
www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Joomla! 1.5
Extension and Framework
Development

The Professional Guide to Programming
Joomla!

Extend the power of Joomla! by adding components,
modules, plugins, and other extensions

Chuck Lanham

James Kennard

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Joomla! 1.5 Extension and Framework
Development
The Professional Guide to Programming Joomla!

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2007

Second edition: June 2010

Production Reference: 1250510

Published by Packt Publishing Ltd.

32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847190-52-3

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors

Chuck Lanham

James Kennard

Reviewers

Jose Argudo Blanco

Suhreed Sarkar

Acquisition Editor

Douglas Paterson

Development Editor

Darshana D. Shinde

Technical Editors

Bhupali Khule

Aaron Rosario

Indexers

Rekha Nair

Monica Ajmera Mehta

Editorial Team Leader

Akshara Aware

Project Team Leader

Priya Mukherji

Project Coordinator

Ashwin Shetty

Proofreaders

Joel Johnson

Aaron Nash

Graphics

Geetanjali Sawant

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Chuck Lanham began his career as a database software engineer with Burroughs
Corp. He later worked for Informix Corp. managing the database tools development
group while serving as repository architect. He has founded and managed two
successful software development companies, and taught college courses on database
theory, data communications, and computer technologies. He has also managed the
global development and deployment of leading CRM and CMS systems for many
Fortune 500 companies, and managed the development and deployment of some
of the largest e-commerce websites in the world.

In 2002, Chuck left the corporate world and started a new company, Blue Water
Associates. This company is located near the deep blue waters of Lake Tahoe where
he designs, develops, and maintains websites for small to medium sized businesses,
both within the U.S. and abroad.

Chuck has been developing websites using Joomla! since 2007 with the release of
version 1.5 and has developed several extensions for use in the websites he has
designed. This is Chuck's first book as an author, although he has reviewed and
edited several books and written numerous technical articles for publication.

www.it-ebooks.info

http://www.it-ebooks.info/

I would like to thank James Kennard for the fine work that he did
on the first edition of this book. Of all the books that I have read on
Joomla!, his work was the best. Without his efforts, my work with
Joomla! would have been much the worse. I also wish to thank
Darshana Shinde and Ashwin Shetty of Packt Publishing for their
patience and encouragement during this seemingly long process.
To Darshana especially, for giving me the opportunity to write this
book. Thanks for the amazing eye for detail and technical accuracy
provided by Aaron Rosario, you saved me from myself more than
once and always made me smile. And I must give special recognition
to Nancy Lee Teply in Saint Charles County, Missouri for turning me
onto Joomla!. Thank you Nancy, it has been a great adventure.

I must thank my mother, Nellie Ann Lanham, who was an
extraordinary and gifted writer; she has always been my inspiration.
And finally, I thank my wife, Janet, for being there, and for her
understanding and love.

James Kennard is an accomplished programmer with proven experience in many
different types of organization. He has worked as a private consultant and worked
in the public and private sectors for the likes of Logica and the National Library
of Wales. He has over six years of experience working with Joomla!, previously
Mambo. As an active member of the Joomla! community he maintains a popular
open source helpdesk component.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewer

Jose Argudo is a web developer from Valencia, Spain. After completing his studies
he started working for a web design company. Six years later, he decided to start
working as a freelancer.

Now that some years have passed as a freelancer, he thinks it's the best decision he
has ever taken, a decision that let him work with the tools he likes, such as Joomla!,
CodeIgniter, CakePHP, jQuery, and other known open source technologies.

His desire to learn and share his knowledge has led him to be a regular reviewer of
books from Packt, such as Drupal E-commerce, Joomla! With Flash, Joomla! 1.5 SEO,
Magento Theme Design and Symfony 1.3 web application development.

Recently he has even published his own book, CodeIgniter 1.7, which can be found on
the Packt website. If you work with PHP, take a look at it!

He is currently working on a new book for Packt, this time Joomla! related, check for
it soon!

If you want to know more about him, you can check his site at
www.joseargudo.com.

www.it-ebooks.info

http://www.it-ebooks.info/

Suhreed Sarkar is an IT consultant, trainer, and technical writer. He studied
Marine engineering, served on board a ship for two years, and then began his
journey into the IT world with MCSE in Windows NT 4.0 track. Later he studied
business administration and earned MBA from the University of Dhaka. He has
a bunch of BrainBench certifications on various topics including PHP4, Project
Management, RDBMS Concepts, E-commerce, Web Server Administration,
Internet Security, Training Development, Training Delivery and Evaluation,
and Technical Writing.

As a trainer, he taught courses on system administration, web development,
e-commerce and MIS. He has consulted several national and international
organizations including United Nations, and helped clients building and adopting
their enterprise portals, large-scale databases and management information systems.

He is a renowned technical author in Bengali – having dozens of books published on
subjects covering web development, LAMP, networking, and system administration.
He authored three books for Packt - Zen Cart: E-commerce Application
Development, Joomla! E-commerce with VirtueMart, and Joomla! with Flash. Now
he is authoring a Cookbook on Joomla!

While not busy with hacking some apps, blogging on his blog (www.suhreedsarkar.
com), he likes to spend time with his family. Suhreed lives in Dhaka, Bangladesh and
can be contacted at suhreedsarkar@gmail.com.

I would like to thank the team at Packt who provided excellent
support to work on this book, especially Darshana Shinde and
Ashwin Shetty. I am also grateful to my family and friends for
allowing me to work on this.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Introduction to Joomla! 9

Overview 9
Joomla! 1.5 Framework 10

Framework layer 10
Libraries 11
Framework 11
Plugins 12

Application layer 13
Extension layer 13

Extension types and their uses 14
Components 14
Modules 14
Plugins 15
Languages 15
Templates 15
Tools 15

Extension Manager 16
Requirements 16
Joomla Extension Directory (JED) 17
Development tools 17

JoomlaCode.org 18
Coding standards 18
phpDocumentor 19
J!Dump 21

Summary 23

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 2: Getting Started 25
A quick object lesson 25

Inheriting from JObject 27
Design Patterns 29
Predefined constants 30

The Joomla! process 32
Working with JRequest 32
From Request to Response 33
Load Core 37

Libraries 37
Build application 39

The session 39
Initialize application 40

Multilingual support 41
UTF-8 string handling 41

Route application 43
URI structure 43

Dispatch application 46
Render application 47
Send response 47

Directory structure 47
Summary 50

Chapter 3: The Database 51
The core database 51

Database structure 51
Database naming conventions 53

Database Prefix 54
Table names 54
Column names 54
Creating a component table 55

Additional points to consider 56
Dates 56
Parsing data 57
Dealing with multilingual requirements 57

Using the database 58
JDatabase::query() 58

Writing queries 60
JDatabase::load methods 60

loadResult() : string 61
loadResultArray(numinarray : int=0) : array 62
loadRow() : array 62
loadAssoc() : array 63

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

loadObject() : stdClass 63
loadRowList(key : int) : array 64
loadAssocList(key : string='') : array 65
loadObjectList(key : string='') : array 65

JDatabase::ADOdb methods 66
JTable 67

Creating the JTable subclass 70
Creating a new record 72
Reading a record 75
Updating a record 75
Deleting a record 76
Checking a record in or out 78
Ordering 79
Publishing 80
Hits 81
Parameter fields 81

Summary 82
Chapter 4: Extension Design 83

Supporting classes 83
Helpers 84
Using and building getInstance() methods 85
Using the registry 90

Saving and loading registry values 92
The user 94

User parameters 95
The session 101
The browser 103
Assets 106
Extension structure 107

The structure of a component 108
Component directory structure 108
Component file structure 110
Component class names 112
Setting up a component sandbox 114
SQL install and uninstall files 117
Install and uninstall scripts 119
Component XML manifest file 121

The structure of a module 123
Module directory structure 123
Module file structure 124
Module class names 124
Setting up a module sandbox 125
Module XML manifest file 126

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

The structure of a plugin 128
Plugin directory structure 128
Setting up a plugin sandbox 128

Extension packaging 130
Summary 131

Chapter 5: Component Design 133
Component design 134

The MVC software design pattern 135
Model 136
View 137
Controller 137
Connecting the dots 138

Building the MVC component 138
Building the component frontend 139

Building the entry point 139
Building the controller 141
Building the frontend model 144
Building the frontend view 149
Rendering other document types 155
Updating the manifest 162

Building the component backend 162
Building the backend entry point 163
Building the controller 164

Building the backend model 170
Building the table 176
Building views 177

View #1 177
View #2 182
Updating the manifest 188

Dealing with component configuration 189
Help files 191
Routing 192
Summary 194

Chapter 6: Module Design 195
First steps 195

Standalone modules 196
Modules and components working together 197
Frontend and backend module display positions 198

Module settings (parameters) 199
Helpers 203
Layouts (templates) 206

Media 210

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Translating 211
Summary 212

Chapter 7: Plugin Design 213
Events 214
Listeners 216

Registering listeners 216
Handling events 216

Listener function 216
Listener class 217

Plugin groups 220
Authentication 221
Content 223
Editors 225
Editors-xtd 227
Search 230
System 232
User 232
XML-RPC 235

Loading plugins 235
Using plugins as libraries (in lieu of library extensions) 236
Translating plugins 239
Dealing with plugin settings (parameters) 240

File naming conflicts 241
Summary 242

Chapter 8: Rendering Output 243
Improving components 243
Component backend 243

Toolbars 244
Submenu 246
The joomla.html library 250

behavior 251
email 254
form 254
grid 254
image 255
list 256
menu 257
select 257

Component layouts (templates) revisited 258
Admin form 259
Layout improvements 260

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Itemized data 270
Pagination 270
Ordering 277
Filtering and searching 281

Summary 291
Chapter 9: Customizing the Page 293

Application message queue 293
Redirecting the browser 295

Component XML metadata files and menu parameters 299
Using menu item parameters 308
Modifying the document 309

Page title 310
Pathway 310
JavaScript 312
CSS 313
Metadata 314
Custom header tags 315

Translating 315
Translating text 315
Defining translations 317
Debugging translations 318

Using JavaScript effects 319
JPane 319
Tooltips 321
Fx.Slide 325

Summary 329
Chapter 10: APIs and Web Services 331

XML 331
Parsing 333
Editing 338
Saving 339

AJAX 340
Response 340
Request 343

LDAP 347
Email 350
File transfer protocol 353
Web services 355
Building a web service (XML-RPC plugin) 359
Summary 367

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

Chapter 11: Error Handling and Security 369
Errors, warnings, and notices 370

Return values 371
Customizing error handling 372

Dealing with CGI request data 373
Preprocessing CGI data 373
Escaping and encoding data 377
Escaping and quoting database data 377
Encode XHTML data 378
Regular Expressions 379

Patterns 379
Matching 381
Replacing 382

Access control 383
Menu item access control 385
Extension access control 385

Attacks 387
How to avoid common attacks 387

Using the session token 388
Code injection 389
XSS—Cross Site Scripting 391
File system snooping 392

Dealing with attacks 392
Log out and block 393
Attack logging 396
Notify the site administrator 397

Summary 398
Chapter 12: Utilities and Useful Classes 399

Dates 400
Date and time parameter 400
Time zone parameter 401

File system 405
Paths 405
Folders 408
Files 412
Archives 415

Arrays 416
Trees 420
Log files 423
Summary 425

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[viii]

Appendix A: Joomla! Core Classes 427
JApplication 427

Properties 428
Inherited methods 428
Deprecated methods 428
Methods 429

JController 436
Properties 436
Inherited properties 437
Inherited methods 437
Methods 437

JDatabase 444
Direct descendents 444
Properties 444
Inherited properties 445
Inherited methods 445
Methods 445

JDocument 463
Direct descendents 463
Properties 463
Inherited properties 464
Inherited methods 464
Methods 465

JDocumentRenderer 474
Direct descendents 474
Properties 475
Inherited properties 475
Inherited methods 475
Methods 475

JFactory 476
JModel 483

Properties 483
Inherited properties 483
Inherited methods 483
Methods 484

JObject 488
Direct descendents 488
Properties 490
Deprecated methods 490
Methods 490

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ix]

JPlugin 494
Properties 494
Inherited properties 494
Inherited methods 494
Methods 495

JTable 496
Direct descendents 497
Properties 497
Inherited properties 497
Inherited methods 497
Methods 498

JUser 505
Properties 505
Inherited properties 506
Inherited methods 506
Methods 506

JView 511
Properties 511
Inherited properties 511
Inherited methods 511
Methods 512

Index 519

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
This book will guide you through the complexities of implementing components,
modules, and plugins in Joomla! 1.5. It provides useful reference material that
explains many of the advanced design features and classes available in Joomla! 1.5.

Joomla! is one of the world's top open source content management systems. The
main sources of the PHP MySQL application's success are its comprehensive
extension libraries, which extend Joomla! far beyond content management, and it's
very active forums where one can easily tap into the knowledge of other Joomla!
users, administrators, and developers.

One of the most pleasurable things about working with Joomla! is the
encouragement of openness and friendliness among the members of the Joomla!
community. It is, without a doubt, the community that is driving the Joomla! project.
The name 'Joomla!' is derived from the Swahili word 'Jumla', meaning 'all together'.
The Joomla! community lends a true sense of jumla to the project.

The architecture of the latest version of Joomla! differs in many ways from previous
versions. Resultantly backward-compatibility with some extensions has been broken;
the race is on for developers to update their skills in order to rectify the problems
and start building new extensions. Perhaps the most important of the changes is the
reorganization and classification of files and classes. This change encourages but does
not force developers to use the Joomla! libraries consistently between extensions.

History
Rice Studios, formerly Miro, created a closed-source CMS called 'Mambo' in the
year 2000. One year later, Mambo was re-licensed under two separate licenses,
one of which was open source. The open-source version became known as
'Mambo Site Server'.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

In 2002 Mambo Site Server was re-branded 'Mambo Open Source' (Also referred to
as MamboOS or MOS) in an attempt to differentiate the commercial and open source
flavors of Mambo. All rights to Mambo Open Source were officially released into the
open source community in 2003.

Mambo Open Source was extremely successful and won a large number of
prestigious open-source awards.

In 2005 the commercial version of Mambo was re-branded as 'Jango'. Rice Studios,
at that time still Miro, also chose to form the Mambo Foundation, a non-profit
organization. The intention was to create a body that would help protect the
principles of Mambo and provide a more structured working methodology.

The creation of the Mambo Foundation created a rift in the Mambo Open Source
community. The creation of the Mambo Foundation was seen by many as an attempt
by Rice Studios to gain control of the Mambo Open Source project.

Not long after the Mambo Foundation was created, a group, consisting mainly of
the Mambo Open Source core developers, publicly announced that they intended to
abandon Mambo Open Source. The group formed a non-profit organization called
'Open Source Matters'.

Open Source Matters created the Joomla! project, a guaranteed 100% open-source
GPL project. The first release of Joomla! (Joomla! 1.0) was very similar to the then
current release of Mambo, the majority of extensions at the time being compatible
with both.

Restraints within Joomla! 1.0 led to a complete re-think of how Joomla! should be
constructed. After a long development period, and two beta releases, Joomla! 1.5 was
released in mid 2007.

Joomla! 1.5 is extensively different to Joomla! 1.0 and Mambo. Joomla! 1.5 introduces
many new classes and implements a comprehensive framework. These changes have
lead to reduced compatibility between Joomla! and Mambo.

The most notable change, for most third-party extension developers, is the
introduction of the MVC (Model View Controller) design pattern in components.
These changes now mean that all third-party developers tend to develop for Joomla!
or Mambo, but not both. The MVC design pattern is discussed in depth in Chapter 5,
Component Design.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

What this book covers
Chapter 1, Introduction to Joomla! introduces the technology in general, covering the
software framework that is the foundation for Joomla! 1.5, along with an overview
of how it can be extended. It briefly discusses development tools that are readily
available for use in developing Joomla! extensions.

Chapter 2, Getting Started covers the basics of object oriented design as it applies to
Joomla! The complete application process, from request to response is covered, a few
core classes are introduced, and the basic Joomla! directory structure discussed.

Chapter 3 The Database deals with the database. It talks about extending the database,
conventions for the database schema, and common fields. Then the focus moves
on to storing data, common types of data in standard fields and dealing with
multilingual requirements. We then cover querying the database and getting results.

Next, the chapter explores how to manipulate common field types. The chapter
concludes with a brief description of the JTable. The JTable is used to display and
edit regular two-dimensional tables of cells. The JTable has many facilities that
make it possible to customize its rendering and editing but provides defaults for
these features so that simple tables can be set up easily.

Chapter 4, Extension Design covers the basics in extension design. We begin with
helper classes, then cover building and using getInstance() methods. We cover the
registry along with saving and loading registry values. We explain the User, Session,
Browser and Assets. We finish the chapter with a discussion on the structure of
components, modules, and plugins and explain extension packaging and developing
XML manifest files for each.

Chapter 5, Component Design is about designing components. It starts with the
structure and a basic design of a component using the MVC design pattern. Then
we learn configuring the component and its various elements and parameters.

Chapter 6, Module Design covers designing modules. It explains standalone modules,
module settings, frontend and backend modules, and modules and components
working together. Then we talk about using templates.

Chapter 7, Plugin Design deals with designing plugins. It initially deals with listeners/
observers and then the various plugin groups like authentication, content editors,
search, and others. Then comes loading, translating, and using plugins as libraries.
Finally it deals with, plugin settings.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Chapter 8, Rendering Output explains ways to render output and how to maintain
consistency throughout. It starts with the joomla.html library and then continues
to describe how to build component HTML layouts. Then it discusses how to output
the backend of a component. The chapter ends with the details of itemized data
and pagination.

Chapter 9, Customizing the Page deals with customizing the page. We cover things
like modifying the document and translating, along with a brief explanation of
using JavaScript effects from the Mootools library, which is included in Joomla!.

Chapter 10, APIs and Web Services explores some of the Joomla! APIs, specifically in
relation to web services. We also discuss some of the more common web services
and take a more in-depth look at the Yahoo! Search API. The chapter finishes by
describing how we can create our own web services using plugins.

Chapter 11, Error Handling and Security provides an introduction to handling and
throwing errors, warnings, and notices. Further, it talks about building secure
Joomla! extensions. It also describes a number of common mistakes made when
coding with Joomla! and explains how to avoid them.

Chapter 12, Utilities and Useful Classes explains various utilities and useful classes like
dates, arrays, tree structures, and others.

The Appendices detail many of the Joomla! classes. Appendix B-H are only
available as a download at https://www.packtpub.com//sites/default/
files/0523_Code.zip.

Appendix A, Joomla! Core Classes provides detailed information covering the Joomla!
core classes.

Appendix B, Parameters (Core Elements) provides information on how to handle the
ever-useful JParameter class.

Appendix C, Site Configuration Settings describes the Joomla! configuration settings
and the JRegistry class.

Appendix D, Menus and Toolbars details menus and toolbars discussing the JMenu and
JPathway classes and providing complete information on toolbar buttons.

Appendix E, Joomla! HTML Library provides complete coverage of the joomla.html
library along with details on the JPane class.

Appendix F, Joomla! Utility Classes covers twenty Joomla! utility classes that perform
many common tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Appendix G, Request and Session Handling details the Joomla! request and session
handling classes, including caching and routing.

Appendix H, XML Manifest File provides detailed information on the tags available
for use in XML Manifest files.

What you need for this book
To use this book effectively you need access to a Joomla! 1.5 installation. In order
to run Joomla! 1.5 you need the following software: PHP 4.3 or higher (4.4.3 or
greater is recommended), MySQL 3.23 or higher and Apache 1.3 or higher or an
equivalent webserver.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code in text is shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[6]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
on the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit https://www.packtpub.com//sites/default/
files/0523_Code.zip to directly download the example code.
The downloadable files contain instructions on how to use them.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us.
By doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on
the let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of
that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Joomla!
Joomla! 1.5 is based on a comprehensive and flexible framework that is easily and
securely extended through a wide variety of extensions. In this chapter, we will
introduce the Joomla! framework and learn how, as developers, we can easily
extend it beyond its core functionality. This chapter will cover the following:

An overview and introduction to the Joomla! 1.5 framework
An introduction to Joomla! Extensions
An overview of the requirements to create and manage a Joomla! website
A summary of available development tools and coding standards

Overview
Joomla! is a modular and extensible PHP MySQL CMS (Content Management
System). It is an open-source project, which is released under version 2 of the GPL
license. Joomla! has fast become one of the most popular open source CMS's, which
is proved by its numerous awards and massive online community.

One of the things that has made Joomla! so popular is the large number of freely
and commercially available extensions which enable users to do far more than
simply manage content. Extensions perform many tasks, generally classified in
categories such as:

Ads & Affiliates
Calendars & Events
Communication (Chat Rooms, Forums, Guest Books, Mailing Lists,
Newsletters)
Contacts & Feedback
Directory & Documentation

•

•

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Joomla!

[10]

eCommerce (Auction, Shopping Cart)
Editing
Multimedia
News Display
Search & Indexing

Joomla! 1.5 Framework
A software framework is a reusable design for a software system (or subsystem).
This is expressed as a set of abstract classes and the way their instances collaborate
for a specific type of software. Software frameworks can be object-oriented designs.
Although designs do not have to be implemented in an object-oriented language,
they usually are. A software framework may include support programs, code
libraries, a scripting language, or other software to help develop and glue together
the different components of a software project. Various parts of the framework may
be exposed through an application programming interface (API).

From http://docs.joomla.org/Framework

Joomla! 1.5 is implemented on a software framework that provides far greater
flexibility, security, and extensibility than ever before. The Joomla! 1.5 framework is
comprised of three layers or tiers. The Framework layer provides the core functionality
upon which the upper layers depend, the Application layer contains applications
that extend the core framework functionality, and the Extension layer adds specific
functionality to the basic system.

Framework layer
The Framework layer provides core functionality through an extensive set of
libraries, plugins, and the Joomla! framework.

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Libraries
Many, but not all, of the libraries provide Joomla! with required functionality that
was originally developed and distributed by third-parties for general use, not
specifically for Joomla!.

The following table details the base libraries that are included in Joomla!:

Library Description License
archive TAR file management class (www.phpconcept.net) PHP

License 3
bitfolge Feed and vCard utilities (www.bitfolge.de) GNU LGPL
domit DOM (Document Object Model) XML Parser

(www.phpclasses.org/browse/package/1468.html)
GNU LGPL

geshi Generic Syntax Highlighter (qbnz.com/highlighter) GNU GPL
joomla Core Joomla! library GNU GPL
openid Remote login management (www.openidenabled.com) GNU LGPL

pattemplate Template handling (www.php-tools.net) GNU LGPL
pcl Archive handling (www.phpconcept.net) GNU GPL
pear PHP Extension and Application Repository

(pear.php.net)
Mixed

phpgacl Generic Access Control (phpgacl.sourceforge.net) GNU LGPL
phpinputfilter Filter out unwanted PHP / Javascript / HTML tags

(www.phpclasses.org/browse/package/2189.html)
GNU GPL

phpmailer Class for sending email using either sendmail, PHP
mail(), or SMTP (phpmailer.sourceforge.net)

GNU LGPL

phputf8 UTF8 and ASCII tools (phputf8.sourceforge.net) Mixed
phpxmlrpc XML-RPC protocol (phpxmlrpc.sourceforge.net) Special
simplepie RSS and Atom reader (simplepie.org) GNU LGPL
tcpdf PDF generator that does not require additional libraries

(tcpdf.sourceforge.net)
GNU LGPL

Framework
The framework consists of a comprehensive set of classes that provide core
functionality. A list of many of the Joomla! classes can be found in the Appendices or
you can browse the Joomla! Framework at http://api.joomla.org. Classes that
make up the framework are loosely grouped into packages for easier classification
and identification.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Joomla!

[12]

The packages that make up the framework are listed in the following table:

Package Description
Application JApplication and related classes
Base Base classes
Cache Cache classes
Client FTP and LDAP classes
Database JDatabase and related classes
Document Classes for creating and rendering pages
Environment URI, Request/Response handling, and browser classes
Error Error handling, logging, and profiling classes
Event Dispatch and Event classes
Filesystem Classes supporting file access
Filter Input and output filter classes
HTML Classes for rendering HTML
Installer Classes for installing extensions
Language Language translation classes
Mail e-mail related classes
Plugin Core Plugin classes
Registry Configuration classes
Session User session handler and storage of session data classes
User Site user classes
Utilities Miscellaneous classes

In addition to the packages, the framework includes the core JFactory and
JVersion classes.

Plugins
Plugins extend the functionality of the framework. Joomla! comes with eight core
groups of plugins, each designed to handle a specific set of events.

The following table describes the different core plugin types:

Plugin Type Description
authentication Authenticate users during the login process
content Process content items before they are displayed
editors WYSIWYG editors that can be used to edit content

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Plugin Type Description
editors-xtd Editor extensions (normally additional editor buttons)
search Search data when using the search component
system System event listeners
user Process a user when actions are performed
xmlrpc Create XML-RPC responses

In addition to the core plugin types, we can define our own types. Many components
use their own plugins for dealing with their own events. Plugins will be discussed in
detail in Chapter 7, Plugin Design.

Application layer
The Application layer extends the core JApplication class with applications
designed for managing and performing specific tasks.

The JInstallation application runs when you install Joomla!. After successfully
installing Joomla!, you are required to remove the installation folder, which contains
the JInstallation application, before proceeding. The installation of extensions
(components, modules, plugins, templates, and languages) is accomplished using
the install functionality of the JAdministrator application.

The application for the Joomla! Administrator is JAdministrator. This application
directs all of the backend administrative functions.

The application that is responsible for composing and delivering the frontend
pages is JSite.

A Joomla! website can be administered remotely by using the XML-RPC application.

Extension layer
The Extension layer extends the Joomla! framework and applications, specifically
with components, modules, templates, and languages. Plugins are also extensions
but are placed in the Framework layer because they extend the framework, not
applications. Joomla! is installed with a set of extensions including components
for both the frontend and backend applications, templates, and modules.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Joomla!

[14]

Extension types and their uses
A Joomla! extension is anything that extends Joomla!'s functionality beyond the core.
There are three main types of extension: components, modules, and plugins.

There are also languages and templates, but these are solely designed to modify
page output, irrespective of the data being displayed. Although we will discuss the
use of translation files and templates, we will not explicitly cover these two extension
types in this book.

Tools, sometimes referred to as extensions, are essentially any type of extension
that does not fall into the extension-type categories just described. We will not be
discussing how to create tools in this book.

Extensions are distributed in archive files, which include an XML manifest file that
describes the extension. It is from the manifest file that Joomla! is able to determine
what type the extension is, what it is called, what files are included, and what
installation procedures are required.

Components
Components are undoubtedly the most fundamental Joomla! extensions. Whenever
Joomla! is invoked, a component is always called upon. Unlike in other extensions,
output created by a component is displayed in the main content area. Since
components are the most fundamental extension, they are also generally the
most complex.

One component of which all Joomla! administrators will be aware, is the content
component. This component is used to display articles, content categories, and
content sections.

In addition to outputting component data as part of an XHTML page, we can output
component data as Feeds, PDF, and RAW documents.

Many components tend to include, and sometimes require, additional extensions
in order for them to behave as expected. When we create our own components,
it is generally good practice to add 'hooks' in our code, which will enable other
extensions to easily enhance our component beyond its base functionality.

Modules
Modules are used to display small pieces of content, usually to the left, right, top, or
bottom of a rendered page. There are a number of core modules with which we will
be instantly familiar, for example the menu modules.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Plugins
There are various types of plugins, each of which can be used differently; however,
most plugins are event driven. Plugins can attach listener functions and classes to
specific events that Joomla! can throw using the global event dispatcher, for example,
content filtering based on an event.

Languages
Joomla! has multilingual support, which enables us to present Joomla! in many
different languages. Language extensions include files that define translated strings
for different parts of Joomla!.

We will discuss how to create language files and how to use translations in
Chapter 2, Getting Started and later in Chapter 9, Customizing the Page.

Templates
We use templates to modify the general appearance of Joomla!. There are two types
of template extension: frontend site templates and backend administrator templates.

Most Joomla! sites use custom site templates to modify the appearance of the frontend
(what the end-user sees). Admin templates modify the appearance of the backend
(what the administrators see); these templates are less common.

There are many websites that offer free and commercial Joomla! templates, all of
which are easy to locate using a search engine.

Tools
Tools, although referred to as extensions, are very different from components,
modules, and plugins. The term 'tools' is used to describe any other type of
extension that can be used in conjunction with Joomla!.

Tools are not installed within Joomla!; they are generally standalone scripts or
applications, which may or may not require their own form of installation.

A good example of a Joomla! tool is JSAS (Joomla! Stand Alone Server). JSAS
provides an easy way to set up Joomla! installations on a Windows-based system.
To learn more about JSAS please refer to http://www.jsasonline.com..

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Joomla!

[16]

Extension Manager
Joomla! uses the Extension Manager to manage extensions that are currently installed
and also to install new extensions. When we install new extensions, we use the same
installation mechanism irrespective of the extension type. Joomla! automatically
identifies the type of extension during the extension installation phase.

Requirements
To use Joomla! and develop new extensions, a user's system must fulfill a number of
basic requirements. This list details the minimum requirements:

MySQL 3.23 available at http://www.mysql.com
PHP 4.3 available at http://www.php.net
A web server (if using Apache, minimum version is 1.13.19, which is
available at http://www.apache.org)

Precise version requirements may differ depending upon the exact
version of Joomla! that is being used.

An easy way to quickly obtain and install all of these is to use XAMPP (Apache,
MySQL, PHP, and Perl). This project packages all of the necessary pieces of software
required to run Joomla! in one installation package. XAMPP is available for the
Linux, Mac, Solaris, and Windows operating systems. To learn more about XAMPP,
please refer to http://www.apachefriends.org/xampp.html.

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Another easy way to get started with Joomla! is to use JSAS (Joomla! Stand
Alone Server). JSAS enables us to quickly set up multiple Joomla! installations
on a Windows-based system. To learn more about JSAS, please refer to
http://www.jsasonline.com.

Joomla! itself is relatively easy to set up and, if necessary, an administration
and installation guide can be found on the official Joomla! help site:
http://help.joomla.org.

Whenever we are developing extensions for Joomla!, it is always good
practice to test the extensions on multiple systems. Extensions should
preferably be tested on Windows and Linux systems and tested using
PHP 4 and PHP 5.

Joomla Extension Directory (JED)
The Joomla! Extension Directory (http://extensions.joomla.org/) is an official
part of Joomla! and is maintained by the 'Sites and Infrastructure' working group.
The directory categorizes details of third-party Joomla! extensions on which users
are allowed to post reviews and ratings.

Details of extensions that are listed in JED are submitted and maintained by the
extension owner or developer. A listed extension can include a category, name,
description, homepage, image, license, version, download link, demonstration link,
developers name, email address, and Joomla! version compatibility information.

JED is the normal place where administrators look for extensions for their Joomla!
installation. Before we create new extensions, it is a good idea to investigate any
similar existing extensions; JED is the perfect place to begin. If we intend to make an
extension publicly available, JED is one of the best places to advertise an extension.

Development tools
There are numerous development tools available that we can use to develop Joomla!
extensions. Most of these tools are not specific to Joomla!-like code and image editors
or version control systems. Many can be found on the Joomla! extension directory at
http://extensions.joomla.org/extensions/tools/development-tools.

When choosing an editor for modifying PHP source files, we recognize that it is
important to ensure that the editor supports UTF-8 character encoding. Integrated
Development Environments (IDE) such as the open source Eclipse and the
commercial Adobe Dreamweaver are two of the more popular.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Joomla!

[18]

Open source image editors such as Gimp and Inkscape along with commercial
products such as Adobe Photoshop, Illustrator, and Fireworks are frequent choices
for manipulating web graphics.

JoomlaCode.org
An invaluable resource for developers is the developers' forge: http://www.
joomlacode.org. This official site is used to host open source Joomla! projects. It
provides third-party open-source Joomla! developers with free access to useful project
development tools. This list details some of the tools JoomlaCode.org provides us:

Document Manager
Forums
FRS (File Release System)
Mail Lists
News
SVN (Subversion)
Tasks
Tracker
Wiki

If we intend to create an open source Joomla! project, we should consider using
JoomlaCode.org to host the project, even if we do not intend to use all of the features
it provides.

Coding standards
While you may not consider coding standards a tool, using a standardized format
makes code easier to read and allows other developers to edit code more easily.
Joomla! uses the PEAR coding standards. A complete guide to the PEAR coding
standards is available at http://pear.php.net/manual/en/standards.php.

Here is a breakdown of the more common rules:

Indents are four spaces: \

{

 // four space before me!

Control structures have one space between the name and first parenthesis:
if (true) {

•

•

•

•

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Curly braces should be used even when they are optional.
Functions and methods are named using the camelCase standard with a
lowercase first character.
Functions and method declarations have no spaces between the name and
first parenthesis. Parameter lists have no spaces at the ends. Parameters are
separated by one space: foo($bar0, $bar1, $bar2).
Optional function and method parameters must be at the end of the
parameter list. Optional parameter values, signified by an equals sign,
are separated by spaces: function foo($bar0, $bar1, $bar2 = '').
Use phpDocumentor tags to comment code http://www.phpdoc.org/.
Use include_once() and require_once() in preference to include()
and require().
Use <?php ?> in preference to all other PHP code block delimiters.

phpDocumentor
phpDocumentor is a documentation tool that allows us to easily create
documentation from PHP source code. The documentation is extracted from the
source and from special comments within the source; these comments are very
similar to those used by JavaDoc.

This example demonstrates how we might document a simple function:

/**
 * Adds two integers together
 *
 * @param int $value1 Base value
 * @param int $value2 Value to add
 * @return int Resultant value
 */
function addition($value1, $value2)
{
 return ((int)$value1 + (int)$value2)
}

The multiline comment denotes a DocBlock. Note that it uses a double asterisk at the
start. The first line is a general description of the function; this description can span
more than one line. @param and @return are tags.

The @param tag is used to define a parameter in the format (the name is optional):

@param type [$name] description

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Joomla!

[20]

The @return tag is used to define the return value in the format:

@return type description

Our initial example is telling us that the addition() function has two named integer
parameters that it will add together. It will then return the resultant integer value.

When we document complex functions, we might want to provide two descriptions:
a long description and a short description. This example demonstrates how we
do this:

/**
 * Does some complex processing
 *
 * A verbose description of the function that spans more than
 * one line
 *
 * @param int $value1 Base value
 * @param int $value2 Value to add
 * @return int Resultant vaue
 */
function someComplexFunction($value1, $value2)
{
 // does some complex processing
}

Functions are not the only elements that can be documented. Elements that we can
document include:

class methods
class variables
classes
define()
files
function declarations
global variables (requires use of the @global tag)
include()/include_once()

require()/require_once()

•

•

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

This list defines some common tags we are likely to encounter:

@access private|protected|public

@author name

@param type [$name] description

@return type description

@static

The DocBlocks are easy to read when they are displayed in code, but, more
importantly, we can automatically create documentation from the source
code. For more information about using phpDocumentor, please refer to
http://www.phpdoc.org/.

J!Dump
J!Dump allows us to output variables during development. The output is displayed
in a configurable pop-up window and describes data types and object properties
and methods.

J!Dump comes as two separate extensions: a component, which we use to configure
the functionality of J!Dump, and a system plugin, which defines functions that we
use to 'dump' data to the J!Dump pop-up. Both extensions are required in order for
J!Dump to function correctly.

In order for one to use J!Dump the plugin must be published. If
it is not, when we attempt to use the J!Dump functions, we will
encounter fatal errors.

The most important function in J!Dump is the dump() function. We can pass a
variable to this function, and it will be displayed in the pop-up. This example
demonstrates how we use the dump() function:

// create example object
$object = new JObject();
$object->set('name', 'example');

// dump object to popup
dump($object, 'Example Object');

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Joomla!

[22]

Using this will create a pop up, which looks like this:

Other functions we can use include dumpMessage(), dumpSysinfo(),
dumpTemplate(), and dumpTrace().

To get a copy of J!Dump, refer to http://joomlacode.org/
gf/project/jdump.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

Summary
In this chapter, we have seen that Joomla! 1.5 is based on a comprehensive and
flexible framework that is easily and securely extended through a wide variety of
extensions. There are essentially six types of extensions: components, modules,
plugins, languages, templates, and tools. As we have seen, each type has a very
specific use. We have briefly discussed the way in which extensions of different
types can be dependent upon one another.

We learned that there are many development tools available, both open source and
commercial, some that are and some that are not Joomla! specific. The developers'
forge is also a great resource available to Joomla! extension developers.

We also learned that the coding standards that we use are ultimately up to us, but
we should consider using the same standards as those implemented by the Joomla!
project. If we choose not to use these standards, we should still consider adding
doctags to our classes and functions because they can greatly decrease development
and debug time.

In the next chapter, we will delve deeper into the Joomla! basic design and explore
how applications are created, initialized, and executed. We will also discuss the
basic directory and file structure that makes up a Joomla! website. Anyone who
intends to develop Joomla! extensions needs to have a solid understanding of
how Joomla! works.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started
To design and develop extensions for Joomla!, we must begin by understanding its
basic design and how it operates. This chapter is, by design, highly technical, and
experienced Joomla! developers may wish to quickly scan it. Understanding how
Joomla! operates at its core is important to building efficient and well-designed
extensions. This chapter will get us started by:

Providing the core concepts behind Joomla!
Describing the actions necessary to process an input request and return an
output response
Giving a brief discussion on some of the coding aspects
Explaining how to use some of the more common Joomla! elements.

A quick object lesson
Joomla! is primarily written in PHP, an object-oriented server-based scripting
language. This means that in order to develop extensions for Joomla!, developers
must understand the concepts such as classes and objects, properties and methods.
If you are unfamiliar with object-oriented programming, you should spend some
time with one of the many great books available before you attempt to begin
Joomla! development.

Joomla! 1.5 was designed to run within either the PHP4 or PHP5 environment. This
impacts how we build classes and use objects in Joomla!, the topic we will discuss
throughout this section. The Joomla! development team has chosen to continue
support of PHP4 for reasons of backward compatibility as many web hosts have yet
to support PHP5. As third-party developers, we should follow suit and always build
our extensions to be PHP4 compatible despite the fact that it may limit our use of
some of the newer features and functions provided by PHP5.

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[26]

Before we start building and using classes, there are a few important items that we
need to consider. We will start by looking at naming conventions.

Class names should start with an uppercase letter
All named elements should use the camelCase standard
Method names should start with a lowercase letter
Non-public elements should start with an underscore

Access modifiers (public, private, protected) for object methods and properties were
first introduced with the release of PHP5. In order for Joomla! to run successfully
on earlier versions of PHP, we cannot use these access modifiers. However, we can
simulate this feature by using a special naming convention to indicate non-public
(private or protected) elements. Methods and properties that are non-public are
prefixed with an underscore. For example, _myVariable will be considered a local,
non-public element while myVariable will be considered publicly accessible. While
this approach does not prevent public access, it does provide a visible indicator of
expected usage.

We often pass and return objects and arrays by reference; this means that multiple
variables can point or refer to the same object or array. It is important to note that
in PHP5 objects are always passed by reference while PHP4 objects are, by default,
passed by value. This means that a duplicate object is created, one that is separate
and distinct from the original object; changes made to the duplicate are not made
to the original.

When developing extensions, you must have a clear understanding of this difference
in order to avoid serious problems when your extension is used in either a PHP4 or
PHP5 environment. Methods, functions, and parameters that are passed or returned
by reference must be prefixed with an ampersand. To insure consistency between
PHP4 and PHP5, when we use a method or function that returns a reference, we
must use the =& assignment operator as the following example demonstrates:

function &go()
{
 $instance = new stdClass();
 return $instance;
}

$reference =& go();

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

Whenever a new object is created, the constructor is automatically and implicitly
called. The object constructor is a method that is normally used to automatically
initialize default properties. With PHP4, you created the constructor method using
the class name. For example, a class of myClass would have a constructor
method defined as function myClass(){}. PHP5 introduced __construct()
as the standard name for the constructor although the PHP4 naming convention
is still supported.

Note that the constructor name, __construct(), in PHP5 begins with
a double underscore. It is easy to forget and use only one underscore.
Object creation under PHP5 will look for a constructor with the class
name or with two underscores and the name construct; finding neither
will result in no constructor execution.

Inheriting from JObject
In Joomla!, we often come across the class JObject. Nearly all Joomla! classes are
derived from the base class JObject. This base class provides us with some useful,
and common methods including standard accessors and modifiers and a common
error handling mechanism. We can depict the basic structure of the JObject class
using standard UML notation:

It is important to note that JObject provides two constructors. To support PHP5
methodology, JObject includes the PHP5 constructor allowing us to use the
constructor method __construct() in subclasses irrespective of the version of
PHP that has been installed. To support PHP4 installations, JObject includes
the JObject::JObject() constructor.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[28]

When we use inheritance in our classes, we should, as a rule, always call the
constructor of the parent class. This guarantees that any construction work
required by a parent class is executed.

/**
 * Some Class which extends JObject
 */
class SomeClass extends JObject
{
 /**
 * Object name
 * @var string
 */
 var $name;

 /**
 * PHP 5 style Constructor
 *
 * @access protected
 * @param string name
 */
 function __construct($name)
 {
 $this->name = $name;
 parent::__construct();
 }
}

The JObject class provides several useful methods that all derived classes can use.
The getPublicProperties() method returns an array of public property names
from the object. This is determined at run time and uses the object properties, not
the class properties.

The get() and set() methods are used to get and set properties of the object. If
we use get() with a nonexistent property, the default value will be returned. If we
use set() with a nonexistent property, the property will be created. Both of these
methods can be used with private (non-public) properties.

We can keep track of errors that occur in an object using the getErrors(),
getError(), and setError() methods. Errors are recorded in the _errors array
property. An error can be a string, a JException object, or a PHP Exception object.
JException objects are created when we raise errors; this is explained in detail in
Chapter 11, Error Handling and Security.

A full description of the JObject class is available in Appendix A, Joomla! Core Classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Design Patterns
Before we delve too deeply into Joomla!, we need to take a moment to consider and
understand the patterns that occur in code, often referred to as Design Patterns. For
a complete description of design patterns, you should consider reading the book
Design Patterns: Elements of Reusable Object-Oriented Software. This book, originally
published in 1994 and written by Erich Gamma, Richard Helm, Ralph Johnson,
and John M. Vissides (commonly referred to as the Gang of Four), is considered the
ultimate guide and reference to Software Design Patterns.

Joomla! utilizes many software design patterns, and these will be identified and
discussed as they occur throughout the remainder of the book. For example, the
Model View Controller (MVC) design pattern will be discussed in Chapter 5,
Component Design.

One of the most common and familiar patterns is the iterator pattern. This
pattern describes how we perform one task multiple times by using a loop. Joomla!
uses numerous design patterns, many of which are far more complex than the
iterator pattern.

The factory pattern is a creational pattern used to build and return objects. The
factory pattern is used in cases where different classes, usually derived from an
abstract class, are instantiated dependent upon the parameters. Joomla! provides
us with the static class JFactory, which implements the factory pattern. This class
is important because it allows us to easily access and instantiate global objects.

This example shows how we can access some of the global objects using JFactory:

$db =& JFactory::getDBO();
$user =& JFactory::getUser();
$document =& JFactory::getDocument();

More information about JFactory can be found in Appendix A, Joomla! Core Classes.

A singleton pattern is used to allow the creation of only a single object of a specific
class. This is achieved by making the constructor private or protected and using a
static method to instantiate the class. In versions of PHP prior to version 5, we are
unable to enforce this restriction.

Many of the Joomla! classes use a pseudo-singleton pattern to allow us to instantiate
and access objects. To achieve this, Joomla! often uses a static method called
getInstance(); in some cases, JFactory acts as a pass-through for this method.
Classes that implement this method are not always intended to be singleton classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[30]

We can think of them as being a hierarchy in how we instantiate objects. We should
use these methods in order of priority: JFactory method, getInstance() method,
and normal constructor (new).

If you're unsure how a specific class implements a
getInstance() method, you should check the official API
reference at http://api.joomla.org. The getInstance()
and JFactory methods always return references; always use
the =& assignment operator to prevent copying of objects.

In cases where JFactory and a class both provide a method to return an instance of
the class, you should generally use the JFactory method in preference. If the class
provides a more comprehensive getInstance() method than JFactory, you may
want to use the class method to get an instance tailored specifically for your needs.

Predefined constants
There are over 400 constants, many of which are part of the third-party libraries,
though we don't need to know them all. One constant with which we will quickly
become familiar is _JEXEC; this constant is used to ensure that when files are
accessed, they are being accessed from a valid entry point. You should include
the following code, or similar, at the top of all your PHP files:

defined('_JEXEC') or die('Restricted access');

The constants that you will probably use the most relate to paths. The DS constant is
the character used by the operating system to separate directories; this is normally a
backslash (\) or a forward slash (/). This table describes the different path constants;
the examples, described within the parentheses, assume that the installation is
located in /joomla and that, we are accessing the installation from the frontend;
the actual path may be different for any given installation.

Name Description
DS Directory Separator (OS specific, e.g. / or \)
JPATH_BASE Root path for the current application:

JPATH_BASE == JPATH_ADMINISTRATOR
JPATH_BASE == JPATH_SITE
JPATH_BASE == JPATH_INSTALLATION

JPATH_ROOT Root path for the site, not dependent on any application.
(/joomla)

JPATH_SITE Root path to the JSite Application (JPATH_ROOT)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Name Description
JPATH_CONFIGURATION Configuration path (JPATH_ROOT)
JPATH_ADMINISTRATOR Root path to the JAdministrator application

(JPATH_ROOT.DS.'administrator')
JPATH_XMLRPC Remote Web Services Application Path

(JPATH_ROOT.DS.'xmlrpc')
JPATH_LIBRARIES Libraries path (JPATH_ROOT.DS.'libraries')
JPATH_PLUGINS Plugins path (JPATH_ROOT.DS.'plugins')

JPATH_INSTALLATION Installation path (JPATH_ROOT.DS.'installation')
JPATH_THEMES Templates path (JPATH_BASE.DS.'templates')
JPATH_CACHE Cache path (JPATH_BASE.DS.'templates')

The following component paths are always specific to a component:

JPATH_COMPONENT Component path
(JPATH_BASE.DS.'components'.DS.$name)

JPATH_COMPONENT_SITE Frontend component path
(JPATH_SITE.DS.'components'.DS.$name)

JPATH_COMPONENT_
ADMINISTRATOR

Backend component path
(JPATH_ADMINISTRATOR.DS.'components'.
DS.$name)

Four date constants define different date-formats. These formats are designed to be
used when displaying dates using the JDate class; a full description of the JDate
class is available in Chapter 12, Utilities and Useful Classes and in Appendix F, Utility
Classes. The format values vary depending on the language locale; the default
formats are used if they are not defined in the corresponding locale language
file (we will discuss multilingual support shortly).

Name Default Format Example
DATE_FORMAT_LC %A, %d %B %Y Sunday, 23 June 1912
DATE_FORMAT_LC2 %A, %d %B %Y %H:%M Sunday, 23 June 1912 00:00
DATE_FORMAT_LC3 %d %B %Y 23 June 1912
DATE_FORMAT_LC4 %d.%m.%y 23.06.12

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[32]

A number of constants in Joomla! 1.5 have been deprecated. The following constants
are included for legacy compatibility. You should not use these in new extensions.
These constants are only available if the legacy system module is published.

Deprecated Constant Description
_ISO Character set
_VALID_MOS Use _JEXEC instead
_MOS_MAMBO_INCLUDED Use _JEXEC instead
_DATE_FORMAT_LC Use DATE_FORMAT_LC instead
_DATE_FORMAT_LC2 Use DATE_FORMAT_LC2 instead

The Joomla! process
For security purposes, Joomla! has been designed with only two entry points.
Frontend and backend requests are always initiated through the root index.php and
administrator/index.php entry points respectively. When we create extensions for
Joomla!, we must be sure to never create any new entry points. To ensure that we do
not do so, we should always include the code described in the previous section at the
beginning of all our files. By using the normal entry points, we are guaranteeing that
we are not circumventing any security or other important procedures.

Working with JRequest
Generally when we develop PHP scripts, we work extensively with the request
hashes: $_GET, $_POST, $_FILES, $_COOKIE, and $_REQUEST. In Joomla!, instead of
directly using these, we use the static JRequest class. We use this because it allows
us to process the input at the same time as retrieving it; this decreases the amount
of code required and helps improve security.

The request hashes $_GET, $_POST, $_FILES, $_COOKIE, and $_REQUEST are still
available, and in cases where we are porting existing applications, we need not
change the use of these hashes.

The two methods that we use the most are JRequest::getVar() and JRequest::
setVar(). As the names suggest, one accesses request data and the other sets it. In
this example, we get the value of id; if id is not set, we return to a default value, 0
(the default value is optional).

$id = JRequest::getVar('id', 0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

The JRequest::setVar() method is used to set values in the request hashes. In
comparison to the JRequest::getVar() method, this method is used relatively
infrequently. It is most commonly used to set default values. For example, we
might want to set the default task in a component if it is not already selected,
as seen in the next example:

JRequest::setVar('task', 'someDefaultTask');

A useful trick to guarantee that a variable is set is to use the two methods in
conjunction. In this example, if name is not set, we set it to the default value
of unknown:

JRequest::setVar('name', JRequest::getVar('name', 'unknown'));

Some other handy methods in JRequest are getInt(), getFloat(), getBool(),
getWord(), getCmd(), and getString(). If we use these methods, we guarantee
that the returned value is of a specific type.

It is important to familiarize yourself with the JRequest methods
described above because they are used extensively in Joomla!. In addition,
we will use them repeatedly in the code examples presented throughout
this book. Detailed information on the JRequest class and its methods
can be found in Appendix G, Request and Session Handling.

There is far more we can achieve using these methods, including preprocessing of data.
A more complete explanation is available in Chapter 11, Error Handling and Security.

From Request to Response
To help describe the way in which the frontend entry point processes a request, we
will refer to the following flowcharts as we walk through the process in detail, from
request to response. The processes involving the backend are very similar.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[34]

The first flowchart describes the overall process at a high level in seven generic steps.
The following six flowcharts describe the first six of these generic steps in detail.
We do not look at the seventh step in detail because it is relatively simple, and the
framework handles it entirely.

Receive Request Load Core Build Application
Overall process as handled
by index.php

Loads required
framework and
application classes

Builds the application object

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

Initialize Application Route Application
Prepares the application Determines application route

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[36]

Dispatch Application Render Application
Executes the determined route through a
component

Renders the application (exact rendering
process depends on the document type)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

The following describes in greater detail the basic steps of the request
outlined previously:

Load Core
Build Application
Initialize Application
Route Application
Dispatch Application
Render Application
Send Response

Load Core
If this is the initial request, the first step in the process initializes the core framework;
subsequent requests will not cause additional initialization to take place.

Libraries
Joomla! includes a selection of useful libraries (Libraries, Chapter 1, Introduction
to Joomla!) including its own library—joomla. To import a library, we use the
jimport() function. In this example, we import the joomla.filesystem.file
library, which is provided specifically for handling files:

jimport('joomla.filesystem.file');

When we import a library, we have the option of importing the entire library or
just a small part of it. The previous example imports the /libraries/joomla/
filesystem/file.php file. If we want, we can import all of the files in the file
system directory. To do this, we need to use the asterisk wildcard:

jimport('joomla.filesystem.*');

In this step, Joomla! performs the following actions:

1. The _JEXEC and DS constants are defined and the defines.php is loaded.
(See the Predefined Constants section described earlier in this chapter.)

2. Load framework.php if not previously loaded.
3. Modify configuration options for magic quotes and Zend compatibility.
4. A check is made to determine if the configuration.php or installation

application are present. If the installation application is present, the process is
redirected to the JInstallation application. If neither the configuration.
php file nor the installation application are found, the application exits.

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[38]

5. Load import.php, if not already loaded, which loads the JLoader static
class. JLoader imports the following core framework libraries :

joomla.base.object (JObject)
joomla.environment.request (JRequest)
joomla.environment.response (JResponse)
joomla.factory (JFactory)
joomla.version(JVersion)
joomla.error.error (JError)
joomla.error.exception (JException)
joomla.utilities.arrayhelper (JArrayHelper)
joomla.filter.filterinput (JFilterInput)
joomla.filter.filteroutput (JFilterOutput)
joomla.methods (JText)
joomla.methods (JRoute)

6. The input request is cleaned to remove any unexpected data and to ensure
that the request data is of an expected type (See Dealing with CGI Request
Data, Chapter 11, Error Handling and Security.)

7. Load configuration.php if it has not been loaded.
8. Instantiate the JConfig object.
9. Set error reporting and JDEBUG options.
10. Load PHP compatibility functions and classes.
11. Initialize the profiler (if JDEBUG is set.)
12. Import the following Joomla libraries:

joomla.application.menu (JMenu)
joomla.user.user (JUser)
joomla.environment.uri (JURI)
joomla.html.html (JHTML)
joomla.utilities.utility (JUtility)
joomla.event.event (JEvent)
joomla.event.dispatcher (JDispatcher)
joomla.language.language (JLanguage)
joomla.utilities.string (JString)

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Build application
The second step creates the framework application. The application is a global
object used to process a request. Application classes extend the abstract base class
JApplication; the two application classes that we are interested in are JSite and
JAdministrator. Joomla! uses JSite and JAdministrator to process frontend
and backend requests respectively. Much of the functionality of JSite and
JAdministrator is the same; however, only JSite is described here.

The application object (JSite or JAdministrator) is always stored in the
$mainframe variable. The application object is a global variable which can be
accessed from within functions and methods by declaring $mainframe global:

/**
 * Pass-through method to check for admin application.
 *
 * @access public
 * @return boolean True if application is JAdministrator
 */
function isAdmin()
{
 global $mainframe;
 return $mainframe->isAdmin();
}

The process includes the following:

1. Setting the global $mainframe variable by calling JFactory::
getApplication('site'), which creates an instance of the JSite object.

2. Loading default configuration and session data.
3. Creating the configuration object.
4. Creating a session, if requested (the following section provides more details).
5. Setting the request date and timestamp.

The session
Sessions are used in web applications as a means of providing a temporary storage
facility for the duration of a client's visit. In PHP, we access this data using the global
hash $_SESSION.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[40]

Joomla! always provides us with a session, irrespective of whether or not the client
user is logged in. In Joomla!, instead of accessing the $_SESSION hash, we use the
global session object to get and set session data. Session data is stored in namespaces;
the default namespace is default. In this example, we retrieve the value of the
default.example:

$session =& JFactory::getSession();
$value = $session->get('example');

If we want to retrieve a value from a namespace other than default, we must also
specify a default value. In this example, we retrieve the value of myextension.
example with a default value of null:

$session =& JFactory::getSession();
$value = $session->get('example', null, 'myextension');

Setting values is very similar to retrieving values. In this example, we set the value of
myextension.example to 1:

$session =& JFactory::getSession();
$session->set('example', 1, 'myextension');

Sessions use relatively flat data structures; because of this, there is a JRegistry
object within the session. The JRegistry class uses a far more sophisticated way of
storing data in namespaces. To use this area of the session, we use the application
method getUserState(). A more complete explanation of sessions is available in
Chapter 4, Extension Design and in Appendix G, Request and Session Handling.

Initialize application
The global application instance calls JSite::initialise which completes the
initialization process:

1. Set the language to be used for the frontend. This may be the default which is
en_GB or user specified.

2. Call parent::initialise (JApplication class).
Call JFactory::getUser, which initializes the user object.
Call JFactory::getSession to create a session.
Set the editor to the one specified by the user; use the default if
none is specified.

3. Import the system plugins.
4. Trigger the onAfterInitialise event.

°

°

°

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Multilingual support
A major strength of Joomla! is its built-in multilingual support. The default language
is configured in the Language Manager and can be overridden by a logged in
user's preferences.

The static JText class is the standard mechanism used to translate strings. JText
has three methods for translating strings: _(), sprintf(), and printf(). The
method that you will probably use most is _(). This method is the most basic; it
translates a string.

In this example, we echo the translation of Monday (if a translation cannot be found
for the string, the original string is returned):

echo JText::_('Monday');

The JText::sprintf() method is comparable to the PHP sprintf() function. We
pass one string to translate and any number of extra parameters to insert into the
translated string. The extra parameters will not be translated.

In this example, if the translation for SAVED_ITEMS is Saved %d items, the returned
value will be Saved 3 items:

$value = JText::sprintf('SAVED_ITEMS', 3);

Alternatively we can use the JText::printf() method. This method is comparable
to the PHP function printf(). This method returns the length of the resultant string
and outputs the translation.

$length = JText::printf('SAVED_ITEMS', 3);

If we want to create any new translations for our extensions, we can create special
INI translation files. A more complete explanation of how to build a translation file
is available in Chapter 9, Customizing the Page.

UTF-8 string handling
In order for Joomla! to fully support multilingual requirements, Joomla! uses the
Unicode character set and UTF-8 (Unicode Transformation Format-8) encoding.
Unicode is a character set that attempts to include all characters for every
common language.

UTF-8 is a lossless encoding of Unicode, which employs a variable character
length. This makes UTF-8 ideal for Internet usage because it uses a minimal
amount of bandwidth but represents the entire Unicode character set.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[42]

When dealing with the English character set, UTF-8 uses the same encodings as
ASCII and ANSII; as a result, UTF-8 encoded strings that use these characters
appear identical to their ASCII and ANSII alternatives. Applications that are
Unicode unaware are therefore able to handle many UTF-8 strings.

One such application that is not Unicode aware is PHP. We therefore have to be
careful when manipulating strings. PHP assumes all characters are eight bits
(one byte), but because UTF-8 encoded characters can be longer, corruption of
Unicode data can occur.

There is a PHP module, mbstring, which adds support for multi-byte character
encodings; unfortunately, not all PHP systems have the mbstring module. In
Joomla!, we are provided with the static JString class; this class allows us to
perform many of the normal string manipulation functions with UTF-8 characters.

This example demonstrates how we can use JString to convert a string to upper
case. Note that the method name is identical to the PHP function we would
normally use:

$string = JString::strtoupper($string);

The following table describes the PHP string functions and the corresponding
JString methods:

PHP Function JString method Description
strpos strpos Finds the first occurrence of a string in a string.
substr substr Gets a portion of a string.
strtolower strtolower Converts a string to lowercase.
strtoupper strtoupper Converts a string to uppercase.
strlen strlen Counts the length of a string.
str_ireplace str_ireplace Substitutes occurrences of a string with another

string in a string (case insensitive).
str_split str_split Splits a string into an array.
strcasecmp strcasecmp Compares strings.
strcspn strcspn Gets the length of the string before characters

from the other parameters are found.
stristr stristr Finds the first occurrence of a string in a string

(case insensitive).
strrev strrev Reverses a string.
strspn strspn Counts the longest segment of a string

containing specified characters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

PHP Function JString method Description

substr_replace substr_replace Replaces a defined portion of a string.
ltrim ltrim Removes white space from the left of a string.

rtrim rtrim Removes white space from the right of a string.
trim trim Removes white space from both ends of a

string.
ucfirst ucfirst Converts the first character to uppercase.
ucwords ucwords Converts the first character of each word to

uppercase.
transcode Converts a string from one encoding to

another. Requires the PHP iconv module.

Route application
In this step, the request URI is parsed to determine what component should process
the request. Optional component parameters are then appended to the request object,
which will be processed when the application is dispatched.

URI structure
Whenever we send a request to Joomla!, a URI (Uniform Resource Indicator) is
generated that contains query data. Before we delve into query data and its uses,
the following diagram will describe the different parts of a URI:

The query element is the part of the URI from which we retrieve the data. Query data
is composed of a series of key-value pairs, each separated by an ampersand.

The first query key we will look at is option. This key determines the component
being requested. Component names are always prefixed with com_. In this example,
we access the component named example:

http://www.example.org/joomla/index.php?option=com_example

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[44]

Menus are the primary means by which users navigate the Joomla! interface. Menus
consist of a number of menu items, each of which defines a link to a component
(internal) or a URI (external). We can also modify menu items by changing
parameters specific to the chosen component, and assigning templates to them.

A unique ID identifies every menu item. The ID enables us to invoke a component
without using the option query key. Instead, we can use the Itemid query key. This
key also serves a secondary purpose; when the menu item ID is known, the menu
item can be highlighted and any submenu items displayed (depending on the exact
setup of the installation). In this example, we invoke menu item 1:

http://www.example.org/joomla/index.php?Itemid=1

Some components can output data in different formats. If we want to output data
in a different format, we can use the format query key. This will only work if the
component we are accessing supports the specified format. In this example, we
invoke component example and request the data in feed format:

http://www.example.org/joomla/index.php?option=com_
example&format=feed

Another common query key is task, which is used to direct the component to
perform. When we create our own components, it is often advantageous to specify
the task since, in many cases, our components are designed to interact with the
Joomla! framework. In this example, we request the component example and
invoke the task view:

http://www.example.org/joomla/index.php?option=com_example&task=view

When we build our own URIs, we need to make sure that we do not insert a value
for a query key that may conflict with any of the core query values. Doing so
could result in unexpected behavior. The following is a list of some of the main
core query keys:

format

hidemainmenu (backend only)
Itemid

layout

limit

limitstart

no_html

option

•

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

start

task

tmpl

tp

vars

view

When we output URIs, we must use the static JRoute::_() method. Using this
method means that we do not have to keep track of the menu item ID. The following
example shows how we use the method:

echo JRoute::_('index.php?option=com_example&task=view');

If we are using this method from within a component and are linking to the current
component, we do not need to specify option. Note that we do not encode the
ampersand, as per the XHTML standard; JRoute will handle this for us.

There is another advantage of using the static JRoute::_() method. Joomla!
supports SEO (Search Engine Optimization). If enabled, the JRoute::_() method
will automatically convert addresses into SEO friendly addresses. For example, the
previous example might produce the following:

http://example.org/joomla/index.php/component/com_example

Always use the static JRoute::_() method to output URIs.

Application routing performs the following actions:

1. The full request URI (JURI::getInstance) is retrieved.
2. The URI is parsed, and the application route determined.
3. The menu item ID (JSite::getMenu) is determined, and the access level

is verified.
Redirect the user to login if not logged in.
Raise an error and halt if the user is logged in but does not have
the appropriate access authorization.

4. The OnAfterRoute event is triggered.

•

•

•

•

•

•

°

°

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[46]

Dispatch application
At this point in the process, the application has been built and initialized, and the
request route determined. Now the process of creating the document, a global
object used to buffer a response, begins. Joomla! provides several document types
including HTML, PDF, RAW, feed, and error. The HTML document uses the
site-selected template and renders an XHTML page. The PDF document renders
content as a PDF file. The RAW document enables components to output raw data
with no extra formatting. The feed document is used to render news feeds. The error
document renders the error templates.

When we output data in our extensions, it is added to the document. This enables us
to modify the output before sending it; for example, we can add a link to a JavaScript
file in the document header at almost any point during the application lifetime.

Dispatching is the process of pulling the option from the request object and mapping
it to a component. If the component does not exist, the dispatch process selects a
default component to use. During the dispatch process, the following actions
are performed:

1. The component option is retrieved from the request (JRequest::
getCmd('option')).

2. JSite::dispatch is called.
A document object (JDocument) is created by a call to
JFactory::getDocument.
The current user is retrieved by a call to JFactory::getUser.
The document router is determined.
The component parameters are retrieved.
If the document type is html, the metadata is set.
The base URI is set.
The document title and description are set.
Locate and execute the component, if it exists and is enabled; if
it does not exist or is disabled throw an error.

3. Trigger the onAfterDispatch event.

°

°

°

°

°

°

°

°

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Render application
The rendering process completes the building of the document. The final format is
determined by the type of document.

1. The document type is retrieved.
2. If the document is HTML, the template is retrieved and document

parameters are set.
3. The document response headers are set.
4. The document body content is output.
5. The onAfterRender event is triggered.

Send response
The request has been processed, the application has been built and initialized,
and the document has been created and formatted. The final action is to send
the response. The response may be compressed if the option has been set.

Directory structure
Developing extensions for Joomla! requires more than writing code. You must be
knowledgeable of the design and processes involved and have an understanding
of the overall directory structure.

The following diagrams describe the different folders that are present in a Joomla!
installation and their purposes. We will explore some of the folders and their content
in greater detail in subsequent chapters.

Note that the root folder contains an administrator folder, which contains most of
the files and folders required for backend operations. The remaining folders found
under the root folder are generally intended for frontend use. There are exceptions
in both cases; the backend application make use of plugins that are only found in
the frontend plugin folder, and some frontend code makes use of code located in
the backend folders.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[48]

We will discuss the content of both frontend and backend folders in greater detail in
subsequent chapters. It will be worthwhile to explore the Joomla! directory structure
in some detail as early as possible; familiarity with its contents will help answer many
questions as we proceed in learning more about extension development.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

The next diagram follows immediately below the cache directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[50]

Summary
In order to develop efficient and well-designed extensions for Joomla!, you must
have a basic understanding of objects and classes and the differences between
PHP4 and PHP5.

It is essential that you understand the process that Joomla! performs in creating an
application because this embodies the complete process of responding to a request.
The document is used to determine the format of the response data and as a buffer
to store the response data.

Instead of using the request and session hashes in Joomla!, we use the static
JRequest class and the global JSession object. The JRoute class enables us to parse
and build internal URIs. The JText class is used to translate strings into different
languages. Limitations in PHP mean we must use JString to handle UTF-8 data;
if we do not, we run the risk of corrupting data.

Developing Joomla! extensions requires a solid understanding of the input/output
process as well as the location and purpose for the different folders that make up a
Joomla! installation.

In the next chapter, we will cover the Joomla! database (including a general overview
of database conventions as they relate to Joomla!) and finally discuss how to use the
JDatabase and JTable classes to access and manipulate data stored in the database.

www.it-ebooks.info

http://www.it-ebooks.info/

The Database
The ability to manage, store, retrieve, and display large amounts of dynamic content
(data) is perhaps the primary reason for implementing a Content Management
System (CMS) such as Joomla!. For performance, accessibility, and reliability
reasons, most of the content or data is stored in a relational database and accessed by
executing SQL statements. Joomla! comes with a set of core classes and drivers that
provide native support for two database systems while allowing for the possibility
of extending support to additional database systems. The core classes also provide
transparent connectivity and consistent SQL query syntax which significantly
simplifies data access.

This chapter will cover the following topics:

The Joomla! core database
Database naming conventions
Special considerations
Use of the database

The core database
Joomla! 1.5 provides drivers that support two relational database systems, MySQL
and MySQLi, while leaving the question of additional database support open for
future consideration.

Database structure
The database structure is created and partially populated during the Joomla!
installation process (although the database itself must be created prior to installing
Joomla!). After a successful installation, the database will contain approximately
thirty-five tables that support most of the Joomla! administrator and site functions.

•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[52]

For the most part, the Joomla! database is used to store dynamic content, that is, data
that is frequently updated or changed. Configuration data, language translation files,
available template lists, and media file information are not stored in the database
because that information can be managed externally and does not change frequently.
The following table provides a map of the core database tables by function; functions
that do not use the database are listed and annotated:

Application Sub-Application Table
Content Manager Article Manager #__content

#__content_rating

Section Manager #__sections

Category Manager #__categories

Front Page Manager #__content_frontpage

Extension Manager Component Manager #__components

Module Manager #__modules

#__modules_menu

Plugin Manager #__plugins

Template Manager #__templates_menu

There is no database table that lists the
available templates; the list is obtained
from the templates directory.

Language Manager There is no database table that lists the
installed languages; the list is obtained
from the language directory.

Component Manager Banner #__banner

#__bannerclient

#__bannertrack

Contacts #__contact_details

News Feeds #__newsfeeds

Polls #__polls

#__poll_date

#__poll_data

#__poll_menu (DEPRECATED)
Search There is no database table for the search

component.
Web Links #__weblinks

Messages #__messages

#__messages_cfg

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

Application Sub-Application Table
Site Manager User Manager #__users

#__session

#__groups

#__core_acl_aro

#__core_acl_aro_map

#__core_acl_aro_groups

#__core_acl_groups_aro_map

#__core_acl_aro_sections

Media Manager There is no database table for the
media manager. The media manager
builds the available media list from the
contents of specific directories.

Global Configuration Site configuration data is stored in the
configuration.php file. There is no
database table for global configuration.

Logs and statistics #__stats_agents

#__core_log_searches

#__core_log_items

Menu Manager #__menu

#__menu_types

In addition to the tables listed above, there is one additional table that
is created when the database is created: #__migration_backlinks.
This table is included to handle changes in SEF URLs between versions
1.0 and 1.5 and will not be used unless you are migrating an existing 1.0
installation to Joomla! 1.5.

Database naming conventions
When we are working with the Joomla! database, we need be aware of and follow
certain naming conventions. If we are creating an extension that will store data in
the database, it is important to extend the database correctly. More information on
extending the database with components is available in Chapter 5, Component Design.

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[54]

Database Prefix
When we install Joomla!, we configure the database settings which include the
Database Prefix. This prefix (the default is jos_) is prepended to every table
name when the table is created; its purpose is to allow a single database to manage
multiple Joomla! installations.

When we write SQL queries, to accommodate the variable table prefix, we must
use a symbolic prefix that is substituted for the prefix we configured at installation.
Normally the symbolic prefix is #__, but we can specify an alternative prefix if we
wish to do so.

Note that the symbolic prefix is three characters in length: a single #
character followed by two underscore (_) characters. The prefix can be
replaced using the JDatabase::setQuery() method, although it
would be highly unusual to do this.

Table names
When we create tables for our extensions, we should follow certain standard
conventions. The most important of these is the naming of the table. All tables must
use the table prefix and should start with the name of the extension. If the table is
storing a specific entity, add the plural of the entity name to the end of the table
name separated by an underscore. For example, an items table for the extension
My Extension would be called #__myExtension_items.

When creating a query to access our table, we must use the following
symbolic prefix:

SELECT * FROM #__myExtension_items

When the query is processed, Joomla! will modify the query and replace the
symbolic prefix with the actual table prefix (for example, #__myExtension_items
will become jos_myExtension_items assuming that the default prefix is jos_).

Column names
Table column names should all be lowercase and use underscore word separators;
you should avoid using underscores if they are not absolutely necessary. For
example, you may name an e-mail address column as email. If you have a primary
and a secondary e-mail field, you should call them email and email_secondary;
there is no reason to name the primary e-mail address email_primary.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

If you are using a primary key row ID, you should name the column id, make it of
type integer auto_increment, and disallow null. Doing this will allow you to use
the Joomla! framework more effectively.

Creating a component table
In order for us to clearly understand what a table is, let's take a look at an example.
Imagine we are creating a component called Box Office and an entity called revue.
The name of the table is #__boxoffice_revues. The table schema might look like this:

Column TYPE NOT
NULL

Auto
Increment

Unsigned

id INT(11) YES YES YES
revue TEXT YES
revuer VARCHAR(50) YES

The SQL required to create this table would be the following:

#
Table structure for table `#__boxoffice_revues`
#
CREATE TABLE `#__boxoffice_revues` (
 `id` int(11) unsigned NOT NULL default NULL auto_increment,
 `revue` text NOT NULL default '',
 `revuer` varchar(50) NOT NULL default '',
 PRIMARY KEY(`id`)
)
CHARACTER SET `utf8`;

Looking at the SQL above, we should note the following:

The primary key is id, which is an 11-digit unsigned integer that must have
a value greater than null and that the database engine will automatically
increment by 1 with each new row (record) created.
The column revue is TEXT (maximum of 65,000 characters) that cannot be
null but will be set to an empty character by default.
The column revuer is type VARCHAR (maximum 255 characters) with
a length of 50 characters that cannot be null but will be set to an empty
character by default.
The character set for the table contents is UTF-8 encoded, which we will
discuss in greater detail later in the chapter.
Column names are enclosed with backticks `columnname` while values are
enclosed with single quotes 'value'. Quoting column names and values
will be discussed later in the chapter.

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[56]

Additional points to consider
Acquiring a basic understanding of the Joomla! database structure would not be
complete without a discussion on how to work with dates, formatted data, and
multi-byte character sets.

Dates
We regularly use datetime data type to record the date and time at which an action
has taken place. When we use these fields, it is important that we are aware of the
effect of time zones. All dates and times should be recorded in UTC+0 (GMT / Z).

Different database servers use different date and time formats to store dates and
times. It is important that we save dates and times using the appropriate format.
Unfortunately, there is currently no way to ensure that we are using the correct
format. This forces us to assume that the database is either MySQL or MySQLi,
which means that we must store dates in the format YYYY-MM-DD HH:MM:SS.

When we display dates and times, we can use the JDate class described in
Chapter 12, Utilities and Useful Classes. The JDate object provides us with methods
to easily parse dates, output them in different formats, and apply UTC time-zone
offsets. We can use the toMySQL() method to ensure that the value is formatted
appropriately, as is shown in the following:

// import JDate class
jimport('joomla.utilities.date');

// get current date and time (unix timestamp)
$myDate = gmdate();
// create JDate object
$jdate = new JDate($myDate);

// create query using toMySQL()
$query = 'SELECT * FROM #__example WHERE date < '.$jdate->toMySQL();

The value that we pass when creating the JDate object can be either a UNIX
timestamp, RFC 2822 / 822, or ISO 8601 format.

For more information about time zones, please refer to
http://www.timeanddate.com.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

Parsing data
We often use parsers before we display data to make the data safe or to apply
formatting to the data. We need to be careful how we store data that is going to be
parsed. If the data is ever going to be edited, we must store the data in its RAW state.

If the data is going to be edited extremely rarely and if parsing is reversible, we may
want to consider building a 'reverse-parser.' This way we can store the data in its
parsed format, eradicating the need for parsing when we view the data and reducing
the load on the server. Another option available to us is to store the data in both
formats. This way we only have to parse data when we save it.

Dealing with multilingual requirements
In the previous chapter, we discussed Joomla!'s use of the Unicode character set
using UTF-8 encoding. Unlike ASCII and ANSII, Unicode is a multi-byte character
set; it uses more than eight bits (one byte) per character. When we use UTF-8
encoding, character byte lengths vary.

Unfortunately, MySQL versions prior to 4.1.2 assume that characters are always
eight bits (one byte), which poses some problems. To combat the issue when
installing extensions, we have the ability to define different SQL files for servers
that do and do not support UTF-8.

When we define a column of a specific character type and size, the length will be
calculated in bytes in MySQL servers that do not support UTF-8. If we attempt to store
UTF-8 characters that are longer than one byte, we may exceed the specified size of the
field. In order to accommodate larger UTF-8 strings, we can increase the field length.
For example, we could increase a varchar(20) field to a varchar(60) field. Although
UTF-8 characters can be greater than three bytes, the majority of common characters
are no more than three bytes, so tripling the field size should be sufficient.

This, however, creates another issue. If we define a field as varchar(100)
for a MySQL server that does not support UTF-8, we will have to define it as
varchar(300), which is greater than the maximum allowable length of 255 bytes.
In order to accommodate a field length of 300 bytes, we must change the field type
from varchar() to text.

As an example, the core #__content table includes a field named title. For MySQL
servers that support UTF-8, the field is defined as the following:

'title' varchar(255) NOT NULL default ''

For MySQL servers that do not support UTF-8, the field is defined as this:

'title' text NOT NULL default ''

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[58]

We should also be aware that using a version of MySQL that does not support
UTF-8 will affect the MySQL string handling functions. For example, ordering
by a string field may yield unexpected results. While we can overcome this using
post-processing in our scripts using the JString class, the recommended solution
is to upgrade to the latest version of MySQL that fully supports UTF-8.

Using the database
Joomla! makes extensive use of the database and provides some powerful tools for
accessing, retrieving, and updating the database. At initialization, Joomla! creates a
connection to the database by instantiating a global JDatabase object. This database
connection can be accessed within your extension by assigning an object reference
to a local variable using the static JFactory class method getDBO(), as is shown in
the following:

$db =& JFactory::getDBO();

Note that we must use =& which assigns a reference to the existing
database object to the variable; using = will create a copy of the
existing database object.

Two subclasses, JDatabaseMySQL and JDatabaseMySQLi, extend the JDatabase
class depending on the exact database engine installed. The JDatabase class has
over fifty methods although, in all likelihood, you will only use a small subset; which
methods you use will largely be a matter of personal preference and the functionality
required. Some are easier to use than others but may not meet your requirements.
The methods available to you fall into four broad categories:

• JDatabase::query method
• JDatabase::load methods
• JDatabase::ADOdb methods
• JTable methods

JDatabase::query()
The most basic method for accessing the database is by executing a query using
the JDatabase::query() method. While we can use this method for virtually
any database query function, in general we should restrict its use to those queries
that return a Boolean result indicating success or failure. There are better methods
available to handle queries that return datasets, which we will discuss throughout
the remainder of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

Executing a query requires that we use two methods: the setQuery() method tells
the database which query should be executed while the query() method executes
the current query.

It is important to understand that the setQuery() method does not execute the
query; it defines the query for the database. There may be circumstances where you
wish to execute the same query multiple times. The setQuery() method would be
called once while the query method might be executed multiple times, perhaps in
a program loop.

We can call the setQuery() method and provide as many as three optional
parameters in addition to the required query string. We use the offset and limit
parameters when we wish to page through a set of rows returned from the query.
The offset is the starting row, and the limit is the maximum number of rows to be
returned. Each time the query is executed, typically in a loop, the specified number
of rows is returned, and the offset is incremented to point to the next starting point.
The optional parameter, prefix, allows us to change the symbolic table prefix and
is seldom, if ever, used.

Once we have set the query we want to perform, we use the query() method to
execute the query. This is similar to using the PHP function mysql_query(). The
result of the query will differ depending on the query type:

If the query is a SELECT, SHOW, DESCRIBE, or EXPLAIN query
a resource will be returned if successful
false will be returned if the query fails

If the query is a DELETE, INSERT, RENAME, REPLACE, or UPDATE query
true will be returned if the query the query is succeeds
false will be returned if the query fails

The following code will set the query, followed by the first query execution which
will return 20 rows starting with row 1, placing the results in $result1. A second
query execution will return 20 rows starting with row 21, placing the results
in $result2:

$query = 'SELECT * FROM '.$db->nameQuote('contacts');
$db =& JFactory::getDBO();
$db->setQuery($query, 1, 20);
$result1 = $db->query($query);
$result2 = $db->query($query);

We will discuss the query string in greater detail next.

•
°
°

•
°

°

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[60]

Writing queries
There are a few rules that we need to follow when we build database queries:

Use the #__ symbolic prefix at the start of all table names.
Use the nameQuote() method to encapsulate named query elements.
Use the Quote() method to encapsulate values.

The symbolic prefix guarantees that we use the correct prefix for the current Joomla!
installation; an alternative symbolic prefix to #__ can be used if necessary, as we
mentioned in the previous section. nameQuote() ensures that named elements
are encapsulated with the correct delimiters. Quote() ensures that values are
encapsulated with the correct delimiters. This example demonstrates the use of
all of these rules:

$db = JFactory::getDBO();
$query = 'SELECT * FROM '
 .$db->nameQuote('#__test')
 .' WHERE '
 .$db->nameQuote('name')
 .' = '
 .$db->Quote('Some Name');

Assuming that we are using either the MySQL or MySQLi database driver, $query
would equal the following:

SELECT * FROM `jos_test` WHERE `name` = 'Some Name';

JDatabase::load methods
While we can use the query() method and then manually process the resultant
resource, it will be far easier to use one of the JDatabase methods that returns a
formatted result. Which method we choose to use will depend on three things:
the data we want, the format in which we want it, and personal preference.

The methods differ primarily in the format of the data returned and include
the following:

Method Use
JDatabase::loadResult Return a single value
JDatabase::loadResultArray Return a single column of values as an array
JDatabase::loadRow Return a single row as an array
JDatabase::loadAssoc Return a single row as an associative array

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

Method Use
JDatabase::loadObject Return a single row as an object
JDatabase::loadRowList Return multiple rows as an array of arrays
JDatabase::loadAssocList Return multiple rows as an array of associative arrays
JDatabase::loadObjectList Return multiple rows as array of objects

The methods used by much of the Joomla! core return objects.

To help explain each of the methods, we will use a simple table called #__test. The
table has two fields, id—an auto-increment primary key, and name—a varchar field.
The table below shows the data we will use for demonstration purposes:

id name
1 Foo
2 Bar

The first two methods are designed to return a single value (JDatabase::loadResult)
or column of values (JDatabase::loadResultArray) from a query.

loadResult() : string
This method loads the value of the first cell in the result set. If we select all the data
from our table, this method will return the value from the first column of the first
row in the result dataset. This is useful when we want to access a single field from a
single row or when executing a query that returns a single value such as the COUNT()
function. For example, we might want to retrieve the value of the name column in
record 2:

$query = 'SELECT ' .nameQuote('name').
 ' FROM ' .nameQuote('#__test').
 ' WHERE ' .nameQuote('id').' = '.Quote('2');

$db =& JFactory::getDBO();
$db->setQuery($query);
echo $db->loadResult();

The result of this query would be the value Bar.

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[62]

We can also use this method to determine the total number of rows in our table:

$query = 'SELECT COUNT(*) FROM '.nameQuote('#__test');

$db =& JFactory::getDBO();
$db->setQuery($query);
echo $db->loadResult();

The result of this query would be the number of rows which would be 2.

loadResultArray(numinarray : int=0) : array
This method loads a basic array with the values from a result set retrieved from
a single column found in one or more rows. numinarray is used to specify which
column to return; the column is identified by its logical position in the result set.

$query = 'SELECT '.nameQuote('name').
 ' FROM ' .nameQuote('#__test');

$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadResultArray());

Basic arrays use a zero-based numeric index, which means that the first value will be
located at position 0:

Array
(
 [0] => Foo
 [1] => Bar
)

We regularly need to retrieve a single row from the database. For example, when
we are retrieving an article, there are three methods that will return a single record:
JDatabase::loadRow, JDatabase::loadAssoc, and JDatabase::loadObject.
The difference is in the format of the returned result.

loadRow() : array
This method loads the first row of the result set into a basic array. This is useful
when we are interested in a single row. If the query returns more than one record,
the first record in the result set will be used:

$query = 'SELECT * FROM '.nameQuote('#__test');

$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadRow());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

The result of the query would be the following:

Array
(
 [0] => 1
 [1] => Foo
)

loadAssoc() : array
This method loads the first row of the result set into an associative array using the
table column names as array keys. This is useful when we are interested in a single
row. If the query returns more than one row, only the first row in the result set will
be loaded:

$query = 'SELECT * FROM '.nameQuote('#__test');

$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadAssoc());

The benefit of using this method is that the results are returned in an associative array
which uses the column names as keys. This makes it much easier and safer to code
than attempting to remember the index number of a column, as we can see below:

Array
(
 [id] => 1
 [name] => Foo
)

loadObject() : stdClass
This method loads the first row of the result set into a stdClass object using the
table column names as property names. This is useful when we are interested in a
single row. If the query returns more than one row, the first row in the result set
will be used:

$query = 'SELECT * FROM '.nameQuote('#__test');

$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadObject());

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[64]

The result of the query will be the following:

stdClass Object
(
 [id] => 1
 [name] => Foo
)

Whenever we query the database with the expectation that the result set will
contain multiple rows, Joomla! creates an array. This array can be a basic array or an
associative array and each array element will represent a row from the result set. The
format of the array element can be either a basic array, associative array, or stdClass
object depending on which of three methods is used: JDatabase::loadRowList,
JDatabase::loadAssocList, or JDatabase::loadObjectList.

loadRowList(key : int) : array
This method loads a basic array of arrays or an associative array of arrays. If we
specify the parameter key, the returned array uses the row key as the array key.
Unlike the other load list methods, key is the logical position (0 is the first column)
of the primary key field in the result set:

$query = 'SELECT * FROM '.nameQuote('#__test');

$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadRowList(0));

The result of the query would be the following:

Array
(
 [0] => Array
 (
 [0] => 1
 [1] => Foo
)

 [1] => Array
 (
 [0] => 2
 [1] => Bar
)
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

loadAssocList(key : string='') : array
This method loads a basic array of associative arrays or an associative array of
associative arrays. If we specify the parameter key, the returned array uses the
row key as the array key:

$query = 'SELECT * FROM '.nameQuote('#__test');

$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadAssocList());

The result of the query would be the following:

Array
(
 [0] => Array
 (
 [id] => 1
 [name] => Foo
)
 [1] => Array
 (
 [id] => 2
 [name] => Bar
)
)

loadObjectList(key : string='') : array
This method loads a basic array of stdClass objects or an associative array of
stdClass objects. If we specify the parameter key, the returned array uses the
row key as the array key:

$query = 'SELECT * FROM '.nameQuote('#__test');

$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadObjectList());

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[66]

The result of the query would be the following:

Array
(
 [0] => stdClass Object
 (
 [id] => 1
 [name] => Foo
)

 [1] => stdClass Object
 (
 [id] => 2
 [name] => Bar
)
)

JDatabase::ADOdb methods
ADOdb is a PHP database abstraction layer released under the BSD license. ADOdb
supports a number of leading database applications. Joomla! does not use ADOdb,
but it does emulate some ADOdb functionality in its own database abstraction layer.

We should only use the ADOdb methods if we are porting existing
applications that rely on ADOdb or if we are creating extensions
that we also want to work as standalone applications using ADOdb.
Appendix A, Joomla! Core Classes contains more information on the
JDatabase::ADOdb methods available.

Joomla! uses the JRecordSet class to emulate the ADOdb ADORecordSet class. The
JRecordSet class is not yet complete and does not include all of the ADORecordSet
methods. This example shows the basic usage of JRecordSet; $row is an array:

$db =& JFactory::getDBO();
$rs = $db->Execute('SELECT * FROM #__test');
while ($row = $rs->FetchRow())
{
 // process $row
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

For more information about ADOdb, go to http://adodb.sourceforge.net/.

Although ADOdb emulation is being added to Joomla!, it should be
noted that there are currently no plans to integrate ADOdb as the primary
means of accessing the Joomla! database.

JTable
In addition to the JDatabase class, we can use the powerful abstract class JTable
that provides built-in functionality for managing individual database tables.
Although there are many perfectly valid ways of accessing the database, the JTable
class hides much of the complexity when working with the database, and it buffers
the raw data in a format of our choosing. Its primary purpose is to make our
extension development simpler and easier. For example, the JTable class comes with
methods that perform many common but complex database functions, functions that
we will not have to implement. The JTable class provides built-in functionality that
includes the following:

Data Binding: Links table columns to JTable subclass properties that are
then linked to array elements or object properties.

JTable::bind()

Row Management: Creates, reads, updates, and deletes rows. Manages
common fields such as published, order, and hits.

JTable::save()

JTable::store()

JTable::load()

JTable::delete()

JTable::reset()

JTable::getNextOrder()

JTable::reorder()

JTable::move()

JTable::hit()

JTable::publish()

Data Validation: Checks to ensure that the data is valid. For example, it
checks for correct type, correct values, valid ranges, and so on.

JTable::check()

•

°

•

°

°

°

°

°

°

°

°

°

°

•

°

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[68]

Change Control: Controls the edit/update of rows by preventing updates
from multiple users.

JTable::isCheckedOut()

JTable::checkin()

JTable::checkout()

Miscellaneous Functions: Gives additional methods for managing the table,
data format conversion and error handling.

JTable::addIncludePath()

JTable::&getDBO()

JTable::setDBO()

JTable::&getInstance()

JTable::getKeyName()

JTable::getTableName()

JTable::getErrorNum()

JTable::setErrorNum()

JTable::toXML()

Joomla! itself makes use of the JTable class by creating JTable subclasses for all of
its core tables. A subclass of the JTable class must be created for every table that we
create; the subclass can only be associated with a single table. The subclass defines
the table structure and may or may not override the parent JTable methods.

When creating JTable subclasses, we must follow some specific conventions.
These conventions enable us to integrate our extensions into Joomla! and the
Joomla! framework.

Assuming we are building a component, our JTable subclasses should be located in
separate files in a folder called tables within the component's administrative root.
The class name is the table singular entity name prefixed with Table. The name of
the file is the singular entity name.

We will use an expanded version of the #__boxoffice_revues table schema we
defined earlier in the chapter to demonstrate how the JTable can be used to
our advantage. The table is as follows:

•

°

°

°

•

°

°

°

°

°

°

°

°

°

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

Column TYPE NOT
NULL

Auto
Increment

Unsigned

id INT(11) YES YES YES
revue TEXT YES
revuer VARCHAR(50) YES
checked_out INT(11) YES YES
checked_out_time DATETIME YES
ordering INT(11) YES YES
published TINYINT(1) YES YES
hits INT(11) YES YES
catid INT(11) YES YES
params TEXT YES

We have added several columns to our original table. These columns can be found
in many of the core tables; they all have a common purpose and use JTable methods
to manage them. The following columns were added:

checked_out

checked_out_time

To prevent more than one user from attempting to edit a record at the
same time, we can check out records (a form of software record locking).
We use two fields to do this: checked_out and checked_out_time. The
checked_out field contains the ID of the user that has the record checked
out. The checked_out_time field contains the date and time that the user
checked out the record. A null date and a user ID of 0 is recorded if the
record is not checked out.
ordering

We often want to allow administrators the ability to choose the order in
which items appear. The ordering field can be used to number records
sequentially to determine the order in which they are displayed. This field
does not need to be unique and can be used in conjunction with WHERE
clauses to form ordering groups.
published

The published field is used to determine whether a record can be displayed.
This field can have two values: 0 = not published, 1 = published. If the record
is not published, it will not be displayed.

•
•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[70]

hits

If we wish to track the number of times a record has been viewed, we can use
the special field hits.
params

We use the params field to store additional information about records; this is
often used to store data that determines how a record will be displayed. The
data held in these fields is encoded as INI strings (which we handle using
the JParameter class). Before using a parameter field, we should carefully
consider the data we intend to store in the field. Data should only be stored
in a parameter field if all of the following criteria are true:

Not used for sorting records
Not used in searches
Only exists for some records
Not part of a database relationship

catid

This field has been added to our schema to illustrate how to handle a Foreign
key. Remember that we use Foreign keys to connect a record to one or
more records in another table. In this case, this field will contain the id of
a category record.

Creating the JTable subclass
Our JTable subclass should be named TableRevue and located in the file
/joomla/administrator/components/com_boxoffice/tables/revue.php. The
first thing we need to do in our class is to define the public properties. The public
properties relate directly to the table column names. The number and names of
the public properties must be identical to the table column names. We use these
properties as a 'buffer' to store individual records.

The second thing we need to do is to define the constructor. In order to use the
JTable::getInstance() method, we must override the JTable constructor with
a constructor that has a single referenced parameter: the database object.

The third thing we need to do is override the check() method. This method is used
to validate the buffer contents, returning a Boolean result. The reason we override
this method is that JTable::check() does no checking; it simply returns true. If
a check() fails, we use the setError() method to set a message that explains the
reason that the validation failed.

•

•

°
°
°
°

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

/**
 * #__boxoffice_revues table handler
 *
 */
class TableRevue extends JTable
{
 /** @var int Primary key */
 var $id = null;
 /** @var string review */
 var $revue = null;
 /** @var string reviewer */
 var $revuer = null;
 /** @var int Checked-out owner */
 var $checked_out = null;
 /** @var string Checked-out time */
 var $checked_out_time = null;
 /** @var int Order position */
 var $ordering = null;
 /** @var tinyint published */
 var $published = null;
 /** @var int Number of views */
 var $hits = null;
 /** @var int Category Foreign Key */
 var $catid = null;
 /** @var string Parameters */
 var $params = null;

 /**
 * Constructor
 *
 * @param database JDatabase object
 */
 function __construct(&$db)
 {
 parent::__construct('#__boxoffice_revues', 'id', $db);
 }

 /**
 * Validation
 *
 * @return boolean True if buffer is valid
 */
 function check()
 {
 if(!$this->revue)
 {
 $this->setError(JText::_('No review submitted'));

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[72]

 return false;
 }
 if(!$this->revuer)
 {
 $this->setError(JText::_('Missing a reviewer'));
 return false;
 }
 return true;
 }

}

Now that we have created our TableRevue subclass, how can we use it? Well, first
we need to instantiate a TableRevue object. How we do this depends on where we
are going to be using the object. If we are using it within a component, then we will
use the JModel::getTable() method (discussed in Chapter 5, Component Design) or
we can use the static JTable::getInstance() method as shown below:

JTable::addIncludePath(JPATH_COMPONENT_ADMINISTRATOR.DS.'tables');
$table = JTable::getInstance('Revue', 'Table');

Note that instead of including the revue.php file, we tell JTable to add the path
(or paths) to its list of table include paths. When JTable instantiates the
TableReview object, if the class is not defined, it will look in all of the JTable
include paths for a file named revue.php.

The JTable::getInstance() method takes two parameters. The first parameter
is used to determine the name of the file that contains the class as well as the class
name suffix. The second parameter is the class name prefix. Core JTable subclasses
use the default prefix JTable while we should use Table.

Creating a new record
Now that we have an instance of the TableRevue class ($table), we can use it to
create a new record. We can create a new record in one of two ways. The first way
makes use of the JTable::save() method:

$table->reset();
$table->set('revue', "Great movie! Four Stars!");
$table->set('revuer', "Rich Maudlin");
if (!$table->save())
{
 // handle failed save
 // use $table->getError() for an explanation
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

While this method appears fairly simple, it is a wrapper function that executes a
number of methods such as the following:

JTable::bind()

JTable::check()

JTable::store()

JTable::checkin()

JTable::reorder()

Because the JTable::save() method performs all of these functions, the result may
not always be what we might expect. We also give up a good measure of control over
the process, which may not be desirable. The next example provides a more flexible
approach at the price of more complexity. This is also the approach taken by most of
the core components:

$table->reset();
$table->set('revue', "Great movie! Four Stars!");
$table->set('revuer', "Rich Maudlin");
$table->set('ordering', $table->getNextOrder());

// Bind the data to the table
if (!$table->bind())
{
 // handle bind failure
}

// Check that the data is valid
if (!$table->check())
{
 // handle validation failure
}

// Store the data in the table
if (!$table->store(true))
{
 // handle store failure
}

// Check the record in
if (!$table->checkin())
{
 // handle checkin failure
}
// Reorder the table
if (!$table->reorder())
{
 // handle reorder failure
}

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[74]

The reset() method ensures that the table buffer is empty. The method returns all
of the properties to their default values specified by the class. The getNextOrder()
method determines the next space in the record ordering. If there are no existing
records, this will be 1. Each method that follows must handle a failure by using
JTable::getError() to obtain the exact error, en-queuing the error message, and
then using a redirect.

Let us tidy up our example. Some of the fields have default values defined in the
table, so our buffer will not be up to date after the record is created. Because the class
knows what the table's Primary key is when we create a new record, the Primary key
buffer property is automatically updated. After the previous example, the buffer for
$table looks like this:

 [id] => 1

 [revue] => Great Movie! Four Stars!

 [revuer] => Rich Maudlin

 [checked_out] =>

 [checked_out_time] =>

 [ordering] => 1

 [published] =>

 [hits] => 0

 [catid] =>

 [params] =>

After storing the new record, we can load the record from the database, ensuring
that the buffer is up to date. This example loads the new record from the table
into the buffer:

$table->load($table->id);

Now the buffer will look like this:

 [id] => 1

 [revue] => Great Movie! Four Stars!

 [revuer] => Rich Maudlin

 [checked_out] => 0

 [checked_out_time] => 0000-00-00 00:00:00

 [ordering] => 1

 [published] =>

 [hits] => 0

 [catid] =>

 [params] =>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

Instead of loading newly added records, we can modify the TableRevue class so that
the default values correspond directly to the default database table values. This way
we reduce our overhead and do not have to reload the record.

However, because some of the default values are database dependent, we will
have to modify the constructor and override the reset() method. For example, the
checked_out_time field default value is $db->getNullDate(), and we cannot use
this when defining parameters.

Reading a record
The way we updated the table buffer after creating the new record is precisely the
same way we would load (read) any existing record. This example shows how we
load a record into the buffer:

if (!$table->load($id))
{
 // handle unable to load
 // use $table->getError() for an explanation
}

Updating a record
There are two ways to update a record. We can insert the updated data into the
buffer and update the record. Alternatively, we can load the record, insert the
updated data into the buffer, and update the record. This example shows how we
implement the simpler first option:

// set values
$table->reset();
$table->set('id', $id);
$table->set('revue', JRequest::getString('review'));
$table->set('revuer', JRequest::getString('revuer'));
if ($table->check())
{
 if (!$table->store(true))
 {
 // handle failed update
 // use $table->getError() for an explanation
 }
}
else
{
 // handle invalid input
 // use $table->getError() for an explanation
}

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[76]

Although this specific example works, if our attempt fails, we will be unable to
determine whether it is due to an invalid record ID or a more complex problem.
There is a quirk we need to be aware of when using the store() method: it only
updates the values that are not null. We can force it to update nulls by passing a
true parameter to the store method. The issue with this is that we would need to
have the record loaded into the buffer so that we do not overwrite anything with
null values. The following example demonstrates how we can implement this:

if (!$table->load($id))
{
 // handle failed load
 // use $table->getError() for an explanation
}
else
{
 $table->set('revue', JRequest::getString('revue'));
 $table->set('revuer', JRequest::getString('revuer'));
 if ($table->check())
 {
 if (!$table->store(true))
 {
 // handle failed update
 // use $table->getError() for an explanation
 }
 }
 else
 {
 // handle invalid input
 // use $table->getError() for an explanation
 }
}

Deleting a record
Deleting a record using JTable subclasses is very easy. This example shows how we
can delete a record:

if (!$table->delete($id))
{
 // handle failed delete
}

If we do not pass an ID to the delete() method, the ID in the buffer will be used. It
is important to bear in mind that if you do pass an ID, the buffer ID will be updated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

If we are deleting a record that has relationships with other tables, we can check
for dependencies using the canDelete() method. The canDelete() method has
one parameter, a two dimensional array. The inner arrays must contain the keys
idfield, name, joinfield, and label. idfield is the name of the Primary key in
the related table. name is the name of the related table. joinfield is the name of the
Foreign key in the related table. label is the description of the relationship to use in
the error message if any dependencies are found.

Imagine that there is another table called #__movie_actors; this table has a Primary
key called actorid and a Foreign key called movieid, which is related to the
Primary key field id in #__boxoffice_revues. In this example, we verify there are
no dependent records in the #__movie_actors table before deleting a record from
#__boxoffice_revues:

$join1 = array('idfield' => 'actorid',
 'name' => '#__movie_actors',
 'joinfield' => 'movieid',
 'label' => 'Actors');
$joins = array($join1);

if ($table->canDelete($id, $joins))
{
 if (!$table->delete($id))
 {
 // handle failed delete
 // use $table->getError() for an explanation
 }
}
else
{
 // handle dependent records, cannot delete
 // use $table->getError() for an explanation
}

We can define more than one join. For example had there been another table called
#__movie_producers, we could also have defined this in the $joins array:

$join1 = array('idfield' => 'actorid',
 'name' => '#__movie_actors',
 'joinfield' => 'movieid',
 'label' => 'Actors');
$join2 = array('idfield' => 'producerid',
 'name' => '#__movie_producers',
 'joinfield' => 'movieid',
 'label' => 'Producers');
$joins = array($join1, $join2);

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[78]

Checking a record in or out
We can only use the JTable::checkout() method if our table contains both a
checked_out and a checked_out_time field. These fields define who checked the
record out and when. We do this to prevent more than one user from attempting
to simultaneously edit the same record. Before we check out a record, we need
to determine if the record is already checked out by another user. We can use the
isCheckedOut() to achieve this. In this example, we test to see if any user, other
than the current user, has checked out the record:

$table->load($id);
$user =& JFactory::getUser();
if ($table->isCheckedOut($user->get('id')))
{
 // handle record is already checked-out
}

Once we have determined that a record is not checked out, we can use the
checkout() method to check out the record. In this example, we check out the
record to the current user; this sets the checked_out field to the user's ID and the
checked_out_time field to the current time:

$table->load($id);
$user =& JFactory::getUser();
if (!$table->checkout($user->get('id')))
{
 // handle failed to checkout record
}

After we have finished editing the record, we must check it back in. This will
allow the record to be checked out by another user. To check the record in, we
use the checkin() method. This example checks in a record; this will set the
checked_out_time field to a null date:

$table->load($id);
$user =& JFactory::getUser();
if (!$table->checkin($user->get('id')))
{
 // handle failed to checkin record
}

We should only check records in and out for logged- in users. For a more
comprehensive check-out system, use Joomla!'s access control system
explained in Chapter 11, Error Handling and Security.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

Ordering
We can order rows based on a numeric index if our table has the ordering field
defined. In addition, we can group records using one or more fields in the table. In
our example table, we have a category field catid defined which can be used to
order our records by category.

The first method we will look at is reorder(). This method looks at each record and
moves them up the order chain until any gaps in the order have been removed. For
example, assume that our records were ordered as follows:

Id ordering
1 1
2 2
3 4
4 5

We reorder our table by using the reorder() method:

$table->reorder();

Now, the result will be this:

Id ordering
1 1
2 2
3 3
4 4

It is very simple, but for more complicated tables there can be groupings within the
records. To deal with this, we can provide the reorder() method with a parameter
to restrict the records. Since we are grouping our table by catid, we can reorder our
records by group:

$db =& $table::getDBO();
$where = $db->nameQuote('catid').' = '. intval($catid);
$table->reorder($where);

Notice that we get the database object from $table, not JFactory; this ensures
that we are using the correct database driver for the database server that $table is
using. Although this is not a major issue, as Joomla! begins to support other database
drivers, there may be occasions where the database driver being used by a table is
different from the global database driver.

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[80]

You may remember that earlier in this chapter we used the getNextOrder()
method. This method tells us what the next available position is in the order. As
with reorder(), we have the option of specifying groupings. In this example, we
get the next available position in the group where catid=1:

$db =& $table::getDBO();
$where = $db->nameQuote('catid').' = '. Quote('1');
$nextPosition = $table->getNextOrder($where);

Last of all, we can use the move() method to move a record up or down one position.
In this example, we move a record up the order:

$table->load($id);
$table->move(-1);

Again, we have the option of specifying groupings. In this example, we move a
record down the order in the selected category group:

$db =& $table::getDBO();
$where = $db->nameQuote('group').' = '. intval($catid);;
$table->load($id);
$table->move(1, $where);

Publishing
To publish and un-publish data, we can use the JTable::publish() method. This
method can publish and un-publish multiple records at once. If the table includes a
checked_out field, we can ensure that the record is not checked out or is checked
out to the current user. This example publishes a record:

$publishIds = array($id);
$user =& JFactory::getUser();
if (!$table->publish($publishIds, 1, $user->get('id')))
{
 // handle unable to publish record
 // use $table->getError() for an explanation
}

The first parameter is an array of keys of the records we wish to publish or
un-publish. The second parameter is the new published value. It is 0 for not published,
1 for published. The second parameter is optional, which by default is 1. The final
parameter, also optional, is used only when the checked_out field exists. Only fields
that are not checked out or are checked out by the specified user can be updated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

The method returns true if the publishing was successful. This is not the same as
saying that all the specified records have been updated. For example, if a specified
record is checked out by a different user, the record will not be updated, but the
method will return true.

Hits
To increment the hits field, we can use the hit() method. In this example, we set
the buffer record ID and use the hit() method:

$table->set('id', $id);
$table->hit();

Alternatively, we can specify the ID when we use the hit() method. If we choose to
do this, we must remember that the buffer ID will be updated to match the hit ID, as
is shown below:

$table->hit($id);

Parameter fields
The JTable class does not provide us with any special methods for dealing with INI
parameter fields. The JTable buffer is designed to be populated with the RAW data
since it will be stored in the database.

To handle a parameter field, we use the JParameter class; the JParameter class is
explained in Appendix B, Parameters (Core JElement). The first things we need to do
are create a new JParameter object and, if we are interrogating an existing record,
parse the parameter data.

This example shows how we can parse INI data using the JParameter class:

$params = new JParameter($table->params);

Once we have a JParameter object, we can access and modify the data in the object
using the get() and set() methods:

$value = $params->get('someValue');
$params->set('someValue', ++$value);

We can return the data to an INI string using the toString() method:

$table->params = $params->toString();

www.it-ebooks.info

http://www.it-ebooks.info/

The Database

[82]

We can also use the JParameter class in conjunction with an XML metadata file to
define the values we might be holding in an INI string. This example shows how
we create a new JParameter object and load an XML metadata file; $path is the
full path to an XML manifest file:

$params = new JParameter('foo=bar', $pathToXML_File);

There is a full description explaining how to define an XML metadata file for these
purposes in Chapter 4, Extension Design. We can use the render() method to output
form elements populated with the parameter values (how these are rendered is
defined in the XML file):

echo $params->render('params');

Summary
We can build ready-to-use queries with our specific database driver using the
nameQuote() and Quote() methods. We must remember to use these two methods;
if we do not, we run the risk of restricting our queries to MySQL databases.

We have discovered the wide variety of methods available to access the database,
either through JDatabase methods or JTable methods. We can extend the abstract
JTable class by adding an extra element to the data access layer. JTable allows us to
perform many common actions on records. Taking advantage of the JTable class can
significantly reduce the overheads incurred while programming, and it ensures that
we use standardized methods to perform actions.

We should now be able to successfully create new database table schemas; how
we add these tables to the database is explained in more detail in the next chapter,
Chapter 4, Extension Design. We will cover supporting classes, using the registry,
accessing the user and session objects, and learn, in detail, about the physical
structure required for extensions.

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design
Over and above the design issues we have discussed in previous chapters, there
are additional design elements to consider when building extensions. This chapter
explains some of the other design elements common to all extensions and discusses
creating development sandboxes as well as extension structure and packaging. In
this discussion, we will consider the following topics:

Creating supporting classes
Creating helper classes
Using and building getInstance() methods
Using the registry
Accessing and using the JUser object and user parameters
Handling sessions
Obtaining and using browser information
Managing extension assets
Understanding the structure and setting up development sandboxes for

components
modules
plugins

Extension packaging and XML manifest files

Supporting classes
In previous and subsequent chapters, we have and will discuss creating subclasses
by extending Joomla! core classes. In addition to these classes, we may want to
define our own unique classes.

•

•

•

•

•

•

•

•

•

°

°

°

•

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[84]

As we will discuss in Chapter 5, Component Design, the Model-View-Controller is a
very good design pattern for creating systems quickly and easily. However, it is not,
nor is it intended to be, all encompassing. It should come as no surprise that many
components contain supporting classes. The core component that deals with menus
is a prime example. This component defines two additional classes, iLink and
iLinkNode. A tree representation of a menu is built using these classes.

When we create classes such as these, it is a common practice to place them in
a special folder called classes. When creating a component, we place this folder
in the backend.

Supporting classes can extend existing Joomla! classes. For example, the JObject
class. They can also be completely unrelated and separate works in their own right.

PHP Classes (www.phpclasses.org/browse) is a good place to look for existing
classes that we can utilize.

Remember that although Joomla! provides us with an excellent
framework, we should never feel restricted by it. There is
nothing to prevent us from building extensions in other ways.

Helpers
Helpers are static classes used to perform common functions. Helpers often
complement another class. For example, the static JToolBarHelper helper class
works in conjunction with the JToolBar class.

There are forty-nine helper classes in the Joomla!
core alone. For more information, go to
http://api.joomla.org/li_Joomla-Framework.html.

When we are building helpers that complement another class, the functions that we
place within the helpers must relate to the other class.

Imagine we have a class named SomeItem, which deals with an itemized entity. If
each item were to have a category, we might want to get a list of those categories
especially for use with the item.

Placing a method to do this in the SomeItem class is questionable because the
method is dealing with a different entity. Instead, we could create a helper class,
SomeItemHelper, and define a method, getCategories(), that returns an XHTML
drop-down list of categories.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

Helpers that do not relate to other classes generally relate to an extension or a library.
Many of the core modules define and use a helper class. This diagram illustrates how
the helper for the Poll module is constructed:

Note that there are some special rules we follow when creating helpers for modules;
these are explained in Chapter 6, Module Design.

This list describes common functions that helpers execute:

Getting a list (usually an array) of items, often called getList()
Getting or building a data item
Getting or building a data structure
Parsing data
Rendering data to XHTML, often called render()

When we use helpers in components, we can use the JView::loadHelper()
method. This method will load a helper based on the name of the file in which it is
located. The method searches predefined locations of helper files. By default, this
is the helpers' folder in the root of the component. To add additional paths, use the
addHelperPath() method.

Using and building getInstance()
methods
Many of the core classes in Joomla! use a special method called getInstance().
There are three main reasons for using the getInstance() method:

It makes it easier to keep track of objects. Take the JDatabase object as an
example. We can access this object at any time using the static JFactory::
getDBO() method. If we were unable to do this, we would need to
continually pass the object around or declare it global in every method
and function that required it.

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[86]

It helps prevent us from duplicating work. For classes that support it, we do
not have to continually instantiate a new object of that type every time we
need it. This helps reduce the overall work that PHP is required to complete.
It provides us with a common way of instantiating globally available objects
that conform to standards within the Joomla! core.

There are various ways to use this method; we will start by looking at using it to
implement the singleton pattern.

We restrict the instantiation of a class to one of its own member methods
by using the singleton design pattern. This enables us to create only a
single instance of the class, hence the name "singleton".
To implement a true singleton pattern, the language must support access
modifiers. If the language does not, we cannot guarantee that the class
will not be instantiated from a different context.

This example shows how we can create a class that, instead of instantiating via the
constructor, instantiates via the getInstance() method:

/**
 * Demonstrates the singleton pattern in Joomla!
 */
class SomeClass extends JObject
{
 /**
 * Constructor
 *
 * @access private
 * @return SomeClass New object
 */
 function __construct() { }

 /**
 * Returns a reference to the global SomeClass object
 *
 * @access public
 * @static
 * @return SomeClass The SomeClass object
 */
 function &getInstance()
 {
 static $instance;

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

 if (!$instance)
 {
 $instance = new SomeClass();
 }

 return $instance;
 }
}

Since we are implementing this as a singleton pattern, we need to prevent the
instantiation of the object outside of the class. Put simply, the __construct()
method needs to be limited to the scope of the class. Sadly, we cannot guarantee
this in PHP versions prior to version 5.

In our example, we use the access doc tag, @access, to indicate that the constructor
is private. If we were building this class specifically for an environment for
PHP 5 or above, we would be able to use access modifiers (visibility). For
more information about access modifiers, refer to http://php.net/manual/
language.oop5.visibility.php.

In the declaration of the getInstance() method, we make the method return
a reference, and we define it as static in the doc tags. This means when we use
the method, we must always use the =& assignment operator to prevent copying
of the returned object, and we must use the method in the static form
SomeClass::getInstance().

At the start of the getInstance() method, we declare a new static variable.
Unlike normal variables, static variables do not die after a function or method
has completed. We use the variable as a long-term store to remember the
singleton object.

This example demonstrates how we can use this method:

$anObject =& SomeClass::getInstance();
$anObject->set('foo', 'bar');

$anotherObject =& SomeClass::getInstance();
echo $anotherObject->get('foo');

The two variables, $anObject and $anotherObject, are both pointing to the same
object. This means that the example will output bar.

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[88]

A similar use of the getInstance() method is to only allow instantiation of one
object per different constructor parameter. This example demonstrates how we
can implement this:

/**
 * Demonstrates how to implement getInstance
 */
class SomeClass extends JObject
{
 /**
 * A private string attribute.
 * @access private
 * @param string
 */
 var $_foo = null;

 /**
 * Constructor
 *
 * @access private
 * @param string A string
 * @return SomeClass New object
 */
 function __construct($foo)
 {
 $this->_foo = $foo;
 }

 /**
 * Returns a reference to a global SomeClass object
 *
 * @access public
 * @static
 * @param string A string
 * @return SomeClass A global SomeClass object
 */
 function &getInstance($foo)
 {
 static $instances;
 $foo = (string)$foo;

 if (!$instances)
 {
 $instances = array();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

 }

 if (!$instances[$foo])
 {
 $instances[$foo] = new SomeClass($foo);
 }

 return $instances[$foo];
 }
}

This example is similar to the singleton example, except here we create a static array
to house multiple objects instead of a single object. As with the previous example
in the declaration of the getInstance() method, we make the method return a
reference, and we define it as static in the doc tags.

An extension of this mechanism is to allow instantiation of subclasses. A good
example of this is the core JDocument class that can instantiate JDocumentError,
JDocumentFeed, JDocumentHTML, JDocumentPDF, or JDocumentRAW (located at
libraries/joomla/document).

In this example, we will attempt something similar; we will assume that the subclasses
are located in the root of a component and named with the prefix SomeClass:

/**
 * Returns a reference to the global SomeClass object
 *
 * @access public
 * @static
 * param string A string
 * @return mixed A SomeClass object, false on failure
 */
function &getInstance($foo)
{
 static $instances;

 // prepare static array
 if (!$instances)
 {
 $instances = array();
 }

 $foo = (string)$foo;
 $class = 'SomeClass'.$foo;
 $file = strtolower($foo).'.php';

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[90]

 if (empty($instances[$foo]))
 {
 if (!class_exists($class))
 {
 // class does not exist, so we need to find it
 jimport('joomla.filesystem.file');

 if(JFile::exists(JPATH_COMPONENT.DS.$file))
 {
 // file found, let's include it
 require_once JPATH_COMPONENT.DS.$file;

 if (!class_exists($class))
 {

 // file does not contain the class!
 JError::raiseError(0,'Class '.$class.' not found.');
 return false;
 }
 }
 else
 {
 // file where the class should be not found
 JError::raiseError('ERROR_CODE',
 'File '.$file.' not found.');
 return false;
 }
 }

 $instances[$foo] = new $class();
 }

 return $instances[$foo];

}

Using the registry
Joomla! provides us with the class JRegistry; this class enables us to store and
retrieve data using namespaces. Data stored in a JRegistry object is organized
using a hierarchy based on namespaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

Namespaces are unique hierarchical tree identifiers used to categorize data. Imagine
we want to store the number of sightings of animals in an area. We could use the
following hierarchy:

animal
animal.total
animal.bird
animal.bird.chaffinch
animal.bird.swan
animal.mammal
animal.mammal.badger
animal.mammal.squirrel.red
animal.mammal.squirrel.grey

Based on this example, if we wanted to know how many badgers we have sighted,
we would retrieve the value using the registry path animal.mammal.badger. If we
wanted to know how many mammals we have sighted, we would retrieve the value
using the registry path animal.mammal.

A drawback of using this type of hierarchy is that data items
can only be stored in one path. This can be difficult if the
location of a data item is ambiguous.

The main purpose of this class in Joomla! is to store global configuration options.
There is a global JRegistry object, referred to as the registry or config that we
can access via JFactory. This example demonstrates how we get a reference
to the object:

$registry =& JFactory::getConfig();

There are two important methods, getValue() and setValue(), which function
as accessors and modifiers for registry data. This example demonstrates how we
can increment the value foo.bar in the registry using these methods:

$registry =& JFactory::getConfig();
$oldValue = $registry->getValue('foo.bar', 0);
$registry->setValue('foo.bar', ++$oldValue);

When we populate the $oldValue variable using the getValue() method, we
supply the second parameter. This is the default value to return if no value
currently exists, and this parameter is optional.

The site settings are located in the config namespace within the registry. A table
describing the values we expect to be present in the config namespace can be
found in Appendix C, Registry and Configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[92]

Saving and loading registry values
A powerful feature of JRegistry objects is the capacity to save and load data. The
class supports two different format types: run-time data and files. Run-time data are
arrays and objects. File data can come from files in INI, PHP, and XML format.

In prior chapters, we have discussed the handling of extension settings. In addition
to those methods, we can use the JRegistry class. This example demonstrates how
to load an INI file into the myExtension namespace:

$file = JPATH_COMPONENT.DS.'myExtension.ini';
$registry =& JFactory::getConfig();
$registry->loadFile($file, 'INI', 'myExtension');

If we make changes to the myExtension namespace, we can save the changes back
to our INI file, as is shown in the following example:

// import JFile
jimport('joomla.filesystem.file');

// prepare for save
$file = JPATH_COMPONENT.DS.'myExtension.ini';
$registry =& JFactory::getConfig();
$ini = $registry->toString('INI', 'myExtension');

// save INI file
JFile::write($file, $ini);

Exporting in XML format is identical except that we substitute all occurrences of
INI with XML. Exporting to PHP is slightly different. The site configuration file,
configuration.php, is a prime example of using a PHP file to store data.

The PHP format saves values into a class. In the case of the site configuration,
the class is called JConfig. We must provide, as a string parameter, the
name of the class in which we want to save the settings when we use the
JRegistry->toString() method.

This example demonstrates how we would export the settings to a PHP class
named SomeClass:

// import JFile
jimport('joomla.filesystem.file');

// prepare for save
$file = JPATH_COMPONENT.DS.'myExtension.php';
$registry =& JFactory::getConfig();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

$php = $registry->toString('PHP', 'myExtension',
 array('class'=>'SomeClass'));

// save PHP file
JFile::write($file, $php);

If you choose to use this mechanism to store settings, it is important to consider the
best file format for your settings. PHP and INI formats are restricted to a maximum
depth of zero and one respectively. XML has no depth restrictions.

This might make XML appear to be the most suitable; XML, however, is the most
intensive format to parse. Hence, we should use the format that best suits the data
we are storing.

The next three examples demonstrate how we represent the registry tree, which
we defined earlier, in three different formats. Take note of the data loss within the
PHP and INI format examples due to the depth restrictions. This is an example of
a PHP string:

<?php
class JConfig
{
 var $total = '10';
}
?>

This is an example of an INI string:

total=10

[bird]
chaffinch=1
swan=2

[mammal]
badger=3

This is an example of an XML string:

<?xml version="1.0" ?>
<config>
 <group name="bird">
 <entry name="chaffinch">1</entry>

 <entry name="swan">2</entry>
 </group>
 <group name="mammal">

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[94]

 <entry name="badger">3</entry>
 <group name="squirrel">
 <entry name="red">1</entry>
 <entry name="grey">3</entry>
 </group>
 </group>
 <entry name="total">10</entry>
</config>

A complete description of the JRegistry class is available in Appendix C, Registry
and Configuration.

The user
Many extensions use the currently logged-in user to determine what to display.
A user has several attributes in which we might be interested. This table describes
each of the attributes:

Attribute Description
activation String used to activate new user accounts
aid Legacy user group ID
block True if the user's access is blocked
email The user's email address
gid User group ID
guest True if the user is a guest (not logged in)
id The user's ID, an integer; this is not the same as their username
lastvisitDate Date and time at which the user last logged in
name User's name
params INI string of parameters
password Hashed password
registerDate Date and time at which the user account was registered
sendEmail True if the user wishes to receive system emails
username User's username
usertype Name of user group

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

The browsing user is represented by a JUser object; we can access this object using
the getUser() method in the JFactory class. This class has all of the attributes
described here; for complete details see Appendix A, Joomla! Core Classes. This
example demonstrates how we can test if a user has logged in or if the user is a guest:

$user =& JFactory::getUser();
if ($user->guest)
{
 // user is a guest (is not logged in)
}

User parameters
The params attribute is special. We design an INI string to store additional
parameters about a user. The users.xml file, located in the backend in the
root of the user's component, contains the default attributes.

This table details the default parameters defined in the users.xml file:

Parameter Description
admin_language Backend language
language Frontend language
editor User's editor of choice
helpsite User's help site
timezone Time zone in which the user is located (hours offset from UTC+0)

To access these, we use the getParam() and setParam() methods. We could directly
access the params attribute, but we would then have to parse the data. This example
demonstrates how we determine the user's time zone:

// get the default time zone from the registry
$registry =& JFactory::getConfig();
$tzdefault = $registry->getValue('config.offset');

// get the user's time zone
$user =& JFactory::getUser();
$tz = $user->getParam('timezone', $tzdefault);

Notice that we supply a default value, $tzdefault, which is extracted from the
site settings. We use this as the second parameter for getParam(); this parameter
is optional.

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[96]

This example demonstrates how we can modify the value of the user's time zone:

$user =& JFactory::getUser();
$user->setParam('timezone', '0');

When we perform any modifications to the user's session, unless we save the
changes, the modifications will last only until the session expires. User parameters
are not used as a temporary store. To store temporary data, we should use the
session and the user state; we will see both in the next section.

If we store temporary data in user parameters, we run the risk of saving
the data accidently to the user's database record.

A common design issue is the extension of the users beyond their predefined
attributes. There are three common ways of dealing with this:

Add additional fields to the #__users table
Create a new table that maintains a one-to-one relationship with the
#__users table
Use the user's parameters to store additional data

The first option can cause some major problems. If several extensions choose this
method, there is a chance that there will be a naming conflict between fields.

The second option is a good choice if the extra data is searchable, ordered, or used
to modify results returned from queries. To maintain the table successfully, we
would have to create a plugin to deal with the events onAfterStoreUser and
onAfterDeleteUser. These are explained in Chapter 7, Plugin Design.

The final option is ideal if the extra data is not subject to searches, ordered, or
used to restrict query results. We might implement these parameters in one of
three ways:

Manually edit the parameters using the setParam() method. This is
suitable if there are only a few parameters or if the user never modifies
the parameters using a form.
Use JParameter as the basis to create a form in which users can modify
the parameters.
Allow the user to modify the parameters via the user's component. To do
this, we need to modify the users.xml file (for more information about
editing XML, see Chapter 10, APIs and Web Services).

However, before we begin, there is something we need to understand. A JUser
object essentially has two sets of parameters: a RAW parameter string or array
(params) and a JParameter object (_params).

•
•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

Both of these are loaded from the database when the user's session starts. If we
modify either of them, the changes will be present only until the user's session
ends. If we want to save the parameters to the database, as is normally the case, we
must use the save() method. This will update the parameters based on the RAW
parameters alone.

When we use the setParam() method, only the JParameter object is modified. It
is because of this that we must update the RAW params attribute before saving. We
must take extra care when saving changes to the user's parameters. Poor handling
can result in loss of data.

The following example demonstrates how we can set the user's foo parameter and
save the changes to the database:

// get the user and add the foo parameter
$user =& JFactory::getUser();
$user->setParam('foo', 'bar');

// update the raw user parameters
$params =& $user->getParameters();
$user->set('params', $params->toString());

// save the changes to the database
if (!$user->save())
{
 JError::raiseError('SOME_ERROR',
 JText::_('Failed to save user'));
}

Next, we will explore parameters that a user can update via a form. We will begin by
creating an XML file that defines the extra parameters. We will see the parameters in
detail in Appendix B, Parameters (Core JElement). The following XML defines the two
text parameters myparameter and myotherparameter:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <params>
 <param name="myparameter" type="text" default="example"
 label="My Parameter"
 description="An example user parameter" />
 <param name="myotherparameter" type="text"
 default="example" label="My Other Parameter"
 description="An example user parameter" />
 </params>
</metadata>

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[98]

We can create form elements using this XML and the user's JParameter object. We
can also get a reference to the JParameter object using the getParameters() method:

// get the user
$user =& JFactory::getUser();

// get the user's parameters object
$params =& $user->getParameters();

Once we have the JParameters object, we can load the XML file and render the form
elements using the render() method, as this example demonstrates:

$params->loadSetupFile($pathToXML_File);
echo $params->render('myparams');

A form field is created for each parameter, all of which are treated as a form array.
The parameter that we provide to the render() method is used to name the form
array. If we do not provide the parameter, the default name called "params" is used.

Our example will create two text inputs called myparams[myparameter] and
myparams[myotherparameter]. This is a screenshot of how these parameters
would appear:

Alternatively, we could use the JParameter renderToArray() method
that returns an array of arrays that define the different form elements.

Creating a form to deal with extra parameters is only the beginning; we need to
process submitted forms. In this example, we retrieve the parameters from the POST
array (assuming that the form is submitted using the POST method), add them to the
user's existing parameters, rebind them to the user object, and save the changes:

// get the user object and the post array.
$user =& JFactory::getUser();
$post = JRequest::get('post');

// get the existing parameters
$params = $user->getParameters();

// add the parameters from the form submission
$params->bind($post['myparams']);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

// update and save the user
$user->set('params', $params->toString());
$user->save();

The last option we will explore is modifying the users.xml file. To do this, we
will utilize the JSimpleXML parser. For a complete description of the JSimpleXML
parser, please refer to Chapter 10, APIs and Web Services and Appendix F, Joomla!
Utility Classes.

The first thing we need to do is open the XML file and parse the contents:

// get a parser
$parser =& JFactory::getXMLParser('Simple');

// define the path to the XML file
$pathToXML_File = JPATH_ADMINISTRATOR
 . DS.'components'
 . DS.'com_users'
 . DS.'users.xml';

// parse the XML
$parser->loadFile($pathToXML_File);

In order to add new param tags to the XML, we need to navigate to the params tag:

// get the root tag (install)
$document =& $parser->document;

// get the params tag
$params =& $document->params[0];

We can now start adding to the XML using the addChild() method to add child
param tags and the addAttribute() method to set the necessary param tag attributes.
This example, which adds the previously defined parameters myparameter and
myotherparameter, is shown below:

// Add myparameter
$myparameter =& $params->addChild('param');

// modify the myparameter attributes
$myparameter->addAttribute('name', 'myparameter');
$myparameter->addAttribute('type', 'text');
$myparameter->addAttribute('label', 'My Parameter');
$myparameter->addAttribute('description',
 'An example user parameter');

// Add myotherparameter
$myotherparameter =& $params->addChild('param');

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[100]

// modify the myotherparameter attributes
$myotherparameter->addAttribute('name', 'myotherparameter');
$myotherparameter->addAttribute('type', 'text');
$myotherparameter->addAttribute('label', 'My Other Parameter');
$myotherparameter->addAttribute('description',
 'An example user parameter');

Now that we have made the changes to the XML file, we need to save those changes
to the users.xml file. We can do this using the JFile class:

// create XML string
$xmlString = '<?xml version="1.0" encoding="UTF-8" ?>'."\n";
$xmlString .= $document->toString();

// get the JFile class
jimport('joomla.filesystem.file');

// save the changes
if (!JFile::write($pathToXML_File, $xmlString))
{
 // handle failed file save
}

These alterations will enable users to modify myparameter and myotherparameter
when they use the user's component to modify their details. This screenshot depicts
the resultant form with the changes:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

If one were to employ this technique, the best place to do so would probably be in a
component installation file. It is also important to consider making a backup of the
existing file in case any unexpected difficulties were to arise.

Modifying this file could also lead to problems if the file is ever updated, such as in
part of an upgrade. However, it does mean that all of the user's details are editable
from one central point.

The session
When a user accesses Joomla!, a new session is created; this occurs even if the user
is not logged in. Instead of accessing the $_SESSION hash as we do in most PHP
applications, we must use the global JSession object.

When we access session data, we provide the value name and, optionally, the
namespace. If we do not provide a namespace, the default namespace aptly named
default is assumed. In this example, we retrieve the value of default.example:

$session =& JFactory::getSession();
$value = $session->get('example');

It is unusual when we are accessing the session in this way to use anything other
than the default namespace. That is why the second parameter in the get() method
is not the namespace but the default value. In this example, we retrieve the value of
default.example, returning a value of 1 if the value does not exist:

$session =& JFactory::getSession();
$value = $session->get('example', 1);

The last parameter is the namespace. This example demonstrates how to retrieve
a value from a different namespace (someNamespace):

$session =& JFactory::getSession();
$value = $session->get('example', 1, 'someNamespace');

In addition to retrieving values, we can also set them. In this example, we set the
value of default.example and someNamespace.example:

$session =& JFactory::getSession();
$session->set('example', 1);
$session->set('example', 1, 'someNamespace');

You might be wondering why we tend to use the default namespace. Due to
limitations of the namespace handling within the JSession class, we use a
special area of the session known as the user-state.

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[102]

The user-state is a JRegistry object that is stored in the session. The application
accesses this object, which is located in default.registry. There are two application
methods that we use: getUserState() and getUserStateFromRequest().

We will begin by exploring getUserState(). This example illustrates how we can
retrieve the value of session.counter, a counter that represents the number of
requests a user has made:

$mainframe->getUserState('session.counter');

Setting user-state values is very similar. This example demonstrates how we can
set an alternative template for a user:

$mainframe->setUserState('setTemplate', 'someSiteTemplate');

The getUserStateFromRequest() method is very similar to the getUserState()
method except that it checks the request values first. This method is used extensively
in Joomla!'s implementation of pagination.

The method has three parameters: the key (a path), the name of the request,
and a default value. This example retrieves the value of com_myextension.list.
filter.order:

$order = $mainframe->getUserStateFromRequest(
 'com_myextension.list.filter.order',
 'filter_order', 'name');

The second parameter is especially important. If a request were made in which the
query contained filter_order=owner, the value returned would be owner. It would
also update the user-state to equal owner.

This method is of particular interest when we want to allow users to modify their
state values. It is for this reason that the getUserStateFromRequest() method is
used extensively in pagination.

There is no setUserStateFromRequest() method because when we execute the
getUserStateFromRequest() method, the value is updated.

As a final note, Joomla! session data is not always stored in the usual way. Joomla!
uses session storage classes to allow alternative methods of data storage. These
methods include the database, php-eaccelerator, and php-pecl-apc. We must
install php-eaccelerator or php-pecl-apc on the server if we have to use them.

There is a limitation when using database session-storage. The session
data size is limited to 65,535 characters. This can cause problems with
extensions that require large amounts of session storage space.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

The browser
A useful source of information about the client is the browser. We can use the
JBrowser class, located in joomla.environment.browser, to investigate the
client browser.

Browsers have features that enable them to behave in certain ways. For example, a
browser may or may not support JavaScript. We can use the hasFeature() method
to check for different features.

This example checks for JavaScript support:

$browser =& JBrowser::getInstance();
if ($browser->hasFeature('javascript'))
{
 // the browser has JavaScript capabilities
}

This is a list of the different features we can check for when using the
hasFeature() method:

accesskey
cite
dom
frames
dhtml
homepage
html
iframes
images
java
javascript
optgroup
rte
tables
utf
wml
xmlhttpreq

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[104]

Browsers also have quirks (peculiarities of behavior). We can use JBrowser to
check for certain quirks in browsers. In this example, we check that the browser
is adequately able to deal with pop ups:

$browser =& JBrowser::getInstance();
if ($browser->hasQuirk('avoid_popup_windows'))
{
 // the browser does not like popups
}

Generally, all browsers, except mobile browsers and old browsers, will deal
with pop ups.

This is a list of the different quirks that we can check for using JBrowser:

avoid_popup_windows

break_disposition_filename

break_disposition_header

broken_multipart_form

cache_same_url

cache_ssl_downloads

double_linebreak_textarea

empty_file_input_value

must_cache_forms

no_filename_spaces

no_hidden_overflow_tables

ow_gui_1.3

png_transparency

scroll_tds

scrollbar_in_way

windowed_controls

Both the quirks and features are hard-coded in Joomla!; they are not retrieved from
the browser. This means that JBrowser will not detect popup blockers or other
unexpected settings. This is a list of the browsers known to Joomla!:

AvantGo
BlackBerry
Ericsson
Fresco
HotJava

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

i-Mode
Konqueror
Links
Lynx
MML
Motorola
Mozilla
MSIE
Nokia
Opera
Palm
Palmscape
Up
WAP
Xiino

There are a number of handy methods to determine which browser a user is using.
This example demonstrates how we would output a formatted string representation
of the user's browser:

$browser =& JBrowser::getInstance();
$string = ucfirst($browser->getBrowser()).' ';
$string .= $browser->getVersion().'(';
$string .= $browser->getPlatform().')';

This is an example of the returned value: Mozilla 5.0 (win).

We will now discuss three additional JBrowser methods that we can use to make
our extensions more user-friendly and secure.

Imagine we want to prevent robots from viewing an extension. Robots are programs
that systematically "crawl" though a website, indexing the content for use in search
engines. We can check if a browser is a robot using the isRobot() method:

$browser =& JBrowser::getInstance();

if ($browser->isRobot())
{
 JError::raiseError('403',
 JText::_('Robots are disallowed'));
}

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[106]

When we use components, we can choose to modify the MIME type of a response.
Before we do this, using JBrowser, we can check that the browser supports the
MIME type. This example checks that the browser can handle the MIME type
application/vnd.ms-excel (an MS Excel file) before displaying a certain link:

$browser =& JBrowser::getInstance();

if ($browser->isViewable('application/vnd.ms-excel'))
{
 echo '<a href="'.JRoute::_('index.php?option=com_myextension
 &format=raw&application=xls')
 .'">Link to an XLS document';
}

Imagine we want to display an image of a padlock if we access the site via SSL
(Secure Sockets Layer). We can use the isSSLConnection() method:

$browser =& JBrowser::getInstance();
if ($browser->isSSLConnection())
{
 echo '<img src="images/padlock.jpg" alt="Secure Connection"
 style="width: 36px; height: 36px;"/>';
}

Assets
It is common to want to include additional assets in our extensions. Assets are
normally media. An example would be image files. This is a list of common files
that we might classify as assets:

JavaScript
Image
Cascading Style Sheet
Video
Flash

We deal with asset files in two common ways.

We can use the media tag in our extension XML manifest files to add assets to the
Joomla! Media Manager. This is ideal if we want to allow users the right to modify
the assets.

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

Within the media tag, we must detail each file that we intend to add. Unlike
copying extension files, we cannot define folders that we want to copy into
the Media Manager.

This example demonstrates how we can copy two images, foo.png and bar.jpg,
from a folder in the extension archive named assets into the stories folder in the
Media Manager:

<media destination="stories" folder="assets">
 <filename>foo.png</filename>
 <filename>bar.jpg</filename>
</media>

The stories folder is a special folder within the Media Manager. When we edit
content items adding pictures, only files within the stories folder can be added
(unless hard-coded).

We can copy files into any folder in the Media Manager using the media tag
destination attribute. If we want to add files to the root of the Media Manager,
we need not include the destination attribute.

Alternatively, we can create a folder in our extensions called assets. Many of the
core extensions use this approach. It prevents modification of the assets and is ideal
for any assets that we always require.

When we use this method to add assets to a component, generally we create one
assets folder and create it in the frontend. Of course, we do not have to do this;
where such a folder is created is entirely left to the developer's discretion.

Extension structure
When we decide to create a Joomla! extension, the type will dictate the physical
folder and file structure as well as how we will package it. In the following sections,
we will discuss setting up a development sandbox for components, modules, and
plugins. Along the way, we will cover the folder and file structure for each type,
discuss specific naming conventions that we will need to follow, and create some
files that will be used at extension installation.

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[108]

The structure of a component
We will begin by discussing the physical file and folder structure necessary to
create a component. We need to clearly understand this structure because Joomla!
expects files to follow specific naming conventions and to be placed in specific
folders. Although we will discuss ways in which we can alter Joomla!'s expectations,
our success will be severely hindered if we do not understand what the basic
requirements are and why they exist.

Components are built using the Model-View-Controller (MVC) design pattern
(we will discuss the MVC in greater detail in Chapter 5, Component Design.) The
following discussion will introduce models, views, and controllers, classes that
make up components. If you are unfamiliar with MVC, you can skip ahead to
Chapter 5, Component Design to learn more about this design pattern.

Component directory structure
Normally, any component will have both a frontend component and a backend
component. The directory structures for each are virtually identical although the
backend may contain a few additional folders.

The following diagram illustrates the backend component directory structure.
The backend folders and files will be located in the /administrator/components
directory. The frontend folders and files will be located in the /components
directory. Those folders that will not be found in the frontend have been
highlighted and annotated as such.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

This folder structure is not mandatory. However, if we plan on
creating our component using the Joomla! MVC, help (preferences
button), and JTable subclasses, we must use the models, views,
help, and tables folders.

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[110]

Obviously, there are quite a few folders that must be created for our component.
We could create the folders in the frontend and backend component directories,
but there are significant drawbacks to doing so which we will discuss shortly.

Case is important!
Different operating systems handle the case of directory and file names
differently. Windows operating systems will ignore case and treat
"Model" and "model" as the same name. *NIX operating systems will
treat them as unique names.
As a general rule of thumb, always use lower case alphanumeric
characters for your directory and file names.

Component file structure
We must follow certain naming conventions in order for Joomla! to execute our
component correctly. For illustrative purposes, we will use "boxoffice" for our
component name. You can replace this with your own name when you build
your component.

After our component has been uploaded and installed through the Joomla! Extension
Manager, our files will be located in either the /components/com_boxoffice
directory and subdirectories or the /administrator/components/com_boxoffice
directories and subdirectories. All component names must be prefixed with com_.

index.html
As standard procedure, we should always include an index.html file in every
component folder. The index.html file is essentially a blank HTML file, although
the normal practice is to include the following:

<html><body bgcolor="#FFFFFF"></body></html>

The purpose for this file is to prevent unauthorized access to individual directories.
Anyone who understands the structure of Joomla! can attempt to access a folder
directly. If a folder does not contain an "index" file, most browsers will return a
directory listing. By including the index.html file in each directory, any attempt
to access a folder will result in a blank page and not a directory structure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

Entry point
Every component must provide an entry point for both the frontend and the
backend. Both files use the base component name without the prefix com_. The
frontend entry point file will be named boxoffice.php. The backend entry point file
will be named admin.boxoffice.php. While it is not a strict requirement to name
the entry points in this manner, it is normal practice to do so. As we will discover in
Chapter 5, Component Design, the content of both files is, in most cases, identical.

Controller
The default name for both the frontend and backend controller files is controller.
php. The names of any additional controllers, if required, can be named whatever
name you wish to use. It would be advisable, however, to prefix the name of additional
controllers with some unique identifier such as specialcontroller.php. Additional
controllers should be located in frontend and backend /controllers subdirectories.

Views
Components may have one or more views for both the frontend and backend. Each
view will be located in a subdirectory under the /views directory; the name of the
view subdirectory should reflect the output of the view but can be named anything
you find appropriate. If you only have one view, you may wish to name it the same
as the base component name. This will simplify your code a bit (more on this later).
For our component, we will have two views for the backend (revue and revues) and
one view for the front end (revues).

You may question why the views have been named with a deviation from
normal spelling. Joomla! parses files and class names at various times for
many purposes. If it detects certain substrings within file or class names
(for example, "view"), it will emphatically inform you that this may
cause problems.
Originally, the names of the views were review and reviews, which
Joomla! very persistently reported as a problem. Bear this in mind as you
develop your own components.

A view file, view.html.php, must be placed in the frontend /views/revues
subdirectory and the backend /views/revue and /views/revues subdirectories.
While the file name is the same, the contents will differ for each view.

Note that the view file name may vary for various reasons. The extension
will change depending on the output generated by the view, such as
html, pdf, feed, or raw. You may also give the view file any name you
like, such as the name of the view. If you do this however, additional
coding will be required.

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[112]

Each view will have one or more layout or template files; these layout files will be
located in the /tmpl subdirectory of each view. We are not restricted to how we name
our layout files although it is normal practice to give them a functional name such as
form.php or listitems.php. Naming one of the layout files default.php will reduce
our coding a bit, as we will see when we begin developing our component.

Models
Most components will have one or more models located in the frontend and backend
/models subdirectories. The role of a model is to provide data for a view; model
names should match their associated view. For example, the model associated
with the frontend view should be named /models/revues.php, and the models
associated with the backend views should be named /models/revue.php and
/models/revues.php respectively.

Tables
Table files are only found in the backend and are located in the /tables
subdirectory. As we discussed in Chapter 3, The Database, we should have a table file
for every database table we create. Our component will use a single database table,
#__boxoffice_revues. Table files should be named for the database table; in our
case, it will be named revue.php.

Component class names
We will be creating classes in each of our model, view, and controller files. Our
classes (technically subclasses) will extend the JModel, JView, and JController
base classes and, in most cases, will override the base class methods to provide
component specific functionality.

Unlike directory and file names, class names use both upper and lower case letters.
Joomla! expects class names to follow a very specific naming convention. Here are
the naming guidelines (please note that the component name and the ending name
must start with an upper case character followed by lower case characters [for
example, Boxoffice]):

Class Class Name
Controller {Component}Controller
Controller (additional) {Component}Controller{Name}
View {Component}View{Name}
Model {Component}Model{Name}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[113]

The component we will build will consist of the following directories, files,
 and classes:

Backend (/administrator/components)
|——/com_boxoffice
 |
 |——admin.boxoffice.php
 |——controller.php class: BoxofficeController
 |——index.html
 |
 |——/models
 | |
 | |——revue.php class: BoxofficeModelRevue
 | |——revues.php class: BoxofficeModelRevues
 | |——index.html
 |
 |——/tables
 | |
 | |——revue.php class: TableRevue
 | |——index.html
 |
 |——/views
 |
 |——/revue
 | |
 | |——view.html.php class: BoxofficeViewRevue
 | |——index.html
 | |
 | |——/tmpl
 | |
 | |——default.php
 | |——index.php
 |
 |——/revues
 |
 |——view.html.php class:BoxofficeViewRevues
 |——index.html
 |
 |——/tmpl
 |
 |——default.php
 |——index.php

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[114]

Frontend (/components)
|——/com_boxoffice
 |
 |——boxoffice.php
 |——controller.php class: BoxofficeController
 |——index.html
 |
 |——/models
 | |
 | |——revue.php class: BoxofficeModelRevue
 | |——index.html
 |
 |——/views
 |
 |——/revue
 |
 |——view.feed.php class: BoxofficeViewRevue
 |——view.html.php class: BoxofficeViewRevue
 |——view.xml.php class: BoxofficeViewRevue
 |——index.html
 |
 |——/tmpl
 |
 |——default.php
 |——list.php
 |——index.php

In addition to the directories and files listed above, our component will require a few
more files. We will create five of those files in the next section, and additional files
will be discussed in subsequent chapters.

Setting up a component sandbox
Building a component requires good planning and preparation. Ultimately, we will
want to bundle all of our component files together so that we can load and install our
component using the Joomla! Extension Manager. We will bundle our component
files into a single archive package which can be in ZIP, TAR, GZ, TGZ, GZIP, BZ2, TBZ2,
or BZIP2 format.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[115]

Component packages include all the component files and up to five additional files.
These files include:

The XML manifest file—contains information needed to install
the component
Install file—executed when the component installation successfully
completes (optional)
Uninstall file—executed when the component is successfully
uninstalled (optional)
SQL install file—executed during component installation to create and
potentially populate any required database tables (optional)
SQL uninstall file—executed during uninstall to remove database tables
created by the component (optional)

We will create these files at the beginning of our development process. You may find
this an odd thing to do, but there is a perfectly good explanation for creating these files
before we begin to create our actual component. Actually there are several reasons:

• Whenever we install a component, Joomla! performs many functions that
are not readily apparent, such as adding entries into the components table,
creating the necessary folders in the frontend and backend, adding menu
items, and so on. While we could manually do this, it is, quite frankly, a lot of
work and not much fun, not to mention there is significant time required and
a number of possibilities for error.

• As we make changes to our component such as adding files and updating
code, we really do not want to do so on the installed code. It is always a
good idea to make changes incrementally and, whenever possible, in a
separate instance of your working extension. We need a sandbox to
develop our component.

• Creating a component package is easier to do if we have a separate
development workspace in which to work.

For all of these reasons and perhaps a few more, we will create a separate workspace
for our component development. The first step is to create a directory within the
Joomla! root directory and name it extensions. Next, we will create a subdirectory
com_boxoffice and within that directory add two more directories, admin and site.
While we are at it, let's create our blank index.html file and place a copy in both the
administrator and site directories to ensure that we do not forget to do so later. Let's
also create the remaining directories that our component will require and add a copy
of index.html to each directory.

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[116]

Our sandbox is very basic, but we will very quickly begin to add files and folders to it.

Our sandbox should now contain the following:

| ——/com_boxoffice
 |
 |——/admin
 | |——index.html
 | |
 | |——/models
 | | |——index.html
 | |
 | |——/tables
 | | |——index.html
 | |
 | |——/views
 | |——index.html
 | |
 | |——/revue
 | | |——index.html
 | | |
 | | |——/tmpl
 | | |——index.html
 | |
 | |——/revues
 | |——index.html
 | |
 | |——/tmpl
 | |——index.html
 |——/site
 |——index.html
 |
 |——/models
 | |——index.html
 |
 |——/views
 |——index.html
 |
 |——/revue
 |——index.html
 |
 |——/tmpl
 |——index.html

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[117]

SQL install and uninstall files
Most components have at least one database table associated with them. If our
component requires one or more database tables, we instruct Joomla! to create
the tables at installation by including a SQL installation file that contains the SQL
commands necessary to create our component tables. We can use SQL install and
uninstall files to create, populate, and remove tables. Normally we create three
different SQL files, one for installing on UTF-8-compatible MySQL servers, one
for installing on non-UTF-8-compatible MySQL servers, and one uninstall file.

We will name the SQL installation files install.sql and install_noutf8.sql for
UTF-8 and non-UTF-8 servers respectively. We normally name the uninstallation
SQL file uninstall.sql. We do not have to use this naming convention.

For our component, we need to create a single table #__boxoffice_revues. We will
create the SQL installation file install.sql and place it in the /admin directory of
our sandbox.

The contents of the install.sql file will be the following:

DROP TABLE IF EXISTS `#__boxoffice_revues`;
CREATE TABLE `#__boxoffice_revues` (
 `id` int(11) unsigned NOT NULL auto_increment,
 `title` varchar(50) NOT NULL default '',
 `rating` varchar(10) NOT NULL default '',
 `quikquip` text NOT NULL default '',
 `revuer` varchar(50) NOT NULL default '',
 `revued` datetime NOT NULL,
 `revue` text NOT NULL default '',
 `stars` varchar(5) NOT NULL default '0',
 `checked_out` int(11) unsigned NOT NULL default '0',
 `checked_out_time` datetime NOT NULL,
 `ordering` int(11) unsigned NOT NULL default '0',
 `published` tinyint(1) unsigned NOT NULL default '0',
 `hits` int(11) unsigned NOT NULL default '0',
 PRIMARY KEY (`id`)
) ENGINE=MyISAM AUTO_INCREMENT=0 DEFAULT CHARSET=utf8;

The first command checks whether the table exists, and if it does, the command
deletes it. As discussed in Chapter 3, The Database, Joomla! replaces the #__ prefix
with the database prefix found in the configuration file (the default is jos_).

The second command creates the #__boxoffice_revues table.

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[118]

We also define the character set and the collation; this ensures that our table is UTF-8-
compatible. Obviously, we only do this in the SQL file for UTF-8-compatible MySQL
servers. For more information about the differences between UTF-8-compatible and
non-UTF-8 compatible MySQL servers, refer to Chapter 3, The Database.

We only need one uninstall file because it does not matter whether it is UTF-8
compatible or not. The uninstall script deletes the table that our component uses.
If our component is uninstalled, the database table is removed. We will call our
uninstall script uninstall.sql and place it in the /admin directory. It will contain
the following command:

DROP TABLE IF EXISTS #__boxoffice_revues;

You must copy the SQL files into the root of your component's
backend and define them within install and uninstall tags
in your XML manifest file.

As an alternative to creating external files, you can embed the SQL commands inside
the XML manifest file between query tags, as is shown in the following example:

<queries>
 <query>
 DROP TABLE IF EXISTS `#__boxoffice_revues`;
 </query>
 <query>
 CREATE TABLE `#__boxoffice_revues` (
 `id` int(11) unsigned NOT NULL auto_increment,
 `title` varchar(50) NOT NULL default '',
 `rating` varchar(10) NOT NULL default '',
 `quikquip` text NOT NULL default '',
 `revuer` varchar(50) NOT NULL default '',
 `revued` datetime NOT NULL,
 `revue` text NOT NULL default '',
 `stars` varchar(5) NOT NULL default '0',
 `checked_out` int(11) unsigned NOT NULL default '0',
 `checked_out_time` datetime NOT NULL,
 `ordering` int(11) unsigned NOT NULL default '0',
 `published` tinyint(1) unsigned NOT NULL default '0',
 `hits` int(11) unsigned NOT NULL default '0',
 PRIMARY KEY (`id`)
) ENGINE=MyISAM AUTO_INCREMENT=0 DEFAULT CHARSET=utf8;
 </query>
</queries>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[119]

During component development, you may wish to modify these commands slightly.
After the initial installation and testing, you may have entered test data that you do
not wish to re-enter. You can modify the script to accommodate this in one of the two
ways. The first requires deleting the first command and modifying the second:

CREATE TABLE IF NOT EXISTS `#__boxoffice_revues` (

This will cause the table to be created only if it does not currently exist.

The second approach is a bit more complicated to achieve but has the advantage
of keeping the original script while restoring the data previously entered. This is
important because the uninstall script will remove the table(s) that we have created,
thus rendering the previous alternative invalid.

Adding the following command to the install script will restore previously entered
data. You will need to use an external database application such as phpmyadmin to
export this script, as we see in the following:

INSERT INTO `#__boxoffice_revues` (`id`, `title`, `rating`,
`quikquip`, `revuer`, `revued`, `revue`, `stars`, `checked_out`,
`checked_out_time`, `ordering`, `published`, `hits`)
VALUES (1, 'Back to the Future', 'PG', '', 'Funny and enjoyable.',
'Joe Smoe', '2007-03-01 09:10:10', 'I thoroughly enjoyed this movie.
What a bunch of goofballs! ', '****', 0, '0000-00-00 00:00:00', 1, 1,
0);

Be sure to change the table name prefix after you export the data.

Install and uninstall scripts
During the install and uninstall phases, we can optionally execute install and
uninstall files. This allows us to perform additional processing that we may
not be able to do using the XML manifest file.

Although entirely optional, these script files can be extremely helpful to our users and
lend an air of professionalism to our component. We can use the install file to output
information that can be used to display a message that explains something about the
component. It can also be used to show the success or failure of any processing.

The install file normally includes a function called com_install(). This function
is used to execute additional processing that we may wish to perform during the
installation of our component. If an error occurs during the execution of the function,
we can return Boolean false. This will abort the extension installation.

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[120]

After Joomla! validates the XML manifest file and the SQL install file has been
executed, the installation script is executed. Our component installation file is
named install.php and contains the following:

<?php
/**
 * Boxoffice installation script
 *
 * @return boolean false on fail
 */
function com_install()
{
 // Execute some code
 // <code>

 Echo "<p>Thank you for installing BoxOffice.</p>";

 return true;

}
?>

In our case, we are simply printing some informative text. Our install script includes
the function com_install() that does nothing and simply returns true. If our
component required some additional initialization, we could place the code within
the com_install() function, and it would be executed. This function is optional and
can be omitted in the install file.

You may also provide an uninstall script that functions exactly like the install
script except it is called when the component is uninstalled. The uninstall script
is run before the SQL uninstall script is executed, which is normally the first step
in uninstalling a component. This provides us with the opportunity to verify
that the uninstall process will proceed normally. Our uninstall file will be named
uninstall.php and will contain the following code:

<?php
function com_uninstall()
{
 echo "<p>We are sorry that you found it necessary to uninstall the
boxoffice component.</p>";
 echo "<p>We would be very interested in why you have found it
necessary to remove Box Office. Please visit us at
 <a href-http://www.boxoffice.com>Box Office Software and give us
your comments.</p>";

 return true;
}
?>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[121]

Component XML manifest file
The XML manifest file details everything the installer needs to know about an
extension. Any mistakes in the file may result in partial or complete installation
failure. XML manifest files should be saved using UTF-8 encoding.

We will begin with a very basic file and add to it as we develop our component.

The first line defines the file as an XML file, UTF-8 encoded, as we see below:

<?xml version="1.0" encoding="utf-8"?>

The next line is the root install tag which defines the type of extension (component)
and the version (1.5) of Joomla! for which the extension has been written,
shown below:

<install type="component" version="1.5">

The <name> tag is required and must contain the name of the component. The
Joomla! installer will parse the name. The installer will remove spaces, convert the
string to lower case, and prefix the string with com_. The result, com_boxoffice, will
be used to create the component folders in the frontend and backend and also in the
options field in the #__components table entry for our component.

Any name other than our exact component name will result in component failure.
Remember that we will be creating entry point files that use our component name.
If we list Box Office Revues in the name tag, Joomla! will translate that to
com_boxofficerevues. If our entry points are named boxoffice.php and
admin.boxoffice.php, when we attempt to install our component, the Joomla!
installer will fail because it will be expecting boxofficerevues.php or
admin.boxofficerevues.php, as we see in the example that follows:

 <name>Box Office</name>

The following entries are optional, and there are no restrictions on the format of
their content:

 <creationDate>November 2009</creationDate>
 <author>John Doe</author>
 <authorEmail>johndoe@packtpub.com</authorEmail>
 <authorUrl>http://www.packtpub.com</authorUrl>
 <copyright>Copyright 2009, All rights reserved.</copyright>
 <license>GNU/GPL</license>
 <version>1.0.0</version>
 <description>BoxOffice manages movie reviews</description>

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[122]

Next, we add instructions to install or uninstall any database tables, like in the
following example:

 <!—- Install/Uninstall Section -->
 <install>
 <sql>
 <file driver="mysql" charset="utf8">install.sql</file>
 </sql>
 </install>

 <uninstall>
 <sql>
 <file driver="mysql">uninstall.sql</file>
 </sql>
 </uninstall>

 <installfile>install.php</installfile>
 <uninstallfile>uninstall.php</uninstallfile>

We follow that with the administration section:

 <administration>
 <menu>Box Office Revues</menu>

 <!—- Administration File Section -->
 <files folder="admin">

 <filename>index.html</filename>
 <filename>install.php</filename>
 <filename>uninstall.php</filename>
 <filename>install.sql</filename>
 <filename>uninstall.sql</filename>

 <filename>models/index.html</filename>

 <filename>tables/index.html</filename>

 <filename>views/index.html</filename>
 <filename>views/revue/index.html</filename>
 <filename>views/revue/tmpl/index.html</filename>
 <filename>views/revues/index.html</filename>
 <filename>views/revues/tmpl/index.html</filename>
 </files>
 </administration>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[123]

And we finish our manifest with the site frontend section:

 <!—- Site File Section -->
 <files folder="site">

 <filename>index.html</filename>
 <filename>models/index.html</filename>
 <filename>views/index.html</filename>
 <filename>views/revue/index.html</filename>
 <filename>views/revue/tmpl/index.html</filename>
 </files>

</install>

The structure of a module
The physical file and folder structure for a module is much simpler than a
component. Modules can be created for use in either the frontend or backend.

Module directory structure
The directory structure will largely depend on whether the module will be a
frontend or backend extension. The following diagram illustrates the frontend
module structure; a backend module will look the same:

Case is important!
Different operating systems handle the case of directory and file names
differently. Windows operating systems will ignore case and treat
"Model" and "model" as the same name. *NIX operating systems will treat
them as unique names.
As a general rule of thumb, always use lower case alphanumeric
characters for your directory and file names.

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[124]

Module file structure
We must follow certain naming conventions in order for Joomla! to execute our
module correctly. We will be creating a frontend module called "Critics Choice."
You can replace the module name with your own when you build your module.

After our module has been uploaded and installed through the Joomla! Extension
Manager, our files will be located in either the /modules/mod_criticschoice
directory or the /administrator/modules/mod_criticschoice directory. All
module names must be prefixed with mod_.

index.html
As we discussed in the previous section on components, we should always include
an index.html file in every module folder.

Module entry point
Each module must have a main module file; since our module will be titled "Critics
Choice," we will name our module file mod_criticschoice.php. This file is located
in the root module directory.

Helper
Although the file is not absolutely required, most modules will have a helper.php
file that performs auxiliary functions such as retrieving data from the database and
so on. This file is located in the root module directory.

Layouts
Modules normally will have one or more layouts that are used to render the data
in a specific format. Our module will have three layout files: _error.php,
default.php, and ratings.php. The content of these files will be described
in Chapter 6, Module Design.

Module class names
Typically the only class we will create will be the helper class. Normal naming
convention combines the prefix mod with the camel-cased module name and the
suffix Helper. Our helper class name will be modCriticsChoiceHelper.

Our module will consist of the following directories, files, and classes:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[125]

Frontend (/modules)
|——/mod_criticschoice
 |
 |——mod_criticschoice.php
 |——helper.php class: modCriticsChoiceHelper
 |——index.html
 |
 |——/tmpl
 |
 |——_error.php
 |——default.php
 |——ratings.php
 |——index.html

Clearly our module requires a much simpler structure than our component. In
addition, we will need to create two more files which we will discuss shortly.

Setting up a module sandbox
When we start building a new module, it is imperative that we have a sandbox
to test our code. Ideally, we should have more than one system so that we can test
our modules on different server setups.

In order to set up our sandbox module, let's begin by creating a basic installer. The
XML displayed below can be used to create a blank module called Critics Choice:

<?xml version="1.0" encoding="utf-8"?>
 <install version="1.5" type="module" client="site">
 <name>Critics Choice</name>
 <author>Author's Name</author>
 <authorEmail>Author's Email</authorEmail>
 <authorUrl>Author's Website</authorUrl>
 <creationDate>MonthName Year</creationDate>
 <copyright>Copyright Notice</copyright>
 <license>Module License Agreement</license>
 <version>Module Version</version>
 <description>Module Description</description>

 <files>
 <filename module="mod_criticschoice">
 mod_criticschoice.php
 </filename>
 </files>

 </install>

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[126]

To use this, create a new XML manifest file using UTF-8 encoding and save the
previous code into it. The name of this file is not important as long as the extension is
.xml. We will name our file mod_criticschoice.xml. You will need to update the
XML to suit the module you intend to build.

While we put Critics Choice in the name tag, we could have used the parsed name as
well. For example, the name could also be entered as mod_criticschoice.

Once you have built your XML manifest file, create a new PHP file called
mod_criticschoice.php. This is the file that is invoked when the module
is used. If you do not include this file, you will not be able to install the module.

Now you must create a new archive which has to have .gz, .tar, .tar.gz, or .zip
and add the XML manifest file and PHP file to it. If you install the archive, you will
get a blank module ready for you to begin developing.

The module that the above process will install is a frontend module. If we want to
create a backend module, we will have to modify the install tag client attribute value
from site to administrator.

The module will be located at modules/mod_criticschoice. If we create a backend
module, it will be located at administrator/modules/mod_criticschoice.

In order to enable and use your module, you will need to use the Module Manager
to publish and assign the module to menu items.

Module XML manifest file
Our module manifest file must be modified to support all of the files and parameters
that we will be adding.

The first line defines the file as an XML file, UTF-8 encoded, as in this example:

<?xml version="1.0" encoding="utf-8"?>

The next line is the root install tag which defines the type of extension (module) and
the version (1.5) of Joomla! for which the extension has been written:

<install type="module" version="1.5">

The <name> tag is required and must contain the name of the module. The Joomla!
installer will parse the name. The installer will remove spaces, convert the string to
lower case, and prefix the string with mod_. The result, mod_criticschoice, will be
used to create the module folders in the frontend or backend.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[127]

Any name other than our exact module name will result in module failure.
Remember that we will be creating an entry point file that uses our module
name. If we listed Critics Corner in the name tag, Joomla! would translate
that as mod_criticscorner. Since our module entry point file is named
mod_criticschoice.php, when we attempt to install our module, the Joomla!
installer will fail because it will be expecting mod_criticscorner.php.

 <name>Critics Choice</name>

The following entries are optional, and there are no restrictions on the format of
their content:

 <author>Box Office Software</author>
 <authorEmail>support@packtpub.com</authorEmail>
 <authorUrl>www.packtpub.com</authorUrl>
 <copyright>Copyright (C) 2009 </copyright>
 <creationDate>November 14, 2009</creationDate>
 <description>This module lists 5-star revues.</description>
 <license>GNU/GPL</license>
 <version>1.0.0</version>

Next we add the files section as is shown below:

 <files>
 <filename module="mod_criticschoice">mod_criticschoice.php
 </filename>
 <filename>helper.php</filename>
 <filename>index.html</filename>
 <filename>tmpl/_error.php</filename>
 <filename>tmpl/default.php</filename>
 <filename>tmpl/ratings.php</filename>
 <filename>tmpl/index.html</filename>
 </files>

We follow this with the language section if we have a module language file. We will
create one in Chapter 6, Module Design, as we can see below:

 <languages>
 <language tag="en-GB">en-GB.mod_criticschoice.ini
 </language>
 </languages>

We finish our manifest with the parameters section, which we will preview next but
discuss in detail in Chapter 6, Module Design:

<params></params>

</install>

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[128]

The structure of a plugin
Of the three types of extensions, the physical file/ folder structure for a plugin
is the simplest.

Plugin directory structure
Plugins are not usually stored in separate folders because generally plugins only
consist of two files: the XML manifest file and the root plugin file. Installed plugins
are located in the root plugins folder in a subfolder named after the plugin group.
Our plugin will be located in the folder plugins/boxoffice.

Setting up a plugin sandbox
To set up a plugin sandbox, we can create a basic installer. The XML displayed below
can be used to create a blank plugin called "Revue – Box Office":

<?xml version="1.0" encoding="utf-8"?>
<install version="1.5" type="plugin" group="boxoffice">
 <name>Revue – Box Office</name>
 <author>Box Office Software</author>
 <authorEmail>Author's Email</authorEmail>
 <authorUrl>http://www.packtpub.com</authorUrl>
 <creationDate>December 2009</creationDate>
 <copyright>Copyright 2009, All rights reserved.</copyright>
 <license>GNU/GPL</license>
 <version>1.0.0</version>
 <description>Changes * to images</description>

 <files>
 <filename plugin="revue">revue.php</filename>
 </files>
 <params/>
</install>

To use this, we must create a new XML manifest file using UTF-8 encoding and
save the above code into it. You should update the XML to suit the plugin you
intend to build.

One of the most important pieces of information in this file is the group attribute
of the install tag. Plugins are organized into logical groups. This list details the
core groups:

authentication
content

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[129]

editors
editors-xtd
search
system
user
xmlrpc

We can use other groups as well. For example, the group in our plugin XML manifest
file is boxoffice.

It may seem slightly obscure, but another piece of important information in the XML
manifest file is the filename tag plugin parameter. This parameter identifies the
plugin element. The element is a unique identifier used to determine the root plugin
file and used as part of the naming convention.

Unlike components and modules, the installer does not use the name
tag to build the plugin name (element name) or to create a folder for the
plugin. The installer uses the group parameter and the plugin parameter
to create the necessary folders.

Be careful when you select an element name for your plugin. Only one plugin per
group may use any one element name. This table details reserved plugin element
names (used by the core):

Group Reserved element name
authentication gmail

joomla

ldap

openid
content emailcloak

geshi

loadmodule

pagebreak

pagenavigation

sef

vote

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[130]

Group Reserved element name
editors none

tinymce

xstandard
editors-xtd image

pagebreak

readmore
search categories

contacts

content

newsfeeds

sections

weblinks
system cache

debug

legacy
system log

remember
user joomla
xmlrpc blogger

joomla

Once we have built our XML manifest file, we must create a new PHP file named
after the plugin element; this is the file that is invoked when the plugin is loaded. For
our plugin, we will name the file revue.php. If this file is not included, the install will
fail. We will discuss the contents of the revue.php file in Chapter 7, Plugin Design.

Extension packaging
Joomla! extensions are packaged in archive files. Supported archive formats include
the following: .gz, .tar, .tar.gz, and zip. There is no specific naming convention
for archive files; however, the following is often used: the extension type followed
by the extension name followed by a version identifier such as com_name-version.
For example, our packages might be named com_boxoffice-1.0.0,
mod_criticschoice-1.0.0, and plg_revue-1.0.0.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[131]

When you package an extension, make sure that you do not
include any system files. Mac developers should be especially
vigilant and consider using the CleanArchiver utility
http://www.sopht.jp/cleanarchiver/.

There is no specific name that we are expected to use for the XML manifest file.
When we install an extension, Joomla! will interrogate all the XML files it can find in
the root of the archive until it finds a file that it believes to be a Joomla! installation
XML manifest file.

If you want to use a standard naming convention for your XML manifest file, you
should consider using the name of the extension. For example, if the extension is
named mod_criticschoice.php, you might want to call the XML manifest file
mod_criticschoice.xml.

Our component package com_boxoffice-1.0.0 will include all of our component
files that will be used during the installing and uninstalling of our component,
plus the additional files described in the The Structure of a Component section.
These include the XML manifest file, install and uninstall PHP scripts, and
install and uninstall SQL files.

Our module package mod_criticschoice-1.0.0 will contain all of the module files
along with the XML manifest file as described in the The Structure of a Module section.

Our plugin package plg_revue-1.0.0 will typically contain a single plugin file
along with the XML manifest file as described in the The Structure of a Plugin section.

A complete description of the tags that can be used in an XML Manifest file can be
found in Appendix H, XML Manifest File.

Summary
While there are some restrictions as to what we can do in Joomla!, there are many
ways to achieve the same goal. You should never feel restricted by conventional
extension design, but you should always work with Joomla! and take advantage
of the facilities that it provides.

Building supporting classes that do not relate specifically to part of the Joomla!
framework is a common way to extend Joomla! beyond its intended scope. Making
extensions easy to build is all part of the logic behind helper classes. These static
classes allow us to categorize functionality and increase the code reuse.

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Design

[132]

Programming patterns are one of the weapons we can use to tackle a problem.
Joomla! uses patterns extensively, from the complex MVC to basic iterators. When
we create extensions, we can make use of existing classes and data stores to enhance
and assist us. We can use the JRegistry class to store and retrieve configuration
data from the registry, the JUser class to retrieve current user information, the
JSession class to manage the current session, and the JBrowser class to investigate
browser capabilities and limitations.

Joomla! requires that extensions be structured in a specific way and for files and class
names to follow certain naming conventions. Following the rules will ensure that our
extensions will install and execute as we intend them to do.

Packaging an extension is crucial to enable the distribution of the extension. When
we create the XML manifest file, we should always remember to use UTF-8 encoding.

In the next chapter, we will create a component extension using what we have
discussed in this chapter. The chapter introduces the Model-View-Controller (MVC)
design pattern as a logical method of organizing code.

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design
In Joomla!, components are essential extensions; they are the basic building blocks
of any web site design. Whenever Joomla! is invoked, a component is always called
upon to create and display the main content of a page.

This chapter explains the concepts behind building Joomla! components and shows
you how to build your own components. We will cover the following:

Component design using the MVC software design pattern
Model
View
Controller

Component building
Building the component frontend
Building the component backend

Component configuration

Parameters
Help

Routing

Most, but certainly not all, components are comprised of two major parts: a
frontend component and a backend component. Most components will access one
or more database tables, including core tables as well as tables created specifically
for the component to use.

•

°

°

°

•

°

°

•

°

°

°

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[134]

Components are more complex than other types of extensions, and their construction
requires careful planning and thoughtful design. Although our approach to
component construction may appear a bit unorthodox at first, the process is based
on experience and the results of many less-than-successful component development
projects. How you may wish to go about constructing your own component is
entirely up to you.

Component design
Creating a component, we should always start by asking questions such as
the following:

What is the purpose for our component?
What unique characteristics does our content possess that call for a
special component?
Is a component available (http://extensions.joomla.org) that would
satisfy most, if not all, of our requirements?

Consider the core components that are included with every Joomla! release: banners,
contact, content, media, newsfeeds, poll, search, user, weblinks, and wrapper. Each
core component has been designed to handle a specific set of data and to present that
data in a unique yet understandable fashion. If you visit extensions.joomla.org,
you will find literally thousands of examples of third-party components that have
been designed and created. Each and every component created for Joomla! began
through a discovery process—discovering a need to present some content in a certain
way or responding to a request to make a difficult or complex task simpler and
more consistent.

The component that we will design and develop will manage movie reviews. We
will expand our design in subsequent chapters to include other types of extensions
and additional features that are available to us within the Joomla! framework.

Our extension will have both a frontend and a backend component and will maintain
the reviews in a single database table. At the conclusion of this chapter, we will have
a functional component, although it will not contain all the features that we might
wish it to have; we will add more features to our component in later chapters.

Before we begin to construct our component, we need to take a moment to consider
the design approach we will be using. Joomla! 1.5 introduced new methodologies
for designing and building extensions—methodologies that utilize software design
patterns such as those we discussed in Chapter 2, Getting Started. In this chapter, we
will utilize yet another design pattern, Model-View-Controller (MVC), to design
and build our component.

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

The MVC software design pattern
A single Joomla! extension often caters to several user types and several interfaces.
This diagram describes how two different users might access the same system:

Without the MVC or a similar solution, we would probably end up duplicating
large portions of code when dealing with the HTML and XML views, each of which
would contain elements specific to the view. This would be extremely inefficient,
intensive to maintain, and would likely result in inconsistencies between views.

The Model-View-Controller software design pattern has been defined as this:

"MVC consists of three kinds of objects. The Model is the application object, the
View is its screen presentation, and the Controller defines the way that the user
interface reacts to the user input. Before MVC user interface designs tended to
lump these objects together…"

Design Patterns—Elements of Reusable Object Oriented Software,
Erich Gamma, et al.

The primary purpose of the Model-View-Controller software design pattern is
to provide us with a method for logically organizing the code. The MVC design
pattern separates software design into three functional areas or roles. These
functional areas are data access, presentation, and business logic. This separation
allows us to refactor one functional area of our component without requiring
changes to the remaining areas.

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[136]

It is important that we do not confuse the MVC design pattern with the three-
tier architecture that separates application logic into three tiers or layers: the user
interface, business rules, and data management. The three-tier architecture is more
concerned with the data layer; the MVC focuses more on the presentation layer. It
is quite likely that we will find ourselves using a combination of the two. For more
information about three-tier architecture, refer to http://en.wikipedia.org/wiki/
Multitier_architecture.

There are three parts to the MVC design pattern: the model, view, and controller.
The controller and view may both be considered a part of the presentation layer
while the model may be seen as a fusion of the business logic and data-access layers.
Each element of the MVC is represented in Joomla! by an abstract class: JModel,
JView, and JController. These classes are located in the joomla.application.
component library. The next diagram shows how the classes relate to one another:

Model
The model handles data. In most cases, the data will be sourced from the database;
we can, however, use any data source. A single model is designed to work with
multiple records; in other words, a model does not represent a single record. A
component may have one or more models, each supporting a different data source.

A model will normally contain data access methods to retrieve, add, remove, and
update data stored within a specific data source. The model allows us to modify
data; in most cases, this is achieved using bespoke methods, which define business
processes. The methods that define business logic are essentially defining the
behavior of the data.

It is important to remember that models are never aware of controllers or views.
The model isolates the underlying data storage system, whether a MySQL
database, another database system, or even flat files from the remainder of the
code; any change at the data level will only require updating the model without
any modification to either the view or the controller. Keep this in mind as we
develop our component.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

View
The view defines how we present our data. In Joomla!, when we use a view to
display HTML, we use layouts (a form of template) that provide us with an extra
layer of control and enable us to present our data in multiple formats. In addition
to HTML, views can be formatted to present data in other formats such as PDF or
news feeds.

The view retrieves data from the model (which is passed to it from the controller)
and feeds the data into a layout which is populated and presented to the user.
The view does not cause the data to be modified in any way; it displays only
data retrieved from the model. All requests to modify data are generated by
the controller and accomplished by the model.

The data that we display in a view originates from one or more models. These
models are automatically associated with the view by the controller.

Controller
The controller is the brains behind the operation and the element responsible for
responding to user actions. Part of the presentation layer, the controller analyzes
input data and takes the necessary steps to produce the result, presenting the output.

The controller determines what operation or task has been requested and, based
on the request, selects the appropriate model(s) and passes any data modification
requests to the appropriate model, creates a view, and associates one or more models
with the view. The controller does not manipulate data; it only calls methods in the
model. The controller does not display data but rather creates a view that can display
the data.

In some cases, a view will not be required, and a redirect will be initiated instead. The
controller executes the action and either redirects the browser or displays the data.

Some important things to consider when designing and building controllers include
the following:

If you have one major entity, you should consider building one controller
If you have a number of entities, you should consider using a separate
controller for each
If you need to manage multiple controllers, you should consider creating
another controller that instantiates the controllers and siphons tasks to them
If you have a number of similar entities, you should consider building an
abstract controller that implements common tasks

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[138]

Connecting the dots
As we begin to build our component, we will be making extensive use of the MVC
design pattern. We will create a controller by extending the JController class,
create a model by extending the JModel class, and create views by extending the
JView class. The graphic presented here represents the various elements that we
will create and how they interact with one another:

The user submits a request for our component to perform a task; this request is
received by the entry point (the small circle between the user and the controller)
which determines which controller (yes, you may have more than one controller) is
to be used. The controller creates the necessary models and views depending on the
task that has been handed to it through the entry point. Each view can have multiple
layouts defined. While the graphic illustrates a single controller and a single view,
remember that your component may have more than one of any MVC element, and
some tasks may require neither a view nor a model.

Building our component will, as mentioned earlier, require a component for the
frontend as well as for the backend. Each of these components will utilize the MVC
design pattern although the code to implement each will vary in significant ways.

Building the MVC component
After all our planning and creating our sandbox and installation scripts, we can now
start to build our component, right? Well, we are almost there, but first we need to
do a bit more planning. Planning your component is crucial because so many of the
MVC elements are interdependent.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[139]

The best place to start is to identify the entities that will be required by our
component. Even though we have already identified and defined our entity and built
the database schema in Chapter 4, Extension Design, a brief discussion on the process
should prove useful for future projects.

One method for defining entities is to create an ERD (Entity Relationship Diagram).
If you are not familiar with ERDs, there are plenty of online resources available.
The next step is to build a database schema. When you do this, you must take into
consideration all of the aspects covered in Chapter 3, The Database. Remember
to make use of the common fields and to use the naming conventions.

To ensure you gain the best performance from your database, normalize
your tables to at least 2NF (second normal form). If you are not familiar with
database normalization, there is a good tutorial available on the official MySQL
developer zone website: http://dev.mysql.com/tech-resources/articles/
intro-to-normalization.html.

Building the component frontend
Now that we can begin to build our component, let's get started. We will first build
the frontend component and finish with the backend. In both cases, the best place
to start is at the beginning, or rather, the entry point. For the frontend, we will create
the entry point and then create the controller, followed by the model. We will then
finish up with the view.

Building the entry point
There is only a single point of entry for the frontend application. This entry point,
index.php, uses the option value in the URL or POST data to load the required
component. For example, to load our component, the URL will be index.
php?option=com_boxoffice. This will result in our component's entry point's being
to be executed. To get started, we need to create a file named boxoffice.php and
place it in the /site folder of our sandbox.

You will often find that this file is relatively simple , as is shown next:

/**
 * Boxoffice Administrator entry point
 *
 * @package com_boxoffice
 * @subpackage components
 * @license GNU/GPL
 */

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[140]

 // no direct access
 defined('_JEXEC') or die('Restricted access');

 // Require the base controller
 require_once(JPATH_COMPONENT.DS.'controller.php');

 // Create the controller
 $controller = new BoxofficeController();

 //Perform the requested task
 $controller->execute(JRequest::getVar('task', 'display'));

 //Redirect if set by the controller
 $controller->redirect();

The constant _JEXEC is defined in the site root index.php file. If you attempt to
access the boxoffice.php file directly, you will get the "Restricted access" message
because _JEXEC has not been defined.

Next, we load the controller class file and then create a controller object. We then
retrieve the task from the URL or POST data. If no task was set, JRequest::
getVar('task') returns null. The controller will then execute its default task,
which is display. The view that is invoked by the controller will then determine
what will be displayed.

The redirect() method will only redirect the browser if a redirect URI has been set
in the controller (for example, after a save task has been executed). If the controller
does not call the setRedirect() method, the redirect method returns false.

We can do far more with the entry point, but generally it is better to keep the
processing encapsulated in controllers. In general, the entry point simply passes
control to the controller whose job it is to process the task specified in the request.

It is common practice to use multiple controllers, one for each entity.
Additional controllers are stored in a /controllers folder in files named
after the entity. Each controller class is named after the entity and prefixed
with <ComponentName>Controller.

When we use multiple controllers, we generally use the URI query request value c
to determine the controller to instantiate. This demonstrates how we can deal with
multiple controllers:

// Check to ensure this file is included in Joomla!
defined('_JEXEC') or die('Restricted Access');

// get the base controller
require_once(JPATH_COMPONENT.DS.'controller.php');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[141]

// Require specific controller if requested
if($c = JRequest::getVar('c'))
{
 require_once(JPATH_COMPONENT.DS.'controllers'.DS.$c.'.php');
}

// Create the controller
$c = 'BoxofficeController'.$c;
$controller = new $c();

$controller->execute(JRequest::getCmd('task', 'display');

// redirect
$controller->redirect();

Building the controller
Controllers extend the abstract JController class, which we import from the
joomla.application.component.controller library. It can be useful to add an
extra layer of inheritance with an additional abstract controller class; this makes
particular sense if we are using multiple controllers that use common methods.

Controllers use tasks (string names) to identify what we want to do. Every controller
has a task map that is used to map task names to methods. When we instantiate a new
controller, the task map is automatically populated with task and method names.

If we had a JController subclass with the three methods add(), edit(),
and _create(), our task map would look like this:

Task Method
add add()

edit edit()

Notice that the _create() method is missing; this is because _create() is a private
method, which is denoted by the underscore at the start of the name. The task map
uses a many-to-one relationship; we can define many tasks for one method. To add
additional entries to the task map, we can use the registerTask() method. More
information about this method is available in Appendix A, Joomla! Core Classes.

Within JController there is a special method called execute(). This method is
used to execute a task. For example, if we wanted to execute the task edit, we would
use the following:

$controller->execute('edit');

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[142]

Assuming $controller is using the previous task map, the edit() method
will be executed.

When the execute() method is executed, the controller will also perform an
authorization check. For more information about how to define permissions,
refer to Chapter 11, Error Handling and Security.

When there is only one controller, it is located in the root folder in a file called
controller.php. Additional controllers are located in the /controllers folder.
There is no restriction on what we can name our controller file although normally
the main controller file will be named controller.php, and additional controllers
will be given a name that reflects the entity with which they are associated, such as
controllercategory.php.

What we name our controller class, however, is very important. Controllers, by
default, load the model and view using the controller class name to construct the
class name for the view and the file and class name for the model. We should name
our controller classes using the format of component name, the word "Controller",
and optionally, the entity name. For example, we might name our controller
BoxofficeControllerRevue; however, since our component only has a single
entity, we will name our controller BoxofficeController.

Wherever you choose to locate your controllers, you will have to
import them manually.

Since our component frontend will have only one task, we can create a very simple
controller. When we create the backend controller, we will create a more complex
controller. In our frontend controller, the only task will be to load the appropriate
view and model. Our controller will only have the display() method.

Our initial frontend controller will contain the following code:

<?php
/**
 * Boxoffice frontend controller
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[143]

 // Load the base JController class
 jimport('joomla.application.component.controller');

 /**
 * Boxoffice Frontend Controller
 */
 class BoxofficeController extends JController
 {
 /**
 * Method to display the view
 *
 * @access public
 *
 */
 function display()
 {
 Parent::display();
 }
 }

We must import the joomla.application.component.controller which defines
the abstract JController class. Our controller class BoxofficeController extends
the JController class.

There are many methods within the JController class that we can override. The
most commonly overridden method is display(). This method instantiates a view
object, attaches a model to the view, and initiates the view.

There are two important request variables that are used by the display() method to
determine what it does. The view request determines which view to instantiate. The
layout argument determines which layout to use if the document type is HTML.

This might sound as if it does everything we need. However, there are a number of
reasons for overloading the JController::display() method, and in our case, we
will be doing so.

The controller by default loads the view and model based on the controller class
name. Our controller will therefore look for a view.html.php file located in
/views/boxoffice with a class name of BoxofficeViewBoxoffice and a model file
/models/boxoffice.php with a class name of BoxofficeModelBoxoffice. In our
case, we wish to use revue for the name of our model and view. In addition, while
we will have a single view for our frontend, we are going to create two layouts. To
manage this, we must modify our controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[144]

Another reason for overloading the default display() method is to call some
method or function of our own. For example, we might want to increment a hit
counter associated with an entity.

Here is our modified controller display() method:

 function display()
 {
 // Set the view and the model
 $view = JRequest::getVar('view', 'revue');
 $layout = JRequest::getVar('layout', 'default');

 $view =& $this->getView($view, 'html');
 $model =& $this->getModel('revue');
 $view->setModel($model, true);
 $view->setLayout($layout);

 // Display the revue
 $view->display();
 }

Our controller's display() method looks for the view to use in the request; if no
view variable is found, it will default to revue. It next looks for the layout variable
and loads the $layout variable if present or default if not. We will have two view
layouts for the frontend: list and default. Our controller next loads the view using
the JController::getView() method, passing it the view name and view type. The
view type is used to create the file name of the view, such as: view.html.php. Next,
it loads the model, and registers the model object with the view, and sets the layout
for the view to use. The second parameter of setModel() informs the view that the
model is the default model to use. Remember that a view can support more than
one model.

Since our controller's display() method is now overloading the JController::
display() method and has modified the default view and model, we can
no longer use parent::display() but must call our view's display method
$view->display().

Our controller can perform many more tasks than display; our backend controller
will require more, so we will save further discussion until then.

Building the frontend model
Models are responsible for data manipulation. We can have more than one model
for our component, although the general rule of thumb is to have one model per
entity. Since our component has but one entity or table, we will have one model,
/models/revue.php.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[145]

The model class will be called BoxofficeModelRevue. All model classes extend the
abstract JModel class. Let's begin with a very basic implementation of our class as
we look at the following example:

<?php
/**
 * Boxoffice Frontend Model
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access');

 // Load the base JModel class
 jimport('joomla.application.component.model');

 /**
 * Revue Model
 */
 class BoxofficeModelRevue extends JModel
 {
 }

We warned you it was basic! Actually, it is so basic, it is useless. Before we continue,
note that we had to import the joomla.application.component.model library.
This guarantees that the JModel class is present.

We use special methods prefixed with the word get to retrieve data from models.
Our next step will be to create two get methods, one to retrieve a specific row and
the other to retrieve all rows. We will see why this happens when we discuss our
view. The first method that we will create is getRevue(), and it takes one argument,
$id, which is the Primary key identifier of the row we wish to retrieve.This example
shows the next step:

/**
 * Get the revue
 *
 * @return object
 */
function getRevue($id)
{
 $db =& JFactory::getDBO();
 $table = $db->nameQuote('#__boxoffice_revues');

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[146]

 $key = $db->nameQuote('id');

 $query = ' SELECT * FROM ' . $table
 . ' WHERE ' . $key . ' = ' . $db->Quote($id);

 $db->setQuery($query);
 $revue = $db->loadObject();

 // Return the revue data
 return $revue;
}

The code for our getRevue() method should be familiar to you because we saw
similar code in Chapter 3, The Database. We obtain a reference to the database
connection, build the query, set the query, and retrieve the row using the
$db->loadObject() method. If you are not exactly sure what the loadObject()
method does, you can check back to Chapter 3, The Database. In its most basic
definition, it retrieves the requested data and creates a single stdObject that
contains the first row of the query result. Since we have requested a single row,
this will do just fine for us.

Our second method, getRevues(), is very similar to our first, as we can see below:

/**
 * Get the revues
 *
 * @return object
 */
function getRevues()
{
 $db =& $this->getDBO();
 $table = $db->nameQuote('#__boxoffice_revues');

 $query = "SELECT * FROM " . $table;

 $db->setQuery($query);
 $this->_revues = $db->loadObjectList();

 // Return the revue data
 return $this->_revues;
}

The getRevues() method takes no argument; its job is to return an array of
objects that represent all the revues in the database. In order to do this, we use
the $db->loadObjectList() method, which returns an array of objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[147]

Our model is now usable; we can retrieve records from our database table
#__boxoffice_revues. How we choose to implement get methods is entirely up to
us. There are some common techniques used when implementing the get methods,
but these should only be used where appropriate:

Use a property to cache retrieved data:
 var $_revue;

Create a private method to load the data:
 function _loadRevue()

 {

 // Load the data

 if (empty($this->_revue))

 {

 $query = $this->_buildQuery();

 $this->_db->setQuery($query);

 $this->_revue = $this->_db->loadObject();

 return (boolean) $this->_revue;

 }

 return true;

 }

Create a private method to build a query string:
 function _buildRevueQuery()

 {

 $db =& $this->getDBO();

 return ' SELECT * FROM '

 . $db->nameQuote('#__boxoffice_revues')
 . ' WHERE '.$db->nameQuote('id') . ' = '

 . $this->_id;

 }

Create a private method to build a blank set of data:

 function initializeRevue()
 {

 if (empty($this->_revue))
 {

 $revue = new stdClass;

 $revue->id = 0;

 $revue->title = '';

 $revue->rating = '';

 $revue->quikquip = '';

 $revue->revuer = '';

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[148]

 $revue->revued = '0000-00-00 00:00:00';

 $revue->revue = '';

 $revue->stars = '';

 $this->_revue =& $revue;

 }

 }

Data that we access in a model does not have to come from the database. We can
interrogate any data source. Data that we return using the get methods can be of
any type. Many of the core components return data in stdClass objects just as we
have in our frontend model.

Our frontend model is essentially complete; however, we do need to add one
additional method which will update our table's hit counter whenever a specific
revue is requested. We will call this method in our view. Add this code at the end
of the model file:

/**
 * Increments the hit counter
 *
 */
function hit($id)
{
 $db =& JFactory::getDBO();
 $table = $db->nameQuote('#__boxoffice_revues');
 $key = $db->nameQuote('hits');
 $rid = $db->nameQuote('id');

 $query = ' UPDATE ' . $table
 . ' SET ' . $key . ' = ' . $key . ' + 1 '
 . ' WHERE ' . $rid . ' = ' . $db->Quote($id);

 $db->setQuery($query);
 $db->query();
}

While we could add additional methods that would modify our data for our
frontend, none are required; we will discuss and create methods for modifying
our database when we create our backend model.

Our frontend model is now complete, and all that remains is to create our frontend
view and layouts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[149]

Building the frontend view
Views are separated by folders; each view has its own folder located in the /views
folder. Within a view's folder, we define a different file for each different document
type that the view is going to support: feed, HTML, PDF, and RAW. If we are
defining a view for the HTML document type, we will also need to create a /tmpl
folder that will hold the layouts (HTML templates) to render the view.

Before we start building our view class, we need to determine the name of the class.
To make the MVC work as intended, we follow a special naming convention: the
component's name, the word "View", and the view name. The view class is stored
in a file named view.documentType.php. Since our frontend has one view, our
view class name will be BoxofficeViewRevue, and it will be located in a file named
view.html.php in the /views/revue folder.

All view classes extend the abstract JView class. Here is our initial
BoxofficeViewRevue class:

<?php
/**
 * Boxoffice Frontend HTML Revue View
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access');

 // Load the base JView class
 jimport('joomla.application.component.view');

 /**
 * Revue HTML view class
 */
 class BoxofficeViewRevue extends JView
 {
 /**
 * Method to display the view
 *
 * @access public
 *
 */

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[150]

 function display($tpl = null)
 {
 // Display the view
 parent::display($tpl);
 }
 }

We must first import the joomla.application.component.view library which
contains the abstract JView class.

The most important method in any view class is the display() method; this method
is already defined in the parent JView class. The display() method is where
everything takes place; we interrogate models for data, customize the document,
and render the view.

We never modify data from within the view. Data is only to be modified
in the model and controller.

While our view is marginally functional, we must make a few adjustments before
it will be fully usable. Remember that our view is going to have two layouts, one to
display a single revue and another to display a list of all published revues. We also
want to increment our hit count whenever we view a specified revue. To do this,
we will override the display() method, get the necessary data from our model,
and render the document using the appropriate layout. Below is an example:

function display($tpl = null)
{
 // Get the model
 $model =& $this->getModel();

 if($this->getLayout() == 'list')
 {
 // Get all of the revues
 $revues = $model->getRevues();
 $this->assignRef('revues', $revues);
 }
 else
 {
 // Get the cid array from the default request hash
 // If no cid array in the request, check for id
 $cid = JRequest::getVar('cid', null, 'DEFAULT', 'array');
 $id = $cid ? $cid[0] : JRequest::getInt('id', 0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[151]

 if($revue = $model->getRevue($id))
 {
 // Update the hit count
 $model->hit($id);
 }

 $this->assignRef('revue', $revue);
 }

 // Display the view
 parent::display($tpl);
}

If you recall, we previously set the layout to be used from within our controller.
Now we check to see if the layout has been set to list, and if it has, we retrieve
all the revues currently in the database and assign a reference to the returned
array of objects.

If the layout is not list, then the default layout will be used. We look for an array
named cid in the request; if there is no array, we look for a variable id. If neither are
present, we set $id = 0. We then attempt to retrieve the revue with a Primary key of
$id, and if we are successful, we update the hit counter. We assign a reference to the
returned revue.

There is not a big difference here; all we have done is overridden the display method
and interrogated the model. Occasionally, there are times when we do not need to
override the display method, such as if we were outputting static content.

The diagram we looked at earlier, which showed how the three classes—JModel,
JView, and JController—relate to one another, describes an aggregate relationship
between views and models. It showed us that within a view there can be
references to multiple model objects. In our case, there is a single reference
to the BoxofficeModelRevue object.

The getRevue() method returns a stdClass object (stdClass is a PHP class), while
the getRevues() method in our model returns an array of stdClass objects. We
assign references to the returned data to our view in order to provide easy access
from within a layout. Note that this is not required if we are not using layouts
to render our view.

There are two ways in which we can assign data to our view: we can use the
assign() or assignRef() method. The two methods are very similar except that
assignRef() assigns a reference to the data, and assign() assigns a copy of the
data. For both methods, the first parameter is the name of the data, and the second
parameter is the data itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[152]

There is another way in which the assign() method can be used, which is similar
to a bind function. For more information, refer to Appendix A, Joomla! Core Classes.

As a general rule, when dealing with vectors (objects and arrays), we should use the
assignRef() method; when dealing with scalars (basic data types), we should use
the assign() method.

Finally, in our overridden display() method we call the parent display() method.
This is what loads and renders our layout. Our view will not work yet because we
have not created our layouts.

Building the view layouts
Layouts are unique to HTML component views. They are essentially templates that
create the view output. In most cases there is one template file per layout. Template
files are PHP files, which mainly consist of XHTML and use small snippets of PHP
to display dynamic data.

In theory, we do not actually need layouts because we can just echo data directly out
of the view class. However, with layouts, we gain the ability to define multiple ways
to present the same data.

Default layout
To create our default layout, we create a file called default.php in the /revue/tmpl
folder. This is the layout that will be used unless otherwise specified and will render
a single revue record. Here is our default.php file:

<?php
/**
 * Boxoffice Frontend Default Layout
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access');
?>

<h3 class="componentheading">Box Office Revues</h3>

<?php

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[153]

if($this->revue)
{
?>
 <p class="contentheading">
 <?php echo $this->revue->title
 . " — "
 . $this->revue->rating; ?>
 </p>
 <p class="createdate">
 <?php echo JHTML::Date($this->revue->revued)
 ." "
 . $revue->revuer; ?>
 </p>
 <p>
 <?php echo $this->revue->stars
 . " "
 . $this->revue->quikquip; ?>
 </p>
 <p><?php echo $this->revue->revue; ?></p>
<?php
}
else
{
 echo "Revue not found...";
}
?>

We access revue using $this->revue. We can do this because we
used the assignRef() method to assign this data to the view.

List layout
To create our list layout, we create a file called list.php in the /revue/tmpl folder.
This is the layout that will be used to render a listing of all revues. Here is our
list.php file:

<?php
/**
 * Boxoffice Frontend List Layout
 *
 * @package com_boxoffice
 * @subpackage components

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[154]

 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access');
?>

<h3 class="componentheading">Box Office Revues</h3>

<?php
if($this->revues)
{
 foreach($this->revues as $revue)
 {
?>
 <p class="contentheading">
 <?php echo $revue->title
 . " — "
 . $revue->rating; ?>
 </p>
 <p class="createdate">
 <?php echo JHTML::Date($revue->revued)
 . " "
 . $revue->revuer; ?>
 </p>
 <p>
 <?php echo $revue->stars
 . " "
 . $revue->quikquip; ?>
 </p>
 <hr />
<?php
 }
}
else
{
 echo "No revues found...";
}
?>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[155]

Our list layout uses a loop to render a list of the returned records.

Note that, should there be no revues found (in both layouts), we inform the viewer
of the fact.

A more complete description of how to build and use layouts is available in
Chapter 8, Rendering Output.

Rendering other document types
We mentioned earlier that you can create a view for the document types feed,
HTML, PDF, and RAW. Now that we have shown how to create a view for the
HTML document type, let's finish by discussing how to create feed, PDF, and
RAW views.

Every view located in the /views folder can support any number of the four
document types. The following table shows the naming convention we use for each:

Document Type File Name Description
Feed view.feed.php Renders an RSS 2.0 or Atom feed.

HTML view.html.php Renders a text/html view using the site
template.

PDF view.pdf.php Renders an application/pdf document.
RAW view.raw.php Renders any other type of document; defaults

to text/html, but we can modify this.

There is actually a fifth document type, error. We cannot create views within
our components for this document type. The error document is rendered using
a template from the site template or core error templates.

To request a page as a different document type, we use the request value format.
For example, to request the component com_boxoffice in feed format, we might
use this URI:

http://www.example.org/joomla/index.php
 ?option=com_boxoffice&format=feed

The four document types might sound restricting. However, the RAW document
type has a clever trick up its sleeve. When Joomla! encounters an unknown format,
it uses the RAW document. This means that we can specify our own custom formats.
We will discuss this in more detail in a moment.

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[156]

Feed
Before you choose to create a feed view, you should consider whether the data is
worthy of a feed. The data in question should be itemized, and it should be likely
to change on a regular basis.

Joomla! supports RSS 2.0 (Really Simple Syndication) and Atom (Atom Syndication
Format) feeds; it makes no difference as to which is being used when we build a feed
view class.

We use the JFeedItem class to build feed items and add them to the document.
JFeedItem objects include properties that relate to the corresponding RSS and
Atom tags, as we see in the following table:

Property Required
by RSS

Required by
Atom

Description

Author Author's name
authorEmail Not Used Not Used Author's email address, not currently

supported by Joomla!
Category Not Used Category of item
Comments Not Used URI to comments about the item
Date Not Used Date on which the item was created (UNIX

timestamp)
Description Description of the item
Enclosure JFeedEnclosure object; describes an external

source such as a video file
Guid Not Used Item ID, must be unique
Link URI
pubDate Date on which the item was published
Source Not Used Not Used 3rd party source name, not currently

supported by Joomla!
Title Name

For more information about how these tags work in RSS, please go to
http://www.rssboard.org/rss-specification. For more information about
how these tags work in Atom, please go to http://tools.ietf.org/html/rfc4287.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[157]

We can build a feed view by creating a file named view.feed.php and placing it in
the /views/revue folder. Here is the code for our feed view:

<?php
/**
 * Boxoffice Frontend Feed Revue View
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access');

 // Load the base JView class
 jimport('joomla.application.component.view');

 /**
 * Revue Feed View
 */
 class BoxofficeViewRevue extends JView
 {
 /**
 * Method to display the feed
 *
 * @access public
 *
 */
 function display($tpl = null)
 {
 // Set the basic link
 $document =& JFactory::getDocument();
 $document->setLink(
 JRoute::_('index.php?option=com_boxoffice');

 // Get the items to add to the feed
 $db =& JFactory::getDBO();
 $query = 'SELECT * FROM '
 . $db->nameQuote('#__boxoffice_revues')
 . ' WHERE '.$db->nameQuote('published')
 . ' = '.$db->Quote('1');

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[158]

 $db->setQuery($query);
 $rows = $db->loadObjectList();

 foreach ($rows as $row)
 {
 // Create a new feed item
 $item = new JFeedItem();

 // Assign values to the item
 $item->title = $row->title;
 $item->date = date('r', strtotime($row->revued));
 $item->author = $row->revuer;
 $item->description = $row->quikquip;
 $item->guid = $row->id;
 $item->link = JRoute::_(JURI::base()
 . 'index.php?option=com_boxoffice&id='
 . $row->id);
 $item->pubDate = date();

 $enclosure = new JFeedEnclosure();
 $enclosure->url = JRoute::_(JURI::base()
 . 'index.php?option=com_boxoffice'
 . '&view=video&format=raw&id='.$row->id);
 // Size in bytes of file
 enclosure->length = $row->length
 $enclosure->type = 'video/mpeg';

 $item->enclosure = $enclosure;

 // add item to the feed
 $document->addItem($item);
 }
 }
}

If a view is available in both HTML and feed formats, you might want to add a
link in the HTML view to the feed view. We can use the HTML link tag to define
an alternative way to view data. This example shows how we can add such a
tag to the HTML header. Add this code to the display() method in our
view.html.php file:

// Build links to feed view
$feed = 'index.php?option=com_boxoffice&format=feed';
$rss = array('type' => 'application/rss+xml',
 'title' => 'Box Office RSS Feed');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[159]

$atom = array('type' => 'application/atom+xml',
 'title' => 'Box Office Atom Feed');

// Add the links
$document =& JFactory::getDocument();

$document->addHeadLink(JRoute::_($feed.'&type=rss'),
 'alternate','rel',$rss);
$document->addHeadLink(JRoute::_($feed.'&type=atom'),
 'alternate','rel',$atom);

PDF
Views that support the PDF document type build the data to be rendered in PDF
format in HTML. Joomla! uses the TCPDF library to convert the HTML into a PDF
document. Not all HTML tags are supported. Only the following tags will affect the
layout of the document; all other tags will be removed:

h1, h2, h3, h4, h5, h6
b, u, i, strong, and em, sup, sub, small
a
img
p, br, and hr
font
blockquote
ul, ol
table, td, th, and tr

In addition to setting the PDF document content, we can modify the application/
generator, file name, metadata/keywords, subject, and title. This example shows
how we can modify all of these. This should be done within the view class's
display() method. The example shows our modification ability:

$document =& JFactory::getDocument();
$document->setName('Some Name');
$document->setTitle('Some Title');
$document->setDescription('Some Description');
$document->setMetaData('keywords', 'Some Keywords');
$document->setGenerator('Some Generator');

•

•

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[160]

This screenshot depicts the properties of the resultant PDF document:

To add content to the document, all we need to do is output the data as we
would normally.

RAW
The RAW document type allows us to do anything we want to the document. Any
document we want to return that is not HTML, PDF, or a feed is RAW. For example,
if we want the output data in XML format, we could use the RAW document.

There are three important methods to output a document exactly as we want. By
default, RAW documents have a MIME type (Internet Media Type) of text/html;
to change the MIME type, we can use the setMimeEncoding() method, as in the
following example:

$document =& JFactory::getDocument();
$document->setMimeEncoding('text/xml');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[161]

If we are outputting a document in which the content has been modified at a set date,
we may want to set the document modified date. We can use the setModifiedDate()
method to do this. In this example, you would need to replace time() with an
appropriate UNIX timestamp to suit the date to which you are trying to set the
modified date, like this example:

$document =& JFactory::getDocument();
$date = gmdate('D, d M Y H:i:s', time()).' GMT';
$document->setModifiedDate($date);

Normally, we serve all Joomla! responses using UTF-8 encoding. If you want to use
a different character encoding, you can use the setCharset() method, as we see in
this example:

$document =& JFactory::getDocument();
$document->setCharset('iso-8859-1');

Imagine we want to create an XML response using the RAW document. First, let,
choose a name for the document format. The name must not be the same as any
of the existing formats, and although we could use the name raw, it is not very
descriptive. Instead, we will use the name xml. This URI demonstrates how we
would use this:

http://www.example.org/joomla/index.php
 ?option=com_boxoffice&format=xml

When we do this, the document will be of type JDocumentRaw.

The next thing we need to do is create the view class. The name of the file will
include the format name xml and not raw. For example, we might name the file
view.xml.php. Here is how we might construct the view class:

class BoxofficeViewRevue extends JView
{
 function display($tpl = null)
 {
 // modify the MIME type
 $document =& JFactory::getDocument();
 $document->setMimeEncoding('text/xml');

 // Add XML header
 echo '<?xml version="1.0" encoding="UTF-8" ?>';

 // prepare some data
 $xml = new JSimpleXMLElement('element');
 $xml->setData('This is an xml format document');

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[162]

 // Output the data in XML format
 echo $xml->toString();
 }
}

This will output a very basic XML document with one XML element:

<?xml version="1.0" encoding="UTF-8" ?>
<element>This is an xml format document</element>

The great thing about this is it enables us to create many formats for one view.

Updating the manifest
After all this work, it is time to update our XML manifest file. We need to modify the
site file section to reflect our new files, as this example shows:

 <!—- Site File Section -->
 <files folder="site">

 <filename>models/revue.php</filename>
 <filename>models/index.html</filename>

 <filename>views/revue/view.feed.php</filename>
 <filename>views/revue/view.html.php</filename>
 <filename>views/revue/view.xml.php</filename>
 <filename>views/revue/index.html</filename>
 <filename>views/revue/tmpl/default.php</filename>
 <filename>views/revue/tmpl/list.php</filename>
 <filename>views/revue/tmpl/index.html</filename>
 <filename>views/index.html</filename>

 <filename>boxoffice.php</filename>
 <filename>controller.php</filename>
 <filename>index.html</filename>
 </files>

Building the component backend
With our frontend completed, it is now time for us to create our component's
backend. The backend gives us the means of administering our component; we will
create, edit, and publish our movie reviews from the backend. We will also be able
to add menus to our frontend that will make viewing our reviews much easier than
entering the URI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[163]

With our frontend we had one model, one view, and multiple layouts. While we
could do the same on the backend, we will vary the approach to illustrate how we
might implement a MVC component in different ways. With our backend we will
create two views with two models. Although our component only has one entity,
we will split our model into two to illustrate a point; in most cases, we would create
one model for each major entity. In a similar way, here we will create two views with
singular layouts, to illustrate the flexibility and power of the MVC design pattern.
Our approach is not the only way nor is it necessarily the best approach; a simpler
and perhaps better approach would be to create our backend structurally identical
to our frontend.

Let's get started!

Building the backend entry point
The backend must have an entry point just as the frontend does. For the backend, the
entry point file name is admin.boxoffice.php. While the name is slightly different,
the content is usually identical to the frontend entry point. Here is the code for our
backend entry point:

/**
 * Boxoffice Administrator entry point
 *
 * @package com_boxoffice
 * @subpackage components
 * @license GNU/GPL
 */

 // no direct access
 defined('_JEXEC') or die('Restricted access');

 // Require the base controller
 require_once(JPATH_COMPONENT.DS.'controller.php');

 // Create the controller
 $controller = new BoxofficeController();

 //Perform the requested task
 $controller->execute(JRequest::getVar('task', 'display'));

 //Redirect if set by the controller
 $controller->redirect();

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[164]

Building the controller
Our backend controller will be more complex than our frontend simply because it
will have to handle more tasks. As mentioned before, there are a many different tasks
that we might want our controller to be able to handle. This table identifies many of
the more common task and method names. Please note that we are not limited to the
ones listed here. We can define additional tasks to meet specific requirements. This
table gives the most common tasks and methods:

Task/Method Description
add Create a new item.
apply Apply changes to an item and return to the edit view.
archive Archive an item. Most components do not implement archiving;

for an example of a component that does, you can study the core
content component.

assign Assign an item to something.
cancel Cancel the current task.
default Make an item the default item.
publish Publish an item.
remove Delete an item.
save Save an item and return to a list of items.
unarchive Un-archive an item.
unpublish Un-publish an item.

Display task
To get started, let's create our backend controller and begin with the display
method. We are going to name our controller file controller.php. We'll begin
with the following:

<?php
/**
 * Boxoffice Administrator Controller
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // no direct access
 defined('_JEXEC') or die('Restricted access');

 // Load the base JController class
 jimport('joomla.application.component.controller');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[165]

 /**
 * Boxoffice Component Administrator Controller
 *
 * @package com_boxoffice
 * @subpackage components
 */
 class BoxofficeController extends JController
 {
 /**
 * Method to display the list view
 *
 * @access public
 *
 */
 function display()
 {
 // We override the JController default display
 //method which expects a view named boxoffice.
 // We want a view of 'revues' that uses the 'default' layout.
 // Set the view and the model
 $view =& $this->getView('revues', 'html');
 $model =& $this->getModel('revues');
 $view->setModel($model, true);

 // Use the View display method
 $view->display();
 }

The default backend view, BoxofficeViewRevues, will display a list of revues. We
will create a model, BackofficeModelRevues, that will retrieve all revue records
and handle deletions. Our controller's display() method is rather simple; it sets
the view and model to revues and then calls the $view->display() method.

Edit task
In order to edit individual revues, we will add an edit method to our controller that
will load a different view, BoxofficeViewRevue, and model, BoxofficeModelRevue.
We add the following code to our controller:

/**
 * Method to display the edit view
 *
 * @access public
 *
 */
function edit()
{
 // Get the requested id(s) as an array of ids

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[166]

 $cids = JRequest::getVar('cid', null, 'default', 'array');

 if($cids === null)
 {
 // Report an error if there was no cid parameter in the request
 JError::raiseError(500,
 'cid parameter missing from the request');
 }

 // Get the first revue to be edited
 $revueId = (int)$cids[0];

 // Set the view and model for a single revue
 $view =& $this->
 getView(JRequest::getVar('view', 'revue'), 'html');
 $model =& $this->getModel('revue');
 $view->setModel($model, true);

 // Display the edit form for the requested revue
 $view->edit($revueId);
}

Just like for the display() method, we set the view and model, although note that
with the edit() method, we load a different view and model. Our controller first
grabs the primary key id of the record to be edited from the first element of the
cid array from the request. Although it may appear odd to use an array to store
one value, there is a very good reason for doing so. The Joomla! toolbar Edit button
expects it to be there. When you click the Edit button, the form is submitted with
the selected records placed in the request parameter cid[]. Remember that we can
select a record to be edited by either clicking on the checkbox and then clicking the
edit button on the toolbar or by clicking the link (title). For these reasons we will use
cid[] when we create the link in the layout form.

After setting the model and view, we call the view edit method passing the id of the
revue to be edited.

Add task
To add new revues, we create another task that invokes the same view and model
as the edit task, and then we call the view->add() method, as we see in the
following example:

/**
 * Method to add a new revue
 *
 * @access public
 *

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[167]

 */
function add()
{
 // Set the view for a single revue
 $view =& $this->
 getView(JRequest::getVar('view', 'revue'), 'html');
 $model =& $this->getModel('revue');
 $view->setModel($model, true);

 $view->add();
}

Save task
Once we have created a new revue (add) or updated an existing one (edit), we must
either save the record or cancel the operation. To save the record, we must create a
save task like the example that follows:

/**
 * Method to save the revue
 *
 * @access public
 *
 */
function save()
{
 $model =& $this->getModel('revue');
 $model->store();

 $redirectTo = JRoute::_('index.php?option='
 .JRequest::getVar('option')
 .'&task=display');

 $this->setRedirect($redirectTo, 'Revue Saved');
}

This method is relatively generic, which makes the method very resilient to changes
in the component. Making methods relatively generic makes future development
easier and reduces the impact of changes.

We do not need to check in the record because the save() method in the model
automatically does this for us.

Finally, we set up a redirect; this will be used to redirect the browser to a new
location. This does not immediately redirect the browser; it just sets the redirect
URI for when we execute the controller's redirect() method.

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[168]

Notice that we do not call the parent display() method. The reason for this is that we
want to separate out each task. We could have decided to display a view next, but this
would mean that a refresh of the page would execute the save method a second time!

The use of redirects is considered unnecessary by some developers who
believe that we should instead invoke other controllers and controller
methods. However, many of the core Joomla! components use redirects.

Cancel task
This is really simple. We do not want to do anything but get out of whatever we
were doing, so we can cancel a task like is shown in this example:

/**
 * Method to cancel
 *
 * @access public
 *
 */
function cancel()
{
 $redirectTo = JRoute::_('index.php?option='
 .JRequest::getVar('option')
 .'&task=display');

 $this->setRedirect($redirectTo, 'Cancelled');
}

Remove task
The last task that we need to create is the remove task, as follows:

/**
 * Method to remove one or more revues
 *
 * @access public
 *
 */
function remove()
{
 // Retrieve the ids to be removed
 $cids = JRequest::getVar('cid', null, 'default', 'array');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[169]

 if($cids === null)
 {
 // Make sure there were records to be removed
 JError::raiseError(500, 'No revues were selected for removal');
 }

 $model =& $this->getModel('revues');
 $model->delete($cids);

 $redirectTo = JRoute::_('index.php?option='
 .JRequest::getVar('option')
 .'&task=display');

 $this->setRedirect($redirectTo, 'Revues Deleted');
}

We call the delete method of the model directly to delete one or more records. There
is no need to load a view for this function. After we delete the selected records, we
return to the default list display.

Up to this point, we have hardly mentioned the backend and frontend in relation
to the MVC. The way in which the MVC library is constructed leads us to using
separate controllers, views, and models for the frontend and backend.

Since we will generally be using the same data in the frontend and backend, we
might wish to use some of the same MVC elements in the frontend and backend.
If you do choose to do this, it is normal to define the common MVC elements in
the backend.

To access models and views located in the backend from the frontend, we can
manually inform Joomla! of any additional paths. It is unlikely that you will want
to use the same view in both the frontend and backend, but if you do wish to do so,
you should carefully consider your reasons.

Here is an example of an overridden frontend controller constructor method. It tells
the controller that there are other places to look for models and views:

/**
 * Constructor
 *
 */
function __construct
{
 // Execute parent's constructor
 parent::__construct();

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[170]

 // Use the same models as the backend
 $path = JPATH_COMPONENT_ADMINISTRATOR.DS.'models';
 $this->addModelPath($path);

 // use the same views as the backend
 $path = JPATH_COMPONENT_ADMINISTRATOR.DS.'views'
 $this->addViewPath($path);
}

The frontend controller will look for models and views in both the backend
and frontend folders. In this example, the frontend models and views will take
precedence. If we wanted the backend paths to take precedence, all we would
need to do is move the parent::__construct() call to the end of the overridden
constructor method.

Building the backend model
As stated previously, we will create two models for our backend for no reason other
than to illustrate that we can do so.

The first model will be used to retrieve all revue records from the database; we will
name the file revues.php and place it in the backend /models folder. The model
class will be called BoxofficeModelRevues.

As usual, our model class will extend the abstract JModel class. This model is fairly
straight forward, as we can see in the example below:

<?php
/**
 * Boxoffice Administrator revues model
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // no direct access
 defined('_JEXEC') or die('Restricted access');

 // Import the JModel class
 jimport('joomla.application.component.model');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[171]

 /**
 * Boxoffice Revues Model
 *
 * @package com_boxoffice
 * @subpackage components
 */
 class BoxofficeModelRevues extends JModel
 {
 /**
 * Revues data array of objects
 *
 * @access private
 * @var array
 */
 var $_revues;

 /**
 * Method to get a list of revues
 *
 * @access public
 * @return array of objects
 */
 function getRevues()
 {
 $db =& $this->getDBO();
 $table = $db->nameQuote('#__boxoffice_revues');
 $query = "SELECT * FROM " . $table;

 $db->setQuery($query);
 $this->_revues = $db->loadObjectList();

 // Return the list of revues
 return $this->_revues;
 }
 }

By now, this should look very familiar; we have seen this before in the frontend
model. The differentiating factor is that the retrieval of individual records has
been removed from the model, nothing more.

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[172]

Because this model is focused on handling multiple records, logic dictates that we
place the delete() method in this model, such as in the following example:

/**
 * Method to delete record(s)
 *
 * @access public
 * @param array of revue ids
 */
function delete($cids)
{
 $db = $this->getDBO();
 $table = $db->nameQuote('#__boxoffice_revues');
 $id = $db->nameQuote('id');
 $query = ' DELETE FROM ' . $table
 . ' WHERE ' . $id
 . ' IN (' . implode(',', $cids) . ') ';

 $db->setQuery($query);

 if(!$db->query())
 {
 $errorMessage = $this->getDBO()->getErrorMsg();
 JError::raiseError(500, 'Error deleting revues: '
 . $errorMessage);
 }
}

For handling individual records, we are going to implement a second model. This
model we will name revue.php and place it in the backend /models folder. The
model class will be called BoxofficeModelRevue. Unlike the previous model, this
model will be required to add, update, and store records in addition to retrieving
existing records. Here is our second model:

<?php
/**
 * Boxoffice Administrator revue model
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[173]

 // no direct access
 defined('_JEXEC') or die('Restricted access');

 // Import the JModel class
 jimport('joomla.application.component.model');

 /**
 * Boxoffice Revue Model
 *
 * @package com_boxoffice
 * @subpackage components
 */
 class BoxofficeModelRevue extends JModel
 {
 /**
 * Method to get a revue
 *
 * @access public
 * @return object
 */
 function getRevue($id)
 {
 $db = $this->getDBO();
 $table = $db->nameQuote('#__boxoffice_revues');
 $key = $db->nameQuote('id');
 $query = " SELECT * FROM " . $table
 . " WHERE " . $key . " = " . $id;

 $db->setQuery($query);
 $revue = $db->loadObject();

 if($revue === null)
 {
 JError::raiseError(500, 'Revue ['.$id.'] not found.');
 }
 else
 {
 // Return the revue data
 return $revue;
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[174]

 /**
 * Method that returns an empty revue with id of 0
 *
 * @access public
 * @return object
 */
 function getNewRevue()
 {
 $newRevue =& $this->getTable('revue');
 $newRevue->id = 0;

 return $newRevue;
 }

 /**
 * Method to store a revue
 *
 * @access public
 * @return Boolean true on success
 */
 function store()
 {
 // Get the table
 $table =& $this->getTable();
 $revue = JRequest::get('post');
 // Convert the date to a form that the database can understand
 jimport('joomla.utilities.date');
 $date = new JDate(JRequest::getVar('revued', '', 'post'));
 $revue['revued'] = $date->toMySQL();
 // Make sure the table buffer is empty
 $table->reset();

 // Close order gaps
 $table->reorder();

 // Determine the next order position for the revue
 $table->set('ordering', $table->getNextOrder());

 // Bind the data to the table
 if(!$table->bind($revue))
 {
 $this->setError($this->_db->getErrorMsg());
 return false;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[175]

 // Validate the data
 if(!$table->check())
 {
 $this->setError($this->_db->getErrorMsg());
 return false;
 }

 // Store the revue
 if(!$table->store())
 {
 // An error occurred, update the model error message
 $this->setError($table->getErrorMsg());
 return false;
 }

 // Checkin the revue
 if(!$table->checkin())
 {
 // An error occurred, update the model error message
 $this->setError($table->getErrorMsg());
 return false;
 }

 return true;
 }
}

We have seen all of this before. The getRevue() method is virtually identical to
the same method in the frontend model. The store() method was discussed in
Chapter 3, The Database. Sandwiched in between is a small method that we discussed
in Chapter 3, The Database, but have not dealt with in our component until now:
getNewRevue(). This method uses our table class to create a new record. And you
thought we were never going to use JTable! Actually, we use our TableRevue class
in our store() method as well, invoking JTable methods to bind, check, store, and
check in our modified or newly created record.

But wait, we have not created our table class. Let's do that now!

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[176]

Building the table
The table class is very simple. Here it is:

<?php
/**
 * Boxoffice Administrator revues table
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // no direct access
 defined('_JEXEC') or die('Restricted access');

 /**
 * Revue Table class
 *
 * @package com_boxoffice
 * @subpackage components
 */
 class TableRevue extends JTable
 {
 /** @var int Primary key */
 var $id = 0;
 /** @var string */
 var $title = '';
 /** @var string */
 var $rating = '';
 /** @var string */
 var $quikquip = '';
 /** @var string */
 var $revuer = '';
 /** @var datetime */
 var $revued = '';
 /** @var string */
 var $revue = '';
 /** @var string */
 var $stars = '';
 /** @var int */
 var $checked_out = 0;
 /** @var datetime */
 var $checked_out_time = '';

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[177]

 /** @var int */
 var $ordering = 0;
 /** @var int */
 var $published = 0;
 /** @var int */
 var $hits = 0;

 /**
 * @param database A database connector object
 */
 function __construct(&$db)
 {
 parent::__construct('#__boxoffice_revues','id',$db);
 }
}

That was really simple. We could add code to overload the check method and
validate each field, but we will leave that for you to add. Remember that the JTable
class has a wealth of methods to easily handle virtually any database function.
You can overload any or all of them if you need to, but in most cases, the default
functionality will be sufficient.

Building views
We are now on the home stretch. We have created our backend entry point, our
controller, two models, and our table. All that is left is to create the views, and we
will have a fully functional component.

View #1
For our backend, we have chosen to use two separate views. The first view (revues)
will handle the list of revues. We will create a folder named /revues under the
/views folder and a file named views.html.php in that folder. This should seem
very familiar by now. The view class will be BoxofficeViewRevues, and it will
have one layout in the /tmpl folder, default.php. The view class will contain the
following code:

<?php
/**
 * Boxoffice Component Administrator Revues View
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[178]

 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access');

 jimport('joomla.application.component.view');

 /**
 * Revues View
 *
 * @package com_boxoffice
 * @subpackage components
 */
 class BoxofficeViewRevues extends JView
 {
 /**
 * Revues view display method
 *
 * @return void
 **/
 function display($tpl = null)
 {
 JToolBarHelper::title(JText::_('Box Office Revues'),
 'generic.png');
 JToolBarHelper::deleteList();
 JToolBarHelper::editListX();
 JToolBarHelper::addNewX();

 // Get revues from the model
 $model =& $this->getModel('revues');
 $revues =& $model->getRevues();

 $this->assignRef('revues', $revues);

 parent::display($tpl);
 }
}

Most of this looks familiar although those JToolbarHelper statements are rather
unfamiliar. We will discuss the Toolbar in detail in Chapter 8, Rendering Output.
For now, it is sufficient to understand that when the form is rendered, the title that
appears in the top-left corner of the page will be Box Office Revues preceded by the
generic component image, and on the top-right corner of the page will be Delete,
Edit, and New buttons, as seen in the next screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[179]

The layout
The layout for our view will be located, as usual, in the /tmpl folder of the view.
There will be only one layout, and it will be named default.php. Here is the code:

<?php
/**
 * Boxoffice Component Administrator Revues View
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

// No direct access
defined('_JEXEC') or die('Restricted access'); ?>

<form action="index.php" method="post" name="adminForm">

 <table class="adminlist">
 <thead>
 <tr>
 <th width="10"><?php echo JText::_('ID'); ?></th>
 <th width="10">
 <input type="checkbox"
 name="toggle"
 value="" onclick="checkAll(
 <?php echo count($this->revues); ?>);" />
 </th>
 <th><?php echo JText::_('Title'); ?></th>
 <th width="15%"><?php echo JText::_('Revuer'); ?></th>
 <th width="10%">
 <?php echo JText::_('Date Revued'); ?>
 </th>
 <th width="8%" align="center">
 <?php echo JText::_('Order'); ?>
 </th>

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[180]

 <th width="5%" align="center">
 <?php echo JText::_('Hits'); ?>
 </th>
 <th width="5%" align="center">
 <?php echo JText::_('Published'); ?>
 </th>
 </tr>
 </thead>

 <tbody>

 <?php
 $k = 0;
 $i = 0;

 foreach($this->revues as $row)
 {
 $checked = JHTML::_('grid.id', $i, $row->id);
 $published = JHTML::_('grid.published', $row, $i);
 $link = JRoute::_('index.php?option='
 . JRequest::getVar('option')
 . '&task=edit&cid[]='. $row->id
 . '&hidemainmenu=1');
 ?>

 <tr class="<?php echo "row$k"; ?>">
 <td><?php echo $row->id; ?></td>
 <td><?php echo $checked; ?></td>
 <td>
 <a href="<?php echo $link; ?>">
 <?php echo $row->title; ?>

 </td>
 <td><?php echo $row->revuer; ?></td>
 <td>
 <?php
 echo JHTML::_('date', $row->revued, JTEXT::_('%m/%d/%Y'));
 ?>
 </td>
 <td><input type="text" name="order[] " size="5"
 value="<?php echo $row->ordering; ?>"
 class="text_area"
 style="text-align: center" />
 </td>
 <td align="center"><?php echo $row->hits;?></td>
 <td align="center"><?php echo $published;?></td>
 </tr>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[181]

 <?php
 $k = 1 - $k;
 $i++;
 } ?>

 </tbody>
 </table>

 <input type="hidden" name="option"
 value="<?php echo JRequest::getVar('option'); ?>" />
 <input type="hidden" name="task" value="" />
 <input type="hidden" name="boxchecked" value="0" />
 <input type="hidden" name="hidemainmenu" value="0" />

</form>

Sometimes a picture is worth a thousand words! This picture is almost at that value:

The default layout displays a list of all movie revues.

Note that the form name must be adminForm and that we will submit the form with
the POST method. The heading contains an input checkbox with a name of toggle.
When clicked, it will call the (/includes/js/joomla.javascript.js) checkall()
function and pass it the count of all revues. The checkall() function toggles the
checkbox associated with each row in the list of revues displayed below.

After the header row is created, we perform a loop listing each row returned. We
use the variable $k to alternate the row class name between row0 and row1 which,
depending on the CSS in use, can create alternating striped rows.

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[182]

The $checked variable is loaded with a checkbox and the $published variable with
an image reflecting the published state of the record. We will discuss the JHTML class
in detail in Chapter 8, Rendering Output. The $link variable creates a link that, when
clicked, will take you to the edit page for the specific row.

Clicking on the title link, activating the checkbox to the left of a revue, and
clicking the Edit button or clicking the New button will cause the second
view to be rendered.

View #2
Our second view will be located in the /views/revue folder. The name of the view
file will again be view.html.php, and the class name will be BoxofficeViewRevue,
as we see in the example below:

<?php
/**
 * Boxoffice Component Administrator Revue View
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access');

 jimport('joomla.application.component.view');

 /**
 * Revue View
 *
 * @package com_boxoffice
 * @subpackage components
 */
 class BoxofficeViewRevue extends JView
 {
 /**
 * Revue view edit method
 * @return void
 **/
 function edit($id)
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[183]

 // Build the toolbar for the edit function
 JToolBarHelper::title(JText::_('Box Office Revue')
 .': [<small>Edit</small>]');
 JToolBarHelper::save();
 JToolBarHelper::cancel('cancel', 'Close');

 // Get the revue
 $model =& $this->getModel();
 $revue = $model->getRevue($id);
 $this->assignRef('revue', $revue);

 parent::display();
 }

 /**
 * Revue view add method
 * @return void
 **/
 function add()
 {
 // Build the toolbar for the add function
 JToolBarHelper::title(JText::_('Box Office Revue')
 . ': [<small>Add</small>]');
 JToolBarHelper::save();
 JToolBarHelper::cancel();

 // Get a new revue from the model
 $model =& $this->getModel();
 $revue = $model->getNewRevue();
 $this->assignRef('revue', $revue);

 parent::display();
 }
 }

Our view has two methods: edit() and add(). Both ultimately invoke the
JView::display() method to render the form. When we edit an existing record,
the Cancel button text will be displayed as Close, and we will retrieve the selected
record from the database. When we click on the New button, the add() method will
be called which will call the getNewRevue() method in our model. This will display
an initialized empty record.

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[184]

The layout
Our layout for the revue view will be named default.php and located in the
/views/revue/tmpl folder. Here is the code:

<?php
/**
 * Boxoffice Component Administrator Revue View
 *
 * @package com_boxoffice
 * @subpackage components
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

// No direct access
defined('_JEXEC') or die('Restricted access'); ?>

<form action="index.php" method="post"
 name="adminForm" id="adminForm">

 <div class="col100">
 <fieldset class="adminform">
 <legend><?php echo JText::_('Details'); ?></legend>

 <table class="admintable">

 <tr>
 <td width="100" align="right" class="key">
 <label for="title">
 <?php echo JText::_('Movie Title'); ?>:
 </label>
 </td>
 <td>
 <input class="inputbox" type="text"
 name="title" id="title" size="25"
 value="<?php echo $this->revue->title;?>" />
 </td>
 </tr>

 <tr>
 <td width="100" align="right" class="key">
 <label for="rating">
 <?php echo JText::_('Rating'); ?>:
 </label>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[185]

 </td>
 <td>
 <input class="inputbox" type="text"
 name="rating" id="rating" size="10"
 value="<?php echo $this->revue->rating;?>" />
 </td>
 </tr>

 <tr>
 <td width="100" align="right" class="key">
 <label for="quikquip">
 <?php echo JText::_('Quik Quip'); ?>:
 </label>
 </td>
 <td>
 <input class="text_area" type="text"
 name="quikquip" id="quikquip"
 size="32" maxlength="250"
 value="<?php echo $this->revue->quikquip;?>" />
 </td>
 </tr>

 <tr>
 <td width="100" align="right" class="key">
 <label for="revuer">
 <?php echo JText::_('Revuer'); ?>:
 </label>
 </td>
 <td><input class="inputbox" type="text"
 name="revuer" id="revuer" size="50"
 value="<?php echo $this->revue->revuer;?>" />
 </td>
 </tr>

<tr>
 <td width="100" align="right" class="key">
 <label for="stars">
 <?php echo JText::_('Stars'); ?>:
 </label>
 </td>
 <td><input class="inputbox" type="text"
 name="stars" id="stars" size="10" maxlength="5"
 value="<?php echo $this->revue->stars;?>" />
 </td>
 </tr>

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[186]

 <tr>
 <td width="100" align="right" class="key">
 <label for="revued">
 <?php echo JText::_('Date Revued'); ?>:
 </label>
 </td>
 <td>
 <?php echo JHTML::_('calendar',
 JHTML::_('date',
 $this->revue->revued,
 JTEXT::_('%m/%d/%Y')),
 'revued',
 'revued',
 '%m/%d/%Y',
 array('class'=>'inputbox',
 'size'=>'25',
 'maxlength'=>'19')); ?>
 </td>
 </tr>

 <tr>
 <td width="100" align="right" class="key">
 <label for="revue">
 <?php echo JText::_('Revue'); ?>:
 </label>
 </td>
 <td>
 <input class="text_area" type="text"
 name="revue" id="revue" size="50"
 maxlength="250"
 value="<?php echo $this->revue->revue;?>" />
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 <label for="published">
 <?php echo JText::_('Published'); ?>:
 </label>
 </td>
 <td><?php echo JHTML::_('select.booleanlist',
 'published',
 'class="inputbox"',
 $this->revue->published); ?>
 </td>
 </tr>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[187]

 </table>

</fieldset>

</div>

<div class="clr"></div>

<input type="hidden" name="option"
 value="<?php echo JRequest::getVar('option'); ?>" />
<input type="hidden" name="id"
 value="<?php echo $this->revue->id; ?>" />
<input type="hidden" name="task" value="" />

</form>

When we click to edit an existing record or add a new one, our view will render
this form:

We now have a fully functional component. We can administer our revues
(add, edit, delete) in the backend and list our revues in the frontend.

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[188]

Updating the manifest
Once again, we need to update our component manifest to reflect the new files that
we have created. This time we need to modify the administration section as follows:

 <!-- Administration File Section -->
 <administration>

 <menu>Box Office Revues</menu>

 <files folder="admin">

 <filename>help/index.html</filename>
 <filename>help/en-GB/help.html</filename>

 <filename>models/revue.php</filename>
 <filename>models/revues.php</filename>
 <filename>models/index.html</filename>

 <filename>tables/revue.php</filename>
 <filename>tables/index.html</filename>

 <filename>views/index.html</filename>
 <filename>views/revue/view.html.php</filename>
 <filename>views/revue/index.html</filename>
 <filename>views/revue/tmpl/default.php</filename>
 <filename>views/revue/tmpl/index.html</filename>

 <filename>views/revues/view.html.php</filename>
 <filename>views/revues/index.html</filename>
 <filename>views/revues/tmpl/default.php</filename>
 <filename>views/revues/tmpl/index.html</filename>

 <filename>admin.boxoffice.php</filename>
 <filename>config.xml</filename>
 <filename>controller.php</filename>
 <filename>install.sql</filename>
 <filename>uninstall.sql</filename>
 <filename>install.php</filename>
 <filename>uninstall.php</filename>
 <filename>index.html</filename>

 </files>

 </administration>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[189]

Dealing with component configuration
The chances are that the component we are building is going to need some
configuration options. Every component can store default parameters about itself.

A relationship exists between menu items and the component configuration. The
configuration edited from within the component defines the default configuration.
When we create a new menu item, we can modify the component configuration
specifically for the menu item. This enables us to override the default configuration
on a per-menu-item basis.

To define component parameters, we must create an XML metadata file called
config.xml in the root of our component in the backend. The file contains a root
element config, and nested within this is a params tag. In this tag, we define
different parameters, each in its own param tag.

This example defines two parameters: a title and a description. A complete
description of the different parameters and their XML definition is available
in Appendix B, Parameters (Core JElement). Below is an example of the title and
description parameters specifically:

<?xml version="1.0" encoding="utf-8"?>
<config>
 <params>
 <param name="title"
 type="text"
 default="Box Office Revues"
 label="Title" description="Page Title" size="30" />
 <param name="description"
 type="textarea"
 default=""
 label="Description" rows="5" cols="50"
 description="Descriptive text of page." />
 </params>
</config>

Once we have created the XML file, the next step is to use the file to allow an
administrator to edit the component parameters. Joomla! provides us with an easy
way of doing this.

In the backend, components have a customizable menu bar. There is a special button
we can add to this menu bar. Its name is Preferences, and it is used to enable editing
of a component's parameters. A complete description of the menu bar is available in
Chapter 8, Rendering Output.

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[190]

This example shows how we add the button. We use two parameters to define the
name of the component and the height of the preferences box. Adding buttons to
the administration toolbar is explained in detail in Chapter 8, Rendering Output.

JToolBarHelper::preferences('com_boxoffice', '200');

When administrators uses this button, they will be presented with a preferences
box. The first parameter determines which component's parameters we want to
modify. The second parameter determines the height of this box. This screenshot
depicts the preferences box displayed for com_boxoffice using the XML file we
described earlier:

Now that we can define and edit parameters for a component, we need to know how
to access these parameters from within the frontend of our component. To achieve
this, we use the application getPageParameters() method. While component
parameters can be accessed from models, views, or controllers (and the code will be
essentially the same), we will add the code to our frontend revue view.html.php
along with both of the layouts (default.php and list.php).

In the BoxOfficeRevue class display() method, we will insert our new code
just before the following line:

 // Get the model
 $model =& $this->getModel();

Enter the following:

$global mainframe;
$params =& $mainframe->getPageParameters('com_boxoffice');
$this->assignRef('params', $params);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[191]

This will retrieve a reference to the component parameters and establish a local
reference to them that can be accessed by our layouts.

The great thing about this method is that it will automatically override any of the
component's default configuration along with the menu item's configuration. If it
did not, we would have to merge the two manually.

The returned object is of type JParameter. This class deals specifically with XML
metadata files, which define parameters. To get a value from the component
parameters, we will use the get() method. In our default.php layout, find
the line near the top that reads the following:

 <h3 class="componentheading>Box Office Revues</h3>

Change it to read this:

 <h3 class="componentheading">
 <?php echo $this->params->get('title'); ?></h3>

Do the same in the list.php layout file, but add these additional lines:

 <p><?php echo $this->params->get('description'); ?></p>
 <hr />

You can see that we can use different parameters in different places, for different
purposes, anywhere in our component. Many of the core components retrieve
component parameters in models, views, and controllers.

Help files
The Joomla! core components use special help files, which can be displayed in the
backend using the menu bar button Help. In this example, we add a button, which,
if used, will display the contents of the screen.system.info.html help file in a
pop-up window. The additional information for the button is as follows:

JToolBarHelper::help('screen.system.info');

Core help files are located in the administrator/help directory. To support
multilingual requirements, the help directory contains one folder for each
installed language. Located in these folders are the HTML help files.

We can use a similar implementation for our components. We must create a help
folder in the administration root of our component and add a subfolder for every
help language that we support.

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[192]

Imagine we want to create a generic help file for our component com_boxoffice.
In the component's administrative root, we need to create a folder called help, and
in there, we need to create a folder called en-GB. Now if we create a file called
help.html and save it into the help/en-GB folder, we can use the administration
menu-bar help button to view it, as this example demonstrates:

JToolBarHelper::help('help', true);

By adding the second parameter, we are telling Joomla! to look for help files in the
component's help folder.

Help files are stored in XHTML format, and the extension must
always be .html.

Routing
To make Joomla! respond appropriately to a request, the application contains a
JRouter object. This object determines the direction to take through the application.
This is based on URI query values. To make Joomla! URIs friendlier, it can be set up
to use SEF (Search-Engine Friendly) URIs.

In order to take advantage of SEF URIs, when we render any, we need to use the
JRoute::_() method. This method converts normal URIs into SEF URIs; this will
only happen if the component has a router and if the SEO options are enabled. In this
example, we parse the URI index.php?option=com_boxoffice&layout=list into
an SEF URI:

echo JRoute::_('index.php?option=com_boxoffice&layout=list');

This is an example of the output we might receive:

http://example.org/joomla/index.php/component/boxoffice/list

The end of the URI, after index.php, is called the SEF segments. Each segment is
separated by a forward slash.

To create a router for a component, we must create a file called router.php in the
root of the component. In the file, we need to define two functions, BuildRoute()
and ParseRoute(), both prefixed with the name of our component. These functions
build and parse between a URI query and an array of SEF segments.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[193]

The BuildRoute() function is used to build an array of SEF segments. An associative
array of URI query values is passed to the function.

This is an example of the BuildRoute() function that we might have been using
in the previous example. We must return the array of data segments in the order
they will appear in the SEF URI. We must remove any elements from the referenced
$query associative array parameter; any elements we do not remove will be
appended to the end of the URI in query format. For example, if we passed the
value index.php?option=com_boxoffice&layout=list&id=1 to the JRoute::_()
method, we would get the following route:

http://example.org/joomla/index.php/component/boxoffice/list?id=1.

/**
 * Builds route for My Extension.
 *
 * @access public
 * @param array Query associative array
 * @return array SEF URI segments
 */
function boxofficeBuildRoute(&$query)
{
 $segments = array();
 if (isset($query['layout']))
 {
 $segments[] = $query[layout];
 unset($query[layout]);
 }

 return $segments;
}

With this function implemented, JRoute::_() can build SEF URIs for our
component. The next step is to decode SEF URIs. This is an example of the
ParseRoute() function that we might use to decode the URI:

/**
 * Decodes SEF URI segments for My Extension.
 *
 * @access public
 * @param array SEF URI segments array
 * @return array Query associative array
 */

www.it-ebooks.info

http://www.it-ebooks.info/

Component Design

[194]

function boxofficeParseRoute($segments)
{
 $query = array();

 if (isset($segments[0]))
 {
 $query['layout'] = $segments[0];
 }

 return $query;
}

Note that this is essentially the exact opposite of the
BuildRoute() function.

Summary
In this chapter, we learned that components are undoubtedly the most complex
extensions, and, as a result, the hardest to implement.

We discussed the MVC design pattern and discovered that it consists of three parts:
the model, view, and controller. We discussed how these interact with one another
in order to create well-formed components.

We investigated the use of the different document formats: feed, HTML, PDF,
and RAW. We also discovered how easy it is to render the same data using
several formats.

We learned how menu items can override the component configuration.
Documentation, especially in open-source extensions, is often overlooked. We
discussed how it is generally a good idea to create help files with a brief outline
while we are still developing components because it helps ensure that when we come
to write the complete documentation, we do not miss any important information.

We should wait until the ending stages of development before creating a router. It is
common for us to change the way in which we handle data during the development
phase; creating the router too early may waste valuable time and effort.

In our next chapter, we will enhance our component by creating another type of
extension, a module, which will add new functionality to our frontend.

www.it-ebooks.info

http://www.it-ebooks.info/

Module Design
Joomla! modules can be created for either the frontend or the backend. Modules can
either be standalone or, as is often the case, they can work together with components.
For the most part, you will probably find yourself building modules.

In this chapter, we will create a module that will work with our box office
component, and as we create the module, we will cover the following:

Standalone modules
Modules and components working together
Frontend and backend module display positions
Module settings (parameters)
Module helpers
Module layouts (templates)
Media
Translating

First steps
Joomla! allows us a good deal of freedom in creating modules. The first file that
we must create is the module file itself. We will create a frontend module that will
list those movies that have received five stars in their review. Our module will be
titled "Critics Choice," so we will name our module file mod_criticschoice.php.
The file mod_critcschoice.php will be the entry point for our module which will
be invoked when the module is enabled and positioned on the site. There are no
restrictions as to what we choose to do within this file. Unlike components, modules
are generally designed to output limited amounts of data. Although modules can be
designed to take user input via a form (for example, the mod_login module), most
modules simply retrieve and format data.

•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Module Design

[196]

You can output data at any point during the execution of a module. One way for you
to test this is to observe that if you output some data from mod_criticschoice.php,
the data will appear in the module.

We will begin by creating our mod_criticschoice.php file and adding the
following code:

<?php
/**
 * Boxoffice Critics Choice Module
 *
 * @package mod_criticschoice
 * @subpackage modules
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access');

Nothing new so far; the first line of code prevents unauthorized direct access to the
module. We will soon add more.

Standalone modules
Standalone modules do not depend on other extensions. These modules tend to
require more effort to produce them because there is no existing API other than
what Joomla! provides.

Standalone modules normally use data sources external to Joomla!. If we want
to store data within Joomla!, we are faced with the problem that modules do not
support the execution of custom SQL or other scripts during installation.

There are two ways in which we can counter this:

We can use a conditional SQL query when the module is invoked. Something
to consider, if you are using this method, is the additional strain that is
placed on the database server, especially if you are creating multiple tables.
The following example demonstrates how we can achieve this:

 $db =& JFactory::getDBO();
 $query = 'CREATE TABLE IF NOT EXISTS '
 . $db->nameQuote('#__some_table').' ('
 . $db->nameQuote('id')
 . ' int(11) NOT NULL auto_increment, '

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[197]

 . $db->nameQuote('name')
 . ' varchar(255) NOT NULL default '', '
 . 'PRIMARY KEY ('.$db->nameQuote('id'). ') '
 . ') CHARACTER SET `utf8` COLLATE `utf8_general_ci`';

 $db->setQuery($query);
 $db->query();

We can also use a flag to indicate if the tables have already been created. We
can implement a flag in several ways. For example, we could use a blank file
or a module configuration option. This example demonstrates how we can
use a module configuration option (we will discuss the module configuration
options in the next section):

if (!$params->get('tablecreated'))
{
 // create the table
 $db =& JFactory::getDBO();
 $query = 'CREATE TABLE IF NOT EXISTS '
 . $db->nameQuote('#__some_table').' ('
 . $db->nameQuote('id')
 .' int(11) NOT NULL auto_increment, '
 . $db->nameQuote('name')
 . ' varchar(255) NOT NULL default '', '
 . 'PRIMARY KEY ('.$db->nameQuote('id'). ') '
 .') CHARACTER SET `utf`8 COLLATE `utf8_general_ci`';

 $db->setQuery($query);
 $db->query();

 // set the `tablecreated` flag to true
 $params->set('tablecreated', 1);
}

Of course, we do not have to use the database to store data. For example, we can use
XML files. A full description of using XML in Joomla! is available in Chapter 10, APIs
and Web Services.

Modules and components working together
Joomla! does not provide a large API for Modules; it is partly for this reason that
we generally create modules in conjunction with components. Modules, which
complement components, should take advantage of existing component code. This
creates dependencies between the module and the component.

•

www.it-ebooks.info

http://www.it-ebooks.info/

Module Design

[198]

There is currently no formal way of defining dependencies in extensions. We must
manually ensure that all dependencies are met. It is important to understand that
even if an extension is installed, it may not necessarily work. Extensions can be
flagged as disabled; this means that we should verify that the extension is both
installed and enabled.

To verify that a component has been installed and enabled, we can use the
isEnabled() method in the static JComponentHelper class. Let's add this code
to our mod_criticschoice.php file to verify that our com_boxoffice component
has been installed and enabled:

jimport('joomla.application.component.helper');

if (!JComponentHelper::isEnabled('com_boxoffice', true))
{
 JError::raiseError('500', JText::_('COMPONENTMISSING'));
}

Notice that the second parameter we pass to the isEnabled() method is true. This
ensures that the method is executed in strict mode. If it is not, components that are
not installed will return true.

The way in which our code deals with a missing component is somewhat drastic. A
more polite method would be to output a warning message and end processing of
the module. We could achieve this very neatly using a custom module error layout.
We will discuss this later in the chapter.

We can also verify that specific plugins and modules have been installed
and are enabled. This works in the same way as described above, except
we use the static isEnabled() method in JPluginHelper and
JModuleHelper classes.

Frontend and backend module display
positions
In the frontend, modules are generally displayed in vertical blocks to the left or right
of the page. This list details the available positions; exact positions will depend upon
the site template:

banner
breadcrumb
footer

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[199]

left
right
syndicate
top
user1
user2
user3
user4

In the backend, modules are displayed in some very different positions. When
creating backend modules, we generally have a special position in mind for the
module. This list details the available positions; exact positions will depend upon
the admin template:

cpanel
footer
header
icon
menu
status
submenu
title
toolbar

We do not specify the position when we create a module; it is up to an administrator
to choose where he or she wishes to publish a specific module. Nevertheless, we
should always bear in mind the different positions in which a module may end
up being published.

Module settings (parameters)
An important part of building modules is dealing with module settings. We can
define custom parameters for modules in the module XML manifest file. Module
parameters fall into two groups: Module Parameters and Advanced Parameters.

There is no difference in the application of Module Parameters and Advanced
Parameters; we split them into two groups to help the classification of the
parameters, consequently making the administrator's job easier.

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Module Design

[200]

As a general rule, Module Parameters are the more basic, although generally more
fundamental, of the two. Advanced Parameters pertain to settings that are more
complex and are rarely modified.

Here we modify our module manifest file to show how to add parameters:

<?xml version="1.0" encoding="UTF-8"?>
 <install type="module" version="1.5.0" client="site">
 <name>Critics Choice</name>
 <author>Box Office Software</author>
 <authorEmail>support@packtpub.com</authorEmail>
 <authorUrl>www.packtpub.com</authorUrl>
 <copyright>Copyright (C) 2009 </copyright>
 <creationDate>November 14, 2009</creationDate>
 <description>
 This module provides a list of the most recent reviews.
 </description>
 <license>GNU/GPL</license>
 <version>1.0.0</version>

 <files>
 <filename module="mod_criticschoice">
 mod_criticschoice.php
 </filename>
 <filename>helper.php</filename>
 <filename>index.html</filename>
 <filename>tmpl/_error.php</filename>
 <filename>tmpl/default.php</filename>
 <filename>tmpl/ratings.php</filename>
 <filename>tmpl/index.html</filename>
 </files>

 <languages>
 <language tag="en-GB">
 en-GB.mod_criticschoice.ini
 </language>
 </languages>

 <params>
 <param name="count" type="text" default="5"
 label="Count"
 description="Maximum items to display (default 5)" />
 <param name="show_rating" type="radio" default="0"
 label="Show Rating" description="Show movie rating">
 <option value="1">show</option>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[201]

 <option value="0">hide</option>
 </param>
 <param name="layout" type="filelist" label="Layout"
 description="Style with which to display the module"
 directory="/modules/mod_criticschoice/tmpl"
 default="" hide_default="1" hide_none="1"
 stripext="1" filter="\.php$" exclude="^_" />
 </params>

 <params group="advanced">
 <param name="moduleclass_sfx" type="text" default=""
 label="Module Class Suffix"
 description="PARAMMODULECLASSSUFFIX" />
 <param name="cache" type="list" default="1"
 label="Caching"
 description="Cache the content of this module">
 <option value="1">Use global</option>
 <option value="0">No caching</option>
 </param>
 <param name="cache_time" type="text" default="900"
 label="Cache Time"
 description="Time before the module is re-cached" />
 </params>
 </install>

We have added a text parameter count, a radio button option show_rating, and a
filelist layout which lists the layouts available. These are displayed in the Module
Parameters category. These will appear in the edit module page as the following
screenshot illustrates:

www.it-ebooks.info

http://www.it-ebooks.info/

Module Design

[202]

We have added a second set in the Advanced Parameters category including a
text parameter moduleclass_sfx, a list parameter cache, and a text parameter
cache_time. These will appear in the edit module page as the following
screenshot illustrates:

A complete description of the different types of parameters and how to define them
in XML is available in Appendix B, Parameters (Core JElement).

Once we have defined all of the module parameters, we can access them in the
module using the variable $params. This variable is a JParameter object; it allows
us to retrieve module parameters at run time.

The most important methods we need to be aware of in the JParameter class are
def(), get(), and set(). We use def() to set a default value for a parameter if no
value currently exists for it. We use get() to get the value of a parameter. We can
also pass a second parameter to get(), which will be returned if no value currently
exists for the parameter. We use set() to set a value for a parameter.

We will add code to our module to illustrate all three methods. Arguably, in our case,
this illustration is not really necessary but is used to point out the use of each method:

 // Set the layout correctly
 if($params->get('show_rating'))
 {
 $params->set('layout', 'ratings');
 }
 else
 {
 $params->def('layout', 'default');
 }

 // Get the layout path
 $layout = $params->get('layout', 'default');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[203]

We get the show_rating parameter value, and if it is true, we set the layout
parameter value to ratings, otherwise we set the value to default. We normally do
not use both def() and set() as we have in this instance. We use set() to set the
value for those parameters that have been included in the module XML manifest file.
When we wish to add parameters at run time, we use def() to create a parameter
and set its value.

Helpers
Module helpers are static classes that we use to encapsulate functions specific to the
module. Incorporating the functions in a static class reduces the chance of conflict
with other extensions and the core.

We normally name module helper classes using the naming convention: the word
mod, the module name, and the word Helper. For example, our helper class will be
called modCriticsChoiceHelper.

Module helper classes are normally located in a file called helper.php in the
root of the module. So after creating the helper.php file, we define our class
modCriticsChoiceHelper and create a method called getList():

<?php
/**
 * Boxoffice Critics Choice Module
 *
 * @package mod_criticschoice
 * @subpackage modules
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access');

 /**
 * Retrieves five star revues
 *
 * @access public
 * @param array Query associative array
 */
 class modCriticsChoiceHelper
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Module Design

[204]

 // Get revues from the database
 function &getList(&$params)
 {
 $db =& JFactory::getDBO();
 $count = (int) $params->get('count', 5);

 $query = modCriticsChoiceHelper::_buildQuery($count);

 $db->setQuery($query);
 $result = $db->loadObjectList();

 return $result;
 }

 function _buildQuery($count)
 {
 $db =& JFactory::getDBO();
 $table = $db->nameQuote('#__boxoffice_revues');
 $key = $db->nameQuote('stars');
 $stars = $db->Quote('*****');

 $query = ' SELECT * FROM ' . $table
 . ' WHERE ' . $key . ' = ' . $stars
 . ' LIMIT ' . $count . '';

 return $query;
 }
 }

We split the getList() method into two; this makes the code more readable and
aids the logical structure of the class. Notice that the getList() method returns a
reference, which reduces memory overhead when using the method.

We also need to pass a JParameter object to the getList() method, most likely
the module parameters, $params. We then use a parameter named count to
determine the maximum number of records to retrieve from the database table,
#__boxoffice_revues.

It is common practice to pass the $params object to module helper class methods. If
a method is only using one parameter from $params, it is still a good idea to pass the
entire object because it will make the addition of any extra parameters easier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[205]

We could have specified $query as static, only executing the query if it had not
been executed already. This would only make sense if there were a possibility that
the method would be executed more than once. This example shows how we might
choose to implement this:

/**
 * Gets an array of items
 *
 * @param JParameter Module parameters
 * @return mixed Array of items, false on failure
 */
function &getList(&$params)
{
 static $queries;
 if (!isset($queries))
 {
 $queries = array();
 }

 $count = $params->get('count', 5);

 if (empty($queries[$count]))
 {
 $db =& JFactory::getDBO();
 $query = modCriticsChoiceHelper::_buildQuery($count);
 $db->setQuery($query);
 @$queries[$count] = $db->loadObjectList();
 }
 return $queries[$count];
}

Our code now contains the static array $queries that will hold the result of the
query. Subsequent queries will return the $queries() array element if it exists and
skip the database query.

So now that we have created the helper class, how can we use the getList()
method? In our module mod_criticschoice.php, we will add the following:

 // Load the helper class
 require_once (dirname(__FILE__).DS.'helper.php');

 // Get the list of five star movies
 $list = modCriticsChoiceHelper::getList($params);

www.it-ebooks.info

http://www.it-ebooks.info/

Module Design

[206]

Once we have done this, we can then verify that $list is an array. If not, we can
raise an error, notice, or warning.

We can use helpers for many different tasks as well as data retrieval. Joomla!
encourages, although it does not force, the use of OO (Object-Oriented) design.
Functionality that we build in helpers is functionality that has no other logical place.
Helper classes allow us to stick to OO design without compromising on the logical
design of classes.

Layouts (templates)
Layouts (templates) are used in modules in much the same way as they are in
components. Module layouts allow us to define multiple appearances for data.

Layouts are essentially template files that consist of mostly XHTML interlaced with
snippets of PHP. For a complete explanation of how to build template files, please
refer to Chapter 9, Customizing the Page.

Site templates can override module layouts. To render a module using a layout, we
use the getLayoutPath() method in the static JModuleHelper class. This method
determines the location of a template file based on two parameters: the parsed
module name and the layout name.

Our module will have three layout files that will be described in the following text.
The first layout we will create is the default layout (mod_criticschoice/tmpl/
default.php.):

<?php
/**
 * Boxoffice Critics Choice default layout
 *
 * @package mod_criticschoice
 * @subpackage modules
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access'); ?>

 <ul class="criticschoice
 <?php echo $params->get('moduleclass_sfx'); ?>">

 <?php $link = 'index.php?option=com_boxoffice&cid[]=';?>

 <?php foreach ($list as $item) : ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[207]

 <li class="criticschoice
 <?php echo $params->get('moduleclass_sfx'); ?>">
 <a href="<?php echo JRoute::_($link.$item->id); ?>"
 class="criticschoice
 <?php echo $params->get('moduleclass_sfx'); ?>">
 <?php echo $item->title; ?>

 <?php endforeach; ?>

The second layout we will create is named mod_criticschoice/tmpl/ratings.php,
and it is virtually identical to the default, with the exception that we have added
the industry rating to the listing. While this is admittedly not the best reason for
creating a layout, it is intended to illustrate how you might create and use multiple
module layouts:

<?php
/**
 * Boxoffice Critics Choice ratings layout
 *
 * @package mod_criticschoice
 * @subpackage modules
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access'); ?>

 <ul class="criticschoice
 <?php echo $params->get('moduleclass_sfx'); ?>">

 <?php $link = 'index.php?option=com_boxoffice&cid[]=';?>

 <?php foreach ($list as $item) : ?>
 <li class="criticschoice
 <?php echo $params->get('moduleclass_sfx'); ?>">
 <a href="<?php echo JRoute::_($link.$item->id); ?>"
 class="criticschoice
 <?php echo $params->get('moduleclass_sfx'); ?>">
 <?php echo $item->title
 .'('.$item->rating.')'; ?>

 <?php endforeach; ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Module Design

[208]

If you create alternative module layouts, you can name them anything you wish. The
name of a layout should, however, correspond directly to the name of a template file.
For example, a template file vert.php should be the layout vert.

Unlike components, in modules we do not create XML metadata files to describe
each layout. Instead, if we wish to allow an administrator to select the layout, we
must add a module parameter and use it accordingly.

Here is the parameter we use to handle the different layouts in our module XML
manifest file (alternatively, we could use a list parameter and manually define each
available layout):

 <param name="layout" type="filelist" label="Layout"
 description="Style with which to display the module"
 directory="/modules/mod_criticschoice/tmpl"
 default="" hide_default="1" hide_none="1"
 stripext="1" filter="\.php$" exclude="^_" />

This parameter, named layout, generates a list of items based on the template files.
It includes PHP files and excludes files with names that start with an underscore. The
list of items is displayed without the file extension, and the values are saved without
the file extension.

Although we have yet to discuss our third layout file (_error.php), we will do so
shortly. Our tmpl folder will contain the following files: default.php, ratings.php,
index.html, and _error.php. This is what the parameter will appear like when
rendered as a form element:

To use this parameter to render a template, we add the following to our module code
(note that if the parameter is not defined, we use the layout 'default'):

<?php
/**
 * Boxoffice Critics Choice Module
 *

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[209]

 * @package mod_criticschoice
 * @subpackage modules
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access');

 jimport('joomla.application.component.helper');

 // Our module needs the table created by the com_boxoffice
 // component so we check to see if the component has been
 // installed and enabled.
 if(!JComponentHelper::isEnabled('com_boxoffice', true))
 {
 JError::raiseError('500', JText('COMPONENTMISSING'));
 }

 // Load the helper class
 require_once (dirname(__FILE__).DS.'helper.php');

 // Get the list of five star movies
 $list = modCriticsChoiceHelper::getList($params);

 // Set the layout correctly
 if($params->get('show_rating'))
 {
 $params->set('layout', 'ratings');
 }
 else
 {
 $params->def('layout', 'default');
 }

 // Get the layout path
 $layout = $params->get('layout', 'default');
 require(JModuleHelper::getLayoutPath('mod_criticschoice',
 $layout));

www.it-ebooks.info

http://www.it-ebooks.info/

Module Design

[210]

We mentioned earlier the possibility of using a bespoke module error layout if
anything were to go amiss during the execution of our module. We can use the
JError class to define an error. Joomla! uses this class to describe errors, and
objects of this type are often returned from methods when errors occur.

This example shows how we could use a JError object, stored in $error, in
conjunction with a tailored layout:

<p>
 <?php echo $error->code; ?>

 <?php echo JText::_($error->message); ?>
</p>

If we save this as a layout in the module's tmpl folder and call it _error.php, we
can proceed to use it. We use an underscore at the start of the name because it is an
internal template, and we do not want it to appear in the selection of layouts. This
example shows how we can use the layout in conjunction with a JError object:

$result = modCriticsChoiceHelper::getList(($params);
if (JError::isError($result))
{
 $params->set('layout', '_error');
 $error =& $result;
}

$layout = $params->get('layout', 'default');
require(JModuleHelper::getLayoutPath('mod_criticschoice',
 $layout));

Media
If you intend to include any images or other media files with your module, you
might want to add the files to the Joomla! root images folder. This is the folder that
the Joomla! Media Manager uses. You should either add your files to the root of this
folder or create a sub-folder.

The way in which the module installer works forces us to go only one
folder deep within the images folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[211]

Translating
As part of a module, we can define a set of translations. A full description of how
to create language files is available in Chapter 9, Customizing the Page. When we
create module translation files, we must name the file according to a specific naming
convention: the language tag, a period, and the Joomla! parsed module name. For
example, the British English translation file for our module Critics Choice would
be called en-GB.mod_criticschoice.php. Our module language file looks like this:

Critics Choice Module Language File
Created: 12/03/2009
Author URL: http://www.packtpub.com
License: GNU/GPL

COUNT=Count
DESCCRITICSCHOICE=This Module shows a list of the movies that have
been given five stars by our critics.
COMPONENTMISSING=The Critics Choice module requires the Box Office
component.

Module translation files are located in the language and administrator/language
folders. If you are creating a frontend module, use the language folder. If you are
creating a backend module, use the administrator/language folder.

Because we use this specific naming convention, when we use our module, the
module's translation file will automatically be loaded. We can, if we so choose,
manually load other language files.

If we are creating a module in conjunction with a component, we may want to use
a component language file instead of, or in addition to, the module language file.
To load a component language file from within a module, we can use the global
JLanguage object.

This example shows how we would load the Box Office component language file
(we would need to do this before using JText to translate any strings):

$language =& JFactory::getLanguage();
$language->load('com_boxoffice');

www.it-ebooks.info

http://www.it-ebooks.info/

Module Design

[212]

Summary
In this chapter, we learned how modules can be used to enhance either backend
or frontend components. We created a frontend module that depends on the
component we created in Chapter 5, Component Design.

We also learned how to create a static module helper class to get data from
the database.

Along the way, we discovered how to add and use parameters to provide options
such as choosing different ways of displaying our data through different layouts.

And finally, we discussed how to provide multi-language translation for
our module.

In the next chapter, we will discuss another type of extension: plugins. Plugins are
the simplest type of extension, and as we will discover, they add functionality to
the framework layer to support application layer components and modules.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design
Plugins enable us to modify system functionality without the need to alter existing
code. For example, plugins can be used to alter content before it is displayed, extend
search functionality, or implement a custom authentication mechanism. As an
example, this chapter shows how to replace a string with an image.

Plugins use the observer pattern to keep an eye on events. It is by listening to these
events that we can modify the system functionality. However, this also means that
we are limited to only modifying those parts of the system that raise events.

Plugins represent the listener, and they can define either a listener class or a listener
function to handle specific events.

In this chapter, we will cover the following:

Events
Listeners
Plugin groups
Loading plugins
Using plugins as libraries (in lieu of library extensions)
Translating plugins
Dealing with plugin settings (parameters)
File naming conflicts

•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[214]

Events
As we have already mentioned, plugins use the observer pattern to keep an eye on
events and handle them. The observer pattern is a design pattern that is common
in programming. This particular pattern allows listeners to attach to a subject. The
subject can initiate a notification (essentially an event), which will cause the listeners
to react to the event.

The expressions 'listener' and 'observer' are interchangeable, as are 'subject'
and 'observable'.

If you are unfamiliar with the observer pattern, you may want to refer to
http://www.phppatterns.com/docs/design/observer_pattern.

When we create plugins, we generally define listeners for specific events.

The application uses a global object called the event dispatcher to dispatch events
to registered listeners. The global event dispatcher, a JEventDispatcher object,
extends the abstract JObservable class.

In Joomla!, a listener can be a class or a function. When we use a class listener,
the class should extend the abstract class JPlugin; we extend this class because
it implements the methods that are used to attach the listener to a subject.

This diagram illustrates the relationship between the JEventDispatcher class and
listeners that extend the JPlugin class:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[215]

There are several events that are used in the core. In addition to these, we can use
our own events. We do not have to define events; we can just use them.

In Chapter 5, Component Design we created a com_boxoffice component that
displays information about a revue entity. We are going to create a custom event
called onPrepareRevue to allow listeners to perform additional processing to the
Revue data before we display a Revue.

To issue an event, we need to trigger it; Joomla! provides two ways of triggering an
event. The first way uses a method in the application called triggerEvent(), which
triggers events in the global event dispatcher, notifying the relevant listeners. This is
a pass-through method for the JEventDispatcher trigger() method.

The triggerEvent() method accepts two parameters: the name of the event and an
array of arguments to pass to the listener.

We want to trigger the event onPrepareRevue. Here is the first way that we can
achieve this: $revue is an object that represents a revue entity. Note that
$mainframe is the application.

$arguments = array(&$revue);
$result = $mainframe->triggerEvent('onPrepareRevue', $arguments);

The second way to trigger an event is to get an instance of the JDispatcher object
and use the trigger() method. Although either method will work, this is the
preferred method in Joomla! 1.5.

$dispatcher =& JDispatcher::getInstance();
$result = $dispatcher->trigger('onPrepareRevue',
 array(&$revue));

The most important thing to notice is that we reference and wrap $revue in an array.
The second parameter must always be an array. This array is dissected, and each
element is used as a separate parameter when dispatching an event to a listener.

We intentionally pass $revue by reference so that listeners will be able to modify
our revue object.

Once all listeners have updated the data or completed their work the method returns
an array of responses. In our example, this is recorded in $result. Imagine that all
of the onPrepareRevue listeners return a Boolean value; $result would contain an
array of Boolean values.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[216]

Listeners
The event dispatcher must know what listeners are interested in an event. In this
section we will discuss how listeners are attached to the event dispatcher.

Registering listeners
When we create a new plugin, if we are using functions we must inform the
application of each function and event. We do this using the application's
registerEvent() method. The method accepts two parameters, the name of the
event and the name of the handler. This acts as a pass-through method for the global
event dispatcher register() method.

Technically, the name of the handler can be the name of a class. We rarely need to
use the method in that context because when we load a plugin that defines a class,
Joomla! automatically registers the class and events for us.

For example, the core Joomla! search component uses plugins to search for results.
The plugin that searches content articles uses the function plgSearchContent()
to handle the onSearch event. This is how the function is registered:

$mainframe->registerEvent('onSearch', 'plgSearchContent');

Handling events
Earlier in the Events section of this chapter we discussed how we could use
functions or a class to handle events. We will start by exploring event handling
using functions.

Listener function
Let's create a function to handle the onPrepareRevue event in our revue plugin
located in the boxoffice group.

Before we start building our function we need to name it. Generally we
use the following naming convention: the word plg, the plugin group,
the element name, and the event, so for our function we will name it
plgBoxofficeRevuePrepareRevue.

Here is the code:

$mainframe->registerEvent('onPrepareRevue',
 'plgBoxofficeRevuePrepareRevue');

/**
 * Makes the title of the revue uppercase.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[217]

 *
 * @param Revue Reference to a Revue object
 */
function plgBoxofficeRevuePrepareRevue (&$revue)
{
 $revue->title = strtoupper($revue->title);
}

The most striking part of this function is the parameter. Earlier in the Events section
of this chapter, we described how to trigger an event and we passed an array;
each element of that array is passed as a separate parameter to the listeners. In this
example, we can assume that the one parameter is the Revue object, which we passed
by reference in the triggering events example.

A single plugin can contain multiple functions for
handling multiple events.

Listener class
If we want to create a listener using a class, we extend the abstract class JPlugin.

Before we start building a listener class, we must determine the name for the class.
JPlugin subclasses follow a special naming convention: the word plg, the name of
the plugin group, and the name of the plugin element. So for our revue plugin in
the boxoffice group, we will define the JPlugin subclass as plgBoxofficeRevue.

This example is designed to handle two events: onPrepareRevue and
onAfterDisplayRevue:

<?php
/**
 * Boxoffice Revue Plugin
 *
 * @package plg_revue
 * @subpackage plugins
 * @link http://www.packtpub.com
 * @license GNU/GPL
 */

 // No direct access
 defined('_JEXEC') or die('Restricted access');

 // Import the JPlugin class
 jimport('joomla.event.plugin');

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[218]

 /**
 * Box Office event listener
 */
 class plgBoxofficeRevue extends JPlugin
 {
 /**
 * Handle onPrepareRevue event
 *
 */
 function onPrepareRevue(&$revue)
 {
 // look for images in template if available
 $starImageOn =
 '';
 $starImageOff =
 '';

 $img='';

 for ($i=0; $i < strlen($revue->stars); $i++)
 {
 $img .= $starImageOn;
 }

 for ($i=strlen($revue->stars); $i < 5; $i++)
 {
 $img .= $starImageOff;
 }

 $revue->stars = $img;
 }

 /**
 * Handle onAfterDisplayRevue event
 *
 */
 function onAfterDisplayRevue(&$revue)
 {
 return '<p>'
 .JText::_('Asterisks converted to images.')
 .</p>;
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[219]

The first thing that should have struck you about this example is that we have not
bothered to register any events with the global event dispatcher. The advantage of
using classes is we do not need to register events with the global event dispatcher,
so long as we follow the strict class naming convention.

If we do not follow the naming convention, we can register a
class in the same way as we register a function, as described
earlier in the chapter.

When plugins are imported into Joomla!, the global event dispatcher will
automatically look for listener classes and register them.

You probably also noticed that the names of the two methods are identical to the
names of the events they handle. This is essential when creating JPlugin subclasses.
As we do not manually register each event to each method, this is the only way in
which the event dispatcher can determine which event a method is designed
to handle.

The major difference between the two methods is that the onAfterDisplayRevue()
method returns a value. You may remember we mentioned earlier that when an
event is triggered we get an array of all the results.

This is an example of how we might choose to handle the results of the
onAfterDisplayRevue event:

$arguments = array(&$revue);
$result = $mainframe->triggerEvent('onAfterDisplayRevue',
 $arguments);
$revue->onAfterDisplayRevue = trim(implode("\n", $result));

What we are doing is taking all the string values returned by the
onAfterDisplayRevue event handlers and imploding them into one string.
This is then stored in the onAfterDisplayRevue attribute of the $revue object.

We normally trigger events in component view classes. A template would
then output the value of the onAfterDisplayRevue parameter after the Revue
was displayed.

It is important to understand that although the name contains 'After', this event is
executed before the Revue is actually outputted. What 'After' refers to is the position
that the returned strings will be displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[220]

Important!
If your plugin class will require some initialization upon creation,
and you need to include a constructor method note that for PHP4
compatibility we must not use the PHP5 __construct() as a
constructor for plugins because func_get_args(void) returns a copy
of all passed arguments NOT references. This causes problems with the
cross-referencing required by the observer design pattern. You should use
the class name as the constructor function for PHP4 compatibility. Here is
an example of how you should write a plugin constructor method.
 function plgContentExample(&$subject, $params)

 {

 parent::__construct($subject, $params);

 }

Our event handlers have all been very simple; there are all sorts of other things
we can achieve using plugins. For example, we can modify referenced parameters,
return important data, alter the page title, send an e-mail, or even make a log entry!

When we think of plugins we must think beyond content and think in terms of
events and listeners. The plugin groups, which we will discuss in a moment, will
demonstrate a number of different things we can achieve, which go far beyond
modifying content.

Plugin groups
Plugins are organized into different groups. Each plugin group is designed to handle
a specific set of events and there are eight core groups:

authentication
content
editors
editors-xtd
search
system
user
xmlrpc

•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[221]

Each of these groups performs different functions; we will discuss precisely what
they are and how to use them in a moment.

In addition to the core groups, we can create plugins that belong to custom groups
that we create. Since we want to create a plugin specifically for our boxoffice
component, we will create a custom plugin group called boxoffice.

The following sections describe each of the core plugin groups and discuss how
to create new plugins for these groups. At the end of each section we will detail
related events.

There are no strict rules regarding which event listeners belong to which group,
however, using the events in the groups described next will ensure that the plugin
is loaded when these events occur.

Authentication
Authentication plugins are used to authenticate a user's login details. Joomla!
supports four different authentication methods:

GMail
Joomla!
LDAP
OpenID

By creating new authentication plugins, we can allow Joomla! to support additional
authentication methods. It is common for businesses to run more than one system,
each with its own authentication. Joomla! authentication plugins allow us to
integrate authentication between systems and reduce system management overhead.

There is only one authentication event, onAuthenticate. This event is used to
determine if a user has authentic credentials. To return a result from this event we
use the third parameter, a referenced JAuthenticationResponse object.

•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[222]

We set values within the object to signify the status of the authentication. The next
table describes each of the properties that we can set:

Property Description
birthdate User's birthdate
country User's country
email User's e-mail address
error_message Error message on authentication failure or cancel
fullname User's full name
gender User's gender
language Language tag
postcode Postcode or zipcode
status Status of the authentication
timezone User's time zone
username User's username – completed automatically

The status property is used to determine the result of the authentication. The next
table describes the three different constants we use to define the value of status:

Constant Description
JAUTHENTICATE_STATUS_CANCEL Authentication canceled
JAUTHENTICATE_STATUS_FAILURE Authentication failed
JAUTHENTICATE_STATUS_SUCCESS Authentication successful

Authentication plugins are stackable. We can use multiple authentication plugins
simultaneously. The plugins are used in published order and, if any of them sets the
status of the JAuthenticationResponse object to JAUTHENTICATE_STATUS_SUCCESS,
the login is deemed successful and no more authentication plugins are triggered.

The default setup, as shown below, places the plugins in the order: Joomla!, LDAP,
OpenID, GMail. Only Joomla! authentication is enabled by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[223]

Additional processing can be performed once a login has completed using user
plugins. These are discussed later in the chapter.

onAuthenticate
Description Triggered when a user attempts to log in, this event is used to

authenticate user credentials.

Parameters username Username
password Password
response Referenced JAuthenticationResponse object

Content
The content plugins allow us to modify content items before we display them. The
most commonly used content event is onPrepareContent. This event, always the
first of all the content events to be triggered, is used to modify the text content.

Let's imagine we want to create a content plugin which will replace all occurrences of
:) with a small smiley face icon. This is how we could implement this:

// no direct access
defined('_JEXEC') or die('Restricted access');

// register the handler
$mainframe->registerEvent('onPrepareContent',
 'plgContentSmiley');

/**
 * Replaces :) with a smiley icon.
 *
 * @param object Content item
 * @param JParameter Content parameters
 * @param int Page number
 */
function plgContentSmiley(&$row, &$params, $page)
{
 $pattern = '/\:\)/';
 $icon = '';
 $row->text = preg_replace($pattern, $icon, $row->text);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[224]

Notice that we do not return the changes, but we modify the referenced $row object.
The $row object is the content item; it includes a great many attributes. This table
describes the attributes that we are most likely to modify:

Attribute Description
created Created date and time in the format 0000-00-00 00:00:00
modified Modified date and time in the format 0000-00-00 00:00:00
Text Body content of the item
Title Content item title
toc Table of contents

onAfterDisplayContent

Description Creates an XHTML string, which is displayed directly after
the content item.

Parameters row Reference to a content item object
params Reference to a JParameter object, which is

loaded with the content item parameters

page Page number

Returns XHTML to display directly after the content item.

onAfterDisplayTitle
Description Creates an XHTML string, which is displayed directly after the

content item title.
Parameters row Reference to a content item object

params Reference to a JParameter object, which is loaded
with the content item parameters

page Page number
Returns XHTML to display directly after the title of the content item.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[225]

onBeforeDisplayContent
Description Creates an XHTML string, which is displayed directly before the

content item text. For example the 'Content - Rating' plugin.

Parameters row Reference to a content item object
params Reference to a JParameter object, which is loaded

with the content item parameters

page Page number
Returns XHTML to display directly before the content item text.

onPrepareContent
Description Prepares a RAW content item ready for display. If you intend to

modify the text of an item, you should use this event.

Parameters row Reference to a content item object. To modify content
we must directly edit this object.

params Reference to a JParameter object, which is loaded
with the content item parameters.

page Page number.
Returns True on success.

Editors
Probably the most complex of all the core plugins are editors. These plugins are used
to render handy client-side textarea editors. One of the core editors is TinyMCE
(http://tinymce.moxiecode.com/), a separate project in its own right. TinyMCE
is a JavaScript-based editor, which allows a user to easily modify data in a textarea
without the need for any knowledge of XHTML.

The next screenshot is of TinyMCE in action in Joomla!:

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[226]

Note that the buttons displayed at the bottom of the editor are not part of the editor.
These are created by editors-xtd plugins, explained later in this chapter.

Generally editor plugins are derived from existing JavaScript editors. This is a list of
some of the editors that have already been ported for use with Joomla!:

ASBRU Web Content Editor
FCKeditor
wysiwygPro
XStandard

Porting an editor for use with Joomla! is no easy task. Intimate understanding of the
editor and Joomla! editor plugins is required.

onDisplay
Description Gets the XHTML field element to use as the form field element.
Parameters name Name of the editor area/form field.

content Initial content.
width Width of editor in pixels.
height Height of editor in pixels.
col Width of editor in columns.
row Height of editor in rows.
buttons Boolean, show or hide extra buttons; see the

onCustomEditorButton event, part of editors-xtd,
explained in the next section.

Returns XHTML form element for editor.

onGetContent
Description Gets some JavaScript, which can be used to get the contents of the editor.
Parameters editor Name of the editor area/form field.
Returns A JavaScript string that, when executed client-side, will return the

contents of the editor. Must end with a semicolon.

•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[227]

onGetInsertMethod
Description Gets some JavaScript which defines a function called

jInsertEditorText().

Parameters name Name of the editor area/form field.
Returns A JavaScript string that defines the function

jInsertEditorText(text), which, when executed client-side, will
insert text into the current cursor position in the editor.

onInit
Description Initialize the editor. This is only run once irrespective of how many

times an editor is rendered.

Returns An XHTML tag to be added to the head of the document. Normally
this will be a script tag containing some JavaScript, which is integral to
client-side initialization of the editor.

onSave
Description Gets some JavaScript, which is used to save the contents of the editor.
Parameters editor Name of the editor area/form field.
Returns A JavaScript string, which must be executed before a form containing

the editor field is submitted. Not all editors will require this.

onSetContent
Description Gets some JavaScript, which can be used to set the contents of the editor.

Parameters
name Name of the editor area/form field.
HTML The new content of the editor.

Returns A JavaScript string that when executed client-side, will set the contents
of the editor to the value of the HTML parameter.

Editors-xtd
This group is used to extend editor plugins by creating additional buttons for the
editors. Unfortunately, the core 'xstandard' editor does not support these plugins.
There is only one event associated with this group, onCustomEditorButton.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[228]

Since there is only one event associated with the group, we tend to use functions
instead of full-blown JPlugin subclasses. The following example shows how we
can add a button that adds the smiley :) to the editor content:

// no direct access
defined('_JEXEC') or die('Restricted access');

$mainframe->registerEvent('onCustomEditorButton',
 'plgSmileyButton');

/**
 * Smiley button
 *
 * @name string Name of the editor
 * @return array Array of three elements:
 * JavaScript action, Button name, CSS class.
 */
function plgSmileyButton($name)
{
 global $mainframe;

 // get the image base URI
 $doc =& JFactory::getDocument();
 $url = $mainframe->isAdmin() ? $mainframe->getSiteURL()
 : JURI::base();
 // get the JavaScript
 $js = "function insertSmiley()
 {
 jInsertEditorText(' :) ');
 }";

 $css = ".button1-left .smiley
 {
 background:
 url($url/plugins/editors-xtd/smiley1.gif)
 100% 0 no-repeat;
 }";
 $css .= "\n .button2-left .smiley
 {
 background:
 url($url/plugins/editors-xtd/smiley2.gif)
 100% 0 no-repeat;
 }";
 $doc->addStyleDeclaration($css);
 $doc->addScriptDeclaration($js);
 $button = array("insertSmiley()",
 JText::_('Smiley'),
 'smiley');

 return $button;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[229]

Temporarily ignoring the contents of the function, we do two very important things
in this code. We define the handler function and we register it with the global
event dispatcher.

Moving on to the guts of the plgSmileyButton() function, we will start by looking
at the $name parameter. This parameter is the name of the editor area. It is important
we have this so that we can identify which area we are dealing with. Admittedly,
we do not use this in our example function, but it is likely that it will be of use at
some point.

We build some JavaScript and some CSS. The client will execute the JavaScript
when the button is pressed. We define two CSS styles to render the button in
different locations.

The $button array that we return is an array that describes the button we want the
editor to display. The first element is the JavaScript to execute when the button is
pressed. The second element is the name of the button. The third element is the name
of the CSS style to apply to the button.

The next screenshot demonstrates what our button might look like (the fourth button
from the left):

You will also notice that in this example we are using images located in the
editors-xtd folder. If you are wondering how we achieve this then look no further!
The image files would be included in the plugin archive and described in the XML
manifest file.

This snippet shows the files tag in the XML manifest file:

<files>
 <filename plugin="smiley">smiley.php</filename>
 <filename>smiley1.gif</filename>
 <filename>smiley2.gif</filename>
</files>

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[230]

Before we move on, there are some handy methods available to us that you should
be aware of. We can interrogate the editor to get some useful JavaScript snippets.
This table details the methods to do this:

Method Description
getContent JavaScript to get the content of the editor.
save JavaScript to save the content of the editor. Not all editors use this.
setContent JavaScript to set the content of the editor.

All of these methods return a JavaScript string. We can use the strings to build scripts
that interact with the editor. We use these because most of the editors are JavaScript
based, and therefore require bespoke script to perform these functions client-side.

This is an example of how we would use the getContent() method to build a script
that presents a JavaScript alert that contains the contents of the editor identified
by $name:

// get the editor
$editor =& JFactory::getEditor();

// prepare the JavaScript which will get the value of editor
$getContent = $editor->getContent($name);

// build the JavaScript alert that contains the
// contents of the editor
$js = 'var content = '.$getContent."\n" . 'alert(content);';

onCustomEditorButton
Description Build a custom button for an editor.
Parameters name Name of the editor area.
Returns An array of three elements, the JavaScript to execute when the button is

pressed, the name of the button, and the CSS Style.

Search
We use search plugins to extend the core search component and obtain search
results. There are two events associated with this group, onSearch and
onSearchAreas. Of the two, the purpose of onSearchAreas is a little more obscure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[231]

To help explain, have a look at the next screenshot of the search component:

As part of this, a user has the option of which areas they want to search. In this case,
Articles, Weblinks, Contacts, Categories, Sections, and Newsfeeds. When we
trigger the onSearchAreas event, we expect results from these areas to be returned.

A single search plugin can deal with multiple areas.

The onSearch event is more implicit; it is the event that is raised when a search takes
place. Listeners to this event should return an array of results. Exactly how you
implement this will depend upon what you are searching for.

onSearch
Description Perform a search and return the results.
Parameters text Search string.

phrase Search type— 'any', 'all', or 'exact'.
ordering Order of the results— 'newest', 'oldest', 'popular', 'alpha'

(alphabetical), or 'category'.

areas Areas to search (based on onSearchArea).
Returns An array of results. Each result must be an associative array containing

the keys 'title', 'text', 'created', 'href', 'browsernav' (1 = open link in new
window), and 'section' (optional).

onSearchAreas
Description Gets an array of different areas that can be searched using this plugin.

Every search plugin should return at least one area.

Returns Associative array of different areas to search. The keys are the area
values and the values are the labels.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[232]

System
There are four important system events. We have mentioned these once before, in
Chapter 2, Getting Started, and they occur in a very specific order and every time a
request is made. The following list shows the order in which the four events occur:

1. onAfterInitialise occurs after the application has been initialized.
2. onAfterRoute occurs after the application route has been determined.
3. onAfterDispatch occurs after the application has been dispatched.
4. onAfterRender occurs after the application has been output and rendered.

If you look at the diagrams we used to describe the process from request to response
in Chapter 2, Getting Started, you will see that each of these events is triggered at a
very specific point.

User
User plugins allow additional processing during user-specific events. This is
especially useful when used in conjunction with a component that defines tables
that are associated with the core #__users table.

We will take the event onAfterUserStore as an example. This event is triggered
after an attempt has been made to store a user's details. This includes new and
existing users.

This example shows how we can maintain another table, #__some_table, when a
new user is created:

$mainframe->registerEvent('onAfterStoreUser',
 'plgUserMaintainSomeTableStoreUser');
/**
 * Add new record to #__some_table when a new user is created
 *
 * @param array User attributes
 * @param boolean True if the user is new
 * @param boolean True if the user was successfully stored
 * @param string Error message
 * @return array Array of three elements:
 * JavaScript action, Button name, CSS class.
 */
function plgUserMaintainSomeTableStoreUser
 ($user, $isnew, $success, $msg)
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[233]

 // if they are a new user and the store was successful
 if ($isnew && $success)
 {
 // add a record to #__some_table
 $db = JFactory::getDBO();
 $query = ' INSERT INTO '.$db->nameQuote('#__some_table')
 . ' SET ' . $db->nameQuote('userid')
 . ' = ' . $user['id'];
 $db->setQuery($query);
 $db->query();
 }
}

onBeforeStoreUser
Description Allows us to modify user data before we save it.
Parameters user Associative array of user details. Includes the same

parameters as the user table fields.

isnew True if the user is new.

onAfterStoreUser
Description Allows us to execute code after a user's details have been updated. It's

advisable to use this in preference to onBeforeStoreUser.

Parameters user Associative array of user details. Includes the same
parameters as the user table fields.

isnew True if the user is new.
success True if store was successful.
msg Error message if store failed.

onBeforeDeleteUser
Description Enables us to perform additional processing before a user is deleted.

This is useful for updating non-core tables that are related to the core
#__users table

Parameters user Associative array of user details. Only has the key id, which is
the user's ID.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[234]

onAfterDeleteUser
Description Same as onBeforeDeleteUser, but occurs after a user has been

removed from the #__users table.

Parameters user Associative array of user details. Only has the key id which is
the user's ID.

success True if the user was successfully deleted.
msg Error message if deletion failed.

onLoginFailure
Description During a failed login this handles an array derived from a

JAuthenticationResponse object. See Authentication plugins earlier
in this chapter.

Parameters response JAuthenticationResponse object as returned from the
onAuthenticate event, explained earlier in the chapter.

onLoginUser
Description During a successful login this handles an array derived from a

JAuthenticationResponse object. See Authentication plugins earlier
in this chapter. This is not used to authenticate a user's login.

Parameters user JAuthenticationResponse object as returned from the
onAuthenticate event, explained earlier in the chapter.

remember True if the user wants to be 'remembered'.
Returns Boolean false on failure.

onLogoutUser
Description User is attempting to logout. The user plugin 'joomla' destroys the session

at this point.

Parameters user Associative array of user details. Only has the keys 'id', which is
the user's ID, and 'username', which is the user's username.

Returns Boolean false for failure

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[235]

XML-RPC
XML-RPC is a way in which systems can call procedures on remote systems through
HTTP using XML to encode data. Joomla! includes an XML-RPC server that we can
extend using plugins.

There are essentially two parts to XML-RPC plugins: the event handler for the event
onGetWebServices, which returns an array of supported web service calls, and a
static class or selection of functions that handle remote procedure calls.

For more information about creating XML-RPC plugins, please refer to Chapter 10,
APIs and Web Services.

onGetWebServices
Description Gets an associative array describing the available web service methods.
Returns An associative array of associative arrays, which define the available

XML-RPC web service calls.

Loading plugins
Before a plugin can respond to an event, the plugin must be loaded. When we
normally load plugins we load a group at a time. To do this we use the static
JPluginHelper class.

The following example shows how we would load plugins from the
group boxoffice:

JPluginHelper::importPlugin('boxoffice');

It is essential that we import plugins before firing events that relate to them. There is
one time when this does not apply; we never need to import system plugins. System
plugins are imported irrespective of the request that is being handled. It is, however,
unlikely that we would ever need to trigger a system event because Joomla! should
handle all system events.

So where and when do we import plugins? For starters it does not matter if we
attempt to import the same group of plugins more than once. At what point we
choose to import the plugins is entirely up to us. The most common place to import
plugins is in our component controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[236]

For example, the search component imports all of the search plugins before it raises
any events that are specific to search plugins:

JPluginHelper::importPlugin('search');

Note that it is not the responsibility of the plugin to load
itself. It is up to the extension that uses the associated
plugin group to do this.

We will normally load an entire plugin group. However, in the unlikely event
that we wish to import a specific plugin, we can add the name of the plugin to
the importPlugin method as follows:

JPluginHelper::importPlugin('boxoffice', 'revue');

This will import the revue plugin located in the boxoffice group.

Using plugins as libraries (in lieu of
library extensions)
We have mentioned the Joomla! library a number of times in the past. Although the
library is a powerful part of Joomla!, it is not extensible although there are ongoing
discussions within Joomla! to create library extensions and implement an extension
dependency mechanism.

In the meantime we can use plugins as libraries. Plugins, although not designed
for this, are ideally suited because they enable us to build up a shared directory
structure based on several plugins.

To do this we must use a common plugin group for a library; we should think of this
as the root library namespace. This XML defines a plugin called 'My Library - Base':

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE install SYSTEM
 "http://dev.joomla.org/xml/1.5/plugin-install.dtd">
<install version="1.5" type="plugin" group="mylibrary">
 <name>My Library - Base</name>
 <author>Author's Name</author>
 <authorEmail>Author's Email</authorEmail>
 <authorUrl>Author's Website</authorUrl>
 <creationDate>MonthName Year</creationDate>
 <copyright>Copyright Notice</copyright>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[237]

 <license>Plugin License Agreement</license>
 <version>Plugin Version</version>
 <description>Plugin Description</description>
 <files>
 <filename plugin="base">base.php</filename>
 <folder>base</folder>
 <folder>myutilities</folder>
 <folder>myutilities/libutilities</folder>
 </files>
 <params/>
</install>

This will create two folders, base and myutilites, in the plugin folder mylibrary.

Note that we have to include a file with a plugin
element, base.php.

To import elements from this pseudo-library we can use the JLoader class. This class
is what sits behind the regularly used jimport() function, which we use to import
parts of the Joomla! library.

Let's create a function called myimport() to import library elements from the plugin
group mylibrary:

function myimport($path)
{
 return JLoader::import($path,
 JPATH_PLUGINS.DS.'mylibrary');
}

A good place to create this function is in the base.php file. So, bear in mind that our
folder structure looks something like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[238]

So how do we use the myimport() function? This example demonstrates how we
would import all of the files in mylibrary/myutilities/libutilities:

JPluginHelper::importPlugin('mylibrary', 'base');
myimport('myutilities.libutilities.*');

The first line of the example only needs to be used once. It imports the library
plugin, which we defined earlier. Assuming we placed the myimport() function
in the base.php file we can now use the function to import a particular part of
the pseudo-library.

We should be careful when selecting names for libraries. We should
ensure that the names do not conflict with those used in the Joomla!
libraries or else this may cause problems later. One way to resolve this
would be to add an additional layer to the library, that is, we could
prefix mylibrary. to all myimport paths.

We can create additional plugins that belong to the group mylibrary by adding
additional files to the pseudo-library. This example shows how we might choose
to add to this library:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE install SYSTEM
 "http://dev.joomla.org/xml/1.5/plugin-install.dtd">
<install version="1.5" type="plugin" group="mylibrary">
 <name>My Library – Base</name>
 <author>Author's Name</author>
 <authorEmail>Author's Email</authorEmail>
 <authorUrl>Author's Website</authorUrl>
 <creationDate>MonthName Year</creationDate>
 <copyright>Copyright Notice</copyright>
 <license>Plugin License Agreement</license>
 <version>Plugin Version</version>
 <description>Plugin Description</description>
 <files>
 <filename plugin="mytools">mytools.php</filename>
 <folder>mytools</folder>
 </files>
 <params/>
</install>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[239]

Our mylibrary class will now look something like this:

Translating plugins
As part of a plugin, we can define a set of translations. A full description of how to
create language files is available in Chapter 9, Customizing the Page.

When we create plugin translation files we must name the file according to a specific
naming convention: the language tag, a period, and the Joomla! parsed plugin name.
For example, the English translation file for the plugin boxoffice would be called
en-GB.plg_boxoffice.ini.

Plugin translation files are located in the administrator/language folders.

Unlike components and modules, plugin language files are not automatically loaded
when a plugin is loaded. To use a plugin language file we must manually load it.
We can do this using the static loadLanguage() method in the JPlugin class, as
the following example demonstrates:

JPlugin::loadLanguage('plg_boxoffice', JPATH_ADMINISTRATOR);

Notice that when we load the language file we also tell Joomla! that the file is located
in the backend language folder. Plugin language files are always located in the
backend. If we do not use this, the language file will only be loaded when we are
accessing the backend.

We need to consider where we should include such a piece of code. Adding it at
the beginning of a plugin file, although logical, might be loading it unnecessarily
because it may not be required. A more appropriate approach might be to load it
when a handler method or function is executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[240]

Dealing with plugin settings (parameters)
To deal with plugin settings we can use the ever-handy params tag in our XML
manifest file. The next example shows how we can add some simple parameters
to a plugin:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE install SYSTEM
"http://dev.joomla.org/xml/1.5/plugin-install.dtd">
<install version="1.5" type="plugin" group="boxoffice">
 <name>Revue – Box Office</name>
 <author>Box Office Software</author>
 <authorEmail>johndoe@packtpub.com</authorEmail>
 <authorUrl>http://www.packtpub.com</authorUrl>
 <creationDate>December 2009</creationDate>
 <copyright>Copyright 2009, All rights reserved.</copyright>
 <license>GNU/GPL</license>
 <version>1.0.0</version>
 <description>Converts * to star images</description>

 <files>
 <filename plugin="boxoffice">boxoffice.php</filename>
 </files>

 <params>
 <param name="aparam" type="text" label="A Parameter"
 description="A description" />
 </params>
</install>

In this instance, we have added a text parameter aparam. Parameters that we define
here are used in the Plugin Manager when we edit a plugin. The next screenshot
demonstrates how the previous parameter would be rendered:

A complete description of the types of parameters and how to define them in XML is
available in Appendix B, Parameters (Core JElement).

If we are using a JPlugin subclass, we access the defined parameters through the
params attribute within the class. The attribute is a JParameter object.

The most important methods we need to be aware of in the JParameter class are
def(), get(), and set().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[241]

We use def() to set a default value for a parameter if no value currently exists for it.
The next example demonstrates how we would use the method to set a default value
of value for the parameter aparam:

$this->params->def('aparam', 'value');

We use get() to get the value of a parameter. The next example demonstrates how
we would use the method to get the value of the parameter aparam:

$this->params->get('aparam');

We can also pass a second parameter to get(), a default value that will be returned
if no value already exists for the parameter.

We use set() to set a value for a parameter. This example demonstrates how we
would use the method to set a value of value for the parameter aparam:

$this->params->set('aparam', 'value');

If we are using functions to handle events we must manually get the plugin
parameters. To do this we can use the JPluginHelper class. The next example
demonstrates how we would get the parameters for a plugin called revue, in the
group boxoffice:

// get an object with all the data about the plugin
$plugin =& JPluginHelper::getPlugin('boxoffice', 'revue');
$params = new JParameter($plugin->params);

As a rule, it is easier and more efficient to use a
JPlugin subclass if we intend to use parameters with
a plugin.

File naming conflicts
When we explored the possibility of using plugins as libraries, we saw that plugins
of any one group are all stored in the same folder. This can pose a problem if we
have two files with the same name in different plugins that are in the same group.

If we attempt to install a plugin that includes a file with the same name as an existing
file, the installation will fail. The next screenshot shows the error message received
when such an incident occurs:

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Design

[242]

A good way to avoid this is to place any related files in a sub-folder. The following
XML code demonstrates how we could achieve this:

<files>
 <filename plugin="example">example.php</filename>
 <folder>example</folder>
</files>

In the instance where there are only two files, the plugin file and an image for
example, it is common to name the image the same as the plugin element:

<files>
 <filename plugin="example">example.php</filename>
 <filename>example.gif</filename>
</files>

Summary
In this chapter we have discovered that events trigger the event dispatcher to notify
listeners whenever an event occurs. We learned that listeners can be either classes or
functions and that they must be registered with the global event dispatcher.

We discussed how plugins are located within either an existing plugin group or a
group that we define. Plugin groups provide increased efficiency because we only
need to import the required plugins, not all plugins.

We also learned that in lieu of library extensions, we can manipulate plugins to
behave like libraries. Plugins can go far beyond the intended use of handling events.
If we utilize plugins to our advantage, we can create modular extensions.

In the next chapter, we will discuss advanced methods for rendering our extensions
more robust, secure, and professional. We will cover building better layouts and
templates, ordering and sorting lists of data, pagination, and discover the wealth
of features and functionality available with the joomla.html library.

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output
Throughout the previous chapters we have become acquainted with the Joomla!
framework and learned how to create basic components, modules, and plugins. That
is a lot to learn. But wait, there's more…so much more to Joomla! Over the remaining
chapters we will delve into some of the more advanced features that will make our
extensions more robust, secure, and best of all, professional. In this chapter we
will discover:

How to improve the maintainability of our components by building better
layouts and templates
How to order and sort our data
How to add pagination to our pages
How to use the wide variety of features and functionality available to us, for
free, from the joomla.html library

Improving components
In Chapter 5, Component Design we created a basic component, com_boxoffice, to
manage movie reviews. While our component is functional, there are quite a few
things that we can do to improve it. We are going to be working almost exclusively
on the backend component in this chapter but most of what we will be covering
could easily be adapted for the frontend component if we wished to do so.

Component backend
When we build the backend of a component there are some very important things to
consider. Most components will include at least two backend views or forms; one will
display a list of items and another will provide a form for creating or editing a single
item. There may be additional views depending on the component but for now we
will work with our com_boxoffice component, which consists of two views.

•

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[244]

Toolbars
Although we have already built our component toolbars, we didn't spend much time
discussing all the features and capabilities that are available to us, so let's start with a
bit of a review and then add a few enhancements to our component.

Our backend component has two toolbars. The first is displayed when we access our
component from the Components | Box Office Revues menu:

The second toolbar is displayed when we click on the New or Edit button, or click on
a movie title link in the list that is displayed:

Administration toolbars consist of a title and a set of buttons that provide built-
in functionality; it requires only a minimum amount of effort to add significant
functionality to our administration page.

We add buttons to our toolbar in our view classes using the static JToolBarHelper
class. In our administration/components/com_boxoffice/views folder we have
two views, revues, and revue. In the revues/view.html.php file we generated the
toolbar with the following code:

JToolBarHelper::title(JText::_('Box Office Revues'),
 'generic.png');
JToolBarHelper::deleteList();
JToolBarHelper::editListX();
JToolBarHelper::addNewX();
JToolBarHelper::preferences('com_boxoffice', '200');
JToolBarHelper::help('help', true);

In our example we set the title of our menu bar to Box Office Revues, passing it
through JText::_(), which will translate it if we have installed a language file.
Next we add Delete, Edit, New, Preferences, and Help buttons.

Note that whenever we use JToolBarHelper we must set
the title before we add any buttons.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[245]

There are many different buttons that we can add to the menu bar; if we cannot find
a suitable button we can define our own. Most of the buttons behave as form buttons
for the form adminForm, which we will discuss shortly. Some buttons require
certain input fields to be included with the adminForm in order to function correctly.
The following table lists the available buttons that we can add to the menu bar;
additional details are available in Appendix D, Menu Bars.

Method Name Description
addNew Adds an add new button to the menu bar.
addNewX Adds an extended version of the add new button calling

hideMainMenu() before submitbutton().
apply Adds an apply button to the menu bar.
archiveList Adds an archive button to the menu bar.
assign Adds an assign button to the menu bar.
back Adds a back button to the menu bar.
cancel Adds a cancel button to the menu bar.
custom Adds a custom button to the menu bar.
customX Adds an extended version of the custom button calling

hideMainMenu() before submitbutton().
deleteList Adds a delete button to the menu bar.
deleteListX Adds an extended version of the delete button calling

hideMainMenu() before submitbutton().
divider Adds a divider, a vertical line, to the menu bar.
editCss Adds an edit CSS button to the menu bar.
editCssX Adds an extended version of the edit CSS button calling

hideMainMenu() before submitbutton().
editHtml Adds an edit HTML button to the menu bar.
editHtmlX Adds an extended version of the edit HTML button calling

hideMainMenu() before submitbutton().
editList Adds an edit button to the menu bar.
editListX Adds an extended version of the edit button calling

hideMainMenu() before submitbutton().
help Adds a Help button to the menu bar.
makeDefault Adds a Default button to the menu bar.
media_manager Adds a Media Manager button to the menu bar.
preferences Adds a Preferences button to the menu bar.
preview Adds a Preview button to the menu bar.
publish Adds a Publish button to the menu bar.

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[246]

Method Name Description
publishList Adds a Publish button to the menu bar.
save Adds a Save button to the menu bar.
Spacer Adds a sizable spacer to the menu bar.
title Sets the Title and the icon class of the menu bar.
trash Adds a Trash button to the menu bar.
unarchiveList Adds an Unarchive button to the menu bar.
unpublish Adds an Unpublish button to the menu bar.
unpublishList Adds an Unpublish button to the menu bar.

Submenu
Directly below the main menu bar is an area reserved for the submenu. There are
two methods available to populate the submenu. The submenu is automatically
populated with items defined in the component XML manifest file. We can also
modify the submenu, adding or removing menu items using the JSubMenuHelper
class. We will begin by adding a submenu using the component XML manifest file.
When we last updated our component XML manifest file we placed a menu item in
the Administration section:

<menu>Box Office Revues</menu>

This placed a menu item under the Components menu. Our component utilizes a
single table, #__boxoffice_revues, which stores specific information related to
movie revues. One thing that might make our component more useful is to add the
ability to categorize movies by genre (for example: action, romance, science fiction,
and so on). Joomla!'s built-in #__categories table will make this easy to implement.
We will need to make a few changes in several places so let's get started.

The first change we need to make is to modify our #_box_office_revues table,
adding a foreign key field that will point to a record in the #__categories table.
We will add one field to our table immediately after the primary key field id:

`catid` int(11) NOT NULL default '0',

If you have installed phpMyAdmin you can easily add this new field without
losing any existing data. Be sure to update the install.sql file for future
component installs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[247]

Next we will add our submenu items to the component XML manifest file,
immediately after the existing menu declaration:

<submenu>
 <menu link="option=com_boxoffice">Revues</menu>
 <menu link="option=com_categories
 &section=com_boxoffice">Categories</menu>
</submenu>

Note that we use & rather than an ampersand (&) character
to avoid problems with XML parsing.

Since we modified our #__boxoffice_revues table we must update our JTable
subclass /tables/revue.php to match by adding the following lines immediately
after the id field:

/** @var int */
var $catid = 0;

And finally, we need to modify our layout /views/revue/tmpl/default.php to
allow us to select a category or genre for our movie (place this immediately after the
</tr> tag of the first table row, the one that contains our movie title):

<tr>
 <td width="100" align="right" class="key">
 <label for="catid">
 <?php echo JText::_('Movie Genre'); ?>:
 </label>
 </td>
 <td>
 <?php echo JHTML::_('list.category',
 'catid',
 'com_boxoffice',
 $this->revue->catid);?>
 </td>
</tr>

The call to JHTML::_() produces the HTML to display the selection drop-down
list of component specific categories. The static JHTML class is an integral part of the
joomla.html library which we will discuss in the next section.

Creating submenu items through the component XML manifest file is not the
only method at our disposal; we can modify the submenu using the static
JSubMenuHelper class.

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[248]

Please note however that these methods differ in a number of ways. Submenu
items added using the manifest file will appear as submenu items under the
Components menu item as well as the submenu area of the menu bar. For example
the Components menu will appear as it does in the following screenshot:

The submenu items will appear on the component list page as shown in the
following image:

And the submenu items will also appear on the Category Manager page:

If we were to use JSubMenuHelper class the submenu items would only appear on
our component submenu bar; they would not appear on Components | Box Office
Revues or on the Category Manager submenu which would eliminate the means of
returning to our component menu. For these reasons it is generally better to create
submenus that link to other components using the XML manifest file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[249]

There are, however, valid reasons for using JSubMenuHelper to create submenu
items. If your component provides additional views of your data adding submenu
items using JSubMenuHelper would be the more appropriate method for doing so.
This example adds two options to the submenu using JSubMenuHelper:

// get the current task
$task = JRequest::getCmd('task');

if ($task == 'item1' || $task == 'item2')
{
 // determine selected task
 $selected = ($task == 'item1');

 // prepare links
 $item1 = 'index.php?option=com_myextension&task=item1';
 $item2 = 'index.php?option=com_myextension&task=item2';

 // add sub menu items
 JSubMenuHelper::addEntry(JText::_('Item 1'), $item1,
 $selected);
 JSubMenuHelper::addEntry(JText::_('Item 2'), $item2,
 $selected);
}

The addEntry() method adds a new item to the submenu. Items are added in order
of appearance. The first parameter is the name, the second is the link location, and
the third is true if the item is the current menu item.

The next screenshot depicts the given example, in the component My Extension,
when the selected task is Item1:

There is one more thing that we can do with the submenu. We can remove it. This
is especially useful with views for which, when a user navigates away without
following the correct procedure, an item becomes locked.

If we modify the hidemainmenu request value to 1, the submenu will not be
displayed. We normally do this in methods in our controllers; a common method
in which this would be done is edit(). This example demonstrates how:

JRequest::setVar('hidemainmenu', 1);

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[250]

There is one other caveat when doing this; the main menu will be deactivated. This
screenshot depicts the main menu across the top of backend:

This screenshot depicts the main menu across the top of backend when hidemainmenu
is enabled; you will notice that all of the menu items are grayed out:

The joomla.html library
The joomla.html library provides a comprehensive set of classes for use in
rendering XHMTL. An integral part of the library is the static JHTML class. Within
this class is the class loader method JHTML::_(), that we will use to generate and
render XHTML elements and JavaScript behaviors. Detailed information on the
library can be found in Appendix E, Joomla! HTML Library.

We generate an XHTML element or JavaScript behavior using the following method:

echo JHTML::_('type', 'parameter_1', …,'parameter_N');

The JHTML class supports eight basic XHTML element types; there are eight
supporting classes that provide support for more complex XHTML element types
and JavaScript behaviors. While we will not be using every available element type
or behavior, we will make good use of a significant number of them throughout this
chapter; enough for you to make use of others as the need arises.

The basic element types are:

calendar Generates a calendar control field and a clickable calendar image
date Returns a formatted date string
iframe Generates an XHTML <iframe></iframe> element
image Generates an XHTML element
link Generates an XHTML <a> element
script Generates an XHTML <script></script> element

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[251]

style Generates a <link rel="stylesheet" style="text/css"
/> element

tooltip Generates a pop-up tooltip using JavaScript

There are eight supporting classes that provide more complex elements and
behaviors that we generally define as grouped types. Grouped types are identified
by a group name and a type name. The supporting classes and group names are:

Class Group Description
JHTMLBehavior behavior Creates JavaScript client-side behaviors
JHTMLEmail Email Provides email address cloaking
JHTMLForm Form Generates a hidden token field
JHTMLGrid Grid Creates HTML form grids
JHTMLImage image Enables a type of image overriding in templates
JHTMLList list Generates common selection lists
JHTMLMenu menu Generates menus
JHTMLSelect select Generates dropdown selection boxes

All group types are invoked using the JHTML::_('group.type',…) syntax.

Detailed information on each group type can be found in Appendix
E, Joomla! HTML Library.

The following section provides an overview of the available group types.

behavior
These types are special because they deal with JavaScript in order to create
client-side behaviors.

We'll use behavior.modal as an example. This behavior allows us to display an
inline modal window that is populated from a specific URI. A modal window is a
window that prevents a user from returning to the originating window until the
modal window has been closed. A good example of this is the 'Pagebreak' button
used in the article manager when editing an article.

The behavior.modal type does not return anything; it prepares the necessary
JavaScript. In fact, none of the behavior types return data; they are designed
solely to import functionality into the document.

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[252]

This example demonstrates how we can use the behavior.modal type to open a
modal window that uses www.example.org as the source:

// prepare the JavaScript parameters
$params = array('size'=>array('x'=>100, 'y'=>100));

// add the JavaScript
JHTML::_('behavior.modal', 'a.mymodal', $params);

// create the modal window link
echo '<a class="mymodal" title="example"
 href="http://www.example.org"
 rel="{handler: \'iframe\',
 size: {x: 400, y: 150}}">Example Modal Window';

The a.mymodal parameter is used to identify the elements that we want to attach
the modal window to. In this case, we want to use all <a> tags of class mymodal.
This parameter is optional; the default selector is a.modal.

We use $params to specify default settings for modal windows. This list details the
keys that we can use in this array to define default values:

ajaxOptions

size

onOpen

onClose

onUpdate

onResize

onMove

onShow

onHide

The link that we create can only be seen as special because of the JavaScript in
the rel attribute. This JavaScript array is used to determine the exact behavior of
the modal window for this link. We must always specify handler; this is used to
determine how to parse the input from the link. In most cases, this will be iframe,
but we can also use image, adopt, url, and string.

•

•

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[253]

The size parameter is optional; here it is used to override the default specified when
we used the behavior.modal type to import the JavaScript. The settings have three
layers of inheritance:

The default settings defined in the modal.js file
The settings we define when using the behavior.modal type
The settings we define when creating the link

For information about other parameters, please refer to the modal.js file located in
the media/system/js folder and Appendix E, Joomla! HTML Library.

This is a screenshot of the resultant modal window when the link is used:

Here are the behavior types:

calendar Adds JavaScript to use the showCalendar() function
caption Places the image title beneath an image
combobox Adds JavaScript to add combo selection to text fields
formvalidation Adds the generic JFormValidator JavaScript class to the

document
keepalive Adds JavaScript to maintain a user's session
modal Adds JavaScript to implement modal windows
mootools Adds the MooTools JavaScript library to the document head
switcher Adds JavaScript to toggle between hidden and displayed elements
tooltip Adds JavaScript required to enable tooltips
tree Instantiates the MooTools JavaScript class MooTree
uploader Adds a dynamic file uploading mechanism using JavaScript

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[254]

email
There is only one e-mail type.

cloak Adds JavaScript to encrypt e-mail addresses in the browser

form
There is only one form type.

token Generates a hidden token field to reduce the risk of CSRF exploits

grid
The grid types are used for displaying a dataset's item elements in a table of a
backend form. There are seven grid types, each of which handles a commonly
defined database field such as access, published, ordering, checked_out.

The grid types are used within a form named adminForm that must include a hidden
field named boxchecked with a default value of 0 and another named task that will
be used to determine which task a controller will execute.

To illustrate how the grid types are used we will use grid.id and grid.published
along with our component database table #__boxoffice_revues that has a primary
key field named id, a field named published, which we use to determine if an item
should be displayed, and a field named name.

We can determine the published state of a record in our table by using grid.
published.

This example demonstrates how we might process each record in a view form
layout and output data into a grid or table ($this->revues is an array of objects
representing records from the table):

<?php
 $i = 0;

 foreach ($this->revues as $row) :

 $checkbox = JHTML::_('grid.id', ++$i, $row->id);
 $published = JHTML::_('grid.published', $row, $i); ?>

 <tr class=<?php echo "row$i%2"; ?>">
 <td><?php echo $checkbox; ?></td>
 <td><?php echo $row->name; ?></td>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[255]

 <td align="center"><?php echo $published ?></td>
 </tr>

<?php
 endforeach;
?>

If $revues were to contain two objects named Item 1 and Item 2, of which only the
first object is published, the resulting table would look like this:

Not all of the grid types are used for data item elements. The grid.sort and grid.
order types are used to render table column headings. The grid.state type is used
to display an item state selection box, All, Published, Unpublished and, optionally,
Archived and Trashed.

The grid types include:

access Generates an access group text link
checkedOut Generates selectable checkbox or small padlock image
id Generates a selectable checkbox
order Outputs a clickable image for every orderable column
published Outputs a clickable image that toggles between published and unpublished
sort Outputs a sortable heading for a grid/table column
state Outputs a drop-down selection box called filter_state

image
We use the image types to perform a form of image overriding by determining
if a template image is present before using a system default image.

We will use image.site to illustrate, using an image named edit.png:

echo JHTML::_('image.site', 'edit.png');

This will output an image tag for the image named edit.png. The image will be
located in the currently selected template's /images folder. If edit.png is not found
in the /images folder then the /images/M_images/edit.png file will be used.

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[256]

We can change the default directories using the $directory and $param_directory
parameters.

There are two image types, image.administrator and image.site.

administrator Loads image from backend templates image directory or
default image

site Loads image from frontend templates image directory or
default image

list
The list types are used for the generation of common selection lists. We'll take
a look at the list.accesslevel type. This type produces a selection list of access
level groups.

This type is relatively simple; it only requires one parameter, an object that includes
the attribute access. This type is intended for use when modifying a single item, so
in most cases the parameter will be an object representation of the item.

This code demonstrates how we might use list.accesslevel:

// get an item
$query = 'SELECT *'
 .' FROM #__sections'
 .' WHERE id = '.(int)$id;
$db =& JFactory::getDBO();
$db->setQuery($query);
$item = $db->loadObject();

echo JHTML::_('list.accesslevel', $item);

Assuming that the selected item has an attribute called access and it is 0 (Public),
the resultant selection list will appear like this:

The list types are generally used to implement a filter when viewing itemized data
or, as with list.accesslevel, for use when creating or modifying a single item. We
will discuss how to use the list types to implement a filter later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[257]

accesslevel Generates a drop-down selection box of access level groups
category Generates a drop-down selection box of categories
genericordering Generates an array of objects used with the select types
images Generates a drop-down selection box of images in a directory
positions Generates a drop-down selection box of positions
section Generates a drop-down selection box of sections
specificordering Generates a drop-down selection box of order positions
users Generates a drop-down selection box of site users

menu
The menu types are designed specifically for use with menus. It is unlikely that we
should ever need to use any of these because menus are handled for us by Joomla!.
However, the menu.treerecurse type may be of interest if we are rendering
tree structures.

linkoptions Generates an array of options representing menu items
ordering Generates a drop-down list of menu items to facilitate menu ordering
treerecurse Recursively builds an array of objects from menu items as a tree

select
The select types are intended to create selection boxes easily. They can be used to
create drop-down selection boxes and radio selection buttons.

We will use select.genericlist as an example to create a drop-down selection
box with three values. We'll call the drop-down selection box someoptions and use
the second option as the default.

// prepare the options
$options = array();
$options[] = JHTML::_('select.option', '1', 'Option A');
$options[] = JHTML::_('select.option', '2', 'Option B');
$options[] = JHTML::_('select.option', '3', 'Option C');

// render the options
echo JHTML::_('select.genericlist', $options, 'someoptions',

 null, 'value', 'text', '2');

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[258]

The resultant drop-down selection box will look like this:

The select types include:

booleanlist Generates a pair of radio button options with values of true or false
genericlist Generates a drop-down selection list using an array of options
integerlist Generates a drop-down selection list of integers
optgroup Generates an object that represents an option group
option Generates an object that represents a single selectable option
options Generates the option tags for an XHTML select list
radiolist Generates a radio button selection list

Component layouts (templates) revisited
When we think of templates we normally envisage site templates that detail
precisely how our website will appear to our users. As we learned in earlier chapters,
components have templates—or more precisely, layouts—to display our data in a
comprehensible and presentable manner.

Layouts are PHP files that consist mainly of XHTML with small snippets of PHP to
output data. Although there are no strict conventions on the way in which we use
our templates, there are some common rules that we normally observe:

Do not process data
Use colon and endX in preference of curly braces
Encapsulate each line of PHP in its own PHP tags
Keep tag IDs lowercase and use underscore word separators
Indent for the XHTML, but not the PHP

This example shows a very basic layout that demonstrates each of the rules:

<div id="some_division">
<?php foreach ($this->items as $item) : ?>
 <div id="item_<?php echo $item->id; ?>">
 <?php echo $item->name; ?>
 </div>
<?php endforeach; ?>
</div>

•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[259]

Take particular note of the use of the colon to denote the start of the foreach block,
and endforeach to denote the end of the block. Using this alternative syntax often
makes our layouts easier to read; just imagine hunting for the correct ending curly
brace in a large template file!

You almost certainly noticed the use of $this in the example layout template.
Layout templates are always invoked by a view; when we do this we actually
incorporate the layout code into the view object's loadTemplate() method.

This means that the variable $this is referring to the view object from which the
layout template was invoked. This is why we attach data to our view; it means that
in the layout we can access all the data we added to view through $this.

Admin form
When we create templates for component backends that require a form, we must
always name the form adminForm. This code demonstrates how we normally define
adminForm in a template:

<form action="<?php echo $this->request_url; ?>"
 method="post" name="adminForm" id="adminForm">

Instead of adding buttons to the form in the usual way we add buttons to the toolbar,
as we discussed earlier.

It is normal when creating a form in the backend to also include JavaScript validation,
although please note that we must never rely on JavaScript validation alone.

Here is an example of a script that verifies that a text field called name contains
a value:

<script language="javascript" type="text/javascript">
<!--
 function submitbutton(pressbutton)
 {
 var form = document.adminForm;

 // No need to validate if cancelling
 if (pressbutton == 'cancel')
 {
 submitform(pressbutton);
 return;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[260]

 // Do validation
 if (form.name.value == "")
 {
 // no name supplied
alert("<?php echo JText::_('You must supply a name',
 true); ?>");
 }
 else
 {
 submitform(pressbutton);
 }
 }
</script>

Most important is our defining of the JavaScript function submitbutton(). This
function is executed when toolbar buttons are used to submit a form.

The first part of the function checks that the button that has been pressed is not
cancel. If it is, then the function stops because no validation is required.

If the name field is empty we display an alert box. When we translate the text to
show the alert, we provide a second parameter of true. This makes the translated
text JavaScript safe.

If no validation problems are encountered we proceed to submit the form. In order
to do this, we use a JavaScript function called submitform().

If you require more complex JavaScript form validation, you might want to
investigate using JHTML::_(behavior.formvalidation).

Layout improvements
There are many ways we can improve our component functionality.

Adding a WYSIWYG editor
Let's start by adding a few features to our backend revue view layout found in the
views/revue/tmpl/default.php file. The first improvement that we will add is
to change the revue field to use the system WYSIWYG editor. This is a fairly simple
change but will add significant capabilities to our form, including the ability to
format our revue using html tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[261]

Open the default.php file and change the following code which is currently the
last <td></td> entry in the file:

<td><input class="text_area" type="text" name="revue"
 id="revue" size="50" maxlength="250"
 value="<?php echo $this->revue->revue;?>" /></td>

We will change this code to the following:

<td>
<?php
 $editor =& JFactory::getEditor();
 $params = array('element_path' => '0',
 'smilies' => '1',
 'fullscreen' => '0',
 'layer' => '0',
 'xhtmlxtras' => '1');

 echo $editor->display('revue',
 $this->revue->revue,
 '100%', '100%', '70', '20',
 true, $params);
?>
</td>

Let's take a quick look at what we just did. We first obtained a reference to the global
editor object.

We then created an array of parameters that will tailor our editor instance to our
specific requirements:

The editor tool buttons (elements) can be displayed either at the top of the
editor window (element_path='1') or the bottom (element_path='0')
The second element tells the editor to add the smilies icons to the
editor toolbar
The next element disables the ability to expand the editor window to
full screen
The layer element is disabled; this removes HTML layer features
And finally, xhtmlxtras adds buttons for HTML cite, abbr, acronym, ins,
del, and attribs tags

•

•

•

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[262]

There are many other parameter settings that we could set but these will do fine for
our needs. If you wish to learn more about all the available editor settings take a look
at the {editor}.php file located in the /plugins/editors folder. Joomla! installs
with two editors: xstandard.php and tinymce.php.

There are a number of third-party editors available; verify that the options are
available when invoking them as we did previously.

In the final step we display the editor window. The JEditor::display() method is
defined as follows:

display($name, $html, $width, $height, $col, $row, $buttons, $params)

string $name : The control name
string $html : The contents of the text area
string $width : The width of the text area (px or %)
string $height : The height of the text area (px or %)
integer $col : The number of columns for the textarea
integer $row : The number of rows for the textarea
boolean $buttons : Optional; if true the editor buttons will be displayed
array $params : Optional; an associative array of editor parameters
void : No Return

Here is what our edit area looks like with the TinyMCE editor:

•
•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[263]

Iterative layout templates
What will become apparent is that layout templates can grow very large and rapidly
become both unmanageable and difficult to understand and maintain. The good
news is that we can break layout templates into smaller, more manageable pieces.
We can split layouts into common or iterative elements of layout code. A major
advantage to splitting our layout code is to allow these layouts to be used by other
layout templates.

These sub-templates should be prefixed with the word default_. For example if
we had a sub-template to display a form it would be called default_form.php.
For our component we will split our layout into three separate files: default.php,
default_details.php, and default_revue.php.

default.php

<?php defined('_JEXEC') or die('Restricted access'); ?>

<form action="index.php" method="post"
 name="adminForm" id="adminForm">
 <div class="col width-50">
 <fieldset class="adminform">
 <legend><?php echo JText::_('Details'); ?></legend>
 <?php echo $this->loadTemplate('details'); ?>
 </fieldset>
 </div>

 <div class="col width-50">
 <fieldset class="adminform">
 <legend><?php echo JText::_('Revue'); ?></legend>
 <?php echo $this->loadTemplate('revue'); ?>
 </fieldset>
 </div>

 <div class="clr"></div>

 <input type="hidden" name="option"
 value="<?php echo JRequest::getVar('option'); ?>" />
 <input type="hidden" name="filter_order"
 value="<?php echo $this->revue->order; ?>" />
 <input type="hidden" name="id"
 value="<?php echo $this->revue->id; ?>" />
 <input type="hidden" name="task" value="" />
</form>

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[264]

Now that we have split the default.php file into three files we can readily
appreciate how much easier it is to determine how the form is configured. There are
a few things that we have done to clean up the form which need some explanation.
We have divided the form into two equal width areas; notice the <div class="col
width-50"> wrapper divisions. Joomla! has defined CSS class styles for creating
columns with various widths; width-50 defines the width of a column as 50% of
the page width.

We have wrapped the content of the default_details.php file within one column
and the content of the default_revue.php file within the other column. Each
column area is contained within a labeled fieldset.

We load the split layout files using the loadTemplate() method.

default_details.php

<?php defined('_JEXEC') or die('Restricted access'); ?>

<table class="admintable">

 <tr>
 <td width="100" align="right" class="key">
 <label for="title">
 <?php echo JText::_('Movie Title'); ?>:
 </label>
 </td>
 <td>
 <input class="inputbox" type="text"
 name="title" id="title" size="25"
 value="<?php echo $this->revue->title;?>" />
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 <label for="catid">
 <?php echo JText::_('Movie Genre'); ?>:
 </label>
 </td>
 <td>
 <?php
 echo JHTML::_('list.category',
 'catid', 'com_boxoffice',
 $this->revue->catid);
 ?>
 </td>
 </tr>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[265]

 <tr>
 <td width="100" align="right" class="key">
 <label for="rating">
 <?php echo JText::_('Rating'); ?>:
 </label>
 </td>
 <td>
 <?php
 $ratings = array();
 $ratings[] =JHTML::_('select.option',
 JText::_("MPAA_VK001"),
 JText::_("MPAA_TK001"));
 $ratings[] =JHTML::_('select.option',
 JText::_("MPAA_VK002"),
 JText::_("MPAA_TK002"));
 $ratings[] =JHTML::_('select.option',
 JText::_("MPAA_VK003"),
 JText::_("MPAA_TK003"));
 $ratings[] =JHTML::_('select.option',
 JText::_("MPAA_VK004"),
 JText::_("MPAA_TK004"));
 $ratings[] =JHTML::_('select.option',
 JText::_("MPAA_VK005"),
 JText::_("MPAA_TK005"));
 $ratings[] =JHTML::_('select.option',
 JText::_("MPAA_VK006"),
 JText::_("MPAA_TK006"));

 echo JHTML::_('select.genericlist', $ratings,
 'rating', null, 'value',
 'text', $this->revue->rating);
 ?>
 </td>
 </tr>

 <tr>
 <td width="100" align="right" class="key">
 <label for="quikquip">
 <?php echo JText::_('Quik Quip'); ?>:
 </label>
 </td>
 <td>
 <input class="text_area" type="text"

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[266]

 name="quikquip" id="quikquip"
 size="32" maxlength="250"
 value="<?php echo $this->revue->quikquip;?>" />
 </td>
 </tr>

 <tr>
 <td width="100" align="right" class="key">
 <label for="revuer">
 <?php echo JText::_('Revuer'); ?>:
 </label>
 </td>
 <td>
 <input class="inputbox" type="text"
 name="revuer" id="revuer" size="50"
 value="<?php echo $this->revue->revuer;?>" />
 </td>
 </tr>

 <tr>
 <td width="100" align="right" class="key">
 <label for="stars">
 <?php echo JText::_('Stars'); ?>:
 </label>
 </td>
 <td>
 <input class="inputbox" type="text"
 name="stars" id="stars" size="10" maxlength="5"
 value="<?php echo $this->revue->stars;?>" />
 </td>
 </tr>

 <tr>
 <td width="100" align="right" class="key">
 <label for="revued">
 <?php echo JText::_('Date Revued'); ?>:
 </label>
 </td>
 <td>
 <?php
 echo JHTML::_('calendar',
 JHTML::_('date', $this->revue->revued,
 JTEXT::_('%m/%d/%Y')),
 'revued', 'revued', '%m/%d/%Y',

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[267]

 array('class'=>'inputbox',
 'size'=>'25', 'maxlength'=>'19'));
 ?>
 </td>
 </tr>

 <tr>
 <td width="100" align="right" class="key">
 <label for="published">
 <?php echo JText::_('Published'); ?>:
 </label>
 </td>
 <td>
 <?php
 echo JHTML::_('select.booleanlist', 'published',
 'class="inputbox"',
 $this->revue->published);
 ?>
 </td>
 </tr>

</table>

While we are splitting the layout into three parts we are going to make a few changes
that use the joomla.html library.

The first change we will discuss is one we made earlier in the chapter when we
added a drop-down selection box for our movie category/genre list. We used the
group type list.category to generate the drop-down selection box:

<?php echo JHTML::_('list.category', 'catid', 'com_boxoffice',

 $this->revue->catid);?>

The first parameter is the group and type that will be called, 'list.category'. The
next parameter is the HTML name for the list, 'catid'. The third parameter is the
section name. Component categories belong to a section that uses the component
name; in our case this is 'com_boxoffice'. The final parameter is the id of the
category that is currently selected. There are additional optional parameters that
can be specified but for our use the defaults are sufficient.

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[268]

The next change uses two group types, select.option and select.genericlist,
to provide a drop-down list of ratings. We first build an array of options that
will be used by the select list. The select.option method takes a key and a
value which we provide with calls to JText::_(). The strings that are passed are
translation keys located in our translation file administrator/language/en-GB/
en-GB.com_boxoffice.ini. We have only created a British English translation file;
we could create and place additional translation files for other languages we support
in their appropriate directories. We will discuss translation files in more detail in the
next chapter. Here are the entries used for our ratings drop-down:

MPAA Ratings

MPAA_VK001=NR
MPAA_TK001=Not Rated (NR)
MPAA_VK002=G
MPAA_TK002=General Audiences (G)
MPAA_VK003=PG
MPAA_TK003=Parental Guidance Suggested (PG)
MPAA_VK004=PG-13
MPAA_TK004=Parents Strongly Cautioned (PG-13)
MPAA_VK005=R
MPAA_TK005=Restricted (R)
MPAA_VK006=NC-17
MPAA_TK006=17 and under not admitted (NC-17)

JText::_() looks for the key within the language translation file and returns
the string to the right of the equals sign. In our code above, the first array
element will contain an object with two properties, a key of 'NR' and a value
of 'Not Rated (NR)'.

The select.genericlist takes a number of parameters. The first is the html name
attribute for the select tag, followed by any additional attributes (we have none
so we pass null), followed by the property names for the key and value attributes
(key='value' and value='text'). The last parameter is the currently selected option.

We have replaced the simple text box for entering a date with a nested set of basic
element types, calendar and date. JHTML::_('date',…) returns a formatted date
string which is placed within an calendar control text box generated by JHTML::_
('calendar',…). The calendar control consists of an input text box and a small
clickable calendar image that when clicked, pops up a calendar from which you
can select a date.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[269]

Our final change is to add a pair of radio buttons using select.booleanlist to
provide an opportunity to publish the revue. The first parameter is the HTML name
attribute, followed by additional html attributes ('class="inputbox"'), and then
the currently selected option.

default_revue.php

<?php defined('_JEXEC') or die('Restricted access'); ?>

<table class="admintable" width="100%">

 <tr>
 <td>
 <?php
 $editor =& JFactory::getEditor();
 $params = array('element_path' => '0',
 'smilies' => '1',
 'fullscreen' => '0',
 'layer' => '0',
 'xhtmlxtras' => '1');

 echo $editor->display('revue', $this->revue->revue,
 '100%', '100%', '70', '20',
 true, $params);
 ?>
 </td>
 </tr>

</table>

Our third file, default_revue.php, contains the editor display. Let's take a look at
the form now:

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[270]

This is a much better presentation than our earlier form. We can now create a revue
using a WYSIWYG editor and we can select a genre or category for the movie. We
also have a translatable drop-down list of ratings, a nice calendar or date picker,
and a simple pair of radio buttons to publish or unpublish. But we can do more.

Itemized data
Most components handle and display itemized data. Itemized data is data having
many instances; most commonly this reflects rows in a database table. When dealing
with itemized data there are three areas of functionality that users generally expect:

Pagination
Ordering
Filtering and searching

In this section we will discuss each of these areas of functionality and how to
implement them in the backend of a component.

Pagination
To make large amounts of itemized data easier to understand, we can split the data
across multiple pages. Joomla! provides us with the JPagination class to help us
handle pagination in our extensions.

There are four important attributes associated with the JPagination class:

limitstart: This is the item with which we begin a page, for example the
first page will always begin with item 0.
limit: This is the maximum number of items to display on a page.
total: This is the total number of items across all the pages.
_viewall: This is the option to ignore pagination and display all items.

Before we dive into piles of code, let's take the time to examine the listFooter, the
footer that is used at the bottom of pagination lists:

The box to the far left describes the maximum number of items to display per page
(limit). The remaining buttons are used to navigate between pages. The final text
defines the current page out of the total number of pages.

•
•
•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[271]

The great thing about this footer is we don't have to work very hard to create it!
We can use a JPagination object to build it. This not only means that it is easy
to implement, but that the pagination footers are consistent throughout Joomla!.
JPagination is used extensively by components in the backend when displaying
lists of items.

In order to add pagination to our revues list we must make some modifications
to our backend revues model. Our current model consists of one private property
$_revues and two methods: getRevues() and delete(). We need to add two
additional private properties for pagination purposes. Let's place them immediately
following the existing $_revues property:

/** @var array of revue objects */
var $_revues = null;
/** @var int total number of revues */
var $_total = null;
/** @var JPagination object */
var $_pagination = null;

Next we must add a class constructor, as we will need to retrieve and initialize the
global pagination variables $limit and $limitstart. JModel objects store a state
object in order to record the state of the model. It is common to use the state variables
limit and limitstart to record the number of items per page and starting item for
the page.

We set the state variables in the constructor:

/**
 * Constructor
 */
function __construct()
{
 global $mainframe;

 parent::__construct();

 // Get the pagination request variables
 $limit = $mainframe->getUserStateFromRequest(
 'global.list.limit',
 'limit', $mainframe->getCfg('list_limit'));
 $limitstart = $mainframe->getUserStateFromRequest(
 $option.'limitstart', 'limitstart', 0);

 // Set the state pagination variables
 $this->setState('limit', $limit);
 $this->setState('limitstart', $limitstart);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[272]

Remember that $mainframe references the global JApplication object. We use the
getUserStateFromRequest() method to get the limit and limitstart variables.

We use the user state variable, global.list.limit, to determine the limit. This
variable is used throughout Joomla! to determine the length of lists. For example, if
we were to view the Article Manager and select a limit of five items per page, if we
move to a different list it will also be limited to five items.

If a value is set in the request value limit (part of the listFooter), we use that
value. Alternatively we use the previous value, and if that is not set we use the
default value defined in the application configuration.

The limitstart variable is retrieved from the user state value $option, plus
.limitstart. The $option value holds the component name, for example
com_content. If we build a component that has multiple lists we should add
an extra level to this, which is normally named after the entity.

If a value is set in the request value limitstart (part of the listFooter) we use
that value. Alternatively we use the previous value, and if that is not set we use
the default value 0, which will lead us to the first page.

The reason we retrieve these values in the constructor and not in another method is
that in addition to using these values for the JPagination object, we will also need
them when getting data from the database.

In our existing component model we have a single method for retrieving data
from the database, getRevues(). For reasons that will become apparent shortly
we need to create a private method that will build the query string and modify
our getRevues() method to use it.

/**
 * Builds a query to get data from #__boxoffice_revues
 * @return string SQL query
 */
function _buildQuery()
{
 $db =& $this->getDBO();
 $rtable = $db->nameQuote('#__boxoffice_revues');
 $ctable = $db->nameQuote('#__categories');

 $query = ' SELECT r.*, cc.title AS cat_title'
 . ' FROM ' . $rtable. ' AS r'
 . ' LEFT JOIN '.$ctable.' AS cc ON cc.id=r.catid;

 return $query;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[273]

We now must modify our getRevues() method:

/**
 * Get a list of revues
 *
 * @access public
 * @return array of objects
 */
function getRevues()
{
 // Get the database connection
 $db =& $this->_db;

 if(empty($this->_revues))
 {
 // Build query and get the limits from current state
 $query = $this->_buildQuery();
 $limitstart = $this->getState('limitstart');
 $limit = $this->getState('limit');

 $this->_revues = $this->_getList($query,
 $limitstart,
 $limit);
 }

 // Return the list of revues
 return $this->_revues;
}

We retrieve the object state variables limit and limitstart and pass them to
the private JModel method _getList(). The _getList() method is used to get
an array of objects from the database based on a query and, optionally, limit
and limitstart.

The last two parameters will modify the first parameter, a query, in such a way that
we only return the desired results. For example if we requested page 1 and were
displaying a maximum of five items per page, the following would be appended
to the query: LIMIT 0, 5.

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[274]

To handle pagination we need to add a method called getPagination() to
our model. This method will handle items we are trying to paginate using a
JPagination object. Here is our code for the getPagination() method:

/**
 * Get a pagination object
 *
 * @access public
 * @return pagination object
 */
function getPagination()
{
 if (empty($this->_pagination))
 {
 // Import the pagination library
 jimport('joomla.html.pagination');

 // Prepare the pagination values
 $total = $this->getTotal();
 $limitstart = $this->getState('limitstart');
 $limit = $this->getState('limit');

 // Create the pagination object
 $this->_pagination = new JPagination($total,
 $limitstart,
 $limit);
 }

 return $this->_pagination;
}

There are three important aspects to this method. We use the private property
$_pagination to cache the object, we use the getTotal() method to determine the
total number of items, and we use the getState() method to determine the number
of results to display.

The getTotal() method is a method that we must define in order to use. We don't
have to use this name or this mechanism to determine the total number of items.
Here is one way of implementing the getTotal() method:

/**
 * Get number of items
 *
 * @access public
 * @return integer

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[275]

 */
function getTotal()
{
 if (empty($this->_total))
 {
 $query = $this->_buildQuery();
 $this->_total = $this->_getListCount($query);
 }

 return $this->_total;

}

This method calls our model's private method _buildQuery() to build the query, the
same query that we use to retrieve our list of revues. We then use the private JModel
method _getListCount()to count the number of results that will be returned from
the query.

We now have all we need to be able to add pagination to our revues list except for
actually adding pagination to our list page. We need to add a few lines of code to our
revues/view.html.php file. We will need to access to global user state variables
so we must add a reference to the global application object as the first line in our
display method:

global $mainframe;

Next we need to create and populate an array that will contain user state
information. We will add this code immediately after the code that builds
the toolbar:

 // Prepare list array
 $lists = array();

 // Get the user state
 $filter_order = $mainframe->getUserStateFromRequest(
 $option.'filter_order',
 'filter_order', 'published');
 $filter_order_Dir = $mainframe->getUserStateFromRequest(
 $option.'filter_order_Dir',
 'filter_order_Dir', 'ASC');

 // Build the list array for use in the layout
 $lists['order'] = $filter_order;
 $lists['order_Dir'] = $filter_order_Dir;

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[276]

 // Get revues and pagination from the model
 $model =& $this->getModel('revues');
 $revues =& $model->getRevues();
 $page =& $model->getPagination();

 // Assign references for the layout to use
 $this->assignRef('lists', $lists);
 $this->assignRef('revues', $revues);
 $this->assignRef('page', $page);

After we create and populate the $lists array, we add a variable $page
that receives a reference to a JPagination object by calling our model's
getPagination() method. And finally we assign references to the $lists and
$page variables so that our layout can access them.

Within our layout default.php file we must make some minor changes toward the
end of the existing code. Between the closing </tbody> tag and the </table> tag we
must add the following:

 <tfoot>
 <tr>
 <td colspan="10">
 <?php echo $this->page->getListFooter(); ?>
 </td>
 </tr>
 </tfoot>

This creates the pagination footer using the JPagination method getListFooter().
The final change we need to make is to add two hidden fields to the form. Under the
existing hidden fields we add the following code:

 <input type="hidden" name="filter_order"
 value="<?php echo $this->lists['order']; ?>" />
 <input type="hidden" name="filter_order_Dir" value="" />

The most important thing to notice is that we leave the value of the filter_order_
Dir field empty. This is because the listFooter deals with this for us.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[277]

That is it! We now have added pagination to our page.

Ordering
Another enhancement that we can add is the ability to sort or order our data by
column, which we can accomplish easily using the JHTML grid.sort type. And, as
an added bonus, we have already completed a significant amount of the necessary
code when we added pagination.

Most of the changes to revues/view.html.php that we made for pagination are
used for implementing column ordering; we don't have to make a single change. We
also added two hidden fields, filter_order and filter_order_Dir, to our layout
form, default.php. The first defines the column to order our data and the latter
defines the direction, ascending or descending.

Most of the column headings for our existing layout are currently composed of
simple text wrapped in table heading tags (<th>Title</th> for example). We need
to replace the text with the output of the grid.sort function for those columns that
we wish to be orderable. Here is our new code:

<thead>
 <tr>
 <th width="20" nowrap="nowrap">
 <?php echo JHTML::_('grid.sort', JText::_('ID'), 'id',
 $this->lists['order_Dir'],
 $this->lists['order']); ?>
 </th>

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[278]

 <th width="20" nowrap="nowrap">
 <input type="checkbox" name="toggle" value=""
 onclick="checkAll(
 <?php echo count($this->revues); ?>);" />
 </th>

 <th width="40%">
 <?php echo JHTML::_('grid.sort', JText::_('TITLE'),
 'title', $this->lists['order_Dir'],
 $this->lists['order']); ?>
 </th>

 <th width="20%">
 <?php echo JHTML::_('grid.sort', JText::_('REVUER'),
 'revuer', $this->lists['order_Dir'],
 $this->lists['order']); ?>
 </th>

 <th width="80" nowrap="nowrap">
 <?php echo JHTML::_('grid.sort', JText::_('REVUED'),
 'revued', $this->lists['order_Dir'],
 $this->lists['order']); ?>
 </th>

 <th width="80" nowrap="nowrap" align="center">
 <?php echo JHTML::_('grid.sort', 'ORDER', 'ordering',
 $this->lists['order_Dir'],
 $this->lists['order']); ?>
 </th>

 <th width="10" nowrap="nowrap">
 <?php if($ordering) echo JHTML::_('grid.order',
 $this->revues); ?>
 </th>

 <th width="50" nowrap="nowrap">
 <?php echo JText::_('HITS'); ?>
 </th>

 <th width="100" nowrap="nowrap" align="center">
 <?php echo JHTML::_('grid.sort', JText::_('CATEGORY'),
 'category',
 $this->lists['order_Dir'],
 $this->lists['order']); ?>
 </th>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[279]

 <th width="60" nowrap="nowrap" align="center">
 <?php echo JHTML::_('grid.sort', JText::_('PUBLISHED'),
 'published',
 $this->lists['order_Dir'],
 $this->lists['order']); ?>
 </th>
 </tr>
</thead>

Let's look at the last column, Published, and dissect the call to grid.sort. Following
grid.sort we have the name of the column, filtered through JText::_() passing
it a key to our translation file. The next parameter is the sort value, the current order
direction, and the current column by which the data is ordered.

In order for us to be able to use these headings to order our data we must make a few
additional modifications to our JModel class.

We created the _buildQuery() method earlier when we were adding pagination.
We now need to make a change to that method to handle ordering:

/**
 * Builds a query to get data from #__boxoffice_revues
 * @return string SQL query
 */
function _buildQuery()
{
 $db =& $this->getDBO();
 $rtable = $db->nameQuote('#__boxoffice_revues');
 $ctable = $db->nameQuote('#__categories');

 $query = ' SELECT r.*, cc.title AS cat_title'
 . ' FROM ' . $rtable. ' AS r'
 . ' LEFT JOIN '.$ctable.' AS cc ON cc.id=r.catid'
 . $this->_buildQueryOrderBy();

 return $query;
}

Our method now calls a method named _buildQueryOrderBy() that builds the
ORDER BY clause for the query:

/**
 * Build the ORDER part of a query
 *
 * @return string part of an SQL query
 */

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[280]

function _buildQueryOrderBy()
{
 global $mainframe, $option;

 // Array of allowable order fields
 $orders = array('title', 'revuer', 'revued', 'category',
 'published', 'ordering', 'id');

 // Get the order field and direction, default order field
 // is 'ordering', default direction is ascending
 $filter_order = $mainframe->getUserStateFromRequest(
 $option.'filter_order', 'filter_order', 'ordering');
 $filter_order_Dir = strtoupper(
 $mainframe->getUserStateFromRequest(
 $option.'filter_order_Dir', 'filter_order_Dir', 'ASC'));

 // Validate the order direction, must be ASC or DESC
 if ($filter_order_Dir != 'ASC' && $filter_order_Dir != 'DESC')
 {
 $filter_order_Dir = 'ASC';
 }

 // If order column is unknown use the default
 if (!in_array($filter_order, $orders))
 {
 $filter_order = 'ordering';
 }

 $orderby = ' ORDER BY '.$filter_order.' '.$filter_order_Dir;

 if ($filter_order != 'ordering')
 {
 $orderby .= ' , ordering ';
 }

 // Return the ORDER BY clause
 return $orderby;
}

As with the view, we retrieve the order column name and direction using the
application getUserStateFromRequest() method. Since this data is going to be
used to interact with the database, we perform some data sanity checks to ensure
that the data is safe to use with the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[281]

Now that we have done this we can use the table headings to order itemized data.
This is a screenshot of such a table:

Notice that the current ordering is title descending, as denoted by the small arrow
to the right of Title.

Filtering and searching
In many respects, the process of filtering and searching itemized data is very similar
to ordering itemized data. We'll begin by taking a look at filtering.

This is a screenshot of the filtering and search form controls that appear at the top of
the Article Manager:

In this case, there are many filtering options: the section, category, author, and
published state. For our component we will look at how to implement a category
filter and a published-state filter.

We can use the grid.state type to easily render a published state drop-down
selection box. In our /revues/view.html.php file we need to make two modifications:

// Get the user state
$filter_order = $mainframe->getUserStateFromRequest(
 $option.'filter_order',
 'filter_order', 'published');
$filter_order_Dir = $mainframe->getUserStateFromRequest(
 $option.'filter_order_Dir',
 'filter_order_Dir', 'ASC');
$filter_state = $mainframe->getUserStateFromRequest(
 $option.'filter_state', 'filter_state');

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[282]

// set the table filter values
$lists['order'] = $filter_order;
$lists['order_Dir'] = $filter_order_Dir;
$lists['state'] = JHTML::_('grid.state', $filter_state);

We use the application getUserStateFromRequest() method to determine the
current published state filter value, using the path $option plus filter_state.
The default value is a null string, which indicates that no selection has been made.

Once we have the published state filter value, we use the grid.state type to render
a drop-down list form control with the available published state properties. This
control has some JavaScript associated with it that automatically submits the form
when the JavaScript onChange event is fired.

A complete description of the grid.state type is available in Appendix E,
Joomla! HTML Library.

Now that we have a form control we need to display it. We do this in the default.
php layout by placing the following table declaration between the admin form and
table declaration:

<table>
 <tr>
 <td align="left" width="100%"></td>
 <td nowrap="nowrap">
 <?php echo $this->lists['state']; ?>
 </td>
 </tr>
</table>

It is normal to use a table with one row and two cells to display filters and search
controls. The left-hand cell is used to display the search and the right-hand cell is
used to display the filter drop-down selection boxes.

As with most things in Joomla!, there are no strings attached as to how we
implement filtering and searching. We don't have to format the filter in this way, and
for those of us who prefer a good dose of CSS, it is perfectly acceptable to implement
a table-less design.

The next question is: How do we apply a filter? This is far easier than it might sound.
When we discussed ordering we described the _buildQuery() method in the model.
It's back to that method to make some more changes:

/**
 * Builds a query to get data from #__boxoffice_revues
 * @return string SQL query
 */

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[283]

function _buildQuery()
{
 $db =& $this->getDBO();
 $rtable = $db->nameQuote('#__boxoffice_revues');
 $ctable = $db->nameQuote('#__categories');

 $query = ' SELECT r.*, cc.title AS cat_title'
 . ' FROM ' . $rtable. ' AS r'
 . ' LEFT JOIN '.$ctable.' AS cc ON cc.id=r.catid'
 . $this->_buildQueryWhere()
 . $this->_buildQueryOrderBy();

 return $query;
}

This time we have added a call to a private _buildQueryWhere() method. This
method works in much the same way as the _buildQueryOrderBy() method,
except that it returns a WHERE clause instead of an ORDER BY clause.

This example demonstrates how we can implement this method in order to apply the
published state filter:

/**
 * Builds the WHERE part of a query
 *
 * @return string Part of an SQL query
*/
function _buildQueryWhere()
{
 global $mainframe, $option;

 // Get the filter values
 $filter_state = $mainframe->getUserStateFromRequest(
 $option,'filter_state','filter_state');

 // Prepare the WHERE clause
 $where = array();

 // Determine published state
 if ($filter_state == 'P')
 {
 $where[] = 'published = 1';
 }
 elseif($filter_state == 'U')
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[284]

 $where[] = 'published = 0';
 }

 // return the WHERE clause
 return ($where) ? ' WHERE '.$where : '';
}

The first thing we do is retrieve the published state value from the user state.
This will be one of four values: null, P, U, or A. null means 'any'. P and U relate
to 'published' and 'unpublished' respectively. A means 'archived'.

Use of the archived published state is unusual. Archived refers to items that are no
longer in use and aren't to be modified or viewed in any form. If we want to use
archive as a published state, we would have to modify our use of grid.state. This
is explained in Appendix E, Joomla! HTML Library.

We then build our WHERE clause and return the result. When we create a method such
as this, it is important to remember that any external data we use is sanitized and
escaped for use with the database.

This now means that we can implement and use a published state filter. Let's go to
the next stage, adding the ability to filter by a category. Unsurprisingly, we start in
much the same place, the view's display method.

This example builds on the previous example and adds a category filter drop-down
selection box:

// Force the layout form to submit itself immediately
$js = 'onchange="document.adminForm.submit();"';

// Get the user state
$filter_order = $mainframe->getUserStateFromRequest(
 $option.'filter_order',
 'filter_order', 'published');
$filter_order_Dir = $mainframe->getUserStateFromRequest(
 $option.'filter_order_Dir',
 'filter_order_Dir', 'ASC');
$filter_state = $mainframe->getUserStateFromRequest(
 $option.'filter_state', 'filter_state');
$filter_catid = $mainframe->getUserStateFromRequest(
 $option.'filter_catid', 'filter_catid');

// set the table filter values
$lists['order'] = $filter_order;
$lists['order_Dir'] = $filter_order_Dir;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[285]

$lists['state'] = JHTML::_('grid.state', $filter_state);
$lists['catid'] = JHTML::_('list.category',
 'filter_catid',
 'com_boxoffice',
 (int)$filter_catid, $js);

This time we also retrieve the current value for filter_catid; there are no
restrictions on what we call filter form controls, but it is normal to prefix them with
filter_. Instead of using grid, we use a list type, list.category, to render the
category filter form control.

Unlike grid.state, we must tell list.category the name of the control, the
extension name (category section), and the current category. Note that we cast the
value of $filter_catid to an integer for security reasons. Last of all, we include
some JavaScript.

This JavaScript forces the adminForm form to submit itself, applying the filter
immediately. The first entry in the resultant drop-down list is Select a Category. We
can opt to make our JavaScript slightly more intelligent by not submitting the form if
the Select a Category option is chosen, as this JavaScript demonstrates:

$js = "onchange=\"if (this.options[selectedIndex].value!='')

 { document.adminForm.submit(); }\"";

Now in our default.php layout we add the lists['catid'] value to the table
above the itemized data:

<table>
 <tr>
 <td align="left" width="100%"></td>
 <td nowrap="nowrap">
 <?php echo $this->lists['catid']; ?>
 <?php echo $this->lists['state']; ?>
 </td>
 </tr>
</table>

The final stage is to apply the category filter to the itemized data. We do this in much
the same way as we modified the results for the published state filter. This example
shows how we can modify the JModel _buildQueryWhere() method to incorporate
the category:

/**
 * Builds the WHERE part of a query
 *
 * @return string Part of an SQL query

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[286]

*/
function _buildQueryWhere()
{
 global $mainframe, $option;

 // Get the filter values
 $filter_state = $mainframe->getUserStateFromRequest(
 $option.'filter_state', 'filter_state');

 // Prepare the WHERE clause
 $where = array();

 // Determine published state
 if ($filter_state == 'P')
 {
 $where[] = 'published = 1';
 }
 elseif($filter_state == 'U')
 {
 $where[] = 'published = 0';
 }

 // Determine category ID
 if ($filter_catid = (int)$filter_catid)
 {
 $where[] = 'catid = '.$filter_catid;
 }

 // return the WHERE clause
 return (count($where)) ? ' WHERE '.implode(' AND ', $where)
 : '';
}

To facilitate the easiest way of building the WHERE clause we make $where an array
and implode it at the end. Note that we cast $filter_catid to an integer; this
ensures the value is safe for use with the database.

Before we move on to explain how to implement a search filter, we will quickly
discuss the use of other filters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[287]

So far we have demonstrated how to use grid.state and list.category. There
are many other things on which we might want to filter itemized data. Some of these
are easily available through the list types, for example list.positions. These are
described earlier in the chapter and in Appendix E, Joomla! HTML Library.

If there isn't a suitable list type, we can construct our own filter drop-down
selection boxes using the select types. This is an example of how we might
construct a custom drop-down selection filter form control (it assumes $js is
the same as in the previous examples):

// prepare database
$db =& JFactory::getDBO();
$query = 'SELECT value, text' .
 'FROM #__sometable' .
 'ORDER BY ordering';
$db->setQuery($query);

// add first 'select' option
$options = array()
$options[] = JHTML::_('select.option', '0', '- '
 . JText::_('Select a Custom Thing').' -');

// append database results
$options = array_merge($options, $db->loadObjectList());

// build form control
$lists['custom'] = JHTML::_('select.genericlist',
 $options,
 'filter_custom',
 'class="inputbox" size="1"'.$js,
 'value',
 'text',
 $filter_custom);

If we do create custom filter lists such as this, we might want to consider extending
JHTML. For example to create a foobar group type we would create a class
named JHTMLFoobar in a file named foobar.php. We would then need to use the
JHTML::addIncludePath() method to point to the folder where the file is located.

To use the new class we would need to define methods within the class, for example
baz(). We would then be able to call baz() using JHTML::_('foobar.baz'). For
examples of existing classes we can browse the joomla.html library files.

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[288]

Next up is searching. This functionality may sound more complex, but in reality it
is relatively simple. As with filtering, ordering, and pagination we must make a few
modifications to our display method in our /revues/view.html.php file. Building
on our previous modifications we modify the display method as follows:

// Force the layout form to submit itself immediately
$js = "onchange=\"if (this.options[
 selectedIndex].value!='')
 { document.adminForm.submit(); }\"";

// Get the user state
$filter_order = $mainframe->getUserStateFromRequest(
 $option.'filter_order',
 'filter_order', 'published');
$filter_order_Dir = $mainframe->getUserStateFromRequest(
 $option.'filter_order_Dir',
 'filter_order_Dir', 'ASC');
$filter_state = $mainframe->getUserStateFromRequest(
 $option.'filter_state', 'filter_state');
$filter_catid = $mainframe->getUserStateFromRequest(
 $option.'filter_catid', 'filter_catid');
$filter_search = $mainframe->getUserStateFromRequest(
 $option.'filter_search',
 'filter_search');

// Build the list array for use in the layout
$lists['order'] = $filter_order;
$lists['order_Dir'] = $filter_order_Dir;
$lists['state'] = JHTML::_('grid.state', $filter_state);
$lists['catid'] = JHTML::_('list.category',
 'filter_catid',
 'com_boxoffice',
 (int)$filter_catid, $js);
$lists['search'] = $filter_search;

Now in our default.php layout we add the following code to the first cell in the
table above the itemized data:

<table>
 <tr>
 <td align="left" width="100%">
 <?php echo JText::_('Filter'); ?>:
 <input type="text" name="filter_search" id="search"
 value="<?php echo $this->lists['search'];?>"
 class="text_area"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[289]

 onchange="document.adminForm.submit();" />
 <button onclick="this.form.submit();">
 <?php echo JText::_('Search'); ?>
 </button>
 <button onclick="document.adminForm.
 filter_search.value='';this.form.submit();">
 <?php echo JText::_('Reset'); ?>
 </button>
 </td>
 <td nowrap="nowrap">
 <?php echo $this->lists['catid']; ?>
 <?php echo $this->lists['state']; ?>
 </td>
 </tr>
</table>

As you can see, this is more complex than displaying the previous filter form
controls. We output the text Filter and add three form controls—a search text box
called filter_search, a reset button, and a search button.

The text box is used to allow the user to define the search terms. The search button
submits the form. The reset button sets the search text box value to a null string and
then submits the form.

That's it! Now all we need to do is implement the search in the JModel. To do this,
we modify the _buildQueryWhere() method:

/**
 * Builds the WHERE part of a query
 *
 * @return string Part of an SQL query
*/
function _buildQueryWhere()
{
 global $mainframe, $option;

 // Get the filter values
 $filter_state = $mainframe->getUserStateFromRequest(
 $option.'filter_state', 'filter_state');

 // Prepare the WHERE clause
 $where = array();

 // Determine published state
 if ($filter_state == 'P')
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Output

[290]

 $where[] = 'published = 1';
 }
 elseif($filter_state == 'U')
 {
 $where[] = 'published = 0';
 }

 // Determine category ID
 if ($filter_catid = (int)$filter_catid)
 {
 $where[] = 'catid = '.$filter_catid;
 }

 // Determine search terms
 if ($filter_search = trim($filter_search))
 {
 $filter_search = JString::strtolower($filter_search);
 $db =& $this->_db;
 $filter_search = $db->getEscaped($filter_search);
 $where[] = '(LOWER(title) LIKE "%'.$filter_search.'%"'
 . ' OR LOWER(revuer) LIKE "%'.$filter_search.'%")';
 }

 // return the WHERE clause
 return (count($where)) ? ' WHERE '.implode(' AND ', $where)
 : '';
}

We use the JDatabase object to escape the search string; this prevents SQL injection
and corruption of the query.

Our search facility will now work!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[291]

Summary
We have explored the massive joomla.html library that enables us to create
standardized XHTML for rendering in our extensions. It's important to explore the
library so as to gain as much from it as possible. There are many useful types that
can greatly reduce our overall development time.

We have investigated the use of existing layouts and templates which should put us
in good stead for creating our own. Remember to take advantage of the predefined
CSS styles. This makes it easier for site template developers and ensures that our
layouts will not look out of place.

We learned that when we create templates in the backend for components there are
a number of rules that we should follow. Using these rules will allow us to create
integrated components that adhere to the consistency of the Joomla! interface.

We discovered how to add pagination, ordering, filtering, and searching to make
our extensions more user-friendly and increase the chances of having successfully
created a commercially winning or freely available extension.

In the next chapter we will continue improving our extensions by exploring ways
to customize the document properties, add multilingual capabilities, and provide
a more interactive user experience.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page
In addition to rendering the output of our extensions, we will often find it beneficial
or even necessary to alter the normal flow by redirecting the browser to another
page, or by customizing the generated document or page. Using a number of classes
and libraries that Joomla! provides we can significantly enhance the user experience.

In this chapter we will discuss topics such as:

The application message queue and redirecting the browser
Session-level input validation
Modifying document properties specifically for our extensions
Adding multilingual support to our extensions
Adding interactive and user-friendly JavaScript elements to our extensions

Application message queue
You may have noticed that when we raise a notice or a warning, a bar appears across
the top of the page containing the notice or warning message. These messages are
part of the application message queue.

The application message queue is a message stack that is displayed the next time the
application renders an HTML view. This means that we can queue messages in one
request but not show them until a later request.

•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[294]

There are three core message types: message, notice, and error. The next screenshot
depicts how each of the different types of application message is rendered:

We use the application enqueueMessage() method to add a message to the queue.
This example demonstrates how we would add all of the messages shown in the
previous screenshot to the message queue:

$mainframe->enqueueMessage('A message type message');
$mainframe->enqueueMessage('A notice type message', 'notice');
$mainframe->enqueueMessage('An error type message', 'error');

The first parameter is the message that we want to add and the second parameter is
the message type; the default is message. It is uncommon to add notice or error
messages this way; normally we will use JError::raiseNotice() and JError::
raiseWarning() respectively.

This means that we will, in most cases, use one parameter with the
enqueueMessage() method. It is possible however, to add messages of our own
custom types. This is an example of how we would add a message of type bespoke:

$mainframe->enqueueMessage('A bespoke type message', 'bespoke');

Custom type messages will render in the same format as message type messages.
Imagine we want to use the bespoke message type to render messages but not
display them. This could be useful for debugging purposes.

This example demonstrates how we can add a CSS Declaration to the document,
using the methods described earlier to modify the way in which the bespoke
messages are displayed:

$css = '/* Bespoke Error Messages */
#system-message dt.bespoke
{
 display: none;
}

dl#system-message dd.bespoke ul

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[295]

{
 color: #30A427;
 border-top: 3px solid #94CA8D;
 border-bottom: 3px solid #94CA8D;
 background: #C8DEC7 url(notice-bespoke.png) 4px 4px no-repeat;
}';

$doc =& JFactory::getDocument();
$doc->addStyleDeclaration($css);

Now when bespoke messages are rendered, they will appear like this:

Redirecting the browser
Redirection allows us to redirect the browser to a new location. Joomla! provides us
with some easy ways in which to redirect the browser.

Joomla! redirects are implemented using HTTP 301 redirect response codes. In
the event that response headers have already been sent, JavaScript will be used
to redirect the browser.

The most common time to redirect a browser is after a form has been submitted.
There are a number of reasons why we might want to do this, such as the following:

Redirecting after form submission prevents forms from being submitted
multiple times when the browser is refreshed
We can redirect to different locations depending on the submitted data
Redirecting to another view reduces the amount of development required
for each task in the controller

There are many scenarios where the use of a redirect is common. The following list
identifies some of these:

Canceling editing an existing item
Copying items
Creating new items and updating existing items
Deleting items
Publishing or unpublishing items
Updating item ordering

•

•
•

•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[296]

Imagine a user submits a form that is used to create a new record in a database
table. The first thing we need to do when we receive a request of this type is to
validate the form contents. This next data flow diagram describes the logic that
we could implement:

The No route passes the invalid input to the session. We do this so that when we
redirect the user to the input form we can repopulate the form with the invalid input.
If we do not do this the user will have to complete the entire form again.

We may choose to omit the Pass invalid input to user session process as the core
components do. It is normal to include JavaScript to validate forms before they are
submitted, and since the majority of users will have JavaScript support enabled, this
may be a good approach to use.

Note that omitting this process is not the same as omitting form validation. We must
never depend on JavaScript or other client-side mechanisms for data validation.
A good approach is to initially develop forms without client-side validation while
ensuring that we properly handle invalid data with server-side scripts.

As a quick aside, a good way to validate form contents is to use
a JTable subclass check() method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[297]

If we place failed input into the session, we might want to put it in its own
namespace. This makes it easier to remove the data later and helps prevent naming
conflicts. The next example demonstrates how we might add the field value of
myField to the myForm session namespace:

// get the session
$session =& JFactory::getSession();

// get the raw value of myField
$myFieldValue = JRequest::getString('myField', '', 'POST',
 JREQUEST_ALLOWRAW);

// add the value to the session namespace myForm
$session->set('myField', $myFieldValue, 'myForm')

When we come to display the form we can retrieve the data from the session using
the get() method. Once we have retrieved the data we must remember to remove
the data from the session, otherwise it will be displayed every time we view the form
(unless we use another flag as an indicator). We can remove data items from the
myForm namespace using the clear() method:

// get the session
$session =& JFactory::getSession();

// Remove the myField
$session->clear('myField', 'myForm');

The final thing we do in the No route is to redirect the user back to the input form.
When we do this, we must add some messages to the application queue to explain
to the user why the input has been rejected.

The Yes route adds a new record to the database and then redirects the user to the
newly created item. As with the No route, it is normal to queue a message that will
say that the new item has been successfully saved, or something to that effect.

There are essentially two ways to redirect. The first is to use the application
redirect() method.

It is unusual to use this mechanism unless we are developing a component without
the use of the Joomla! MVC classes. This example demonstrates how we use the
application method:

$mainframe->redirect('index.php?option=com_boxoffice');

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[298]

This will redirect the user's browser to index.php?option=com_boxoffice. There
are two additional optional parameters that we can provide when using this method.
These are used to queue a message.

This example redirects us, as per the previous example, and queues a notice type
message that will be displayed after the redirect has successfully completed:

$mainframe->redirect('index.php?option=com_boxoffice',
 'Some Message', 'notice');

The final parameter, the message type, defaults to message.

The application redirect() method immediately queues the message,
redirects the user's browser, and ends the application.

The more common mechanism for implementing redirects is to use the JController
setRedirect() method. We generally use this from within a controller method
that handles a task, but because the method is public we can use it outside of
the controller.

This example, assuming we are within a JController subclass method, will set the
controller redirect to index.php?option=com_boxoffice:

$this->setRedirect('index.php?option=com_boxoffice');

As with the application redirect() method, there are two additional optional
parameters that we can provide when using this method. These are used to
queue a message.

This example sets the controller redirect, as per the previous example, and
queues a notice type message that will be displayed after the redirect has
successfully completed:

$this->setRedirect('index.php?option=com_boxoffice', 'Some Message',

 'notice');

Unlike the application redirect() method, this method does not immediately
queue the optional message, redirect the user's browser, and end the application.
To do this we must use the JController redirect() method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[299]

It is normal, in components that use redirects, to execute the controller redirect()
method after the controller has executed a given task. This is normally done in the
root component file, as this example demonstrates:

$controller = new BoxofficeController();
$controller->execute(JRequest::getCmd('task'));
$controller->redirect();

Component XML metadata files and menu
parameters
When we create menu items, if a component has a selection of views and layouts,
we can choose which view and which layout we want to use. We can create an XML
metadata file for each view and layout. In these files we can describe the view
or layout and we can define extra parameters for the menu item specific to the
specified layout.

Our component frontend has a single view with two layouts: default.php and
list.php. The next figure describes the folder structure we would expect to find in
the views folder (for simplicity, only the files and folders that we are discussing are
included in the figure):

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[300]

When an administrator creates a link to this view, the options displayed will not give
any information beyond the names of the folders and files described above, as the
next screenshot demonstrates:

The first element of this list that we will customize is the view name, Revue. To do
this we must create a file in the revue folder called metadata.xml. This example
customizes the name and description of the revue view:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <view title="Movie Revues">
 <message>
 <![CDATA[Movie Revues]]>
 </message>
 </view>
</metadata>

Now if an administrator were to view the list of menu item types, Revue would be
replaced with the text Movie Revues as defined in the view tag title attribute. The
description, defined in the message tag, is displayed when the mouse cursor is over
the view name.

The next task is to customize the definitions of the layouts, default.php
and list.php.

Layout XML metadata files are located in the tmpl folder and are named the same
as the corresponding layout template file. For example, the XML metadata file for
default.php would be named default.xml.

So we need to add the files default.xml and list.xml to the tmpl folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[301]

Within a layout XML metadata file, there are two main tags in which we are
interested: layout and state. Here is an example of a XML metadata file
default.xml:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <layout title="Individual Revue">
 <message>
 <![CDATA[Individual movie revue.]]>
 </message>
 </layout>
 <state>
 <name>Individual Revue</name>
 <description>Individual movie revue.</description>
 </state>
</metadata>

And here is the list.xml file:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <layout title="Revue List">
 <message>
 <![CDATA[Summary list of revues.]]>
 </message>
 </layout>
 <state>
 <name>Revue List</name>
 <description>Summary list of revues.</description>
 </state>
</metadata>

At first glance it may seem odd that we appear to be duplicating information in
the layout and state tags. However, the layout tag includes information that
is displayed in the menu item type list (essentially an overview). The state tag
includes information that is displayed during the creation of a menu item that
uses the layout.

There are occasions when a more detailed description is required when we come to
define a menu item. For example, we may want to warn the user that they must fill
in a specific menu parameter. We will discuss menu parameters in a moment.

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[302]

Assuming we created the default.xml and list.xml files as shown previously, our
menu item type list would now appear as follows:

Now that we know how to modify the names and descriptions of views and layouts,
we can investigate how to define custom menu parameters.

There are many different types of parameter that we can define. Before you continue,
you might want to familiarize yourself with this list of parameter types because we
will be using them in the examples. A complete description of these parameters is
available in Appendix B, Parameters (Core Elements):

category

editors

filelist

folderlist

helpsites

hidden

imagelist

languages

list

menu

menuitem

password

radio

section

spacer

sql

text

textarea

timezones

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[303]

Menu parameters can be considered as being grouped into several categories:

System
Component
State
URL
Advanced

The System parameters are predefined by Joomla! (held in the administrator/
components/com_menus/models/metadata/component.xml file). These parameters
are used to encourage standardization of some common component parameters.
System parameters are shown under the heading Parameters (System); we cannot
prevent these parameters from being displayed.

The Component parameters are those parameters that are defined in the
component's config.xml file. Note that changing these parameters when creating a
new menu item only affects the menu item, not the entire component. In essence, this
is a form of overriding. A full explanation of how to create a component config.xml
file is available in Chapter 5, Component Design.

This form of overriding is not always desirable; it is possible to prevent
the component parameters from being shown when creating or editing
a menu item. To do this we add the attribute menu to the root tag
(config) of the component config.xml file and set the value of the
attribute to hide:
<config menu="hide">

The remaining parameter groups—State, URL, and Advanced—are defined on
a per layout basis in the layout XML metadata files inside the state tag. These
are the groups in which we are most interested.

The State parameters are located in a tag called params. In this example,
which builds on our list.xml file, we add two parameters: a text field named
revue_heading and a radio option named show_heading:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <layout title="Revue List">
 <message>
 <![CDATA[Summary list of revues.]]>
 </message>
 </layout>

•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[304]

 <state>
 <name>Revue List</name>
 <description>Summary list of revues.</description>
 <params>
 <param type="radio" name="show_heading"
 label="Show Heading"
 description="Display heading above revues."
 default="0">
 <option value="0">Hide</option>
 <option value="1">Show</option>
 </param>
 <param type="text" name="revue_heading"
 label="Revue Heading"
 description="Heading to display above the revues."
 default="Box Office Revues" />
 </params>
 </state>
</metadata>

When an administrator creates a new menu item for this layout, these two
parameters will be displayed under the heading Parameters (Basic).

The parameters are not presented under a State heading, because State
and URL parameters are consolidated into one section. URL parameters
always appear above State parameters.

We define URL parameters in much the same way, only this time we place them in
a tag named url. The URL parameters are automatically appended to the URI; this
means that we can access these parameters using JRequest.

These parameters are of particular use when we are creating a layout that is used to
display a single item that is retrieved using a unique ID. If we use these parameters
to define an ID that is retrieved from a table, we should consider
using the often overlooked sql parameter type.

The following example builds on the previous example, and adds the URL parameter
id, which is extracted from the #__boxoffice_revues table:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <layout title="Revue List">
 <message>
 <![CDATA[Summary list of revues.]]>
 </message>
 </layout>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[305]

 <state>
 <name>Revue List</name>
 <description>Summary list of revues.</description>
 <url>
 <param type="sql" name="id" label="Revue:"
 description="Revue to display"
 query="SELECT id AS value, title AS id
 FROM #__boxoffice_revues" />
 </url>
 <params>
 <param type="radio" name="show_heading"
 label="Show Heading"
 description="Display heading above revues."
 default="0">
 <option value="0">Hide</option>
 <option value="1">Show</option>
 </param>
 <param type="text" name="revue_heading"
 label="Revue Heading"
 description="Heading to display above the revues."
 default="Box Office Revues" />
 </params>
 </state>
</metadata>

The query might be slightly confusing if you are not familiar with the sql parameter
type. The query must return two fields, value and id. value specifies the value of
the parameter and id specifies the identifier displayed in the drop-down box that
is displayed when the parameter is rendered.

When using the sql parameter type, if applicable, remember to include
a WHERE clause to display only published or equivalent items.

The Advanced parameters are specifically for defining parameters that are
more complex than the State parameters. These parameters are defined in the
advanced tag.

This example adds an advanced parameter called advanced_setting:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <layout title="Revue List">
 <message>
 <![CDATA[Summary list of revues.]]>

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[306]

 </message>
 </layout>
 <state>
 <name>Revue List</name>
 <description>Summary list of revues.</description>
 <url>
 <param type="sql" name="id" label="Revue:"
 description="Revue to display"
 query="SELECT id AS value, title AS id
 FROM #__boxoffice_revues" />
 </url>
 <params>
 <param type="radio" name="show_heading"
 label="Show Heading"
 description="Display heading above revues."
 default="0">
 <option value="0">Hide</option>
 <option value="1">Show</option>
 </param>
 <param type="text" name="revue_heading"
 label="Revue Heading"
 description="Heading to display above the revues."
 default="Box Office Revues" />
 </params>
 <advanced>
 <param type="radio" name="list_by_cat"
 label="List by Genre"
 description="List revues by genre."
 default="0">
 <option value="0">No</option>
 <option value="1">Yes</option>
 </param>
 </advanced>
 </state>
</metadata>

Advanced parameters will appear under the Parameters Advanced heading.
Component parameters—we defined these in Chapter 5, Component Design—will
appear under the Parameters (Component) heading.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[307]

The resultant parameters area for this layout will appear as follows:

All name and description elements from the XML metadata files
will be translated into the currently selected locale language.

When we save a menu item, all of the parameters, except URL parameters, are saved
to the params field in the menu item record. This means that we can end up with
naming conflicts between our parameters. We must ensure that we do not name
any two parameters the same. This includes not using the predefined System
parameter names.

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[308]

This list details the System parameter names:

page_title

show_page_title

pageclass_sfx

menu_image

secure

Once we have successfully created the necessary XML, we will be able to access the
parameters from within our component using a JParameter object. This is described
in the next section.

Using menu item parameters
Before we jump in and start using menu item parameters, let us take a moment to
consider the overriding effects of the component parameters.

A second set of component parameters are saved to the menu item when we save it.
This means that the component parameters are saved as part of the menu item, not
the component. This allows a component, which can be installed only once, to be
linked to the menu multiple times using different settings.

This raises the question: What is the purpose of the component preferences button in
the backend? The preferences button, used to save the component settings, is used
to modify the default component settings.

The default settings are used when we create a new menu item as the initial
component parameter values. They are also used if the component is invoked
but the active menu item does not correspond to the invoked component.

Consider the link index.php?option=com_boxoffice. This link will invoke the
com_boxoffice component, but because no menu item is specified, the active menu
item will be the first menu item in the main menu.

Now consider the link index.php?Itemid=53&option=com_boxoffice. This link
will invoke the com_boxoffice component, but because the menu item is specified,
the active menu item will be menu item 53. Assuming this menu item is for the
corresponding component, then the component parameters saved to the menu
item will be used.

•
•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[309]

In order to access the page parameters there is a useful method in the application,
getPageParameters(). We briefly mentioned this method in Chapter 5,
Component Design.

This method returns a JParameter object that is loaded with the component and
menu item parameters. The menu item parameters always take precedence over
the component parameters. For example, if both the component and the menu item
defined a parameter show_title, the value recorded by the menu item would be
the value that would be used in the JParameter object.

It is common to use this method in the display() method of JView sub-classes
and assign the resultant object to the view for use by the layout. This example
demonstrates how we can do this:

$params =& $mainframe->getPageParameters();
$this->assignRef('params', $params);

We can then use params as an attribute in our template files. This example
demonstrates how we can check the value of the show_title parameter before
proceeding to show the title:

<?php if ($this->params->get('show_title')) : ?>
<div id="revue_title">
 <?php echo $this->title; ?>
</div>
<?php endif; ?>

It is generally easier when developing templates to include all possible elements.
Once this is complete, it is generally easier to add the necessary parameters and
make each element optional.

Modifying the document
The document, as described in Chapter 2, Getting Started, is a buffer used to store the
content of the document that will be returned when a request is complete. There are
a number of different things that we can modify in the document that will customize
the resultant page.

Whenever we want to modify the document, we use the JFactory class to obtain
a reference to the global document object. This example demonstrates how:

$document =& JFactory::getDocument();

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[310]

Notice that we use the =& assignment operator to obtain a reference. If we do not,
any modification we make to the document will not be applied.

All of the following examples in this section assume that $document is the global
document object.

Page title
The page title is the most commonly modified part of the page. The title is the
contents of the title tag that is located in the XHTML head tag.

There are two methods related to the title: getTitle() and setTitle(). The
getTitle() method retrieves the existing title and setTitle() sets the title to
a new value.

This example demonstrates how we use setTitle() to make the title
Some Exciting Title.

$document->setTitle(JText::_('Some Exciting Title'));

Notice that we use JText to translate the title before passing it. This is because the
setTitle() method does not translate new titles for us.

We never have to set the document title. If we don't, the site
name will be used.

It is common practice to use the two methods together in order to append additional
title information. Here is an example:

$title = $document->getTitle().' - '.JText::_('Some Exciting Title')
$document->setTitle($title);

Pathway
The pathway, also known as the breadcrumb (trail), describes to the user their
current navigational position in a website. This is an example of a pathway for
a menu item named 'Joomla! Overview':

Joomla! handles the pathway to the depth of the menu item. Beyond that we must
manually add items to the breadcrumb. For example, a component that handles
categories and multiple items will generally add to the pathway in order to display
its internal hierarchy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[311]

The pathway is handled by a global JPathway object. We can access the object using
the application. The next example demonstrates how we obtain a reference to the
breadcrumb handler:

$pathway =& $mainframe->getPathway();

Notice that, as usual, we must use the =& assignment operator to obtain a reference.
If we do not, any changes we make to $pathway will not be reflected.

We use the addItem() method to add new items to the pathway. Imagine we are
viewing a category in a component and we want to add the category as an extra
layer in the pathway trail, as in this example:

$pathway->addItem($categoryName);

There is one glaringly obvious thing missing from this example. There is no URI.
Since we are viewing the category, there is no need to specify the URI because it
is the current URI.

The last item in the pathway is never a link. We only need to specify a URI
when we add items that are not going to be the last item in the pathway. This
example demonstrates how we might build the pathway for an item within the
aforementioned category:

$pathway->addItem($categoryName, $categoryURI);
$pathway->addItem($itemName);

Notice this time we include a URI when adding the category item. It is normal
to add to the pathway in the display() method of each JView class. It is important
to realize that we must always add pathway items in order of appearance.

There is one pitfall to the currently explained way of adding items to the pathway. It
is likely that in the described scenario, we would be able to create a menu item that
links directly to a category or item in the component.

We can overcome this by interrogating the current menu item. This example shows
how we get access to the current menu item:

$menus =& JMenu::getInstance();
$menuitem =& $menus->getActive();

The JMenu class is responsible for the handling of Joomla! menus. The getActive()
method returns a reference to the currently selected menu item object. This object is
a stdClass object that contains various attributes that relate to the menu item.

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[312]

The attribute that we are interested in is query. This attribute is an associative array
that describes the URI query associated with the menu item. So to enhance our
category pathway we would do this:

if ($menuitem->query['view'] != 'category')
{
 $pathway =& $mainframe->getPathWay();
 $pathway->addItem($categoryName);
}

The view key is the layout that the menu item is set to view.

To improve our pathway when viewing an item we can build on this example by
adding a switch statement:

if ($menuitem->query['view'] != 'item')
{
 $pathway =& $mainframe->getPathWay();

 switch ($menuitem->query['view'])
 {
 case 'categories':
 $pathway->addItem($categoryName, $categoryURI);
 default:
 $pathway->addItem($itemName);
 }
}

We now have the ability to build the pathway from the point at which the menu item
enters the component.

By using a switch statement without any breaks we make the building of the
pathway extremely versatile. It would be very easy for us to add an extra
hierarchical layer to the pathway based on this.

JavaScript
In order to add JavaScript cleanly it should be added to the document header. We
can use the following methods to add JavaScript in this way:

The addScript() method is used to add a link to an external JavaScript file.
This is an example of how to use the addScript() method:
 $js = JURI::base().'components/com_boxoffice/assets/script.js';

 $document->addScript($js);

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[313]

The addScriptDeclaration() method is similar; it allows us to add
RAW JavaScript to the header. This is an example of how to use the
addScriptDeclaration() method:

 $js = 'function notify(text) { alert(text); }';

 $document->addScriptDeclaration($js);

We can use these two methods for any type of script. If we want to use script other
than JavaScript, we can supply a second parameter defining the script MIME type.
For example, if we wanted to use Visual Basic Script we would specify the MIME
type text/vbscript.

CSS
In order to add CSS styles cleanly they should be added to the document header. We
can use the methods addStyleSheet() and addStyleDeclaration() to add CSS.

addStyleSheet() is used to add a link to an external CSS file. This is an example of
how to use the addStyleSheet() method:

$css = JURI::base().'components/com_foobar/assets/style.css';
$document =& JFactory::getDocument();
$document->addStyleSheet($css);

The nice thing about using this method is we can also specify the media type
to which the styles apply. Imagine we have a special CSS file that is intended to
format a document when we come to print. To achieve this we can specify the
media type print:

$document->addStyleSheet($css, 'text/css', 'print');

Notice that the second parameter is text/css; this parameter is used to identify
the MIME type and is used in the same way as it is in the addScript() and
addScriptDeclaration() methods.

The third parameter is the media type, in this case print. This is a list of the CSS2
recognized media types:

all
aural
braille
embossed
handheld
print

•

•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[314]

projection
screen
tty

For more information about CSS media types please refer to
the official documentation available at http://www.w3.org/
TR/1998/REC-CSS2-19980512/media.html.

The addStyleDeclaration() method allows us to add RAW CSS styles to the
header. This is an example of how to use the addStyleDeclaration() method:

$css = '.somestyle { padding: 10px; }';
$document->addStyleDeclaration($css);

Metadata
Metadata tags are used to help describe a document. There are two different types
of metadata: http-equiv and non http-equiv. Metadata that is http-equiv is used
to determine metadata to be used as HTTP header data.

There are two metadata methods in the document:

getMetaData(): This is used to retrieve the document metadata
setMetaData(): This is used to add metadata to the document

When we create extensions that handle information that we want search engines
to index, it is important to add metadata to the document. This example adds some
keywords metadata:

$keywords = 'monkey, ape, chimpanzee, gorilla, orang-utan';
$document->setMetaData('keywords', $keywords);

Adding http-equiv metadata is very similar. Imagine we want to turn off browser
theme styling. We can use the http-equiv metadata type MSTHEMECOMPATIBLE:

$document->setMetaData('MSTHEMECOMPATIBLE', 'no', true);

It is that final parameter, when set to true, which tells the method that the metadata
is http-equiv.

•
•
•

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[315]

The getMetaData() method works in much the same way, except we retrieve
values. Suppose that we wish to append some keywords to the document:

$keywords = explode(',', $document->getMetaData('keywords'));
$keywords[] = 'append me';
$keywords[] = 'and me';
$document->setMetaData('keywords', implode(',', $keywords));

This retrieves the existing keywords and explodes them into an array; this
ensures we maintain the keyword comma separators. We proceed to add
some new keywords to the array. Finally, we implode the array and reset the
keywords metadata.

Custom header tags
If we want to add a different type of tag, not a script, CSS, or metadata, we can use
the addCustomTag() method. This method allows us to inject code directly into
a document header.

Imagine we want to add a comment to the document header:

$comment = '<!-- Oi, stop looking at my page source! :p -->';
$document->addCustomTag($comment);

Translating
A major strength of Joomla! is its built-in multilingual support. Joomla! has
special language handling classes that translate strings. The default language
is configured in the Language Manager. The language can be overridden by
a logged-in user's preferences.

Translating text
We use the static JText class to translate text. JText has three methods for
translating text: _(), sprintf(), and printf(). The method that we use most
is _(). This method is the most basic; it simply translates a string.

The next example outputs the translation of Monday; if a translation cannot be found,
the original text is returned:

echo JText::_('Monday');

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[316]

The JText::sprintf() method is comparable to the PHP sprintf() function. We
pass one string to translate, and any number of extra parameters to insert into the
translated string.

The extra parameters are inserted into the translated string at the defined points.
We define these points using type specifiers; this is identical to using the PHP
sprintf() function. This list describes the different type specifiers:

Argument Type Representation
%F Floating point Floating point
%f Floating point Floating point (locale aware)

%c Integer ASCII character (does not support UTF-8
multi-byte characters)

%b Integer Binary Number
%d Integer Decimal
%u Integer Decimal (Unsigned)
%x Integer Hexadecimal
%X Integer Hexadecimal
%o Integer Octal
%e Scientific Expression Decimal
%s String String

The next example demonstrates how we use the JText::sprintf() method:

$value = JText::sprintf('SAVED_ITEMS', 3);

If the translation for SAVED_ITEMS were Saved %d items, the returned value would
be Saved 3 items.

Alternatively, we can use the JText::printf() method. This method is comparable
to the PHP function printf(). This method returns the length of the resultant string
and outputs the translation.

As with JText::sprintf(), the extra parameters are inserted into the translated
string at the defined points, which are defined using the type specifiers defined
in the table given on the previous page.

This example returns the byte length (not UTF-8 aware) of Saved %d items and
outputs the translated string:

$length = JText::printf('SAVED_ITEMS', 3);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[317]

The extra parameters used by the JText sprintf() and sprint()
methods are not translated. If we want to translate them, we must do
so before passing them.

Defining translations
Different languages are identified by tags defined by RFC 3066. Each language has its
own separate folder and will have many translation files, all of which will be held in
the same folder. This table identifies some of the more common language tags:

Language Tag
English, Britain en-GB
French, France fr-FR
German, Germany de-DE
Portuguese, Portugal pt-PT
Spanish, Spain es-ES

Translations are stored in INI files in the root language and administrator language
directories. When we create extensions we use the languages tag in the extension
manifest file to define the language files that we want to add. A complete description
of the languages tag is available in Appendix B, Parameters (Core JElements).

A translation file will normally consist of a header, describing the contents of the file,
and a number of translations. Translations comprise two parts: a name in uppercase,
and the translated text. The name of the translated string is the value we use to
identify the translation when using the three JText translation methods.

If we use lowercase characters when defining the name of a translation, we will not
be able to retrieve the translation.

When we create new extension translation files we must follow the standard naming
convention, tag.extensionName.ini.

Imagine we want to create a German translation for the component 'My Extension'.
We would have to name the translation file de-DE.com_myextension.ini. This is
an example of what our file contents might look like:

myExtension German Translation
Version 1.0

WELCOME=Willkommen

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[318]

HOW ARE YOU=Wie geht's?
THANK_YOU=Danke schön
SEEYOULATER=Bis später
POLITEHELLO=Guten tag %s

The key names of the translation strings (uppercase string to the left of the equal
sign) have no specific naming convention. The previous examples use a mixture of
different conventions we can use to name translation strings. We should always be
consistent, whichever way we choose to name them.

It is sometimes easier to use abbreviations when we translate long pieces of text. For
example, the name for an incorrect login is LOGIN_INCORRECT, but the translated text
is far longer.

When we create and edit translation files, it is essential to ensure that the file is
UTF-8 encoded. There are lots of text editors available that support UTF-8 multi-byte
character encoding. One such editor is SciTE, a freely available source-code editor
(http://www.scintilla.org/SciTE.html):

Debugging translations
It can be useful when creating a new translation to enable language debugging.
When language debugging is enabled, all the text that has passed through a
translation mechanism will be highlighted and some additional information is
displayed at the bottom of the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[319]

In order to enable language debugging, we must edit the global configuration. In
the System tab we must set Debug Language to Yes (and the debug plugin must
be enabled):

Successfully translated strings are encapsulated by bullet characters, strings
translated from a constant are encapsulated in double exclamation marks,
and strings that are not translated are encapsulated in double question marks.
Untranslated strings appear at the bottom of the page.

Using JavaScript effects
Joomla! includes mootools—a powerful compact JavaScript framework. Mootools
enables us to do many things, but it is used extensively in Joomla! to create client-
side effects. Some of these, such as the accordion, are accessible through Joomla!
classes. Others require special attention.

In some instances it may be necessary to manually add the mootools library to the
document. We can do this using the JHTML behavior.mootools type:

JHTML::_('behavior.mootools');

JPane
A pane is an XHTML area that holds more than one set of information. There are two
different types of panes:

Tabs: Tabs provides a typical tabbed area with tabs to the top that are used
to select different panes.
Sliders: Sliders, based on the mootools accordion, are vertical selections of
headings above panels that can be expanded and contracted.

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[320]

We use the JPane class to implement panes. This example demonstrates a basic
tabular pane with two panels:

$pane =& JPane::getInstance('Tabs');
echo $pane->startPane('myPane');
{
 echo $pane->startPanel('Panel 1', 'panel1');
 echo "This is Panel 1";
 echo $pane->endPanel();

 echo $pane->startPanel('Panel 2', 'panel2');
 echo "This is Panel 2";
 echo $pane->endPanel();
}
echo $pane->endPane();

There are essentially two elements to a pane: the pane itself and the panels within
the pane. We use the methods startPane() and endPane() to signify the start and
end of the pane. When we use startPane() we must provide one string parameter,
which is a unique identifier used to identify the pane.

Panels are always created internally to a pane and use the methods startPanel()
and endPanel(). We must provide the startPanel() method with two parameters,
the name, which appears on the tab, and the panel ID.

The following is a screenshot of the pane created from the previous code:

Had we wanted to create a slider pane instead of a tab pane when we used the
getInstance() method, we would need to have supplied the parameter Sliders
instead of Tabs. This is a screenshot of the same pane as a slider:

Panes are used extensively in Joomla!

As a general rule, tabs are used for settings and sliders are
used for parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[321]

Tooltips
Tool tips are small boxes with useful information in them that appear in response
to onmouseover events. They are used extensively in forms to provide more
information about fields and their contents. Tooltips can be extremely helpful to
users by providing small helpful hints such as what value should be put into a field
or what is the purpose of a field. It takes a small amount of code to implement but
adds a lot of value for our users. So how do we add a tooltip?

In the previous chapter, we discussed the use of the JHTML class library. We use
JHTML to render tips easily. There are two types that we use:

behavior.tooltip is used to import the necessary JavaScript to enable
tooltips to work and it does not return anything. We only ever need to call
this type once in a page.
tooltip is used to render a tooltip in relation to an image or a piece of text.
There are six parameters associated with tooltip, of which five are optional.
We will explore the more common uses of these parameters.

The most basic usage of tooltip returns a small information icon that onmouseover
displays as a tooltip; as this example demonstrates:

echo JHTML::_('tooltip', $tooltip);

The next parameter allows us to define a title that is displayed at the top of
the tooltip:

echo JHTML::_('tooltip', $tooltip, $title);

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[322]

The next parameter allows us to select an image from the includes/js/
ThemeOffice directory. This example uses the warning.png image:

echo JHTML::_('tooltip', $tooltip, $title, 'warning.png');

The next obvious leap is to use text instead of an image and that is just what the next
parameter allows us to do:

echo JHTML::_('tooltip', $tooltip, $title, null, $text);

There are some additional parameters that relate to using hypertext
links. A full description of these is available in Appendix E, Joomla!
HTML Library.

We can modify the appearance of tooltips using CSS. There are three style classes
that we can use: .tool-tip, .tool-title, and .tool-text. The tooltip is
encapsulated by the .tool-tip class, and the .tool-title and .tool-text
styles relate to the title and the content.

This code demonstrates how we can add some CSS to the document to override the
default tooltip CSS:

// prepare the cSS
$css = '/* Tooltips */
.tool-tip
{
 min-width: 100px;
 opacity: 0.8;
 filter: alpha(opacity=80);
 -moz-opacity: 0.8;
}

.tool-title
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[323]

 text-align: center;
}

.tool-text {
 font-style: italic;
}';

// add the CSS to the document
$doc =& JFactory::getDocument();
$doc->addStyleDeclaration($css);

Let's add tooltips to our com_boxoffice/views/revue/tmpl/default.php
layout file.

The first step is to enable tooltips by adding behavior.tooltip to the beginning
of our layout file as follows:

<?php
 // No direct access
 defined('_JEXEC') or die('Restricted access');

 // Enable tooltips
 JHTML::_('behavior.tooltip');
?>

This should be placed at the beginning as illustrated. This adds the mootool
JavaScript class Tips to our document and adds the following JavaScript code
to the document heading:

<script type="text/javascript">
 window.addEvent('domready', function(){
 var JTooltips = new Tips($$('.hasTip'),
 { maxTitleChars: 50, fixed: false});
 });
</script>

Next, we identify those elements that we wish to have a tooltip enabled for. There
are two documented ways to implement a tooltip. We will create both for the movie
title to illustrate:

 <tr>
 <td width="100" align="right" class="key">
 <span class="editlinktip hasTip"
 title="::<?php echo JText::_('TIP_001');?>">
 <label for="title">
 <?php echo JText::_('Movie Title'); ?>:
 </label>

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[324]

 </td>
 <td>
 <input class="inputbox" type="text"
 name="title" id="title" size="25"
 value="<?php echo $this->revue->title;?>" />
 <?php echo JHTML::_('tooltip', JText::_('TIP_001')); ?>
 </td>
 </tr>

The first approach wraps the label with a tag that has two CSS classes
declared editlinktip and hasTip, and a title attribute. The title attribute is a
two part string with the parts separated by double colons; the first part is the tooltip
title and the second is the tooltip text. Both methods will produce similar results.

There are a few differences that you should keep in mind. The first approach
displays the tip when you hover over the spanned element (in this case the label
field). The second approach will generate a small icon next to the input field; the
tip will appear when you move your mouse over the icon.

You can duplicate the results of the first approach using the tooltip method with
the following code:

 <?php
 $label = '<label for ="title">'
 . JText::_('Movie Title')
 . '</label>'
 echo JHTML::_('tooltip', JText::_('TIP_001'),
 '', '', $label);
 ?>

Note that the tip text is passed through JText with a key from our translation file.
Here are the entries for our tips:

Tip Text

TIP_001=Enter the film title.
TIP_002=Choose the MPAA film rating.
TIP_003=Provide a brief impression of the film.
TIP_004=Enter the name of the reviewer.
TIP_005=Enter 1-5 asterisks (*) for overall quality of the film.
TIP_006=Enter the date of the review (mm/dd/yyyy).
TIP_007=Do you wish to publish this revue?
TIP_008=Write your review.
TIP_009=Select the film genre (category).

In the end the method you choose to implement tooltips is largely
a personal preference.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[325]

Fx.Slide
We will use the mootools Fx.Slide effect to demonstrate how we can build a PHP
class to handle some mootools JavaScript. The Fx.Slide effect allows an XHTML
element to seamlessly slide in and out of view horizontally or vertically.

We'll create a class named 'Slide', which will handle the Fx.Slide effect. The class
will have five methods: __construct(), startSlide(), endSlide(), button(),
and addScript().

The way in which we use Fx.Slide requires us to add JavaScript to the window
domready event. This event is fired once the DOM (Document Object Model)
is ready. If we do not add the JavaScript in this way it is likely that we will incur
problems. This is because if important parts of the DOM are missing, such as a slider,
then the JavaScript will not be able to execute properly.

As the domready event can only trigger one event handler, we'll use the
addScript() method as a static method to build up an event handler. This will
allow us to use the Slide class to add multiple sliders without overwriting any
previous domready event handlers.

Here is our Slide class:

/**
 * Handles mootools Fx.Slide
 */
class Slide extends JObject
{
 /**
 * Slider mode: horizontal|vertical
 */
 var $_mode;

 /**
 * Constructor
 *
 * @param string Slide mode: horizontal|vertical
 */
 function __construct($mode = 'vertical')
 {
 $this->_mode = $mode;

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[326]

 // import mootools library
 JHTML::_('behavior.mootools');
 }

 /**
 * Starts a new Slide
 *
 * @param string Slider ID
 * @param string Slider class
 * @return string Slider XHTML
 */
 function startSlider($id, $attributes = '')
 {
 // prepare slider JavaScript
 $js = "var ".$id." = new Fx.Slide('".$id."', {mode:
 '".$this->_mode."'});";
 Slide::addScript($js);

 // return the slider
 return '<div id="'.$id.'" '.$attributes.'>';
 }

 /**
 * Ends a slide
 *
 * @return string Slider XHTML
 */
 function endSlide()
 {
 // end the slide
 return '</div>';
 }

 /**
 * Creates a slide button
 *
 * @param string Button text
 * @param string Button Id
 * @param string Slider Id
 * @param string Button type: toggle|slideIn|slideOut|hide
 * @return string Slider XHTML action button
 */
 function button($text, $buttonId, $slideId, $type = 'toggle')
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[327]

 // prepare button JavaScript
 $js = "$('".$buttonId."').addEvent('click', function(e){"
 ." e = new Event(e);"
 ." ".$slideId.".".$type."();"
 ." e.stop();"
 ." });";
 Slide::addScript($js);

 // return the button
 return '<a id="'.$buttonId.'" href="#"
 name="'.$buttonId.'">'.$text.'';
 }

 /**
 * Adds the JavaScript to the domready event
 *and adds the event handler to the document
 *
 * @static
 * @param string JavaScript to add to domready event
 */
 function addScript($script = null)
 {
 // domready event handler
 static $js;

 if ($script)
 {
 // append script
 $js .= "\n".$script;
 }
 else
 {
 // prepare domready event handler
 $script="window.addEvent('domready',
 function(){".$js."});"

 // add event handler to document
 $document =& JFactory::getDocument();
 $document->addScriptDeclaration($script);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the Page

[328]

Notice that at no point do we tell the document that we need to include the
mootools library. This is because mootools is always included when we render an
HTML document.

So how do we use our newly created class? Well it's relatively simple. We use
startSlide() and endSlide() to indicate a slider; anything that we output
between these two calls will be within the slider. We use the button() method
to output a button, which when pressed will perform a slider event on the slider.
Once we have outputted all the sliders we intend to, we use the static addScript()
method to add the necessary JavaScript to the document.

This example demonstrates how we can create two slides using our Slide class:

$slide = new Slide();

echo $slide->button('Toggle Slide 1', 'toggle1', 'slide1');
echo $slide->startSlider('slide1', 'class="greyBox"');
echo 'Slide 1';
echo $slide->endSlider();

echo $slide->button('Toggle Slide 2', 'toggle2', 'slide2');
echo $slide->startSlider('slide2', 'class="greyBox"');
echo 'Slide 2';
echo $slide->endSlider();

Slide::addScript();

Notice that we call the static addScript() method at the end with no parameters.
This will add the necessary JavaScript to make our slides work. We should never
call the addScript() method without parameters more than once.

The resultant slides appear as follows:

When we use the toggle buttons, the corresponding slides will vertically slide in and
out. The buttons don't have to toggle the slides; when we create the buttons we can
specify the button type as toggle, slideIn, slideOut, or hide. Buttons don't have
to be placed above the slide that they control; we can place them anywhere.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[329]

Both of these particular slides are vertical, but there is nothing to prevent us from
using horizontal and vertical slides on the same page. To do this we would require
two Slide objects, one which when instantiated is passed the variable horizontal:

$slideHorizontal = new Slide('horizontal');
$slideVertical = new Slide();

There are many different effects we can achieve using mootools, and we don't have
to use a PHP class to implement them. If you want to take advantage of mootools
then the best place to start is at the mootools website: http://mootools.net/.

Summary
In this chapter we have discussed the application message queue and how to create
our own custom messages. We learned how to take advantage of the Joomla! session
to temporarily store and validate input data and how to redirect the browser to
a different page.

We discovered how to provide menu parameters that provide display options for
our component layouts.

We learned how to modify the document before it is sent to the browser. We
discovered ways to modify the title, add JavaScript and CSS, add or modify
metadata, and even create custom tags.

We discussed how to add multilingual support to our extensions by using the static
JText() class to automatically translate strings into the user's language. We learned
how to create translation files for our extensions and discussed ways to perform
language debugging.

We completed the chapter with a discussion of the mootools JavaScript library,
which can significantly enhance the user experience of our extensions. We looked
at creating tabbed and slider panels, creating unique tooltips, and how to create
our own special effects class using some mootools JavaScript.

We will delve deeper into the Joomla! API in the next chapter, specifically as it
pertains to web services. We will take a look at common web services just as the
Yahoo! Search service and investigate how to implement our own web service
using XML-RPC plug-ins.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services
The terms API (Application Programming Interface) and web service when used
together describe how we access remote third-party services from an application.
We can use web services and APIs in our Joomla! extensions. This chapter explores:

XML document parsing
Implementing AJAX capabilities
Using LDAP beyond user authentication
Adding email functionality to our websites
Accessing the file system using FTP
Using the Joomla! API as it relates to web services
Discovering the more common web services available to us
Taking an in-depth look at the Yahoo! Search API
Investigating how to implement our own web services using
XML-RPC plugins

XML
XML (Extensible Markup Language) is often used to send and receive web service
data. It is important that we understand how XML is structured so that we can
interact with such web services.

 The next example demonstrates how a typical XML document is constructed:

<?xml version="1.0" encoding="UTF-8" ?>
<rootNode>
 <subNode attr="Some Value">Some Data</subNode>
</rootNode>

•
•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[332]

The first line of code is known as the XML declaration. It declares that the document
is XML, which version of XML it is, and what the character encoding is.

We then encounter the opening tag rootNode. XML documents have one root node
that encapsulates the XML document.

Within rootNode is another node, subNode. This node contains some data and an
attribute called attr. There is no limit to the depth of an XML document; this is one
of the things that make XML so flexible.

When creating our own XML schemas, we can choose the names of all the tags and
attributes that we are going to implement. Here are some quick pointers that should
help when we come to define and write our own XML documents:

Tag and attribute names are case sensitive
Tag and attribute names can only contain letters and numbers
Special characters within data must be encoded
Tags must be nested correctly
Attribute values must be encapsulated in double quotes

In order to illustrate how we might use XML data we will add a simple layout to the
frontend com_boxoffice component revue view. We will create the /views/revue/
tmpl/xml.php file, modify the /views/revue/view.html.php file, and add a menu
item to the main menu to display the view.

Let's begin by modifying the view.html.php file to handle the new view. Look for
the following line:

if($this->getLayout() == 'list')

Replace it with the following:

if($this->getLayout() == 'xml')
{
 // Fall through and display the xml layout
}
else if($this->getLayout() == 'list')

Save the view.html.php file. Now the view can output the XML layout as well as
the list and individual revue layouts. In order to test our new layout we will need to
add a new menu item using the administrator Menu Manager, but that must wait
until after we have created the XML layout.

•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[333]

So let's create the xml.php layout file and begin by add the following code:

<?php
 // no direct access
 defined('_JEXEC') or die('Restricted access');

This should look familiar by now as we have seen this many times before. We will
complete our XML layout over the following pages.

Parsing
Joomla! provides us with three different XML parsers: DOMIT (DOM), JSimpleXML
(Simple), and SimplePie (RSS/Atom). We will explore how to use the JSimpleXML
parser because it is the most commonly used XML parser in Joomla!.

The first thing we need to do is obtain an instance of the parser. We do this using the
JFactory method getXMLParser(). When we use this method we must tell it which
XML parser we want to use. Add the following to our layout file:

$parser =& JFactory::getXMLParser('Simple');

The next step is to load and parse the XML, which can be from either a file or from a
pre-existing string. For our purposes we will be loading XML from a file so we will
add the following to our layout:

$pathToXML_File = JPATH_COMPONENT.DS.'assets'.DS.'albums.xml';
$parser->loadFile($pathToXML_File);

Of course we will need to create the albums.xml file in the
/components/box_office/assets folder before using our new layout.

Loading XML from a string is very similar. We would replace the previous code with
the following:

<?xml version="1.0" encoding="UTF-8" ?>
<catalog name="Box Office Music">
 <album>
 <title>Moving Pictures</title>
 <artist>Rush</artist>
 <year>1981</year>
 <tracks>
 <track length="4:33">Tom Sawyer</track>
 <track length="6:06">Red Barchetta</track>
 <track length="4:24">YYZ</track>
 <track length="4:19">Limelight</track>
 <track length="10:56">The Camera Eye</track>

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[334]

 <track length="4:43">Witch Hunt</track>
 <track length="4:43">Vital Signs</track>
 </tracks>
 </album>
</catalog>';

$parser->loadString($xml);

That is all we have to do in order to parse XML using the JSimpleXML parser!

We can only use a JSimpleXML parser once; if we attempt to use the load
methods more than once, we will encounter errors. A new parser resource
must be instantiated for each additional XML file or string.

Once we have loaded some XML into the parser we can use the parser document
attribute to interrogate the data. Before we rush into this, let's take a closer look at
the XML we used in the previous example. The XML has been used to record the
contents of a music catalog, in this case 'Box Office Music'.

The root node is catalog and has one attribute, name, which is used to identify the
catalog in question. Next, there is an album node. This node encapsulates four other
nodes: name, artist, year, and tracks. The tracks node identifies individual tracks
in track nodes that identify a name and the length of the track in a length attribute.

The parser document attribute is a JSimpleXMLElement object. JSimpleXMLElement
objects are used to describe individual XML nodes. In the case of the document
attribute, this is always the root node.

Having loaded the XML, we'll start interrogating the data by retrieving the name
of the catalog:

$xmldoc =& $parser->document;
$catalog = $document->attributes('name');
echo '<h3 class="componentheading">'.$catalog.'</h3>';

Notice that the first thing we do is get a reference to the document
attribute. Although we don't have to do this, it is generally easier than
accessing the document directly using $parser->document.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[335]

Next we use the attributes() method. This method returns the value of an
attribute from the current node. When we use this method we supply the name
of the attribute we wish to retrieve, in this case name. If a requested attribute
does not exist, null is returned.

If we wish to retrieve all of the attributes associated with a node, we simply
do not pass the name of an attribute. This returns an associative array of the
node's attributes.

If the root node is not of the expected type we can use the name() method to determine
the name of the node type; in our case we are checking for a catalog node:

if ($document->name() != 'catalog')
{
 // handle invalid root node
}

Nodes can have child nodes; in our example the root node has one child node, album.
The root node could contain additional album nodes. To retrieve child nodes we use
the children() method. This method returns an array of nodes, each of which is a
JSimpleXMLElement object:

$children = $document->children();

There may also be a combination of album and single nodes. A single node would
be essentially identical to the album node, except it would contain data specifically
for music released as a single.

We could use the $children array and determine the type of each node using
the name() method. This is a bit cumbersome and for larger XML files rather
process intensive.

Luckily for us, the child nodes are categorized into types. These are accessible
through attributes that are named after the node type. So, in order to retrieve
the album nodes from the root node we add this to our layout:

$albums =& $xmldoc->album;

Our next task is to process the $albums array. As we iterate over the array, we will
have to access the sub-nodes: name, artist, year, and tracks. Although we could
use a method similar to what we used before, there is another way. We can use the
getElementByPath() method to retrieve a node, as long as its path is unique. Since
an album will only ever have one of each of these sub-nodes we can use this approach.

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[336]

This example iterates over the $albums array and outputs title, artist, and year
(we will deal with tracks shortly):

// Output the albums
echo '<h2>Albums</h2>';

for ($i = 0, $c = count($albums); $i < $c; $i ++)
{
 // get the album
 $album =& $albums[$i];
 echo '<div class="album">';
 if ($name =& $album->getElementByPath('title'))
 {
 // display title
 echo ''.$name->data().'
';
 }
 if ($artist =& $album->getElementByPath('artist'))
 {
 // display the artist
 echo ''.$artist->data().'';
 }
 if ($year =& $album->getElementByPath('year'))
 {
 // display the year of release
 echo ' ('.$year->data().')';
 }
}

Our use of the getElementByPath() method should be clear; we simply pass the
name of the child node. For deeper paths we simply add forward slashes to separate
the node names (for example node/node/node).

Another method that we used is the data() method. This method returns any data
that is contained within a node. Remember that the getElementByPath() method
returns JSimpleXMLElement objects, and title, artist, and year are nodes in their
own right.

We are now left with one last thing to do. We need to get the track listing for each
album. To do this, we will iterate over the tracks child nodes:

if ($tracks =& $album->getElementByPath('tracks'))
{
 // get the track listing
 $listing =& $tracks->track;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[337]

 // output listing table
 echo '<table><tr><th>Track</th><th>Length</th></tr>';
 for ($ti = 0, $tc = count($listing); $ti < $tc; $ti ++)
 {
 // output an individual track
 $track =& $listing[$ti];
 echo '<tr>';
 echo '<td>'.$track->data().'</td>';
 echo '<td>'.$track->attributes('length').'</td>';
 echo '</tr>';
 }
 echo '</table>';
}
echo '</div>';

We retrieve the tracks node using getElementByPath(). We get each track using
the track attribute. We get the name of the track using the data() method. We get
the track length attribute using the attributes() method.

We can use this example in conjunction with the previous example in order to output
each album and its track listing. The next screenshot demonstrates what the output
could look like once some CSS has been applied:

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[338]

Editing
In addition to interrogating XML data, we can modify data. To add a new
album to the catalog we use the addChild() method; this method adds a new
sub-node of a specified type and returns a reference to the new node. For our
purposes, let's add the following to our layout file immediately following
$xmldoc =& $parser->document;

$newAlbum =& $document->addChild('album');

Once we have added the new album node, we must add the child nodes title,
artist, year, and tracks:

$title =& $newAlbum->addChild('title');
$artist =& $newAlbum->addChild('artist');
$year =& $newAlbum->addChild('year');
$tracks =& $newAlbum->addChild('tracks');

The first three nodes require us to set data values, however we cannot do this when
we create the node; we must do this afterwards using the setData() method:

$title->setData('Green Onions');
$artist->setData('Booker T. & The MG\'s');
$year->setData('1962');

The tracks node requires a bit more effort since we must add multiple track nodes
to this node, each of which needs to include the track length as a parameter:

$track =& $tracks->addChild('track', array('length'=>'1.45'));
$track->setData('Green Onions');

The second parameter that we pass to the addChild() method is an associative array
of node parameters. In this case we specify the length of the track as 1.45. We then
proceed to set the name of the track using the setData() method.

There is another way in which we could have added the length parameter to the
track node. The addAttribute() method is used to add and modify attributes.
Suppose that we accidentally entered the wrong length value and we now wish
to correct it:

$track->addAttribute('length', '2.45');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[339]

Saving
After we have parsed an existing XML file and modified the parsed XML we must
save our changes. To do this, we convert the parsed document into an XML string
and write it to the original file.

The JSimpleXMLElement class includes a method called toString(). This method
takes the parsed XML and converts it into an XML string. We can add this to the end
of our layout file:

// Convert parsed XML to an XML string
$xmlString = $xmldoc->toString();

The string returned from the toString() method is missing one vital part of an
XML document, the XML declaration. We must manually add this to $xmlString:

$xmlString = '<?xml version="1.0" encoding="UTF-8" ?>'
 . "\n" . $xmlString;

Now that we have converted our parsed XML to a string, we save it using the JFile
class that we import from the joomla.filesystem library:

jimport('joomla.filesystem.file');
if (!JFile::write($pathToXML_File, $xmlString))
{
 // handle failed file save
}

Yes, it really is as easy as that! We can now add a new menu item to the Main Menu
of type xml layout and test our code.

There are numerous methods in the JSimpleXMLElement class that allow us to
manipulate and interrogate data. For a full description of all these methods please
refer to Appendix F, Joomla! Utility Classes.

It is important to remember when working with JSimpleXML and
JSimpleXMLElement to pass objects by reference. Failing to do
this can result in loss and corruption of data.

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[340]

AJAX
AJAX (Asynchronous JavaScript and XML) is a JavaScript mechanism used to
request data, normally in XML format, from which a page can be updated. We can
use AJAX in our Joomla! extensions in a bid to improve the user experience.

Joomla! does not include any support specifically for AJAX. However, Joomla! does
include the lightweight JavaScript framework, MooTools. This framework includes
useful client-side features for handling AJAX.

Please note that the version of MooTools that is included with Joomla!
is 1.1.1 for all releases up to and including Joomla! 1.5.13. From version
1.5.14 and later MooTools 1.1.2 is included. The latest major release of
MooTools is 1.2, which is not compatible with the versions included with
Joomla! 1.5. Replacing the included versions with the latest version will
cause significant problems and is not advised.

Before we delve into the intricacies of JavaScript, let us take a look at how we
respond to an AJAX request. This may seem like a step backwards, but it will
make building the JavaScript far easier.

Response
To send a response we need to return an XML document. To do this we must use a
component. Joomla! supports five core document response types:

Error
Feed
HTML
PDF
RAW

XML is clearly missing from the list. This essentially leaves us with two options: we
can either create another document type, or we can use a RAW document. For more
information on document types see Chapter 5, Component Design. We will use the
RAW document type.

The RAW format is used when the format value provided in the request is not equal
to Feed, HTML, PDF, or Error.

•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[341]

Before we start, we need to consider the data we are going to retrieve. We will work
with our #__boxoffice_revues table and use our revue model to retrieve a single
record from the table.

We will modify the view.xml.php file that we created in Chapter 5, Component
Design in the revue view but first we will make a copy of it and name it
view.raw.php.

We are essentially going to replace the display() method of the BoxofficeViewRevue
class. To begin we need to retrieve the specified record from the table:

function display($tpl = null)
{
 // Get the model
 $model =& $this->getModel();

 // Get the cid array from the default request hash
 // If no cid array in the request, check for id
 $cid = JRequest::getVar('cid', null, 'DEFAULT', 'array');
 $id = $cid ? $cid[0] : JRequest::getInt('id', 0);

 $revue = $model->getRevue($id);

This retrieves the data from the revue model using the getRevue() method. After
retrieving the data we build the XML response using the JSimpleXMLElement class:

// get JSimpleXMLElement class
jimport('joomla.utilities.simplexml');

// create root node with attibute of id
$xml = new JSimpleXMLElement('film',
 array('id' => $revue->id));

This creates a root node of type revue with an attribute id with the value of the
chosen item's ID. Next, we add sub-nodes:

// add elements to the XML
$title =& $xml->addChild('title');
$revuer =& $xml->addChild('revuer');
$stars =& $xml->addChild('stars');
$text =& $xml->addChild('revue');

// set element data
$title->setData($revue->title);
$revuer->setData($revue->revuer);
$stars->setData($revue->stars);
$text->setData($revue->revue);

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[342]

This adds four sub-nodes and populates them with the record's corresponding values.

Our final task is to output the XML. We start with the XML declaration and then use
the toString() method:

echo '<?xml version="1.0" encoding="UTF-8" ?>'."\n";
echo $xml->toString();

If we were to test this now, our response would be displayed as plain text.
Although we have declared the content as XML, we have not declared the
document header MIME type as text/xml. To do this we use the document
setMimeEncoding() method:

$document =& JFactory::getDocument();
$document->setMimeEncoding('text/xml');

We are now almost ready to take a look at our XML response. We can do this by
simply adding the string &format=xml to the end or our URI query string when
viewing a single revue. This tells Joomla! that we want to use the RAW document
and that we want to use the view class held in the view.xml.php file. But before
we can do this we must make a small modification to the /com_boxoffice/
controller.php file. The existing display() method does not handle different
formats, so we must add one line and change another, as follows:

function display()
{
 // Set the view and the model
 $view = JRequest::getVar('view', 'revue');
 $layout = JRequest::getVar('layout', 'default');
 $format = JRequest::getVar('format', 'html');

 $view =& $this->getView($view, $format);
 $model =& $this->getModel('revue');
 $view->setModel($model, true);
 $view->setLayout($layout);

 // Display the revue
 $view->display();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[343]

Now when we view a movie revue we can add &format=xml to the end of the URI
query string (index.php?option=com_boxoffice&task=view&cid[]=7&format=xml)
and the response will be displayed as XML, as shown in the next screenshot:

Please note the use of the XHTML paragraph tag within the revue
node. The paragraph tag is part of the text value within the database,
but the XML doesn't treat it as an XML node. This is because when
we use the JSimpleXMLElement toString() method, node data is
automatically encoded.

Request
AJAX requests hinge on the JavaScript XMLHttpRequest class. This class is used to
perform HTTP requests. In Joomla! we don't have to directly use this class because
Joomla! comes with the MooTools library.

There are a few different ways in which we can handle AJAX using MooTools. We
can use the Ajax class, the XHR class, or the send() method. We generally only use
the Ajax and XHR classes directly if we are creating complex AJAX requests.

We will explore the send() method. This method is intended for use with form
elements; it submits form data and allows us to handle the response when it is
received. For more information about the Ajax and XHR classes, please consult
the official MooTools documentation: http://docs111.mootools.net/.

We will create a new layout file, raw.php, and place it in the views/revue/tmpl
folder. This layout file will handle our AJAX request.

Before we delve into the JavaScript we need to create a form which can be used
to initiate an AJAX request. Add the following code to the raw.php layout file:

<?php defined('_JEXEC') or die('Restricted access'); ?>

<form id="form1" method="post" action=
 "<?php echo JRoute::_('index.php?option=com_boxoffice'); ?>">

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[344]

 <input name="id" type="text" id="id" />
 <input name="format" type="hidden" id="format" value="raw" />
 <input name="view" type="hidden" id="view" value="revue" />
 <input name="Submit" type="submit" value="Submit" />

</form>

<div id="update">Update Area </div>

We place a div element with the id of update immediately following the form; this
will be where the results from the AJAX request will be displayed.

Save the file and append /index.php?option=com_boxoffice&cid[]=1l&layout=
raw to your site URL. You should be presented with the following output:

We will place a record id in the input field which will become part of the request.
However, before we can obtain the desired results we must add some JavaScript
to handle the response.

It's important when we add the JavaScript that we encapsulate it within the window
domready event. This ensures that the JavaScript isn't executed until the DOM
(Document Object Model) is fully loaded. Immediately after the code we just
entered, we must add the following:

<?php

 // Add mootools
 JHTML::_('behavior.mootools');

 $js = "window.addEvent('domready', function(){
 $('form1').addEvent('submit', function(e){
 // Stop the form from submitting
 new Event(e).stop();

 // Update the page
 this.send({ update: $('update') });
 });
 });";

 // Add JavaScript to the page
 $document =& JFactory::getDocument();
 $document->addScriptDeclaration($js);
?>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[345]

Let's examine this code in greater detail.

We start by invoking JHTML::_('behavior.mootools'). This ensures that the
MooTools library is loaded, without which the JavaScript we want to use will
not work.

Invoking the MooTools library is generally not necessary as Joomla!
normally loads it. It is considered good practice however to invoke it
should it have been unloaded for some reason.

The first line of JavaScript adds a new event handler function to the window
domready event. Within the event handler function we add a new submit event
handler function to form1. This function will be executed when form1 is submitted.

We use the $('form1') syntax to point the JavaScript at a specific DOM element
identified by the supplied ID, in this case the form with the id="form1".

The first thing that this function does is prevent the form submission event from
continuing. If we do not do this, the user will be redirected to the XML. The next
thing we do is execute the send() method.

There are a number of settings that we can pass to the send() method. In this case
we pass the DOM element id that we want to update, aptly named update.

In order to use our JavaScript we must add it to the document, which we do with the
final two lines of code.

We can now proceed and use the form. Enter a record number (we entered the
number 7 as an example) in the input box and click on the Submit button. The
request will be submitted and the Update Area text will be replaced with the
response, as shown in the following screenshot:

There is one rather obvious issue with this—the updated area has been populated
with the RAW XML response. In some cases, this is useful because we don't have
to return an XML response. If we wanted to simply display some basic text, instead
of responding with an XML document, we could respond with an XHTML snippet.
However, we are trying to deal with an XML response. This means that we need to
parse the XML and update the page accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[346]

This example builds on the JavaScript we used earlier. This time we have removed
the update setting and added the onComplete event. The onComplete event is
executed upon completion of a request:

// Update the page
this.send({ onComplete: function(){

 // Get the XML Nodes
 var film = this.response.xml.documentElement;
 var title = film.childNodes[1];
 var revuer = film.childNodes[3];
 var stars = film.childNodes[5];
 var revue = film.childNodes[7];

 // Prepare the XHTML
 var updateValue = '<h3>' + title.firstChild.nodeValue
 + ' (' + stars.firstChild.nodeValue
 + ')</h3>'
 + '<p>' + revuer.firstChild.nodeValue
 + '</p>'
 + '<p>' + revue.firstChild.nodeValue
 + '</p>';

 // Update the page element
 $('update').setStyle('margin-top', '10px');
 $('update').setHTML(updateValue);
}});

Keeping in mind what our XML response looked like, we must access the root node
film. We then must access the sub-nodes title, revuer, stars, and revue. From
these we can create an XHTML string with which to update the page.

Finally, we must update the page with the new value at the end of the onComplete
function. Using the $('update').setStyle('margin-top', '10px'); function,
we add some space between the form input box and the update area.

Now when we use the form, the update element content will be updated with
an XHTML interpretation of the XML retrieved by the AJAX request. The next
screenshot depicts the resultant updated page with CSS applied:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[347]

When we encounter difficulties creating JavaScript, it can be useful to use a
JavaScript debugger. An example of such a debugger is the freely available
Firebug, a utility for Firefox that provides us with a number of useful tools
(http://www.getfirebug.com):

LDAP
LDAP (Lightweight Directory Application Protocol) is often associated with user
authentication. While it is true that LDAP is used extensively for authentication,
it can be used for a wide variety of applications.

We'll stick with the user theme, but instead of authenticating, we'll use an LDAP
connection to create a listing of users and their telephone numbers.

Joomla! provides us with the JLDAP class; this class allows us to connect to an
LDAP server and browse the contents. To use the class we must import the
corresponding library:

jimport('joomla.client.ldap');

Before we jump in head first, there is one more thing we need to take a look at. For
the purpose of the following examples we will use an LDAP test server.

This screenshot depicts the LDAP tree we're interested in:

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[348]

In order to interrogate the LDAP server we must connect to it. We'll assume the
following settings are being used:

Setting JLDAP Setting Name Value
Host host 192.168.0.2
Port port 389
LDAP v3 use_ldapV3 True
TLS negotiate_tls False
No Referrals no_referrals True
Base DN base_dn dc=example,dc=org
User DN users_dn cn=[username],dc=example,dc=org

When we create a new JLDAP object we have the option to pass an object to it
with the necessary settings. The easiest way to achieve this is normally through
a JParameter object. This means that we can use the JParameter and JElement
classes to allow an administrator to define the necessary LDAP settings:

$params = new JParameter($paramString);
$client = new JLDAP($params);

The next step is to connect to the LDAP server. This is relatively easy:

if (!$client->connect())
{
 // connection failed, handle it!
}

The connect() method instantiates a connection with the LDAP server. Once we
are connected we must bind to the server. There are two ways of doing this.

We can bind anonymously; this is generally less common because of security issues
and privacy of data. To do this we use the anonymous_bind() method:

if (!$client->anonymous_bind())
{
 // bind failed, handle it!
}

Alternatively, we can bind as a user. In this example, we bind as the user Manager
with the password secret, the default user and password in an OpenLDAP server:

if (!$client->bind('Manager', 'secret'))
{
 // bind failed, handle it!
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[349]

You might be scratching your head because of the username; perhaps thinking
that this should this be a DN (Distinguished Name)? We don't have to provide the
username as a DN because our settings include users_dn which has the value of
cn=[username],dc=example,dc=org. When we bind to LDAP, we automatically
use this string, substituting [username] with the bound username.

Alternatively, when we connect, we can supply the full user DN and pass a
third parameter. When this third parameter is true, no substitution based on the
users_dn setting occurs:

if (!$client->bind('cn=Manager,dc=example,dc=org', 'secret', true))
{
 // bind failed, handle it!
}

Once we have successfully bound to the server we can start looking for LDAP
objects. To do this we need to use the search() method. This method searches the
base DN and all OUs (Organization Units) within it. When we perform a search we
must define one or more filters.

The filter syntax is defined by RFC 2254. For more information please visit:
http://www.ietf.org/rfc/rfc2254.txt?number=2254.

We are looking specifically for Person objects. The filter we use to describe this
is objectClass=Person. This will filter out any LDAP objects that are not of the
class Person:

$filters = array('(objectClass=Person)');
$results = $client->search($filters);

Notice that $filters is an array, which allows us to perform multiple searches,
returning the results into a single result set.

If we don't want to search the base DN, we can specify a different DN to search within.
The screenshot we showed earlier describes users in the people OU. We can restrict
the search to this OU:

$people = 'ou=people,dc=example,dc=org'
$results = $client->search($filters, $people);

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[350]

Once the search has been performed, $results is populated with an array of
results. Each result is represented as an associative array. Our next task is to
present the results:

for ($i = 0, $c = count($results); $i < $c; $i ++)
{
 $result =& $results[$i];
 echo '<div>';
 echo ''.$result['givenName'][0].'
';
 echo $result['description'][0].'
';
 echo ''.$result['telephoneNumber'][0].'';
 echo '</div>';
}

Notice that each result array element is an array in its own right. This is because
LDAP allows multiple values for object attributes. The only exception to this is
the DN; LDAP objects can only have one location.

Our example assumes that the object attributes givenName, description, and
telephoneNumber are always present in the results. In a production environment,
we would test the attributes to ensure they are present.

If we apply some suitable CSS when we output the results, our output may appear
similar to the next screenshot:

There are many other things that we can achieve using the JLDAP class. For a
complete description of all of the available methods please refer to Appendix G,
Session and Request Handling.

Email
Email has revolutionized communication. Joomla! provides us with the JMail class,
which allows us to send email. JMail supports three different mechanisms for
sending email: the PHP mail function, Sendmail, and SMTP.

There is a global JMail object that we can access using the JFactory method

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[351]

getMailer(). This object is configured with the global mail settings that
administrators edit through the Global Configuration Server settings:

In order to send an email we must retrieve the JMail object and set the sender's
email address:

$mailer =& JFactory::getMailer();
$mailer->setSender('example@example.org');

There are two ways in which we can specify the email address. We can either use a
string, as used in the previous line of code, or we can use an array that defines the
email address and name:

$sender = array('example@example.org', 'example')
$mailer =& JFactory::getMailer();
$mailer->setSender($sender);

We can also add reply-to addresses. Unlike setting the sender's address, the reply-to
addresses must be either an array of strings or an array of arrays:

$reply = array('example@example.org', 'Example');
$mailer->addReplyTo($reply);

$reply0 = array('example@example.org', 'Example');
$reply1 = array('example@example.org', 'Example');
$replies = array($reply0, $reply1);
$mailer->addReplyTo($replies);

We can add recipients in three ways:

1. As a normal recipient by using addRecipient()
2. As a BCC (Blind Carbon Copy) recipient by using addBCC()
3. As a CC (Carbon Copy) recipient by using addCC()

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[352]

Unlike the sender and reply-to addresses, we cannot define the recipient email
address name; we must provide either an email string or an array of email strings:

$mailer->addRecipient('foo@example.org');

$recipients = array('bar@example.org', ' baz@example.org ');
$mailer->addRecipient($recipients);

Our next task is to set the subject line and the body text of the email. We do this
using the setSubject() and setBody() methods:

$mailer->setSubject('Some Email');
$mailer->setBody('Lorem ipsum dolor sit amet.');

By default email body content is always plain text. We can modify the body
to support HTML using the IsHTML() method; this sets the body MIME type
to text/html:

$mailer->IsHTML(true);

Our final task is to send the email by using the Send() method. This will send
the email using the preconfigured email options:

if ($mailer->Send() !== true)
{
 // an error has occurred
 // a notice will have been raised by $mailer
}

That's it, we can now prepare and send emails. Read on for a few additional things
that may prove useful.

If we want to modify the way in which the email will be sent, we can use the
useSendmail()and useSMTP() methods. These methods, when supplied with
the proper parameters, are used to set the mechanism by which the mailer will
send emails.

If you have recognized any of the methods so far, you have probably worked
with the open-source PHPMailer library. The JMail class is an extension of the
PHPMailer class. If you prefer, you can use the PHPMailer class. To do this you
will first have to import the necessary library:

jimport('phpmailer.phpmailer');
$mailer = new PHPMailer();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[353]

Be aware that when doing this the object will not be automatically loaded
with the global email settings.

In addition to the JMail class, there is also a static JMailHelper class. This class
consists mainly of methods designed to clean data before adding it to an email (we
don't have to use these, JMail takes care of it for us). There is a method in the helper,
isEmailAddress() that confirms whether an email address is in a valid format. This
can be helpful if we ever ask users to input their email address:

if (!JMailHelper::isEmailAddress($someEmailAddress))
{
 $this->setError(JText::_('INVALID_EMAIL_ADDRESS'));
 return false;
}

Note that if we haven't used the JMail class earlier in the script, we will need to
import the JMail library before we use the JMailHelper class:

jimport('joomla.utilities.mail');

For a complete description of the JMail class please refer to Appendix F, Joomla!
Utility Classes.

File transfer protocol
FTP has long been established as the standard way for administrators to transfer files
to their web servers. Joomla! provides us with the JFTP class, which can be used to
connect to FTP servers and perform common functions.

The main purpose of this class is to overcome problems with access rights
when working with the local file system. When FTP access is enabled in the site
configuration, Joomla! will attempt to use FTP instead of PHP file system functions.

Whenever we connect to an FTP server we require certain settings to be in place. If
we want to use the FTP settings defined in the global configuration, we can use the
JClientHelper class to easily access these settings.

This example demonstrates how we can use JClientHelper static
getCredentials() method to get the FTP settings:

jimport('joomla.client.helper');
$FTP_Settings = JClientHelper::getCredentials('ftp');

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[354]

The JClientHelper static getCredentials() method returns an associative array
with the following keys: enabled, host, port, user, pass, and root. We briefly
mentioned earlier that the global FTP access can be enabled and disabled; the
enabled key provides us with the value of this option. We must never attempt
to use the global FTP settings if this value is not equivalent to 1:

if ($FTP_Settings['enabled'] == 1)
{
 // It is OK, we can use the global FTP settings
}

Of course we don't have to use the global FTP settings. We can just as easily use
some other settings, perhaps specified in a component configuration.

To use the JFTP class we must first import and create a new instance of the class.
We use the static JFTP method getInstance()to create a new instance of the class
as this example illustrates:

jimport('joomla.client.ftp');

$client =& JFTP::getInstance($FTP_Settings['host'],
 $FTP_Settings['port'],
 null,
 $FTP_Settings['user'],
 $FTP_Settings['pass']);

The third parameter in the previous example set to null is an optional associative
array of FTP options. This array can contain the type and timeout keys:

type is used to determine the FTP connection mode, either of
FTP_AUTOASCII, FTP_BINARY, or FTP_ASCII; the default mode
is FTP_BINARY.
timeout is used to set the maximum time, in seconds, which should lapse
before the FTP connection timeouts. PHP versions prior to 4.3.0 do not
support the timeout option.

When we use the getInstance() method the returned object will contain a
connection to the FTP server and will have authenticated itself. We can verify
the JFTP object has successfully connected to the FTP server by using the
isConnected() method:

if (!$client->isConnected())
{
 // handle failed FTP connection
}

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[355]

Most of the available JFTP methods are self explanatory and are standard FTP type
functions. The next table describes some of the more common methods that we can
use with a JFTP object:

Method Description
quit Closes the FTP connection.
pwd Determines the current working directory. When using the global

settings the root key value should indicate the location of the Joomla!
installation.

chdir Changes the current working directory.
rename Renames a file or folder.
chmod Changes a file or folder mode (permissions).
delete Removes a file or folder.
mkdir Creates a new folder.
create Creates a new file.
read Reads the contents of a file.
get Retrieves a file.
store Stores a file on the server.
listNames Lists the names of files in the current working directory.
listDetails Lists the names of the files and folders in the current working directory.

For a complete description of the JFTP class please refer to Appendix F, Joomla!
Utility Classes.

Web services
There are many Web Service APIs that we can use in conjunction with Joomla!. This
is a list of a few of the more common Web Service APIs that we are likely to use:

eBay
Google (Calendar, Checkout, Maps, Search)
Microsoft (Live, MSN, XBOX)
Yahoo! (Mail, Maps, Search)

The API and service that we use determines the way in which we handle the API.
We will take a look at the Yahoo! Search API. Before we start, we need to discuss
the Yahoo! Application ID.

•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[356]

Yahoo! uses a unique ID to identify the applications that use its API. If you intend to
use the Yahoo! API, it is important that you register your application before you start
development. This will ensure that you are able to obtain the desired ID.

Most Web Service APIs require us to use some type of ID. This allows the owners
of the API to analyze the usage of their services.

For the purposes of this example we will use the application ID YahooDemo—this is
the default ID used when demonstrating the use of the Yahoo Search API.

In order to quickly test our search results function we will create a layout file,
yahoo.php, and place it in the views/revue/tmpl directory. We can then append
&layout=yahoo to our URL.The first thing that we must do to create our Yahoo!
Search is to build the request query that we will use to obtain the results. The
following example assumes that we have used a search box named yahooSearch:

<?php
 // No direct access
 defined('_JEXEC') or die('Restricted access');

// get the search terms
$query = rawurlencode(JRequest::getString('yahooSearch',
 'Joomla!', 'DEFAULT',
 JREQUEST_ALLOWRAW));

We use the PHP rawurlencode() method because $query will be used in a URI.
We use the JREQUEST_ALLOWRAW mask so as not to lose any data from the request.
There is a full explanation of the JRequest masks in Chapter 11, Error Handling and
Security, and a detailed description of the JRequest class in Appendix G, Request and
Session Handling.

We make the assumption that if no search terms are provided, we want to search for
Joomla!. In reality, we would probably redirect the user.

Next, we must create the request URI from which we will obtain the search results,
as seen in the next code snippet:

// Prepare the request URI
$request =
 'http://search.yahooapis.com/WebSearchService/V1/

 webSearch?appid=YahooDemo&query='.$query.'&results=4';

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[357]

Now that we have the URI we can proceed to interact with the Yahoo! API. We
use the PHP function file_get_contents() to perform the request and retrieve
the results:

// Make the request
if (!$xml = file_get_contents($request))
{
 // handle failed search request
}

The results of the request, if successful, are returned as an XML document.
How we choose to interpret these results is up to us. We explained how to use
the JSimpleXML parser earlier in the chapter. We can use it to interpret the
Yahoo! results:

$parser =& JFactory::getXMLParser('Simple');
$parser->loadString($xml);
$results =& $parser->document->Result;

Now that we have a parsed XML document, we can process the search results. The
$results variable becomes an array of result nodes; these are the nodes that Yahoo!
uses to encapsulate each result.

We will keep the processing simple, and output the results directly to the screen as
an ordered list. This example uses the result sub-nodes ClickUrl, Title, Summary,
and DisplayUrl. In each case, we always access the zero element; we can do this
because we know that only one node of each of these types will ever be present in
a result node:

echo '<ol class="yahooSeachResults">';
for ($i = 0, $c = count($results); $i < $c; $i ++)
{
 $result =& $results[$i];
 echo '';
 echo 'ClickUrl[0]->data().'"
 target="_blank">'
 .$result->Title[0]->data()
 .'
';
 echo $result->Summary[0]->data().'
';
 echo ''.$result->DisplayUrl[0]->data().'';
 echo '';
}
echo '';

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[358]

If we add some CSS to our document we can create a highly customizable search
facility, which a user need not even know is based on the Yahoo! API:

 // add CSS to the document
 $doc =& JFactory::getDocument();

 $doc->addStyleDeclaration(
 '.yahooSeachResults li {
 margin: 20px;
 padding: 5px;
 width: 700px;
 list-style: upper-roman;}

 .yahooSeachResults strong {font-size: 18px;}'
);

?>

Now when we use this layout we will see the following output:

This example has demonstrated how easy it is to use web services. Although this
example is not particularly advanced, it shows how quickly we can create very
powerful tools for Joomla!.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[359]

Building a web service (XML-RPC plugin)
XML-RPC is a way in which systems can call procedures on remote systems through
HTTP using XML to encode data. Joomla! includes an XML-RPC server that we can
extend using plugins. For more information about plugins, please refer to Chapter 7,
Plugin Design.

The XML-RPC server will only function if the 'Enable Web Services' option in the
Global Configuration is enabled.

Before we begin, it is important to understand that Joomla! relies heavily on the
phpxmlrpc library, which is available from: http://phpxmlrpc.sourceforge.net.
Due to this, some of the conventions we will encounter when building XML-RPC
plugins will differ from the rest of Joomla!.

When we briefly discussed XML-RPC in Chapter 7, Plugin Design, we described an
event that enables us to define XML-RPC web service calls. This is only one part of
XML-RPC plugins; the second part is a static class or group of functions that handle
an XML-RPC request.

Before we delve any further, we need to be familiar with the XML-RPC data types.
There are six simple data types and two compound data types. The next table
describes the six simple data types:

Type Variable Description
base64 $xmlrpcBase64 Base64 binary encoded data
boolean $xmlrpcBoolean True or false: 0 = false, 1 = true

dateTime.iso8601 $xmlrpcDateTime Date and time in iso8601 format, for
example YYYYMMDDTHH:MM:SS

double $xmlrpcDouble Floating-point number

int/i4 $xmlrpcInt or
$xmlrpcI4 Integer

string $xmlrpcString ASCII text

The next table describes the two compound data types:

Type Variable Description
array $xmlrpcArray Array
struct $xmlrpcStruct Associative array (hash)

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[360]

Compound data types are so called because they combine the other types. array
and struct data types encapsulate multiple values, each of which can be of any
data type.

If you are wondering exactly why we care about the different data types in
XML-RPC, it is because we need them in order to create a signature for the different
XML-RPC calls. A signature defines the data that is outputted and inputted by a
web service call.

We will start by creating a plugin called 'foobar' that will perform some basic
mathematical functions. The first thing we need to do is create a handler for the
onGetWebServices event:

$mainframe->registerEvent('onGetWebServices',
 'plgXMLRPCFoobar');

/**
 * Gets the available XML-RPC functions
 *
 * @return array Definition of the available XML-RPC functions
 */
function plgXMLRPCFoobar()
{
 // get the XMl-RPC types
 global $xmlrpcI4, $xmlrpcInt, $xmlrpcBoolean, $xmlrpcDouble,
 $xmlrpcString, $xmlrpcDateTime, $xmlrpcBase64,
 $xmlrpcArray, $xmlrpcStruct, $xmlrpcValue;

 // return the definitions
 return array
 (
 // addition service
 'foobar.add' => array
 (
 'function' => 'plgXMLRPCFoobarServices::add',
 'docstring' => 'Adds two numbers.',
 'signature' => array(array($xmlrpcStruct,
 $xmlrpcDouble,
 $xmlrpcDouble))
),

 // subtraction service
 'foobar.subtract' => array
 (

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[361]

 'function' => 'plgXMLRPCFoobarServices::subtract',
 'docstring' => 'Multiplies two numbers.',
 'signature' => array(array($xmlrpcStruct,
 $xmlrpcDouble,
 $xmlrpcDouble))
)
);
}

This example is complex and what it is doing may be less than obvious, so
let's break it down into its component parts. The first thing that we do in the
plgXMLRPCFoobar() function is to declare a set of global variables.

We described these variables in the XML-RPC data type tables. There is one addition
to this list, $xmlrpcValue. This variable is used to encapsulate all other data types.
This is an example of an integer in an XML-RPC document:

<value><int>666</int></value>

Technically, we do not have to use the type variables because they are only
strings. For example, $xmlrpcDouble is defined as 'double'. Using these defined
variables allows us to identify the expected data types for the signatures, along with
documentation in case the signature is changed in the future.

Once we have made these variables global, we build an associative array and return
it. The keys in this associative array are the names that a client would use to invoke
an XML-RPC service call. In our example, we define two keys: foobar.add and
foobar.subtract.

The values for these keys are also associative arrays. The next table describes the
keys we use in these arrays:

Key Description
docstring A string describing the purpose of the XML-RPC call
function The function that Joomla! will execute when an XML-RPC response of this

nature is received
signature Defines the return type and the input required from an XMLRPC request

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[362]

Let's walk through the foobar.add array to understand what is happening:

The function is defined as plgXMLRPCFoobarServices::add. This means
that when a foobar.add call is made we will execute the static add()
method in the plgXMLRPCFoobarServices class.

An XML-RPC function can be a static method in a class
or a function.

The docstring is nice and easy; it tells us that this web service call 'Adds
two numbers'. This is a human-readable string, and generally does not
carry any meaning to the client machine itself.
The signature, used to define the input and output of the call, is an array.
The output value is always the first value in the array. The remaining
elements describe the input values that a client must provide when calling
the service.

In our example, the signature tells us that the call will return a struct, and
requires two double input values. This is what the foobar.add signature value
looks like:

array(array($xmlrpcStruct, $xmlrpcDouble, $xmlrpcDouble))

You may have noticed that the signature is an array of arrays. This is because
service calls can have multiple signatures. Suppose that we wish to add two or three
values; we would need to define two signatures, as this example demonstrates:

array(
 array($xmlrpcStruct, $xmlrpcDouble, $xmlrpcDouble),
 array($xmlrpcStruct, $xmlrpcDouble, $xmlrpcDouble,
 $xmlrpcDouble)
)

Now that we have defined the web service calls, we need to create the procedures
that drive them. For our example, we need to create the static methods add() and
subtract() in a class named plgXMLRPCFoobarServices. It is normal to implement
these procedures within the same class as the event handler.

When we define the parameters for these methods, we must define the same number
of parameters as we did in the signatures. This example shows how we might
implement the add() and subtract() methods:

/**
 * Foobar XML-RPC service handler
 *
 * @static

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[363]

 */
class plgXMLRPCFoobarServices
{
 /**
 * Adds values together
 *
 * @static
 * @param float xmlrpcDouble
 * @param float xmlrpcDouble
 * @return xmlrpcresp xmlrpcDouble
 */
 function add($value1, $value2)
 {
 global $xmlrpcDouble, $xmlrpcStruct;

 // determine the sum of the two values
 $product = $value1 + $value2;

 // build the struct response
 $result = new xmlrpcval(array(
 'value1' => new xmlrpcval($value1, $xmlrpcDouble),
 'value2' => new xmlrpcval($value2, $xmlrpcDouble),
 'product' => new xmlrpcval($product, $xmlrpcDouble)),
 $xmlrpcStruct);

 // encapsulate the response value and return it
 return new xmlrpcresp($result);
 }

 /**
 * Subtracts a value from another
 *
 * @static
 * @param float xmlrpcDouble
 * @param float xmlrpcDouble
 * @return xmlrpcresp xmlrpcDouble
 */
 function subtract($value1, $value2)
 {
 global $xmlrpcDouble, $xmlrpcStruct;

 // determine the difference of the two values
 $product = $value1 - $value2;

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[364]

 // build the struct response
 $result = new xmlrpcval(array(
 'value1' => new xmlrpcval($value1, $xmlrpcDouble),
 'value2' => new xmlrpcval($value2, $xmlrpcDouble),
 'product' => new xmlrpcval($product, $xmlrpcDouble)),
 $xmlrpcStruct);

 // encapsulate the response value and return it
 return new xmlrpcresp($result);
 }
}

The example introduces two classes that are fundamental to creating a response.

The xmlrpcval class is used to define an XML-RPC value. When we construct a class
of this type, we pass two parameters, the value itself and the value type.

The xmlrpcresp class is used to encapsulate an XML-RPC response. When we
construct a class of this type, we pass one parameter, the return xmlrpcval object.
If an error is encountered, there is a different set of parameters that we can pass. For
more information about this, please refer to the official phpxmlrpc documentation
available at http://phpxmlrpc.sourceforge.net/doc/.

This means that both of our static example methods will return a struct value. The
returned struct value will be populated with three values—value1, value2, and
product. We return value1 and value2 so that the client can verify that nothing
has corrupted the input values during transport.

To test an XML-RPC plugin we can use the phpxmlrpc debugger, which is available
at http://phpxmlrpc.sourceforge.net/.

The debugger enables us to make XML-RPC calls to remote systems and view the
responses. The path to the Joomla! XML-RPC server is identical to that of the root
of the installation plus the folder xmlrpc.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[365]

The next image is a screenshot of the debugger when used to list available methods
on a Joomla! installation located at 192.168.0.6 (the exact output will depend upon
which XML-RPC plugins are enabled):

Next to each method is a Describe button. We can use this to find out more
information about a method and to generate the payload necessary to execute the
method. To execute an individual method we must change the action to Execute
method and complete the payload field as necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

APIs and Web Services

[366]

The next screenshot depicts the debugger when used to execute the
foobar.add method:

In this instance, we pass the double values 4.2 and 9.6. The response shows the
output from the XML-RPC server. The response, as specified by the signature,
is a struct. It contains three values—value1, value2, and product.

If you experience problems when building XML-RPC plugins, you should
try setting the debugger's Show debug info option to More. This will
enable a more verbose output, including the RAW input and response.

Joomla! includes an XML-RPC client, located in xmlrpc/client.php. To use
this client, debugging must be enabled in the Global Configuration. The client is
relatively simple; the phpxmlrpc debugger provides us with a far more powerful
mechanism with which to interrogate the XML-RPC server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[367]

Summary
In this chapter we covered how to include and use various APIs and web services in
our extensions.

We began by discussing how we could create and use XML documents. We
learned that XML is integral to many web services and how to parse and navigate a
parsed XML document. Joomla! provides multiple XML parsers; in this chapter we
described how to use the JSimpleXML parser. Before we use this parser, we should
always consider any possible benefits of using the other available parsers.

We discussed how to add AJAX capabilities to our extensions using the included
MooTools JavaScript library. Before we implement any AJAX we should always
consider the impact and suitability of using it.

We covered LDAP, a very powerful open technology. Its main use as an
authentication method and as a network management tool often means that we use it
as a data source. However, LDAP is bi-directional and we can write to LDAP servers
provided we have sufficient access rights.

Using email is a common task. Joomla!'s JMail class provides us with the power to
send emails. Administrators often want to enable notification within extensions so
that they are not required to continually log in to a system.

The JFTP class provides us with an additional way of accessing a file system. In
addition to using FTP with remote servers, we can use FTP locally, when enabled,
to give us better control over our Joomla! installation. We normally use the classes
located in the joomla.filesystem library when dealing with the local file system.

In our next chapter we will discuss how to make our extensions safer and more
secure. We will also cover error handling, access control, and how to prevent
malicious attacks on our systems.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security
Security and graceful error handling is imperative to any good computer system.
For systems such as Joomla!, which are often available on the World Wide Web, poor
security or incorrect error handling carries a high risk factor, and that risk is often
higher when using third-party extensions.

This chapter focuses on four main topics:

Errors, warnings, and notices
Dealing with CGI request data
Access control
Attacks

Handling errors is a common task; we will explore the different error levels
according to which we classify our errors, and ways in which we can modify
the error levels and how they are handled.

Many security flaws in Joomla! extensions originate from inadequate processing
of input data. We will explore how we should access CGI request data and how
we can process that data to ensure that it does not pose a security risk.

We use access control to restrict or allow the tasks that users can perform. We will
investigate the Joomla! access control mechanisms and how we can implement
them in our extensions.

The final subject that we will look at is attacks. Attacks are malicious attempts to
break a system. There are many ways in which an attacker can go about this; we
will stick to the most common methods.

•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[370]

Errors, warnings, and notices
When we encounter errors it is important that we take some counter action. Joomla!
provides a common error handling mechanism, which we access using the static
JError class. JError takes advantage of the phpTemplate library, in particular the
patError and patErrorManager classes. A complete description of the JError class
and all of its methods is available in Appendix F, Joomla! Utility Classes.

Error Level Error Type Class Method
1 (E_ERROR) Error JError::raiseError()

2 (E_WARNING) Warning JError::raiseWarning()

8 (E_NOTICE) Notice JError::raiseNotice()

Level E_ERROR errors load an error document (JDocumentError), set the error,
render the document, send the response, and finally, terminate the application.
When we invoke any of the raise methods we pass two parameters, an error code
and an error message.

The error code is a string that is used to identify the error. Error codes are rendered
using one of three templates, 403.php, 404.php, or 500.php. If the error code is 403
(Access Denied) or 404 (Page could not be found), we use the 403.php and 404.php
templates respectively. These templates include some additional standard text that
describes the normal reasons for receiving a 403 or a 404 error. All other error codes
use the 500.php (Internal Server Error) template.

Have a look at the output for the following 403 and 500 errors in the next
two screenshots:

JError::raiseError('403', JText::_('Access denied'));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[371]

JError::raiseError('500', JText::_('An error has occurred'));

Level E_ERROR errors (JError::raiseError()) are for fatal errors. When a non fatal
error occurs we can use the weaker warning and notice levels. These two levels are
handled in the same way, but it is still useful to make the distinction between the
two; it helps with the classification of errors and the process of debugging:

JError::raiseWarning('ERROR_CODE', JText::_(
 'Look out! There is a giant boxing kangaroo behind you!'));

This is perhaps not the most useful of messages and perhaps a little unlikely,
but you get the idea. Exactly how you choose to classify your errors is up to you.
Classification of errors tends to be relatively intuitive. An error that is not fatal, but
should not have occurred, is a warning. An error that is not fatal and is more or less
expected to occur at some point is a notice.

The error code we used in the last example, ERROR_CODE, may seem a little odd.
Joomla! does not define specific error codes, which means we can define our own
error code schema.

Return values
When we use any of the three error methods we also get a return value, a
JException object. The JException object contains a wealth of information about
an error, including the error level, error code, and error message. When we raise an
E_ERROR level error the object will also contain back-trace information that includes
the name of the file and the line where the error occurred.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[372]

There are many methods in other classes that, if an error occurs, will return the
result. We can test the return value of a method to see if it is an error using the
JError::isError() method. As an example, the JController execute()
method returns an error if no method is mapped to the task we try to execute:

$result = $SomeCOntroller->execute('someTask');
if(JError::isError($result))
{
 // handle invalid task
}

Customizing error handling
The handling of errors is not set in stone. We can modify the way each of the levels
is handled and we can add new levels. We can choose any of the following modes
(maximum of one mode per error level):

Mode Description
Ignore Error is ignored
Echo Prints the JException message to screen
Verbose Prints the JException message and back-trace information to screen
Die Terminates the application and prints the JException message to screen
Message Adds a message to the application queue
Log Adds a log entry to the application error log
Trigger Triggers a PHP error
Callback Calls a static method in another class

To modify the error handling of an existing error level we can use the JError::
setErrorHandling() method. This example redefines the Notice error to use the
Ignore mode. Some modes require a third parameter, an array of options specific
to the mode:

JError::setErrorHandling(E_NOTICE, 'Ignore');

To define a new error level we can use the JError::registerErrorLevel()
method. If the error level is already defined, the method will return false:

define('MY_ERROR', 666);
if(!JError::registerErrorLevel(MY_ERROR,
 'My Extension Error',
 'Message'))
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[373]

 JError::raiseError('SOME_ERROR',
 JText::_('Error level already defined')
 .' ['.MY_ERROR.']');
}

Once we have defined a new error level, we can use the JError::raise() method
to raise an error of that level. The raise() method can be used with any of the
defined error levels, including E_ERROR, E_WARNING, and E_NOTICE:

JError::raise(MYEXT_ERROR, 'SOME_ERROR',
 JText::_('Look out! It\'s those boxing kangaroos again!'));

Dealing with CGI request data
 It is essential that we sanitize incoming data by removing any unexpected data and
ensuring that the data is of an expected type. Joomla! provides us with the static class
JRequest, which eliminates the need to directly access the request hashes $_GET,
$_POST, $_FILES, $_COOKIE, and $_REQUEST. Using JRequest to its full potential
we can perform useful data preprocessing. For detailed information on the JRequest
class see Appendix G, Request and Session Handling.

Preprocessing CGI data
 To access a request value we must use the static JRequest::getVar() method.
In this example we get the value of the input id:

$id = JRequest::getVar('id');

If we wish we can define a default value; this is the value that will be returned if the
request value is not defined. In this example we use the value 0 if the request id is
not set:

$id = JRequest::getVar('id', 0);

By default JRequest::getVar() obtains data from the $_REQUEST hash. We can
specify the source hash of the data as any one of the following: GET, POST, FILES,
COOKIE, and DEFAULT. If we specify DEFAULT or an unknown source hash, the data
will be retrieved from the $_REQUEST hash. In this example we get the data from
the $_POST hash:

$id = JRequest::getVar('id', 0, 'POST');

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[374]

Casting is a mechanism we can use to guarantee that a variable is of a specific type.
We have a choice of the following types:

Cast Type Description Alias Method
ALNUM Alphanumeric string: can include A-Z, a-z, and 0-9. ————

ARRAY Array. ————

BASE64 Base64 string: can include A-Z, a-z, 0-9, forward
slashes, plus signs, and equal signs.

————

BOOL / BOOLEAN Boolean value. getBool()

CMD String suitable for use as a command: can include
A-Z, a-z, 0-9, underscores, full stops, and dashes.

getCmd()

FLOAT / DOUBLE Floating-point number. getFloat()

INT / INTEGER Whole number. getInt()

PATH File system path. ————

STRING String: this will attempt to decode any special
characters.

getString()

WORD String with no spaces: can include A-Z, a-z, and
underscores.

getWord()

In the following example, we cast the value to an integer:

$id = JRequest::getVar('id', 0, 'POST', 'INT');

The issue with the cast type parameter is that we must specify a default value
and the hash before we can specify the type. To overcome this we can use the
alias methods described in the table. This example retrieves someValue as a
floating-point number:

$value = JRequest::getFloat('someValue');

We can use the default value and source hash parameters with the alias methods in
the same way as we do with the getVar() method.

A fifth parameter provides a bit mask that restricts the allowable content of the
request string. We can apply different masks, either alone or combined using bit
logic. Technically there are eight possible values; Joomla! provides three defined
constants. The possible values are as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[375]

Bit
Value

Constant Description

0 This is the default and is the most restrictive; leading
and trailing whitespace will be trimmed, HTML will
be stripped.

1 JREQUEST_NOTRIM If this flag is set and the input is a string, leading and
trailing whitespace will not be trimmed. If no bits
other than the one bit are set, a strict filter is applied.

2 JREQUEST_ALLOWRAW If this flag is set no filtering is performed and higher
bits are ignored.

3 JREQUEST_NOTRIM | JREQUEST_ALLOWRAW
Leading and trailing whitespace will not be trimmed
and no further filtering is performed.

4 JREQUEST_
ALLOWHTML

If this flag is set HTML is allowed but passed
through a safe HTML filter first. If set, no more
filtering is performed.

5 JREQUEST_NOTRIM | JREQUEST_ALLOWHTML

Leading and trailing whitespace will not be trimmed
and HTML will be allowed.

6 Useless since setting JREQUEST_ALLOWRAW results
in higher bits being ignored.

7 Useless since setting JREQUEST_ALLOWRAW results
in higher bits being ignored.

By default, no mask is applied. In the following example, we get name from the
 $_POST hash and apply the JREQUEST_NOTRIM mask:

$name = JRequest::getVar('name', null, 'POST', 'STRING',
 JREQUEST_NOTRIM);

We can also use the mask when using the getString() alias method:

$name = JRequest::getString('name', null, 'POST',
 JREQUEST_NOTRIM);

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[376]

To demonstrate the effects of the different masks, here is how four different inputs
will be parsed:

Input value
1 <p>Paragraph link</p>
2 CSS <link type="text/css", href="http://somewhere/nasty.css" />
3 space at front of input
4 <p>Para</p>

Output value (No mask)
1 Paragraph link
2 CSS

3 space at front of input
4 <p>Para</p>

Output value (mask JREQUEST_NOTRIM)
1 Paragraph link
2 CSS

3 space at front of input
4 <p>Para</p>

Output value (mask JREQUEST_ALLOWHTML)
1 <p>Paragraph <a>link</p>
2 CSS

3 space at front of input
4 <p>Para</p>

Output value (mask JREQUEST_ALLOWRAW)
1 <p>Paragraph link</p>
2 CSS <link type="text/css", href="http://somewhere/nasty.css" />
3 space at front of input
4 <p>Para</p>

You may have noticed that using the mask JREQUEST_ALLOWHTML, the JavaScript
and CSS is stripped from the data. JavaScript and CSS are removed from the data
because they present a security risk. Attacks that exploit this type of security flaw
are known as XSS (Cross Site Scripting) attacks; this is discussed in more detail later
in the chapter. If we want to retrieve the data in its original form, we must use the
JREQUEST_ALLOWRAW mask.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[377]

Escaping and encoding data
 Escaping is the act of prefixing special characters with an escape character. In PHP
there are two configuration settings, magic_quotes_gpc and magic_quotes_runtime,
that will automatically escape data if enabled. Joomla! always disables these.

Data that we retrieve is never automatically escaped; it is the responsibility of our
extensions to escape data as necessary. Joomla! provides us with some useful ways of
escaping data, namely the JDatabase getEscaped() and Quote() methods and the
static JFilterOutput class.

Common escape syntax includes prefixing a backslash to special
characters and duplicating special characters. Ensure that you
use the correct escape syntax for the system with which your
data interacts.

Encoding data is the act of changing data from one format to another; this is always a
lossless transition. The encoding that we examine is the encoding of special XHTML
characters. This is of particular use when dealing with data that we want to display
in a RAW state in an XHTML page and when storing data in XML.

Escaping and quoting database data
If we use un-escaped data when interacting with a database, we can inadvertently
alter the meaning of a query. Imagine we have a database table #__test containing
two fields, id, a numeric ID field, and content, a text field. This is how we might
choose to build our update query:

$db =& JFactory::getDBO();
$query = false;
if($id = JRequest::getVar('id', 0, 'GET', 'INT'))
{
 $data = JRequest::getVar('content', 0, 'GET',
 'STRING', JREQUEST_ALLOWRAW);
 $query = " UPDATE ".$db->nameQuote('#__test')
 . " SET ".$db->nameQuote('content') . "="
 . $db->Quote($data)
 . " WHERE ". $db->nameQuote('id')."=".$id;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[378]

Assuming $id=123 and $data="Foo's bar", the value of $query will be:

UPDATE `#__test` SET `content`='Foo\'s bar' WHERE `id`=123

We use nameQuote() to encapsulate a named query element, for example a field, in
quotes. MySQL does not require quotes around named query elements, but it is good
practice to add them because other database servers may require them.

We use Quote() to encapsulate query string values in quotes. Quote() also performs
the getEscaped() method on the data, before encapsulating it; this escapes the data.

We didn't bother to escape the data within $id in our example; there are three
reasons why we didn't need to do this. We cast the value of $id to an integer when
we retrieved it from the $_GET hash. We set the default value to 0. We checked
whether it was a positive value.

Encode XHTML data
When we want data to appear exactly as it was entered in an XHTML page we need
to encode the data. We do this using the PHP function htmlspecialchars(), which
encodes HTML special characters into HTML entities. In Joomla!, when we use
htmlspecialchars() we are encouraged to specify the quote style ENT_QUOTES. This
ensures that we also encode single quote characters as the HTML entity ':

$value = "Foo's value is > Bar's value";
echo htmlspecialchars($value, ENT_QUOTES);

This will produce the following HTML:

Foo's value is > Bar's value

When we are outputting data like this, if the data is coming from an object, we can
use the JOutputFilter::objectHTMLSafe() method. This method executes the
htmlspecialchars() function on all of the public properties of the object:

$o = new JObject();
$o->set("name", "Foo's name");
$o->set("content", "Foo is > Bar");
JOutputFilter::objectHTMLSafe($o, ENT_QUOTES, 'content');
print_r($o);

JObject Object
(
 [name] => Foo's name
 [content] => Foo is > Bar
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[379]

The last two parameters are optional. By default the second parameter, quote type, is
ENT_QUOTES. The third parameter can be a string or an array of strings that identify
properties within the object we don't want to encode.

There are other methods within JOutputFilter that we can use to encode data,
including making URIs XHTML standards compliant and replacing ampersands
with the HTML entity &.

Regular Expressions
REs (Regular Expressions) are revered by those who know how to use them, and
considered a black art to those who don't. We can use Regular Expressions to
sanitize data, to check the format of data, and to modify data. At the heart of REs
are patterns; RE patterns are used to identify character patterns in data.

Patterns
Patterns are encapsulated with two identical characters, the pattern delimiters.
Common pattern delimiters are the forward slash (/), the hash (#), and the tilde (~).
You don't have to use the common pattern delimiters, but using them can make your
code more readable for other developers.

Between the pattern delimiters is where we define what it is that we are looking for.
If we wanted to search for the occurrence of the term 'monkey' our pattern would
look like this: /monkey/. This example will search for 'monkey' anywhere in our
data; we can restrict this pattern further using the caret (^) and dollar ($) characters.
If we place the caret (^) character at the start of the pattern, it means that the 'data
must start with' /^monkey/ (includes start of line and start of string). If we put a
dollar sign at the end of the pattern it means that the 'data must end at' /monkey$/
(includes end of line and end of value).

We can, if we choose, combine the caret character and the dollar character
/^monkey$/. This is the same as asking, is the data equivalent to the string 'monkey'?
In this context it is relatively useless, because we could use $data == 'monkey'.

A character class is a way of defining multiple characters that can be matched to just
one actual character. If we wanted to search for 'monkey' or 'fonkey' we can define a
character class that consists of the characters 'm' and 'f'. To do this we encapsulate the
characters in square braces /[mf]onkey/.

There are a number of shortcuts that we can use to make building character classes
easier. The dash character can be used to specify a range from character to character.
This example matches 'aonkey' through 'zonkey': /[a-z]onkey/.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[380]

So far we have dealt with simple consecutively matched items, but we can use
quantifiers to duplicate a pattern. Quantifiers attach themselves to the pattern
element directly to the left. If we wanted to match monkey, but with as many 'o's as
we want, we can do this: /mo+nkey/. The plus character (+) means we must have one
to many 'o's.

Quantifier Description Example
+ One to many.

Matches monkey through mo...onkey.

/mo+nkey/

* Zero to many.
Matches mnkey through mo...onkey.

/mo*nkey/

? Optional.
Matches mnkey and monkey.

/mo?nkey/

{x} or {x,} x number.
Matches mooonkey.

/mo{3}nkey/

{x,y} x number to y number.
Matches monkey through mooonkey.

/mo{1,3}nkey/

We can add to the usefulness of quantifiers by surrounding a block in a pattern
with parenthesis. This way we can quantify the number of times a block occurs;
this example matches 'monkeymonkeymonkey': /(monkey){3}/.

Continuing the shortcuts theme, there are certain characters that, if escaped, take on
a whole new role. If we want to search for a whole word, we can use \w+. By itself \w
is a character class that will match any word character. Word characters are letters,
digits, and underscores; sometimes locale may make a difference to what constitutes
a word, for example accented characters may or may not be included.

Shortcut Description Character Class
\w Word characters Letters, digits, and underscores
\W Opposite of \w --------

\d Numbers Digits 0-9
\D Opposite of \d --------

\s Spaces Whitespace (not including new line characters)
\S Opposite of \s --------

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[381]

Our pattern is case sensitive, so to allow any case we could do this /[a-zA-
Z][oO][nN][kK][eE][yY]/. That's rather messy; instead we can use pattern
modifiers, which are characters that can be placed after the pattern delimiters:
/[a-z]onkey/i. The i modifier makes the pattern case insensitive.

Modifier Effect
i Ignore case.
s By default the period character, (.) matches anything except newline characters.

This modifier makes the period character match newline characters as well.

m Makes the caret (^) and dollar characters match the start and end of line
characters as well as string start and end.

x Whitespace is ignored, unless it is in a character class. Allows comments in the
pattern; comments are signified by the hash character (#).

Do not use the pattern delimiters within comments.
u This modifier makes the pattern UTF-8 aware; this is only available with PHP

4.1.0 and above.

Matching
It's all very well knowing how to write RE patterns, but how do we use them?
PHP provides us with a selection of different functions that use REs. We'll begin
by looking at preg_match(). This function searches for matches in the subject and
returns the number of times the pattern was matched:

echo preg_match('/\d/','h0w many d1g1t5 ar3 th3r3');

This example will output 7. Nice and simple really; if there had been no numbers in
the subject then it would have output 0.

Let's take another approach to preg_match(); we can return occurrences of blocks
from a pattern. We define blocks by encapsulating them in parentheses. A good
example of this is parsing a date:

$matches = array();
$pattern = '/^(\d{4})\D(\d{1,2})\D(\d{1,2})$/';
$value = '1791-12-26';
preg_match($pattern, $value, $matches);
print_r($matches);

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[382]

Before you run away screaming, let's break this down into its component parts.
The pattern says: start of string, 4 digits, 1 non-digit, 1 or 2 digits, 1 non-digit, 1 or
2 digits, end of string. It's not all that complex, it just looks it. This will output the
following array:

Array
(
 [0] => 1791-12-26
 [1] => 1791
 [2] => 12
 [3] => 26
)

The first element of the array is the text that matched the full pattern. The rest of the
elements are the matching blocks.

Replacing
We can use preg_replace() to replace patterns with alternative text. This is often
used for stripping out unwanted data. In this example we remove all digits:

$value = preg_replace('/\d/', '', $value);

The first parameter is the pattern, in this instance, digits. The second parameter is the
replacement string, in this instance, a null string. The final parameter is the subject.

We can take advantage of blocks in the same way as we did with preg_match().
Each matched block encapsulated in parentheses is assigned to a variable $1 through
$n. These variables are only accessible in the replacement parameter:

$pattern = '/^(\d{4})\D(\d{1,2})\D(\d{1,2})$/';
$replacement = '$1/$2/$3';
$value = '1791-12-26';
echo preg_replace($pattern,$replacement,$value);

This example will output the following:

1791/12/26

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[383]

Access control
Joomla!'s access control mechanisms are not as clear-cut as they could be; this is due
to an ongoing development cycle that is moving away from a legacy access control
system. In the future, Joomla! will use a complete GACL (Group Access Control
Lists) access control mechanism.

The current access control mechanism uses an incomplete, abstracted
implementation of phpGACL. There are eleven user groups, sometimes referred to
as usertypes. Joomla! also maintains a set of three legacy access groups, Public,
Registered, and Special.

The legacy groups are stored in the #__groups table; theoretically this makes the
legacy access groups dynamic. There is no mechanism for administrators to amend
the legacy access groups and even if we manually add a new legacy access group
to the #__groups table, the effects are not globally reflected; we should regard the
legacy access groups as static. It is advisable not to make extensions dependent on
the legacy access groups because they will probably be removed from Joomla! at
a later date.

We should be most interested in the phpGACL groups (simply called groups or user
groups). Currently no mechanism is provided for administrators to amend these
groups, but we can, however, take advantage of the powerful JAuthorization class
that extends the gacl_api class. If we are careful we can add groups to Joomla!
without impacting the Joomla! core. In the GACL implementation we commonly
use four terms:

Name Description
ACL Access Control List Permissions list for an object
ACO Access Control Object Object to deny or allow access to
AXO Access eXtension Object Extended object to deny or allow access to
ARO Access Request Object Object requesting access

For a more complete description of GACL refer to the official phpGACL
documentation available at http://phpgacl.sourceforge.net/.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[384]

To demonstrate how the user groups are initially defined, the next screenshot depicts
the phpGACL administration interface with the Joomla! user groups defined:

Note that Joomla! does not include the phpGACL administration interface
and that this screenshot is intended for demonstration purposes only.

In phpGACL, permissions are given to ARO groups and AROs, to access ACOs and
AXOs. In Joomla! we only give permissions to ARO groups, and Joomla! users can
only be a member of one group, whereas in phpGACL AROs can be members of
multiple groups

These differences between Joomla! and phpGACL are due to one major factor. In
phpGACL when we check permissions, we ask the question, 'Does ARO X have access
to ACO Y?' In Joomla! we ask the question, 'Does ARO group X have access to ACO
Y?'. The way in which we assign permissions in Joomla! will be altered in the future
to use the same principles as phpGACL.

The three Access Object types, ACO, AXO, and ARO are all identified using
two values, section and section value. To put this into context, the user group
(ARO group) Super Administrator is identified as users > super administrator.
The section name is users, and the section value is super administrator. A
permission to manage contacts in the core contact component (ACO) is expressed
as com_contact > manage. The section name is com_contact, and the section value
is manage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[385]

Menu item access control
A misconception among some Joomla! administrators is that menu access (which
uses the legacy access groups) constitutes security. Menu access is intended to define
whether or not a specific menu item should be made visible to the current user.

Joomla! always attempts to transfer menu item permissions to the related menu item
content; however, the solution is not without issues and must not be relied upon.
The best way to deal with this is to add support for permissions in our extensions.
The next section describes how to do this. We should also try to make administrators
aware of the true meaning of the menu item access level.

In cases where Joomla! determines that something should not be accessible to a user,
because of menu item access, Joomla! will return a 403 (Access Denied) error code.

Extension access control
Imagine we have a component called myExtension and we want to grant super
administrator access to 'manage'. This example gives permission to ARO group
users > super administrator to ACO com_myExtension > manage.

$acl =& JFactory::getACL();
$acl->_mos_add_acl('com_myExtension', 'manage', 'users', 'super
 administrator');

Whenever we want to add permissions we have to use the above mechanism because
currently only these ARO tables are implemented in Joomla!. The absent ARO tables
are scheduled to be implemented in a later version of Joomla!.

In the short-term when we create extensions that use Joomla!'s implementation of
permissions we should create a separate file with all the necessary calls to the ACL
_mos_add_acl() method (as demonstrated in the preceding example). This way
when Joomla! ultimately supports the ARO tables, we will be able to easily refactor
our code to incorporate the new implementation.

Calls to the _mos_add_acl() method must always be made prior to any
permission checks. If they are not, the extra permissions will not have
been applied in time. The best place to add the permissions is in the root
extension file (this will depend upon the extension type).

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[386]

Once we have added all of our permissions we will probably want to check if the
current user has permissions. There are various ways of achieving this; we are
encouraged to use the authorize() method in the JUser class:

$user =& JFactory->getUser();
if(! $user-> authorize('com_myExtension', 'manage'))
{
 JError::raiseError(403, JText::_('Access Forbidden'));
}

If we are developing a component using the MVC architecture we use the
JController object to automatically check permissions. The next example creates
the component controller, sets the controller's ACO section, and executes the task:

$task = JRequest->getVar('task', 'view', 'GET', 'WORD');
$controller = new myExtensionController();
$controller->setAccessControl('com_myExtension');
$controller->execute($task);

When we run execute(), if the controller knows which ACO section to look at, it
will check the permissions of the current user's group. The previous example verifies
permissions against the ACO com_myExtension > $task.

We don't have to use the task as the section value; instead we can use the optional
second parameter in the setAccessControl() method. The next example checks
for permissions to the ACO com_myExtension > manage irrespective of the task:

$task = JRequest->getVar('task', 'view', 'GET', 'WORD');
$controller = new myExtensionController();
$controller->setAccessControl('com_myExtension', 'manage');
$controller->execute($task);

When dealing with more complex permissions, we can use AXOs to extend ACOs.
Let's imagine we have a number of categories in our extension and we want to set
manage permissions on each category. This example grants permissions to ACO
group users > super administrator to ACO com_myExtension > manage AXO
category > some category:

$acl =& JFactory::getACL();
$acl->_mos_add_acl('com_myExtension', 'manage', 'users', 'super
 administrator', 'category', 'some category');

Unlike when we were dealing with just an ACO and ARO, we cannot use this
in conjunction with a JController subclass. This is because the JController
class is unable to deal with AXOs. Instead we should use the JUser object to
check permissions:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[387]

$user =& JFactory->getUser();
if(! $user-> authorize('com_myExtension', 'manage', 'category',
 'some category'))
{
 JError::raiseError('403', JText::_('Access Forbidden'));
}

When you define your ACOs you should always use the name of your extension
as the ACO section. How you choose to define your ACO section value and your
AXOs is entirely up to you. There is a great deal of emphasis put on the flexibility
of Joomla!. As a third-party developer, you do not have to use the normal Joomla!
access control. If you choose to use a custom access control system and the Joomla!
MVC, you may want to consider overriding the authorize() method in your
JController subclasses.

Attacks
Whether or not we like to think about it, there is always the potential threat of an
attacker gaining access to our Joomla! websites. The most common way in which
security is breached in Joomla! is through third-party extension security flaws.

Due to the number of extensions that have security defects, there is an official
list of extensions that are considered insecure; it is available in the FAQ sections
at http://help.joomla.org.

It is very important that, as third-party extension developers, we take great care in
making our extensions as secure as we can. In this section we will investigate some
of the more common forms of attack and how we can prevent them from affecting
our extensions, and we will take a look at how we can deal with users whom we
believe to be attackers.

How to avoid common attacks
The security flaws that we will investigate are some of the most likely to be exploited
because they tend to be the easiest to initiate, and there is plenty of literature
explaining how to initiate them.

The attack types described here should not be considered a complete list. There
are many ways in which an attacker can attempt to exploit a system. If you are
concerned about attacks, you should consider hiring a security professional to
help evaluate security vulnerabilities in your extensions.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[388]

Using the session token
A session is created for every client that makes a request. Joomla! uses its own
implementation of sessions; integral to this is the JSession class. The session token,
also referred to as the 'token', is a random alphanumeric string that we can use to
validate requests made by a client. The token can change during a session.

Imagine that an attacker uses a utility to bombard a site with data; the data itself
may not be suspicious. The attacker may just be attempting to fill your database
with worthless information. If we include a hidden field in our forms with the
name of the token, we can check if the user is submitting data through a form
with a valid session.

We can get the token using the joomla.html library JHTML class and the form.token
type method. In our template, where we render the form we want to secure, we can
add the following:

<?php echo JHTML::_('form.token'); ?>

The JHTML::_('form.token') method generates a hidden input field and calls
JUtility::getToken() to generate the random token. Understanding this means
that we can also obtain the token using JUtility::getToken(), although we must
also create the hidden input field as well. Here is the code:

<input type="hidden"
 name="<?php echo JUtility::getToken();?>" value="1" />

One advantage of using JUtility::getToken() is that we can optionally provide
the Boolean forceNew parameter. This will force the generation of a new token.
Before doing this we must consider the context in which we are calling the method.
If there are any other forms present on the page that also use the token we may
inadvertently prevent these from working. Components are always rendered first,
so they are generally safer when forcing a new token.

Now all we need to do is verify the token when we receive a request from the form
that we are trying to secure. We accomplish this by placing the following code at the
beginning of each function in our controller that modifies the records (for example
save, remove or cancel.)

// Check for request forgeries
JRequest::checkToken() or jexit('Invalid Token');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[389]

Code injection
Code injection occurs when code is included in input. The injected code, if not
properly sanitized, may end up being executed on a server or on a client. There
are a number of different ways in which injected code can compromise a Joomla!
installation or a system with which we are interacting.

We will take a look at the two most common forms of code injection used to attack
Joomla!: PHP and SQL code injection.

PHP code injection
We should use JRequest and, in some cases, REs to ensure that the input data that
we are handling is valid. Most data validation is very simple and doesn't require
much effort.

Even when data comes from an XHTML form control that is restricted to specific
values, we must still validate the data.

There is one form of PHP code injection that we don't need to worry about. By
default Joomla! always disables 'register globals'. In scripts where 'register
globals' is enabled, all URI query values are automatically converted into variables,
literally injecting variables into a script.

Imagine we are using an input value to determine which class to instantiate. If we
do not sanitize the incoming data, we run the risk of instantiating a class that could
be used to malicious effect. To overcome this, we could use a predefined list of class
names to ensure the data is valid:

// define allowed classes
$allow = array('Monkey', 'Elephant', 'Lion');
// get the class name
$class = JRequest::getWord('class', 'Monkey', 'GET');
$class = ucfirst(strtolower($class));

Notice that we use the getWord() method to retrieve the value; this ensures that the
value only includes letters and underscores. We also modify the case of the value so
as to ensure it is in the same format as the expected value. Once we have defined the
acceptable class names and retrieved the value, we can validate it as follows:

if(!in_array($class, $allow))
{
 // unknown class, use default
 $class = 'Monkey';
}

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[390]

Imagine we want to execute a shell command. This type of process is potentially
very risky; some unwanted malicious commands such as rm or del could potentially
reduce our server to a gibbering wreck. In this example we define an array of
acceptable commands and use the PHP escapeshellarg() function to escape
any arguments passed to the command:

$allowCmds = array('mysqld', 'apachectl');
$cmd = JRequest::getVar('cmd', false, 'GET', 'WORD');
$arg = JRequest::getVar('arg', false, 'GET', 'WORD');
if($cmd !== false && !in_array($cmd, $allow))
{
 $cmd .= ' '.escapeshellarg($arg);
 system($cmd);
}

Using the correct escape mechanism for the system we are accessing is imperative in
preventing code injection attacks.

SQL injection
One of the most publicized vulnerabilities in PHP applications, SQL injection, is
potentially fatal. It is caused by inadequate processing of data before database
queries are executed.

Joomla! provides us with the JDatabase methods getEscaped() and Quote()
specifically for avoiding SQL injection. Consider the following value a' OR name IS
NOT NULL OR name=b. If we used this value without escaping the value, we could
inadvertently give an attacker access to all the records in a table:

SELECT * FROM `#__test`
 WHERE `name`='a' OR name IS NOT NULL OR name='b'

We can overcome this using the Quote() method:

$db =& JFactory::getDBO();
$name = $db->QuotegetEscaped(JRequest('name'));

Using the getEscaped() method escapes any special characters in the string. In our
example the inverted commas will be escaped by prefixing them with a backslash.
Our query now becomes:

SELECT * FROM `#__test`
 WHERE `name`='a\' OR name IS NOT NULL OR name=\'b'

The Quote() method is identical to the getEscaped() method except that it also
adds quotation marks around the value. Generally we should use Quote() in
preference to getEscaped(), because this method guarantees that we are using the
correct quotation marks for the database server that is being used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[391]

Something else that we can verify is the number of results returned after we submit a
query. For example, if we know that we should only get one record from a query, we
can easily verify it as follows:

$db->setQuery($query);
$row = $db->loadAssoc();
if($db->getNumRows() !== 1)
{
 // handle unexpected query result
}

XSS—Cross Site Scripting
XSS is the use of client side scripts that take advantage of the user's local rights;
these attacks normally utilize JavaScript. Another, slightly less common form
of XSS attack, uses specially crafted images that execute code on the client; a
good example of this is a Microsoft security flaw that was reported in 2004
(http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx).

When we use JRequest::getVar() we automatically strip out XSS code, unless we
use the JREQUEST_ALLOWRAW mask. We generally use this mask when dealing with
large text fields that are rendered using an editor; if we do not, valuable XHTML
formatting data will be lost.

When we use the JREQUEST_ALLOWRAW mask we need to think carefully about how
we process the data. When rendering the data remember to use the PHP function
htmlspecialchars()or the static JFilterOutput class to make the data safe for
rendering an XHTML page. When using the data with the database, remember to
escape the data using the database object's Quote() method.

If you want to allow your users to submit formatted data, you may want to consider
using BBCode (Bulletin Board Code). BBCode is a simple markup language that
uses a similar format to XHTML. Commonly used on forums, the language gives the
user the power to format their data without worrying about XSS. There are all sorts
of BBCode tags; exactly how they are rendered may differ.

BBCode XHTML Example
[b]Bold text[/b] Bold text Bold text
[i]Italic text[/i] <i>Italic text</i> Italic text
[u]Underlined text[/u] <u>Underlined text</u> Underlined text

:)

[quote]Some quote[/quote] <div class="quote">Some quote</div> Some quote

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[392]

Joomla! does not include any BBCode-parsing libraries. Instead we must either build
our own parser or include an existing library. One such BBCode library is a class
available from http://www.phpclasses.org/browse/package/951.html created
by Leif K-Brooks and released under the PHP License. This class gives us lots of
control; it allows us to define our own BBCode tags, use HTML entity encoded data,
and import and export settings.

When we use BBCode, or a similar parsing mechanism, it is
important that if we intend to allow the data to be editable,
we store the data in its RAW state.

File system snooping
A common error when working with files is to allow traversal of the file system.
Joomla! provides us with a number of classes for dealing with the file system. The
next example imports the joomla.filesystem library and builds a path based on
the value of the CGI request file (the path must not be relative):

jimport('joomla.filesystem');
$path = JPATH_COMPONENT.DS.'files'.DS
 . JRequest('file', 'somefile.php', 'GET', 'WORD');
JPath::check($path);

When we use the JPath::check() method, if $path is considered to be snooping,
an error will be raised and the application will be terminated. Snooping paths are
identified as paths that do not start with JPATH_BASE and do not attempt to traverse
the tree using the parent directory indicator .. (two periods).

Other classes in the joomla.filesystem library include JFile, JFolder, and
JArchive. It's important to realize that none of these classes validates path
parameters to prevent snooping. This is because there are times when we
expect a path to be classified as snooping.

Dealing with attacks
Parsing input is only one part of security handling. Another part is the evasive
action that an extension can automatically take if an attack is detected. Here are
three good ways of dealing with detected attacks; they could be used separately
or in conjunction with one another:

1. Log the user out, possibly blocking their account.
2. Maintain a log file of detected attacks.
3. Email the site administrator and inform them of the attack.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[393]

Log out and block
If an attack originates from a logged in user, we can simply end the user's session
and optionally block them from logging in, until an administrator unblocks their
account. However, logging out a user and blocking them may not be appropriate. An
instance appearing to be an attack could be a genuine mistake on the part of the user
or a misclassification. We could use a "Three strikes and you're out" approach. That
way, we can reduce the chance of irritating genuine users while still maintaining a
high level of security.

One way of implementing this would be to build a plugin and an event handler class
(extends JPlugin) registered to the application. This modular approach to dealing
with attacks would allow us to reuse the plugin throughout our extensions. The next
UML diagram shows one design we could use:

_params is a temporary store for the plugin parameters (JParameter object).
onAttackDetected() is the method that will be executed when an attack is detected.
&_getParams() gets the plugin parameters (uses _params). _attackCount() gets
the number of detected attacks so far (stored in the session). _incrementAttacks()
increments the number of attacks and returns the new number of attacks. When
the user exceeds the maximum number of detected attacks, _actionLogout() and
_actionBlock() are run, assuming that they are enabled in the plugin parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[394]

The parameters as defined in the plugin XML file are as follows:

<params>
 <param
 name="sessionValue" type="text" size="20"
 default="detectedAttacks" label="sessionValue"
 description=
 "Name of session value to store attack counter in." />

 <param
 name="maxAttacks" type="text" size="2"
 default="3" label="maxAttacks"
 description=
 "Maximum number of detections per session." />

 <param name="@spacer" type="spacer"
 default="" label="" description="" />

 <param name="logout" type="radio"
 default="1" label="logout" description="Logout user.">

 <option value="0">Off</option>
 <option value="1">On</option>
 </param>

 <param name="block" type="radio"
 default="1" label="block" description="Block user.">

 <option value="0">Off</option>
 <option value="1">On</option>
 </param>
</params>

The next example shows how we could implement the _actionLogout() method.
Notice that we check if the user is logged in before attempting to log them out.

/**
 * Logs the current user out.
 *
 * @access private
 * @return boolean true on success
 */
function _actionLogout()
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[395]

 global $mainframe;
 $user =& JFactory::getUser();
 if($user->get('id') && $mainframe->logout())
 {
 return true;
 }
 return false;
}

The next example shows how we could implement the _block() method. Notice
that we check if the user is logged in before attempting to block them.

/**
 * If they are logged in, blocks the current user's account.
 *
 * @access private
 * @return boolean true on success
 */
function _block()
{
 $user =& JFactory::getUser();
 print_r($user);
 if($user->get('id'))
 {
 $user->set('block', '1');
 return $user->save(true);
 }
 return false;
}

To be able to use the DefenceHandler class we need to register the event with the
application. This creates a new instance of DefenceHandler and attaches it to the
application event handler.

$mainframe->registerEvent('onAttackDetected',

 'DefenceHandler');

If we detected an attack we would use the handler by triggering the event
onAttackDetected in the application ($mainframe):

$mainframe->triggerEvent('onAttackDetected');

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[396]

Attack logging
Detecting attacks can prevent individual attacks but, when we encounter a persistent
attacker, having a history of attacks can provide us with vital information. This
information can be used to determine the nature of each attack and to try to identify
the perpetrator.

Building on our previous example we can use the JLog class to build up a history of
attacks. Here's an example of how we might implement the _actionLog() method
in our DefenceHandler class:

/**
 * Logs an Attack.
 *
 * @access private
 * @return boolean true on success
 */
function _actionLog()
{
 $user =& JFactory::getUser();
 $uri =& JFactory::getURI();
 $options = array('format'=>"{DATE}\t{TIME}\t{CIP}
 \t{USER}\t{STRIKE}\t{REQUEST}");

 $log =& JLog::getInstance($extension.'.Defences.log',
 $options);
 $entry = array('REQUEST' => $uri->toString(),
 'USE' => $user->get('id'),
 'STRIK' => $this->strikeCount());
 $log->addEntry($entry);
}

To use this we would need to modify the plugin XML manifest file to include the
option to log attacks and we would need to update the onAttackDetected()
method to deal with logging.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[397]

Notify the site administrator
We may also want to notify the site administrator when a user exceeds the maximum
number of attacks. This time we need to add a _actionNotify() method to our
DefenceHandler class and a text field for an email address in our plugin's XML
manifest file parameters:

/**
 * Logs an Attack.
 *
 * @access private
 * @param string email address
 * @return boolean true on success
 */
function _actionNotify($email)
{
 global $mainframe;
 $mailer =& $mainframe->getMailer();
 $mailer->setSender($email);
 $mailer->setRecipient($email);
 $mailer->setSubject(JText::_('Excessive Attacks Detected'));
 $mailer->setBody(
 JText::_"A user has exceeded the number of allowed
 attacks. Please consult your error log
 for more details."));
 $mailer->Send();
}

This example is relatively simple. We could develop the method further by adding
a more comprehensive subject line and body. If logging is enabled we could also
include a copy of the log as an attachment (we would have to be careful if the log
file was very large).

www.it-ebooks.info

http://www.it-ebooks.info/

Error Handling and Security

[398]

Summary
In this chapter we have discussed common error and security issues that we must
address to make our extensions as safe and secure as possible. We have covered
error handling, input request data validation, access control, and attack prevention.

Although we may never receive an error message from our extensions, the JError
class gives us all of the necessary tools to ensure that any errors that are encountered
can be cleanly dealt with. Using the PHP die() and exit() functions can potentially
'break' the current users session; we should always exit cleanly. If JError isn't up to
this task, we should use $mainframe->close().

Handling input from a URI query is very easy in Joomla! and the data type casting
alone provides us with a massive form of protection against security flaws. We
should remember that we can use the JRequest alias methods to easily cast an
input value.

Taking input value preprocessing one step further, we can use REs to ensure that
data is the expected format. Remember that we can also use REs to retrieve certain
parts from a data pattern. This is especially useful if one input value contains
multiple pieces of data.

When we deal with sensitive data, we can restrict user access using the Joomla!
GACL access control implementation. When we are creating components using
the MVC architecture, we can use the controller to check for authorization.

Attackers are very resourceful and will go to great lengths in order to discover
and exploit security flaws. Remember to always sanitize incoming data and escape
outgoing data. Joomla! and PHP provide us with a plethora of utilities that, if used
correctly, can ensure that our extensions are as secure as possible.

In the next chapter we will introduce a portion of the more useful utility classes
that Joomla! provides. These are classes that we will use whenever we develop
an extension, saving us significant development time.

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes
Joomla! includes a number of useful utilities and classes that are used to perform
specific tasks. In this chapter we will discuss the use of the most commonly used
utilities and classes, including:

JArchive
JArrayHelper
JDate
JFile
JFolder
JLog
JMail
JNode
JPath
JTree

For detailed information regarding the classes discussed in this chapter please refer
to Appendix F, Joomla! Utility Classes.

Joomla! extensions that require date and time handling can use the JDate class
to handle date and time parsing, formatting, and time zones. In this chapter we
will discuss how to use the JDate class to handle all of these aspects of date and
time values.

Many extensions use the file system to store important data. In addition to the PHP
file-system handling functions, we can use the joomla.filesystem library. This
library has a number of advantages over the PHP functions, including the use of
FTP, where appropriate, to overcome file-system permission problems.

•
•
•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[400]

We use arrays constantly in PHP, and Joomla! is no exception. The static
JArrayHelper class includes a number of very useful methods that we can
use to process arrays.

PHP only provides us with a few data structures. Joomla! adds the tree data
structure to this list. In this chapter, we investigate how we can use and extend
the Joomla! tree data structure.

Logging events can be a very useful function. We discuss the use of the JLog class
to create log files and append log entries to log files.

Dates
The hardest part of handling dates is coping with different time zones and formats.
Luckily, Joomla! provides us with the JDate class to handle date formatting. Before
we start using the JDate class we need to import the relevant library:

jimport('joomla.utilities.date');

A JDate object is designed to handle a single date. This means that we must create
a new JDate object for every date. When we create a new JDate object, in its most
basic form, the object automatically obtains the current date and time. We can create
a new JDate object for the current date and time as follows:

$dateNow = new JDate();

When we create a new JDate object we can pass two optional parameters:
the date and time, which the object will parse
the time zone

Date and time parameter
The first parameter can be passed using a number of different formats. Supported
date and time formats include Unix timestamps, RFC 2822, ISO 8601, and any
format that the PHP strtotime() function is capable of parsing.

For more information about RFC 2822, ISO 8601, and strtotime()
refer to these sites respectively:
http://tools.ietf.org/html/rfc2822

http://www.iso.org/iso/en/prods-services/popstds/
datesandtime.html

http://php.net/strtotime

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[401]

The following examples demonstrate the use of some of the date and time formats
that are supported by the JDate class:

// Unix timestamp
$date1 = new JDate(-1417564800);

// ISO 8601
$date2 = new JDate('1925-01-30T00:00:00');

// RFC 2822
$date3 = new JDate('Fri, 30 Jan 1925 00:00:00');

// User string
$date4 = new JDate('January 30th 1925');

Time zone parameter
The time zone parameter is defined as the number of hours offset from UTC
(Coordinated Universal Time), also referred to as GMT (Greenwich Mean Time)
and Z (Zulu Time).

A UTC offset is expressed as UTC+/- the number of hours, for example: UTC+1.

In Joomla! we always handle dates and times in UTC+0 and apply time-zone offsets
when we display them. In the following example, we use the same time as before
but with the UTC+1 time zone. Adding the offset parameter corrects the time by
removing 1 hour:

// ISO 8601 (UTC+1)
$date5 = new JDate('1925-01-30T01:00:00', 1);

Both RFC 2822 and ISO 8601 provide us with the means to include the offset within
a date and time string. If we pass a date and time that includes the offset and we pass
the second parameter, the second parameter will be ignored.

This RFC 2822 example is in CET (Central European Time), which has an offset of
plus one hour (if the optional time zone parameter were used, it would be ignored):

// RFC 2822 (CET)
$date5 = new JDate('Fri, 30 Jan 1925 01:00:00 CET');

This ISO 8601 example uses a numeric time zone designator of plus one hour
(if the optional time zone parameter were used, it would be ignored):

// ISO 8601
$date2 = new JDate('1925-01-30T00:00:00 +0100');

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[402]

The JDate methods that we tend to use most frequently return the date and time in a
specific format. These examples detail the four predefined formats that we can easily
convert dates into:

// get date formatted in RFC 2822
$rfc822 = $date->toRFC822();

// get date formatted in ISO 8601
$iso8601 = $date->toISO8601();

// get date formatted for a MySQL datetime field
$mySQL = $date->toMySQL();

// get date as unix timestamp
$timestamp = $date->toUnix();

You may have noticed that the RFC 2822 method is called toRFC822(). No, it is not
a typo! RFC 2822 replaced RFC 822. The two terms are often used interchangeably
and, unfortunately, it is not unusual to encounter dates and times that use elements
from both RFC 822 and RFC 2822. The toRFC822() method actually returns an
RFC 2822 date and time string.

The toMySQL() method is of particular interest if we are using dates and times with
the database. The string that this method returns is suitable for use with a MySQL
database. For more information, please refer to Chapter 3, The Database.

We can use the toFormat() method if we wish to use a custom date format. To
specify the format we can use the same format designators as the PHP strftime()
function. The next table details some of the more common format designators:

Format Designator Description
a Weekday name (abbreviated)
A Weekday name
b Month name (abbreviated)
B Month name
d Day of the month (zero padded)
e Day of the month
H Hour (24 hour and zero padded)
I Hour (12 hour and zero padded)
m Month (zero padded)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[403]

Format Designator Description
M Minute (zero padded)
p 12 hour 'am' or 'pm'.
S Second (zero padded)
y Year (two digits)
Y Year (four digits)

The following example outputs a date in a custom formatted date:

// custom date format
$custom = $date->toFormat('%A, %Y/%m/%d');

A custom format string is not required for the toFormat() method; the default
format is %Y-%m-%d %H:%M:%S. In general, it is considered good practice to use a
translated format string; this will result in a format that is valid for the current locale.

The next table describes the date and time format names and their
English (British) value:

Format Name en-GB value Example
DATE_FORMAT_LC %A, %d %B %Y Thursday, 01 January 1970
DATE_FORMAT_LC1 %A, %d %B %Y Thursday, 01 January 1970
DATE_FORMAT_LC2 %A, %d %B %Y %H:%M Thursday, 01 January 1970 00:00
DATE_FORMAT_LC3 %d %B %Y 01 January 1970
DATE_FORMAT_LC4 %d.%m.%y 01.01.70
DATE_FORMAT_JS1 y-m-d 1970-01-01

The DATE_FORMAT_JS1 format is slightly different from the other
formats. It is to be used with JavaScript, not JDate or PHP date functions.

This example demonstrates how we can use DATE_FORMAT_LC2:

// LC2
$lc2 = $date->toFormat(JText::_('DATE_FORMAT_LC2'));

Notice that we use JText to translate the date format before passing it
to the JDate method toFormat(). This is what translates the format
string to the current locale format. Remember that although the syntax
suggests it the date format names are not PHP constants.

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[404]

If we wish to use a format that is not described by any of the previous formats, we
should consider adding the format to our extension's language file.

The last method we will discuss is the setOffset() method. This method is used
to apply an offset to the date when it is passed through the toFormat() method.
To apply the offset UTC+2 to a date and time before we display it, we would use
the following method:

$date->setOffset(2);

Notice that the offset is specified in hours. An offset applied in this way only affects the
date and time returned when using the toFormat() method.

When we create an extension we may find it useful to take advantage of the
application property requestTime, which contains a date and time value that is
recorded whenever a request is made. This example demonstrates how we can access
the requestTime property and output its value using the DATE_FORMAT_LC2 format:

$rDate = new JDate($mainframe->get('requestTime'));
echo $rDate->toFormat(JText::_('DATE_FORMAT_LC2'));

The final aspect that we will touch on is the use of JHTML to output a date, discussed
in Chapter 8, Rendering Output. If all we are trying to do is parse a date so that we
can apply a format and an offset, we can use the basic JHTML date type.

The next example outputs the requestTime time using the DATE_FORMAT_LC2 format:

// get the date and time of the request
$date = $mainframe->get('requestTime');

// output the date and time
echo JHTML::_('date', $date, JText::_('DATE_FORMAT_LC2'));

The nice thing about using the JHTML date type method is that it automatically
applies the site time zone offset to the date.

Since users can specify the time zone in which they are located, we can easily
apply this or the site offset by using the timezone parameter. When we use the
getParam() method to get the value of a user's parameter, if the parameter is
not set, null is returned.

The date type works in such a way that if a null value is given as the offset the site
offset is used. This example demonstrates how we can apply the user's offset or the
default site offset when using the date type:

// get the date and time of the request
$date = $mainframe->get('requestTime');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[405]

// get the user's time zone
$user =& JFactory::getUser();
$usersTZ = $user->getParam('timezone');

// output the date and time
echo JHTML::_('date', $date,
 JText::_('DATE_FORMAT_LC2'), $usersTZ);

File system
We normally store data in the database; however, we can also store data within the
file system. Joomla! provides us with the joomla.filesystem library. This library
enables us to work easily with the native file system. There are four main classes
included in this library:

JPath
JFolder
JFile
JArchive

Paths
The static JPath class is integral to the library. Before we jump in, we must import
the relevant library in order to use the JPath class:

jimport('joomla.filesystem.path');

The first three methods we will discuss are:

clean()

check()

find()

The clean() method is used to tidy up a path by removing any unnecessary
directory separators and ensuring that all remaining directory separators are of
the correct type for the current system. We use the clean() method as follows:

$path = JPATH_BASE.'\foo//bar\\baz';
$cleanPath = JPath::clean($path);

•
•
•
•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[406]

The following examples demonstrate the values associated with $path and
$cleanPath respectively (assuming JPATH_BASE is equal to /var/www/html/joomla):

$path: /var/www/html/joomla\foo//bar\\baz
$cleanPath: /var/www/html/joomla/foo/bar/baz

The check() method is used to prevent snooping. For more information about this
method refer to Chapter 11, Error Handling and Security.

The find() method provides us with the means to search for a specific file that
might be located in a number of different paths. For instance, if we wish to locate
the file somefile.txt and we know that it may be located in the root of either the
frontend or backend of the current component, we can use the following method:

$paths = array(JPATH_COMPONENT, JPATH_COMPONENT_ADMINISTRATOR);
$filePath = JPath::find($paths, 'somefile.txt');

The first parameter that we pass to the method is an array of paths. The second
parameter is the name of the file that we are attempting to locate.

The $paths array is ordered by priority. This is because the file we are searching for
may exist in more than one of the defined paths. So if the file was present at both
locations, the frontend path would be returned because it has priority.

If the file is successfully located, then the path to that file is returned. If the file is not
found in any of the locations, then a Boolean false is returned.

The find() method is not recursive; it does not search subfolders.

The remaining methods are all designed for handling permissions, and these include:

getPermissions()

setPermissions()

canChmod()

isOwner()

Let's begin by looking at the getPermissions() method. This method is used
to determine the permissions of a file or folder. When passed a path, the method
returns a string that describes the permissions in terms of Read, Write, and Execute:

echo JPath::getPermissions($cleanPath);

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[407]

This is an example of the value that might be returned:

rwxrwxr-x

If the supplied path does not exist then a string suggesting no permissions will
be returned:

In addition to getting permissions, we can set permissions. We do this using the
setPermissions() method. By default the permissions are modified to 0644 for
files and 0755 for folders. If supplied with the path to a folder, this method acts
recursively, updating the file and folder permissions for all sub-files and folders:

JPath::setPermissions($cleanPath);

In order to set different permissions than the default permissions, we can supply two
additional parameters, the first being the permissions to apply to the files, the second
being the permissions to apply to the folders.

This example uses the permissions 0664 for files and 0775 for folders:

JPath::setPermissions($cleanPath, '0664', '0775');

The setPermissions() method returns a Boolean response. If the method fails
to update any of the permissions successfully, false is returned.

Before we use the setPermissions() method, we can use the canChmod() method
to ensure that we have the ability to modify the mode of a path:

if (JPath::canChmod($cleanPath))
{
 JPath::setPermissions($cleanPath);
}

There is one last method that we will look at. The isOwner() method is used
to determine if the process user is the owner of a specific file:

if (JPath::isOwner($cleanPath))
{
 // Process user is the owner
}

It is important to understand that the permissions-based methods relate
to the system user that is used to execute the script. They do not relate to
the Joomla! users.

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[408]

Folders
We handle folders using the static JFolder class. Before we explore how to use
JFolder we need to import the relevant library:

jimport('joomla.filesystem.folder');

The JFolder class has a makeSafe() method that works in much the same way as
the JFile makeSafe() method. The JFolder version of this method removes unsafe
characters from a folder path. This example cleans the $folder path:

$folder = JPATH_COMPONENT.DS.'Foo&Bar';
$cleanFolder = JFolder::makeSafe($path);

The value of $cleanFolder will be the same as $folder, except that the ampersand
will have been removed because it is deemed an unsafe character.

The JFolder class contains a number of common file-system commands. It is
normally better to use these methods than to use the normal PHP file management
functions because, if FTP is enabled, these methods will attempt to use an FTP
connection. This decreases the chance of errors due to lack of user rights.

We are provided with five methods that deal explicitly with folder management:

exists()

copy()

move()

delete()

create()

The exists() method is used to check if a folder exists and returns a Boolean value:

if (!JFolder::exists($cleanFolder))
{
 // handle folder does not exist
}

The copy() method copies a folder to a new location. The method accepts
four parameters:

The path to the source folder
The path to the destination folder
An optional base path
An optional force flag

•

•

•

•

•

•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[409]

If a base path is provided, it will be prepended to the source and destination paths.
When the force flag is true, overwrite is enabled; by default the force flag is false.
The next example force copies the foo folder to the bar folder in the frontend root
of the current component:

if (!JFolder::copy('foo', 'bar', JPATH_COMPONENT, true))
{
 // handle failed folder copy
}

The move() method relocates a folder. This method returns a Boolean value. The
following example moves the folder foo to the folder bar in the frontend root of
the current component:

if (!JFolder::move('foo', 'bar', JPATH_COMPONENT))
{
 // handle failed folder move
}

The delete() method removes folders from the file system. This method returns
a Boolean value. The following example deletes the folder 'foo' from the frontend
root of the current component:

if (!JFolder::delete(JPATH_COMPONENT.DS.'foo'))
{
 // handle failed folder delete
}

The create() method creates a new folder in the file system. The following example
creates the folder baz in the frontend root of the current component:

if (!JFolder::create(JPATH_COMPONENT.DS.'baz'))
{
 // handle failed folder creation
}

There is a second parameter that we can optionally provide when using the
create() method. This parameter determines the access rights of the newly created
folder; by default this is 0777. The following example creates a folder with the access
rights 0775:

if (!JFolder::create(JPATH_COMPONENT.DS.'baz', 0775))
{
 // handle failed folder creation
}

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[410]

Notice that the second parameter is prefixed with a 0; this ensures that the
value is treated as an octal integer. If we don't do this, we run the risk of the
access rights mode being misinterpreted. For a full description of file access
rights mode in PHP please consult the official PHP documentation at
http://php.net/manual/function.chmod.php.

The final methods we will explore, folders() and files() , are used to read the
contents of a folder.

The folders() method is used to list the folders within a folder. In its most basic
usage this method returns an array of all of the direct sub-folders. The following
example returns the names of all of the folders in the core poll component:

$folder = JPATH_ADMINISTRATOR.DS.'components'.DS.'com_poll';
$folders = JFolder::folders($folder);

The resultant array will appear as follows:

Array
(
 [0] => elements
 [1] => tables
 [2] => views
)

The second parameter is an optional filter. This filter is a Regular Expression (RE)
filter (see Chapter 11, Error Handling and Security for more information on REs). By
default the filter is '.' (A period signifies any character).

The third parameter, also optional, can be either a Boolean value that determines
whether we want a recursive listing of folders or an integer value indicating the
maximum number of levels to recurse. A recursive listing means that we will be
provided with all sub-folders, even if they are not direct descendants. By default
this is false. The following example demonstrates the use of the method when
used recursively:

$folder = JPATH_ADMINISTRATOR.DS.'components'.DS.'com_poll';
$folders = JFolder::folders($folder, '.', true);

The resultant array will appear as follows:

Array
(
 [0] => elements
 [3] => poll
 [1] => tables
 [2] => views
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[411]

The primary issue with this is there are no means of determining which folders
are direct descendants. We can use the next parameter to overcome this. The next
parameter is a Boolean value that determines if the returned array is a list of folder
names or a list of folder paths. The next example demonstrates the use of the method
when used to get the full paths of the folders:

$folder = JPATH_ADMINISTRATOR.DS.'components'.DS.'com_poll';
$folders = JFolder::folders($folder, '.', true, true);

The resultant array will appear as follows:
Array
(
 [0] => /joomla/administrator/components/com_poll/elements
 [1] => /joomla/administrator/components/com_poll/tables
 [2] => /joomla/administrator/components/com_poll/views
 [3] => /joomla/administrator/components/com_poll/views/poll
)

A final parameter is an array of folders to exclude from the result. This is normally
not included, but is available if needed.

The files() method is used to list the files within a folder. This method has an
identical set of parameters and works in precisely the same way as the folders()
method described previously.

The last method that we will investigate is the listFolderTree() method. This
method returns an array of associative arrays that model the structure of an area in
the file system. The next example obtains an array that describes the frontend root
folder of the current component:

$structure = JFolder::listFolderTree(JPATH_COMPONENT, '.');

The first parameter is the folder in which to start, the second parameter is the
RE filter that the name of the folders must match.

The returned array, for the component com_mycomponent, may appear as follows:
Array
(
 [0] => Array
 (
 [id] => 1
 [parent] => 0
 [name] => files
 [fullname] => /var/www/html/joomla/components/
 com_mycomponent/views
 [relname] => /components/com_mycomponent/views
)
)

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[412]

Additional parameters include the maximum recursive depth, which by default is 3,
the current depth, and the parent ID. We don't normally use the last two parameters;
these are intended for internal use when the method calls itself recursively.

Files
Files are handled using the static JFile class. Before we explore how to use the
JFile class, we need to import the relevant library:

jimport('joomla.filesystem.file');

Let's begin with four JFile methods used to handle file names:

makeSafe()

getName()

getExt()

stripExt()

The first is the makeSafe() method; it takes a filename string and removes any
unsafe characters. This is especially useful when we allow users to enter a filename
of their choice:

$filename = JRequest::getVar('filename');
$cleanFilename = JFile::makeSafe($filename);

The value of $cleanFilename will be identical to $filename, with the exception
that any unsafe characters will have been removed.

The parameter that we pass to the makeSafe() method must
not include the path to a file. If we do pass a path, the directory
separators will be stripped.

If we have the full path that includes the filename, we can use the getName() method
to extract the filename. We can then pass the resulting filename to the makeSafe()
method to ensure the filename is safe to use:

$fileName = JFile::getName($pathToFile);
$cleanFilename = JFile::makeSafe($filename);

If we need to determine the extension of a file we can use the getExt() method; this
method also works with filenames that include the path.

We can remove the extension from a filename using the stripExt() method; this
also works with filenames that include the path.

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[413]

The next example illustrates how to use both the methods together:

if (JFile::getExt($filename) == 'txt')
{
 echo JText::sprintf('%s is a text file',
 JFile::stripExt($filename));
}

There are four common file-system commands that deal explicitly with
file management:

exists()

copy()

move()

delete()

The exists() method returns a Boolean response and is used to check if a file exists:

if (!JFile::exists($pathToFile))
{
 // handle file does not exist
}

If a file exists then we can use any of the remaining methods to perform operations
on it. It's better to use these methods than to use the normal PHP file-management
functions because, if FTP is enabled, these methods will attempt to use an FTP
connection in priority to PHP functions. This decreases the chance of error due
to lack of user rights.

The copy() method copies a file to a new location. The method accepts
three parameters:

1. The path to the source file.
2. The path to the destination file.
3. An optional base path.

If a base path is provided, it will be prepended to the source and destination paths.

The copy() method returns a Boolean response. The next example copies the
foo.php file to the bar.php file in the frontend root of the current component:

if (!JFile::copy('foo.php', 'bar.php', JPATH_COMPONENT))
{
 // handle failed file copy
}

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[414]

The move() method works in the same way, except that it relocates the file rather
than creating a copy of the file. This method returns a Boolean response. The next
example moves the file foo.php to the file bar.php in the frontend root of the
current component:

if (!JFile::move('foo.php', 'bar.php', JPATH_COMPONENT))
{
 // handle failed file move
}

The final method is the delete() method. This method removes one or more files
from the file system. This method returns a Boolean response. The next example
deletes the file foo.php from the frontend root of the current component:

if (!JFile::delete(JPATH_COMPONENT.DS.'foo.php'))
{
 // handle failed delete
}

If we want to delete multiple files at once, we can pass an array of file paths to the
delete() method. The following example deletes the files foo.php and bar.php
from the frontend root of the current component:

$files = array(JPATH_COMPONENT.DS.'foo.php',
 JPATH_COMPONENT.DS.'bar.php');
if (!JFile::delete($files))
{
 // handle failed delete
}

The next two methods we will look at are used to read and write data to and from
files. These methods are aptly named read() and write(). We'll start by using the
read() method to access the contents of a file:

$file = JPATH_COMPONENT.DS.'foo.php';
$contents = JFile::read($file);

The contents of the file is read into the $contents variable as a string. If the read()
method is unsuccessful, the method returns false. It is not uncommon, once a file
is successfully read, to use the explode() function to split the contents into an array
of lines:

$lines = explode("\n", $contents);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[415]

To write to a file we use a similar approach. When we call the write() method we
must provide the path to the file that we intend to write and the data that we want to
write to the file. The following example appends some data to the end of the file:

$lines[] = "\n<?php echo 'This file has been updated!'; ?>"
if (!JFile::write($file, implode("\n", $lines)))
{
 // handle failed file write
}

The last method that we will look at is the upload() method. This method is
intended to move files that have been uploaded. The method is similar to the
move() method except it handles the creation of the destination path and it sets
the permissions of the uploaded file.

The next example takes the uploadFile array from the FILES request hash and
copies it to its new location:

$file = JRequest::getVar('uploadFile', '', 'FILES', 'array');
if (!JFile::upload($file, JPATH_COMPONENT.DS.'files'))
{
 // handle failed upload
}

Archives
The joomla.filesystem.archive library provides us with two important things,
the static JArchive class and a number of archive adapters. JArchive allows us to
easily unpack archive files using the archive adapters. An adapter handles a specific
type of archive. This list details the core archive adapters:

BZIP2
GZIP
TAR
ZIP

Before we start using this library we must always import it:

jimport('joomla.filesystem.archive');

We will start by exploring the use of the JArchive class to unpack archives. To
do this we need to use the extract() method. We pass two parameters to this
method: the path to the archive file and the path to the directory where we want
to extract the contents.

•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[416]

The next example extracts an archive to the 'temp' directory in the current component:

if (!JArchive::extract($pathToArchive, $destination))
{
 // handle failed archive extraction
}

When we use the extract() method we are invoking an archive adapter that is
automatically selected based upon the file extension. The following list describes
the supported archive format extensions:

.bz2

.bzip2

.gz

.gzip

.tar

.tbz2

.tgz

.zip

Note that if the archive is a tarball, a compressed file that contains a tar archive,
then the inner TAR file will automatically be extracted.

If we attempt to extract an unsupported archive type, a warning
will be thrown.

Arrays
Arrays are an integral part of PHP and we constantly use them when building
Joomla! extensions. PHP provides us with a number of very useful functions for
working with arrays. We can use the static JArrayHelper class to simplify other
common tasks when working with arrays.

The JArrayHelper class is located in the joomla.utilities.arrayhelper library.
Before we can use the JArrayHelper class we must import the relevant library:

jimport('joomla.utilities.arrayhelper');

•

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[417]

Imagine we have a CSV file, which holds records with mathematical data:

2, 4.6
0, 0.0
1, 2.5
4, 8.2

Now imagine we want to order the data by ID (the first field) and we want the values
(second field) to be displayed as integers.

The first thing we need to do is retrieve the contents of the CSV file; we do this using
the JFile class, discussed earlier in this chapter:

jimport('joomla.filesystem.file');
if (false === ($data = JFile::read($CSV_FilePath)))
{
 // handle failed to read CSV file
}

Once we have retrieved the data we need to split it into an array of lines. We then
need to convert each line into an object. If we do not use objects, we will be unable
to use the JArrayHelper sorting method.

To create the objects, we use the toObject() method. This method creates a new
object and adds properties to the object based on the array keys. In this example,
when we use the toObject() method, the resultant objects will be of type stdClass
and have two keys—id and value:

// convert CSV data into an array of lines
$data = explode("\n", $data);

// iterate over each line
for($i = 0, $c = count($data); $i < $c; $i ++)
{
 // split the values
 $temp = explode(',', $data[$i]);

 // cast all the values to integers (always rounds down)
 JArrayHelper::toInteger($temp);

 // set the named values
 $temp['id'] = $temp[0];
 $temp ['value'] = $temp[1];

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[418]

 // remove keys 0 and 1
 unset($temp[0], $temp[1]);

 // convert the array to an object
 $data[$i] = JArrayHelper::toObject($temp);
}

The first JArrayHelper method that we use in this example is toInteger(). This
method casts all of the values in the $temp array into integers.

The objects created in the previous example are of type stdClass. We are not
restricted to stdClass objects; we can, if we wish, specify a different class. The
following example demonstrates how we would create objects of the type JObject:

$data[$i] = JArrayHelper::toObject($temp, 'JObject');

The class that we specify must not have any constructor parameters, or all the
constructor parameters must be optional. If we ever need to convert an object
back to an array, we can use the fromObject() method:

 $array = JArrayHelper::fromObject($object);

Now that we have an array of objects we can start to play around with that array.
The first thing we'll do is sort the array by the ID of each record. We do this using
the sortObjects() method:

JArrayHelper::sortObjects($data, 'id');

By default this method sorts the data in ascending order; if we want to sort the data
in descending order, we must supply the third optional parameter set to -1:

JArrayHelper::sortObjects($data, 'id', -1);

The result is an array of stdClass objects; all attributes of the objects are integers,
and the objects are in order of ID:

Array
(
 [0] => stdClass Object
 (
 [id] => 0
 [value] => 0
)

 [1] => stdClass Object
 (
 [id] => 1
 [value] => 2
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[419]

 [2] => stdClass Object
 (
 [id] => 2
 [value] => 4
)

 [3] => stdClass Object
 (
 [id] => 4
 [value] => 8
)
)

Let's determine the total of the values. We could do this by iterating over the array
and adding each value to the total but another way is to use the getColumn()
method and array_sum() function together:

$total = array_sum(JArrayHelper::getColumn($data, 'value'));

The getColumn() method is used to retrieve a column of data from an array
structure. In order for this method to work as expected, the array must be populated
with either objects or arrays.

Imagine we have an array of values of mixed types and we want to retrieve different
values from that array, casting the values to the appropriate type. To accomplish this
we use the getValue() method:

$array = array(12, '1.3');
$value = JArrayHelper::getValue($array, 0, '', 'ALNUM')

The first parameter is the array that contains the value; the array will be passed by
reference. The second parameter is the name of the array element key that contains
the value. The third and fourth parameters are both optional. The third is the default
value, and the fourth is the type to cast the retrieved value. The following table
describes the different types that are supported:

Name Description
INT, INTEGER Whole number
FLOAT, DOUBLE Floating-point number
BOOL, BOOLEAN true or false
WORD String consisting of the letters A-Z (this is not case sensitive)
STRING String
ARRAY Array of mixed values

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[420]

For a more comprehensive range of type-casting options, we can use the
JFilterInput class that supports ten different data types. For a complete
description of JFilterInput refer to the official API documentation:
http://api.joomla.org/Joomla-Framework/Filter/JFilterInput.html.

The final method that we will explore is the toString() method. We normally
use this method to produce a string that can be used to describe attributes in an
XHTML tag.

In the following example, we create an image tag that uses an array to
provide attributes:

$attributes = array();
$attributes['src'] = 'http://example.org/image.gif';
$attributes['class'] = 'image';
echo '';

The output string will be:

There are additional parameters that we can use with the toString() method to
modify the output. This method uses inner and outer glue. The inner glue is used
between a key and a value and the outer glue is used between key-value pairs:

echo JArrayHelper::toString($attributes, ' : ', ";\n");

Here we use a colon for the inner glue and a semicolon and a new line character for
the outer glue. The output will be:

src : "http://example.org/image.gif";
class : "image"

Trees
Trees are used to model hierarchical data. Joomla! provides us with the JTree and
JNode classes; we can use these to build tree data structures. Before we start using
these classes we must import the relevant library:

jimport('joomla.base.tree');

The first thing we do when building a new tree is to create a new JTree object.
Although a JTree object is not technically required in order to create a tree it ensures
we can easily access the root of the tree. There are no parameters that we need to
pass when creating a new tree:

$tree = new JTree();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[421]

When a new tree is created a new root JNode object is automatically created. The root
node is the node to which all other nodes in the tree belong.

Once we have created a tree we must add child nodes by using the
addChild() method:

$tree->addChild(new JNode());

When we use the JTree method addChild(), the child isn't necessarily added as a
direct descendant to the root node. Trees use a pointer to determine the current or
working node. When we add a new child node, it is added to the present working
node's children. By default, the working node is the root node.

The following diagram depicts a tree using the JNode and JTree classes. The root
node is node A (the root node never changes during the life of the tree). The working
node is node B (the working node is likely to change repeatedly during the life of
the tree).

If we were to use the addChild() method, the new node would be added as child to
the working node, in this case node B. When we create a new JTree, the root node is
initially the working node.

Notice that the arrows between child nodes and parent nodes are bi-directional.
This is because we can navigate between nodes in both directions. The JTree
pointers are unidirectional; this means that the nodes are unaware of the
encapsulating JTree object.

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[422]

When we add a new node, if we wish to create a branch of nodes, we can pass
another parameter. When this parameter is true, the newly added node will
become the working node.

To traverse the tree we can use the reset() and getParent() methods. The
reset() method is used to set the working node to the root node. The getParent()
method is used to set the working node to the parent node of the present
working node.

So far we have only added blank nodes. How do we store data in nodes? The
JNode class is a subclass of JObject. This means that we have access to the get()
and set() methods:

$node = new JNode();
$node->set('name', 'Child Node 1');
$tree->addChild($node);

Although this makes the JNode class more useful, we can make nodes that are
designed especially for our needs. The best way for us to make use of the JTree
is to define a new JNode subclass that has additional properties:

// subclass of JNode
class myNode extends JNode
{
 // name property
 var $name = '';

 // constructor
 function __construct($name='')
 {
 $this->set('name', $name);
 parent::__construct();
 }
}

Now we can create a more complex tree:

$tree->addChild(new myNode('Node 1'));
$tree->addChild(new myNode('Node 2'));

A prime example to this sort of use of the JTree class is the iLink and iLinkNode
classes. These two classes extend the JTree and JNode classes respectively. They
are used to build the menu trees that are commonly used in Joomla!.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[423]

Log files
Joomla! provides the JLog class for handling log files. In order to use this class we
must first import it:

jimport('joomla.error.log');

Let's start by exploring the use of JLog to handle the global error log file. The global
error log file is a PHP file generally used to log failed login attempts.

To access the global error log file we obtain a reference using the
JLog::getInstance() method:

$errorLog =& JLog::getInstance();

New entries are appended to the end of the log file and they are derived from
associative arrays. The array keys differ depending on the log file; the global error
log file uses the following keys:

DATE

TIME

LEVEL

C-IP

STATUS

COMMENT

The DATE, TIME, or C-IP keys are automatically populated. In fact we are not
required to provide any key-value pairs. However, this would make the log
file relatively useless.

To add a new entry we use the addEntry() method as follows:

$entry = array('status' => 'OK', 'comment' => 'Example');
$errorLog->addEntry($entry);

The great thing about this method is that if the log file doesn't exist it will be created.
When a log file is created a set of standard headers are added to the log file. Here is
what the headers may look like:

#<?php die('Direct Access To Log Files Not Permitted'); ?>
#Version: 1.0
#Date: 2010-03-01 17:58:47
#Fields: date time level c-ip status comment
#Software: Joomla! 1.5.15 [Wojmamni Ama Mamni] 05-November-2009
#04:00 GMT

•
•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Utilities and Useful Classes

[424]

The first line includes that common bit of PHP we use in all Joomla! PHP files. This
ensures that the log file isn't directly accessible. Obviously, in order for this to work
the log file must be a PHP file.

Entries are added beneath the header and each field is separated by a tab
character. This is an example of the entry that would be added as a result
of our previous example:

2010-03-01 17:58:47 - 192.168.0.2 OK Example

Notice that the fields are in the order identified by the header; the level value is a
dash because we did not provide a value when we added the entry.

The addEntry() method returns a Boolean response because we cannot guarantee
that the entry will be added successfully. We might be unable to create the log file
or unable to write to the log file. Here is an example of how we might choose to
deal with the potential problem:

if (!$errorLog->addEntry($entry))
{
 // handle a failed entry
 JError::raiseNotice('SOME_ERROR',
 JText::sprintf('LOGFAIL',
 $entry['comment']);
}

To test this example, modify the access rights to your error log file. If we wanted
to make the failed entry handling even more robust, we could use the JMail class
to send an email to the site administrator.

In addition to the global error log file we can use the JLog class to handle custom log
files; to do this we use the getInstance() method with additional parameters.

The first parameter is the name of the log file excluding the path. If no more
parameters are provided the log file will be located in the same directory as the
global error file.

The second parameter is an associative array of options. JLog currently only
supports one option, format. The format option is used to determine the format
in which the log entries are stored. By default this is:

{DATE}\t{TIME}\t{LEVEL}\t{C-IP}\t{STATUS}\t{COMMENT}

When we define a custom format string we use curly braces to encapsulate entry
field names. These fields relate directly to the keys that we described earlier when
adding an entry to a log file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[425]

The third and final parameter is the path to the log file. This defaults to the global log
file path defined in the global configuration.php file ($log_path).

The following example obtains an instance of a JLog class that will handle the
mylog.php log file located in the root of the frontend of the current component. Each
entry log entry will have three fields, DATE, TIME, and DESCRIPTION, in that order:

$options = array('format' => '{DATE}\t{TIME}\t{DESCRIPTION}');
$log =& JLog::getInstance('mylog.php', $options, JPATH_COMPONENT);

We add entries to this log file in the same way we did previously:

$entry = array('description' => 'Example Log Entry');
$log->addEntry($entry);

Summary
In this chapter we introduced some of the most commonly used utility classes that
are included within Joomla!'s library. Not only does the library provide us with
Joomla! core classes, but it also provides us with many invaluable utilities and
useful classes.

Working with the file system is a common activity. Using the joomla.filesystem
library is extremely easy and it provides us with far more power and consistency
than the basic PHP file-system functions.

Arrays have long been a key data type. PHP provides us with many useful
functions for handling arrays; Joomla! extends this functionality through the
JArrayHelper class.

Data structures are often used to model information. The tree structure is a very
common data structure and Joomla! provides us with a way of easily building
such a structure.

We should always bear in mind that if there isn't something appropriate within
the Joomla! library to handle a specific task, we can always turn to the other libraries
with which we are provided.

If we are still unable to find a solution we can always turn to other libraries
outside of the Joomla! sphere. A good resource for such libraries is PHP classes
(http://www.phpclasses.org/), a repository of freely available PHP classes.
Hopefully this chapter has provided you with some useful and necessary insights
into the inner workings of Joomla!.

While this is the final chapter in this book, there remains much more to learn
about Joomla!.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes
This appendix details the Joomla! core classes. Additional documentation can be
found at the official API site: http://api.joomla.org although the Joomla! code
should be your final source for the most accurate and current information. This
appendix covers:

JApplication
JController
JDatabase
JDocument
JDocumentRenderer
JFactory
JModel
JObject
JPlugin
JTable
JUser
JView

JApplication
abstract, extends JObject, located in /joomla/application/application.php

This is a base application class that acts as a factory class for application specific
objects and provides many supporting API functions. Derived classes should supply
the route(), dispatch() and render() functions. The frontend JSite and backend
JAdministrator classes as well as the installation JInstallation class extend the
JApplication class. This class encapsulates the process from request to response. For
more information about the JApplication class refer to Chapter 2, Getting Started.

•
•
•
•
•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[428]

Properties

string $scope The scope of the application

integer $_clientId The type of application

array $_messageQueue The application message queue

array $_name The name of the application

Inherited methods
Inherited from JObject:

JObject::JObject()
JObject::__construct()
JObject::get()
JObject::getError()
JObject::getErrors()
JObject::getProperties()
JObject::getPublicProperties()
JObject::set()
JObject::setError()
JObject::setProperties()
JObject::toString()

Deprecated methods
The following methods have been deprecated as of version 1.5; their use is not
recommended. Use the recommended alternative instead.

Deprecated Method Recommended Alternative
addCustomHeadTag() JDocument::addCustomTag()

addMetaTag() JDocument::setMetaData()

appendMetaTag() JDocument::setMetaData()

appendPathway() JPathway::addItem()

getBasePath() JURI::getBase()

getBlogCategoryCount() JMenu::getItems()

getBlogSectionCount() JMenu::getItems()

getContentItemLinkCount() JMenu::getItems()

•
•
•
•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[429]

Deprecated Method Recommended Alternative
getCustomPathway() JPathway::getPathway()

getGlobalBlogSectionCount() JMenu::getItems()

getHead() JDocument::getHead()

getItemid() ContentHelper::getItemid()

getPageTitle JDocument::getTitle()

getPath() JApplicationHelper::getPath()

getStaticContentCount() JMenu::getItems()

getUser() JFactory::getUser()

prependMetaTag() JDocument::setMetaData()

setPageTitle() JDocument::setTitle()

Methods
Constructor __construct

Class constructor. Builds a new JApplication object for the specified client
application. Subclasses generally do not require the $config parameter. The
$config array will contain at least four elements:

clientID, identifies the application client: 0=site, 1=admin,
2=installation
session_name, the default session name
session, set to true to enable sessions
config_file, the configuration file name including extension

JApplication __construct([$config = array()])
integer $config: Configuration settings

•

•

•

•

•

close
This method closes the application gracefully.

void close($code)

integer $code: Exit code•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[430]

dispatch
This abstract method pulls the option from the request object, maps it to the
relevant component, and executes the component, storing the rendered result
in the global JDocument object. If the component does not exist, it determines
a default component to dispatch. Descendant classes should provide their own
dispatch() method.

void dispatch($component)

string $component: Name of component to be dispatched•

enqueueMessage
This method adds a new message to the application message queue and clears
the session message queue.

void enqueueMessage($msg, [$type = 'message'])
string $msg: The message to enqueue
string $type: The message type

•
•

getCfg
This method returns a configuration value

mixed getCfg($varname)

string $varname: Name of the configuration value
mixed: Returns the configuration value

•
•

getClientId
This method returns the client id of the application currently running.

integer getClientId()

integer: Returns id of the running application: 0=site, 1=admin, 2=installer •

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[431]

getInstance
This method returns a reference to the global JApplication object. If the
application object does not exist, it creates it.

JApplication &getInstance($client, [$config = array()], [string $prefix ='J'])

mixed $client: A client identifier or name
array $config: Optional associative array of configuration settings
string $prefix: Optional prefix string for the application name
string: Returns JApplication object

•
•
•
•

getMenu
This method returns a reference to the application JMenu object.

JMenu &getMenu([$name = null], [$options = array()])

string $name: Optional name, uses the application name if missing
array $options: Optional associative array of configuration settings
object: Returns a reference to the JMenu object

•
•
•

getMessageQueue
This method returns a copy of the application message queue. If no application
messages exist and there are session messages, the session message queue will
be moved to the application message queue.

array getMessageQueue()

array: Returns array of system messages in the queue•

getName
This method returns the application dispatcher name. By default, it is derived
from the class name, or it can be set by passing a $config['name'] in the
application class constructor.
string getName()

string: Returns the name of the dispatcher•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[432]

getPathway
This method returns a reference to the application JPathway object that
maintains an array of breadcrumbs.
JPathway &getPathway([$name = null], [$options = array()])

string $name: Optional application name
string $options: Optional associative array of configuration settings
object: Returns a reference to the JPathway object

•
•
•

getRouter
This method returns a reference to the application JRouter object.
JRouter &getRouter([$name = null], [$options = array()])

string $name: Optional application name
string $options: Optional associative array of configuration settings
object: Returns a reference to the JRouter object

•
•
•

getTemplate
This method returns the name of the current application template. This method
must always be overridden by a subclass. The base JApplication::
getTemplate() method simply returns 'system'. Subclasses (JAdministrator
and JSite for example) that extend JApplication override this method to
return the current template.
string getTemplate()

string: Returns the name of the current application template•

getUserState
This method returns a value from the user session registry.
mixed getUserState($key)

string $key: Session registry key name
mixed: Returns a user session registry value, null if key is not found

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[433]

getUserStateFromRequest
This method updates and returns a value from the user state registry. If a
$default value is provided and the $key does not exist it will be inserted into
the user state registry. For valid type values see JFilterInput::clean().
string getUserState($key, $request, [$default = null], [$type = 'none'])

string $key: Session registry key name to retrieve the value
string $request: Session registry key name to retrieve the value
string $default: Optional default value
string $type: Optional filter for the variable
string: Returns the updated user state variable

•
•
•
•
•

initialise
This method initializes the application. Prepares the application language,
defines date formats, and builds the application router. Subclasses JSite
and JAdministrator have their own initialise() method that call
parent::initialise() to complete their initialization process.

void initialise([$options = array()])

array $options: An optional associative array of configuration settings
void : No return type

•
•

isAdmin
This method determines whether the current application is the administrator
backend (ClientID is 1.)
boolean isAdmin()

boolean: Returns true if ClientID = 1•

isSite
This method determines whether the current application is the site frontend
(ClientID is 0.)
boolean isSite()

boolean: Returns true if ClientID = 0•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[434]

login
This method passes the username and encoded password to the onLoginUser
event, which is responsible for user validation. The username and encoded
password are sent as credentials (along with other possibilities) to each
observer (authentication plugin) for user validation. A successful validation
updates the current session record with the user's details.
boolean login($credentials, [$options = array()])

array $credentials : Array('username' => string, 'password' => string)
array $options: Array('remember' => boolean)
boolean: Returns true upon successful login

•
•
•

logout
If a user is logged-in, this method logs the user out. It passes the current user
information to the onLogoutUser event and reverts the current session record
back to anonymous parameters.
boolean logout([$userid = null], [$options = array()])

mixed $userid: The user to logout, can be an integer or a string
array $options: Array('clientid' => array of client ids)
boolean: Returns true upon successful logout

•
•
•

redirect
This method redirects the application to the specified URL and optionally
enqueues a message in the system message queue (which will be displayed
the next time a page is loaded) using the enqueueMessage method. This
method closes the application. If the headers have not been sent the redirect
will be accomplished using a "301 Moved Permanently" code in the header
pointing to the new location. If the headers have already been sent this will be
accomplished using a JavaScript statement.
void redirect($url, [$msg = ''], [$msgType = 'message'])

string $url: The redirect URL; can only be a http/https URL
string $msg: An optional message to display on redirect
string $msgType: An optional message type
void: No return type

•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[435]

registerEvent
This method registers a handler to a particular event group with the global event
dispatcher.
void registerEvent($event, $handler)

string $event: The event name
mixed $handler: The handler, a function or an instance of an event object
void : No return type

•
•
•

render
This method renders the response by pushing the document buffers into
the template placeholders, retrieving data from the document and pushing
it into the JResponse buffer. Descendant classes should provide their own
render() method.

void render()

void: No return type•

route
This method routes the application by examining the request environment
to determine which component should receive the request. The component
optional parameters are then set in the request object that will be processed
when the application is dispatched. This method chooses the route through the
application based on the request URI. Descendant classes should provide their own
route() method.

void route()

void: No return type•

setUserState
This method sets the value of a user state variable.

mixed setUserState($key, $value)

string $key: The path of the state variable
string $value: value of the variable
mixed: Returns the previous state, if one existed

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[436]

triggerEvent
This method will notify any registered event handlers that are associated with
the event that an event has occurred. $args is exploded and each element is
passed as an individual argument to the handler.

array triggerEvent($event, [$args = null])

string $event: The event name
array $args: An optional array of arguments
array: Returns an array of results from each function call

•
•
•

JController
abstract, extends JObject,
located in /joomla/application/component/controller.php

This is the base controller class used in MVC implementations. Controllers provide
basic functionality such as rendering views. For more information about the
JController class refer to Chapter 5, Component Design.

Properties

string $_acoSection ACO section for the controller

string $_acoSectionValue Default ACO section value for the controller

string $_basePath The base path of the controller

string $_doTask Task method that was executed

string $_message Message to include in redirect

string $_messageType Type of message to include in redirect

array $_methods Array of class methods

string $_name The name of the controller

array $_path Set of search directories for resources (views, models)

string $_redirect URL for redirection

string $_task Current or most recent task to be executed

array $_taskmap Array of class methods to call for a given task

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[437]

Inherited properties
Inherited from JObject:

JObject::_errors

Inherited methods
Inherited from JObject:

JObject::JObject()

JObject::__construct()

JObject::get()

JObject::getError()

JObject::getErrors()

JObject::getProperties()

JObject::getPublicProperties()

JObject::set()

JObject::setError()

JObject::setProperties()

JObject::toString()

Methods
Constructor __construct

Builds a new JController object. $config, an associative array, can contain
the keys name, base_path, default_task, model_path, and view_path.

name becomes the controller name, unless the controller name is already
defined by the subclass
default_task is the task that will be executed by default (this is not the
same as the method)
model_path is the JModel subclass search path, prepended by
JPATH_COMPONENT

view_path is the JView subclass search path, prepended by
JPATH_COMPONENT

Redefines JObject::__construct(); overridden in descendant classes.
JController __construct([$config = null])

array $config: An optional associative array of configuration settings

•

•

•

•

•

•

•
•
•
•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[438]

addModelPath
This method adds one or more JModel paths to the controller's stack in LIFO
order. $path can be a string or an array of strings.

void addModelPath($path)
mixed $path: The directory (string) or an array of directories to add
void: No return type

•
•

addViewPath
This method adds one or more JView paths to the controller's stack in LIFO
order. $path can be a string or an array of strings.

void addViewPath($path)
mixed $path: The directory (string) or array of directories to add
void: No return type

•
•

authorize
If $_acoSection has not been set, authorization is automatically granted.
If $_acoSection has been set and $_acoSectionValue has been set then
$_acoSectionValue is assigned to $task. The method then determines if the
current user has the rights to complete the specified $task.

boolean authorize($task)
string $task: The directory (string) or list of directories (array) to add
boolean: Returns true is authorized, false if not authorized

•
•

display
This method is provided as a default implementation; derived controller
classes will normally override this method. The method uses JRequest (view
and layout) to determine the view name and the template layout to use. If the
view is not known then the controller name is used. layout determines which
template to use, normally default. If cachable is true then the global cache
object is used to get and populate the display cache.

void display([$cachable = false])
boolean $cachable: Use global cache object if true
void: No return type

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[439]

execute
This method executes a task by triggering a method in a descendant class. If
a mapped method for $task does not exist, it attempts to execute the default
$task. If a mapped method for the default $task does not exist, a 404 error is
raised. When a mapped method is found, access rights are checked using the
authorize() method. If access is denied, a 403 error is raised.

mixed execute($task)

string $task: The task to execute
mixed: Returns the mapped method or an error if no mapped method
exists

•
•

getModel
This method returns a reference to a JModel subclass object, creating a new
instance if one does not exist. If $prefix is not specified, the name of the
controller concatenated with the word 'Model' is used. $name is the model class
name suffix. If the class does not exist, Joomla! will attempt to load it from the
model paths. If the file where the class is expected to reside is found but the
class is missing, an error will be thrown.
JModel &getModel([$name = ''], [$prefix = ''], [$config = array()])

string $name: Optional model name
string $prefix: Optional class prefix
array $config: Optional configuration array for the model
object: Returns a reference to a JModel subclass object

•
•
•
•

getName
This method returns the name of the controller.
string getName()

string: Returns the controller name•

getTask
This method returns the current task or the last task that was executed.
string getTask()

string: Returns the current task or the last task that was executed•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[440]

getTasks
This method gets a list of the available tasks in the controller and returns an
array of task names.
array getTasks()

array: Returns an array of task names•

getView
This method returns a reference to a JView subclass object creating a new
instance if one does not exist. If $name is not specified, the controller name is
used. If $prefix is not specified, the prefix will be $controllerName.'View'.
$type is the view layout, normally 'html', but can have a value of 'feed',
'html', 'pdf', 'raw', or 'error'. This method is normally called with only
$name specified, for example:

 $view = $SomeController->getView('Item');

This would attempt to instantiate the JView class SomeViewItem.

JView &getView([$name = ''], [$type = ''], [$prefix = ''], [$config = array()])

string $name: Optional view name, defaults to the controller name
string $type: Optional view type
string $prefix: Optional class prefix
array $config: Optional configuration array for the view
object: Returns a reference to a JView subclass object

•
•
•
•
•

redirect
If a redirect has been set, this method redirects the browser and closes
the application.
boolean redirect()

boolean: Returns false if no redirect exists•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[441]

registerDefaultTask
This method registers the default task. The default task is the task that is
executed when an attempt is made to execute a task that is not mapped
to a method.
void registerDefaultTask($method)

string $method: Derived class name to perform if a named task is not
found.
void: No return.

•

•

registerTask
This method registers (maps) a task to a method in the class.

void registerTask($task, $method)

string $task: The task name
string $method: Derived class method name to perform for the task
void: No return type

•
•
•

setAccessControl
This method sets the object authorization ACO section and ACO value. This is
used by the authorize() method.

void setAccessControl($section, [$value = null])

string $section: The ACO section (the component for example)
string $value: Optional ACO section value (if using a constant value)
void: No return type

•
•
•

setMessage
This method sets the internal message that is passed with a redirect.

string setMessage($text)

string $text: The new message
string: Returns the previous message

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[442]

setRedirect
This method sets the object redirect options. This is only used if the redirect
method is called. Setting $msg is optional; if not provided the value set
internally by the controller will be used.

void setRedirect($url, [$msg = null], [$type = 'message'])

string $url: The redirect URL
string $msg: Optional message on redirect
string $type: Optional message type, default is 'message'
void: No return type

•
•
•
•

_addPath
This private method adds search paths for JModel and JView subclass files.

void _addPath($type, $path)

string $type: The path type (for example- model, view)
mixed $path: Directory or array of directories to add
void: No return type

•
•
•

_createFileName
This private method creates a filename based on $type and $parts; $type can
be either 'view' or 'model'. $parts must contain the key 'name' and if $type is
'view' it can optionally contain the key 'type', which relates to the layout.

string _createFileName($type, $parts)

string $type: The resource type of the filename to create
mixed $parts: File name parts
string: Returns the parsed filename

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[443]

_createModel
This private method returns a reference to a new JModel subclass object. $name
is the class name suffix, normally the entity name. $prefix is the class name
prefix, normally $controllerName.'Model'.

JModel &_createModel($name, [$prefix = ''], [$config = array()])

string $name: The name of the model
string $prefix: Optional model prefix
array $config: Optional configuration array for the model
object: Returns a reference to a JModel subclass object

•
•
•
•

_createView
This private method returns a reference to a new JView subclass object. $name is
the class name suffix, normally the entity name. $prefix is the class name prefix,
normally $controllerName.'View'. $type is the layout, normally HTML.

mixed &_createView($name, [$prefix = ''], [$type = ''], [$config = array()])

string $name: The name of the view
string $prefix: Optional view prefix
string $type: Optional view type
array $config: Optional configuration array for the view
mixed: Returns a reference to a JView subclass object

•
•
•
•
•

_setPath
This private method sets an entire array of search paths for JModel and JView
subclass files.

void _addPath($type, $path)

string $type: The path type (for example- model, view)
mixed $path: The new set of search paths, can be a string or array
void: No return type

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[444]

JDatabase
abstract, extends JObject, located in /joomla/database/database.php

This is the base database connector class. There are two core subclasses (sometimes
called drivers or adapters), JDatabaseMySQL and JDatabaseMySQLi. Additional
subclasses, enabling support for other database servers may be included with future
releases of Joomla!. For more information about the JDatabase class refer to Chapter
3, The Database.

Direct descendents

JDatabaseMySQL MySQL database driver
JDatabaseMySQLi MySQLi database driver

Properties

string $name Database driver name

mixed $_cursor Result of last mysql_query() call

boolean $_debug Debug mode: 0=disabled, 1=enabled

string $_errorMsg Error message from last query

integer $_errorNum Error number from last query

boolean $_hasQuoted There are specific field names to be quoted

integer $_limit Maximum number of records to return from a query

array $_log Query history (only if debug is enabled)

string $_nameQuote Named SQL element quotes (tables, fields, databases)

string $_nullDate Null date string

integer $_offset Record offset

array $_quoted Array of values that should be quoted

mixed $_resource Database resource

string $_sql Current query

string $_table_prefix Database table prefix, default is 'jos_'

integer $_ticker Number of queries executed (only if debug is enabled)

boolean $_utf Indicates whether the database supports UTF-8

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[445]

Inherited properties
Inherited from JObject:

JObject::_errors

Inherited methods
Inherited from JObject:

JObject::JObject()

JObject::__construct()

JObject::get()

JObject::getError()

JObject::getErrors()

JObject::getProperties()

JObject::getPublicProperties()

JObject::set()

JObject::setError()

JObject::setProperties()

JObject::toString()

Methods
Constructor __construct

Builds a new JDatabase object and initializes internal properties. Subclasses
also connect to the specified database. The $options array normally includes
the keys host, user, password, database, prefix, and select.

Redefines JObject::__construct(); overridden in descendant classes.

JDatabase __construct()

array $options: An associative array of database properties
object: Returns a new JDatabase object

•
•

•

•
•
•
•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[446]

Destructor __destruct
Runs when the JDatabase object is destroyed, ensuring that the database
connection is cleanly closed.

Redefines JObject::__destruct(); overridden in descendant classes.

boolean __destruct()

boolean: Returns true on success•

addQuoted
This method adds a field name or an array of field names to the list of names
that should always be encapsulated in quotes. Sets the protected variable
$_hasQuoted to true.

void addQuoted($quoted)

mixed $quoted: Field name or an array of field names
void: No return type

•
•

connected
This method determines if the database connection to the server is active.
Redefined in descendants:

JDatabaseMySQL::connected()

JDatabaseMySQLi::connected()

boolean connected()

boolean: Returns true if the database connection is currently active

•
•

•

debug
This method sets the debug mode.

void debug($level)

integer $level: Debug level: 0=disabled, 1=enabled
void: No return type

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[447]

explain
This abstract method is a diagnostic function that explains the current query.
Redefined in descendants:

JDatabaseMySQL::explain()

JDatabaseMySQLi::explain()

void explain()

void: No return type

•
•

•

getAffectedRows
This abstract method returns the total number of records that were affected by
the last query. Redefined in descendants:

JDatabaseMySQL::getAffectedRows()

JDatabaseMySQLi::getAffectedRows()

integer getAffectedRows()

integer: Returns the number of records that were affected by
the last query

•
•

•

getCollation
This abstract method returns the database collation name. This method is not
infallible for MySQL databases; MySQL allows the collation to be set at four
different levels, server, database, table, and column. This method returns
the collation used by #__content.fulltext; it is possible that the collation
may differ elsewhere in the database. This method only works if the database
supports UTF-8. Redefined in descendants:

JDatabaseMySQL::getCollation()

JDatabaseMySQLi::getCollation()

string getCollation()

string: Returns the collation name

•
•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[448]

getConnectors
This method gets an array of database driver names supported in the current
environment.

array getConnectors()

array: Returns an array of available driver names•

getErrorMsg
This method returns the error message from the last query. If no error was
encountered it returns an empty string.

string getErrorMsg([$escaped = false])

boolean $escaped: If true escape the message with slashes
string: Returns the error message from the last query

•
•

getErrorNum
This method returns the error number from the last query. If no error was
encountered it returns a 0 (zero).

integer getErrorNum()

integer: Returns the error number from the last query•

getEscaped
This method returns an escaped string for use as a value in a query. Redefined
in descendants:

JDatabaseMySQL::getEscaped()

JDatabaseMySQLi::getEscaped()

string getEscaped($text, [$extra = false])

string $text: The string to be escaped
boolean $extra: If true add additional escaping
string: Returns the escaped string

•
•

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[449]

getInstance
This method returns a reference to a global JDatabase object only creating it
if it does not already exist. A separate instance will exist for each distinct set
of $options. The $options array normally contains the keys defined in the
constructor $options array along with the key driver. The driver key value
determines the subclass that is instantiated. Currently, the core drivers that are
available include MySQL and MySQLi.

JDatabase &getInstance([$options = array()])

array $options: Database parameters to be passed to the
database driver
object: Returns a reference to a JDatabase object

•

•

getLog
This method returns the database error log.

array getLog()

array: Returns the database error log•

getNullDate
This method returns a null date string specific to the current database driver.

string getNullDate()

string: Returns quoted null/zero date-time string•

getNumRows
This abstract method returns the number of records that were accessed by the
most recent query. If $cur is specified, it will determine the number of rows that
were returned for the corresponding query. This only works if the query was a
SELECT, SHOW, DESCRIBE, or EXPLAIN query. Redefined in descendants:

JDatabaseMySQL::getNumRows()

JDatabaseMySQLi::getNumRows()

integer getNumRows([$cur = null])

resource $cur: The database resource result from the most recent query
integer: Returns the number of rows returned from the most recent query

•
•

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[450]

getPrefix
This method returns the database table prefix, normally jos_.

string getPrefix()

string: Returns the database table prefix•

getQuery
This method returns the active query.

string getQuery()

string: Returns the current value of the internal SQL variable•

getTableCreate
This abstract method returns the CREATE TABLE statement(s) for each of the
table names provided. Redefined in descendants:

JDatabaseMySQL::getTableCreate()

JDatabaseMySQLi::getTableCreate()

array getTableCreate($tables)

mixed $tables: A table name or list of table names
array: Returns an associative array of CREATE TABLE statements

•
•

•
•

getTableFields
This abstract method returns an associative array of table field names and types
for the table names provided. Redefined in descendants:

JDatabaseMySQL::getTableFields()

JDatabaseMySQLi::getTableFields()

array getTableFields($tables, [$typeonly = true])

mixed $tables: A table name or an array of table names
boolean $typeonly: Only return field types; default is true
array: Returns an associative array of field names and their types

•
•

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[451]

getTableList
This abstract method returns an array of all the tables in the database.
Redefined in descendants:

JDatabaseMySQL::getTableList()

JDatabaseMySQLi::getTableList()

array getTableList()

array: Returns an array of all the tables in the database

•
•

•

getTicker
This method returns the total number of queries that have been executed.

integer getTicker()

integer: Returns the total number of queries executed•

getUTFSupport
This method determines if the database supports UTF-8.

boolean getUTFSupport()

boolean: Returns true if the database supports UTF-8•

getVersion
This abstract method returns the version of the database server. Redefined
in descendants:

JDatabaseMySQL::getVersion()

JDatabaseMySQLi::getVersion()

string getVersion()

string: Returns the version of the database server

•
•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[452]

hasUTF
This abstract method determines if the database supports UTF-8. You should
use getUTFSupport() in preference to this method as it returns a cached value
of hasUTF(). Redefined in descendants:

JDatabaseMySQL::hasUTF()

JDatabaseMySQLi::hasUTF()

boolean hasUTF()

boolean: Returns true if the database supports UTF-8

•
•

•

insertid
This abstract method returns the value of the primary key ID inserted as a result
of the last query if the query was an INSERT query on a table with an auto-
increment primary key. For all other queries a zero will be returned. Redefined
in descendants:

JDatabaseMySQL::insertid()

JDatabaseMySQLi::insertid()

integer insertid()

integer: Returns the id value generated from the previous INSERT
operation

•
•

•

insertObject
This abstract method inserts a row into a table based on the referenced object's
properties. The referenced object's properties must match the table fields.
If the primary key field name (keyName) is specified the object will be updated
with the new record's primary key value assuming the table has an auto-
incremented primary key. Redefined in descendants:

JDatabaseMySQL::insertObject()

JDatabaseMySQLi::insertObject()

boolean insertObject($table, &$object, [$keyName = null])

string $table: The name of the table
object $object: The object whose properties match table fields
string $keyName: Optional. The name of the primary key
boolean : Returns true upon success

•
•

•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[453]

isQuoted
This method determines if the field name is among the field names that should
be encapsulated in quotes. If no field names have been specified to be quoted,
the method returns true.
boolean isQuoted($fieldName)

string $fieldName: The field name
boolean: Returns true if the fieldname should be encapsulated in quotes

•
•

loadAssoc
This abstract method executes the current query and returns the first row as an
associative array.
If no query has been set or the query returns an empty result set, the method
will return null. Redefined in descendants:

JDatabaseMySQL::loadAssoc()

JDatabaseMySQLi::loadAssoc()

mixed loadAssoc()
mixed: Returns the first row of the query result as an associative array

•
•

•

loadAssocList
This abstract method executes the current query and returns a two-dimensional
array of rows. Each inner array represents a row as an associative array. If the
primary key field name is provided, the outer array will be an associative array
that uses the primary key value as the array key.

If no query has been set or the query returns an empty result set, the method
will return null. Redefined in descendants:

JDatabaseMySQL::loadAssocList()

JDatabaseMySQLi::loadAssocList()

mixed loadAssocList([$key = ''])

string $key: Optional primary key fieldname
mixed: Returns an array of associative arrays containing the result set

•
•

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[454]

loadObject
This abstract method executes the current query and returns the first row as a
stdClass object.

If no query has been set or the query returns an empty result set, the method
will return null. Redefined in descendants:

JDatabaseMySQL::loadObject()

JDatabaseMySQLi::loadObject()

mixed loadObject()
mixed: Returns first row of the query result as stdClass object

•
•

•

loadObjectList
This abstract method executes the current query and returns an array of
stdClass objects. Each object represents a row. If the primary key field name is
provided the outer array will be an associative array that uses the primary key
value as the array key.

If no query has been set or the query returns an empty result set, the method
will return null. Redefined in descendants:

JDatabaseMySQL::loadObjectList()

JDatabaseMySQLi::loadObjectList()

mixed loadObjectList([$key = ''])
string $key: Optional primary key field name
mixed: Returns an array of associative arrays containing the result set

•
•

•
•

loadResult
This abstract method executes the current query and returns the first field of the
first row returned by the query.

If no query has been set or the query returns an empty result set, the method
will return null. Redefined in descendants:

JDatabaseMySQL::loadResult()

JDatabaseMySQLi::loadResult()

string loadResult()
string: Returns the first field of the first row of the query result set

•
•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[455]

loadResultArray
This abstract method executes the current query and returns an array of a single
field/column from the query result set. The column number is 0 (zero) based,
for example, the first column = 0.

If no query has been set or the query returns an empty result set, the method
will return null. Redefined in descendants:

JDatabaseMySQL::loadResultList()

JDatabaseMySQLi::loadResultList()

mixed loadResultArray([$numinarray = 0])

integer $numinarray: Optional column/field number; defaults to first
field
mixed: Returns an array or column/field values

•
•

•

•

loadRow
This abstract method executes the current query and returns the first row as
an array.

If no query has been set or the query returns an empty result set, the method
will return null. Redefined in descendants:

JDatabaseMySQL::loadRow()

JDatabaseMySQLi::loadRow()

mixed loadRow()

mixed: Returns first row of the query result as an array

•
•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[456]

loadRowList
This abstract method executes the current query and returns a two-dimensional
array of rows. Each inner array represents a row as an array. If the primary
key field name is provided the outer array will be an associative array that
uses the primary key value as the array key.
If no query has been set or the query returns an empty result set, the method
will return null. Redefined in descendants:

JDatabaseMySQL::loadRowList()

JDatabaseMySQLi::loadRowList()

array loadRowList([$key = ''])
string $key: Optional primary key field name
array: Returns an array of arrays containing the result set

•
•

•
•

nameQuote
This method encapsulates named SQL elements (tables, fields, databases) in
quotes. The quotes used are determined by the current database driver. If
the element name is using dot-notation (for example, a.b) the name will be
returned unquoted.
string nameQuote($s)

string $s: The string to encapsulate in quotes
string: Returns the quoted string

•
•

query
This abstract method executes the current query. If the query is successful and
is a SELECT, SHOW, DESCRIBE, or EXPLAIN query a database resource will be
returned. If the query is successful and is not one of the prior query types the
method will return true; if any query fails false will be returned. Redefined
in descendants:

JDatabaseMySQL::query()

JDatabaseMySQLi::query()

mixed query()
mixed: Returns a database resource or true on success; false on failure

•
•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[457]

queryBatch
This abstract method executes a batch query. If $abort_on_error is true the
batch process will stop if an error occurs. If $p_transaction_safe is true
then all the queries will only be applied if they are all successful. Redefined
in descendants:

JDatabaseMySQL::queryBatch()

JDatabaseMySQLi::queryBatch()

mixed queryBatch([$abort_on_error = true], [$p_transaction_safe = false])

boolean $abort_on_error: Stop batch process on error
boolean $p_transaction_safe: Perform as a transaction
mixed: Returns true on success; false on failure; or the failed resource

•
•

•
•
•

Quote
This method encapsulate $text in quotes. The quote used is determined by the
current database driver. If $escaped is true $text is escaped; if false $text
is not escaped.

string Quote($text, [$escaped = true])

string $text: The string to encapsulate in quotes and escape
boolean $escaped: If true $text is escaped; if false $text is not
escaped
string: Returns the quoted string

•
•

•

replacePrefix
This method replaces all occurrences of the table prefix found in the query
string $sql with the value held in the $_table_prefix class variable.

string replacePrefix($sql, [$prefix = '#__'])

string $sql: The query string
string $prefix: The table prefix to replace in the query string
string: Returns the query string with replaced table prefix

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[458]

setQuery
This method sets the next query to execute. $offset and $limit are used
for pagination; in MySQL this relates directly to the LIMIT clause. If you use
$offset or $limit, your SQL must not contain a LIMIT clause. $prefix is
the string that is replaced by the database table prefix; it would be unusual to
change this from the default #__.

void setQuery($sql, $offset = 0, $limit = 0, [$prefix = '#__'])

string $sql: The query string
integer $offset: The first record to return
integer $limit: The maximum number of records
string $prefix: The table prefix to replace in the query string
void: No return type

•
•
•
•
•

setUTF
This abstract method prepares the database connection for UTF-8 strings.
Redefined in descendants:

JDatabaseMySQL::setUTF()

JDatabaseMySQLi::setUTF()

void setUTF()

void: No return type

•
•

•

splitSql
This method splits a string of queries into an array of individual queries.

array splitSql($queries)

string $queries: The queries to be split
array: Returns an array of individual queries

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[459]

stderr
This method returns an error report of the last error. If $showSQL is true the
SQL is included in the report.
string stderr([$showSQL = false])

boolean $ showSQL: If true includes the last SQL statement in the
report
string: Returns an error report

•

•

test
This abstract method verifies that the database server connection function
has been defined. For MySQL this is mysql_connect() and for MySQLi it is
mysqli_connect(). Redefined in descendants:

JDatabaseMySQL::test()

JDatabaseMySQLi::test()

boolean test()
boolean: Returns true if the connection function has been defined

•
•

•

updateObject
This abstract method treats $object as an updated record and attempts to
update the specified table from $object. If $updateNulls is true, object
properties that are null will still be used to update the record in the table.
Redefined in descendants:

JDatabaseMySQL::updateObject()

JDatabaseMySQLi::updateObject()

boolean updateObject($table, &$object, $keyName, [$updateNulls = true])
string $table: The table name to be updated
object $object: The record object
string $keyName: The primary key name
boolean $updateNulls: Update values even if they are null
boolean: Returns true on success

•
•

•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[460]

ADOdb methods
The following methods are included in the JDatabase class to provide emulation
of ADOdb functions. Most methods are empty functions that would require further
implementation to work. MySQL and MySQLi databases do not support ADOdb.

BeginTrans
This method emulates ADOdb functionality; it must be overridden in subclasses.
If you intend to use this method you must ensure that the database driver
supports it.

void BeginTrans()

void: No return type•

CommitTrans
This method emulates ADOdb functionality; it must be overridden in subclasses.
If you intend to use this method you must ensure that the database driver
supports it.

void CommitTrans()

void: No return type•

ErrorMsg
This method emulates ADOdb functionality; it returns the error message from
the last query; if no error was encountered, the error message will be an empty
string.

string ErrorMsg()

string: Returns the error message•

ErrorNo
This method emulates ADOdb functionality; it returns the error number from the
last query; if no error was encountered, the error message will be zero.

integer ErrorNo()

integer: Returns the error number•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[461]

Execute
This method emulates ADOdb functionality; it executes a query. If the query is a
SELECT query the results will be returned in a JRecordSet object, if the query is
not a SELECT query an empty JRecordSet will be returned upon success, and if
the query fails false will be returned.

mixed Execute($query)

string $query: Query to execute
mixed: Returns JRecordSet object or false on failure

•
•

GenID
This method emulates ADOdb functionality; it returns a sequence ID for
databases that are sequence aware (sequences are used with databases that
allow multiple connections, to reduce the chance of errors). If you are creating
an application that relies on sequences, ensure that the JDatabase subclass
object supports GenID() fully. Subclasses must implement this method to
enable GenID() support. JDatabaseMySQL and JDatabaseMySQLi do not
support GenID(); using GenID() with these databases will always return 0.

mixed GenID([$foo1= null], [$foo2 = null])

string $foo1: Sequence name
string $foo2: Start ID
mixed: Returns the sequence ID; can be an integer or a string

•
•
•

GetCol
This method emulates ADOdb functionality; it executes a query and returns an
array of the first column from the resultant records.

array GetCol()

array: Returns an array of the first column from retrieved records.•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[462]

GetOne
This method emulates ADOdb functionality; it executes a query and returns the
value in the first field in the first record.

mixed GetOne($query)

string $query: The query to execute
mixed: Returns the value in the first field in the first record

•
•

GetRow
This method emulates ADOdb functionality; it executes a query and returns the
first row as an array.

array GetRow($query)

string $query: The query to execute
array: Returns the first row as an array

•
•

PageExecute
This method emulates ADOdb functionality; it executes a query and returns the
results in a JRecordSet object.

JRecordSet PageExecute($sql, $nrows, $page, [$inputarr = false], [$sec2cache = 0])

string $sql: The query to execute
integer $nrows: The number of records per page
integer $page: The results page [pagination]
boolean $inputarr: Ignored; emulation purposes only
integer $sec2cache: Ignored; emulation purposes only
object: Returns the result in a JRecordSet object

•
•
•
•
•
•

RollbackTrans
This method emulates ADOdb functionality; it must be overridden ins subclasses.
If you intend to use this method, please ensure that the database driver
supports it.

void RollbackTrans()

void: No return type•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[463]

SelectLimit
This method emulates ADOdb functionality; it executes a query and returns the
results in a JRecordSet object. The parameters $offset and $limit are used
for pagination; in MySQL databases this relates directly to the LIMIT clause.

JRecordSet SelectLimit($query, $count, $offset)

string $query: The query string to execute
integer $count: The maximum number of records
integer $offset: The first record to return
object: Returns a JRecordSet object

•
•
•
•

JDocument
abstract, extends JObject, located in /joomla/document/document.php.

This is the Joomla! base document object that encapsulates and caches a response
during the execution of an application. This enables us to make modifications to
any part of the document irrespective of where we are in the output process. For
more information about JDocument refer to Chapter 2, Getting Started and Chapter 9,
Customizing the Page.

Direct descendents
JDocumentRAW Provides an interface to parse and display raw output
JDocumentError Provides an interface to parse and display an error page
JDocumentHTML Provides an interface to parse and display a HTML page
JDocumentPDF Provides an interface to parse and display a PDF page
JDocumentFeed Provides an interface to parse and display a feed page

Properties
mixed $_buffer = null Buffered rendered output

string $_charset = 'utf-8' Character encoding string, default is utf-8

object $_engine = null Rendering engine, used by subclass JDocumentPDF

string $_generator Document metadata generator

string $_lineEnd = ''\12'' The line end character or string

string $_mdate = '' The document's modified date

array $_metaTags An array of meta tags

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[464]

string $_mime = '' Document mime type

string $_namespace = '' Document namespace, not used by document subclasses

string $_profile = '' Document profile, not used by document subclasses

array $_script Array of scripts placed in the document header

array $_scripts Array of linked scripts

array $_style Array of style declarations placed in the document header

array $_styles Array of linked stylesheets

string $_tab = ''\11'' Tab character or string

string $_type = null Document type

string $base = '' Document base URL

string $description = '' Document description

string $direction = 'ltr' Text direction (ltr or rtl); default is left-to-right

string $language = 'en-gb' Language setting, default is Great Britain English

string $link = '' Document full URL

string $title = '' Document title

Inherited properties
Inherited from JObject:

JObject::_errors

Inherited methods
Inherited from JObject:

JObject::JObject()

JObject::__construct()

JObject::get()

JObject::getError()

JObject::getErrors()

JObject::getProperties()

JObject::getPublicProperties()

JObject::set()

JObject::setError()

JObject::setProperties()

JObject::toString()

•

•
•
•
•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[465]

Methods
Constructor __construct

Class constructor. Builds a new JDocument object. Derived subclasses call
parent::__construct($options). The $options associative array can contain
the keys lineend, charset, language, direction, tab, link, and base.

Redefines JObject::__construct(); overridden in descendant classes.

JDocument __construct($options)

array $options: Associative array of options•

addScript
This method adds a linked script to the document.

void addScript($url, [$type = 'text/javascript'])

string $url: The URL to the linked script
string $type: The MIME type of script; defaults to 'text/javascript'
void: No return type

•
•
•

addScriptDeclaration
This method embeds a script in the document.

void addScriptDeclaration($content, [$type = 'text/javascript'])

string $content: The script content.
string $type: The MIME type of the script; defaults to
'text/javascript'
void: No return type

•
•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[466]

addStyleDeclaration
This method embeds a style declaration in the document.

void addStyleDeclaration($content, [$type = 'text/css'])

string $content: The style content.
string $type: The MIME type of the style; defaults to 'text/css'
void: No return type

•
•
•

addStyleSheet
This method adds a linked stylesheet to the document.

void addStyleSheet($url, [$type = 'text/css'] , [$media = null],
[$attribs = array()])

string $url: The URL to the linked style sheet
string $type: The MIME type of style; defaults to 'text/css'
string $media: The media type of this stylesheet
array $attribs: array of style attributes
void: No return type

•
•
•
•
•

getBase
This method returns the base URI of the document.

string getBase()

string: Returns base URI•

getBuffer
This method returns the content of the document buffer. Redefined in
descendants:

JDocumentHTML::getBuffer()

string getBuffer()

string: Returns contents of the document buffer

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[467]

getCharset
This method returns the document character set encoding.

string getCharset()

string: Returns the character set encoding•

getDescription
This method returns the document description.

string getDescription()

string: Returns the document description•

getDirection
This method returns the text direction of the document, ltr (left-to-right) or
rtl (right-to-left).

string getDirection()

string: Returns the text direction•

getGenerator
This method returns the document generator string; the default is 'Joomla! 1.5
- Open Source Content Management'.
string getGenerator()

string: Returns the document generator string•

getHeadData
This method returns an associative array containing the document header
data. The header data array includes the title, description, link, metatags,
links, stylesheets, style, scripts, script, and custom keys and values.
Redefined in descendants:

JDocumentHTML::getHeadData()

array getHeadData()
array: Returns an associative array of header data

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[468]

static getInstance
This method returns a reference to a global instance of a JDocument subclass
object, based on $type(error, feed, HTML, PDF, or RAW) and $attributes.
Use JFactory::getDocument() to get the application document.
JDocument &getInstance([$type = 'html'], [$attributes = array()])

string $type: The document type to instantiate
array $attributes: Associative array of options
object: Returns a reference to a JDocument object

•
•
•

getLanguage
This method returns the document language.
string getLanguage()

string: Returns the document language; the default is 'en-GB'•

getLink
This method returns the document base URI.

string getLink()

string: Returns the document base URI•

getMetaData
This method returns the document metadata. If the metadata is http-equiv
(equivalent to an HTTP header) then specify $http_equiv as true.

string getMetaData($name, [$http_equiv = false])

string $name: The value of name or http-equiv tag
boolean $http_equiv: The META type http-equiv; defaults to null
string: Returns the document metadata

•
•
•

getModifiedDate
This method returns the document modified date.

string getModifiedDate()

string: Returns the document modified date•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[469]

getTitle
This method returns the document title.

string getTitle()

string: Returns the document title•

getType
This method returns the document type.

string getType()

string: Returns the document type•

loadRenderer
This method returns a reference to an instance of a JDocumentRenderer
subclass object. The $type can be Atom, RSS, Component, Head, Message,
Module, or Modules. If you define your own JDocumentRenderer class you
must include the class before using this method.

JDocumentRenderer &loadRenderer($type)

string $type: The document renderer type
object: Returns a reference to a JDocumentRenderer object

•
•

render
This method outputs the rendered document. This method varies depending
upon the subclass. Redefined in descendants:

JDocumentRAW::render()

JDocumentError::render()

JDocumentHTML::render()

JDocumentPDF::render()

JDocumentFeed::render()

string render([$cache = false], [$params = array()])

boolean $cache: If true, cache the output
array $params: An associative array of attributes
string: Returns the rendered document

•
•
•
•
•

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[470]

setBase
This method sets the base URI of the document.

void setBase($base)

string $base: The document base URI
void: No return type

•
•

setBuffer
This method sets the buffered contents of the document. Redefined in
descendants:

JDocumentHTML::setBuffer()

void setBase($content)

string $content: The content to be set in the buffer
void: No return type

•

•
•

setCharset
This method sets the character set encoding for the document. This does not
convert content to the new character set.

void setCharset([$type = 'utf-8'])

string $type: The character set encoding string
void: No return type

•
•

setDescription
This method sets the document description.

void setDescription($description)

string $description: The description of the document
void: No return type

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[471]

setDirection
This method sets the text direction of the document, ltr (left-to-right) or rtl
(right-to-left).
void setDirection([$dir = 'ltr'])

string $dir: The text direction
void: No return type

•
•

setGenerator
This method sets the document generator; the default is 'Joomla! 1.5 – Open
Source Content Management'.
void setGenerator($generator)

string $generator: The generator name
void: No return type

•
•

setHeadData
This method sets the head data of the document. The head $data array is an
associative array that must include the title, description, link, metatags,
links, stylesheets, style, scripts, script, and custom keys and values.
Redefined in descendants:

JDocumentHTML::setHeadData()

void setBase(array $data)
array $data: The document head data in array form
void: No return type

•

•
•

setLanguage
This method sets the global document language declaration; the default is
Great Britain English (en-GB).
void setLanguage([$lang = 'en-gb'])

string $lang: The global document language
void: No return type

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[472]

setLineEnd
This method sets the document EOL character string. The $style can be win,
unix, mac, or a custom EOL character string.

void setLineEnd($style)

string $style: The document EOL character string
void: No return type

•
•

setLink
This method sets the document's full URL.

void setLink($url)

string $url: The document URL.
void: No return type

•
•

setMetaData
This method sets or alters a document meta tag. If the metadata is http-equiv
(equivalent to an HTTP header) then specify $http_equiv as true. If $name
is 'generator' or 'description' this method will call setGenerator() or
setDescription() respectively; for all others the $_metatags array
is updated.

void setMetaData($name, $content, [$http_equiv = false])

string $name: The value of name or http-equiv tag
string $content: The meta tag content
boolean $http_equiv: The META type http-equiv; defaults to null
void: No return type

•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[473]

setMimeEncoding
This method sets the MIME encoding that is sent to the browser. This usually will
be text/html because most browsers cannot yet accept the proper mime settings
for XHTML: application/xthml+xml and to a lesser extent application/xml.
See the W3C note (http://www.w3.org/TR/xhtml-media-types/) for
more details.

void setMimeEncoding([$type = 'text/html'])

string $type: The MIME encoding string
void: No return type

•
•

setModifiedDate
This method sets the document's modified date.

void setModifiedDate($date)

string $date: The modified date

void: No return type

•

•

setTab
This method sets the string used to indent HTML.

void setTab($string)

string $string: The string used to indent ("\11","\t",' ', and so on)

void: No return type

•

•

setTitle
This method sets the title of the document.

void setTitle($title)

string $title: The document title
void: No return type

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[474]

setType
This method sets the document type.
void setType($type)

string $type: The document type
void: No return type

•
•

_getLineEnd
This private method returns the document EOL character/string.
string getLineEnd()

string: Returns the document EOL character string•

_getTab
This private method returns the document indentation character string.
string getTab()

string: Returns the document indentation character string•

JDocumentRenderer
abstract, extends JObject, located in /joomla/document/renderer.php

This is an abstract class extended by subclasses to render content into its final form.

Direct descendents

JDocumentRendererModules Renders multiple modules
JDocumentRendererMessage Renders system messages
JDocumentRendererComponent Component renderer
JDocumentRendererHead Renders the document head
JDocumentRendererModule Renders a module
JDocumentRendererAtom Implements the atom specification
JDocumentRendererRSS Implements the RSS 2.0 specification

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[475]

Properties

object $_doc = null Reference to JDocument object that instantiated
renderer

string $_mime = 'text/html' The renderer MIME type

Inherited properties
Inherited from JObject:

JObject::_errors

Inherited methods
Inherited from JObject:

JObject::JObject()

JObject::__construct()

JObject::get()

JObject::getError()

JObject::getErrors()

JObject::getProperties()

JObject::getPublicProperties()

JObject::set()

JObject::setError()

JObject::setProperties()

JObject::toString()

Methods
Constructor __construct

Class constructor. Builds a new JDocumentRenderer object.

JDocumentRenderer __construct(&$doc)

object &$doc: Reference to JDocument object that instantiated
the renderer

•

•

•
•
•
•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[476]

getContentType
This method returns the MIME type of the content.

string getContentType()

string: Returns content MIME type•

render
This abstract method renders a script and returns the results as a string.
Redefined in descendants:

JDocumentRendererModules::render()

JDocumentRendererMessage::render()

JDocumentRendererComponent::render()

JDocumentRendererHead::render()

JDocumentRendererModule::render()

JDocumentRendererAtom::render()

JDocumentRendererRSS::render()

string render($name, [$params = array()], [$content = null])

string $name: The name of the element to render
array $params: Optional parameter array
string $content: Optional; overrides the output of the renderer
string: Returns the rendered output of the script

•
•
•
•
•
•
•

•
•
•
•

JFactory
static, located in /joomla/factory.php

This is the Joomla! static factory class for accessing global objects and building
new objects. For more information about the JFactory class refer to Chapter 2,
Getting Started.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[477]

Methods
getACL
This static method returns a reference to the global JAuthorization object. If
the authorization object does not exist it will be created.

JAuthorization &getACL()

object: Returns a reference to the global JAuthorization object•

getApplication
This static method returns a reference to the global JApplication object. If
the application object does not exist it will be created.

JApplication &getApplication([$id = null], [$config = array()], [$prefix = 'J'])

mixed $id: A client identifier or name
array $config: An optional associative array of configuration settings
string $prefix: Joomla! core class prefix
object: Returns a reference to the global JApplication object

•
•
•
•

getCache
This static method returns a reference to the global JCache object. If the cache
object does not exist it will be created. $group is the group to which the
cache belongs. $handler is the handler to use; this can be callback, output,
page, or view. $storage is the storage mechanism to use; this can be apc,
eaccelerator, file, memcache, or xcache. In most instances, it will not be
necessary to define $handler or $storage.

JCache &getCache([$group = ''], [$handler = 'callback'], [$storage = null])

string $group: The cache group name; optional
string $handler: The handler to use; optional
string $storage: The storage method; optional
object: Returns a reference to the global JCache object

•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[478]

getConfig
This static method returns a reference to the global JRegistry configuration
object. If the configuration object does not exist, it will be created. $file is
the path, including the name, of the configuration file. $type is the format of
configuration file; this currently has no effect. The parameters need only be
specified the first time this method is run.

JRegistry &getConfig([$file = null], [$type = 'PHP'])

string $file: The path and name of the configuration file
string $type: Type of configuration file
object: Returns a reference to the global JRegistry object

•
•
•

getDate
This static method returns a reference to the JDate object. If the date object
does not exist, it will be created.

JDate &getDate([$time = 'now'], $tzOffset)

mixed $time: The initial time for the JDate object
integer $tzOffset: The timezone offset
object: Returns a reference to a JDate object

•
•
•

getDBO
This static method returns a reference to the global JDatabase object. If the
database object does not exist, it will be created.

JDatabase &getDBO()

object: Returns a reference to the global JDatabase object.•

getDocument
This static method returns a reference to the global JDocument object. If the
document object does not exist, it will be created.

JDocument &getDocument()

object: Returns a reference to the global JDocument object•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[479]

getEditor
This static method returns a reference to the JEditor object. If $editor is not
specified the default editor will be used.

JEditor &getEditor([$editor = null])

object: Returns a reference to a JEditor object•

getLanguage
This static method returns a reference to the global JLanguage object. If the
language object does not exist, it will be created.

JLanguage &getLanguage()

object: Returns a reference to the global JLanguage object•

getMailer
This static method returns a reference to the global JMail object. If the mailer
object does not exist, it will be created.

JMail &getMail()

object: Returns a reference to the global JMail object•

getSession
This static method returns a reference to the global JSession object. If the
session object does not exist it will be created. The $options associative array
contains options to pass to the session storage handler and is only required the
first time the method is executed.

JSession &getSession([$options = array()])

array $options: Options to pass to the session storage handler
object: Returns a reference to the global JSession object

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[480]

getTemplate
This static method returns a reference to the global JTemplate object. If the
template object does not exist, it will be created.

JTemplate &getTemplate()

object: Returns a reference to the global JTemplate object•

getURI
This static method returns a reference to the global JURI object. If the URI
object does not exist it will be created. If $uri is not specified the URI will be
obtained from the 'SERVER' variables.

JURI &getURI([$uri = 'SERVER'])

array $options: Options to pass to the session storage handler
object: Returns a reference to the global JURI object

•
•

getUser
This static method returns a reference to the global JUser object. If the
user object does not exist, it will be created. The user object reference that
is returned is determined by the value of $id. If $id is null the method will
return the current user from the current session. If $id contains a value then
the method will return the specified user object. The $id variable can be either
an integer or string; which will be converted to an integer if it is a string.

JUser &getUser([$id = null])

mixed $id: The user to load
object: Returns a reference to the global JUser object

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[481]

getXMLParser
This static method creates a parsed XML document object. Supported types are
RSS, Atom, Simple, and DOM; if an unrecognized type is provided, a DOM XML
parser will be created. The $options associative array can contain:

boolean [lite]: Using 'DOM' if true or not defined domit_lite is used
string [rssUrl]: The rss url to parse when using 'RSS' or 'Atom'
string [cache_time]: 'RSS' or 'Atom' feed cache time; default 3600
seconds

Supported XML parser classes include:

SimplePie
JSimpleXML
DOMIT_Document
DOMIT_Lite_Document

object &getXMLParser([$type = 'DOM'], [$options = array()])

string $type: The type of XML parser required
array $options: XML parser options
object: Returns a reference to a parsed XML document object

•
•
•

•
•
•
•

•
•
•

_createACL
This private method creates a global JAuthorization object.

JAuthorization &_createACL()

object: Returns a reference to a new global JAuthorization object•

_createConfig
This private method creates a global JRegistry object.

JRegistry &_createConfig($file, [$type = 'PHP')

string $file: The path to the configuration file
string $type: The format of the configuration file
object: Returns reference to a new global JRegistry object

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[482]

_createDBO
This private method creates a global JDatabase object.

JDatabase &_createDBO()

object: Returns reference to a new global JDatabase object•

_createDocument
This private method creates a global JDocument object. The document type
is determined by the value of the JRequest 'format' variable. If no format is
included HTML is assumed.

JDocument &_createDocument()

object: Returns a reference to a new global JDocument object•

_createLanguage
This private method creates a global JLanguage object. The specific language to
be used is obtained from the config.language registry setting.

JLanguage &_createLanguage()

object: Returns reference to a new global JLanguage object•

_createMailer
This private method creates a global JMail object. The mail property values are
obtained from the configuration registry.

JMail &_createMailer()
object: Returns reference to a new global JMail object•

_createSession
This private method creates a global JSession object. If the session has
expired it will be restarted. The session property values are obtained from the
configuration registry.

JSession &_createSession($options = array())
array $options: Session storage handler options
object: Returns reference to a new global JSession object

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[483]

_createTemplate
This private method creates a JTemplate object.

JTemplate &_createTemplate($files = array())

array $files: An array of template support files to load
object: Returns a reference to a new global JTemplate object

•
•

JModel
abstract, extends JObject, located in /joomla/application/component/model.php

This base class acts as a Factory class for model classes that use the MVC
implementation. For further information on using the JModel class refer to
Chapter 5, Component Design.

Properties

JDatabase $_db Reference to the database connection

string $_name Model base name

JObject $_state Model state

Inherited properties
Inherited from JObject:

JObject::$_errors

Inherited methods
Inherited from JObject:

JObject::JObject()

JObject::__construct()

JObject::get()

JObject::getError()

JObject::getErrors()

JObject::getProperties()

JObject::getPublicProperties()

•

•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[484]

JObject::set()

JObject::setError()

JObject::setProperties()

JObject::toString()

Methods
Constructor __construct

Class constructor. Builds a new JModel object. The associative array $config
can contain the keys name and table_path. name is transposed to the model
name; if name is not specified the name will be extracted from the name
of the class. This will only work if the name of the class is in the format
optionalPrefixModelSomeName. table_path will be added to the
JTable include paths. If $table_path is not specified, but JPATH_COMPONENT_
ADMINISTRATOR is defined, then the path JPATH_COMPONENT_ADMINISTRATOR.
DS.'tables' will be added. Redefinition of JObject::__construct();
overridden in descendant classes.

JModel __construct([$config = array()])

array $config: An associative array of configuration options•

addIncludePath
This static method adds a new path or set of paths used to find JModel classes.
$path can be a string or an array of strings.

array addIncludePath([$path = ''])

mixed $path: The path or an array of paths to add
array: Returns an array of paths to search for JModel subclasses

•
•

addTablePath
This static method adds a new path or set of paths used to find JTable classes.
$path can be a string or an array of strings. This method is a pass-through
method for JTable::addIncludePath().

array addTablePath([$path = ''])

mixed $path: The path or an array of paths to add
array: Returns an array of paths

•
•

•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[485]

getDBO
This method returns a reference to the global JDatabase connection.

JDatabase &getDBO()

object: Returns a reference to the global JDatabase connection.•

getInstance
This static method returns a reference to a new instance of a JModel subclass
object. If the class cannot be found it returns false.

mixed &getInstance($type, [$prefix = ''], [$config = array()])

string $type: The model type to instantiate
string $prefix: The prefix for the model class name; optional
array $config: The configuration array for the model; optional
mixed: Returns a reference to a new JModel object or false on failure

•
•
•
•

getName
This method returns the name of the model. The model name by default is
parsed using the class name, or it can be set by passing a $config['name']
in the class constructor.

string getName()

string: Returns the name of the model•

getState
This method returns the model state variables. If $property is not specified a
complete copy of the model's state object is returned.

mixed getState([string $property = null])

string $property: Optional property name
mixed: Returns a state property or copy of the state property object

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[486]

getTable
This method returns an instance of a JTable subclass object. If $name
is not specified, then the model name will be used. The parameters are
concatenated to create the class name, in the form $prefix.$name. If the class
is not present, the paths defined in JTable will be searched for a file named
$prefix.$name.'.php' where the class should reside.

JTable &getTable([$name = ''], [$prefix = 'Table'], [$options = array()])

string $name: Optional table name
string $prefix: Optional class prefix
array $options: Optional configuration array for the model
object: Returns a reference to a new instance of a JTable subclass object

•
•
•
•

setDBO
This method sets the reference to the global JDatabase connection.

void setDBO(&$db)

void: No return type•

setState
This method sets a user state property.

mixed setState($property, [$value = null])

string $property: The name of the property
mixed $value: The value of the property to set
mixed: Returns the previous value of the state property

•
•
•

_createFileName
This private method gets the name of the file where a class should be located.
$parts must include the key 'name'. $type should always be 'model'.

string _createFileName($type, [$parts = array()])

string $type: The type of file (only accepts 'model'
array $parts: An associative array of name parts
string: Returns the name of the file

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[487]

_createTable
This private method is used by getTable() to create a new instance of a
JTable subclass object. It returns null or an error on failure.

mixed &_createTable($name, [$prefix = 'Table'], [$config = array()])

string $name: The name of the JTable
string $prefix: The class prefix, normally Table or JTable
array $config: An associative array of configuration information
mixed: Returns a reference to a new JTable object or null upon failure

•
•
•
•

_getList
This private method executes a query and gets a reference to an array of
resultant objects.

array &_getList($query, $limitstart = 0, $limit = 0)

string $query: The query to execute
integer $limitstart: The start record
integer $limit: The maximum number of records
array: Returns an array of objects as a result of the query

•
•
•
•

_getListCount
This private method returns the number of results obtained from the query.
This method should be used cautiously as it causes the query to be executed.
If possible consider using $db->getNumRows() directly after &_getList();
this prevents the query from being executed twice.

integer &_getListCount($query)

string $query: The query to execute
integer: Returns the count of records from the query

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[488]

JObject
abstract, located in /joomla/base/object.php

JObject is a common base class. It provides constructor compatibility between PHP4
and PHP5 and provides some common methods.For more information about using
the JObject refer to Chapter 2, Getting Started.

Direct descendents

JApplication Base class for a Joomla! application
JArchiveBzip2 Bzip2 format adapter for the JArchive class
JArchiveGzip Gzip format adapter for the JArchive class
JArchiveTar Tar format adapter for the JArchive class
JArchiveZip AIP format adapter for the JArchive class
JAuthenticationResponse Provides an object for storing user and error details
JBrowser Provides information about the current web client
JButton Button base class
JCache Cache base class
JCacheStorage Abstract cache storage handler
JController Base controller class
JDatabase Database connector class
JDate Class that stores a date
JDocument Provides an interface to parse and display a document
JDocumentRenderer Abstract class for a renderer
JElement Parameter base class
JException Provides the Joomla! exception object
JFeedEnclosure Internal class that stores feed enclosure information
JFeedImage Internal class that stores feed image information
JFeedItem Internal class that stores feed item information
JFilterInput Class for filtering input from any data source
JFTP FTP client class
JInstaller Base installer class
JInstallerComponent Component installer
JInstallerLanguage Language installer
JInstallerPlugin Plugin installer
JInstallerTemplate Template installer

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[489]

JIntallerModule Module installer
JLanguage Languages/translation handler class
JLDAP LDAP client class
JLog Logging class
JMenu Class handles menus and menu items
JModel Base class for models that use the MVC
JNode Tree node class
JObservable Abstract class to implement the observer design pattern
JObserver Abstract class to implement the observer design pattern
JPagination Provides a common interface for content pagination
JPaginationObject Represents a particular item in the pagination lists
JPane Abstract class that provides tabs and sliders
JPathway Class that maintains the pathway (breadcrumbs)
JProfiler Utility class to assist in the process of benchmarking
JRegistry Handles configuration details in a hierarchical

namespace
JRegistryFormat Abstract format for the registry
JRouter Class to create and parse routes
JSession Class for managing HTTP sessions
JSessionStorage Custom session storage handler for PHP
JSimpleCrypt Simple algorithm for encrypting or decrypting strings
JSimpleXML SimpleXML implementation
JSimpleXMLElement SimpleXML element
JTable Abstract Table class
JToolbar Toolbar handling class
JTree Hierarchichal tree class
JURI Class to handle URIs
JUser Class that handles all application interaction with

a user
JView Base class for view classes that use the MVC

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[490]

Properties

array $_errors An array of error messages or JException objects

Deprecated methods
The following methods have been deprecated as of version 1.5; their use is not
recommended. Use the recommended alternative instead.

Deprecated Method Recommended Alternative
getPublicProperties() getProperties()

Methods
Constructor __construct

This constructor is designed to be overridden in subclasses. Overriding
methods should always call parent::__construct(). This is the PHP 5
constructor format. This class provides two constructors to support PHP 5
and PHP 4 (see the next method description) constructor methods.

JObject __construct()

object: Returns a new JObject object•

Constructor JObject
This constructor is a hack to support the PHP 5 constructor __construct() on
PHP 4. This constructor removes the need for subclasses to use the className()
style constructor. Subclasses need only define the __construct() constructor,
which if PHP 5 is not being used, is call by this method. Although this
constructor does not define any parameters, this does not restrict subclasses from
doing so. Multiple parameters can still be used, all of which will be passed to the
highest level __construct() method. Redefined in all direct descendants.
JObject JObject()

object: Returns a new JObject object•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[491]

get
This method returns the value of the requested property. If the property is not
set, then the optional default value will be returned. This method will not return
a reference; in subclasses it can be beneficial to add specific methods where a
reference to a property is more suitable. Private properties, identified by an
underscore at the start of the name, can be returned using this method. Redefined
in descendants as:

JParameter::get(): get a value
JSession::get(): get data from the session store
JCache::get(): get cached data by id and group
JCacheView::get(): get cached view data
JCachePage::get(): get cached page data
JCacheCallback::get(): executes callback or returns cached output
JCacheStorage::get(): get data by id and group
JCacheStorageApc::get(): get APC data by id and group
JCacheStorageMemcache::get(): get memcache data by id and group
JCacheStorageXCache::get(): get cached data by id and group
JCacheStorageFile::get(): get file data by id and group
JCacheStorageEaccelerator::get(): get cached data by id and group
JView::get(): get data from model or view property
JLanguage::get(): get a metadata language property
JFTP::get(): get file from FTP server

mixed get($property, [$default = null])

string $property: The name of the property
mixed $default: The default value if the property has not been initialized
mixed: Returns the value of the property

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[492]

getError
This method returns the most recent error that occurred during the execution of
one of the object's methods. The error can be an object or a string. See JError for
more information about errors. If the error number $i is specified but does not
exists the method returns false.

mixed getError([$i = null], [$toString = true])

integer $i: Optional; the error number; by default the last error is
retrieved
boolean $toString: If true directs JError objects to return error message
mixed: Returns an error message string, JError object or false

•

•
•

getErrors
This method returns a copy of the $_errors property.

array getErrors()

array: Returns an array of errors associated with the object•

getProperties
This method returns an associative array of all the properties of an object;
this includes run-time properties not just class properties. If $public is true
(default) only public properties will be returned; if false all properties, public
and private (properties identified by an underscore at the start of the name) will
be returned.

array getProperties([$public = true])

boolean $public: If true returns only public properties
array: Returns an an associative array of object properties

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[493]

set
This is a mutator method that sets the value of the requested property of the
object. If the property does not exist it creates it. Redefined in descendants as:

JParameter::set(): sets a value
JSession::set(): sets data into the session store

mixed set($property, [$value = null])

string $property: The name of the property
mixed $value: The value of the property to set
mixed: Returns the previous value of the property

•

•

•
•
•

setError
This method adds an error to the object's error history. Redefined in
descendants as:

JDocumentError::setError(): sets error object.

void setError($error)

string $error: The error message.
void: No return type

•

•
•

setProperties
This method sets the object properties obtained from either an associative
array or another object.

boolean setProperties($properties)

mixed $properties: Either an associative array or another object
boolean: Returns true upon success

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[494]

toString
method gets the class name of the object and returns it as a string. Redefined in
descendants as:

JRegistry::toString(): gets a namespace in a given string format
JException::toString(): returns an error message
JURI::toString(): returns full URI string
JSimpleXMLElement::toString(): gets a well-formed XML string

string toString()

string: Returns the object's class name as a string

•

•

•

•

•

JPlugin
abstract, extends JEvent, located in /joomla/plugin/plugin.php

This is an abstract class used to implement the listener functionality of the observer
design pattern. This class must be extended by descendant subclasses. For further
information on using the JPlugin class refer to Chapter 7, Plugin Design.

Properties

JParameter $params = null Object holding the plugin parameters

string $_name = null The name of the plugin

string $_type = null The type of the plugin

Inherited properties
Inherited from JObject:

JObject::$_errors

Inherited methods
Inherited from JEvent:

JEvent::JEvent()

JEvent::update()

•

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[495]

Inherited from JObserver:

JObserver::__construct()

JObserver::update()

Inherited from JObject:

JObject::JObject()

JObject::__construct()

JObject::get()

JObject::getError()

JObject::getErrors()

JObject::getProperties()

JObject::getPublicProperties()

JObject::set()

JObject::setError()

JObject::setProperties()

JObject::toString()

Methods
Constructor __construct

Class constructor. Builds a new JPlugin object. The optional $config associative
array contains configuration settings. Recognized key values include 'name',
'group', and 'params' although this is not meant to be comprehensive. For
PHP 4 compatibility this constructor must not be used; see the constructor
JPlugin that follows. Redefinition of JObserver::__construct(); class
constructor, overridden in descendant classes.

JPlugin __construct(&$subject, [$config= array()])

object $subject: The object to observe
array $config: An optional associative array of configuration settings

•
•

•
•

•
•
•
•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[496]

Constructor JPlugin
Class constructor. Builds a new JPlugin object. For PHP 4 compatibility
the __construct() must not be used as a constructor for plugins because
func_get_args() returns a copy of all passed arguments NOT references.
This causes problems with the cross-referencing necessary for the observer
design pattern.

The optional $config associative array contains configuration settings.
Recognized key values include 'name', 'group', and 'params' although this
is not meant to be comprehensive.

JPlugin JPlugin(&$subject, [$config= array()])

object $subject: The object to observe
array $config: An optional associative array of configuration settings

•
•

loadLanguage
This method loads the plugin language file.

boolean loadLanguage([$extension = ''], [$basePath = JPATH_BASE])

string $extension: The extension for which a language file should be
loaded
string $basePath: The base path to use
boolean: Returns true upon success

•

•
•

JTable
abstract, extends JObject, located in /joomla/database/table.php

This class handles individual database tables. JTable uses a buffering mechanism
which allows it to handle records on an individual basis. For further information on
using the JTable class refer to Chapter 3, The Database.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[497]

Direct descendents

JTableMenuTypes Menu Types table
JTableCategory Category table
JTableUser User table
JTableMenu Menu table
JTableComponent Component table
JTableARO ARO table
JTablePlugin Plugin table
JTableSection Section table
JTableModule Module table
JTableContent Content table
JTableSession Session table
JTableAROGroup AroGroup table

Properties

JDatabase $_db = null The database connector

string $_tbl = ' ' Table name

string $_tbl_key = ' ' Primary key

Inherited properties
Inherited from JObject:

JObject::$_errors

Inherited methods
Inherited from JObject:

JObject::JObject()

JObject::__construct()

JObject::get()

JObject::getError()

JObject::getErrors()

•

•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[498]

JObject::getProperties()

JObject::getPublicProperties()

JObject::set()

JObject::setError()

JObject::setProperties()

JObject::toString()

Methods
Constructor __construct

Class constructor. Builds a new JTable object. Sets the table and key field.
Redefinition of JObject::__construct(); class constructor; redefined in
descendant classes:

JTableMenuTypes::_construct(): constructor
JTableCategory::_construct(): constructor
JTableUser::_construct(): constructor
JTableMenu::_construct(): constructor
JTableComponent::_construct(): constructor
JTableARO::_construct(): constructor
JTablePlugin::_construct(): constructor
JTableSection::_construct(): constructor
JTableModule::_construct(): constructor
JTableContent::_construct(): constructor
JTableSession::_construct(): constructor
JTableAROGroup::_construct(): constructor

JTable __construct(string $table, string $key, JDatabase &$db)

string $table: The name of the table
string $key: The name of the primary key field in the table
object $db: A reference to the JDatabase connector object

•

•

•

•

•

•

•

•

•

•

•

•

•
•
•

•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[499]

addIncludePath
This method adds paths to search for JTable subclasses. $path can be a string
or an array of strings.
array addIncludePath([$path = null])

string $path: A path to search
array: Returns an array of directory elements

•
•

bind
This method binds a subject (normally a record) to the object. For all public
properties this method finds a corresponding key or property in $from and
binds it to the object. This method can be overloaded or supplemented by the
subclass. Redefined in descendants:

JTableUser::bind(): overloaded bind function
JTableMenu::bind(): overloaded bind function
JTableComponent::bind(): overloaded bind function
JTablePlugin::bind(): overloaded bind function
JTableSection::bind(): overloaded bind function
JTableModule::bind(): overloaded bind function

boolean bind($from, [$ignore])
mixed $from: An associative array or object
mixed $ignore: An array or space separated list of fields not to bind
boolean: Returns true upon success

•

•

•

•

•

•

•
•
•

canDelete
This method determines if there are any records linked to the buffered
record or, if $oid is specified, the record identified by $oid. $joins identifies
linked tables. $joins is an optional two-dimensional array; the inner arrays
are associative, and must contain the keys name, idfield, and joinfield.
name is the linked table name, idfield is the linked table's primary key, and
joinfield is the foreign key in the linked table.
boolean canDelete([$oid = null], [$joins = null])

string $from: The record id
array $joins: An associative array of table join constraints
boolean: Returns true if there are no dependent records

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[500]

check
This method is used to validate the contents of the record buffer. This should
be overridden in subclasses. Redefined in descendants:

JTableMenuTypes::check(): overloaded check function
JTableCategory::check(): overloaded check function
JTableUser::check(): overloaded check function
JTableMenu::check(): overloaded check function
JTableComponent::check(): overloaded check function
JTableSection::check(): overloaded check function
JTableModule::check(): overloaded check function
JTableContent::check(): overloaded check function

boolean check()

boolean: Returns true upon success

•

•

•

•

•

•

•

•

•

checkin
This method checks in the buffered record or, if $oid is specified, checks in the
record identified by $oid. This sets the record's checked_out field to zero and
checked_out_time to a null date-time.
boolean checkin([$oid = null])

string $oid: The record id
boolean: Returns true upon success

•
•

checkout
This method checks out the buffered record or, if #oid is specified, checks out
the record identified by $oid. This sets the record's checked_out field to $who
and checked_out_time to the current date-time.
boolean checkout($who, [$oid = null])

integer $who: The id of the user
mixed $oid: The primary key value for the row
boolean: Returns true upon success or if checkout is not supported

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[501]

delete
This method deletes the buffered record or, if $oid is specified, deletes the
record identified by $oid. Redefined in descendants:

JTableUser::delete(): overloaded delete function
JTableSession::delete(): overloaded delete function

boolean delete([$oid = null])

string $oid: The record ID
boolean: Returns true upon success

•

•

•
•

getDBO
This method returns a reference to the JDatabase connection object.

JDatabase &getDBO()

string $oid: The record ID
object: Returns a reference to the JDatabase connection object

•
•

getInstance
This method returns a reference to a new JTable subclass object. $type is the
name of the file the class resides in and the class name suffix, normally the
entity name. $prefix is the class name prefix. Core JTable subclasses use the
prefix 'JTable'; third-party JTable classes tend to use the prefix 'Table'.

JTable &getInstance($type, [$prefix = 'JTable'], [$config = array()])

string $type: The table type to instantiate
string $prefix: An optional prefix for the table class name
array $options: An optional configuration array for the table
object: Returns a reference to a JTable subclass object

•
•
•
•

getKeyName
This method returns the name of the primary key field.

string getKeyName()

string: Returns the name of the primary key•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[502]

getNextOrder
This method returns the next place available in the current ordering. Using
reorder() before using this method will ensure there are no gaps in the
ordering.

integer getNextOrder([$where = ''])

string $where: The query WHERE clause for selecting MAX(ordering)
integer: Returns the next place available in the current ordering

•
•

getTableName
This method returns the name of the table.

string getTableName()

string: Returns the name of the table•

hit
This method increases the hit counter of the buffered record or, if $oid is
specified, the record identified by $oid.

void hit([$oid = null], [$log = false])

string $oid: The record ID
boolean $log: No effect
void: No return type

•
•
•

isCheckedOut
This static method determines if the buffered record is checked out by any user
other than the current user. If used statically (both $with and $against must
be specified) compares $with to $against.

boolean isCheckedOut($with, [$against = null])

integer $with: The user ID to compare
integer $against: The user ID to compare when used as a static function
boolean: Returns true if any other user has the record checked out

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[503]

load
This method resets the record buffer and loads a single record into the buffer.
$oid is the value of the record's primary key.

boolean load([$oid = null])
string $oid: The record ID
boolean: Returns true upon success

•
•

move
This method moves a record up or down the ordering (the table must have an
ordering field). -1 = move up, 1 = move down.

void move($dirn, [$where = ''])
integer $dirn: The direction to move
string $where: The query WHERE clause
void: No return type

•
•
•

publish
This method sets the publish value of records identified by $cid, an array
of record IDs (this only works when the table's primary key is numeric).
Although $cid is optional, if it is not specified the method will fail. If the table
has a checked_out field, any records that are checked out by other users will
not be affected.

boolean publish([$cid = null], [$publish = 1] , [$user_id = 0])
array $cid: An array of ID numbers
integer $publish: Publishing value; 1=publishing, 0=unpublishing
integer $user_id: The user ID performing the operation.
boolean: Returns true upon success

•
•
•
•

reorder
This method removes gaps in ordering.

void reorder([$where = ''])

string $where: An additional WHERE clause to limit ordering
void: No return type

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[504]

reset
This method resets the object to the initial class option values.

void reset()

void : No return type•

save
This method binds $source to the object; $source must be an object or an
associative array. The method checks the buffer, stores the buffer, checks-in
the record, and if $order_filter is specified, uses it to determine which field
must be common during the execution of the reorder() method.

boolean save($source, [$order_filter = ''] , [$ignore = = ''])

array $source: A source array for binding to class properties
string $order_filter: Filter for the order updating
mixed $ignore: An array or space separated list of fields not to bind
boolean: Returns true upon success

•
•
•
•

setDBO
This method sets the JDatabase connection object.

void setDBO(&$db)

object $db: The JDatabase connection object
void: No return type

•
•

store
This method saves the record buffer to the database. If the record buffer
primary key property is set an UPDATE will be executed, otherwise an INSERT
will be executed. Redefined in descendants:

JTableUser::store(): stores a record.

boolean store([$updateNulls = false])

boolean $updateNulls: If false null object variables are not updated
boolean: Returns true upon success

•

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[505]

toXML
This method returns an XML representation of the buffered record. Redefined
in descendants:

JTableContent::toXML(): converts a record to XML

string toXML([$mapKeysToText = false])

boolean $mapKeysToText: If true map foreign keys to text values
string: Returns an XML string

•

•
•

JUser
extends JObject, located in /joomla/user/user.php

This class handles a site user. If the user is not logged in, $id and $gid will be zero
and $usergroup will be null. For further information on using the JUser class refer
to Chapter 4, Extension Design.

Properties

string $activation = null Activation string used to verify account registration.

integer $aid = null Access group ID.

integer $block = null Access blocked: 0=not blocked, 1=blocked.

string $email = null Email address.

integer $gid = null Group ID; relates to the legacy #__groups table.

boolean $guest = null Guest user.

integer $id= null User ID; relates to the $__users.id field.

string $lastvisitdate =
null

Date on which the user last visited the site.

string $name = null The user's actual name or nickname.

string $params = null INI parameter string used when updating and creating
users.

string $password = null MD5-hashed password.

string $password_clear = '' Clear password; only available when a new password is
set for a user.

string $registerdate = null Date on which the account was registered.

integer $sendEmail = null Receive system emails: 0=no, 1=yes.

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[506]

string $username = null The user's login name.

string $usertype = null The user group that the user is a member (ARO group).
If the user is not logged in this will be null.

string $_errorMsg = null Log of errors separated by new lines.

JParameter $_params = null Parameters from #__users.params field.
Metadata available from administrator/
components/com_users/user.xml.

Inherited properties
Inherited from JObject:

JObject::$_errors

Inherited methods
Inherited from JObject:

JObject::JObject()

JObject::__construct()

JObject::get()

JObject::getError()

JObject::getErrors()

JObject::getProperties()

JObject::getPublicProperties()

JObject::set()

JObject::setError()

JObject::setProperties()

JObject::toString()

Methods
Constructor __construct

Class constructor. Builds a new JUser object and loads the user's details
from the database. A new JParameter object is created and if the user
$identifier exists the user's details will be loaded. If no $identifier is
specified (a new user) the user's details will be initialized. Redefinition of
JObject::__construct(); class constructor.

JUser __construct([$identifier = 0])
integer $identifier: The user id•

•

•
•
•
•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[507]

authorize
This method determines if the user is authorized to perform an action.
It checks the JUser object authorization against an access control object
and optionally an access extension object. It acts as a pass-through for
JAuthorization. This is only for GACL authorization.

boolean authorize($acoSection, $aco, [$axoSection = null], [$axo = null])

string $acoSection: The ACO section value
string $aco: The ACO value
string $axoSection: The AXO section value; optional
string $axo: The AXO value; optional
boolean: Returns true if authorized

•
•
•
•
•

bind
This method binds an associative array to the JUser object. There are two
ways to use this: updating an existing user and creating a new user. Create is
assumed if the object property $id is empty (zero is considered empty).

When updating an existing user, $array can contain any of the public
properties associated with a JUser object. If user parameters are going to
be bound they must be passed in a key named params and be in INI string
format. The values are then bound to the object.

When creating a new user the $username property must already be set. If
password is omitted from $array a random password will be generated.

boolean bind(&$array)

array $array: The associative array to bind to the object
boolean: Returns true upon success

•
•

defParam
This method defines a parameter and sets its value if it does not exist.

mixed defParam($key, $value)

string $key: The parameter key name
mixed $value: The parameter value
mixed: Returns the parameter value

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[508]

delete
This method deletes the JUser object from the database.

boolean delete()

boolean: Returns true upon successful deletion•

getInstance
This method returns a reference to a global instance of a JUser object. If the
object does not exist, it will be created. $id can be a string or an integer. If it
is a string it will be assumed that it is a username, and if it is an integer it will
be assumed that it is a user's ID. To get a reference to the current user object,
use JFactory::getUser(). This method must be invoked as follows:

$user =& JUser::getInstance($id);

JUser &getInstance($id = 0)

mixed $id: The user to load; can be an integer or string
object: Returns a reference to a global JUser object

•
•

getParam
This method returns a user parameter from the $_params property. If the
parameter does not exist the value of $default will be returned.

mixed getParam($key, [$default = null])

string $key: The parameter key name
mixed $default: The default value
mixed: Returns the parameter value

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[509]

getParameters
This method returns a reference to the user's JParameters object. It attempts
to load an XML setup file based on the user's $usertype. The filename of the
XML file is the same as the $usertype. The method uses a static variable to
store the parameter setup file base path. You can call this function statically to
set the base path if needed.

JParameter &getParameters([$loadsetupfile = false], [$path = null])

boolean $loadsetupfile: If true loads the parameter XML setup file
string $path: The parameter XML setup file base path
object: Returns a reference to the user's JParameter object

•
•
•

getTable
This method returns a reference to a new JTableUser object loaded with
the current user's details. This method uses a static variable to store the table
name of the user table it instantiates. The method can be called statically to
set the table name if needed.

JTableUser &getTable([$type = null], [$prefix = 'JTable'])

string $type: The custom user table name to be used; default is 'User'
string $prefix: The parameters XML setup file base path
object: Returns a reference to the user's JTableUser object

•
•
•

load
This method loads a user based on the $id and sets the user properties.

boolean load($id)

integer $id: The id of the user to load
boolean: Returns true upon success

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[510]

save
This method saves the JUser object to the database. If $updateOnly is true,
then the creation of a new user will not be permitted. If this is the case, and an
attempt is made to save a new user, the method will still return true. Before
saving the user a number of sanity checks are made, including data validation
and authorization verification. If any of these fail then the method will return
false.

boolean save([$updateOnly = false])

boolean $updateOnly: If true creation of a new user will not be
permitted
boolean: Returns true upon success

•

•

setLastVisit
This method is a pass-through method to the table for setting the last visit
date. The method updates the user's database record last visit date but does
not update the lastVisitDate property of the object.

boolean save([$timestamp = null])

integer $timestamp: The timestamp; defaults to 'now'
boolean: Returns true upon success

•
•

setParam
This method sets the value of a user parameter.

mixed setParam($key, $value)

string $key: The parameter key
mixed $value: The parameters value
mixed: Returns the set parameter value

•
•
•

setParameters
This method loads the user JParameter object and stores it in $_params.

void setParameters($params)

object $params: The user JParameter object to load
void: No return type

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[511]

JView
abstract, extends JObject, located in /joomla/application/component/view.php

This is an abstract base class for view classes that use the MVC implementation. For
further information on using the JView class refer to Chapter 5, Component Design.

Properties

string $_basePath = null The base path of the view

string $_charset = 'UTF-8' Character set to use with escaping mechanisms

string $_defaultModel =
null

The default model

string $_escape 'htmlspecialchars' callback for escaping

string $_layout = 'default' The layout name

string $_layoutExt = 'php' The layout extension

array $_models = null Array of registered models

string $_name = null The name of the view

string $_output = null The output of the template script

array $_path= array() The set of search directories for resources
(templates):
$_path = array(
 'template' => array(),

 'helper' => array())

string $_template = null The name of the template source file

Inherited properties
Inherited from JObject:

JObject::$_errors

Inherited methods
Inherited from JObject:

JObject::JObject()

JObject::__construct()

JObject::get()

•

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[512]

JObject::getError()

JObject::getErrors()

JObject::getProperties()

JObject::getPublicProperties()

JObject::set()

JObject::setError()

JObject::setProperties()

JObject::toString()

Methods
Constructor __construct

Class constructor. Builds a new JView object. $config is an associative array
that might contain the keys name, base_path, template_path, helper_path,
and layout. name will be transposed to the view name, unless the view
name has already been defined. template_path adds a path to the template
paths. layout is the name of the template layout (template filename prefix),
normally HTML. Redefinition of JObject::__construct(); class constructor.

JView __construct([$config = array()])

array $config: An associative array of configuration settings; optional•

addHelperPath
This method adds to the stack of helper script paths in LIFO order. $path can
be a string or and array of strings.

void addHelperPath($path)

mixed $path: The helper path or array of paths to add
void: No return type

•
•

addTemplatePath
This method adds to the stack of view template or layout script paths in LIFO
order. $path can be a string or and array of strings.

void addTemplatePath($path)

mixed $path: The template/layout path or array of paths to add
void: No return type

•
•

•
•
•
•
•
•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[513]

assign
This method dynamically adds properties to the object. If arg0 is an object or
array, each of the properties or keys will be added to the object. If arg0 is a
string, it will be used as the name of the property, and arg1 will be assigned
to the value. Properties with an underscore are not allowed as these are either
private properties for JView or private variables with the template script
itself.

boolean assign([$arg0 = null], [$arg1 = null])

mixed $arg0: Can be an object, array or string
mixed $arg1: Optional value of the property
boolean: Returns true upon success

•
•
•

assignRef
This method dynamically adds the property, identified by $key, to the object
with a reference to $val. Properties with an underscore are not allowed as
these are either private properties for JView or private variables with the
template script itself.

boolean assignRef($key, &$val)

string $key: The name for the reference in the view
mixed $val: The referenced variable
boolean: Returns true upon success

•
•
•

display
This method calls the loadTemplate() method and returns the rendered
result. If an error occurs a JException object will be returned. If $tpl is
specified then it will be used as a suffix to the layout with an underscore
separator.
mixed display([$tpl = null])

string $tpl: The template file suffix; optional
mixed $arg1: Optional value of the property
mixed: Returns rendered template or JException object

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[514]

escape
This method performs escape functions on $var. This method can be used
dynamically, by calling it with extra parameters; extra parameters will be
treated as the escape functions. For more information see http://php.net/
manual/en/function.call-user-func.php.
mixed escape($var)

mixed $var: The value to escape
mixed: Returns the escaped value

•
•

get
This method gets the result of a get() method from a registered model. If
the model is not defined then the default model will be used. The method is
identified as 'get'.$method. If the specified model does not exist then the
request will passed to the parent (JObject) class JObject::get($method,
$model). The method returns the get accessor result or false on failure. This
can be ambiguous depending upon the method being called or the property
being returned. Redefines JObject::get(); returns a property of the object or
the default value if the property is not set.
mixed &get($property, [$default = null])

string $property: The method or property to return
string $default: The name of the model to reference or the default value
mixed: Returns the returned value of the method or false on failure

•
•
•

getLayout
This method returns the view layout.

string getLayout()

string: Returns the layout name•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[515]

getModel
This method returns a reference to a registered JModel subclass object from
the view. $name is the name of the JModel class. If $name is not provided the
default model is retrieved. JView supports a one-to-many relationship with
models but only one object per class.

JModel &getModel($name = null)

string $name: The name of the model class; optional
object: Returns a reference to a registered JModel subclass object

•
•

getName
This method returns the name of the view. The view name, by default, is
parsed using the classname or it can be set by passing a $config['name']
in the class constructor.

string getName()

string: Returns the name of the view•

loadHelper
This method searches the known helper paths for the specified helper file.

boolean loadHelper([$hlp = null])

string $hlp: The name of the helper file to load; optional
boolean: Returns true if the file was loaded

•
•

loadTemplate
This method loads and renders a template. The rendered result is returned
and stored in the object output buffer. If $tpl is specified it is appended
to the layout name with an underscore separator. For example if $tpl was
'item' and the template layout was 'default', the template name would be
'default_item'.

boolean loadTemplate([$tpl = null])

string $tpl: The template suffix; optional
string: Returns output of the template script

•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Core Classes

[516]

setEscape
This method sets the callback methods to use with the _escape() method.
If provided with parameters, the parameters will be used as the methods
to use with the _escape() method. Parameters must be strings or arrays
with two elements, a class and method name. For more information see
http://php.net/manual/en/function.call-user-func.php.

void setEscape($spec)

mixed $spec: The callback for _escape() to use
void: No return type

•
•

setLayout
This method sets the view layout; normally default.

string setLayout($layout)
string $layout: The view layout
string: Returns the previous layout

•
•

setLayoutExt
This method sets the view layout extension to use.

string setLayoutExt($value)
string $value: The extension to use
string: Returns the previous value

•
•

setModel
This method registers a JModel subclass object with the view. If $default is
true, the registered model will become the default model. JView supports
a multiple model, single view architecture by which models are referenced
by classname. A caveat to classname referencing is that any classname
prepended by JModel will be referenced by the name without JModel, for
example JModelCategory will be referenced as Category.

JModel &setModel(&$model, [$default = false])
object $model: A reference to the JModel to add to the view
boolean $default: If true make this the default model
object: Returns a reference to the added JModel subclass object

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[517]

_addPath
This private method adds paths to search for subclass files, normally
templates. $type is the type of path. To add a template path $type would
need to be 'template'. $path can be a string or an array of strings.

void _addPath($type, $path)

string $type: The type of path (normally 'template'or 'helper')
path $path: A path or an array of paths
void: No return type

•
•
•

_createFileName
This private method returns a filename based on $type and $parts. $type
can be 'template' or 'helper'. $parts must contain the key 'name'.

void _createFileName($type, $parts = array())

string $type: The type of path (normally 'template'or 'helper')
array $parts: An array containing the key 'name'
void: No return type

•
•
•

_setPath
This private method adds paths to search for subclass files, normally templates.
$type is the type of path. To add a template path $type would need to be
'template'. $path can be a string or an array of strings. Using this method
will prepend JPATH_COMPONENT.DS.'views'.DS.'nameOfView'.DS. 'tmpl'
to template paths.

void _setPath($type, $path)

string $type: The type of path (normally 'template'or 'helper')
path $path: A path or an array of paths
void: No return type

•
•
•

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
$_acoSectionValue, JController 436
$anObject variable 87
$anotherObject variable 87
$checked variable 182
$db->loadObject() method

using 146
$db >loadObjectList() method 146
$params parameter 204
$view >display() method 165
&

using 247
<name> tag

using 121
=& assignment operator 87
__construct() method 87, 220
_actionBlock() method 393
_actionLogout() method 393
_actionNotify() method 397
_buildQuery() method 279
_buildQueryOrderBy() method 279
_buildQueryWhere() method 283
_incrementAttacks() method 393
_mos_add_acl() method 385
 JPluginHelper class 198

A
a.mymodal parameter 252
access contol

about 383
extension 385, 386
menu item 385
user group, defining 384

addAttribute() method 99, 338

addChild() method 99, 338
addCustomHeadTag() method 428
addCustomTag() method 315
addEntry() method 249, 424
addHelperPath() method 85
addItem() method 311
addMetaTag() method 428
addModelPath method 438
addNew method 245
addNewX method 245
addScript() method 312, 313
addScriptDeclaration() method 313
addStyleDeclaration() method 314
addStyleSheet() method 313
addViewPath method 438
ADOdb methods, JDatabase

BeginTrans 460
CommitTrans 460
ErrorMsg 460
ErrorNo 460
Execute 461
GenID 461
GetCol 461
GetOne 462
GetRow 462
PageExecute 462
RollbackTrans 462
SelectLimit 463

AJAX
about 340
request 343-346
response 340-343
response, document types 340

API 331
appendMetaTag() method 428
appendPathway() method 428

www.it-ebooks.info

http://www.it-ebooks.info/

[520]

application message queue 293
about 293
core message types 294
CSS Declaration, adding to document 294,

295
enqueueMessage() method, using 294
error type 294
message type 294
notice type 294

Application Programming Interface. See
API

apply method 245
archiveList method 245
array $_log property, JDatabase 444
array $_messageQueue property,

JApplication 428
array $_methods, JController 436
array $_name property, JApplication 428
array $_path, JController 436
array $_quoted property, JDatabase 444
array $_taskmap, JController 436
array_sum() function 419
arrays 416-420
assests

dealing with, media tag used 106, 107
list 106

assign method 151, 245
assignRef() method 151
Asynchronous JavaScript and XML. See

AJAX
Atom (Atom Syndication Format) feeds 156
attacks

about 387
avoiding 387
dealing with 392

attacks, avoiding
about 387
code injection 389
file system, snooping 392
PHP code injection 389, 390
session token, using 388
SQL injection 390
XSS 391

attacks, dealing with
about 392
blocking 393-395
logging attack 396, 397

logging out 393-395
site administrator, notifying 397

attributes() method 335
authentication plugin

constants 222
onAuthenticate event 221
property, setting 222

authorize() method 386, 387

B
backend controller, building

task, adding 166
task, cancelling 168
task, displaying 164, 165
task, editing 165
task, removing 168, 169
task, saving 167
tasks, defining 164

backend view, building
add() method 183
edit() method 183
manifest, updating 188
revue view, layout 184-188
view #1 177, 178
view #1, layout 179-181
view #2 182, 183
view #2, layout 184

back method 245
BBCode 392
behavior, grouped types 251
boolean $_debug property, JDatabase 444
boolean $_hasQuoted property, JDatabase

444
boolean $_utf, JDatabase 444
BoxofficeControllerRevue controller 142
BoxofficeModelRevue 145
BoxofficeModelRevues 170
Box Office Revues 121
BoxofficeViewRevue class 165, 341
BuildRoute() function 193
Bulletin Board Code. See BBCode

C
cancel method 245
canDelete() method 77
Central European Time. See CET

www.it-ebooks.info

http://www.it-ebooks.info/

[521]

CET 401
CGI data

about 373
database, escaping 377
database, quoting 377
encoding 377
escaping 377
preprocessing 373-376
REs 379
XHTML data, encoding 378

check() method 406
checkall() function 181
checkin() method, using 78
checkout() method, using 78
classes

JLDAP class 347
JPagination class 270

class names, component structure
backend 113
frontend 114
naming guidelines 112

class names, module structure
frontend 125
naming convention 124

clean() method 405
clear() method

using 297
CMS 51
com_install() function 119, 120
component

backend, building 243
improving 243

component backend
admin form 259, 260
buttons, adding to menu bar 245, 246
joomla.html library 250
layouts 258
submenu 246-250
templates 258
toolbars 244

component configuration
dealing with 189, 190

component design
about 134
creating 134
MVC 134

component layouts. See templates

component structure
about 108
class names 112
directory structure 108-110
file structure 110
sandbox, setting up 114-116
SQL install files 117-119
SQL install scripts 119, 120
SQL uninstall files 117-119
SQL uninstall scripts 119, 120
XML manifest file 121, 122

Content Management System. See CMS
content plugin

attributes 224
creating 223
onAfterDisplayContent event 224, 230
onAfterDisplayTitle event 224
onBeforeDisplayContent event 225
onPrepareContent event 223, 225

Coordinated Universal Time. See UTC
copy() method 408
core database

database structure 51
create() method 409 141
Cross Site Scripting. See XSS
custom method 245
customX method 245

D
data() method

using 336
database

data, parsing 57
dates, working with 56
multilingual requirements, dealing

with 57, 58
naming convention 53
using 58

database, using
JDatabase::ADOdb method 66
JDatabase::load method 60
JDatabase::query method 58
JTable method 67

database structure
#__migration_backlinks table 53
about 52

www.it-ebooks.info

http://www.it-ebooks.info/

[522]

component manager 52
content manager 52
extension manager 52
menu manager 53
site manager 53

dates
about 400
date parameter 400, 401
time parameter 400, 401
time zone parameter 401-404

def() method 202
DefenceHandler class 397
delete() method 271, 409 76
deleteList method 245
design patterns

about 29
factory pattern 29
iterator pattern 29
singleton pattern 29
software design pattern 29

development tools
about 17
coding standards 18
J!Dump 21
JoomlaCode.org 18
PEAR coding standards 18, 19
phpDocumentor 19, 20

directory structure
exploring 48, 49
folders 47

display() method
about 142, 143
overriding 150, 151

Divider method 245
DocBlock 19
document

breadcrumb 310
CSS 313
CSS, adding methods 313
custom header tags 315
JavaScript 312
metadata 314
metadata, methods 314
modifying 309
page title 310
pathway 310-312

pathway handling, JPathway object used
311, 312

Document Object Model. See DOM
DOM 325
dump() function 21
dumpMessage() function 22
dumpSysinfo() function 22
dumpTemplate() function 22
dumpTrace() function 22

E
edit() method 142
editCss method 245
editCssX method 245
editHtml method 245
editHtmlX method 245
editList method 245
editListX method 245
editors-xtd plugin

about 227, 229
methods 230
onCustomEditorButton event 227, 230

editors plugin
about 225
onDisplay event 226
onGetContent event 226
onGetInsertMethod event 227
onInit event 227
onSave event 227
onSetContent event 227
TinyMCE screenshot 225

email 350, 351
Entity Relationship Diagram. See ERD
ERD 139
error handling

about 369-371
customizing 372, 373
E_ERROR errors 370
error code, using 370
return values 371, 372

escapeshellarg() function 390
event handling, listeners

class, creating 217
function, creating 216

event handling, listeners event 217, 218
events

www.it-ebooks.info

http://www.it-ebooks.info/

[523]

about 214
issuing 215
onPrepareRevue, creating 215
onPrepareRevue event, triggering 215
triggerEvent() 215
triggering 215

execute() method 141
exists() method 408
explode() function 414
Extensible Markup Language. See XML
extension

packaging 130
structure 107

extension, packaging
about 130
module package 131
plugin package 131
XML manifest file, naming convention 131

extension, structure
component structure 108
module structure 123
plugin structure 128

Extension Manager 16

F
factory pattern 29
file structure, component structure

controller 111
entry point 111
index.html 110
models 112
tables 112
views 111, 112

file structure, module structure
about 124
entry point 124
helper 124
index.html 124
layouts 124

file system
about 405
archives 415, 416
commands 413
copy() method 413
delete() method 414
exist() method 413

files 412-415
folders 408-412
move() method 414
paths 405-407
read() method 414
write() method 414

find() method 406
Firebug 347
folders() method 410
framework application, initializing

multilingual support 41
UTF-8 string handling 41

Framework layer, Joomla! framework
about 11
framework 12
libraries 11
plugins 12

fromObject() method 418
frontend view, building

about 149
default layout, creating 152, 153
display() method, using 150
layout, building 152
list layout, creating 153, 154

FTP
about 353
JFTP class 353, 354

G
GACL

about 383
Access Contol list (ACL) 383
Access Contol Objects(ACO) 383
Access eXtension Object(AXO) 383
Access Request Object(ARO) 383

get() method
about 202
using 28

getActive() method 311
getBasePath() method 428
getBlogCategoryCount() method 428
getBlogSectionCount() method 428
getCategories() method 84
getContent() method 230
getContentItemLinkCount() method 428
getCustomPathway() method 429

www.it-ebooks.info

http://www.it-ebooks.info/

[524]

getElementByPath() method 335
getEscaped() method 378, 390
getGlobalBlogSectionCount() method 429
getHead() method 429
getInstance() method 320

about 30
need for 85, 86
using 86-90

getItemid() method 429
getItems() method

creating 203- 205
using 205

getLayoutPath() method 206
getMessageQueue method 431
getMetaData() method 315
get methods 147
getNextOrder() method 74
getPageTitle method 429
getPagination() method

about 274
code 274, 275

getParameters() method 98
getParent() method, using 422
getPath() method 429
getPermissions() method 406
getRevue() method 145, 151, 175
getRevues() method

about 146, 271
modifying 273

getStaticContentCount() method 429
getTitle() method 310
getUser() method 429

using 95
getUserState() method

about 40
exploring 102

getUserStateFromRequest() method 280
exploring 102

getValue() method 91
getVar() method 374
getWord() method 389
getXMLParser()method 333
GMT 401
Greenwich Mean Time. See GTC
grid, grouped types 254
Group Access Control Lists. See GACL
grouped types, joomla.html library

behavior 251-253
grid 254
grid, uses 254
image 255
list 256
list, uses 256
select 257

group types, joomla.html library
behavior 251, 253
behavior, types 253
email 254
form 254
grid 254, 255
grid, types 255
grid, uses 254, 255
image 255
image, types 256
list 256
list, types 257
menu 257
select 257, 258
select, types 258

GTC 401

H
hasFeature() method 103
helpers

about 84
building 84, 85
functions 85
JToolBarHelper helper class 84

help files
about 191
storing 192

help method 245
hit() method 81
htmlspecialchars() function 378

I
image, grouped types 255
importPlugin method 236
integer $_clientId property, JApplication

428
integer $_errorNum property, JDatabase

444
integer $_limit property, JDatabase 444

www.it-ebooks.info

http://www.it-ebooks.info/

[525]

integer $_offset property, JDatabase 444
integer $_ticker property, JDatabase 444
isCheckOutMethod()

using 78
isEnabled() method 198
ISO 8601 400
isRobot() method 105
isSSLConnection() method 106
itemized data

about 270
category filter, applying 285, 286
category filter drop-down selection box,

adding 284
custom drop-down selection filter, con-

structing 287, 289
filter, uses 286
filtering 281, 282
filtering, options 281
filters, uses 286
ordering 276-281
pagination 270
published state filter, applying 283, 284
published state filter, implementing 281-

284
searching 281, 282

iterative templates
about 263
default.php 263, 264
default_details.php 264-268
default_revue.php 269, 270

iterator pattern 29

J
J!Dump

about 21
dump() function 21
dumpMessage() function 22
dumpSysinfo() function 22
dumpTemplate() function 22
dumpTrace() function 22
using 21

JApplication
about 427
array $_messageQueue property 428
array $_name property 428
close method 429

constructor_construct method 429
deprecated methods 428, 429
dispatch method 430
enqueueMessage method 430
getCfg method 430
getClientId method 430
getInstance method 431
getMenu method 431
getMessageQueue method 431
getName method 431
getPathway method 432
getRouter method 432
getTemplate method 432
getUserStateFromRequest method 433
getUserState method 432
inherited methods, from JObject 428
initialise method 433
integer $_clientId property 428
isAdmin method 433
isSite method 433
login method 434
logout method 434
methods 433, 434
properties 428
redirect method 434
registerEvent method 435
render method 435
route method 435
setUserState method 435
string $scope property 428
triggerEvent method 436

JArchive class
archive adapters 415
format extensions 416

JArrayHelper class 416
JavaScript effect

mootools 319
JBrowser

about 103
choosing 105
hasFeature() method, features 103
hasFeature() method, using 103
isRobot() method, using 105
isSSLConnection() method, using 106
Joomla! browsers 104, 105
quirks 104

JClientHelper class, using 353

www.it-ebooks.info

http://www.it-ebooks.info/

[526]

JComponentHelper class 198
JController

_addPath method 442
_createFileName method 442
_createModel method 443
_createView method 443
_setPath method 443
about 436
addModelPath method 438
addViewPath method 438
array $_methods property 436
array $_path property 436
array $_taskmap property 436
authorize method 438
constructor_construct method 437
display method 438
execute method 439
getModel method 439
getName method 439
getTask method 439
getTasks method 440
getView method 440
inherited methods 437
inherited properties 437
methods 441
properties 436
redirect method 440
registerDefaultTask method 441
register Task method 441
setAccessControl method 441
setMessage method 441
setRedirect method 442
string $_acoSection property 436
string $_acoSectionValue property 436
string $_basePath property 436
string $_doTask property 436
string $_message property 436
string $_messageType property 436
string $_name property 436
string $_redirect property 436
string $_task property 436

JController::display() method 143
JController::getView() method 144
JController class 138
JController execute() method 372
JController redirect() method 299
JController setRedirect() method 298

JDatabase
about 444
addQuoted method 446
ADOdb methods 460
connected method 446
constructor_construct method 445
debug method 446
destructor_construct method 446
direct descendents 444
explain method 447
getAffectedRows method 447
getCollation method 447
getConnectors method 448
getErrorMsg method 448
getErrorNum method 448
getEscaped method 448
getInstance method 449
getLog method 449
getNullDate method 449
getNumRows method 449
getPrefix method 450
getQuery method 450
getTableCreate method 450
getTableFields method 450
getTableList method 451
getTicker method 451
getUTFSupport method 451
getVersion method 451
hasUTF method 452
inherited methods, from JObject 445
inherited properties 445
insertid method 452
insertObject method 452
isQuoted method 453
loadAssocList method 453
loadAssoc method 453
loadObjectList method 454
loadObject method 454
loadResultArray method 455
loadResult method 454
loadRowList method 456
loadRow method 455
nameQuote method 456
properties 444
queryBatch method 457
query method 456
Quote method 457

www.it-ebooks.info

http://www.it-ebooks.info/

[527]

replacePrefix method 457
setQuery method 458
setUTF method 458
splitsSql method 458
stderr method 459
test method 459
updateObject method 459

JDatabase, direct descendents
JDatabaseMySQL 444
JDatabaseMySQLi 444

JDatabase::ADOdb method 66
JDatabase::load method

#__test table, using 61
loadAssoc 60, 63
loadAssocList 61, 65
loadObject 61, 63
loadObjectList 61, 65
loadResult 60, 61
loadResultArray 60, 62
loadRow 60, 62
loadRowList 61, 64

JDatabase::query method
about 58
query() method, using 59
rules 60
setQuery() method, using 59
using 59

JDatabase::setQuery() method 54
JDatabase getEscaped() 377
JDatabaseMySQ 444
JDatabaseMySQLi 444
JDate class 399
JDate object 400
JDocument

_getTab method 474
about 463
addScriptDeclaration method 465
addScript method 465
addStyleDeclaration method 466
addStyleSheet method 466
constructor_construct method 465
direct descendents 463
getBase method 466
getBuffer method 466
getCharset method 467
getDescription method 467
getDirection method 467

getGenerator method 467
getHeadData method 467
getLanguage method 468
getLink method 468
getMetaData method 468
getModifiedDate method 468
getTitle method 469
getType method 469
inherited methods 464
inherited properties 464
loadRenderer method 469
properties 463
render method 469
setBase method 470
setBuffer method 470, 474
setCharset method 470
setDescription method 470
setDirection method 471
setGenerator method 471
setHeadData method 471
setLanguage method 471
setLineEnd method 472
setLink method 472
setMetaData method 472
setMimeEncoding method 473
setModifiedDate method 473
setTab method 473
setTitle method 473
setType method 474
static getInstance method 468

JDocument, direct descendents
JDocumentError 463
JDocumentFeed 463
JDocumentHTML 463
JDocumentPDF 463
JDocumentRAW 463

JDocumentError 463
JDocumentFeed 463
JDocumentHTML 463
JDocumentPDF 463
JDocumentRAW 463
JDocumentRenderer

about 474
constructor_construct method 475
direct descendents 474
getContentType method 476
inherited methods 475

www.it-ebooks.info

http://www.it-ebooks.info/

[528]

inherited properties 475
properties 475
render method 476

JED 17
JEditor::display() method

defining 262
JError::setErrorHandling() method 372
JError class 370
JEventDispatcher trigger() method 215
JFactory

_createACL method 481
_createConfig method 481
_createDBO method 482
_createDocument method 482
_createLanguage method 482
_createMailer method 482
_createSession method 482
_createTemplate method 483
about 476
getACL method 477
getApplication method 477
getCache method 477
getConfig method 478
getDate method 478
getDBO method 478
getDocument method 478
getEditor method 479
getLanguage method 479
getMailer method 479
getSession method 479
getTemplate method 480
getURI method 480
getUser method 480
getXMLParser method 481

JFactory::getDBO() method 85
JFactory::getUser 46
JFile methods

getExt() method 412
getName() method 412
makeSafe() method 412
stripExt() method 412

JFolder class 408
JFTP class

about 353
methods, using with JFTP objects 355

JHTML::_(), class loader method 250
JHTML::addIncludePath() method 287

JHTML class 247
jimport() function 37, 237
JLoader class 237
JLog

global error log file, accessing 423
global error log file, keys used 423
using 423

JMail class
about 350-353
JMail object, accessing 350-352

JModel
_createFileName method 486
_createTable method 487
_getList() method 273
_getListCount method 487
_getList method 487
about 483
addIncludePath method 484
addTablePath method 484
constructor_construct method 484
getDBO method 485
getInstance method 485
getName method 485
getState method 485
getTable method 486
inherited methods 483, 484
inherited properties 483
properties 483
search, implementing 289, 290
setDBO method 486
setState method 486

JModel::getTable() method 72
JModel _buildQueryWhere() method

modifying 285
JModuleHelper class 198
JNode class 422
JObject

about 488
constructor_construct method 490
constructor JObject method 490
deprecated methods 490
direct descendents 488, 489
getError method 492
getErrors method 492
get method 491
getProperties method 492
properties 490

www.it-ebooks.info

http://www.it-ebooks.info/

[529]

setError method 493
set method 493
setProperties method 493
toString method 494

JObject, direct descendents
JApplication 488
JArchiveBzip2 488
JArchiveGzip 488
JArchiveTar 488
JArchiveZip 488
JAuthenticationResponse 488
JBrowser 488
JButton 488
JCache 488
JCacheStorage 488
JController 488
JDatabase 488
JDate 488
JDocument 488
JDocumentRenderer 488
JElement 488
JException 488
JFeedEnclosure 488
JFeedImage 488
JFeedItem 488
JFilterInput 488
JFTP 488
JInstaller 488
JInstallerComponent 488
JInstallerLanguage 488
JInstallerPlugin 488
JInstallerTemplate 488
JIntallerModule 489
JLanguage 489
JLDAP 489
JLog 489
JMenu 489
JModel 489
JNode 489
JObservable 489
JObserver 489
JPagination 489
JPaginationObject 489
JPane 489
JPathway 489
JProfiler 489
JRegistry 489

JRegistryFormat 489
JSession 489
JSessionStorage 489
JSimpleCrypt 489
JSimpleXML 489
JSimpleXMLElement 489
JTable 489
JToolbar 489
JTree 489
JURI 489
JUser 489
JView 489

JObject::_errors 437
JObject::JObject() constructor 28
JObservable class 214
Joomla!

about 9
access control 383
AJAX 340
API 331
classes 399, 427
components 133
components, XML metadata files 299
development tools 17
document, modifying 309
extension, tasks 9
Extension Manager 16
extensions 14
extension, structure 107
feature 9
framework 10
help files 191
itemized data 270
JavaScript effects, using 319
JBrowser 103
JED 17
JFTP class 353
JLDAP class 347
JMail class 350
JNode class 420
JPagination class 270
JRegistry 91
JRegistry, using 90
JSession object 101
JTree class 420
menu item parameters, using 308
modules 195

www.it-ebooks.info

http://www.it-ebooks.info/

[530]

mootools 319
MySQL 51
MySQLi 51
overview 9
parameters, types 302
redirects 295-298
templates 259
translating 315
utilities 399
web service, building 359
XML parsers 333

Joomla!, classes
JApplication 427
JController 436
JDatabase 444
JDocument 463
JDocumentRenderer 474
JFactory 476
JModel 483
JObject 488
JPlugin 494
JTable 496
JUser 505
JView 511

Joomla! 1.5 framework
Application layer 10, 13
defining 10
Extension layer 10, 13
Framework layer 10, 11

Joomla! component. See component design
Joomla! database. See database
Joomla! extension. See extension, structure

about 14
components 14
designing 25
developing 25
languages 15
modules 14
plugins 15
templates 15
tools 15

Joomla! extension design
design patterns 29
developing 25, 26
JObject, inheriting from 27, 28
naming conventions 26
objects creation 26, 27

predefined constants 30
Joomla! process

about 32
application, dispatching 46
application, rendering 47
application, routing 43-45
framework application, creating 39, 40
framework application, initializing 40
JRequest, working with 32, 33
library, importing 37, 38
load core 37
query keys 44
Request to Response 34-37
response, sending 47
sessions 39, 40

Joomla!Stand Alone Server. See JSAS
Joomla! website, creating

requirements, JSAS 17
requirements,XAMPP 16

joomla.filesystem library 399, 405
joomla.html library

behavior, grouped types 251
grid, grouped types 254
image, grouped types 255
list, grouped types 256
select, grouped types 257

joomla.html library, component backend
about 250
basic element types 250
group types 251
supporting classes 251

JoomlaCode.org
tools 18

Joomla Extension Directory. See JED
JOutputFilter::objectHTMLSafe() method

378
JPagination class

attribute, using 274
attributes 270
getTotal() method 274

JPane 319
JParameter class

about 241
using 96

JParameter object 309
JParameter renderToArray() method 98
JPath::check() method 392

www.it-ebooks.info

http://www.it-ebooks.info/

[531]

JPlugin
about 494
constructor_construct method 495
Constructor JPlugin method 496
inherited methods 494
inherited properties 494
loadLanguage method 496
properties 494

JPluginHelper class 241
JPlugin subclass 241
JRegistry

about 90
using 91
values, loading 92, 94
values, saving 92, 94

JRegistry >toString() method 92
JRequest::getVar() method 33
JRequest::setVar() method 33
JRequest::getVar() method 373
JRoute::_() method

about 45, 192
advantage 45

JRouter
about 192
BuildRoute() function 192
creating 192
JRoute::_() method, using 192
ParseRoute() function 193

JSAS 15
JSession object

about 101
alternative user template, setting 102
getUserState() method 102
getUserStateFromRequest() method 102

JSimpleXMLElement class 339
JSubMenuHelper class 246

using 248
JTable

about 496
addIncludePath method 499
bind method 499
canDelete method 499
checkin method 500
check method 500
checkout method 500
constructor_construct method 498
delete method 501

direct descendents 497
getDBO method 501
getInstance method 501
getKeyName method 501
getNextOrder method 502
getTableName method 502
hit method 502
inherited methods 497, 498
inherited properties 497
isCheckedOut method 502
load method 503
move method 503
properties 497
publish method 503
reorder method 503
reset method 504
save method 504
setDBO method 504
store method 504
toXML method 505

JTable, direct descendents
JTableARO 497
JTableAROGroup 497
JTableCategory 497
JTableComponent 497
JTableContent 497
JTableMenu 497
JTableMenuTypes 497
JTableModule 497
JTablePlugin 497
JTableSection 497
JTableSession 497
JTableUser 497

JTable::bind() method 67
JTable::check() method

using 70
JTable::getError() method 74
JTable::getInstance() method

about 72
using 70

JTable::publish() method 80
JTable::save() method 73
JTableARO 497
JTableAROGroup 497
JTableCategory 497
JTableComponent 497
JTableContent 497

www.it-ebooks.info

http://www.it-ebooks.info/

[532]

JTableMenu 497
JTableMenuTypes 497
JTable method

about 67, 68
catid column 70
change control 68
checked_out_time column 69
checked_out column 69
columns 69
data, publishing 80
data, unpublishing 80
data binding 67
data validation 67
hits column 70
hits field 81
JTable::publish() method 80
JTable subclass, creating 70-72
miscellaneous functions 68
new record, creating 72-75
ordering column 69
ordering field 79, 80
parameter fields 81
params column 70
published column 69
record, checking in 78
record, checking out 78
record, deleting 76, 77
record, reading 75
record, updating 75, 76
row management 67

JTableModule 497
JTablePlugin 497
JTableSection 497
JTableSession 497
JTableUser 497
JText::printf() method 316
JText::sprintf() method 316
JText::printf() method 41
JText::sprintf() method 41
JToolBarHelper class 244
JTree class 421
JUser

about 505
authorize method 507
bind method 507
constructor_construct method 506
defParam method 507

delete method 508
getInstance method 508
getParameters method 509
getParam method 508
getTable method 509
inherited methods 506
inherited properties 506
load method 509
properties 505
save method 510
setLastVisit method 510
setParameters method 510
setParam method 510

JUtility::getToken()
advantage 388

JView
_addPath method 517
_createFileName method 517
_setPath method 517
about 511
addHelperPath method 512
addTemplatePath method 512
array $_models = null property 511
array $_path= array() property 511
assign method 513
assignRef method 513
constructor_construct method 512
display method 513
escape method 514
getLayout method 514
get method 514
getModel method 515
getName method 515
inherited methods, from JObject 511
inherited properties 511
loadHelper method 515
loadTemplate method 515
properties 511
setEscape method 516
setLayoutExt method 516
setLayout method 516
setModel method 516
string $_basePath = null property 511
string $_charset = UTF-8' property 511
string $_defaultModel = null property 511
string $_escape property 511
string $_layout = 'default' property 511

www.it-ebooks.info

http://www.it-ebooks.info/

[533]

string $_layoutExt = 'php'property 511
string $_name = null property 511
string $_output = null property 511
string $_template = null property 511

JView::display() method 183
JView::loadHelper() method 85
JView class 138

L
LDAP

about 347
Distinguished Name(DN) 349
LDAP server, connecting 348
objects, searching 349, 350
Organizational units 349
server, binding 348
server, interrogating 348

Lightweight Directory Application Protocol.
See LDAP

list, grouped types 256
listeners

about 216
event handling 216
registering 216

loadLanguage() method 239
loadObject() method 146
loadTemplate() method 259
log files 423, 424

M
makeDefault method 245
makeSafe() method 408
media_manager method 245
menu item parameters

using 308, 309
menu parameters, categories

advanced parameters 305
component parameters 303
state parameters 303, 304
system parameters 303
system parameters, list 308
URL parameters 304, 305

mixed $_cursor property, JDatabase 444
mixed $_resource property, JDatabase 444
Model-View-Controller. See MVC

component

module helper
getItems() method, creating 203
modCriticsChoiceHelper 203

module layout (templates)
about 206
creating 206, 207
getLayoutPath() method, using 206
layout parameter 208
media files, adding 210
rendering 208-210

modules
and components, working with 197, 198
backend display positions 199
creating 195, 196
frontend display positions 198
helpers 203
layout (templates), using 206
settings 199
standalone modules 196
translations 211

modules settings
about 199
advanced parameters 199
manifest file, modifying 200-202
module parameters 199

module structure
class names 124
directory structure 123
file structure 124
sandbox, setting up 125, 126
XML manifest file 126, 127

module translation files
building 211
location 211

mootools
about 319
Fx.Slide effect 325-328
pane 319
pane, elements 320
pane, implementing 320
pane, sliders 319
pane, tabs 319
slider pane 320
tooltips 321
tooltips, enabling 323, 324
tooltips, modifying 322
tooltips, types 321

www.it-ebooks.info

http://www.it-ebooks.info/

[534]

move() method 409
using 80

MVC component
backend, building 162
building 138, 139
frontend, building 139

MVC component backend
controller, building 164
entry point, building 163
model, building 170-175
table, building 176, 177
views, building 177

MVC component frontend
controller, building 141-144
document types, naming convention 155
entry point, building 139, 140
feed, creating 156, 158
models, building 144-148
PDF, creating 159, 160
RAW, creating 160-162
view, building 149-152
XML manifest file, updating 162

MVC software design pattern
about 135, 136
components 136
connecting, components 138
controller 137
controller, designing 138
defining 135
model 136, 137
purpose 135
system, accessing 135
view 137

myimport() function 238
mylibrary class 239

N
nameQuote()method 378
naming convention, database

column names 54
component table, creating 55
database prefix 54
table names 54

O
observer pattern 214
onAfterDeleteUser event 234
onAfterDispatch event 232
onAfterDisplayContent event 224
onAfterDisplayRevue() method 219
onAfterDisplayRevue event

about 217, 218
results, choosing 219

onAfterDisplayRevue parameter 219
onAfterDisplayTitle event 224
onAfterInitialize event 232
onAfterRender event 232
onAfterRoute event 232
onAfterStoreUser event 233
onAttackDetected() method 393
onAuthenticate event 223
onBeforeDeleteUser event 233
onBeforeDisplayContent event 225
onBeforeStoreUser event 233
onCustomEditorButton event 230
onDisplay event 226
onGetContent event 226
onGetInsertMethod event 227
onGetWebServices event 235
onInit event 227
onLoginFailure event 234
onLoginUser event 234
onLogoutUser event 234
onPrepareContent event 225
onPrepareRevue event 215
onSave event 227
onSearchAreas event 231
onSearch event 231
onSetContent event 227

P
page, customizing

about 293
application message queue 293, 294
document, modifying 309
JavaScript effects, using 319
translating 315

pagination
about 270
footer 270

www.it-ebooks.info

http://www.it-ebooks.info/

[535]

pagination, itemized data
_getListCount() method 275
about 270-273
adding 271
Article Manager, viewing 272
footer 270, 271
getPagination() method, adding 274
getTotal() method, using 274
JPagination class, attributes 270

parameters
advanced parameters 305, 306
component parameters 303
menu item, creating 303
menu item parameters, using 308, 309
menu parameters 303
menu parameters, categories 303
resultant parameters area 307
state parameters 303, 304
system parameters 303
system parameters, list 308
types 302
URL parameters 304, 305

parent::__construct() call 170
ParseRoute() function

about 193
example 194

parsing 333-337
pathway, handling

JPathway object, used 310-312
php-eaccelerator 102
php-pecl-apc 102
phpDocumentor tool

about 19
using 19, 20, 21

phpmyadmin
using 119

plgSearchContent() function 216
plgSmileyButton() function 229
plgXMLRPCFoobar() function 361
plugins

groups 220
loading 235, 236
observer pattern 213
settings, dealing with 240
translating 239, 240
using 213
using, as libraries 236-238

plugin groups
authentication plugin 221
content plugin 223
editors-xtd plugin 227
editors plugin 225
search plugin 230
system plugin 232
user plugin 232
XML-RPC plugin 235

plugin settings
dealing with 241
file naming conflicts 242
params tag, using 240

plugin structure
location 128
reserved names 129, 130
sandbox, setting up 128, 129

predefined constants
date constants 31
deprecated constant 32
DS 30
JPATH_ADMINISTRATOR 31
JPATH_BASE 30
JPATH_CACHE 31
JPATH_COMPONENT 31
JPATH_COMPONENT_ADMINISTRATOR

31
JPATH_COMPONENT_SITE 31
JPATH_CONFIGURATION 31
JPATH_INSTALLATION 31
JPATH_LIBRARIES 31
JPATH_PLUGINS 31
JPATH_ROOT 30
JPATH_SITE 30
JPATH_THEMES 31
JPATH_XMLRPC 31

preferences method 245
prependMetaTag() method 429
preview method 245
publishList method 246
publish method 245

Q
quantifiers 380
Quote() method 378, 390

www.it-ebooks.info

http://www.it-ebooks.info/

[536]

R
raise() method 373
rawurlencode() method 356
redirect() method

method 140
redirects

about 295
common uses 295
component XML metadata files 299-302
field value, adding 297
layout XML metadata files 300
logic, implementing 296
ways 297

register() method 216
registerEvent() method 216
registerTask() method 141
Regular Expressions. See REs
render() method 98
reorder() method

using 79
REs

($) characters 379
\w 380
about 379
caret (^) 379
modifiers 381
patterns 380
patterns delimiters 379
preg_match()function 381
preg_replace(), using 382
quantifiers 380

reset() method, using 75, 422
RFC 2822 400, 401
RSS 2.0 (Really Simple Syndication) 156

S
save() method 167, 246
Search Engine Optimization. See SEO
search plugin

onSearchAreas event 230, 231
onSearch event 230, 231

select, grouped types 257
SEO 45
set() method

about 202

using 28
setAccessControl() method 386
setCharset() method 161
setData() method

using 338
setError() method

using 70
setMetaData() method 314
setMimeEncoding() method, using 160, 161,

342
setOffset() method 404
setPageTitle() method 429
setParam() method 96
setPermissions() method 407
setRedirect() method 140
setTitle() method 310
setUserStateFromRequest() method

exploring 102
setValue() method 91
show_rating parameter 203
singleton pattern 29
software design patterns 29
SomeClass::getInstance() form 87
SomeClass method 92
Spacer method 246
standalone modules

about 196
countering 196, 197

startPanel() method 320
store() method 175
strftime() function 402
string $_acoSection, JController 436
string $_basePath, JController 436
string $_doTask, JController 436
string $_errorMsg property, JDatabase 444
string $_message, JController 436
string $_messageType, JController 436
string $_name, JController 436
string $_nameQuote property, JDatabase

444
string $_nullDate property, JDatabase 444
string $_redirect, JController 436
string $_sql property, JDatabase 444
string $_table_prefix property, JDatabase

444
string $_task, JController 436
string $name property, JDatabase 444

www.it-ebooks.info

http://www.it-ebooks.info/

[537]

string $scope property, JApplication 428
strtotime() function 400
submitbutton() function 260
submitform() function 260
supporting classes

creating 83, 84
system plugin

onAfterDispatch event 232
onAfterInitialize event 232
onAfterRender event 232
onAfterRoute event 232

T
templates

admin form 259
improving 260, 263
iterative templates 263
rules 258
WYSIWYG editor, adding 260, 262

time zone parameter
about 402, 403
GMT 401
ISO 8601 401
RFC 2822 401
UTC 401
Z 401

title method 246
toFormat() 403
toMySQL() method 402
toString() method 339, 342

using 81
translating

_() method 315
JText::printf() method 316
JText::sprintf() method 316
text 315, 316
translating text 315
translations, debugging 318, 319
translations, defining 317, 318

trash method 246
trees 420-422
triggerEvent() method 215

U
unarchiveList method 246
Unicode Transformation Format-8. See

UTF-8
Uniform Resource Indicator. See URI
unpublishList method 246
unpublish method 246
URI 43
user

activation attribute 94
aid attribute 94
block attribute 94
email attribute 94
gid attribute 94
guest attribute 94
id attribute 94
lastvisitDate attribute 94
name attribute 94
parameters 95
params attribute 94
password attribute 94
registerDate attribute 94
sendEmail attribute 94
username attribute 94
usertype attribute 94

user parameters
accessing 95, 97
adding, to XML 99
admin_language 95
editor 95
exploring 99
foo parameter, setting 97
helpsite 95
language 95
myotherparameter 97
myparameter 97
timezone 95
timezone, determining 95, 96

user plugin
onAfterUserStore event 232, 233
onBeforeDeleteUser event 233, 234
onBeforeStoreUser event 233
onLoginFailure event 234
onLoginUser event 234
onLogoutUser event 234

www.it-ebooks.info

http://www.it-ebooks.info/

[538]

useSendmail() method 352
useSMTP() method 352
UTC 401
UTF-8

about 41
PHP string functions 42

utilities
arrays 416-420
dates 400
file system 405
log files 423
trees 420

V
view->add() method 166
view.html.php file 332

W
web service APIs

about 355
Yahoo! Search, creating 356
Yahoo! Search API 355-358

web services 331

X
XML

about 331
data, interrogating 334
document, constructing 331
editing 338
loading, from file 333

parsing 333
parsing, JSimpleXML parser used 334
pointers 332
saving 339
XML declaration 332

XML-RPC plugin
about 359
add() method, implementing 362
array, building and returning 361
array, keys used 361
compound data types 359
data types 359
debugger 364, 366
foobar, creating 360, 361
global variables, declaring 361
onGetWebServices event 235
subtract() method, implementing 362, 364

XMLHttpRequest class 343
XML parsers

about 333
DOMIT 333
JSimpleXML parser 333
SimplePie 333
types 333

xmlrpcresp class 364
xmlrpcval class 364
XSS 376

Z
Z 401
Zulu Time. See Z

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Mastering Joomla! 1.5 Extension and

Framework Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Joomla! Web Security
ISBN: 978-1-847194-88-6 Paperback: 264 pages

Secure your Joomla! website from common security
threats with this easy-to-use guide

1. Learn how to secure your Joomla! websites

2. Real-world tools to protect against hacks on
your site

3. Implement disaster recovery features

4. Set up SSL on your site

5. Covers Joomla! 1.0 as well as 1.5

 Building Websites with
Joomla! 1.5
ISBN: 978-1-847195-30-2 Paperback: 384 pages

The best-selling Joomla! tutorial guide updated for
the latest 1.5 release

1. Learn Joomla! 1.5 features

2. Install and customize Joomla! 1.5

3. Configure Joomla! administration

4. Create your own Joomla! templates

5. Extend Joomla! with new components,
modules, and plug-ins

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Joomla! 1.5 Extension
Development
ISBN: 978-1-847191-30-4 Paperback: 200 pages

A practical tutorial for creating your first Joomla! 1.5
extensions with PHP

1. Program your own extensions to Joomla!

2. Create new, self-contained components with
both back-end and front-end functionality

3. Create configurable site modules to show
information on every page

4. Distribute your extensions to other
Joomla! users

Joomla! 1.5 Development
Cookbook
ISBN: 978-1-847198-14-3 Paperback: 360 pages

Building rigorously tested and bug-free Django
applications

1. Simple but incredibly useful solutions to real
world Joomla! 1.5 development problems

2. Rapidly extend the Joomla! core functionality to
create new and exciting extension

3. Hands-on solutions that takes a practical
approach to recipes - providing code samples
that can easily be extracted

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1: Introduction to Joomla!
	Overview
	Joomla! 1.5 Framework
	Framework layer
	Libraries
	Framework
	Plugins

	Application layer
	Extension layer

	Extension types and their uses
	Components
	Modules
	Plugins
	Languages
	Templates
	Tools

	Extension Manager
	Requirements
	Joomla Extension Directory (JED)
	Development tools
	JoomlaCode.org
	Coding standards
	phpDocumentor
	J!Dump

	Summary

	Chapter 2: Getting Started
	A quick object lesson
	Inheriting from JObject
	Design Patterns
	Predefined constants

	The Joomla! process
	Working with JRequest
	From Request to Response
	Load Core
	Libraries

	Build application
	The session

	Initialize application
	Multilingual support
	UTF-8 string handling

	Route application
	URI structure

	Dispatch application
	Render application
	Send response

	Directory structure
	Summary

	Chapter 3: The Database
	The core database
	Database structure

	Database naming conventions
	Database Prefix
	Table names
	Column names
	Creating a component table

	Additional points to consider
	Dates
	Parsing data
	Dealing with multilingual requirements

	Using the database
	JDatabase::query()
	Writing queries

	JDatabase::load methods
	loadResult() : string
	loadResultArray(numinarray : int=0) : array
	loadRow() : array
	loadAssoc() : array
	loadObject() : stdClass
	loadRowList(key : int) : array
	loadAssocList(key : string='') : array
	loadObjectList(key : string='') : array

	JDatabase::ADOdb methods
	JTable
	Creating the JTable subclass
	Creating a new record
	Reading a record
	Updating a record
	Deleting a record
	Checking a record in or out
	Ordering
	Publishing
	Hits
	Parameter fields

	Summary

	Chapter 4: Extension Design
	Supporting classes
	Helpers
	Using and building getInstance() methods
	Using the registry
	Saving and loading registry values

	The user
	User parameters

	The session
	The browser
	Assets
	Extension structure
	The structure of a component
	Component directory structure
	Component file structure
	Component class names
	Setting up a component sandbox
	SQL install and uninstall files
	Install and uninstall scripts
	Component XML manifest file

	The structure of a module
	Module directory structure
	Module file structure
	Module class names
	Setting up a module sandbox
	Module XML manifest file

	The structure of a plugin
	Plugin directory structure
	Setting up a plugin sandbox

	Extension packaging
	Summary

	Chapter 5: Component Design
	Component design
	The MVC software design pattern
	Model
	View
	Controller
	Connecting the dots

	Building the MVC component
	Building the component frontend
	Building the entry point
	Building the controller
	Building the frontend model
	Building the frontend view
	Rendering other document types
	Updating the manifest

	Building the component backend
	Building the backend entry point
	Building the controller

	Building the backend model
	Building the table
	Building views
	View #1
	View #2
	Updating the manifest

	Dealing with component configuration
	Help files
	Routing
	Summary

	Chapter 6: Module Design
	First steps
	Standalone modules
	Modules and components working together
	Frontend and backend module display positions

	Module settings (parameters)
	Helpers
	Layouts (templates)
	Media

	Translating
	Summary

	Chapter 7: Plugin Design
	Events
	Listeners
	Registering listeners
	Handling events
	Listener function
	Listener class

	Plugin groups
	Authentication
	Content
	Editors
	Editors-xtd
	Search
	System
	User
	XML-RPC

	Loading plugins
	Using plugins as libraries (in lieu of library extensions)
	Translating plugins
	Dealing with plugin settings (parameters)
	File naming conflicts

	Summary

	Chapter 8: Rendering Output
	Improving components
	Component backend
	Toolbars
	Submenu
	The joomla.html library
	behavior
	email
	form
	grid
	image
	list
	menu
	select

	Component layouts (templates) revisited
	Admin form
	Layout improvements

	Itemized data
	Pagination
	Ordering
	Filtering and searching

	Summary

	Chapter 9: Customizing the Page
	Application message queue
	Redirecting the browser
	Component XML metadata files and menu parameters

	Using menu item parameters
	Modifying the document
	Page title
	Pathway
	JavaScript
	CSS
	Metadata
	Custom header tags

	Translating
	Translating text
	Defining translations
	Debugging translations

	Using JavaScript effects
	JPane
	Tooltips
	Fx.Slide

	Summary

	Chapter 10: APIs and Web Services
	XML
	Parsing
	Editing
	Saving

	AJAX
	Response
	Request

	LDAP
	Email
	File transfer protocol
	Web services
	Building a web service (XML-RPC plugin)
	Summary

	Chapter 11: Error Handling and Security
	Errors, warnings, and notices
	Return values
	Customizing error handling

	Dealing with CGI request data
	Preprocessing CGI data
	Escaping and encoding data
	Escaping and quoting database data
	Encode XHTML data
	Regular Expressions
	Patterns
	Matching
	Replacing

	Access control
	Menu item access control
	Extension access control

	Attacks
	How to avoid common attacks
	Using the session token
	Code injection
	XSS—Cross Site Scripting
	File system snooping

	Dealing with attacks
	Log out and block
	Attack logging
	Notify the site administrator

	Summary

	Chapter 12: Utilities and Useful Classes
	Dates
	Date and time parameter
	Time zone parameter

	File system
	Paths
	Folders
	Files
	Archives

	Arrays
	Trees
	Log files
	Summary

	Appendix A: Joomla! Core Classes
	JApplication
	Properties
	Inherited methods
	Deprecated methods
	Methods

	JController
	Properties
	Inherited properties
	Inherited methods
	Methods

	JDatabase
	Direct descendents
	Properties
	Inherited properties
	Inherited methods
	Methods

	JDocument
	Direct descendents
	Properties
	Inherited properties
	Inherited methods
	Methods

	JDocumentRenderer
	Direct descendents
	Properties
	Inherited properties
	Inherited methods
	Methods

	JFactory
	JModel
	Properties
	Inherited properties
	Inherited methods
	Methods

	JObject
	Direct descendents
	Properties
	Deprecated methods
	Methods

	JPlugin
	Properties
	Inherited properties
	Inherited methods
	Methods

	JTable
	Direct descendents
	Properties
	Inherited properties
	Inherited methods
	Methods

	JUser
	Properties
	Inherited properties
	Inherited methods
	Methods

	JView
	Properties
	Inherited properties
	Inherited methods
	Methods

	Index

