_command check_ping!100,10%!200,20%
}

You should do this for all the services for which you want graphing.

13. Validate the configuration and restart the Nagios Core server again:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, visiting the Service section of the web interface should include action icons
after each graphed service:

Clicking one of these should bring up a graph interface; for example, a service using check_
ping might show something similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

321

Note that it includes two line bars to show the thresholds for CRITICAL and WARNING state
as well as the actual response time. Also note that the preceding graph is several days old;
it will take a while to build up enough data to see a perceptible line, and you may not see
any graphs until performance data has actually been received from Nagios by Nagiosgraph.

Don't forget that graphs won't work out of the box for every service. If Nagiosgraph doesn't
know how to parse the performance data for a check, it will show a red error text instead of
graphs. We'll mention an approach to fixing this in the There's more... section.

How it works...
The configuration changes in the preceding section prompt Nagios Core to log performance
data for every check on every service, using the service_perfdata_file_processing_
command directive. This command, named process-service-perfdata-for-
nagiosgraph, is defined to pass data to the bin/insert.pl script included in the new
/usr/local/nagiosgraph directory.

This script in turn parses performance output, such as the following output from a typical
service using check_ping:

PING OK - Packet loss = 0%, RTA = 174.19 ms

Nagiosgraph extracts numeric information from the performance data, according to the
templates defined in /usr/local/nagiosgraph/etc/map, using Perl regular expressions.
This data is recorded using Perl's bindings for the RRD library, and graphed using the GD2
library, with an appearance similar to graphs produced by MRTG.

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

322

The action_url directive uses macros for each service to define a URL for each service
that shows its graphs. In our example, for a service PING on host corinth.naginet,
action_url would expand to the following:

action_url /nagiosgraph/cgi-bin/show.cgi?host=corinth.
naginet&service=PING

This isn't the only possible use of action_url, of course; it just happens to be a useful one
in our case. You can make action_url go anywhere you'd like for a given host or service.

There's more...
If you don't intend to define any other kind of action for services, you may like to change
the action.gif image to something more descriptive than the default red splotch. The
Nagiosgraph sources include a possible alternative icon, but you can use any GIF image
you wish.

cp nagiosgraph-1.4.4/share/graph.gif /usr/local/nagios/share/images/
action.gif

You may well be running some kind of check that Nagiosgraph isn't able to graph, because
it doesn't understand the format of the performance output, and can't extract numeric
information from it. The default mapping rules cover output from quite a few standard plugins,
but if you know a little about Perl, then you may be able to add more rules to /usr/local/
nagiosgraph/etc/map to process other kinds of plugin output.

Besides the examples in the map file, which include instructions for writing new output checks,
there are more examples of such definitions included in the /usr/local/nagiosgraph/
examples/map_examples file.

If you're comparing Nagios graphing solutions, another popular solution to try could be
PNP4Nagios, available at http://docs.pnp4nagios.org/pnp-0.6/start.

See also
 f The Getting extra visualizations with NagVis recipe in this chapter

 f The Monitoring Nagios performance with Nagiostats recipe in Chapter 10, Security
and Performance

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

323

Reading status into a MySQL database with
NDOUtils

In this recipe, we'll learn how to install the NDOUtils extension to Nagios Core, in order to have
all of Nagios Core's configuration and data written into a MySQL database. This allows easy
development of custom reports and interfaces for Nagios Core data with languages, such as
Perl and PHP, and their standard interfaces to the popular MySQL server, rather than needing
to interact with Nagios Core's own logs or its data format. Some plugins, such as NagVis, use
this format to read information about Nagios Core configuration and objects.

Getting ready
You will need a Nagios Core server version 3.0 or later. NDOUtils will probably still install and
work on older versions of Nagios Core, but the installation process is slightly different; see the
INSTALL file included in the NDO source for information on this.

Nagios Core uses its event broker functionality to write information to the socket for
the MySQL database to pick up. You will need to have compiled Nagios Core with the
--enable-event-broker flag:

$./configure --enable-event-broker

$ make

make install

If you are unsure whether you compiled with this flag, it is probably a good idea to recompile
and reinstall Nagios Core from your original sources with this installed. Don't forget to back
up your previous installation in case of problems.

In order to compile the ndomod part of NDOUtils, you will need to have the MySQL client
libraries and headers installed on the Nagios Core server. You will also need to have a MySQL
server ready to store the data. The MySQL server does not have to be running on the same
host as Nagios Core, but the Nagios Core server should be able to connect to it.

Finally, you should take note of the opening paragraph of README, which at the time of
writing points out that NDOUtils for Nagios Core 3.0 is still officially in beta; you should read
the note and be aware of the risks in installing it. In my own experience, however, the code
is very stable. There are also no guarantees at the time of writing that this procedure will
work correctly with the unreleased Nagios 4.0.

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

324

How to do it...
We can install the NDOUtils package for Nagios Core as follows:

1. Download the latest NDOUtils .tar.gz from its Sourceforge site at
http://sourceforge.net/projects/nagios/files/ndoutils-1.x/.
$ wget http://downloads.sourceforge.net/project/nagios/ndoutils-
1.x/ndoutils-1.5.2/ndoutils-1.5.2.tar.gz

2. Unpack the .tar.gz file and change directory into it.
$ tar -xzf ndoutils-1.5.2.tar.gz

$ cd ndoutils-1.5.2

3. Run ./configure and build the software. Note that there is no install target;
we will be performing the installation manually.
$./configure

$ make

4. Read the output of ./configure carefully if the build fails, to determine if you are
missing any dependencies on your system. The output of ./configure should end
with something similar to the following code snippet:
*** Configuration summary for ndoutils 1.5.2 06-08-2012 ***:

General Options:

NDO2DB user: nagios

NDO2DB group: nagios

Review the options above for accuracy. If they look okay,

type 'make' to compile the NDO utilities.

5. On the MySQL server, create a database to store the Nagios Core information, and
a user to access it. In this example, the MySQL server is running on the same host
as the Nagios Core server (olympus.naginet), so the access will be done from
localhost.
mysql> CREATE DATABASE nagios;

Query OK, 1 row affected (0.10 sec)

mysql> CREATE USER 'ndo'@'localhost' IDENTIFIED BY 'mPYxbAYqa';

Query OK, 0 rows affected (0.62 sec)

mysql> GRANT ALL ON nagios.* TO 'ndo'@'localhost';

Query OK, 0 rows affected (0.02 sec)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

325

We have used a random password after IDENTIFIED BY. You should generate your
own secure password.

6. Run the installdb script in the source to create the various tables Nagios Core will
use. Use the database details established in the previous step:
$ cd db

$./installdb -u ndo -p mPYxbAYqa -h localhost -d nagios

** Creating tables for version 1.5.2

 Using mysql.sql for installation...

** Updating table nagios_dbversion

Done!

Don't be concerned about the following error message; it is because you are installing
the extension for the first time:

DBD::mysql::db do failed: Table 'nagios.nagios_dbversion' doesn't
exist at ./installdb line 51.

7. Copy the compiled ndomod module into the /usr/local/nagios/bin directory:
cd ..

cp src/ndomod-3x.o /usr/local/nagios/bin/ndomod.o

8. Copy the sample configuration for the module into /usr/local/nagios/etc:
cp config/ndomod.cfg-sample /usr/local/nagios/etc/ndomod.cfg

9. Make sure it is readable only by the nagios user:
chown nagios.nagios /usr/local/nagios/etc/ndomod.cfg

chmod 0600 /usr/local/nagios/etc/ndomod.cfg

10. Edit your nagios.cfg file:
vi /usr/local/nagios/etc/nagios.cfg

11. Add a broker_module definition to the file, and check that the event_broker_
options directive is set to -1:

broker_module=/usr/local/nagios/bin/ndomod.o config_file=/usr/
local/nagios/etc/ndomod.cfg
event_broker_options=-1

Note that the broker_module and config_file definitions should be on the same line,
but event_broker_options should be on its own line.

With this done, the broker module ought to be successfully installed, and we can move on
to installing the ndo2db daemon.

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

326

12. Copy the ndo2db binary into the /usr/local/nagios/bin directory:
cp src/ndo2db-3x /usr/local/nagios/bin/ndo2db

13. Copy the sample configuration for the daemon into /usr/local/nagios/etc:
cp config/ndo2db.cfg-sample /usr/local/nagios/etc/ndo2db.cfg

14. Make sure it is readable only by the nagios user:
chown nagios.nagios /usr/local/nagios/etc/ndo2db.cfg

chmod 0600 /usr/local/nagios/etc/ndo2db.cfg

15. Edit the configuration file as installed:
vi /usr/local/nagios/etc/ndo2db.cfg

16. Change the values in ndo2db.cfg to reflect the database details:
db_host=localhost
db_port=3306
db_name=nagios
db_user=ndo
db_pass=mPYxbAYqa

17. Test the ndo2db daemon by starting it and verifying it is running with ps -e
or pgrep:

/usr/local/nagios/bin/ndo2db -c /usr/local/nagios/etc/ndo2db.cfg

ps -e | grep '[n]do2db'

32285 ? 00:00:00 ndo2db

pgrep ndo2db

32285

If it works, you should add this command into your system's init scripts, so that the
daemon is started at boot time.

18. Validate the configuration and restart the Nagios Core server:
/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/etc/init.d/nagios restart

With this done, inspecting the database tables in MySQL should show they have been filled
with information from Nagios Core, for example the nagios_services table:

$ mysql --user=ndo --password --database=nagios

mysql> select count(1) from nagios_services;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

327

+----------+

| count(1) |

+----------+

| 54 |

+----------+

1 row in set (0.00 sec)

How it works...
NDOUtils is in fact a collection of components, two of which we installed in the
previous sections:

 f ndomod is used as a broker module, for writing events and data from Nagios Core
to a UNIX socket in /usr/local/nagios/var/ndo.sock. It runs as a module
of the Nagios Core server.

 f ndo2db is used as a database backend, for reading the events and data from
the UNIX socket to which ndomod writes, and applying them as MySQL database
operations. It runs independently as a daemon on the system, and performs the
MySQL connection and transactions.

broker_module updates these tables as plugins are run, hosts and services change state,
notifications are issued, and other Nagios Core behavior takes place. It covers most data of
interest quite comprehensively. Note that it includes:

 f Configuration directives

 f Details for types of Nagios Core objects

 f Properties and current states of hosts

 f Acknowledgement and scheduled downtime information

 f Notification history and complete logging

The main reason to install NDOUtils is to put Nagios Core's data into a standardized format, so
that it can be read and processed by external applications, whether in simple table-style reports
or completely new application interfaces to the Nagios Core data. This tends to be much easier
than custom building a Nagios Core CGI of your own!

There's more...
Another recipe in this chapter, Writing customized Nagios Core reports, applies NDOUtils after
its installation by demonstrating some example MySQL queries for retrieving useful data and
summaries from its tables, including an example of writing a report in Perl, and a simple RSS
feed in PHP.

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

328

To get the most out of NDOUtils, it's a good idea to take a look at its documentation, which
includes a complete breakdown of the contents of the MySQL tables: http://nagios.
sourceforge.net/docs/ndoutils/NDOUtils.pdf.

See also
 f The Writing customized Nagios Core reports and Getting extra visualizations with

NagVis recipes in this chapter

Writing customized Nagios Core reports
In this recipe, we'll explore some simple applications of the NDOUtils database by trying
out some queries, and change one of them into both a simple report in Perl, and also into
a PHP-based RSS feed.

Getting ready
This recipe assumes you have NDOUtils already installed, and that your Nagios Core 3.0
(or later) server is monitoring at least a few hosts and services, so that the queries we try
actually return some data. You should also have some means of executing MySQL queries
on the database server. The mysql command-line client will work just fine; a tool such as
phpMyAdmin might make the data a little easier to explore.

How to do it...
We can explore some queries against the NDOUtils databases as follows:

1. Retrieve the content and date/time of the latest ten notifications:
mysql> SELECT start_time, long_output FROM nagios_notifications
ORDER BY start_time DESC LIMIT 10;

2. Retrieve the content and date/time of the latest ten host or service comments:
mysql> SELECT entry_time, comment_data FROM nagios_commenthistory
ORDER BY entry_time DESC LIMIT 10;

3. Count the number of hosts currently in the OK state:
mysql> SELECT COUNT(1) FROM nagios_hoststatus WHERE current_state
= 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

329

4. Retrieve the names of all hosts currently in scheduled downtime:
mysql> SELECT display_name FROM nagios_hosts JOIN nagios_
hoststatus USING (host_object_id) WHERE scheduled_downtime_depth >
0;

Note that the syntax of this query assumes a MySQL version of at least 5.0.12.

5. Return a list of all host names and the number of services associated with them:
mysql> SELECT nagios_hosts.display_name, COUNT(service_id) FROM
nagios_hosts LEFT JOIN nagios_services ON nagios_hosts.host_
object_id = nagios_services.host_object_id GROUP BY nagios_hosts.
host_object_id;

We could implement a Perl script to print the latest ten notifications using the DBI module
as follows:

#!/usr/bin/env perl

Enforce Perl best practices
use strict;
use warnings;

Import database modules
use DBI;
use DBD::mysql;

Get connection to database
my $nagios = DBI->connect(
 'dbi:mysql:dbname=nagios;host=localhost',
 'ndo',
 'mPYxbAYqa'
) or die "Could not connect to database";

Define an SQL query to run
my $query = q{
 SELECT
 notification_id, start_time, name1, long_output

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

330

 FROM
 nagios_notifications
 JOIN
 nagios_objects USING (object_id)
 ORDER BY
 start_time DESC
 LIMIT
 10
};

Execute query and retrieve notifications
my $notifications = $nagios->selectall_hashref(
 $query,
 'notification_id'
) or die 'Could not retrieve notifications';

Print each notification
foreach my $id (keys %{$notifications}) {
 my $notification = $notifications->{$id};
 printf {*STDOUT} "%s - %s: %s\n",
 $notification->{start_time},
 $notification->{name1},
 $notification->{long_output};
}

Exit successfully
exit 0;

Saved into a file latest-notifications.pl, we could run it as follows:

$ chmod +x latest-notifications.pl

$./latest-notifications.pl

2012-10-06 10:11:27 - blog: PING OK - Packet loss = 0%, RTA = 160.31 ms

2012-10-06 10:48:17 - athens: PING OK - Packet loss = 0%, RTA = 155.82 ms

2012-10-06 14:08:17 - athens: PING WARNING - Packet loss = 16%, RTA =
171.79 ms

2012-10-06 14:13:17 - athens: PING OK - Packet loss = 0%, RTA = 164.39 ms

2012-10-06 10:56:17 - athens: PING CRITICAL - Packet loss = 28%, RTA =
164.65 ms

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

331

2012-10-06 10:38:17 - athens: PING CRITICAL - Packet loss = 28%, RTA =
166.10 ms

2012-10-06 10:06:27 - blog: PING WARNING - Packet loss = 16%, RTA =
163.72 ms

2012-10-06 13:39:27 - blog: PING WARNING - Packet loss = 16%, RTA =
163.78 ms

2012-10-06 13:44:27 - blog: PING OK - Packet loss = 0%, RTA = 167.10 ms

2012-10-06 13:29:27 - blog: PING CRITICAL - Packet loss = 28%, RTA =
159.55 ms

Similarly, we could implement a crude RSS feed for notifications using PHP5 with PDO MySQL
as follows:

<?php

// Get connection to database
$nagios = new PDO(
 'mysql:host=localhost;dbname=nagios',
 'ndo',
 'mPYxbAYqa'
);
// Define an SQL query to run
$query = '
 SELECT
 start_time, name1, long_output
 FROM
 nagios_notifications
 JOIN
 nagios_objects
 USING
 (object_id)
 ORDER BY
 start_time DESC
 LIMIT
 10
';

// Retrieve all the notifications as objects
$statement = $nagios->prepare($query);

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

332

$statement->setFetchMode(PDO::FETCH_OBJ);
$statement->execute();

// Read the notifications into an array
for ($notifications = array(); $notification = $statement->fetch();)
{
 $notifications[] = $notification;
}

// Send an RSS header rather than an HTML one
header("Content-Type: application/rss+xml; charset=utf-8");
echo '<?xml version="1.0" encoding="UTF-8"?>';

?>
<rss version="2.0">
 <channel>
 <title>
 Latest Nagios Core Notifications
 </title>
 <link>
 http://olympus.naginet/nagios/
 </link>
 <description>
 The ten most recent notifications from Nagios Core
 </description>
<? foreach ($notifications as $notification): ?>
 <item>
 <description>
 <?= htmlspecialchars($notification->name1); ?>: <?=
htmlspecialchars($notification->long_output) ?>
 </description>
 <pubDate>
 <?= htmlspecialchars(date('r',
strtotime($notification->start_time))) ?>
 </pubDate>
 </item>
<? endforeach; ?>
 </channel>
</rss>

Saved in a file named latest-notifications.php, we could subscribe to this in our
favorite RSS reader, such as Liferea (http://liferea.sourceforge.net/):

www.it-ebooks.info

http://liferea.sourceforge.net/
http://www.it-ebooks.info/

Chapter 11

333

How it works...
The examples given in the preceding section are just to get you started with very simple
reports; there is a wealth of data available in the NDOUtils database to explore. Here are
some other possibilities:

 f A breakdown of all the hosts in your system and their states, ordered by name,
presented in an HTML table

 f A list of all the hosts that have been down more than once in a month

 f The percentage of uptime for all hosts

See also
 f The Reading status into a MySQL database with NDOUtils and Getting extra

visualizations with NagVis recipes in this chapter

Getting extra visualizations with NagVis
In this recipe, we'll explore how to go beyond the default network map discussed in Chapter
8, to get a lot of visualization power with the extension NagVis. NagVis can use the NDOUtils
backend to build custom maps in various styles.

NagVis is most likely of interest to you if you're interested in visualizing Nagios data more
extensively, particularly if you're having problems with the scalability of the included Nagios
Core status map. The default status map works well for smaller networks, but can struggle
with rendering larger ones in a timely fashion.

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

334

A complete survey of NagVis' functions would not be possible in one recipe, but this one will
walk you through downloading, installing, and configuring the extension to give you a simple
automap, in order to get you started.

Getting ready
You should have a running Nagios Core server with version 3.0 or later, and have the
NDOUtils backend successfully installed and populating a MySQL database to which
you have administrative access. This is discussed in the Reading status into a MySQL
database with NDOUtils recipe in this chapter.

In order for the automap to be much use, you will need a network with at least a few
parent-child relationships—see the Creating a network host hierarchy recipe in Chapter 8
for details on how this is done.

NagVis includes an installation script that deals quite well with different systems' installations
of Nagios Core. However, it still requires certain dependencies, specifically:

 f Apache with mod_php on the same server as Nagios Core

 f PHP 5.3 or newer, with the following modules: gd, gettext, mbstring, mysql, pdo,
session, sqlite, and xml

 f The Graphviz graph visualization software, with the following modules: circo, dot,
fdp, neato, twopi

 f SQLite 3

You may need to consult your system's documentation to install all these dependencies;
check your system's package manager, if there is one. For Ubuntu and other Debian-derived
systems, the following packages generally suffice:

apt-get install apache2 libapache2-mod-php5 libgd2-xpm libgd2-xpm-dev
php5 php5-gd php5-mysql php5-sqlite graphviz sqlite3

On systems such as CentOS and Fedora, the following packages may work:

yum install php php-gd php-gettext php-mbstring php-mysql php-pdo php-
sqlite php-xml graphviz graphviz-gd graphviz-php

It is difficult to anticipate the exact packages needed for all systems; searching your package
manager for keywords (for example php sqlite) may help.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

335

How to do it...
We can install NagVis with an NDO backend as follows:

1. Download the latest sources for NagVis from http://www.nagvis.org/
downloads:
$ wget http://downloads.sourceforge.net/project/nagvis/NagVis%20
1.7/nagvis-1.7.1.tar.gz

2. Inflate .tar.gz and change directory to within it:
$ tar -xzf nagvis-1.7.1.tar.gz

$ cd nagvis-1.7.1

3. Run the install.sh script as root:
./install.sh

4. The script will attempt to find your Nagios Core installation, and will ask you to
specify a location for the new NagVis files. In our case, the defaults are correct
and acceptable, so we can simply press Enter.
-- Checking paths --

Please enter the path to the nagios base directory [/usr/local/
nagios]:

 nagios path /usr/local/nagios found

Please enter the path to NagVis base [/usr/local/nagvis]:

5. The script will attempt to find all of the prerequisites needed and will alert you if any
are not found. If this is the case, you should abort the installation with Ctrl + C and
install them before trying again.
-- Checking prerequisites --

PHP 5.3 found

 PHP Module: gd 5.3 found

 PHP Module: mbstring compiled_in found

 PHP Module: gettext compiled_in found

 PHP Module: session compiled_in found

 PHP Module: xml compiled_in found

 PHP Module: pdo compiled_in found

 Apache mod_php found

Graphviz 2.26 found

 Graphviz Module dot 2.26.3 found

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

336

 Graphviz Module neato 2.26.3 found

 Graphviz Module twopi 2.26.3 found

 Graphviz Module circo 2.26.3 found

 Graphviz Module fdp 2.26.3 found

SQLite 3.7 found

6. The script will prompt you for an appropriate backend to configure as NagVis' data
source. In this example, the only one we want is the ndo2db backend. Press n for
all the others.
-- Checking Backends. (Available: mklivestatus,ndo2db,ido2db,merli
nmy) --

Do you want to use backend mklivestatus? [y]: n

Do you want to use backend ndo2db? [n]: y

Do you want to use backend ido2db? [n]: n

Do you want to use backend merlinmy? [n]: n

 /usr/local/nagios/bin/ndo2db (ndo2db) found

7. The script will attempt to detect your Apache HTTPD settings. It does a good job with
most systems, but you should check the results are correct before you press Enter.
It should also be safe to allow it to create an Apache configuration file for you.
-- Trying to detect Apache settings --

Please enter the web path to NagVis [/nagvis]:

Please enter the name of the web-server user [www-data]:

Please enter the name of the web-server group [www-data]:

create Apache config file [y]:

8. The script will give you a summary of its intentions for installing the software, and
will ask you to confirm. Do so by pressing Enter:
-- Summary --

NagVis home will be: /usr/local/nagvis

Owner of NagVis files will be: www-data

Group of NagVis files will be: www-data

Path to Apache config dir is: /etc/apache2/conf.d

Apache config will be created: yes

Installation mode: install

Do you really want to continue? [y]:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

337

9. Restart the Apache HTTPD server:
apache2ctl configtest

apache2ctl restart

If all of the above goes correctly, once the installation is finished, you should be able to visit
the NagVis configuration page on http://olympus.naginet/nagvis/, substituting the
hostname for your own Nagios Core server:

You can log in with the default username admin and the password admin to take a look at
some of the demo maps.

There is a little more to go yet before we can get our automap working:

1. On the server, edit the /usr/local/nagvis/etc/nagvis.ini.php file:
vi /usr/local/nagvis/etc/nagvis.ini.php

2. Find and change the following directives under the backend_ndomy_1 section,
adding the values you used for your ndo2db installation:
; hostname for NDO-db
dbhost="localhost"
; portname for NDO-db
dbport=3306
; database name for NDO-db
dbname="nagios"
; username for NDO-db

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

338

dbuser="ndo"
; password for NDO-db
dbpass="mPYxbAYqa"
; prefix for tables in NDO-db
dbprefix="nagios_"
; instance name for tables in NDO-db
dbinstancename="default"

Make sure that all the preceding values are uncommented (they should not be
preceded by a semicolon).

3. Log in to the NagVis web interface, and click on Manage Maps under the
Options menu:

4. Under Create Map:

1. For Map name, enter the value Automap.

2. For Map iconset, choose std_small.

3. Leave Background blank.

4. Click on Create.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

339

The page should refresh to a blank screen, because we have not yet elected a data
source for the map.

5. Click on Map Options under the Edit Map menu.

6. In the resulting dialog:

1. Check the sources checkbox, and change the value to automap.

2. Check the backend_id checkbox, and choose the value ndomy_1.

3. Scroll down to the bottom and click on Save.

www.it-ebooks.info

http://www.it-ebooks.info/

Automating and Extending Nagios Core

340

With this done, the page should refresh and show you a map of your network, automatically
generated from your configuration, in a similar style to the Nagios Core web interface status
map. You should also be able to hover over individual nodes to see their details.

How it works...
NagVis' automap is generated from the data in the database that we established in the
NDOUtils recipe. It generates the map in much the same way that the default status map
does, but is more scalable for larger networks. The parent and child relationships defined
in the configuration are included, to make a tree-style map.

There's more...
The use of NagVis could fill an entire book in itself, and the automap is only one of many
possible maps, including defining one's own backgrounds, icons, labels, and hover behavior.
For more detail on how to make customized maps as well as other styles of automaps,
consult the NagVis documentation at http://www.nagvis.org/doc.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

341

See also
 f The Reading status into a MySQL database with NDOUtils and Writing customized

Nagios Core reports recipes in this chapter

 f The Creating a network host hierarchy and Using the network map recipes in
Chapter 8, Understanding the Network Layout

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
$ARG1$ 68
$ARG2$ 68
$HOSTADDRESS$ 68
$HOSTSTATEID

hostname$ macros 230
$USER1$ 68
-c parameter 68, 72
--expect 134
-H option 130
-H parameter 68
--invert-regex flag 133
--mrtg option 279
-p parameter 68, 72
--string 133
-w parameter 68, 72

A
acknowledgement 205
action_url directive 322
address directive 11, 229
alias 11, 19
allowed_hosts directive 159
Apache HTTPD server

URL 265
Assume Initial States 181, 186
Assume State Retention 181, 186
Assume States During Program

Downtime 181
authenticated contacts

using 269-271
authorized_for_all_host_commands

directive 268
authorized_for_all_hosts directive 267, 268

authorized_for_all_service_commands
directive 268

authorized_for_all_services
directive 267, 268

authorized_for_configuration_information
directive 268

authorized_for_read_only directive 272
authorized_for_system_commands

directive 268
authorized_for_system_information

directive 268
Availability Report

about 177-180
Assume Initial States 181
Assume State Retention 181
Assume States During Program

Downtime 181
Backtracked Archives 181
First Assumed Host State or First

Assumed Service State 181
Include Soft States 181
Report period 181
Report time Period 181
service state breakdowns 181

B
Backtracked Archives 181, 186

C
calpe.naginet router 209
cfg_dir directive 239
cfg_file directive 238
CGI Security and Authentication

URL 264

www.it-ebooks.info

http://www.it-ebooks.info/

344

check_by_ssh plugin 148, 167, 170
check_cluster command 230
check_cluster plugin 227
check_command definition 11, 12, 15, 108
check_command directive 62, 113, 117, 133
check_command plugin 62, 64, 66
check_dummy command 299
check_http 13
check_http_alt command 48
check_http_altport command 47
check_http plugin 126, 129, 133
check_imap command 124
check_interval 15, 64
check_load plugin 167
check_mysql_query plugin 136
check_nagios plugin 289
check_nrpe command 161
check_nrpe plugin 148, 153
check_nrpe request 158, 159
check_period plugin 11, 15, 85, 86
check_ping command 9, 113
check_ping program 68
check_pop command 124
check_rsync_backup 46
checks

scheduling, from web interface 198, 199
check_smtp command 124
check_snmp_linux_procs command 140
check_snmp plugin 148
check_ssh_altport command 121
check_ssh command 52, 117, 118, 120
check_ssh plugin 118
check_ssh script 254
check_swap plugin 161
check_total_procs command 166
c notification 93
command

new command, creating for plugin 44-46
command_line directive 109, 170
command_name directive 254
Comment 203
Comprehensive Perl Archive

Network (CPAN) 315
config_file definition 325
configuration

placing, under version control 240-242
simplifying, inheritance used 250-252

configuration files
grouping, in directories 238-240

contactgroup
creating 29
creating, steps for 30, 31

contact_group definition 88
contact_groups 104
contact_name 19
contact_name directive 271
contact rotation

automating 98-102
contacts 11
contacts directive 31
corinth.naginet host 114
corsica.naginet server 212
corsica.naginet web server 209
CRITICAL state 16, 67
c, service dependency 226

D
database services

monitoring 134-136
debugging log file 272, 273
debug_level directive 274
default_statusmap_layout directive 235
default_user_name directive 268
dependent_host_name directive, host

dependency 222
dependent_service_description directive,

service dependency 226
d, host dependency 223
directories

configuration files, grouping in 238-240
d notification 93
Domain Name System (DNS) 8
Domain Name System (DNS) zone 240
DOWN notification 211
DOWN state 211
downtime 205
Drawing Layers option 216, 217

E
email 19
e-mail contact

creating 17-20

www.it-ebooks.info

http://www.it-ebooks.info/

345

escalation
defining, for repeated notifications 103-105

event_handler command 313
event handler script

setting up 312-314
eventhandlers directory 289
execution_failure_criteria directive, host

dependency 223
execution_failure_criteria directive, service

dependency 226

F
failed checks 95-97
First Assumed Host State or First Assumed

Service State 181, 186
first_notification 105
flapping percentage thresholds

adjusting, for service 80-82
f notification 93

G
GD2 library 216
generic-host template 109
generic-service template 116
GNU m4

URL 257
groups

building, regular expressions used 247-249
used, for configuring host roles 243-246

H
handle-master-proc-event

$SERVICEATTEMPT$ argument 290
$SERVICESTATE$ argument 290
$SERVICESTATETYPE$ argument 290

HARD CRITICAL state 290
hardware device

monitoring 141, 142
high_flap_threshold 82
Histogram report 190
host

alternative check command, using 50-52
checking, frequency for 61-65
downtime, scheduling for 72-76

icons, selecting 217-220
PING, monitoring 112
SSH, monitoring 115
SSH service check, adding 116
web service checks, adding 127, 128

host definitions
building, dynamically 257-261

host dependency
d 223
dependent_hostgroup_name directive 223
dependent_host_name directive 222
directives 222
establishing 221, 222
execution_failure_criteria directive 223
hostgroup_name directive 223
host_name directive 222
notification_failure_criteria directive 223
o 223
p 223
u 223

hostextinfo object 220
hostgroup

creating 22-25
hostgroup_members directive 246
hostgroup_name directive 36, 114, 118
hostgroups directive 244
host_name 11, 15, 104
host_name directive, host dependency 222
host_name directive, service

dependency 226
host_notification_commands 19
host_notification_options 19
host_notification_period 19
host_notification_period directive 102
host roles

configuring, groups used 243-246
host state

tracking, with Nagiosgraph 315-322
HTTP service

creating 13-15

I
icon_image_alt directive 220
icons

selecting, for hosts 217-220
Include Soft States 181, 186

www.it-ebooks.info

http://www.it-ebooks.info/

346

individual nodes
in cluster, monitoring 227-230

inheritance
used, for simplifying configuration 250-252

INSTALL document 315
ithaca.naginet host 299

J
janus.naginet router 209

K
kill command 156

L
last_notification 105
Layer mode 217
Layout Method 216
Liferea

URL 332
local services

monitoring on remote machine,
with NRPE 148-155

low_flap_threshold 82

M
macros

defining, in resource file 254-256
MAIL_LOGIN service 225
mail services

monitoring 122-126
Makefile syntax 261
max_check_attempts 11, 15, 64
max_debug_file_size directive 275
mrtg (Multi-Router Traffic Grapher) 275

N
Nagios

Tuning for Maximum Performance, URL 264
nagiosadmin user 213
Nagios Core

about 7, 111
configuration 8
macros 128

notifications 83
plugin 37
URL 112

Nagios Core configuration
verifying 21, 22

Nagios Core objects configuration
directory 295

Nagios Core reports
customised reports, writing 328-332

Nagios Core server
redundant monitoring host,

setting up 285-290
securing, tips for 264

Nagios Core web interface
authenticated contacts, using 269-271
authentication for 265-268

Nagios Exchange
about 40
URL 16, 40, 112

Nagiosgraph
about 294
host state, tracking 315
service state, tracking 315

Nagios log file
debugging information, writing 272

Nagios performance
monitoring, with Nagiostats 275-279

Nagios Plugins 38
Nagios Remote Plugin Executor (NRPE) 145
Nagios Service Check Acceptor. See NSCA
Nagiostats

used, for monitoring
Nagios performance 275-279

NagVis
about 294, 333
installing, with NDO backend 335-340

NagVis extension 235
Natural Earth website

URL 232
ndo2db 327
NDO backend

NagVis, installing 335-340
ndomod 327
NDOUtils

about 294, 323
downloading 324, 325
installing 324

www.it-ebooks.info

http://www.it-ebooks.info/

347

Net-SNMP 306
network host

creating 8, 9, 10
working 11, 12

network host hierarchy
creating 208, 209
parent-child relationship, configuring

for hosts 210, 211
network map

background, setting up 233, 234
using 213
using, as overlay 231, 232
using, steps for 214, 215
working 216

new time period
creating, steps for 32-34

notification_failure_criteria directive,
host dependency 223

notification_failure_criteria directive,
service dependency 226

notification history
about 187
Histogram report 190
overview 189
working 191

notification_interval 11, 15, 105
notification_option flag 89
notification_options directive

d notification 93
f notification 93
r notification 93
s notification 93
u notification 93

notification_period plugin 12, 15, 85, 86
notifications

about 83, 84
configuring, for groups 87-89
custom notification method, defining 106-110
escalation, defining for repeated

notifications 103, 104
periods, configuring 84-86
types, configuring for hosts 90-93

NRPE
allowed client hosts, setting 157-159
command definitions, creating

securely 159-163
limited sudo privileges, giving 164-166

listening address, setting 155-157
local services, monitoring on

remote machine 148
sudo privileges, giving 164, 165

nrpe.cfg parameter 163
nrpe daemon 156
NSCA

about 294
passive checks, submitting from

remote hosts 300-305

O
o, host dependency 223
on-call roster 98
o, service dependency 226

P
packet loss

thresholds, changing 66
parent-child relationship

configuring 210
parent host 208
passive checks

allowing 294-298
submitting from remote host,

with NSCA 300-305
submitting, in SNMP traps response 306-310

Persistent Comment 203
p, host dependency 223
PING

about 8
monitoring, for host 112, 113

PING RTT
thresholds, changing 66

plugin
about 37, 38
downloading 41
finding 38
finding, steps for 39, 40
installing 40, 41
new command, creating 44-46
new plugin, creating from scratch 53-59
new service, creating 47-49
removing 43, 44
working 42

www.it-ebooks.info

http://www.it-ebooks.info/

348

PNP4Nagios
URL 322

precached_object_file directive 283
pre-cached object files

startup times, improving 281-283
p, service dependency 226

Q
QuickStart guide

URL 8

R
RAID

monitoring 141, 142
redundant monitoring host

setting up 284, 285
setting up, for Nagios Core server 285-290

regular expressions
used, for building groups 247-249

remote hosts
passive checks submitting from,

with NSCA 300-305
Report period 181, 186
Report time Period 181
resource file

macros, defining 254-256
retry_interval command 15, 64, 65
retry_interval directive 63
r notification 93
Round Trip Time (RTT) 113
Round Trip Tim (RTT) 67
rsync module 40

S
Scaling factor 216
securing, Nagios Core server

tips for 264
Send Notification 203
service

checking, frequency for 61
downtime, scheduling for 73-76
flapping percentage thresholds,

adjusting for 80-82
new service, creating 47-49

running, on hosts in group 34-36
service dependency

c 226
dependent_service_description directive 226
establishing 224, 225
execution_failure_criteria directive 226
host_name directive 226
notification_failure_criteria directive 226
o 226
p 226
service_description directive 226
u 226
w 226

service_description directive 15, 245
service_description directive, service

dependency 226
service_description plugin 67
servicegroup

creating 25-29
service_notification_commands 19
service_notification_options 19
service_notification_period 19
service_notification_period directive 102
service_perfdata_file_processing_command

directive 321
service state

tracking, with Nagiosgraph 315-322
service state trends 183-186
Simple Network Management Protocol

(SNMP) 112
SNMP OID

creating, to monitor 143
custom setup 143, 144

SNMP traps 306
SNMP Trap Translator 306
snmptt handler 311
snmpwalk command 138
s notification 93
SOFT state 96
sparta.naginet.cfg 12
sparta.naginet server 128
SSH

alternative SSH port, checking 119-121
monitoring, for host 115-118

SSH service check
adding, to host 116

www.it-ebooks.info

http://www.it-ebooks.info/

349

startup times
improving, with pre-cached

object files 281-284
statusmap_image directive 220
Sticky Acknowledgement 203
Sticky Acknowledgement option 204
submit_check_result handler 311
Suppress image map 186
Suppress popups 186, 217

T
Tactical Monitoring Overview screen 176
Tactical Overview

about 175
Tactical Monitoring Overview screen 176
working 176, 177

Tactical Overview section 295
telnet tool 13
thresholds

changing, for packet loss 66
changing, for PING RTT 66

time period
creating 32

U
u, host dependency 223
u notification 93
UNREACHABLE notification 211
UNREACHABLE notifications 211
UNREACHABLE state 211
use_regexp_matching directive set 249
u, service dependency 226

V
version control

configuration, placing 240-242

W
web interface

authentication, using 265
checks, scheduling 198, 199
comments, adding on hosts 192, 193
comments, adding on services 192, 193
configuration, viewing 195-197
used, for acknowledging problem 201-205
working 267

WEBMAIL_LOGIN service 227
web services

checks, adding for hosts 127-130
monitoring 126

website
string, returning 131, 132

w notification 93
w, service dependency 226

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

Nagios Core Administration Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Zenoss Core 3.x Network and
System Monitoring
ISBN: 978-1-849511-58-2 Paperback: 312 pages

A step-by-step guide to configuring, using, and adapting
this free Open Source network monitoring system

1. Designed to quickly acquaint you with the core
feature so you can customize Zenoss Core to
your needs

2. Discover, manage, and monitor IT resources

3. Build custom event-processing and alerting rules

Cisco Unified
Communications Manager
8: Expert Administration
Cookbook
ISBN: 978-1-849684-32-3 Paperback: 310 pages

Over 110 advanced recipes to effectively and efficiently
confi gure and manage Cisco Unified Communications
Manager

1. Full of illustrations, diagrams, and tips with clear
step-by-step instructions and real time examples

2. Master call admission control and the
technologies associated with it, which is an
important aspect of any unified communications
deployment to ensure call quality and resilience.

3. Master the necessary aspects of configuring
media resources to support conferencing,
transcoding, and Music on Hold.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

HP Network Node Manager 9:
Getting Started
ISBN: 978-1-849680-84-4 Paperback: 584 pages

Manage your network effectively with NNMi

1. Install, customize, and expand NNMi functionality
by developing custom features

2. Integrate NNMi with other management tools,
such as HP SW Operations Manager, Network
Automation, Cisco Works, Business Availability
center, UCMDB, and many others

3. Navigate between incidents and maps to reduce
troubleshooting time

4. Screenshots and step-by-step instructions to
customize NNMi in the way you want

BackTrack 5 Cookbook
ISBN: 978-1-849517-38-6 Paperback: 236 pages

Over 90 recipes to execute many of the best known and
little known penetration-testing aspects of BackTrack 5

1. Learn to perform penetration tests with
BackTrack 5

2. Nearly 100 recipes designed to teach penetration
testing principles and build knowledge of
BackTrack 5 Tools

3. Provides detailed step-by-step instructions on
the usage of many of BackTrack’s popular and
not-so-popular tools

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding Hosts, Services, and Contacts
	Introduction
	Creating a new network host
	Creating a new HTTP service
	Creating a new e-mail contact
	Verifying configuration
	Creating a new hostgroup
	Creating a new servicegroup
	Creating a new contactgroup
	Creating a new time period
	Running a service on all hosts in a group

	Chapter 2: Working with Commands and Plugins
	Introduction
	Finding a plugin
	Installing a plugin
	Removing a plugin
	Creating a new command
	Customizing an existing command
	Using an alternative check command for hosts
	Writing a new plugin from scratch

	Chapter 3: Working with Checks
and States
	Introduction
	Specifying how frequently to check a host
or service
	Changing thresholds for PING RTT and packet loss
	Changing thresholds for disk usage
	Scheduling downtime for a host or service
	Managing brief outages with flapping
	Adjusting flapping percentage thresholds for a service

	Chapter 4: Configuring Notifications
	Introduction
	Configuring notification periods
	Configuring notification for groups
	Specifying which states to be notified about
	Tolerating a certain number of failed checks
	Automating contact rotation
	Defining an escalation for repeated notifications
	Defining a custom notification method

	Chapter 5: Monitoring Methods
	Introduction
	Monitoring PING for any host
	Monitoring SSH for any host
	Checking an alternative SSH port
	Monitoring mail services
	Monitoring web services
	Checking that a website returns a given string
	Monitoring database services
	Monitoring the output of an SNMP query
	Monitoring a RAID or other hardware device
	Creating an SNMP OID to monitor

	Chapter 6: Enabling Remote Execution
	Introduction
	Monitoring local services on a remote machine with NRPE
	Setting the listening address for NRPE
	Setting allowed client hosts for NRPE
	Creating new NRPE command definitions securely
	Giving limited sudo privileges to NRPE
	Using check_by_ssh with key authentication instead of NRPE

	Chapter 7: Using the Web Interface
	Introduction
	Using the Tactical Overview
	Viewing and interpreting availability reports
	Viewing and interpreting trends
	Viewing and interpreting notification history
	Adding comments on hosts or services in the web interface
	Viewing configuration in the web interface
	Scheduling checks from the web interface
	Acknowledging a problem via the web interface

	Chapter 8: Managing Network Layout
	Introduction
	Creating a network host hierarchy
	Using the network map
	Choosing icons for hosts
	Establishing a host dependency
	Establishing a service dependency
	Monitoring individual nodes in a cluster
	Using the network map as an overlay

	Chapter 9: Managing Configuration
	Introduction
	Grouping configuration files in directories
	Keeping configuration under version control
	Configuring host roles using groups
	Building groups using regular expressions
	Using inheritance to simplify configuration
	Defining macros in a resource file
	Dynamically building host definitions

	Chapter 10: Security and Performance
	Introduction
	Requiring authentication for the web interface
	Using authenticated contacts
	Writing debugging information to a Nagios log file
	Monitoring Nagios performance with Nagiostats
	Improving startup times with pre-cached object files
	Setting up a redundant monitoring host

	Chapter 11: Automating and Extending Nagios Core
	Introduction
	Allowing and submitting passive checks
	Submitting passive checks from a remote host with NSCA
	Submitting passive checks in response to SNMP traps
	Setting up an event handler script
	Tracking host and service states with Nagiosgraph
	Reading status into a MySQL database with NDOUtils
	Writing customized Nagios Core reports
	Getting extra visualizations with NagVis

	Index

