

2

Portions of this Book are reproduced from work created and shared by the Android Open Source Project
and used according to terms described in the Creative Commons 2.5 Attribution License. The derivitive
website is devloper.android.com. The source url of the original document is included under each section
title. Each Section is covered by the aforementioned License. Code Samples are included under the
Apache 2.0 License. Each section has the approriate link, and associated license at the footer of the page.

The Creative Commons License & Apache License are available at the end of this book.

E&OE Errors and omissions excepted or excluded.
All other sections of the document, that are not attributed to other source organisations are under Copyright
© 2013 by Docand using the Creative Commons Attribution-NonCommercial 3.0 Unported License.

First Edition: October 2013
Second Edition : December 2013

www.docand.com

3

Forward

The Docand reference series has been created for developers working within the world of Android™
application development. Taking them from their initial concepts through deployment to product delivery.
Packed with all the information possible, the font size has been chosen to keep the price low. Produced
using a print on demand service allows the book series to be kept up to date with the latest information.

The series titles have been named after the different areas of official documentation, giving the novice
developer through to evangelists a single point of reference.

Credit is given to all the people who created these documents under the Creative Commons License.
Docand does not take credit for the quality and pure quantity of information required to cover all the areas.
The series attempts to bring together the vast amount of documentation into a single cohesive source of
information for a given date, the books are derived from the same source at the same time, thus allowing
cross referencing between the books in the series.

4

Contents

1. Getting Started Error! Bookmark not defined.
2. Building Your First App Error! Bookmark not
defined.
3. Creating an Android Project Error! Bookmark not
defined.

Create a Project with Eclipse Error! Bookmark not
defined.
Create a Project with Command Line Tools Error!
Bookmark not defined.

4. Running Your AppError! Bookmark not defined.
Run on a Real Device Error! Bookmark not
defined.
Run on the Emulator Error! Bookmark not
defined.

5. Building a Simple User Interface Error!
Bookmark not defined.

Create a Linear Layout Error! Bookmark not
defined.
Add a Text Field Error! Bookmark not defined.
Add String Resources Error! Bookmark not
defined.
Add a Button Error! Bookmark not defined.
Make the Input Box Fill in the Screen Width Error!
Bookmark not defined.

6. Starting Another Activity Error! Bookmark not
defined.

Respond to the Send Button . Error! Bookmark not
defined.
Build an Intent Error! Bookmark not defined.
Start the Second Activity Error! Bookmark not
defined.
Create the Second Activity ... Error! Bookmark not
defined.
Receive the Intent . Error! Bookmark not defined.
Display the Message Error! Bookmark not
defined.

7. Adding the Action Bar Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
8. Setting Up the Action Bar ... Error! Bookmark not
defined.

Support Android 3.0 and Above Only Error!
Bookmark not defined.
Support Android 2.1 and Above ... Error! Bookmark
not defined.

9. Adding Action Buttons Error! Bookmark not
defined.

Specify the Actions in XML ... Error! Bookmark not
defined.
Add the Actions to the Action Bar . Error! Bookmark
not defined.
Respond to Action Buttons ... Error! Bookmark not
defined.
Add Up Button for Low-level Activities Error!
Bookmark not defined.

10. Styling the Action Bar Error! Bookmark not
defined.

Use an Android Theme Error! Bookmark not
defined.
Customize the Background .. Error! Bookmark not
defined.
Customize the Text Color Error! Bookmark not
defined.
Customize the Tab Indicator . Error! Bookmark not
defined.

11. Overlaying the Action Bar .. Error! Bookmark not
defined.

Enable Overlay Mode Error! Bookmark not
defined.
Specify Layout Top-margin ... Error! Bookmark not
defined.

12. Supporting Different Devices Error! Bookmark
not defined.

Lessons Error! Bookmark not defined.
13. Supporting Different Languages Error! Bookmark
not defined.

Create Locale Directories and String Files Error!
Bookmark not defined.
Use the String Resources Error! Bookmark not
defined.

14. Supporting Different Screens Error! Bookmark
not defined.

Create Different Layouts Error! Bookmark not
defined.
Create Different Bitmaps Error! Bookmark not
defined.

15. Supporting Different Platform Versions Error!
Bookmark not defined.

Specify Minimum and Target API Levels Error!
Bookmark not defined.
Check System Version at Runtime Error! Bookmark
not defined.
Use Platform Styles and Themes . Error! Bookmark
not defined.

16. Managing the Activity Lifecycle . Error! Bookmark
not defined.

Lessons Error! Bookmark not defined.
17. Starting an Activity Error! Bookmark not
defined.

Understand the Lifecycle Callbacks Error!
Bookmark not defined.
Specify Your App's Launcher Activity Error!
Bookmark not defined.
Create a New Instance Error! Bookmark not
defined.
Destroy the Activity Error! Bookmark not
defined.

18. Pausing and Resuming an Activity Error!
Bookmark not defined.

Pause Your Activity Error! Bookmark not
defined.
Resume Your Activity Error! Bookmark not
defined.

19. Stopping and Restarting an Activity Error!
Bookmark not defined.

Stop Your Activity . Error! Bookmark not defined.
Start/Restart Your Activity Error! Bookmark not
defined.

20. Recreating an Activity Error! Bookmark not
defined.

Save Your Activity State Error! Bookmark not
defined.
Restore Your Activity State Error! Bookmark not
defined.

21. Building a Dynamic UI with Fragments Error!
Bookmark not defined.

Lessons Error! Bookmark not defined.
22. Creating a Fragment Error! Bookmark not
defined.

Create a Fragment Class Error! Bookmark not
defined.
Add a Fragment to an Activity using XML Error!
Bookmark not defined.

5

23. Building a Flexible UI Error! Bookmark not
defined.

Add a Fragment to an Activity at Runtime Error!
Bookmark not defined.
Replace One Fragment with Another Error!
Bookmark not defined.

24. Communicating with Other Fragments Error!
Bookmark not defined.

Define an Interface Error! Bookmark not defined.
Implement the Interface Error! Bookmark not
defined.
Deliver a Message to a Fragment Error! Bookmark
not defined.

25. Saving Data Error! Bookmark not defined.
Lessons Error! Bookmark not defined.

26. Saving Key-Value Sets Error! Bookmark not
defined.

Get a Handle to a SharedPreferences Error!
Bookmark not defined.
Write to Shared Preferences . Error! Bookmark not
defined.
Read from Shared Preferences Error! Bookmark
not defined.

27. Saving Files Error! Bookmark not defined.
Choose Internal or External Storage Error!
Bookmark not defined.
Obtain Permissions for External Storage Error!
Bookmark not defined.
Save a File on Internal Storage Error! Bookmark
not defined.
Save a File on External Storage ... Error! Bookmark
not defined.
Query Free Space Error! Bookmark not defined.
Delete a File Error! Bookmark not defined.

28. Saving Data in SQL Databases Error! Bookmark
not defined.

Define a Schema and Contract Error! Bookmark
not defined.
Create a Database Using a SQL Helper Error!
Bookmark not defined.
Put Information into a Database ... Error! Bookmark
not defined.
Read Information from a Database Error!
Bookmark not defined.
Delete Information from a Database Error!
Bookmark not defined.
Update a Database Error! Bookmark not
defined.

29. Interacting with Other Apps Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
30. Sending the User to Another App Error!
Bookmark not defined.

Build an Implicit Intent Error! Bookmark not
defined.
Verify There is an App to Receive the Intent Error!
Bookmark not defined.
Start an Activity with the Intent Error! Bookmark
not defined.
Show an App Chooser Error! Bookmark not
defined.

31. Getting a Result from an Activity Error!
Bookmark not defined.

Start the Activity Error! Bookmark not defined.
Receive the Result Error! Bookmark not defined.

32. Allowing Other Apps to Start Your Activity .. Error!
Bookmark not defined.

Add an Intent Filter Error! Bookmark not defined.
Handle the Intent in Your Activity . Error! Bookmark
not defined.
Return a Result Error! Bookmark not defined.

33. Building Apps with Content Sharing Error!
Bookmark not defined.
34. Sharing Simple Data Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
35. Sending Simple Data to Other Apps Error!
Bookmark not defined.

Send Text Content Error! Bookmark not defined.
Send Binary Content Error! Bookmark not
defined.
Send Multiple Pieces of Content .. Error! Bookmark
not defined.

36. Receiving Simple Data from Other Apps Error!
Bookmark not defined.

Update Your Manifest Error! Bookmark not
defined.
Handle the Incoming Content Error! Bookmark not
defined.

37. Adding an Easy Share Action ... Error! Bookmark
not defined.

Update Menu Declarations Error! Bookmark not
defined.
Set the Share Intent Error! Bookmark not
defined.

38. Sharing Files Error! Bookmark not defined.
Lessons Error! Bookmark not defined.

39. Setting Up File Sharing Error! Bookmark not
defined.

Specify the FileProvider Error! Bookmark not
defined.
Specify Sharable Directories . Error! Bookmark not
defined.

40. Sharing a File Error! Bookmark not defined.
Receive File Requests Error! Bookmark not
defined.
Create a File Selection Activity Error! Bookmark
not defined.
Respond to a File Selection ... Error! Bookmark not
defined.
Grant Permissions for the File Error! Bookmark not
defined.
Share the File with the Requesting App Error!
Bookmark not defined.

41. Requesting a Shared File ... Error! Bookmark not
defined.

Send a Request for the File ... Error! Bookmark not
defined.
Access the Requested File Error! Bookmark not
defined.

42. Retrieving File Information . Error! Bookmark not
defined.

Retrieve a File's MIME Type .. Error! Bookmark not
defined.
Retrieve a File's Name and Size ... Error! Bookmark
not defined.

43. Sharing Files with NFC Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
44. Sending Files to Another Device Error!
Bookmark not defined.

Declare Features in the Manifest .. Error! Bookmark
not defined.
Test for Android Beam File Transfer Support ... Error!
Bookmark not defined.
Create a Callback Method that Provides Files . Error!
Bookmark not defined.
Specify the Files to Send Error! Bookmark not
defined.

6

45. Receiving Files from Another Device Error!
Bookmark not defined.

Respond to a Request to Display Data Error!
Bookmark not defined.
Request File Permissions Error! Bookmark not
defined.
Get the Directory for Copied Files Error! Bookmark
not defined.

46. Building Apps with Multimedia .. Error! Bookmark
not defined.
47. Managing Audio Playback .. Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
48. Controlling Your App’s Volume and Playback
 Error! Bookmark not defined.

Identify Which Audio Stream to Use Error!
Bookmark not defined.
Use Hardware Volume Keys to Control Your App’s
Audio Volume Error! Bookmark not defined.
Use Hardware Playback Control Keys to Control Your
App’s Audio Playback Error! Bookmark not
defined.

49. Managing Audio Focus Error! Bookmark not
defined.

Request the Audio Focus Error! Bookmark not
defined.
Handle the Loss of Audio Focus ... Error! Bookmark
not defined.
Duck! Error! Bookmark not defined.

50. Dealing with Audio Output Hardware Error!
Bookmark not defined.

Check What Hardware is Being Used Error!
Bookmark not defined.
Handle Changes in the Audio Output Hardware
 Error! Bookmark not defined.

51. Capturing Photos Error! Bookmark not defined.
Lessons Error! Bookmark not defined.

52. Taking Photos Simply Error! Bookmark not
defined.

Request Camera Permission Error! Bookmark not
defined.
Take a Photo with the Camera App Error!
Bookmark not defined.
View the Photo Error! Bookmark not defined.
Save the Photo Error! Bookmark not defined.
Add the Photo to a Gallery Error! Bookmark not
defined.
Decode a Scaled Image Error! Bookmark not
defined.

53. Recording Videos Simply ... Error! Bookmark not
defined.

Request Camera Permission Error! Bookmark not
defined.
Record a Video with a Camera App Error!
Bookmark not defined.
View the Video Error! Bookmark not defined.

54. Controlling the Camera Error! Bookmark not
defined.

Open the Camera Object Error! Bookmark not
defined.
Create the Camera Preview .. Error! Bookmark not
defined.
Modify Camera Settings Error! Bookmark not
defined.
Set the Preview Orientation ... Error! Bookmark not
defined.
Take a Picture Error! Bookmark not defined.
Restart the Preview Error! Bookmark not
defined.
Stop the Preview and Release the Camera Error!
Bookmark not defined.

55. Printing Content .. Error! Bookmark not defined.
Lessons Error! Bookmark not defined.

56. Printing Photos Error! Bookmark not defined.
Print an Image Error! Bookmark not defined.

57. Printing Custom Documents Error! Bookmark
not defined.

Connect to the Print Manager Error! Bookmark not
defined.
Create a Print Adapter Error! Bookmark not
defined.
Drawing PDF Page Content .. Error! Bookmark not
defined.

58. Building Apps with Graphics & Animation ... Error!
Bookmark not defined.
59. Displaying Bitmaps Efficiently ... Error! Bookmark
not defined.

Lessons Error! Bookmark not defined.
60. Loading Large Bitmaps Efficiently Error!
Bookmark not defined.

Read Bitmap Dimensions and Type Error!
Bookmark not defined.
Load a Scaled Down Version into Memory Error!
Bookmark not defined.

61. Processing Bitmaps Off the UI Thread Error!
Bookmark not defined.

Use an AsyncTask Error! Bookmark not defined.
Handle Concurrency Error! Bookmark not
defined.

62. Caching Bitmaps . Error! Bookmark not defined.
Use a Memory Cache Error! Bookmark not
defined.
Use a Disk Cache Error! Bookmark not defined.
Handle Configuration Changes Error! Bookmark
not defined.

63. Managing Bitmap Memory . Error! Bookmark not
defined.

Manage Memory on Android 2.3.3 and Lower Error!
Bookmark not defined.
Manage Memory on Android 3.0 and Higher .. Error!
Bookmark not defined.

64. Displaying Bitmaps in Your UI ... Error! Bookmark
not defined.

Load Bitmaps into a ViewPager Implementation
 Error! Bookmark not defined.
Load Bitmaps into a GridView Implementation Error!
Bookmark not defined.

65. Displaying Graphics with OpenGL ES Error!
Bookmark not defined.

Lessons Error! Bookmark not defined.
66. Building an OpenGL ES Environment Error!
Bookmark not defined.

Declare OpenGL ES Use in the Manifest Error!
Bookmark not defined.
Create an Activity for OpenGL ES Graphics Error!
Bookmark not defined.
Build a GLSurfaceView Object Error! Bookmark
not defined.
Build a Renderer Class Error! Bookmark not
defined.

67. Defining Shapes .. Error! Bookmark not defined.
Define a Triangle .. Error! Bookmark not defined.
Define a Square ... Error! Bookmark not defined.

68. Drawing Shapes .. Error! Bookmark not defined.
Initialize Shapes ... Error! Bookmark not defined.
Draw a Shape Error! Bookmark not defined.

69. Applying Projection and Camera Views Error!
Bookmark not defined.

7

Define a Projection Error! Bookmark not defined.
Define a Camera View Error! Bookmark not
defined.
Apply Projection and Camera Transformations Error!
Bookmark not defined.

70. Adding Motion Error! Bookmark not defined.
Rotate a Shape Error! Bookmark not defined.
Enable Continuous Rendering Error! Bookmark
not defined.

71. Responding to Touch Events ... Error! Bookmark
not defined.

Setup a Touch Listener Error! Bookmark not
defined.
Expose the Rotation Angle Error! Bookmark not
defined.
Apply Rotation Error! Bookmark not defined.

72. Adding Animations Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
73. Crossfading Two Views Error! Bookmark not
defined.

Create the Views .. Error! Bookmark not defined.
Set up the Animation Error! Bookmark not
defined.
Crossfade the Views Error! Bookmark not
defined.

74. Using ViewPager for Screen Slides Error!
Bookmark not defined.

Create the Views .. Error! Bookmark not defined.
Create the Fragment Error! Bookmark not
defined.
Add a ViewPager .. Error! Bookmark not defined.
Customize the Animation with PageTransformer
 Error! Bookmark not defined.

75. Displaying Card Flip Animations Error!
Bookmark not defined.

Create the Animators Error! Bookmark not
defined.
Create the Views .. Error! Bookmark not defined.
Create the Fragment Error! Bookmark not
defined.
Animate the Card Flip Error! Bookmark not
defined.

76. Zooming a View ... Error! Bookmark not defined.
Create the Views .. Error! Bookmark not defined.
Set up the Zoom Animation ... Error! Bookmark not
defined.
Zoom the View Error! Bookmark not defined.

77. Animating Layout Changes Error! Bookmark not
defined.

Create the Layout . Error! Bookmark not defined.
Add, Update, or Remove Items from the Layout
 Error! Bookmark not defined.

78. Building Apps with Connectivity & the Cloud
 Error! Bookmark not defined.
79. Connecting Devices Wirelessly Error! Bookmark
not defined.

Lessons Error! Bookmark not defined.
80. Using Network Service Discovery Error!
Bookmark not defined.

Register Your Service on the Network Error!
Bookmark not defined.
Discover Services on the Network Error! Bookmark
not defined.
Connect to Services on the Network Error!
Bookmark not defined.
Unregister Your Service on Application Close . Error!
Bookmark not defined.

81. Creating P2P Connections with Wi-Fi Error!
Bookmark not defined.

Set Up Application Permissions ... Error! Bookmark
not defined.
Set Up a Broadcast Receiver and Peer-to-Peer
Manager Error! Bookmark not defined.
Initiate Peer Discovery Error! Bookmark not
defined.
Fetch the List of Peers Error! Bookmark not
defined.
Connect to a Peer . Error! Bookmark not defined.

82. Using Wi-Fi P2P for Service Discovery Error!
Bookmark not defined.

Set Up the Manifest Error! Bookmark not
defined.
Add a Local Service Error! Bookmark not
defined.
Discover Nearby Services Error! Bookmark not
defined.

83. Performing Network Operations Error! Bookmark
not defined.

Lessons Error! Bookmark not defined.
84. Connecting to the Network . Error! Bookmark not
defined.

Choose an HTTP Client Error! Bookmark not
defined.
Check the Network Connection Error! Bookmark
not defined.
Perform Network Operations on a Separate Thread
 Error! Bookmark not defined.
Connect and Download Data Error! Bookmark not
defined.
Convert the InputStream to a String Error!
Bookmark not defined.

85. Managing Network Usage .. Error! Bookmark not
defined.

Check a Device's Network Connection Error!
Bookmark not defined.
Manage Network Usage Error! Bookmark not
defined.
Implement a Preferences Activity . Error! Bookmark
not defined.
Respond to Preference Changes . Error! Bookmark
not defined.
Detect Connection Changes . Error! Bookmark not
defined.

86. Parsing XML Data Error! Bookmark not defined.
Choose a Parser ... Error! Bookmark not defined.
Analyze the Feed .. Error! Bookmark not defined.
Instantiate the Parser Error! Bookmark not
defined.
Read the Feed Error! Bookmark not defined.
Parse XML Error! Bookmark not defined.
Skip Tags You Don't Care About .. Error! Bookmark
not defined.
Consume XML Data Error! Bookmark not
defined.

87. Transferring Data Without Draining the Battery
 Error! Bookmark not defined.

Lessons Error! Bookmark not defined.
88. Optimizing Downloads for Efficient Network
Access Error! Bookmark not defined.

The Radio State Machine Error! Bookmark not
defined.
How Apps Impact the Radio State Machine Error!
Bookmark not defined.
Prefetch Data Error! Bookmark not defined.
Batch Transfers and Connections Error! Bookmark
not defined.
Reduce Connections Error! Bookmark not
defined.
Use the DDMS Network Traffic Tool to Identify Areas
of Concern Error! Bookmark not defined.

8

89. Minimizing the Effect of Regular Updates ... Error!
Bookmark not defined.

Use Google Cloud Messaging as an Alternative to
Polling Error! Bookmark not defined.
Optimize Polling with Inexact Repeating Alarms and
Exponential Backoffs Error! Bookmark not
defined.

90. Redundant Downloads are Redundant Error!
Bookmark not defined.

Cache Files Locally Error! Bookmark not
defined.
Use the HttpURLConnection Response Cache Error!
Bookmark not defined.

91. Modifying your Download Patterns Based on the
Connectivity Type Error! Bookmark not defined.

Use Wi-Fi Error! Bookmark not defined.
Use Greater Bandwidth to Download More Data Less
Often Error! Bookmark not defined.

92. Syncing to the Cloud Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
93. Using the Backup API Error! Bookmark not
defined.

Register for the Android Backup Service Error!
Bookmark not defined.
Configure Your Manifest Error! Bookmark not
defined.
Write Your Backup Agent Error! Bookmark not
defined.
Request a Backup Error! Bookmark not defined.
Restore from a Backup Error! Bookmark not
defined.

94. Making the Most of Google Cloud Messaging
 Error! Bookmark not defined.

Send Multicast Messages Efficiently Error!
Bookmark not defined.
Collapse Messages that Can Be Replaced Error!
Bookmark not defined.
Embed Data Directly in the GCM Message Error!
Bookmark not defined.
React Intelligently to GCM Messages Error!
Bookmark not defined.

95. Resolving Cloud Save Conflicts Error! Bookmark
not defined.

Get Notified of Conflicts Error! Bookmark not
defined.
Handle the Simple Cases Error! Bookmark not
defined.
Design a Strategy for More Complex Cases Error!
Bookmark not defined.
Clean Up Your Data Error! Bookmark not
defined.

96. Transferring Data Using Sync Adapters Error!
Bookmark not defined.

Lessons Error! Bookmark not defined.
97. Creating a Stub Authenticator ... Error! Bookmark
not defined.

Add a Stub Authenticator Component Error!
Bookmark not defined.
Bind the Authenticator to the Framework Error!
Bookmark not defined.
Add the Authenticator Metadata File Error!
Bookmark not defined.
Declare the Authenticator in the Manifest Error!
Bookmark not defined.

98. Creating a Stub Content Provider Error!
Bookmark not defined.

Add a Stub Content Provider Error! Bookmark not
defined.
Declare the Provider in the Manifest Error!
Bookmark not defined.

99. Creating a Sync Adapter Error! Bookmark not
defined.

Create a Sync Adapter Class Error! Bookmark not
defined.
Bind the Sync Adapter to the Framework Error!
Bookmark not defined.
Add the Account Required by the Framework . Error!
Bookmark not defined.
Add the Sync Adapter Metadata File Error!
Bookmark not defined.
Declare the Sync Adapter in the Manifest Error!
Bookmark not defined.

100. Running a Sync Adapter Error! Bookmark not
defined.

Run the Sync Adapter When Server Data Changes
 Error! Bookmark not defined.
Run the Sync Adapter When Content Provider Data
Changes Error! Bookmark not defined.
Run the Sync Adapter After a Network Message
 Error! Bookmark not defined.
Run the Sync Adapter PeriodicallyError! Bookmark
not defined.
Run the Sync Adapter On Demand Error!
Bookmark not defined.

101. Building Apps with User Info & Location Error!
Bookmark not defined.
102. Accessing Contacts Data ... Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
103. Retrieving a List of Contacts Error! Bookmark
not defined.

Request Permission to Read the Provider Error!
Bookmark not defined.
Match a Contact by Name and List the ResultsError!
Bookmark not defined.
Match a Contact By a Specific Type of Data ... Error!
Bookmark not defined.
Match a Contact By Any Type of Data Error!
Bookmark not defined.

104. Retrieving Details for a Contact Error! Bookmark
not defined.

Retrieve All Details for a Contact . Error! Bookmark
not defined.
Retrieve Specific Details for a Contact Error!
Bookmark not defined.

105. Modifying Contacts Using Intents Error!
Bookmark not defined.

Insert a New Contact Using an Intent Error!
Bookmark not defined.
Edit an Existing Contact Using an Intent Error!
Bookmark not defined.
Let Users Choose to Insert or Edit Using an Intent
 Error! Bookmark not defined.

106. Displaying the Quick Contact Badge Error!
Bookmark not defined.

Add a QuickContactBadge View . Error! Bookmark
not defined.
Retrieve provider data Error! Bookmark not
defined.
Set the Contact URI and Thumbnail Error!
Bookmark not defined.
Add a QuickContactBadge to a ListView Error!
Bookmark not defined.

107. Making Your App Location-Aware Error!
Bookmark not defined.

Lessons Error! Bookmark not defined.
108. Retrieving the Current Location Error! Bookmark
not defined.

Specify App Permissions Error! Bookmark not
defined.

9

Check for Google Play Services ... Error! Bookmark
not defined.
Define Location Services Callbacks Error!
Bookmark not defined.
Connect the Location Client .. Error! Bookmark not
defined.
Get the Current Location Error! Bookmark not
defined.

109. Receiving Location Updates Error! Bookmark
not defined.

Specify App Permissions Error! Bookmark not
defined.
Check for Google Play Services ... Error! Bookmark
not defined.
Define Location Services Callbacks Error!
Bookmark not defined.
Specify Update Parameters .. Error! Bookmark not
defined.
Start Location Updates Error! Bookmark not
defined.
Stop Location Updates Error! Bookmark not
defined.

110. Displaying a Location Address . Error! Bookmark
not defined.

Define the Address Lookup Task . Error! Bookmark
not defined.
Define a Method to Display the Results Error!
Bookmark not defined.
Run the Lookup Task Error! Bookmark not
defined.

111. Creating and Monitoring Geofences Error!
Bookmark not defined.

Request Geofence Monitoring Error! Bookmark
not defined.
Handle Geofence Transitions Error! Bookmark not
defined.
Stop Geofence Monitoring Error! Bookmark not
defined.

112. Recognizing the User's Current Activity Error!
Bookmark not defined.

Request Activity Recognition Updates Error!
Bookmark not defined.
Handle Activity Updates Error! Bookmark not
defined.
Stop Activity Recognition UpdatesError! Bookmark
not defined.

113. Testing Using Mock Locations . Error! Bookmark
not defined.

Turn On Mock Mode Error! Bookmark not
defined.
Send Mock Locations Error! Bookmark not
defined.
Run the Mock Location Provider App Error!
Bookmark not defined.
Testing Tips Error! Bookmark not defined.

114. Best Practices for User Experience & UI Error!
Bookmark not defined.
115. Designing Effective Navigation . Error! Bookmark
not defined.

Lessons Error! Bookmark not defined.
116. Planning Screens and Their Relationships . Error!
Bookmark not defined.

Create a Screen List Error! Bookmark not
defined.
Diagram Screen Relationships Error! Bookmark
not defined.
Go Beyond a Simplistic Design Error! Bookmark
not defined.

117. Planning for Multiple Touchscreen Sizes Error!
Bookmark not defined.

Group Screens with Multi-pane Layouts Error!
Bookmark not defined.

Design for Multiple Tablet Orientations Error!
Bookmark not defined.
Group Screens in the Screen MapError! Bookmark
not defined.

118. Providing Descendant and Lateral Navigation
 Error! Bookmark not defined.

Buttons and Simple Targets .. Error! Bookmark not
defined.
Lists, Grids, Carousels, and Stacks Error!
Bookmark not defined.
Tabs Error! Bookmark not defined.
Horizontal Paging (Swipe Views) .. Error! Bookmark
not defined.

119. Providing Ancestral and Temporal Navigation
 Error! Bookmark not defined.

Support Temporal Navigation: Back Error!
Bookmark not defined.
Provide Ancestral Navigation: Up and Home ... Error!
Bookmark not defined.

120. Putting it All Together: Wireframing the Example
App Error! Bookmark not defined.

Choose Patterns ... Error! Bookmark not defined.
Sketch and Wireframe Error! Bookmark not
defined.
Create Digital Wireframes Error! Bookmark not
defined.
Next Steps Error! Bookmark not defined.

121. Implementing Effective Navigation Error!
Bookmark not defined.

Lessons Error! Bookmark not defined.
122. Creating Swipe Views with Tabs Error!
Bookmark not defined.

Implement Swipe Views Error! Bookmark not
defined.
Add Tabs to the Action Bar ... Error! Bookmark not
defined.
Change Tabs with Swipe Views ... Error! Bookmark
not defined.
Use a Title Strip Instead of Tabs .. Error! Bookmark
not defined.

123. Creating a Navigation Drawer .. Error! Bookmark
not defined.

Create a Drawer Layout Error! Bookmark not
defined.
Initialize the Drawer List Error! Bookmark not
defined.
Handle Navigation Click Events ... Error! Bookmark
not defined.
Listen for Open and Close Events Error! Bookmark
not defined.
Open and Close with the App Icon Error!
Bookmark not defined.

124. Providing Up Navigation Error! Bookmark not
defined.

Specify the Parent Activity Error! Bookmark not
defined.
Add Up Action Error! Bookmark not defined.
Navigate Up to Parent Activity Error! Bookmark
not defined.

125. Providing Proper Back Navigation Error!
Bookmark not defined.

Synthesize a new Back Stack for Deep Links .. Error!
Bookmark not defined.
Implement Back Navigation for Fragments Error!
Bookmark not defined.
Implement Back Navigation for WebViews Error!
Bookmark not defined.

126. Implementing Descendant Navigation Error!
Bookmark not defined.

Implement Master/Detail Flows Across Handsets and
Tablets Error! Bookmark not defined.

10

Navigate into External Activities Error! Bookmark
not defined.

127. Notifying the User Error! Bookmark not defined.
Lessons Error! Bookmark not defined.

128. Building a Notification Error! Bookmark not
defined.

Create a Notification Builder . Error! Bookmark not
defined.
Define the Notification's Action Error! Bookmark
not defined.
Set the Notification's Click Behavior Error!
Bookmark not defined.
Issue the Notification Error! Bookmark not
defined.

129. Preserving Navigation when Starting an Activity
 Error! Bookmark not defined.

Set Up a Regular Activity PendingIntent Error!
Bookmark not defined.
Set Up a Special Activity PendingIntent Error!
Bookmark not defined.

130. Updating Notifications Error! Bookmark not
defined.

Modify a Notification Error! Bookmark not
defined.
Remove Notifications Error! Bookmark not
defined.

131. Using Big View Styles Error! Bookmark not
defined.

Set Up the Notification to Launch a New Activity
 Error! Bookmark not defined.
Construct the Big View Error! Bookmark not
defined.

132. Displaying Progress in a Notification Error!
Bookmark not defined.

Display a Fixed-duration Progress Indicator Error!
Bookmark not defined.
Display a Continuing Activity Indicator Error!
Bookmark not defined.

133. Adding Search Functionality Error! Bookmark
not defined.

Lessons Error! Bookmark not defined.
134. Setting Up the Search Interface Error! Bookmark
not defined.

Add the Search View to the Action Bar Error!
Bookmark not defined.
Create a Searchable Configuration Error!
Bookmark not defined.
Create a Searchable Activity Error! Bookmark not
defined.

135. Storing and Searching for Data . Error! Bookmark
not defined.

Create the Virtual Table Error! Bookmark not
defined.
Populate the Virtual Table Error! Bookmark not
defined.
Search for the Query Error! Bookmark not
defined.

136. Remaining Backward Compatible Error!
Bookmark not defined.

Set Minimum and Target API levels Error!
Bookmark not defined.
Provide the Search Dialog for Older Devices ... Error!
Bookmark not defined.
Check the Android Build Version at Runtime Error!
Bookmark not defined.

137. Designing for Multiple Screens . Error! Bookmark
not defined.

Lessons Error! Bookmark not defined.

138. Supporting Different Screen Sizes Error!
Bookmark not defined.

Use "wrap_content" and "match_parent" Error!
Bookmark not defined.
Use RelativeLayout Error! Bookmark not
defined.
Use Size Qualifiers Error! Bookmark not defined.
Use the Smallest-width Qualifier .. Error! Bookmark
not defined.
Use Layout AliasesError! Bookmark not defined.
Use Orientation Qualifiers Error! Bookmark not
defined.
Use Nine-patch Bitmaps Error! Bookmark not
defined.

139. Supporting Different Densities .. Error! Bookmark
not defined.

Use Density-independent Pixels .. Error! Bookmark
not defined.
Provide Alternative Bitmaps .. Error! Bookmark not
defined.

140. Implementing Adaptative UI Flows Error!
Bookmark not defined.

Determine the Current Layout Error! Bookmark not
defined.
React According to Current Layout Error!
Bookmark not defined.
Reuse Fragments in Other Activities Error!
Bookmark not defined.
Handle Screen Configuration Changes Error!
Bookmark not defined.

141. Designing for TV . Error! Bookmark not defined.
Lessons Error! Bookmark not defined.

142. Optimizing Layouts for TV .. Error! Bookmark not
defined.

Design Landscape Layouts .. Error! Bookmark not
defined.
Make Text and Controls Easy to See Error!
Bookmark not defined.
Design for High-Density Large Screens Error!
Bookmark not defined.
Design to Handle Large Bitmaps . Error! Bookmark
not defined.

143. Optimizing Navigation for TV Error! Bookmark
not defined.

Handle D-pad Navigation Error! Bookmark not
defined.
Provide Clear Visual Indication for Focus and
Selection Error! Bookmark not defined.
Design for Easy Navigation ... Error! Bookmark not
defined.

144. Handling Features Not Supported on TV Error!
Bookmark not defined.

Work Around Features Not Supported on TV ... Error!
Bookmark not defined.
Check for Available Features at Runtime Error!
Bookmark not defined.

145. Creating Custom Views Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
146. Creating a View Class Error! Bookmark not
defined.

Subclass a View ... Error! Bookmark not defined.
Define Custom Attributes Error! Bookmark not
defined.
Apply Custom Attributes Error! Bookmark not
defined.
Add Properties and Events ... Error! Bookmark not
defined.
Design For Accessibility Error! Bookmark not
defined.

147. Custom Drawing .. Error! Bookmark not defined.
Override onDraw() Error! Bookmark not defined.

11

Create Drawing Objects Error! Bookmark not
defined.
Handle Layout Events Error! Bookmark not
defined.
Draw! Error! Bookmark not defined.

148. Making the View Interactive Error! Bookmark not
defined.

Handle Input Gestures Error! Bookmark not
defined.
Create Physically Plausible Motion Error!
Bookmark not defined.
Make Your Transitions Smooth Error! Bookmark
not defined.

149. Optimizing the View Error! Bookmark not
defined.

Do Less, Less Frequently Error! Bookmark not
defined.
Use Hardware Acceleration .. Error! Bookmark not
defined.

150. Creating Backward-Compatible UIs Error!
Bookmark not defined.

Lessons Error! Bookmark not defined.
151. Abstracting the New APIs ... Error! Bookmark not
defined.

Prepare for Abstraction Error! Bookmark not
defined.
Create an Abstract Tab Interface . Error! Bookmark
not defined.
Abstract ActionBar.Tab Error! Bookmark not
defined.
Abstract ActionBar Tab Methods . Error! Bookmark
not defined.

152. Proxying to the New APIs ... Error! Bookmark not
defined.

Implement Tabs Using New APIs . Error! Bookmark
not defined.
Implement CompatTabHoneycomb Error!
Bookmark not defined.
Implement TabHelperHoneycomb Error! Bookmark
not defined.

153. Creating an Implementation with Older APIs
 Error! Bookmark not defined.

Decide on a Substitute Solution ... Error! Bookmark
not defined.
Implement Tabs Using Older APIs Error! Bookmark
not defined.

154. Using the Version-Aware Component Error!
Bookmark not defined.

Add the Switching Logic Error! Bookmark not
defined.
Create a Version-Aware Activity Layout Error!
Bookmark not defined.
Use TabHelper in Your Activity Error! Bookmark
not defined.

155. Implementing Accessibility . Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
156. Developing Accessible Applications Error!
Bookmark not defined.

Add Content Descriptions Error! Bookmark not
defined.
Design for Focus Navigation . Error! Bookmark not
defined.
Fire Accessibility Events Error! Bookmark not
defined.
Test Your Application Error! Bookmark not
defined.

157. Developing an Accessibility Service Error!
Bookmark not defined.

Create Your Accessibility Service Error! Bookmark
not defined.

Configure Your Accessibility Service Error!
Bookmark not defined.
Respond to AccessibilityEvents ... Error! Bookmark
not defined.
Query the View Heirarchy for More Context Error!
Bookmark not defined.

158. Managing the System UI Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
159. Dimming the System Bars .. Error! Bookmark not
defined.

Dim the Status and Navigation Bars Error!
Bookmark not defined.
Reveal the Status and Navigation Bars Error!
Bookmark not defined.

160. Hiding the Status Bar Error! Bookmark not
defined.

Hide the Status Bar on Android 4.0 and Lower Error!
Bookmark not defined.
Hide the Status Bar on Android 4.1 and Higher
 Error! Bookmark not defined.
Make Content Appear Behind the Status Bar .. Error!
Bookmark not defined.
Synchronize the Status Bar with Action Bar Transition
 Error! Bookmark not defined.

161. Hiding the Navigation Bar ... Error! Bookmark not
defined.

Hide the Navigation Bar on 4.0 and Higher Error!
Bookmark not defined.
Make Content Appear Behind the Navigation Bar
 Error! Bookmark not defined.

162. Using Immersive Full-Screen Mode Error!
Bookmark not defined.

Choose an Approach Error! Bookmark not
defined.
Use Non-Sticky Immersion Error! Bookmark not
defined.
Use Sticky Immersion Error! Bookmark not
defined.

163. Responding to UI Visibility Changes Error!
Bookmark not defined.

Register a Listener Error! Bookmark not defined.
164. Best Practices for User Input Error! Bookmark
not defined.
165. Using Touch Gestures Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
166. Detecting Common Gestures ... Error! Bookmark
not defined.

Gather Data Error! Bookmark not defined.
Detect Gestures Error! Bookmark not defined.

167. Tracking Movement Error! Bookmark not
defined.

Track Velocity Error! Bookmark not defined.
168. Animating a Scroll Gesture . Error! Bookmark not
defined.

Understand Scrolling Terminology Error! Bookmark
not defined.
Implement Touch-Based Scrolling Error! Bookmark
not defined.

169. Handling Multi-Touch Gestures Error! Bookmark
not defined.

Track Multiple Pointers Error! Bookmark not
defined.
Get a MotionEvent's Action ... Error! Bookmark not
defined.

12

170. Dragging and Scaling Error! Bookmark not
defined.

Drag an Object Error! Bookmark not defined.
Drag to Pan Error! Bookmark not defined.
Use Touch to Perform Scaling Error! Bookmark
not defined.

171. Managing Touch Events in a ViewGroup Error!
Bookmark not defined.

Intercept Touch Events in a ViewGroup Error!
Bookmark not defined.
Use ViewConfiguration Constants Error! Bookmark
not defined.
Extend a Child View's Touchable Area Error!
Bookmark not defined.

172. Handling Keyboard Input Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
173. Specifying the Input Method Type Error!
Bookmark not defined.

Specify the Keyboard Type .. Error! Bookmark not
defined.
Enable Spelling Suggestions and Other Behaviors
 Error! Bookmark not defined.
Specify the Input Method Action ... Error! Bookmark
not defined.

174. Handling Input Method Visibility Error! Bookmark
not defined.

Show the Input Method When the Activity Starts
 Error! Bookmark not defined.
Show the Input Method On Demand Error!
Bookmark not defined.
Specify How Your UI Should Respond Error!
Bookmark not defined.

175. Supporting Keyboard Navigation Error!
Bookmark not defined.

Test Your App Error! Bookmark not defined.
Handle Tab Navigation Error! Bookmark not
defined.
Handle Directional Navigation Error! Bookmark
not defined.

176. Handling Keyboard Actions Error! Bookmark not
defined.

Handle Single Key Events Error! Bookmark not
defined.
Handle Modifier Keys Error! Bookmark not
defined.

177. Best Practices for Background Jobs Error!
Bookmark not defined.
178. Running in a Background Service Error!
Bookmark not defined.

Lessons Error! Bookmark not defined.
179. Creating a Background Service Error! Bookmark
not defined.

Create an IntentService Error! Bookmark not
defined.
Define the IntentService in the Manifest Error!
Bookmark not defined.

180. Sending Work Requests to the Background
Service Error! Bookmark not defined.

Create and Send a Work Request to an IntentService
 Error! Bookmark not defined.

181. Reporting Work Status Error! Bookmark not
defined.

Report Status From an IntentService Error!
Bookmark not defined.
Receive Status Broadcasts from an IntentService
 Error! Bookmark not defined.

182. Loading Data in the Background Error!
Bookmark not defined.

Lessons Error! Bookmark not defined.
183. Running a Query with a CursorLoader Error!
Bookmark not defined.

Define an Activity That Uses CursorLoader Error!
Bookmark not defined.
Initialize the Query Error! Bookmark not defined.
Start the Query Error! Bookmark not defined.

184. Handling the Results Error! Bookmark not
defined.

Handle Query Results Error! Bookmark not
defined.
Delete Old Cursor References Error! Bookmark
not defined.

185. Managing Device Awake State . Error! Bookmark
not defined.

Lessons Error! Bookmark not defined.
186. Keeping the Device Awake Error! Bookmark not
defined.

Keep the Screen On Error! Bookmark not
defined.
Keep the CPU On . Error! Bookmark not defined.

187. Scheduling Repeating Alarms ... Error! Bookmark
not defined.

Set a Repeating Alarm Error! Bookmark not
defined.
Cancel an Alarm ... Error! Bookmark not defined.
Start an Alarm When the Device Boots Error!
Bookmark not defined.

188. Best Practices for Performance Error! Bookmark
not defined.
189. Managing Your App's Memory .. Error! Bookmark
not defined.

How Android Manages Memory .. Error! Bookmark
not defined.
How Your App Should Manage Memory Error!
Bookmark not defined.

190. Performance Tips Error! Bookmark not defined.
Avoid Creating Unnecessary Objects Error!
Bookmark not defined.
Prefer Static Over Virtual Error! Bookmark not
defined.
Use Static Final For Constants Error! Bookmark
not defined.
Avoid Internal Getters/Setters Error! Bookmark not
defined.
Use Enhanced For Loop Syntax .. Error! Bookmark
not defined.
Consider Package Instead of Private Access with
Private Inner Classes Error! Bookmark not
defined.
Avoid Using Floating-Point Error! Bookmark not
defined.
Know and Use the Libraries .. Error! Bookmark not
defined.
Use Native Methods CarefullyError! Bookmark not
defined.
Performance Myths Error! Bookmark not
defined.
Always Measure ... Error! Bookmark not defined.

191. Improving Layout Performance . Error! Bookmark
not defined.

Lessons Error! Bookmark not defined.
192. Optimizing Layout Hierarchies .. Error! Bookmark
not defined.

Inspect Your Layout Error! Bookmark not
defined.
Revise Your Layout Error! Bookmark not
defined.

13

Use Lint Error! Bookmark not defined.
193. Re-using Layouts with <include/> Error!
Bookmark not defined.

Create a Re-usable Layout Error! Bookmark not
defined.
Use the <include> Tag Error! Bookmark not
defined.
Use the <merge> Tag Error! Bookmark not
defined.

194. Loading Views On Demand Error! Bookmark not
defined.

Define a ViewStub Error! Bookmark not defined.
Load the ViewStub Layout Error! Bookmark not
defined.

195. Making ListView Scrolling Smooth Error!
Bookmark not defined.

Use a Background Thread Error! Bookmark not
defined.
Hold View Objects in a View Holder Error!
Bookmark not defined.

196. Optimizing Battery Life Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
197. Monitoring the Battery Level and Charging State
 Error! Bookmark not defined.

Determine the Current Charging State Error!
Bookmark not defined.
Monitor Changes in Charging State Error!
Bookmark not defined.
Determine the Current Battery Level Error!
Bookmark not defined.
Monitor Significant Changes in Battery Level .. Error!
Bookmark not defined.

198. Determining and Monitoring the Docking State
and Type Error! Bookmark not defined.

Determine the Current Docking State Error!
Bookmark not defined.
Determine the Current Dock Type Error! Bookmark
not defined.
Monitor for Changes in the Dock State or Type Error!
Bookmark not defined.

199. Determining and Monitoring the Connectivity
Status Error! Bookmark not defined.

Determine if You Have an Internet Connection Error!
Bookmark not defined.
Determine the Type of your Internet Connection
 Error! Bookmark not defined.
Monitor for Changes in Connectivity Error!
Bookmark not defined.

200. Manipulating Broadcast Receivers On Demand
 Error! Bookmark not defined.

Toggle and Cascade State Change Receivers to
Improve Efficiency Error! Bookmark not defined.

201. Sending Operations to Multiple Threads Error!
Bookmark not defined.

Lessons Error! Bookmark not defined.
202. Specifying the Code to Run on a Thread Error!
Bookmark not defined.

Define a Class that Implements Runnable Error!
Bookmark not defined.
Implement the run() Method .. Error! Bookmark not
defined.

203. Creating a Manager for Multiple Threads Error!
Bookmark not defined.

Define the Thread Pool Class Error! Bookmark not
defined.
Determine the Thread Pool Parameters Error!
Bookmark not defined.
Create a Pool of Threads Error! Bookmark not
defined.

204. Running Code on a Thread Pool Thread Error!
Bookmark not defined.

Run a Task on a Thread in the Thread Pool Error!
Bookmark not defined.
Interrupt Running Code Error! Bookmark not
defined.

205. Communicating with the UI Thread Error!
Bookmark not defined.

Define a Handler on the UI Thread Error!
Bookmark not defined.
Move Data from a Task to the UI Thread Error!
Bookmark not defined.

206. Keeping Your App Responsive Error! Bookmark
not defined.

What Triggers ANR? Error! Bookmark not
defined.
How to Avoid ANRs Error! Bookmark not
defined.
Reinforce Responsiveness Error! Bookmark not
defined.

207. JNI Tips Error! Bookmark not defined.
JavaVM and JNIEnv Error! Bookmark not
defined.
Threads Error! Bookmark not defined.
jclass, jmethodID, and jfieldID Error! Bookmark
not defined.
Local and Global References Error! Bookmark not
defined.
UTF-8 and UTF-16 Strings Error! Bookmark not
defined.
Primitive Arrays Error! Bookmark not defined.
Region Calls Error! Bookmark not defined.
Exceptions Error! Bookmark not defined.
Extended Checking Error! Bookmark not
defined.
Native Libraries Error! Bookmark not defined.
64-bit Considerations Error! Bookmark not
defined.
Unsupported Features/Backwards Compatibility
 Error! Bookmark not defined.
FAQ: Why do I get UnsatisfiedLinkError?
 Error! Bookmark not defined.
FAQ: Why didn't FindClass find my class? ... Error!
Bookmark not defined.
FAQ: How do I share raw data with native code?
 Error! Bookmark not defined.

208. SMP Primer for Android Error! Bookmark not
defined.

Introduction Error! Bookmark not defined.
Theory Error! Bookmark not defined.
Practice Error! Bookmark not defined.
Closing Notes Error! Bookmark not defined.
Appendix Error! Bookmark not defined.

209. Best Practices for Security & Privacy Error!
Bookmark not defined.
210. Security Tips Error! Bookmark not defined.

Storing Data Error! Bookmark not defined.
Using Permissions Error! Bookmark not defined.
Using Networking . Error! Bookmark not defined.
Performing Input Validation ... Error! Bookmark not
defined.
Handling User Data Error! Bookmark not
defined.
Using WebView Error! Bookmark not defined.
Using Cryptography Error! Bookmark not
defined.
Using Interprocess Communication Error!
Bookmark not defined.
Dynamically Loading Code ... Error! Bookmark not
defined.
Security in a Virtual Machine . Error! Bookmark not
defined.
Security in Native Code Error! Bookmark not
defined.

14

211. Security with HTTPS and SSL .. Error! Bookmark
not defined.

Concepts Error! Bookmark not defined.
An HTTPS Example Error! Bookmark not
defined.
Common Problems Verifying Server Certificates
 Error! Bookmark not defined.
Common Problems with Hostname Verification Error!
Bookmark not defined.
Warnings About Using SSLSocket Directly Error!
Bookmark not defined.
Blacklisting Error! Bookmark not defined.
Pinning Error! Bookmark not defined.
Client Certificates .. Error! Bookmark not defined.

212. Developing for Enterprise ... Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
213. Enhancing Security with Device Management
Policies Error! Bookmark not defined.

Define and Declare Your Policy Error! Bookmark
not defined.
Create a Device Administration Receiver Error!
Bookmark not defined.
Activate the Device Administrator . Error! Bookmark
not defined.
Implement the Device Policy Controller Error!
Bookmark not defined.

214. Best Practices for Testing .. Error! Bookmark not
defined.
215. Testing Your Android Activity Error! Bookmark
not defined.

Lessons Error! Bookmark not defined.
216. Setting Up Your Test Environment Error!
Bookmark not defined.

Set Up Eclipse for Testing Error! Bookmark not
defined.
Set Up the Command Line Interface for Testing
 Error! Bookmark not defined.

217. Creating and Running a Test Case Error!
Bookmark not defined.

Create a Test Case Error! Bookmark not
defined.
Build and Run Your Test Error! Bookmark not
defined.

218. Testing UI Components Error! Bookmark not
defined.

Create a Test Case for UI Testing with
Instrumentation Error! Bookmark not defined.
Add Test Methods to Validate UI Behavior Error!
Bookmark not defined.
Apply Test Annotations Error! Bookmark not
defined.

219. Creating Unit Tests Error! Bookmark not
defined.

Create a Test Case for Activity Unit Testing Error!
Bookmark not defined.
Validate Launch of Another Activity Error!
Bookmark not defined.

220. Creating Functional Tests .. Error! Bookmark not
defined.

Add Test Method to Validate Functional Behavior
 Error! Bookmark not defined.
Set up an ActivityMonitor Error! Bookmark not
defined.
Send Keyboard Input Using Instrumentation Error!
Bookmark not defined.

221. Using Google Play to Distribute & Monetize Error!
Bookmark not defined.

222. Selling In-app Products Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
223. Preparing Your In-app Billing Application Error!
Bookmark not defined.

Download the Sample Application Error! Bookmark
not defined.
Add Your Application to the Developer Console
 Error! Bookmark not defined.
Add the In-app Billing Library Error! Bookmark not
defined.
Set the Billing Permission Error! Bookmark not
defined.
Initiate a Connection with Google Play Error!
Bookmark not defined.

224. Establishing In-app Billing Products for Sale
 Error! Bookmark not defined.

Specify In-app Products in Google Play Error!
Bookmark not defined.
Query Items Available for Purchase Error!
Bookmark not defined.

225. Purchasing In-app Billing Products Error!
Bookmark not defined.

Purchase an Item . Error! Bookmark not defined.
Query Purchased Items Error! Bookmark not
defined.
Consume a Purchase Error! Bookmark not
defined.

226. Testing Your In-app Billing Application Error!
Bookmark not defined.

Test with Static Responses ... Error! Bookmark not
defined.
Test with Your Own Product IDs .. Error! Bookmark
not defined.

227. Maintaining Multiple APKs . Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
228. Creating Multiple APKs for Different API Levels
 Error! Bookmark not defined.

Confirm You Need Multiple APKs Error! Bookmark
not defined.
Chart Your Requirements Error! Bookmark not
defined.
Put All Common Code and Resources in a Library
Project Error! Bookmark not defined.
Create New APK Projects Error! Bookmark not
defined.
Adjust the Manifests Error! Bookmark not
defined.
Go Over Pre-launch ChecklistError! Bookmark not
defined.

229. Creating Multiple APKs for Different Screen Sizes
 Error! Bookmark not defined.

Confirm You Need Multiple APKs Error! Bookmark
not defined.
Chart Your Requirements Error! Bookmark not
defined.
Put All Common Code and Resources in a Library
Project. Error! Bookmark not defined.
Create New APK Projects Error! Bookmark not
defined.
Adjust the Manifests Error! Bookmark not
defined.
Go Over Pre-launch ChecklistError! Bookmark not
defined.

230. Creating Multiple APKs for Different GL Textures
 Error! Bookmark not defined.

Confirm You Need Multiple APKs Error! Bookmark
not defined.
Chart Your Requirements Error! Bookmark not
defined.

15

Put All Common Code and Resources in a Library
Project Error! Bookmark not defined.
Create New APK Projects Error! Bookmark not
defined.
Adjust the Manifests Error! Bookmark not
defined.
Go Over Pre-launch ChecklistError! Bookmark not
defined.

231. Creating Multiple APKs with 2+ Dimensions Error!
Bookmark not defined.

Confirm You Need Multiple APKs . Error! Bookmark
not defined.
Chart Your Requirements Error! Bookmark not
defined.
Put All Common Code and Resources in a Library
Project. Error! Bookmark not defined.
Create New APK Projects Error! Bookmark not
defined.
Adjust the Manifests Error! Bookmark not
defined.
Go Over Pre-launch ChecklistError! Bookmark not
defined.

232. Monetizing Your App Error! Bookmark not
defined.

Lessons Error! Bookmark not defined.
233. Advertising without Compromising User
Experience Error! Bookmark not defined.

Obtain a Publisher Account and Ad SDK Error!
Bookmark not defined.
Declare Proper Permissions .. Error! Bookmark not
defined.
Set Up Ad Placement Error! Bookmark not
defined.
Initialize the Ad Error! Bookmark not defined.
Enable Test Mode Error! Bookmark not defined.
Implement Ad Event Listeners Error! Bookmark
not defined.

234. Creative Commons License 815
Creative Commons Attribution 3.0 Unported 817

235. Apache License, Version 2.0 820

Getting Started

16
Content from developer.android.com/training/index.html through their Creative Commons Attribution 2.5 license

1. Getting Started
Content from developer.android.com/training/index.html through their Creative Commons Attribution 2.5 license
Welcome to Training for Android developers. Here you'll find sets of lessons within classes that describe
how to accomplish a specific task with code samples you can re-use in your app. Classes are organized
into several groups you can see at the top-level of the left navigation.
This first group, Getting Started, teaches you the bare essentials for Android app development. If you're a
new Android app developer, you should complete each of these classes in order:

Building Your First App

17
Content from developer.android.com/training/basics/firstapp/index.html through their Creative Commons Attribution 2.5 license

2. Building Your First App
Content from developer.android.com/training/basics/firstapp/index.html through their Creative Commons Attribution 2.5 license

Welcome to Android application development!
This class teaches you how to build your first
Android app. You’ll learn how to create an Android
project and run a debuggable version of the app.
You'll also learn some fundamentals of Android
app design, including how to build a simple user
interface and handle user input.
Before you start this class, be sure you have your development environment set up. You need to:
• Download the Android SDK.
• Install the ADT plugin for Eclipse (if you’ll use the Eclipse IDE).
• Download the latest SDK tools and platforms using the SDK Manager.
If you haven't already done these tasks, start by downloading the Android SDK and following the install
steps. Once you've finished the setup, you're ready to begin this class.
This class uses a tutorial format that incrementally builds a small Android app that teaches you some
fundamental concepts about Android development, so it's important that you follow each step.
Start the first lesson ›

Dependencies and prerequisites

• Android SDK
• ADT Plugin 20.0.0 or higher (if you're

using Eclipse)

Creating an Android Project

18
Content from developer.android.com/training/basics/firstapp/creating-project.html through their Creative Commons Attribution 2.5 license

3. Creating an Android Project
Content from developer.android.com/training/basics/firstapp/creating-project.html through their Creative Commons Attribution 2.5 license

An Android project contains all the files that
comprise the source code for your Android app.
The Android SDK tools make it easy to start a new
Android project with a set of default project
directories and files.
This lesson shows how to create a new project
either using Eclipse (with the ADT plugin) or using
the SDK tools from a command line.
Note: You should already have the Android SDK
installed, and if you're using Eclipse, you should
also have the ADT plugin installed (version 21.0.0
or higher). If you don't have these, follow the guide to Installing the Android SDK before you start this
lesson.

Create a Project with Eclipse
• Click New

in the toolbar.
• In the window that appears, open the Android folder, select Android Application Project, and click
Next.

•
Figure 1. The New Android App Project wizard in Eclipse.
• Fill in the form that appears:

• Application Name is the app name that appears to users. For this project, use "My First App."
• Project Name is the name of your project directory and the name visible in Eclipse.
• Package Name is the package namespace for your app (following the same rules as packages in

the Java programming language). Your package name must be unique across all packages
installed on the Android system. For this reason, it's generally best if you use a name that begins
with the reverse domain name of your organization or publisher entity. For this project, you can
use something like "com.example.myfirstapp." However, you cannot publish your app on Google
Play using the "com.example" namespace.

• Minimum Required SDK is the lowest version of Android that your app supports, indicated using
the API level. To support as many devices as possible, you should set this to the lowest version
available that allows your app to provide its core feature set. If any feature of your app is possible

This lesson teaches you to
• Create a Project with Eclipse
• Create a Project with Command Line Tools
You should also read

• Installing the SDK
• Managing Projects

Creating an Android Project

19
Content from developer.android.com/training/basics/firstapp/creating-project.html through their Creative Commons Attribution 2.5 license

only on newer versions of Android and it's not critical to the app's core feature set, you can enable
the feature only when running on the versions that support it (as discussed in Supporting Different
Platform Versions). Leave this set to the default value for this project.

• Target SDK indicates the highest version of Android (also using the API level) with which you
have tested with your application.

As new versions of Android become available, you should test your app on the new version and
update this value to match the latest API level in order to take advantage of new platform
features.

• Compile With is the platform version against which you will compile your app. By default, this is
set to the latest version of Android available in your SDK. (It should be Android 4.1 or greater; if
you don't have such a version available, you must install one using the SDK Manager). You can
still build your app to support older versions, but setting the build target to the latest version
allows you to enable new features and optimize your app for a great user experience on the latest
devices.

• Theme specifies the Android UI style to apply for your app. You can leave this alone.

Click Next.
• On the next screen to configure the project, leave the default selections and click Next.
• The next screen can help you create a launcher icon for your app.
You can customize an icon in several ways and the tool generates an icon for all screen densities. Before
you publish your app, you should be sure your icon meets the specifications defined in the Iconography
design guide.
Click Next.
• Now you can select an activity template from which to begin building your app.
For this project, select BlankActivity and click Next.
• Leave all the details for the activity in their default state and click Finish.
Your Android project is now set up with some default files and you’re ready to begin building the app.
Continue to the next lesson.

Create a Project with Command Line Tools
If you're not using the Eclipse IDE with the ADT plugin, you can instead create your project using the SDK
tools from a command line:
• Change directories into the Android SDK’s tools/ path.
• Execute:

android list targets

This prints a list of the available Android platforms that you’ve downloaded for your SDK. Find the platform
against which you want to compile your app. Make a note of the target id. We recommend that you select
the highest version possible. You can still build your app to support older versions, but setting the build
target to the latest version allows you to optimize your app for the latest devices.
If you don't see any targets listed, you need to install some using the Android SDK Manager tool. See
Adding Platforms and Packages.
• Execute:

Creating an Android Project

20
Content from developer.android.com/training/basics/firstapp/creating-project.html through their Creative Commons Attribution 2.5 license

android create project --target <target-id> --name MyFirstApp \
--path <path-to-workspace>/MyFirstApp --activity MainActivity \
--package com.example.myfirstapp

Replace <target-id> with an id from the list of targets (from the previous step) and replace <path-to-
workspace> with the location in which you want to save your Android projects.
Your Android project is now set up with several default configurations and you’re ready to begin building
the app. Continue to the next lesson.
Tip: Add the platform-tools/ as well as the tools/ directory to your PATH environment variable.

Running Your App

21
Content from developer.android.com/training/basics/firstapp/running-app.html through their Creative Commons Attribution 2.5 license

4. Running Your App
Content from developer.android.com/training/basics/firstapp/running-app.html through their Creative Commons Attribution 2.5 license

If you followed the previous lesson to create an
Android project, it includes a default set of "Hello
World" source files that allow you to immediately
run the app.
How you run your app depends on two things:
whether you have a real Android-powered device
and whether you're using Eclipse. This lesson
shows you how to install and run your app on a
real device and on the Android emulator, and in
both cases with either Eclipse or the command
line tools.
Before you run your app, you should be aware of
a few directories and files in the Android project:
AndroidManifest.xml

The manifest file describes the fundamental characteristics of the app and defines each of its
components. You'll learn about various declarations in this file as you read more training classes.
One of the most important elements your manifest should include is the <uses-sdk> element.
This declares your app's compatibility with different Android versions using the
android:minSdkVersion and android:targetSdkVersion attributes. For your first app, it
should look like this:

<manifest xmlns:android="http://schemas.android.com/apk/res/android" ... >
 <uses-sdk android:minSdkVersion="8" android:targetSdkVersion="17" />
 ...
</manifest>

You should always set the android:targetSdkVersion as high as possible and test your app on the
corresponding platform version. For more information, read Supporting Different Platform Versions.
src/

Directory for your app's main source files. By default, it includes an Activity class that runs
when your app is launched using the app icon.

res/

Contains several sub-directories for app resources. Here are just a few:
drawable-hdpi/
Directory for drawable objects (such as bitmaps) that are designed for high-density (hdpi)
screens. Other drawable directories contain assets designed for other screen densities.
layout/
Directory for files that define your app's user interface.
values/
Directory for other various XML files that contain a collection of resources, such as string and
color definitions.

This lesson teaches you to
• Run on a Real Device
• Run on the Emulator
You should also read

• Using Hardware Devices
• Managing Virtual Devices
• Managing Projects

Running Your App

22
Content from developer.android.com/training/basics/firstapp/running-app.html through their Creative Commons Attribution 2.5 license

When you build and run the default Android app, the default Activity class starts and loads a layout file
that says "Hello World." The result is nothing exciting, but it's important that you understand how to run
your app before you start developing.

Run on a Real Device
If you have a real Android-powered device, here's how you can install and run your app:
• Plug in your device to your development machine with a USB cable. If you're developing on Windows,
you might need to install the appropriate USB driver for your device. For help installing drivers, see the
OEM USB Drivers document.
• Enable USB debugging on your device.

• On most devices running Android 3.2 or older, you can find the option under Settings >
Applications > Development.

• On Android 4.0 and newer, it's in Settings > Developer options.

Note: On Android 4.2 and newer, Developer options is hidden by default. To make it available,
go to Settings > About phone and tap Build number seven times. Return to the previous
screen to find Developer options.

To run the app from Eclipse:
• Open one of your project's files and click Run

from the toolbar.
• In the Run as window that appears, select Android Application and click OK.
Eclipse installs the app on your connected device and starts it.
Or to run your app from a command line:
• Change directories to the root of your Android project and execute:

ant debug

•
• Make sure the Android SDK platform-tools/ directory is included in your PATH environment
variable, then execute:

adb install bin/MyFirstApp-debug.apk

•
• On your device, locate MyFirstActivity and open it.
That's how you build and run your Android app on a device! To start developing, continue to the next
lesson.

Run on the Emulator
Whether you're using Eclipse or the command line, to run your app on the emulator you need to first create
an Android Virtual Device (AVD). An AVD is a device configuration for the Android emulator that allows
you to model different devices.

Running Your App

23
Content from developer.android.com/training/basics/firstapp/running-app.html through their Creative Commons Attribution 2.5 license

Figure 1. The AVD Manager showing a few virtual devices.
To create an AVD:
• Launch the Android Virtual Device Manager:
• In Eclipse, click Android Virtual Device Manager

from the toolbar.
• From the command line, change directories to <sdk>/tools/ and execute:

android avd

•
• In the Android Virtual Device Manager panel, click New.
• Fill in the details for the AVD. Give it a name, a platform target, an SD card size, and a skin (HVGA is
default).
• Click Create AVD.
• Select the new AVD from the Android Virtual Device Manager and click Start.
• After the emulator boots up, unlock the emulator screen.
To run the app from Eclipse:
• Open one of your project's files and click Run

from the toolbar.
• In the Run as window that appears, select Android Application and click OK.
Eclipse installs the app on your AVD and starts it.
Or to run your app from the command line:
• Change directories to the root of your Android project and execute:

ant debug

•
• Make sure the Android SDK platform-tools/ directory is included in your PATH environment
variable, then execute:

adb install bin/MyFirstApp-debug.apk

•
• On the emulator, locate MyFirstActivity and open it.

Running Your App

24
Content from developer.android.com/training/basics/firstapp/running-app.html through their Creative Commons Attribution 2.5 license

That's how you build and run your Android app on the emulator! To start developing, continue to the next
lesson.

Building a Simple User Interface

25
Content from developer.android.com/training/basics/firstapp/building-ui.html through their Creative Commons Attribution 2.5 license

5. Building a Simple User Interface
Content from developer.android.com/training/basics/firstapp/building-ui.html through their Creative Commons Attribution 2.5 license

The graphical user interface for an Android app is
built using a hierarchy of View and ViewGroup
objects. View objects are usually UI widgets such
as buttons or text fields and ViewGroup objects
are invisible view containers that define how the
child views are laid out, such as in a grid or a
vertical list.
Android provides an XML vocabulary that
corresponds to the subclasses of View and
ViewGroup so you can define your UI in XML
using a hierarchy of UI elements.

Figure 1. Illustration of how ViewGroup objects
form branches in the layout and contain other
View objects.
In this lesson, you'll create a layout in XML that includes a text field and a button. In the following lesson,
you'll respond when the button is pressed by sending the content of the text field to another activity.

Create a Linear Layout
Open the activity_main.xml file from the res/layout/ directory.
Note: In Eclipse, when you open a layout file, you’re first shown the Graphical Layout editor. This is an
editor that helps you build layouts using WYSIWYG tools. For this lesson, you’re going to work directly with
the XML, so click the activity_main.xml tab at the bottom of the screen to open the XML editor.
The BlankActivity template you chose when you created this project includes the activity_main.xml
file with a RelativeLayout root view and a TextView child view.
First, delete the <TextView> element and change the <RelativeLayout> element to
<LinearLayout>. Then add the android:orientation attribute and set it to "horizontal". The
result looks like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal" >
</LinearLayout>

This lesson teaches you to
• Create a Linear Layout
• Add a Text Field
• Add String Resources
• Add a Button
• Make the Input Box Fill in the Screen Width
You should also read

• Layouts

Alternative Layouts
Declaring your UI layout in XML rather than
runtime code is useful for several reasons, but
it's especially important so you can create
different layouts for different screen sizes. For
example, you can create two versions of a
layout and tell the system to use one on
"small" screens and the other on "large"
screens. For more information, see the class
about Supporting Different Devices.

Building a Simple User Interface

26
Content from developer.android.com/training/basics/firstapp/building-ui.html through their Creative Commons Attribution 2.5 license

LinearLayout is a view group (a subclass of ViewGroup) that lays out child views in either a vertical or
horizontal orientation, as specified by the android:orientation attribute. Each child of a
LinearLayout appears on the screen in the order in which it appears in the XML.
The other two attributes, android:layout_width and android:layout_height, are required for all
views in order to specify their size.
Because the LinearLayout is the root view in the layout, it should fill the entire screen area that's
available to the app by setting the width and height to "match_parent". This value declares that the
view should expand its width or height to match the width or height of the parent view.
For more information about layout properties, see the Layout guide.

Add a Text Field
To create a user-editable text field, add an <EditText> element inside the <LinearLayout>.
Like every View object, you must define certain XML attributes to specify the EditText object's
properties. Here’s how you should declare it inside the <LinearLayout> element:

 <EditText android:id="@+id/edit_message"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:hint="@string/edit_message" />

About these attributes:
android:id

This provides a unique identifier for the
view, which you can use to reference the
object from your app code, such as to
read and manipulate the object (you'll
see this in the next lesson).
The at sign (@) is required when you're
referring to any resource object from
XML. It is followed by the resource type
(id in this case), a slash, then the
resource name (edit_message).

The plus sign (+) before the resource
type is needed only when you're defining
a resource ID for the first time. When you
compile the app, the SDK tools use the
ID name to create a new resource ID in
your project's gen/R.java file that
refers to the EditText element. Once
the resource ID is declared once this
way, other references to the ID do not need the plus sign. Using the plus sign is necessary only
when specifying a new resource ID and not needed for concrete resources such as strings or
layouts. See the sidebox for more information about resource objects.

android:layout_width and android:layout_height
Instead of using specific sizes for the width and height, the "wrap_content" value specifies
that the view should be only as big as needed to fit the contents of the view. If you were to instead

About resource objects

A resource object is simply a unique integer
name that's associated with an app resource,
such as a bitmap, layout file, or string.
Every resource has a corresponding resource
object defined in your project's gen/R.java
file. You can use the object names in the R
class to refer to your resources, such as when
you need to specify a string value for the
android:hint attribute. You can also create
arbitrary resource IDs that you associate with
a view using the android:id attribute, which
allows you to reference that view from other
code.
The SDK tools generate the R.java each
time you compile your app. You should never
modify this file by hand.
For more information, read the guide to
Providing Resources.

Building a Simple User Interface

27
Content from developer.android.com/training/basics/firstapp/building-ui.html through their Creative Commons Attribution 2.5 license

use "match_parent", then the EditText element would fill the screen, because it would
match the size of the parent LinearLayout. For more information, see the Layouts guide.

android:hint
This is a default string to display when the text field is empty. Instead of using a hard-coded string
as the value, the "@string/edit_message" value refers to a string resource defined in a
separate file. Because this refers to a concrete resource (not just an identifier), it does not need
the plus sign. However, because you haven't defined the string resource yet, you’ll see a compiler
error at first. You'll fix this in the next section by defining the string.
Note: This string resource has the same name as the element ID: edit_message. However,
references to resources are always scoped by the resource type (such as id or string), so
using the same name does not cause collisions.

Add String Resources
When you need to add text in the user interface, you should always specify each string as a resource.
String resources allow you to manage all UI text in a single location, which makes it easier to find and
update text. Externalizing the strings also allows you to localize your app to different languages by
providing alternative definitions for each string resource.
By default, your Android project includes a string resource file at res/values/strings.xml. Add a new
string named "edit_message" and set the value to "Enter a message." (You can delete the
"hello_world" string.)
While you’re in this file, also add a "Send" string for the button you’ll soon add, called "button_send".
The result for strings.xml looks like this:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">My First App</string>
 <string name="edit_message">Enter a message</string>
 <string name="button_send">Send</string>
 <string name="action_settings">Settings</string>
 <string name="title_activity_main">MainActivity</string>
</resources>

For more information about using string resources to localize your app for other languages, see the
Supporting Different Devices class.

Add a Button
Now add a <Button> to the layout, immediately following the <EditText> element:

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button_send" />

The height and width are set to "wrap_content" so the button is only as big as necessary to fit the
button's text. This button doesn't need the android:id attribute, because it won't be referenced from the
activity code.

Make the Input Box Fill in the Screen Width
The layout is currently designed so that both the EditText and Button widgets are only as big as
necessary to fit their content, as shown in figure 2.

Building a Simple User Interface

28
Content from developer.android.com/training/basics/firstapp/building-ui.html through their Creative Commons Attribution 2.5 license

Figure 2. The EditText and Button widgets have their widths set to "wrap_content".
This works fine for the button, but not as well for the text field, because the user might type something
longer. So, it would be nice to fill the unused screen width with the text field. You can do this inside a
LinearLayout with the weight property, which you can specify using the android:layout_weight
attribute.
The weight value is a number that specifies the amount of remaining space each view should consume,
relative to the amount consumed by sibling views. This works kind of like the amount of ingredients in a
drink recipe: "2 parts vodka, 1 part coffee liqueur" means two-thirds of the drink is vodka. For example, if
you give one view a weight of 2 and another one a weight of 1, the sum is 3, so the first view fills 2/3 of the
remaining space and the second view fills the rest. If you add a third view and give it a weight of 1, then
the first view (with weight of 2) now gets 1/2 the remaining space, while the remaining two each get 1/4.
The default weight for all views is 0, so if you specify any weight value greater than 0 to only one view,
then that view fills whatever space remains after all views are given the space they require. So, to fill the
remaining space in your layout with the EditText element, give it a weight of 1 and leave the button with
no weight.

 <EditText
 android:layout_weight="1"
 ... />

In order to improve the layout efficiency when you specify the weight, you should change the width of the
EditText to be zero (0dp). Setting the width to zero improves layout performance because using
"wrap_content" as the width requires the system to calculate a width that is ultimately irrelevant
because the weight value requires another width calculation to fill the remaining space.

 <EditText
 android:layout_weight="1"
 android:layout_width="0dp"
 ... />

Figure 3 shows the result when you assign all weight to the EditText element.

Figure 3. The EditText widget is given all the layout weight, so fills the remaining space in the
LinearLayout.
Here’s how your complete layout file should now look:

Building a Simple User Interface

29
Content from developer.android.com/training/basics/firstapp/building-ui.html through their Creative Commons Attribution 2.5 license

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal">
 <EditText android:id="@+id/edit_message"
 android:layout_weight="1"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:hint="@string/edit_message" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button_send" />
</LinearLayout>

This layout is applied by the default Activity class that the SDK tools generated when you created the
project, so you can now run the app to see the results:

• In Eclipse, click Run

from the toolbar.

• Or from a command line, change directories to the root of your Android project and execute:

ant debug
adb install bin/MyFirstApp-debug.apk

•

Continue to the next lesson to learn how you can respond to button presses, read content from the text
field, start another activity, and more.

Starting Another Activity

30
Content from developer.android.com/training/basics/firstapp/starting-activity.html through their Creative Commons Attribution 2.5 license

6. Starting Another Activity
Content from developer.android.com/training/basics/firstapp/starting-activity.html through their Creative Commons Attribution 2.5 license

After completing the previous lesson, you have an
app that shows an activity (a single screen) with a
text field and a button. In this lesson, you’ll add
some code to MainActivity that starts a new
activity when the user clicks the Send button.

Respond to the Send Button
To respond to the button's on-click event, open
the activity_main.xml layout file and add the
android:onClick attribute to the <Button>
element:

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button_send"
 android:onClick="sendMessage" />

The android:onClick attribute’s value, "sendMessage", is the name of a method in your activity that
the system calls when the user clicks the button.
Open the MainActivity class (located in the project's src/ directory) and add the corresponding
method:

/** Called when the user clicks the Send button */
public void sendMessage(View view) {
 // Do something in response to button
}

This requires that you import the View class:

import android.view.View;

Tip: In Eclipse, press Ctrl + Shift + O to import missing classes (Cmd + Shift + O on Mac).
In order for the system to match this method to the method name given to android:onClick, the
signature must be exactly as shown. Specifically, the method must:

• Be public
• Have a void return value
• Have a View as the only parameter (this will be the View that was clicked)

Next, you’ll fill in this method to read the contents of the text field and deliver that text to another activity.

Build an Intent

This lesson teaches you to
• Respond to the Send Button
• Build an Intent
• Start the Second Activity
• Create the Second Activity
• Receive the Intent
• Display the Message
You should also read

• Installing the SDK

Starting Another Activity

31
Content from developer.android.com/training/basics/firstapp/starting-activity.html through their Creative Commons Attribution 2.5 license

An Intent is an object that provides runtime binding between separate components (such as two
activities). The Intent represents an app’s "intent to do something." You can use intents for a wide
variety of tasks, but most often they’re used to start another activity.
Inside the sendMessage() method, create an Intent to start an activity called
DisplayMessageActivity:

Intent intent = new Intent(this, DisplayMessageActivity.class);

The constructor used here takes two parameters:

• A Context as its first parameter (this is used because the Activity class is a subclass of
Context)

• The Class of the app component to which the system should deliver the Intent (in this case,
the activity that should be started)

Note: The reference to
DisplayMessageActivity will raise an error if
you’re using an IDE such as Eclipse because the
class doesn’t exist yet. Ignore the error for now;
you’ll create the class soon.
An intent not only allows you to start another
activity, but it can carry a bundle of data to the
activity as well. Inside the sendMessage()
method, use findViewById() to get the
EditText element and add its text value to the
intent:

Intent intent = new Intent(this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewById(R.id.edit_message);
String message = editText.getText().toString();
intent.putExtra(EXTRA_MESSAGE, message);

Note: You now need import statements for android.content.Intent and
android.widget.EditText. You'll define the EXTRA_MESSAGE constant in a moment.
An Intent can carry a collection of various data types as key-value pairs called extras. The putExtra()
method takes the key name in the first parameter and the value in the second parameter.
In order for the next activity to query the extra data, you should define the key for your intent's extra using
a public constant. So add the EXTRA_MESSAGE definition to the top of the MainActivity class:

public class MainActivity extends Activity {
 public final static String EXTRA_MESSAGE = "com.example.myfirstapp.MESSAGE";
 ...
}

It's generally a good practice to define keys for intent extras using your app's package name as a prefix.
This ensures they are unique, in case your app interacts with other apps.

Sending an intent to other apps

The intent created in this lesson is what's
considered an explicit intent, because the
Intent specifies the exact app component to
which the intent should be given. However,
intents can also be implicit, in which case the
Intent does not specify the desired
component, but allows any app installed on
the device to respond to the intent as long as
it satisfies the meta-data specifications for the
action that's specified in various Intent
parameters. For more information, see the
class about Interacting with Other Apps.

Starting Another Activity

32
Content from developer.android.com/training/basics/firstapp/starting-activity.html through their Creative Commons Attribution 2.5 license

Start the Second Activity
To start an activity, call startActivity() and pass it your Intent. The system receives this call and
starts an instance of the Activity specified by the Intent.
With this new code, the complete sendMessage() method that's invoked by the Send button now looks
like this:

/** Called when the user clicks the Send button */
public void sendMessage(View view) {
 Intent intent = new Intent(this, DisplayMessageActivity.class);
 EditText editText = (EditText) findViewById(R.id.edit_message);
 String message = editText.getText().toString();
 intent.putExtra(EXTRA_MESSAGE, message);
 startActivity(intent);
}

Now you need to create the DisplayMessageActivity class in order for this to work.

Create the Second Activity

Figure 1. The new activity wizard in Eclipse.
To create a new activity using Eclipse:
• Click New

in the toolbar.
• In the window that appears, open the Android folder and select Android Activity. Click Next.
• Select BlankActivity and click Next.
• Fill in the activity details:

• Project: MyFirstApp
• Activity Name: DisplayMessageActivity
• Layout Name: activity_display_message
• Title: My Message
• Hierarchial Parent: com.example.myfirstapp.MainActivity
• Navigation Type: None

Click Finish.
If you're using a different IDE or the command line tools, create a new file named
DisplayMessageActivity.java in the project's src/ directory, next to the original
MainActivity.java file.
Open the DisplayMessageActivity.java file. If you used Eclipse to create this activity:

Starting Another Activity

33
Content from developer.android.com/training/basics/firstapp/starting-activity.html through their Creative Commons Attribution 2.5 license

• The class already includes an implementation of the required onCreate() method.
• There's also an implementation of the onCreateOptionsMenu() method, but you won't need it

for this app so you can remove it.
• There's also an implementation of onOptionsItemSelected() which handles the behavior for

the action bar's Up behavior. Keep this one the way it is.

Because the ActionBar APIs are available only on HONEYCOMB (API level 11) and higher, you must add
a condition around the getActionBar() method to check the current platform version. Additionally, you
must add the @SuppressLint("NewApi") tag to the onCreate() method to avoid lint errors.
The DisplayMessageActivity class should now look like this:

public class DisplayMessageActivity extends Activity {

 @SuppressLint("NewApi")
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_display_message);

 // Make sure we're running on Honeycomb or higher to use ActionBar APIs
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 // Show the Up button in the action bar.
 getActionBar().setDisplayHomeAsUpEnabled(true);
 }
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case android.R.id.home:
 NavUtils.navigateUpFromSameTask(this);
 return true;
 }
 return super.onOptionsItemSelected(item);
 }
}

If you used an IDE other than Eclipse, update your DisplayMessageActivity class with the above
code.
All subclasses of Activity must implement the onCreate() method. The system calls this when
creating a new instance of the activity. This method is where you must define the activity layout with the
setContentView() method and is where you should perform initial setup for the activity components.
Note: If you are using an IDE other than Eclipse, your project does not contain the
activity_display_message layout that's requested by setContentView(). That's OK because you
will update this method later and won't be using that layout.

Add the title string
If you used Eclipse, you can skip to the next section, because the template provides the title string for the
new activity.
If you're using an IDE other than Eclipse, add the new activity's title to the strings.xml file:

Starting Another Activity

34
Content from developer.android.com/training/basics/firstapp/starting-activity.html through their Creative Commons Attribution 2.5 license

<resources>
 ...
 <string name="title_activity_display_message">My Message</string>
</resources>

Add it to the manifest
All activities must be declared in your manifest file, AndroidManifest.xml, using an <activity>
element.
When you use the Eclipse tools to create the activity, it creates a default entry. If you're using a different
IDE, you need to add the manifest entry yourself. It should look like this:

<application ... >
 ...
 <activity
 android:name="com.example.myfirstapp.DisplayMessageActivity"
 android:label="@string/title_activity_display_message"
 android:parentActivityName="com.example.myfirstapp.MainActivity" >
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.example.myfirstapp.MainActivity" />
 </activity>
</application>

The android:parentActivityName attribute declares the name of this activity's parent activity within
the app's logical hierarchy. The system uses this value to implement default navigation behaviors, such as
Up navigation on Android 4.1 (API level 16) and higher. You can provide the same navigation behaviors for
older versions of Android by using the Support Library and adding the <meta-data> element as shown
here.
Note: Your Android SDK should already include the latest Android Support Library. It's included with the
ADT Bundle but if you're using a different IDE, you should have installed it during the Adding Platforms and
Packages step. When using the templates in Eclipse, the Support Library is automatically added to your
app project (you can see the library's JAR file listed under Android Dependencies). If you're not using
Eclipse, you need to manually add the library to your project—follow the guide for setting up the Support
Library then return here.
If you're developing with Eclipse, you can run the app now, but not much happens. Clicking the Send
button starts the second activity but it uses a default "Hello world" layout provided by the template. You'll
soon update the activity to instead display a custom text view, so if you're using a different IDE, don't worry
that the app won't yet compile.

Receive the Intent
Every Activity is invoked by an Intent, regardless of how the user navigated there. You can get the
Intent that started your activity by calling getIntent() and retrieve the data contained within it.
In the DisplayMessageActivity class’s onCreate() method, get the intent and extract the message
delivered by MainActivity:

Intent intent = getIntent();
String message = intent.getStringExtra(MainActivity.EXTRA_MESSAGE);

Display the Message

Starting Another Activity

35
Content from developer.android.com/training/basics/firstapp/starting-activity.html through their Creative Commons Attribution 2.5 license

To show the message on the screen, create a TextView widget and set the text using setText(). Then
add the TextView as the root view of the activity’s layout by passing it to setContentView().
The complete onCreate() method for DisplayMessageActivity now looks like this:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Get the message from the intent
 Intent intent = getIntent();
 String message = intent.getStringExtra(MainActivity.EXTRA_MESSAGE);

 // Create the text view
 TextView textView = new TextView(this);
 textView.setTextSize(40);
 textView.setText(message);

 // Set the text view as the activity layout
 setContentView(textView);
}

You can now run the app. When it opens, type a message in the text field, click Send, and the message
appears on the second activity.

Figure 2. Both activities in the final app, running on Android 4.0.
That's it, you've built your first Android app!
To learn more, follow the link below to the next class.

Adding the Action Bar

36
Content from developer.android.com/training/basics/actionbar/index.html through their Creative Commons Attribution 2.5 license

7. Adding the Action Bar
Content from developer.android.com/training/basics/actionbar/index.html through their Creative Commons Attribution 2.5 license

Design Guide
Action Bar
The action bar is one of the most important design
elements you can implement for your app's
activities. It provides several user interface
features that make your app immediately familiar
to users by offering consistency between other
Android apps. Key functions include:

• A dedicated space for giving your app an
identity and indicating the user's location in the app.

• Access to important actions in a predictable way (such as Search).
• Support for navigation and view switching (with tabs or drop-down lists).

This training class offers a quick guide to the action bar's basics. For more information about action bar's
various features, see the Action Bar guide.

Lessons
Setting Up the Action Bar

Learn how to add a basic action bar to your activity, whether your app supports only Android 3.0
and higher or also supports versions as low as Android 2.1 (by using the Android Support
Library).

Adding Action Buttons
Learn how to add and respond to user actions in the action bar.

Styling the Action Bar
Learn how to customize the appearance of your action bar.

Overlaying the Action Bar
Learn how to overlay the action bar in front of your layout, allowing for seamless transitions when
hiding the action bar.

Dependencies and prerequisites

• Android 2.1 or higher

You should also read

• Action Bar
• Implementing Effective Navigation

Setting Up the Action Bar

37
Content from developer.android.com/training/basics/actionbar/setting-up.html through their Creative Commons Attribution 2.5 license

8. Setting Up the Action Bar
Content from developer.android.com/training/basics/actionbar/setting-up.html through their Creative Commons Attribution 2.5 license

In its most basic form, the action bar displays the
title for the activity and the app icon on the left.
Even in this simple form, the action bar is useful
for all activities to inform users about where they
are and to maintain a consistent identity for your
app.

Figure 1. An action bar with the app icon and activity title.
Setting up a basic action bar requires that your app use an activity theme that enables the action bar. How
to request such a theme depends on which version of Android is the lowest supported by your app. So this
lesson is divided into two sections depending on which Android version is your lowest supported.

Support Android 3.0 and Above Only
Beginning with Android 3.0 (API level 11), the action bar is included in all activities that use the
Theme.Holo theme (or one of its descendants), which is the default theme when either the
targetSdkVersion or minSdkVersion attribute is set to "11" or greater.
So to add the action bar to your activities, simply set either attribute to 11 or higher. For example:

<manifest ... >
 <uses-sdk android:minSdkVersion="11" ... />
 ...
</manifest>

Note: If you've created a custom theme, be sure it uses one of the Theme.Holo themes as its parent. For
details, see Styling the Action Bar.
Now the Theme.Holo theme is applied to your app and all activities show the action bar. That's it.

Support Android 2.1 and Above
Adding the action bar when running on versions older than Android 3.0 (down to Android 2.1) requires that
you include the Android Support Library in your application.
To get started, read the Support Library Setup document and set up the v7 appcompat library (once
you've downloaded the library package, follow the instructions for Adding libraries with resources).
Once you have the Support Library integrated with your app project:
• Update your activity so that it extends ActionBarActivity. For example:

public class MainActivity extends ActionBarActivity { ... }

•
• In your manifest file, update either the <application> element or individual <activity> elements to
use one of the Theme.AppCompat themes. For example:

<activity android:theme="@style/Theme.AppCompat.Light" ... >

This lesson teaches you to
• Support Android 3.0 and Above Only
• Support Android 2.1 and Above
You should also read

• Setting Up the Support Library

Setting Up the Action Bar

38
Content from developer.android.com/training/basics/actionbar/setting-up.html through their Creative Commons Attribution 2.5 license

Note: If you've created a custom theme, be sure it uses one of the Theme.AppCompat themes as its
parent. For details, see Styling the Action Bar.
Now your activity includes the action bar when running on Android 2.1 (API level 7) or higher.
Remember to properly set your app's API level support in the manifest:

<manifest ... >
 <uses-sdk android:minSdkVersion="7" android:targetSdkVersion="18" />
 ...
</manifest>

Adding Action Buttons

39
Content from developer.android.com/training/basics/actionbar/adding-buttons.html through their Creative Commons Attribution 2.5 license

9. Adding Action Buttons
Content from developer.android.com/training/basics/actionbar/adding-buttons.html through their Creative Commons Attribution 2.5 license

The action bar allows you to add buttons for the
most important action items relating to the app's
current context. Those that appear directly in the
action bar with an icon and/or text are known as
action buttons. Actions that can't fit in the action
bar or aren't important enough are hidden in the
action overflow.

Figure 1. An action bar with an action button for
Search and the action overflow, which reveals
additional actions.

Specify the Actions in XML
All action buttons and other items available in the action overflow are defined in an XML menu resource.
To add actions to the action bar, create a new XML file in your project's res/menu/ directory.
Add an <item> element for each item you want to include in the action bar. For example:
res/menu/main_activity_actions.xml

<menu xmlns:android="http://schemas.android.com/apk/res/android" >
 <!-- Search, should appear as action button -->
 <item android:id="@+id/action_search"
 android:icon="@drawable/ic_action_search"
 android:title="@string/action_search"
 android:showAsAction="ifRoom" />
 <!-- Settings, should always be in the overflow -->
 <item android:id="@+id/action_settings"
 android:title="@string/action_settings"
 android:showAsAction="never" />
</menu>

This declares that the Search action should
appear as an action button when room is available
in the action bar, but the Settings action should
always appear in the overflow. (By default, all
actions appear in the overflow, but it's good
practice to explicitly declare your design intentions
for each action.)
The icon attribute requires a resource ID for an image. The name that follows @drawable/ must be the
name of a bitmap image you've saved in your project's res/drawable/ directory. For example,
"@drawable/ic_action_search" refers to ic_action_search.png. Likewise, the title attribute
uses a string resource that's defined by an XML file in your project's res/values/ directory, as
discussed in Building a Simple User Interface.

This lesson teaches you to
• Specify the Actions in XML
• Add the Actions to the Action Bar
• Respond to Action Buttons
• Add Up Button for Low-level Activities
You should also read

• Providing Up Navigation

Download action bar icons

To best match the Android iconography
guidelines, you should use icons provided in
the Action Bar Icon Pack.

Adding Action Buttons

40
Content from developer.android.com/training/basics/actionbar/adding-buttons.html through their Creative Commons Attribution 2.5 license

Note: When creating icons and other bitmap images for your app, it's important that you provide multiple
versions that are each optimized for a different screen density. This is discussed more in the lesson about
Supporting Different Screens.
If your app is using the Support Library for compatibility on versions as low as Android 2.1, the
showAsAction attribute is not available from the android: namespace. Instead this attribute is provided
by the Support Library and you must define your own XML namespace and use that namespace as the
attribute prefix. (A custom XML namespace should be based on your app name, but it can be any name
you want and is only accessible within the scope of the file in which you declare it.) For example:
res/menu/main_activity_actions.xml

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:yourapp="http://schemas.android.com/apk/res-auto" >
 <!-- Search, should appear as action button -->
 <item android:id="@+id/action_search"
 android:icon="@drawable/ic_action_search"
 android:title="@string/action_search"
 yourapp:showAsAction="ifRoom" />
 ...
</menu>

Add the Actions to the Action Bar
To place the menu items into the action bar, implement the onCreateOptionsMenu() callback method
in your activity to inflate the menu resource into the given Menu object. For example:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu items for use in the action bar
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_activity_actions, menu);
 return super.onCreateOptionsMenu(menu);
}

Respond to Action Buttons
When the user presses one of the action buttons or another item in the action overflow, the system calls
your activity's onOptionsItemSelected() callback method. In your implementation of this method, call
getItemId() on the given MenuItem to determine which item was pressed—the returned ID matches
the value you declared in the corresponding <item> element's android:id attribute.

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 // Handle presses on the action bar items
 switch (item.getItemId()) {
 case R.id.action_search:
 openSearch();
 return true;
 case R.id.action_settings:
 openSettings();
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

Adding Action Buttons

41
Content from developer.android.com/training/basics/actionbar/adding-buttons.html through their Creative Commons Attribution 2.5 license

Add Up Button for Low-level Activities

Figure 4. The Up button in Gmail.
All screens in your app that are not the main entrance to your app (activities that are not the "home"
screen) should offer the user a way to navigate to the logical parent screen in the app's hierarchy by
pressing the Up button in the action bar.
When running on Android 4.1 (API level 16) or higher, or when using ActionBarActivity from the
Support Library, performing Up navigation simply requires that you declare the parent activity in the
manifest file and enable the Up button for the action bar.
For example, here's how you can declare an activity's parent in the manifest:

<application ... >
 ...
 <!-- The main/home activity (it has no parent activity) -->
 <activity
 android:name="com.example.myfirstapp.MainActivity" ...>
 ...
 </activity>
 <!-- A child of the main activity -->
 <activity
 android:name="com.example.myfirstapp.DisplayMessageActivity"
 android:label="@string/title_activity_display_message"
 android:parentActivityName="com.example.myfirstapp.MainActivity" >
 <!-- Parent activity meta-data to support 4.0 and lower -->
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.example.myfirstapp.MainActivity" />
 </activity>
</application>

Then enable the app icon as the Up button by calling setDisplayHomeAsUpEnabled():

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_displaymessage);

 getSupportActionBar().setDisplayHomeAsUpEnabled(true);
 // If your minSdkVersion is 11 or higher, instead use:
 // getActionBar().setDisplayHomeAsUpEnabled(true);
}

Because the system now knows MainActivity is the parent activity for DisplayMessageActivity,
when the user presses the Up button, the system navigates to the parent activity as appropriate—you do
not need to handle the Up button's event.
For more information about up navigation, see Providing Up Navigation.

Styling the Action Bar

42
Content from developer.android.com/training/basics/actionbar/styling.html through their Creative Commons Attribution 2.5 license

10. Styling the Action Bar
Content from developer.android.com/training/basics/actionbar/styling.html through their Creative Commons Attribution 2.5 license

The action bar provides your users a familiar and
predictable way to perform actions and navigate
your app, but that doesn't mean it needs to look
exactly the same as it does in other apps. If you
want to style the action bar to better fit your
product brand, you can easily do so using
Android's style and theme resources.
Android includes a few built-in activity themes that
include "dark" or "light" action bar styles. You can
also extend these themes to further customize the
look for your action bar.
Note: If you are using the Support Library APIs for
the action bar, then you must use (or override) the
Theme.AppCompat family of styles (rather than the Theme.Holo family, available in API level 11 and
higher). In doing so, each style property that you declare must be declared twice: once using the platform's
style properties (the android: properties) and once using the style properties included in the Support
Library (the appcompat.R.attr properties—the context for these properties is actually your app). See
the examples below for details.

Use an Android Theme

Android includes two baseline activity themes that dictate the color for the action bar:

• Theme.Holo for a "dark" theme.
• Theme.Holo.Light for a "light" theme.

You can apply these themes to your entire app or to individual activities by declaring them in your manifest
file with the android:theme attribute for the <application> element or individual <activity>
elements.
For example:

<application android:theme="@android:style/Theme.Holo.Light" ... />

This lesson teaches you to
• Use an Android Theme
• Customize the Background
• Customize the Text Color
• Customize the Tab Indicator
You should also read

• Styles and Themes
• Android Action Bar Style Generator

Styling the Action Bar

43
Content from developer.android.com/training/basics/actionbar/styling.html through their Creative Commons Attribution 2.5 license

You can also use a dark action bar while the rest of the activity uses the light color scheme by declaring
the Theme.Holo.Light.DarkActionBar theme.
When using the Support Library, you must instead use the Theme.AppCompat themes:

• Theme.AppCompat for the "dark" theme.
• Theme.AppCompat.Light for the "light" theme.
• Theme.AppCompat.Light.DarkActionBar for the light theme with a dark action bar.

Be sure that you use action bar icons that properly contrast with the color of your action bar. To help you,
the Action Bar Icon Pack includes standard action icons for use with both the Holo light and Holo dark
action bar.

Customize the Background

To change the action bar background, create a custom theme for your activity that overrides the
actionBarStyle property. This property points to another style in which you can override the
background property to specify a drawable resource for the action bar background.
If your app uses navigation tabs or the split action bar, then you can also specify the background for these
bars using the backgroundStacked and backgroundSplit properties, respectively.
Caution: It's important that you declare an appropriate parent theme from which your custom theme and
style inherit their styles. Without a parent style, your action bar will be without many style properties unless
you explicitly declare them yourself.

For Android 3.0 and higher only
When supporting Android 3.0 and higher only, you can define the action bar's background like this:
res/values/themes.xml

Styling the Action Bar

44
Content from developer.android.com/training/basics/actionbar/styling.html through their Creative Commons Attribution 2.5 license

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <!-- the theme applied to the application or activity -->
 <style name="CustomActionBarTheme"
 parent="@style/Theme.Holo.Light.DarkActionBar">
 <item name="android:actionBarStyle">@style/MyActionBar</item>
 </style>

 <!-- ActionBar styles -->
 <style name="MyActionBar"
 parent="@style/Widget.Holo.Light.ActionBar.Solid.Inverse">
 <item name="android:background">@drawable/actionbar_background</item>
 </style>
</resources>

Then apply your theme to your entire app or individual activities:

<application android:theme="@style/CustomActionBarTheme" ... />

For Android 2.1 and higher
When using the Support Library, the same theme as above must instead look like this:
res/values/themes.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <!-- the theme applied to the application or activity -->
 <style name="CustomActionBarTheme"
 parent="@style/Theme.AppCompat.Light.DarkActionBar">
 <item name="android:actionBarStyle">@style/MyActionBar</item>

 <!-- Support library compatibility -->
 <item name="actionBarStyle">@style/MyActionBar</item>
 </style>

 <!-- ActionBar styles -->
 <style name="MyActionBar"
 parent="@style/Widget.AppCompat.Light.ActionBar.Solid.Inverse">
 <item name="android:background">@drawable/actionbar_background</item>

 <!-- Support library compatibility -->
 <item name="background">@drawable/actionbar_background</item>
 </style>
</resources>

Then apply your theme to your entire app or individual activities:

<application android:theme="@style/CustomActionBarTheme" ... />

Customize the Text Color
To modify the color of text in the action bar, you need to override separate properties for each text
element:

• Action bar title: Create a custom style that specifies the textColor property and specify that
style for the titleTextStyle property in your custom actionBarStyle.

Styling the Action Bar

45
Content from developer.android.com/training/basics/actionbar/styling.html through their Creative Commons Attribution 2.5 license

Note: The custom style applied to titleTextStyle should use
TextAppearance.Holo.Widget.ActionBar.Title as the parent style.

• Action bar tabs: Override actionBarTabTextStyle in your activity theme.
• Action buttons: Override actionMenuTextColor in your activity theme.

For Android 3.0 and higher only
When supporting Android 3.0 and higher only, your style XML file might look like this:
res/values/themes.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <!-- the theme applied to the application or activity -->
 <style name="CustomActionBarTheme"
 parent="@style/Theme.Holo">
 <item name="android:actionBarStyle">@style/MyActionBar</item>
 <item name="android:actionBarTabTextStyle">@style/MyActionBarTabText</item>
 <item name="android:actionMenuTextColor">@color/actionbar_text</item>
 </style>

 <!-- ActionBar styles -->
 <style name="MyActionBar"
 parent="@style/Widget.Holo.ActionBar">
 <item name="android:titleTextStyle">@style/MyActionBarTitleText</item>
 </style>

 <!-- ActionBar title text -->
 <style name="MyActionBarTitleText"
 parent="@style/TextAppearance.Holo.Widget.ActionBar.Title">
 <item name="android:textColor">@color/actionbar_text</item>
 </style>

 <!-- ActionBar tabs text styles -->
 <style name="MyActionBarTabText"
 parent="@style/Widget.Holo.ActionBar.TabText">
 <item name="android:textColor">@color/actionbar_text</item>
 </style>
</resources>

For Android 2.1 and higher
When using the Support Library, your style XML file might look like this:
res/values/themes.xml

Styling the Action Bar

46
Content from developer.android.com/training/basics/actionbar/styling.html through their Creative Commons Attribution 2.5 license

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <!-- the theme applied to the application or activity -->
 <style name="CustomActionBarTheme"
 parent="@style/Theme.AppCompat">
 <item name="android:actionBarStyle">@style/MyActionBar</item>
 <item name="android:actionBarTabTextStyle">@style/MyActionBarTabText</item>
 <item name="android:actionMenuTextColor">@color/actionbar_text</item>

 <!-- Support library compatibility -->
 <item name="actionBarStyle">@style/MyActionBar</item>
 <item name="actionBarTabTextStyle">@style/MyActionBarTabText</item>
 <item name="actionMenuTextColor">@color/actionbar_text</item>
 </style>

 <!-- ActionBar styles -->
 <style name="MyActionBar"
 parent="@style/Widget.AppCompat.ActionBar">
 <item name="android:titleTextStyle">@style/MyActionBarTitleText</item>

 <!-- Support library compatibility -->
 <item name="titleTextStyle">@style/MyActionBarTitleText</item>
 </style>

 <!-- ActionBar title text -->
 <style name="MyActionBarTitleText"
 parent="@style/TextAppearance.AppCompat.Widget.ActionBar.Title">
 <item name="android:textColor">@color/actionbar_text</item>
 <!-- The textColor property is backward compatible with the Support Library -->
 </style>

 <!-- ActionBar tabs text -->
 <style name="MyActionBarTabText"
 parent="@style/Widget.AppCompat.ActionBar.TabText">
 <item name="android:textColor">@color/actionbar_text</item>
 <!-- The textColor property is backward compatible with the Support Library -->
 </style>
</resources>

Customize the Tab Indicator

To change the indicator used for the navigation tabs, create an activity theme that overrides the
actionBarTabStyle property. This property points to another style resource in which you override the
background property that should specify a state-list drawable.
Note: A state-list drawable is important so that the tab currently selected indicates its state with a
background different than the other tabs. For more information about how to create a drawable resource
that handles multiple button states, read the State List documentation.
For example, here's a state-list drawable that declares a specific background image for several different
states of an action bar tab:

Styling the Action Bar

47
Content from developer.android.com/training/basics/actionbar/styling.html through their Creative Commons Attribution 2.5 license

res/drawable/actionbar_tab_indicator.xml

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">

<!-- STATES WHEN BUTTON IS NOT PRESSED -->

 <!-- Non focused states -->
 <item android:state_focused="false" android:state_selected="false"
 android:state_pressed="false"
 android:drawable="@drawable/tab_unselected" />
 <item android:state_focused="false" android:state_selected="true"
 android:state_pressed="false"
 android:drawable="@drawable/tab_selected" />

 <!-- Focused states (such as when focused with a d-pad or mouse hover) -->
 <item android:state_focused="true" android:state_selected="false"
 android:state_pressed="false"
 android:drawable="@drawable/tab_unselected_focused" />
 <item android:state_focused="true" android:state_selected="true"
 android:state_pressed="false"
 android:drawable="@drawable/tab_selected_focused" />

<!-- STATES WHEN BUTTON IS PRESSED -->

 <!-- Non focused states -->
 <item android:state_focused="false" android:state_selected="false"
 android:state_pressed="true"
 android:drawable="@drawable/tab_unselected_pressed" />
 <item android:state_focused="false" android:state_selected="true"
 android:state_pressed="true"
 android:drawable="@drawable/tab_selected_pressed" />

 <!-- Focused states (such as when focused with a d-pad or mouse hover) -->
 <item android:state_focused="true" android:state_selected="false"
 android:state_pressed="true"
 android:drawable="@drawable/tab_unselected_pressed" />
 <item android:state_focused="true" android:state_selected="true"
 android:state_pressed="true"
 android:drawable="@drawable/tab_selected_pressed" />
</selector>

For Android 3.0 and higher only
When supporting Android 3.0 and higher only, your style XML file might look like this:
res/values/themes.xml

Styling the Action Bar

48
Content from developer.android.com/training/basics/actionbar/styling.html through their Creative Commons Attribution 2.5 license

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <!-- the theme applied to the application or activity -->
 <style name="CustomActionBarTheme"
 parent="@style/Theme.Holo">
 <item name="android:actionBarTabStyle">@style/MyActionBarTabs</item>
 </style>

 <!-- ActionBar tabs styles -->
 <style name="MyActionBarTabs"
 parent="@style/Widget.Holo.ActionBar.TabView">
 <!-- tab indicator -->
 <item name="android:background">@drawable/actionbar_tab_indicator</item>
 </style>
</resources>

For Android 2.1 and higher
When using the Support Library, your style XML file might look like this:
res/values/themes.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <!-- the theme applied to the application or activity -->
 <style name="CustomActionBarTheme"
 parent="@style/Theme.AppCompat">
 <item name="android:actionBarTabStyle">@style/MyActionBarTabs</item>

 <!-- Support library compatibility -->
 <item name="actionBarTabStyle">@style/MyActionBarTabs</item>
 </style>

 <!-- ActionBar tabs styles -->
 <style name="MyActionBarTabs"
 parent="@style/Widget.AppCompat.ActionBar.TabView">
 <!-- tab indicator -->
 <item name="android:background">@drawable/actionbar_tab_indicator</item>

 <!-- Support library compatibility -->
 <item name="background">@drawable/actionbar_tab_indicator</item>
 </style>
</resources>

More resources

• See more style properties for the action bar are listed in the Action Bar guide.
• Learn more about how themes work in the Styles and Themes guide.
• For even more complete styling for the action bar, try the Android Action Bar Style Generator.

Overlaying the Action Bar

49
Content from developer.android.com/training/basics/actionbar/overlaying.html through their Creative Commons Attribution 2.5 license

11. Overlaying the Action Bar
Content from developer.android.com/training/basics/actionbar/overlaying.html through their Creative Commons Attribution 2.5 license

By default, the action bar appears at the top of
your activity window, slightly reducing the amount
of space available for the rest of your activity's
layout. If, during the course of user interaction,
you want to hide and show the action bar, you can
do so by calling hide() and show() on the
ActionBar. However, this causes your activity to
recompute and redraw the layout based on its
new size.

Figure 1. Gallery's action bar in overlay mode.
To avoid resizing your layout when the action bar hides and shows, you can enable overlay mode for the
action bar. When in overlay mode, your activity layout uses all the space available as if the action bar is
not there and the system draws the action bar in front of your layout. This obscures some of the layout at
the top, but now when the action bar hides or appears, the system does not need to resize your layout and
the transition is seamless.
Tip: If you want your layout to be partially visible behind the action bar, create a custom style for the action
bar with a partially transparent background, such as the one shown in figure 1. For information about how
to define the action bar background, read Styling the Action Bar.

Enable Overlay Mode
To enable overlay mode for the action bar, you need to create a custom theme that extends an existing
action bar theme and set the android:windowActionBarOverlay property to true.

For Android 3.0 and higher only
If your minSdkVersion is set to 11 or higher, your custom theme should use Theme.Holo theme (or
one of its descendants) as your parent theme. For example:

This lesson teaches you to
• Enable Overlay Mode
• For Android 3.0 and higher only
• For Android 2.1 and higher
• Specify Layout Top-margin
You should also read

• Styles and Themes

Overlaying the Action Bar

50
Content from developer.android.com/training/basics/actionbar/overlaying.html through their Creative Commons Attribution 2.5 license

<resources>
 <!-- the theme applied to the application or activity -->
 <style name="CustomActionBarTheme"
 parent="@android:style/Theme.Holo">
 <item name="android:windowActionBarOverlay">true</item>
 </style>
</resources>

For Android 2.1 and higher
If your app is using the Support Library for compatibility on devices running versions lower than Android
3.0, your custom theme should use Theme.AppCompat theme (or one of its descendants) as your parent
theme. For example:

<resources>
 <!-- the theme applied to the application or activity -->
 <style name="CustomActionBarTheme"
 parent="@android:style/Theme.AppCompat">
 <item name="android:windowActionBarOverlay">true</item>

 <!-- Support library compatibility -->
 <item name="windowActionBarOverlay">true</item>
 </style>
</resources>

Also notice that this theme includes two definitions for the windowActionBarOverlay style: one with the
android: prefix and one without. The one with the android: prefix is for versions of Android that
include the style in the platform and the one without the prefix is for older versions that read the style from
the Support Library.

Specify Layout Top-margin
When the action bar is in overlay mode, it might obscure some of your layout that should remain visible. To
ensure that such items remain below the action bar at all times, add either margin or padding to the top of
the view(s) using the height specified by actionBarSize. For example:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingTop="?android:attr/actionBarSize">
 ...
</RelativeLayout>

If you're using the Support Library for the action bar, you need to remove the android: prefix. For
example:

<!-- Support library compatibility -->
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingTop="?attr/actionBarSize">
 ...
</RelativeLayout>

In this case, the ?attr/actionBarSize value without the prefix works on all versions, including Android
3.0 and higher.

Supporting Different Devices

51
Content from developer.android.com/training/basics/supporting-devices/index.html through their Creative Commons Attribution 2.5 license

12. Supporting Different Devices
Content from developer.android.com/training/basics/supporting-devices/index.html through their Creative Commons Attribution 2.5 license

Android devices come in many shapes and sizes
all around the world. With a wide range of device
types, you have an opportunity to reach a huge
audience with your app. In order to be as
successful as possible on Android, your app
needs to adapt to various device configurations.
Some of the important variations that you should
consider include different languages, screen
sizes, and versions of the Android platform.
This class teaches you how to use basic platform
features that leverage alternative resources and
other features so your app can provide an optimized user experience on a variety of Android-compatible
devices, using a single application package (APK).

Lessons
Supporting Different Languages

Learn how to support multiple languages with alternative string resources.
Supporting Different Screens

Learn how to optimize the user experience for different screen sizes and densities.
Supporting Different Platform Versions

Learn how to use APIs available in new versions of Android while continuing to support older
versions of Android.

Dependencies and prerequisites

• Android 1.6 or higher

You should also read

• Application Resources
• Designing for Multiple Screens

Supporting Different Languages

52
Content from developer.android.com/training/basics/supporting-devices/languages.html through their Creative Commons Attribution 2.5 license

13. Supporting Different Languages
Content from developer.android.com/training/basics/supporting-devices/languages.html through their Creative Commons Attribution 2.5 license

It’s always a good practice to extract UI strings
from your app code and keep them in an external
file. Android makes this easy with a resources
directory in each Android project.
If you created your project using the Android SDK
Tools (read Creating an Android Project), the tools
create a res/ directory in the top level of the
project. Within this res/ directory are
subdirectories for various resource types. There
are also a few default files such as
res/values/strings.xml, which holds your
string values.

Create Locale Directories and String Files
To add support for more languages, create additional values directories inside res/ that include a
hyphen and the ISO country code at the end of the directory name. For example, values-es/ is the
directory containing simple resourcess for the Locales with the language code "es". Android loads the
appropriate resources according to the locale settings of the device at run time.
Once you’ve decided on the languages you will support, create the resource subdirectories and string
resource files. For example:

MyProject/
 res/
 values/
 strings.xml
 values-es/
 strings.xml
 values-fr/
 strings.xml

Add the string values for each locale into the appropriate file.
At runtime, the Android system uses the appropriate set of string resources based on the locale currently
set for the user's device.
For example, the following are some different string resource files for different languages.
English (default locale), /values/strings.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="title">My Application</string>
 <string name="hello_world">Hello World!</string>
</resources>

Spanish, /values-es/strings.xml:

This class teaches you to
• Create Locale Directories and String Files
• Use the String Resources
You should also read

• Localization Checklist
• Localization with Resources

Supporting Different Languages

53
Content from developer.android.com/training/basics/supporting-devices/languages.html through their Creative Commons Attribution 2.5 license

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="title">Mi Aplicación</string>
 <string name="hello_world">Hola Mundo!</string>
</resources>

French, /values-fr/strings.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="title">Mon Application</string>
 <string name="hello_world">Bonjour le monde !</string>
</resources>

Note: You can use the locale qualifier (or any configuration qualifer) on any resource type, such as if you
want to provide localized versions of your bitmap drawable. For more information, see Localization.

Use the String Resources
You can reference your string resources in your source code and other XML files using the resource name
defined by the <string> element's name attribute.
In your source code, you can refer to a string resource with the syntax R.string.<string_name>.
There are a variety of methods that accept a string resource this way.
For example:

// Get a string resource from your app's Resources
String hello = getResources().getString(R.string.hello_world);

// Or supply a string resource to a method that requires a string
TextView textView = new TextView(this);
textView.setText(R.string.hello_world);

In other XML files, you can refer to a string resource with the syntax @string/<string_name>
whenever the XML attribute accepts a string value.
For example:

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world" />

Supporting Different Screens

54
Content from developer.android.com/training/basics/supporting-devices/screens.html through their Creative Commons Attribution 2.5 license

14. Supporting Different Screens
Content from developer.android.com/training/basics/supporting-devices/screens.html through their Creative Commons Attribution 2.5 license

Android categorizes device screens using two
general properties: size and density. You should
expect that your app will be installed on devices
with screens that range in both size and density.
As such, you should include some alternative
resources that optimize your app’s appearance for
different screen sizes and densities.

• There are four generalized sizes: small,
normal, large, xlarge

• And four generalized densities: low (ldpi),
medium (mdpi), high (hdpi), extra high
(xhdpi)

To declare different layouts and bitmaps you'd like to use for different screens, you must place these
alternative resources in separate directories, similar to how you do for different language strings.
Also be aware that the screens orientation (landscape or portrait) is considered a variation of screen size,
so many apps should revise the layout to optimize the user experience in each orientation.

Create Different Layouts
To optimize your user experience on different screen sizes, you should create a unique layout XML file for
each screen size you want to support. Each layout should be saved into the appropriate resources
directory, named with a -<screen_size> suffix. For example, a unique layout for large screens should
be saved under res/layout-large/.
Note: Android automatically scales your layout in order to properly fit the screen. Thus, your layouts for
different screen sizes don't need to worry about the absolute size of UI elements but instead focus on the
layout structure that affects the user experience (such as the size or position of important views relative to
sibling views).
For example, this project includes a default layout and an alternative layout for large screens:

MyProject/
 res/
 layout/
 main.xml
 layout-large/
 main.xml

The file names must be exactly the same, but their contents are different in order to provide an optimized
UI for the corresponding screen size.
Simply reference the layout file in your app as usual:

@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
}

This lesson teaches you to
• Create Different Layouts
• Create Different Bitmaps
You should also read

• Designing for Multiple Screens
• Providing Resources
• Iconography design guide

Supporting Different Screens

55
Content from developer.android.com/training/basics/supporting-devices/screens.html through their Creative Commons Attribution 2.5 license

The system loads the layout file from the appropriate layout directory based on screen size of the device
on which your app is running. More information about how Android selects the appropriate resource is
available in the Providing Resources guide.
As another example, here's a project with an alternative layout for landscape orientation:

MyProject/
 res/
 layout/
 main.xml
 layout-land/
 main.xml

By default, the layout/main.xml file is used for portrait orientation.
If you want to provide a special layout for landscape, including while on large screens, then you need to
use both the large and land qualifier:

MyProject/
 res/
 layout/ # default (portrait)
 main.xml
 layout-land/ # landscape
 main.xml
 layout-large/ # large (portrait)
 main.xml
 layout-large-land/ # large landscape
 main.xml

Note: Android 3.2 and above supports an advanced method of defining screen sizes that allows you to
specify resources for screen sizes based on the minimum width and height in terms of density-
independent pixels. This lesson does not cover this new technique. For more information, read Designing
for Multiple Screens.

Create Different Bitmaps
You should always provide bitmap resources that are properly scaled to each of the generalized density
buckets: low, medium, high and extra-high density. This helps you achieve good graphical quality and
performance on all screen densities.
To generate these images, you should start with your raw resource in vector format and generate the
images for each density using the following size scale:

• xhdpi: 2.0
• hdpi: 1.5
• mdpi: 1.0 (baseline)
• ldpi: 0.75

This means that if you generate a 200x200 image for xhdpi devices, you should generate the same
resource in 150x150 for hdpi, 100x100 for mdpi, and 75x75 for ldpi devices.
Then, place the files in the appropriate drawable resource directory:

Supporting Different Screens

56
Content from developer.android.com/training/basics/supporting-devices/screens.html through their Creative Commons Attribution 2.5 license

MyProject/
 res/
 drawable-xhdpi/
 awesomeimage.png
 drawable-hdpi/
 awesomeimage.png
 drawable-mdpi/
 awesomeimage.png
 drawable-ldpi/
 awesomeimage.png

Any time you reference @drawable/awesomeimage, the system selects the appropriate bitmap based
on the screen's density.
Note: Low-density (ldpi) resources aren’t always necessary. When you provide hdpi assets, the system
scales them down by one half to properly fit ldpi screens.
For more tips and guidelines about creating icon assets for your app, see the Iconography design guide.

Supporting Different Platform Versions

57
Content from developer.android.com/training/basics/supporting-devices/platforms.html through their Creative Commons Attribution 2.5 license

15. Supporting Different Platform Versions
Content from developer.android.com/training/basics/supporting-devices/platforms.html through their Creative Commons Attribution 2.5 license

While the latest versions of Android often provide
great APIs for your app, you should continue to
support older versions of Android until more
devices get updated. This lesson shows you how
to take advantage of the latest APIs while
continuing to support older versions as well.
The dashboard for Platform Versions is updated
regularly to show the distribution of active devices
running each version of Android, based on the
number of devices that visit the Google Play
Store. Generally, it’s a good practice to support
about 90% of the active devices, while targeting
your app to the latest version.
Tip: In order to provide the best features and functionality across several Android versions, you should use
the Android Support Library in your app, which allows you to use several recent platform APIs on older
versions.

Specify Minimum and Target API Levels
The AndroidManifest.xml file describes details about your app and identifies which versions of Android it
supports. Specifically, the minSdkVersion and targetSdkVersion attributes for the <uses-sdk
element identify the lowest API level with which your app is compatible and the highest API level against
which you’ve designed and tested your app.
For example:

<manifest xmlns:android="http://schemas.android.com/apk/res/android" ... >
 <uses-sdk android:minSdkVersion="4" android:targetSdkVersion="15" />
 ...
</manifest>

As new versions of Android are released, some style and behaviors may change. To allow your app to
take advantage of these changes and ensure that your app fits the style of each user's device, you should
set the targetSdkVersion value to match the latest Android version available.

Check System Version at Runtime
Android provides a unique code for each platform version in the Build constants class. Use these codes
within your app to build conditions that ensure the code that depends on higher API levels is executed only
when those APIs are available on the system.

private void setUpActionBar() {
 // Make sure we're running on Honeycomb or higher to use ActionBar APIs
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 ActionBar actionBar = getActionBar();
 actionBar.setDisplayHomeAsUpEnabled(true);
 }
}

Note: When parsing XML resources, Android ignores XML attributes that aren’t supported by the current
device. So you can safely use XML attributes that are only supported by newer versions without worrying
about older versions breaking when they encounter that code. For example, if you set the

This lesson teaches you to
• Specify Minimum and Target API Levels
• Check System Version at Runtime
• Use Platform Styles and Themes
You should also read

• Android API Levels
• Android Support Library

Supporting Different Platform Versions

58
Content from developer.android.com/training/basics/supporting-devices/platforms.html through their Creative Commons Attribution 2.5 license

targetSdkVersion="11", your app includes the ActionBar by default on Android 3.0 and higher. To
then add menu items to the action bar, you need to set android:showAsAction="ifRoom" in your
menu resource XML. It's safe to do this in a cross-version XML file, because the older versions of Android
simply ignore the showAsAction attribute (that is, you do not need a separate version in res/menu-
v11/).

Use Platform Styles and Themes
Android provides user experience themes that give apps the look and feel of the underlying operating
system. These themes can be applied to your app within the manifest file. By using these built in styles
and themes, your app will naturally follow the latest look and feel of Android with each new release.
To make your activity look like a dialog box:

<activity android:theme="@android:style/Theme.Dialog">

To make your activity have a transparent background:

<activity android:theme="@android:style/Theme.Translucent">

To apply your own custom theme defined in /res/values/styles.xml:

<activity android:theme="@style/CustomTheme">

To apply a theme to your entire app (all activities), add the android:theme attribute to the
<application> element:

<application android:theme="@style/CustomTheme">

For more about creating and using themes, read the Styles and Themes guide.

Managing the Activity Lifecycle

59
Content from developer.android.com/training/basics/activity-lifecycle/index.html through their Creative Commons Attribution 2.5 license

16. Managing the Activity Lifecycle
Content from developer.android.com/training/basics/activity-lifecycle/index.html through their Creative Commons Attribution 2.5 license

As a user navigates through, out of, and back to
your app, the Activity instances in your app
transition between different states in their lifecycle.
For instance, when your activity starts for the first
time, it comes to the foreground of the system and
receives user focus. During this process, the
Android system calls a series of lifecycle methods
on the activity in which you set up the user
interface and other components. If the user
performs an action that starts another activity or
switches to another app, the system calls another
set of lifecycle methods on your activity as it
moves into the background (where the activity is
no longer visible, but the instance and its state
remains intact).
Within the lifecycle callback methods, you can
declare how your activity behaves when the user leaves and re-enters the activity. For example, if you're
building a streaming video player, you might pause the video and terminate the network connection when
the user switches to another app. When the user returns, you can reconnect to the network and allow the
user to resume the video from the same spot.
This class explains important lifecycle callback methods that each Activity instance receives and how
you can use them so your activity does what the user expects and does not consume system resources
when your activity doesn't need them.

Lessons
Starting an Activity

Learn the basics about the activity lifecycle, how the user can launch your app, and how to
perform basic activity creation.

Pausing and Resuming an Activity
Learn what happens when your activity is paused (partially obscured) and resumed and what you
should do during these state changes.

Stopping and Restarting an Activity
Learn what happens when the user completely leaves your activity and returns to it.

Recreating an Activity
Learn what happens when your activity is destroyed and how you can rebuild the activity state
when necessary.

Dependencies and prerequisites

• How to create an Android project
(see Creating an Android Project)

You should also read

• Activities

Try it out
Download the demo
ActivityLifecycle.zip

Starting an Activity

60
Content from developer.android.com/training/basics/activity-lifecycle/starting.html through their Creative Commons Attribution 2.5 license

17. Starting an Activity
Content from developer.android.com/training/basics/activity-lifecycle/starting.html through their Creative Commons Attribution 2.5 license

Unlike other programming paradigms in which
apps are launched with a main() method, the
Android system initiates code in an Activity
instance by invoking specific callback methods
that correspond to specific stages of its lifecycle.
There is a sequence of callback methods that start
up an activity and a sequence of callback methods
that tear down an activity.
This lesson provides an overview of the most
important lifecycle methods and shows you how to
handle the first lifecycle callback that creates a
new instance of your activity.

Understand the Lifecycle
Callbacks
During the life of an activity, the system calls a
core set of lifecycle methods in a sequence similar to a step pyramid. That is, each stage of the activity
lifecycle is a separate step on the pyramid. As the system creates a new activity instance, each callback
method moves the activity state one step toward the top. The top of the pyramid is the point at which the
activity is running in the foreground and the user can interact with it.
As the user begins to leave the activity, the system calls other methods that move the activity state back
down the pyramid in order to dismantle the activity. In some cases, the activity will move only part way
down the pyramid and wait (such as when the user switches to another app), from which point the activity
can move back to the top (if the user returns to the activity) and resume where the user left off.

Figure 1. A simplified illustration of the Activity lifecycle, expressed as a step pyramid. This shows how, for
every callback used to take the activity a step toward the Resumed state at the top, there's a callback
method that takes the activity a step down. The activity can also return to the resumed state from the
Paused and Stopped state.
Depending on the complexity of your activity, you probably don't need to implement all the lifecycle
methods. However, it's important that you understand each one and implement those that ensure your app
behaves the way users expect. Implementing your activity lifecycle methods properly ensures your app
behaves well in several ways, including that it:

• Does not crash if the user receives a phone call or switches to another app while using your app.
• Does not consume valuable system resources when the user is not actively using it.

This lesson teaches you to
• Understand the Lifecycle Callbacks
• Specify Your App's Launcher Activity
• Create a New Instance
• Destroy the Activity
You should also read

• Activities

Try it out
Download the demo
ActivityLifecycle.zip

Starting an Activity

61
Content from developer.android.com/training/basics/activity-lifecycle/starting.html through their Creative Commons Attribution 2.5 license

• Does not lose the user's progress if they leave your app and return to it at a later time.
• Does not crash or lose the user's progress when the screen rotates between landscape and

portrait orientation.

As you'll learn in the following lessons, there are several situations in which an activity transitions between
different states that are illustrated in figure 1. However, only three of these states can be static. That is, the
activity can exist in one of only three states for an extended period of time:
Resumed

In this state, the activity is in the foreground and the user can interact with it. (Also sometimes
referred to as the "running" state.)

Paused
In this state, the activity is partially obscured by another activity—the other activity that's in the
foreground is semi-transparent or doesn't cover the entire screen. The paused activity does not
receive user input and cannot execute any code.

Stopped
In this state, the activity is completely hidden and not visible to the user; it is considered to be in
the background. While stopped, the activity instance and all its state information such as member
variables is retained, but it cannot execute any code.

The other states (Created and Started) are transient and the system quickly moves from them to the next
state by calling the next lifecycle callback method. That is, after the system calls onCreate(), it quickly
calls onStart(), which is quickly followed by onResume().
That's it for the basic activity lifecycle. Now you'll start learning about some of the specific lifecycle
behaviors.

Specify Your App's Launcher Activity
When the user selects your app icon from the Home screen, the system calls the onCreate() method for
the Activity in your app that you've declared to be the "launcher" (or "main") activity. This is the activity
that serves as the main entry point to your app's user interface.
You can define which activity to use as the main activity in the Android manifest file,
AndroidManifest.xml, which is at the root of your project directory.
The main activity for your app must be declared in the manifest with an <intent-filter> that includes
the MAIN action and LAUNCHER category. For example:

<activity android:name=".MainActivity" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

Note: When you create a new Android project with the Android SDK tools, the default project files include
an Activity class that's declared in the manifest with this filter.
If either the MAIN action or LAUNCHER category are not declared for one of your activities, then your app
icon will not appear in the Home screen's list of apps.

Create a New Instance
Most apps include several different activities that allow the user to perform different actions. Whether an
activity is the main activity that's created when the user clicks your app icon or a different activity that your

Starting an Activity

62
Content from developer.android.com/training/basics/activity-lifecycle/starting.html through their Creative Commons Attribution 2.5 license

app starts in response to a user action, the system creates every new instance of Activity by calling its
onCreate() method.
You must implement the onCreate() method to perform basic application startup logic that should
happen only once for the entire life of the activity. For example, your implementation of onCreate()
should define the user interface and possibly instantiate some class-scope variables.
For example, the following example of the onCreate() method shows some code that performs some
fundamental setup for the activity, such as declaring the user interface (defined in an XML layout file),
defining member variables, and configuring some of the UI.

TextView mTextView; // Member variable for text view in the layout

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Set the user interface layout for this Activity
 // The layout file is defined in the project res/layout/main_activity.xml file
 setContentView(R.layout.main_activity);

 // Initialize member TextView so we can manipulate it later
 mTextView = (TextView) findViewById(R.id.text_message);

 // Make sure we're running on Honeycomb or higher to use ActionBar APIs
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 // For the main activity, make sure the app icon in the action bar
 // does not behave as a button
 ActionBar actionBar = getActionBar();
 actionBar.setHomeButtonEnabled(false);
 }
}

Caution: Using the SDK_INT to prevent older systems from executing new APIs works in this way on
Android 2.0 (API level 5) and higher only. Older versions will encounter a runtime exception.
Once the onCreate() finishes execution, the system calls the onStart() and onResume() methods in
quick succession. Your activity never resides in the Created or Started states. Technically, the activity
becomes visible to the user when onStart() is called, but onResume() quickly follows and the activity
remains in the Resumed state until something occurs to change that, such as when a phone call is
received, the user navigates to another activity, or the device screen turns off.
In the other lessons that follow, you'll see how the other start up methods, onStart() and onResume(),
are useful during your activity's lifecycle when used to resume the activity from the Paused or Stopped
states.
Note: The onCreate() method includes a parameter called savedInstanceState that's discussed in
the latter lesson about Recreating an Activity.

Starting an Activity

63
Content from developer.android.com/training/basics/activity-lifecycle/starting.html through their Creative Commons Attribution 2.5 license

Figure 2. Another illustration of the activity lifecycle structure with an emphasis on the three main
callbacks that the system calls in sequence when creating a new instance of the activity: onCreate(),
onStart(), and onResume(). Once this sequence of callbacks complete, the activity reaches the
Resumed state where users can interact with the activity until they switch to a different activity.

Destroy the Activity
While the activity's first lifecycle callback is onCreate(), its very last callback is onDestroy(). The
system calls this method on your activity as the final signal that your activity instance is being completely
removed from the system memory.
Most apps don't need to implement this method because local class references are destroyed with the
activity and your activity should perform most cleanup during onPause() and onStop(). However, if
your activity includes background threads that you created during onCreate() or other long-running
resources that could potentially leak memory if not properly closed, you should kill them during
onDestroy().

@Override
public void onDestroy() {
 super.onDestroy(); // Always call the superclass

 // Stop method tracing that the activity started during onCreate()
 android.os.Debug.stopMethodTracing();
}

Note: The system calls onDestroy() after it has already called onPause() and onStop() in all
situations except one: when you call finish() from within the onCreate() method. In some cases,
such as when your activity operates as a temporary decision maker to launch another activity, you might
call finish() from within onCreate() to destroy the activity. In this case, the system immediately calls
onDestroy() without calling any of the other lifecycle methods.

Pausing and Resuming an Activity

64
Content from developer.android.com/training/basics/activity-lifecycle/pausing.html through their Creative Commons Attribution 2.5 license

18. Pausing and Resuming an Activity
Content from developer.android.com/training/basics/activity-lifecycle/pausing.html through their Creative Commons Attribution 2.5 license

During normal app use, the foreground activity is
sometimes obstructed by other visual components
that cause the activity to pause. For example,
when a semi-transparent activity opens (such as
one in the style of a dialog), the previous activity
pauses. As long as the activity is still partially
visible but currently not the activity in focus, it
remains paused.
However, once the activity is fully-obstructed and
not visible, it stops (which is discussed in the next
lesson).
As your activity enters the paused state, the
system calls the onPause() method on your
Activity, which allows you to stop ongoing
actions that should not continue while paused (such as a video) or persist any information that should be
permanently saved in case the user continues to leave your app. If the user returns to your activity from
the paused state, the system resumes it and calls the onResume() method.
Note: When your activity receives a call to onPause(), it may be an indication that the activity will be
paused for a moment and the user may return focus to your activity. However, it's usually the first
indication that the user is leaving your activity.

Figure 1. When a semi-transparent activity obscures your activity, the system calls onPause() and the
activity waits in the Paused state (1). If the user returns to the activity while it's still paused, the system
calls onResume() (2).

Pause Your Activity
When the system calls onPause() for your activity, it technically means your activity is still partially
visible, but most often is an indication that the user is leaving the activity and it will soon enter the Stopped
state. You should usually use the onPause() callback to:

• Stop animations or other ongoing actions that could consume CPU.
• Commit unsaved changes, but only if users expect such changes to be permanently saved when

they leave (such as a draft email).
• Release system resources, such as broadcast receivers, handles to sensors (like GPS), or any

resources that may affect battery life while your activity is paused and the user does not need
them.

This lesson teaches you to
• Pause Your Activity
• Resume Your Activity
You should also read

• Activities

Try it out
Download the demo
ActivityLifecycle.zip

Pausing and Resuming an Activity

65
Content from developer.android.com/training/basics/activity-lifecycle/pausing.html through their Creative Commons Attribution 2.5 license

For example, if your application uses the Camera, the onPause() method is a good place to release it.

@Override
public void onPause() {
 super.onPause(); // Always call the superclass method first

 // Release the Camera because we don't need it when paused
 // and other activities might need to use it.
 if (mCamera != null) {
 mCamera.release()
 mCamera = null;
 }
}

Generally, you should not use onPause() to store user changes (such as personal information entered
into a form) to permanent storage. The only time you should persist user changes to permanent storage
within onPause() is when you're certain users expect the changes to be auto-saved (such as when
drafting an email). However, you should avoid performing CPU-intensive work during onPause(), such as
writing to a database, because it can slow the visible transition to the next activity (you should instead
perform heavy-load shutdown operations during onStop()).
You should keep the amount of operations done in the onPause() method relatively simple in order to
allow for a speedy transition to the user's next destination if your activity is actually being stopped.
Note: When your activity is paused, the Activity instance is kept resident in memory and is recalled
when the activity resumes. You don’t need to re-initialize components that were created during any of the
callback methods leading up to the Resumed state.

Resume Your Activity
When the user resumes your activity from the Paused state, the system calls the onResume() method.
Be aware that the system calls this method every time your activity comes into the foreground, including
when it's created for the first time. As such, you should implement onResume() to initialize components
that you release during onPause() and perform any other initializations that must occur each time the
activity enters the Resumed state (such as begin animations and initialize components only used while the
activity has user focus).
The following example of onResume() is the counterpart to the onPause() example above, so it
initializes the camera that's released when the activity pauses.

@Override
public void onResume() {
 super.onResume(); // Always call the superclass method first

 // Get the Camera instance as the activity achieves full user focus
 if (mCamera == null) {
 initializeCamera(); // Local method to handle camera init
 }
}

Stopping and Restarting an Activity

66
Content from developer.android.com/training/basics/activity-lifecycle/stopping.html through their Creative Commons Attribution 2.5 license

19. Stopping and Restarting an Activity
Content from developer.android.com/training/basics/activity-lifecycle/stopping.html through their Creative Commons Attribution 2.5 license

Properly stopping and restarting your activity is an
important process in the activity lifecycle that
ensures your users perceive that your app is
always alive and doesn't lose their progress.
There are a few of key scenarios in which your
activity is stopped and restarted:

• The user opens the Recent Apps window
and switches from your app to another
app. The activity in your app that's
currently in the foreground is stopped. If
the user returns to your app from the
Home screen launcher icon or the
Recent Apps window, the activity
restarts.

• The user performs an action in your app that starts a new activity. The current activity is stopped
when the second activity is created. If the user then presses the Back button, the first activity is
restarted.

• The user receives a phone call while using your app on his or her phone.

The Activity class provides two lifecycle methods, onStop() and onRestart(), which allow you to
specifically handle how your activity handles being stopped and restarted. Unlike the paused state, which
identifies a partial UI obstruction, the stopped state guarantees that the UI is no longer visible and the
user's focus is in a separate activity (or an entirely separate app).
Note: Because the system retains your Activity instance in system memory when it is stopped, it's
possible that you don't need to implement the onStop() and onRestart() (or even onStart()
methods at all. For most activities that are relatively simple, the activity will stop and restart just fine and
you might only need to use onPause() to pause ongoing actions and disconnect from system resources.

Figure 1. When the user leaves your activity, the system calls onStop() to stop the activity (1). If the
user returns while the activity is stopped, the system calls onRestart() (2), quickly followed by
onStart() (3) and onResume() (4). Notice that no matter what scenario causes the activity to stop, the
system always calls onPause() before calling onStop().

Stop Your Activity
When your activity receives a call to the onStop() method, it's no longer visible and should release
almost all resources that aren't needed while the user is not using it. Once your activity is stopped, the

This lesson teaches you to
• Stop Your Activity
• Start/Restart Your Activity
You should also read

• Activities

Try it out
Download the demo
ActivityLifecycle.zip

Stopping and Restarting an Activity

67
Content from developer.android.com/training/basics/activity-lifecycle/stopping.html through their Creative Commons Attribution 2.5 license

system might destroy the instance if it needs to recover system memory. In extreme cases, the system
might simply kill your app process without calling the activity's final onDestroy() callback, so it's
important you use onStop() to release resources that might leak memory.
Although the onPause() method is called before onStop(), you should use onStop() to perform
larger, more CPU intensive shut-down operations, such as writing information to a database.
For example, here's an implementation of onStop() that saves the contents of a draft note to persistent
storage:

@Override
protected void onStop() {
 super.onStop(); // Always call the superclass method first

 // Save the note's current draft, because the activity is stopping
 // and we want to be sure the current note progress isn't lost.
 ContentValues values = new ContentValues();
 values.put(NotePad.Notes.COLUMN_NAME_NOTE, getCurrentNoteText());
 values.put(NotePad.Notes.COLUMN_NAME_TITLE, getCurrentNoteTitle());

 getContentResolver().update(
 mUri, // The URI for the note to update.
 values, // The map of column names and new values to apply to them.
 null, // No SELECT criteria are used.
 null // No WHERE columns are used.
);
}

When your activity is stopped, the Activity object is kept resident in memory and is recalled when the
activity resumes. You don’t need to re-initialize components that were created during any of the callback
methods leading up to the Resumed state. The system also keeps track of the current state for each View
in the layout, so if the user entered text into an EditText widget, that content is retained so you don't
need to save and restore it.
Note: Even if the system destroys your activity while it's stopped, it still retains the state of the View
objects (such as text in an EditText) in a Bundle (a blob of key-value pairs) and restores them if the
user navigates back to the same instance of the activity (the next lesson talks more about using a Bundle
to save other state data in case your activity is destroyed and recreated).

Start/Restart Your Activity
When your activity comes back to the foreground from the stopped state, it receives a call to
onRestart(). The system also calls the onStart() method, which happens every time your activity
becomes visible (whether being restarted or created for the first time). The onRestart() method,
however, is called only when the activity resumes from the stopped state, so you can use it to perform
special restoration work that might be necessary only if the activity was previously stopped, but not
destroyed.
It's uncommon that an app needs to use onRestart() to restore the activity's state, so there aren't any
guidelines for this method that apply to the general population of apps. However, because your onStop()
method should essentially clean up all your activity's resources, you'll need to re-instantiate them when the
activity restarts. Yet, you also need to instantiate them when your activity is created for the first time (when
there's no existing instance of the activity). For this reason, you should usually use the onStart()
callback method as the counterpart to the onStop() method, because the system calls onStart() both
when it creates your activity and when it restarts the activity from the stopped state.
For example, because the user might have been away from your app for a long time before coming back it,
the onStart() method is a good place to verify that required system features are enabled:

Stopping and Restarting an Activity

68
Content from developer.android.com/training/basics/activity-lifecycle/stopping.html through their Creative Commons Attribution 2.5 license

@Override
protected void onStart() {
 super.onStart(); // Always call the superclass method first

 // The activity is either being restarted or started for the first time
 // so this is where we should make sure that GPS is enabled
 LocationManager locationManager =
 (LocationManager) getSystemService(Context.LOCATION_SERVICE);
 boolean gpsEnabled = locationManager.isProviderEnabled(LocationManager.GPS_PROVIDER);

 if (!gpsEnabled) {
 // Create a dialog here that requests the user to enable GPS, and use an intent
 // with the android.provider.Settings.ACTION_LOCATION_SOURCE_SETTINGS action
 // to take the user to the Settings screen to enable GPS when they click "OK"
 }
}

@Override
protected void onRestart() {
 super.onRestart(); // Always call the superclass method first

 // Activity being restarted from stopped state
}

When the system destroys your activity, it calls the onDestroy() method for your Activity. Because
you should generally have released most of your resources with onStop(), by the time you receive a call
to onDestroy(), there's not much that most apps need to do. This method is your last chance to clean
out resources that could lead to a memory leak, so you should be sure that additional threads are
destroyed and other long-running actions like method tracing are also stopped.

Recreating an Activity

69
Content from developer.android.com/training/basics/activity-lifecycle/recreating.html through their Creative Commons Attribution 2.5 license

20. Recreating an Activity
Content from developer.android.com/training/basics/activity-lifecycle/recreating.html through their Creative Commons Attribution 2.5 license

There are a few scenarios in which your activity is
destroyed due to normal app behavior, such as
when the user presses the Back button or your
activity signals its own destruction by calling
finish(). The system may also destroy your
activity if it's currently stopped and hasn't been
used in a long time or the foreground activity
requires more resources so the system must shut
down background processes to recover memory.
When your activity is destroyed because the user
presses Back or the activity finishes itself, the
system's concept of that Activity instance is
gone forever because the behavior indicates the activity is no longer needed. However, if the system
destroys the activity due to system constraints (rather than normal app behavior), then although the actual
Activity instance is gone, the system remembers that it existed such that if the user navigates back to
it, the system creates a new instance of the activity using a set of saved data that describes the state of
the activity when it was destroyed. The saved data that the system uses to restore the previous state is
called the "instance state" and is a collection of key-value pairs stored in a Bundle object.
Caution: Your activity will be destroyed and recreated each time the user rotates the screen. When the
screen changes orientation, the system destroys and recreates the foreground activity because the screen
configuration has changed and your activity might need to load alternative resources (such as the layout).
By default, the system uses the Bundle instance state to save information about each View object in your
activity layout (such as the text value entered into an EditText object). So, if your activity instance is
destroyed and recreated, the state of the layout is restored to its previous state with no code required by
you. However, your activity might have more state information that you'd like to restore, such as member
variables that track the user's progress in the activity.
Note: In order for the Android system to restore the state of the views in your activity, each view must
have a unique ID, supplied by the android:id attribute.
To save additional data about the activity state, you must override the onSaveInstanceState()
callback method. The system calls this method when the user is leaving your activity and passes it the
Bundle object that will be saved in the event that your activity is destroyed unexpectedly. If the system
must recreate the activity instance later, it passes the same Bundle object to both the
onRestoreInstanceState() and onCreate() methods.

Figure 2. As the system begins to stop your activity, it calls onSaveInstanceState() (1) so you can
specify additional state data you'd like to save in case the Activity instance must be recreated. If the
activity is destroyed and the same instance must be recreated, the system passes the state data defined
at (1) to both the onCreate() method (2) and the onRestoreInstanceState() method (3).

This lesson teaches you to
• Save Your Activity State
• Restore Your Activity State
You should also read

• Supporting Different Screens
• Handling Runtime Changes
• Activities

Recreating an Activity

70
Content from developer.android.com/training/basics/activity-lifecycle/recreating.html through their Creative Commons Attribution 2.5 license

Save Your Activity State
As your activity begins to stop, the system calls onSaveInstanceState() so your activity can save
state information with a collection of key-value pairs. The default implementation of this method saves
information about the state of the activity's view hierarchy, such as the text in an EditText widget or the
scroll position of a ListView.
To save additional state information for your activity, you must implement onSaveInstanceState() and
add key-value pairs to the Bundle object. For example:

static final String STATE_SCORE = "playerScore";
static final String STATE_LEVEL = "playerLevel";
...

@Override
public void onSaveInstanceState(Bundle savedInstanceState) {
 // Save the user's current game state
 savedInstanceState.putInt(STATE_SCORE, mCurrentScore);
 savedInstanceState.putInt(STATE_LEVEL, mCurrentLevel);

 // Always call the superclass so it can save the view hierarchy state
 super.onSaveInstanceState(savedInstanceState);
}

Caution: Always call the superclass implementation of onSaveInstanceState() so the default
implementation can save the state of the view hierarchy.

Restore Your Activity State
When your activity is recreated after it was previously destroyed, you can recover your saved state from
the Bundle that the system passes your activity. Both the onCreate() and
onRestoreInstanceState() callback methods receive the same Bundle that contains the instance
state information.
Because the onCreate() method is called whether the system is creating a new instance of your activity
or recreating a previous one, you must check whether the state Bundle is null before you attempt to read
it. If it is null, then the system is creating a new instance of the activity, instead of restoring a previous one
that was destroyed.
For example, here's how you can restore some state data in onCreate():

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState); // Always call the superclass first

 // Check whether we're recreating a previously destroyed instance
 if (savedInstanceState != null) {
 // Restore value of members from saved state
 mCurrentScore = savedInstanceState.getInt(STATE_SCORE);
 mCurrentLevel = savedInstanceState.getInt(STATE_LEVEL);
 } else {
 // Probably initialize members with default values for a new instance
 }
 ...
}

Instead of restoring the state during onCreate() you may choose to implement
onRestoreInstanceState(), which the system calls after the onStart() method. The system calls

Recreating an Activity

71
Content from developer.android.com/training/basics/activity-lifecycle/recreating.html through their Creative Commons Attribution 2.5 license

onRestoreInstanceState() only if there is a saved state to restore, so you do not need to check
whether the Bundle is null:

public void onRestoreInstanceState(Bundle savedInstanceState) {
 // Always call the superclass so it can restore the view hierarchy
 super.onRestoreInstanceState(savedInstanceState);

 // Restore state members from saved instance
 mCurrentScore = savedInstanceState.getInt(STATE_SCORE);
 mCurrentLevel = savedInstanceState.getInt(STATE_LEVEL);
}

Caution: Always call the superclass implementation of onRestoreInstanceState() so the default
implementation can restore the state of the view hierarchy.
To learn more about recreating your activity due to a restart event at runtime (such as when the screen
rotates), read Handling Runtime Changes.

Building a Dynamic UI with Fragments

72
Content from developer.android.com/training/basics/fragments/index.html through their Creative Commons Attribution 2.5 license

21. Building a Dynamic UI with Fragments
Content from developer.android.com/training/basics/fragments/index.html through their Creative Commons Attribution 2.5 license

To create a dynamic and multi-pane user interface
on Android, you need to encapsulate UI
components and activity behaviors into modules
that you can swap into and out of your activities.
You can create these modules with the Fragment
class, which behaves somewhat like a nested
activity that can define its own layout and manage
its own lifecycle.
When a fragment specifies its own layout, it can
be configured in different combinations with other
fragments inside an activity to modify your layout
configuration for different screen sizes (a small
screen might show one fragment at a time, but a
large screen can show two or more).
This class shows you how to create a dynamic
user experience with fragments and optimize your
app's user experience for devices with different
screen sizes, all while continuing to support
devices running versions as old as Android 1.6.

Lessons
Creating a Fragment

Learn how to build a fragment and implement basic behaviors within its callback methods.
Building a Flexible UI

Learn how to build your app with layouts that provide different fragment configurations for
different screens.

Communicating with Other Fragments
Learn how to set up communication paths from a fragment to the activity and other fragments.

Dependencies and prerequisites

• Basic knowledge of the Activity
lifecycle (see Managing the Activity
Lifecycle)

• Experience building XML layouts

You should also read

• Fragments
• Supporting Tablets and Handsets

Try it out
Download the sample
FragmentBasics.zip

Creating a Fragment

73
Content from developer.android.com/training/basics/fragments/creating.html through their Creative Commons Attribution 2.5 license

22. Creating a Fragment
Content from developer.android.com/training/basics/fragments/creating.html through their Creative Commons Attribution 2.5 license

You can think of a fragment as a modular section
of an activity, which has its own lifecycle, receives
its own input events, and which you can add or
remove while the activity is running (sort of like a
"sub activity" that you can reuse in different
activities). This lesson shows how to extend the
Fragment class using the Support Library so
your app remains compatible with devices running
system versions as low as Android 1.6.
Note: If you decide that the minimum API level
your app requires is 11 or higher, you don't need
to use the Support Library and can instead use
the framework's built in Fragment class and
related APIs. Just be aware that this lesson is
focused on using the APIs from the Support Library, which use a specific package signature and
sometimes slightly different API names than the versions included in the platform.
Before you begin this lesson, you must set up your Android project to use the Support Library. If you have
not used the Support Library before, set up your project to use the v4 library by following the Support
Library Setup document. However, you can also include the action bar in your activities by instead using
the v7 appcompat library, which is compatible with Android 2.1 (API level 7) and also includes the
Fragment APIs.

Create a Fragment Class
To create a fragment, extend the Fragment class, then override key lifecycle methods to insert your app
logic, similar to the way you would with an Activity class.
One difference when creating a Fragment is that you must use the onCreateView() callback to define
the layout. In fact, this is the only callback you need in order to get a fragment running. For example,
here's a simple fragment that specifies its own layout:

import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.ViewGroup;

public class ArticleFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 // Inflate the layout for this fragment
 return inflater.inflate(R.layout.article_view, container, false);
 }
}

Just like an activity, a fragment should implement other lifecycle callbacks that allow you to manage its
state as it is added or removed from the activity and as the activity transitions between its lifecycle states.
For instance, when the activity's onPause() method is called, any fragments in the activity also receive a
call to onPause().
More information about the fragment lifecycle and callback methods is available in the Fragments
developer guide.

This lesson teaches you to
• Create a Fragment Class
• Add a Fragment to an Activity using XML
You should also read

• Fragments

Try it out
Download the sample
FragmentBasics.zip

Creating a Fragment

74
Content from developer.android.com/training/basics/fragments/creating.html through their Creative Commons Attribution 2.5 license

Add a Fragment to an Activity using XML
While fragments are reusable, modular UI components, each instance of a Fragment class must be
associated with a parent FragmentActivity. You can achieve this association by defining each
fragment within your activity layout XML file.
Note: FragmentActivity is a special activity provided in the Support Library to handle fragments on
system versions older than API level 11. If the lowest system version you support is API level 11 or higher,
then you can use a regular Activity.
Here is an example layout file that adds two fragments to an activity when the device screen is considered
"large" (specified by the large qualifier in the directory name).
res/layout-large/news_articles.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <fragment android:name="com.example.android.fragments.HeadlinesFragment"
 android:id="@+id/headlines_fragment"
 android:layout_weight="1"
 android:layout_width="0dp"
 android:layout_height="match_parent" />

 <fragment android:name="com.example.android.fragments.ArticleFragment"
 android:id="@+id/article_fragment"
 android:layout_weight="2"
 android:layout_width="0dp"
 android:layout_height="match_parent" />

</LinearLayout>

Tip: For more about creating layouts for different screen sizes, read Supporting Different Screen Sizes.
Then apply the layout to your activity:

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class MainActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.news_articles);
 }
}

If you're using the v7 appcompat library, your activity should instead extend ActionBarActivity, which
is a subclass of FragmentActivity (for more information, read Adding the Action Bar).
Note: When you add a fragment to an activity layout by defining the fragment in the layout XML file, you
cannot remove the fragment at runtime. If you plan to swap your fragments in and out during user
interaction, you must add the fragment to the activity when the activity first starts, as shown in the next
lesson.

Building a Flexible UI

75
Content from developer.android.com/training/basics/fragments/fragment-ui.html through their Creative Commons Attribution 2.5 license

23. Building a Flexible UI
Content from developer.android.com/training/basics/fragments/fragment-ui.html through their Creative Commons Attribution 2.5 license

When designing your application to support a wide
range of screen sizes, you can reuse your
fragments in different layout configurations to
optimize the user experience based on the
available screen space.

For example, on a handset device it might be
appropriate to display just one fragment at a time
for a single-pane user interface. Conversely, you
may want to set fragments side-by-side on a
tablet which has a wider screen size to display
more information to the user.

Figure 1. Two fragments, displayed in different configurations for the same activity on different screen
sizes. On a large screen, both fragments fit side by side, but on a handset device, only one fragment fits at
a time so the fragments must replace each other as the user navigates.
The FragmentManager class provides methods that allow you to add, remove, and replace fragments to
an activity at runtime in order to create a dynamic experience.

Add a Fragment to an Activity at Runtime
Rather than defining the fragments for an activity in the layout file—as shown in the previous lesson with
the <fragment> element—you can add a fragment to the activity during the activity runtime. This is
necessary if you plan to change fragments during the life of the activity.
To perform a transaction such as add or remove a fragment, you must use the FragmentManager to
create a FragmentTransaction, which provides APIs to add, remove, replace, and perform other
fragment transactions.
If your activity allows the fragments to be removed and replaced, you should add the initial fragment(s) to
the activity during the activity's onCreate() method.
An important rule when dealing with fragments—especially those that you add at runtime—is that the
fragment must have a container View in the layout in which the fragment's layout will reside.
The following layout is an alternative to the layout shown in the previous lesson that shows only one
fragment at a time. In order to replace one fragment with another, the activity's layout includes an empty
FrameLayout that acts as the fragment container.

This lesson teaches you to
• Add a Fragment to an Activity at Runtime
• Replace One Fragment with Another
You should also read

• Fragments
• Supporting Tablets and Handsets

Try it out
Download the sample
FragmentBasics.zip

Building a Flexible UI

76
Content from developer.android.com/training/basics/fragments/fragment-ui.html through their Creative Commons Attribution 2.5 license

Notice that the filename is the same as the layout file in the previous lesson, but the layout directory does
not have the large qualifier, so this layout is used when the device screen is smaller than large because
the screen does not fit both fragments at the same time.
res/layout/news_articles.xml:

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/fragment_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

Inside your activity, call getSupportFragmentManager() to get a FragmentManager using the
Support Library APIs. Then call beginTransaction() to create a FragmentTransaction and call
add() to add a fragment.
You can perform multiple fragment transaction for the activity using the same FragmentTransaction.
When you're ready to make the changes, you must call commit().
For example, here's how to add a fragment to the previous layout:

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class MainActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.news_articles);

 // Check that the activity is using the layout version with
 // the fragment_container FrameLayout
 if (findViewById(R.id.fragment_container) != null) {

 // However, if we're being restored from a previous state,
 // then we don't need to do anything and should return or else
 // we could end up with overlapping fragments.
 if (savedInstanceState != null) {
 return;
 }

 // Create a new Fragment to be placed in the activity layout
 HeadlinesFragment firstFragment = new HeadlinesFragment();

 // In case this activity was started with special instructions from an
 // Intent, pass the Intent's extras to the fragment as arguments
 firstFragment.setArguments(getIntent().getExtras());

 // Add the fragment to the 'fragment_container' FrameLayout
 getSupportFragmentManager().beginTransaction()
 .add(R.id.fragment_container, firstFragment).commit();
 }
 }
}

Because the fragment has been added to the FrameLayout container at runtime—instead of defining it in
the activity's layout with a <fragment> element—the activity can remove the fragment and replace it with
a different one.

Replace One Fragment with Another

Building a Flexible UI

77
Content from developer.android.com/training/basics/fragments/fragment-ui.html through their Creative Commons Attribution 2.5 license

The procedure to replace a fragment is similar to adding one, but requires the replace() method instead
of add().
Keep in mind that when you perform fragment transactions, such as replace or remove one, it's often
appropriate to allow the user to navigate backward and "undo" the change. To allow the user to navigate
backward through the fragment transactions, you must call addToBackStack() before you commit the
FragmentTransaction.
Note: When you remove or replace a fragment and add the transaction to the back stack, the fragment
that is removed is stopped (not destroyed). If the user navigates back to restore the fragment, it restarts. If
you do not add the transaction to the back stack, then the fragment is destroyed when removed or
replaced.
Example of replacing one fragment with another:

// Create fragment and give it an argument specifying the article it should show
ArticleFragment newFragment = new ArticleFragment();
Bundle args = new Bundle();
args.putInt(ArticleFragment.ARG_POSITION, position);
newFragment.setArguments(args);

FragmentTransaction transaction = getSupportFragmentManager().beginTransaction();

// Replace whatever is in the fragment_container view with this fragment,
// and add the transaction to the back stack so the user can navigate back
transaction.replace(R.id.fragment_container, newFragment);
transaction.addToBackStack(null);

// Commit the transaction
transaction.commit();

The addToBackStack() method takes an optional string parameter that specifies a unique name for the
transaction. The name isn't needed unless you plan to perform advanced fragment operations using the
FragmentManager.BackStackEntry APIs.

Communicating with Other Fragments

78
Content from developer.android.com/training/basics/fragments/communicating.html through their Creative Commons Attribution 2.5 license

24. Communicating with Other Fragments
Content from developer.android.com/training/basics/fragments/communicating.html through their Creative Commons Attribution 2.5 license

In order to reuse the Fragment UI components,
you should build each as a completely self-
contained, modular component that defines its
own layout and behavior. Once you have defined
these reusable Fragments, you can associate
them with an Activity and connect them with the
application logic to realize the overall composite
UI.
Often you will want one Fragment to communicate
with another, for example to change the content
based on a user event. All Fragment-to-Fragment
communication is done through the associated
Activity. Two Fragments should never
communicate directly.

Define an Interface
To allow a Fragment to communicate up to its Activity, you can define an interface in the Fragment class
and implement it within the Activity. The Fragment captures the interface implementation during its
onAttach() lifecycle method and can then call the Interface methods in order to communicate with the
Activity.
Here is an example of Fragment to Activity communication:

public class HeadlinesFragment extends ListFragment {
 OnHeadlineSelectedListener mCallback;

 // Container Activity must implement this interface
 public interface OnHeadlineSelectedListener {
 public void onArticleSelected(int position);
 }

 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);

 // This makes sure that the container activity has implemented
 // the callback interface. If not, it throws an exception
 try {
 mCallback = (OnHeadlineSelectedListener) activity;
 } catch (ClassCastException e) {
 throw new ClassCastException(activity.toString()
 + " must implement OnHeadlineSelectedListener");
 }
 }

 ...
}

Now the fragment can deliver messages to the activity by calling the onArticleSelected() method (or
other methods in the interface) using the mCallback instance of the OnHeadlineSelectedListener
interface.

This lesson teaches you to
• Define an Interface
• Implement the Interface
• Deliver a Message to a Fragment
You should also read

• Fragments

Try it out
Download the sample
FragmentBasics.zip

Communicating with Other Fragments

79
Content from developer.android.com/training/basics/fragments/communicating.html through their Creative Commons Attribution 2.5 license

For example, the following method in the fragment is called when the user clicks on a list item. The
fragment uses the callback interface to deliver the event to the parent activity.

 @Override
 public void onListItemClick(ListView l, View v, int position, long id) {
 // Send the event to the host activity
 mCallback.onArticleSelected(position);
 }

Implement the Interface
In order to receive event callbacks from the fragment, the activity that hosts it must implement the interface
defined in the fragment class.
For example, the following activity implements the interface from the above example.

public static class MainActivity extends Activity
 implements HeadlinesFragment.OnHeadlineSelectedListener{
 ...

 public void onArticleSelected(int position) {
 // The user selected the headline of an article from the HeadlinesFragment
 // Do something here to display that article
 }
}

Deliver a Message to a Fragment
The host activity can deliver messages to a fragment by capturing the Fragment instance with
findFragmentById(), then directly call the fragment's public methods.
For instance, imagine that the activity shown above may contain another fragment that's used to display
the item specified by the data returned in the above callback method. In this case, the activity can pass the
information received in the callback method to the other fragment that will display the item:

Communicating with Other Fragments

80
Content from developer.android.com/training/basics/fragments/communicating.html through their Creative Commons Attribution 2.5 license

public static class MainActivity extends Activity
 implements HeadlinesFragment.OnHeadlineSelectedListener{
 ...

 public void onArticleSelected(int position) {
 // The user selected the headline of an article from the HeadlinesFragment
 // Do something here to display that article

 ArticleFragment articleFrag = (ArticleFragment)
 getSupportFragmentManager().findFragmentById(R.id.article_fragment);

 if (articleFrag != null) {
 // If article frag is available, we're in two-pane layout...

 // Call a method in the ArticleFragment to update its content
 articleFrag.updateArticleView(position);
 } else {
 // Otherwise, we're in the one-pane layout and must swap frags...

 // Create fragment and give it an argument for the selected article
 ArticleFragment newFragment = new ArticleFragment();
 Bundle args = new Bundle();
 args.putInt(ArticleFragment.ARG_POSITION, position);
 newFragment.setArguments(args);

 FragmentTransaction transaction = getSupportFragmentManager().beginTransaction();

 // Replace whatever is in the fragment_container view with this fragment,
 // and add the transaction to the back stack so the user can navigate back
 transaction.replace(R.id.fragment_container, newFragment);
 transaction.addToBackStack(null);

 // Commit the transaction
 transaction.commit();
 }
 }
}

Saving Data

81
Content from developer.android.com/training/basics/data-storage/index.html through their Creative Commons Attribution 2.5 license

25. Saving Data
Content from developer.android.com/training/basics/data-storage/index.html through their Creative Commons Attribution 2.5 license

Most Android apps need to save data, even if only
to save information about the app state during
onPause() so the user's progress is not lost.
Most non-trivial apps also need to save user
settings, and some apps must manage large
amounts of information in files and databases.
This class introduces you to the principal data
storage options in Android, including:

• Saving key-value pairs of simple data
types in a shared preferences file

• Saving arbitrary files in Android's file
system

• Using databases managed by SQLite

Lessons
Saving Key-Value Sets

Learn to use a shared preferences file for storing small amounts of information in key-value pairs.
Saving Files

Learn to save a basic file, such as to store long sequences of data that are generally read in
order.

Saving Data in SQL Databases
Learn to use a SQLite database to read and write structured data.

Dependencies and prerequisites

• Android 1.6 (API Level 4) or higher
• Familiarity with Map key-value

collections
• Familiarity with the Java file I/O API
• Familiarity with SQL databases

You should also read

• Storage Options

Saving Key-Value Sets

82
Content from developer.android.com/training/basics/data-storage/shared-preferences.html through their Creative Commons Attribution 2.5 license

26. Saving Key-Value Sets
Content from developer.android.com/training/basics/data-storage/shared-preferences.html through their Creative Commons Attribution 2.5 license

If you have a relatively small collection of key-
values that you'd like to save, you should use the
SharedPreferences APIs. A
SharedPreferences object points to a file
containing key-value pairs and provides simple
methods to read and write them. Each
SharedPreferences file is managed by the
framework and can be private or shared.
This class shows you how to use the
SharedPreferences APIs to store and retrieve
simple values.
Note: The SharedPreferences APIs are only for reading and writing key-value pairs and you should not
confuse them with the Preference APIs, which help you build a user interface for your app settings
(although they use SharedPreferences as their implementation to save the app settings). For
information about using the Preference APIs, see the Settings guide.

Get a Handle to a SharedPreferences
You can create a new shared preference file or access an existing one by calling one of two methods:

• getSharedPreferences() — Use this if you need multiple shared preference files identified
by name, which you specify with the first parameter. You can call this from any Context in your
app.

• getPreferences() — Use this from an Activity if you need to use only one shared
preference file for the activity. Because this retrieves a default shared preference file that belongs
to the activity, you don't need to supply a name.

For example, the following code is executed inside a Fragment. It accesses the shared preferences file
that's identified by the resource string R.string.preference_file_key and opens it using the private
mode so the file is accessible by only your app.

Context context = getActivity();
SharedPreferences sharedPref = context.getSharedPreferences(
 getString(R.string.preference_file_key), Context.MODE_PRIVATE);

When naming your shared preference files, you should use a name that's uniquely identifiable to your app,
such as "com.example.myapp.PREFERENCE_FILE_KEY"
Alternatively, if you need just one shared preference file for your activity, you can use the
getPreferences() method:

SharedPreferences sharedPref = getActivity().getPreferences(Context.MODE_PRIVATE);

Caution: If you create a shared preferences file with MODE_WORLD_READABLE or
MODE_WORLD_WRITEABLE, then any other apps that know the file identifier can access your data.

Write to Shared Preferences
To write to a shared preferences file, create a SharedPreferences.Editor by calling edit() on your
SharedPreferences.

This lesson teaches you to
• Get a Handle to a SharedPreferences
• Write to Shared Preferences
• Read from Shared Preferences
You should also read

• Using Shared Preferences

Saving Key-Value Sets

83
Content from developer.android.com/training/basics/data-storage/shared-preferences.html through their Creative Commons Attribution 2.5 license

Pass the keys and values you want to write with methods such as putInt() and putString(). Then
call commit() to save the changes. For example:

SharedPreferences sharedPref = getActivity().getPreferences(Context.MODE_PRIVATE);
SharedPreferences.Editor editor = sharedPref.edit();
editor.putInt(getString(R.string.saved_high_score), newHighScore);
editor.commit();

Read from Shared Preferences
To retrieve values from a shared preferences file, call methods such as getInt() and getString(),
providing the key for the value you want, and optionally a default value to return if the key isn't present. For
example:

SharedPreferences sharedPref = getActivity().getPreferences(Context.MODE_PRIVATE);
int defaultValue = getResources().getInteger(R.string.saved_high_score_default);
long highScore = sharedPref.getInt(getString(R.string.saved_high_score), defaultValue);

Saving Files

84
Content from developer.android.com/training/basics/data-storage/files.html through their Creative Commons Attribution 2.5 license

27. Saving Files
Content from developer.android.com/training/basics/data-storage/files.html through their Creative Commons Attribution 2.5 license

Android uses a file system that's similar to disk-
based file systems on other platforms. This lesson
describes how to work with the Android file system
to read and write files with the File APIs.
A File object is suited to reading or writing large
amounts of data in start-to-finish order without
skipping around. For example, it's good for image
files or anything exchanged over a network.
This lesson shows how to perform basic file-
related tasks in your app. The lesson assumes
that you are familiar with the basics of the Linux
file system and the standard file input/output APIs
in java.io.

Choose Internal or External
Storage
All Android devices have two file storage areas: "internal" and "external" storage. These names come from
the early days of Android, when most devices offered built-in non-volatile memory (internal storage), plus a
removable storage medium such as a micro SD card (external storage). Some devices divide the
permanent storage space into "internal" and "external" partitions, so even without a removable storage
medium, there are always two storage spaces and the API behavior is the same whether the external
storage is removable or not. The following lists summarize the facts about each storage space.
Internal storage:

• It's always available.
• Files saved here are accessible by only your app by default.
• When the user uninstalls your app, the system removes all your app's files from internal storage.

Internal storage is best when you want to be sure that neither the user nor other apps can access your
files.
External storage:

• It's not always available, because the user can mount the external storage as USB storage and in
some cases remove it from the device.

• It's world-readable, so files saved here may be read outside of your control.
• When the user uninstalls your app, the system removes your app's files from here only if you

save them in the directory from getExternalFilesDir().

External storage is the best place for files that don't require access restrictions and for files that you want
to share with other apps or allow the user to access with a computer.
Tip: Although apps are installed onto the internal storage by default, you can specify the
android:installLocation attribute in your manifest so your app may be installed on external storage.
Users appreciate this option when the APK size is very large and they have an external storage space
that's larger than the internal storage. For more information, see App Install Location.

This lesson teaches you to
• Choose Internal or External Storage
• Obtain Permissions for External Storage
• Save a File on Internal Storage
• Save a File on External Storage
• Query Free Space
• Delete a File
You should also read

• Using the Internal Storage
• Using the External Storage

Saving Files

85
Content from developer.android.com/training/basics/data-storage/files.html through their Creative Commons Attribution 2.5 license

Obtain Permissions for External Storage
To write to the external storage, you must request the WRITE_EXTERNAL_STORAGE permission in your
manifest file:

<manifest ...>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 ...
</manifest>

Caution: Currently, all apps have the ability to read the external storage without a special permission.
However, this will change in a future release. If your app needs to read the external storage (but not write
to it), then you will need to declare the READ_EXTERNAL_STORAGE permission. To ensure that your app
continues to work as expected, you should declare this permission now, before the change takes effect.

<manifest ...>
 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
 ...
</manifest>

However, if your app uses the WRITE_EXTERNAL_STORAGE permission, then it implicitly has permission
to read the external storage as well.
You don’t need any permissions to save files on the internal storage. Your application always has
permission to read and write files in its internal storage directory.

Save a File on Internal Storage
When saving a file to internal storage, you can acquire the appropriate directory as a File by calling one
of two methods:
getFilesDir()

Returns a File representing an internal directory for your app.
getCacheDir()

Returns a File representing an internal directory for your app's temporary cache files. Be sure to
delete each file once it is no longer needed and implement a reasonable size limit for the amount
of memory you use at any given time, such as 1MB. If the system begins running low on storage,
it may delete your cache files without warning.

To create a new file in one of these directories, you can use the File() constructor, passing the File
provided by one of the above methods that specifies your internal storage directory. For example:

File file = new File(context.getFilesDir(), filename);

Alternatively, you can call openFileOutput() to get a FileOutputStream that writes to a file in your
internal directory. For example, here's how to write some text to a file:

Saving Files

86
Content from developer.android.com/training/basics/data-storage/files.html through their Creative Commons Attribution 2.5 license

String filename = "myfile";
String string = "Hello world!";
FileOutputStream outputStream;

try {
 outputStream = openFileOutput(filename, Context.MODE_PRIVATE);
 outputStream.write(string.getBytes());
 outputStream.close();
} catch (Exception e) {
 e.printStackTrace();
}

Or, if you need to cache some files, you should instead use createTempFile(). For example, the
following method extracts the file name from a URL and creates a file with that name in your app's internal
cache directory:

public File getTempFile(Context context, String url) {
 File file;
 try {
 String fileName = Uri.parse(url).getLastPathSegment();
 file = File.createTempFile(fileName, null, context.getCacheDir());
 catch (IOException e) {
 // Error while creating file
 }
 return file;
}

Note: Your app's internal storage directory is specified by your app's package name in a special location
of the Android file system. Technically, another app can read your internal files if you set the file mode to
be readable. However, the other app would also need to know your app package name and file names.
Other apps cannot browse your internal directories and do not have read or write access unless you
explicitly set the files to be readable or writable. So as long as you use MODE_PRIVATE for your files on
the internal storage, they are never accessible to other apps.

Save a File on External Storage
Because the external storage may be unavailable—such as when the user has mounted the storage to a
PC or has removed the SD card that provides the external storage—you should always verify that the
volume is available before accessing it. You can query the external storage state by calling
getExternalStorageState(). If the returned state is equal to MEDIA_MOUNTED, then you can read
and write your files. For example, the following methods are useful to determine the storage availability:

Saving Files

87
Content from developer.android.com/training/basics/data-storage/files.html through their Creative Commons Attribution 2.5 license

/* Checks if external storage is available for read and write */
public boolean isExternalStorageWritable() {
 String state = Environment.getExternalStorageState();
 if (Environment.MEDIA_MOUNTED.equals(state)) {
 return true;
 }
 return false;
}

/* Checks if external storage is available to at least read */
public boolean isExternalStorageReadable() {
 String state = Environment.getExternalStorageState();
 if (Environment.MEDIA_MOUNTED.equals(state) ||
 Environment.MEDIA_MOUNTED_READ_ONLY.equals(state)) {
 return true;
 }
 return false;
}

Although the external storage is modifiable by the user and other apps, there are two categories of files
you might save here:
Public files

Files that should be freely available to other apps and to the user. When the user uninstalls your
app, these files should remain available to the user.
For example, photos captured by your app or other downloaded files.

Private files
Files that rightfully belong to your app and should be deleted when the user uninstalls your app.
Although these files are technically accessible by the user and other apps because they are on
the external storage, they are files that realistically don't provide value to the user outside your
app. When the user uninstalls your app, the system deletes all files in your app's external private
directory.
For example, additional resources downloaded by your app or temporary media files.

If you want to save public files on the external storage, use the
getExternalStoragePublicDirectory() method to get a File representing the appropriate
directory on the external storage. The method takes an argument specifying the type of file you want to
save so that they can be logically organized with other public files, such as DIRECTORY_MUSIC or
DIRECTORY_PICTURES. For example:

public File getAlbumStorageDir(String albumName) {
 // Get the directory for the user's public pictures directory.
 File file = new File(Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_PICTURES), albumName);
 if (!file.mkdirs()) {
 Log.e(LOG_TAG, "Directory not created");
 }
 return file;
}

If you want to save files that are private to your app, you can acquire the appropriate directory by calling
getExternalFilesDir() and passing it a name indicating the type of directory you'd like. Each

Saving Files

88
Content from developer.android.com/training/basics/data-storage/files.html through their Creative Commons Attribution 2.5 license

directory created this way is added to a parent directory that encapsulates all your app's external storage
files, which the system deletes when the user uninstalls your app.
For example, here's a method you can use to create a directory for an individual photo album:

public File getAlbumStorageDir(Context context, String albumName) {
 // Get the directory for the app's private pictures directory.
 File file = new File(context.getExternalFilesDir(
 Environment.DIRECTORY_PICTURES), albumName);
 if (!file.mkdirs()) {
 Log.e(LOG_TAG, "Directory not created");
 }
 return file;
}

If none of the pre-defined sub-directory names suit your files, you can instead call
getExternalFilesDir() and pass null. This returns the root directory for your app's private directory
on the external storage.
Remember that getExternalFilesDir() creates a directory inside a directory that is deleted when the
user uninstalls your app. If the files you're saving should remain available after the user uninstalls your
app—such as when your app is a camera and the user will want to keep the photos—you should instead
use getExternalStoragePublicDirectory().
Regardless of whether you use getExternalStoragePublicDirectory() for files that are shared or
getExternalFilesDir() for files that are private to your app, it's important that you use directory
names provided by API constants like DIRECTORY_PICTURES. These directory names ensure that the
files are treated properly by the system. For instance, files saved in DIRECTORY_RINGTONES are
categorized by the system media scanner as ringtones instead of music.

Query Free Space
If you know ahead of time how much data you're saving, you can find out whether sufficient space is
available without causing an IOException by calling getFreeSpace() or getTotalSpace(). These
methods provide the current available space and the total space in the storage volume, respectively. This
information is also useful to avoid filling the storage volume above a certain threshold.
However, the system does not guarantee that you can write as many bytes as are indicated by
getFreeSpace(). If the number returned is a few MB more than the size of the data you want to save, or
if the file system is less than 90% full, then it's probably safe to proceed. Otherwise, you probably shouldn't
write to storage.
Note: You aren't required to check the amount of available space before you save your file. You can
instead try writing the file right away, then catch an IOException if one occurs. You may need to do this
if you don't know exactly how much space you need. For example, if you change the file's encoding before
you save it by converting a PNG image to JPEG, you won't know the file's size beforehand.

Delete a File
You should always delete files that you no longer need. The most straightforward way to delete a file is to
have the opened file reference call delete() on itself.

myFile.delete();

If the file is saved on internal storage, you can also ask the Context to locate and delete a file by calling
deleteFile():

myContext.deleteFile(fileName);

Saving Files

89
Content from developer.android.com/training/basics/data-storage/files.html through their Creative Commons Attribution 2.5 license

Note: When the user uninstalls your app, the Android system deletes the following:

• All files you saved on internal storage
• All files you saved on external storage using getExternalFilesDir().

However, you should manually delete all cached files created with getCacheDir() on a regular basis
and also regularly delete other files you no longer need.

Saving Data in SQL Databases

90
Content from developer.android.com/training/basics/data-storage/databases.html through their Creative Commons Attribution 2.5 license

28. Saving Data in SQL Databases
Content from developer.android.com/training/basics/data-storage/databases.html through their Creative Commons Attribution 2.5 license

Saving data to a database is ideal for repeating or
structured data, such as contact information. This
class assumes that you are familiar with SQL
databases in general and helps you get started
with SQLite databases on Android. The APIs you'll
need to use a database on Android are available
in the android.database.sqlite package.

Define a Schema and Contract
One of the main principles of SQL databases is
the schema: a formal declaration of how the
database is organized. The schema is reflected in
the SQL statements that you use to create your
database. You may find it helpful to create a
companion class, known as a contract class,
which explicitly specifies the layout of your schema in a systematic and self-documenting way.
A contract class is a container for constants that define names for URIs, tables, and columns. The contract
class allows you to use the same constants across all the other classes in the same package. This lets you
change a column name in one place and have it propagate throughout your code.
A good way to organize a contract class is to put definitions that are global to your whole database in the
root level of the class. Then create an inner class for each table that enumerates its columns.
Note: By implementing the BaseColumns interface, your inner class can inherit a primary key field called
_ID that some Android classes such as cursor adaptors will expect it to have. It's not required, but this can
help your database work harmoniously with the Android framework.
For example, this snippet defines the table name and column names for a single table:

public final class FeedReaderContract {
 // To prevent someone from accidentally instantiating the contract class,
 // give it an empty constructor.
 public FeedReaderContract() {}

 /* Inner class that defines the table contents */
 public static abstract class FeedEntry implements BaseColumns {
 public static final String TABLE_NAME = "entry";
 public static final String COLUMN_NAME_ENTRY_ID = "entryid";
 public static final String COLUMN_NAME_TITLE = "title";
 public static final String COLUMN_NAME_SUBTITLE = "subtitle";
 ...
 }
}

This lesson teaches you to
• Define a Schema and Contract
• Create a Database Using a SQL Helper
• Put Information into a Database
• Read Information from a Database
• Delete Information from a Database
• Update a Database
You should also read

• Using Databases

Saving Data in SQL Databases

91
Content from developer.android.com/training/basics/data-storage/databases.html through their Creative Commons Attribution 2.5 license

Create a Database Using a SQL Helper
Once you have defined how your database looks, you should implement methods that create and maintain
the database and tables. Here are some typical statements that create and delete a table:

private static final String TEXT_TYPE = " TEXT";
private static final String COMMA_SEP = ",";
private static final String SQL_CREATE_ENTRIES =
 "CREATE TABLE " + FeedEntry.TABLE_NAME + " (" +
 FeedEntry._ID + " INTEGER PRIMARY KEY," +
 FeedEntry.COLUMN_NAME_ENTRY_ID + TEXT_TYPE + COMMA_SEP +
 FeedEntry.COLUMN_NAME_TITLE + TEXT_TYPE + COMMA_SEP +
 ... // Any other options for the CREATE command
 ")";

private static final String SQL_DELETE_ENTRIES =
 "DROP TABLE IF EXISTS " + FeedEntry.TABLE_NAME;

Just like files that you save on the device's internal storage, Android stores your database in private disk
space that's associated application. Your data is secure, because by default this area is not accessible to
other applications.
A useful set of APIs is available in the SQLiteOpenHelper class. When you use this class to obtain
references to your database, the system performs the potentially long-running operations of creating and
updating the database only when needed and not during app startup. All you need to do is call
getWritableDatabase() or getReadableDatabase().
Note: Because they can be long-running, be sure that you call getWritableDatabase() or
getReadableDatabase() in a background thread, such as with AsyncTask or IntentService.
To use SQLiteOpenHelper, create a subclass that overrides the onCreate(), onUpgrade() and
onOpen() callback methods. You may also want to implement onDowngrade(), but it's not required.
For example, here's an implementation of SQLiteOpenHelper that uses some of the commands shown
above:

public class FeedReaderDbHelper extends SQLiteOpenHelper {
 // If you change the database schema, you must increment the database version.
 public static final int DATABASE_VERSION = 1;
 public static final String DATABASE_NAME = "FeedReader.db";

 public FeedReaderDbHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(SQL_CREATE_ENTRIES);
 }
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 // This database is only a cache for online data, so its upgrade policy is
 // to simply to discard the data and start over
 db.execSQL(SQL_DELETE_ENTRIES);
 onCreate(db);
 }
 public void onDowngrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 onUpgrade(db, oldVersion, newVersion);
 }
}

To access your database, instantiate your subclass of SQLiteOpenHelper:

Saving Data in SQL Databases

92
Content from developer.android.com/training/basics/data-storage/databases.html through their Creative Commons Attribution 2.5 license

FeedReaderDbHelper mDbHelper = new FeedReaderDbHelper(getContext());

Put Information into a Database
Insert data into the database by passing a ContentValues object to the insert() method:

// Gets the data repository in write mode
SQLiteDatabase db = mDbHelper.getWritableDatabase();

// Create a new map of values, where column names are the keys
ContentValues values = new ContentValues();
values.put(FeedEntry.COLUMN_NAME_ENTRY_ID, id);
values.put(FeedEntry.COLUMN_NAME_TITLE, title);
values.put(FeedEntry.COLUMN_NAME_CONTENT, content);

// Insert the new row, returning the primary key value of the new row
long newRowId;
newRowId = db.insert(
 FeedEntry.TABLE_NAME,
 FeedEntry.COLUMN_NAME_NULLABLE,
 values);

The first argument for insert() is simply the table name. The second argument provides the name of a
column in which the framework can insert NULL in the event that the ContentValues is empty (if you
instead set this to "null", then the framework will not insert a row when there are no values).

Read Information from a Database
To read from a database, use the query() method, passing it your selection criteria and desired columns.
The method combines elements of insert() and update(), except the column list defines the data you
want to fetch, rather than the data to insert. The results of the query are returned to you in a Cursor
object.

Saving Data in SQL Databases

93
Content from developer.android.com/training/basics/data-storage/databases.html through their Creative Commons Attribution 2.5 license

SQLiteDatabase db = mDbHelper.getReadableDatabase();

// Define a projection that specifies which columns from the database
// you will actually use after this query.
String[] projection = {
 FeedEntry._ID,
 FeedEntry.COLUMN_NAME_TITLE,
 FeedEntry.COLUMN_NAME_UPDATED,
 ...
 };

// How you want the results sorted in the resulting Cursor
String sortOrder =
 FeedEntry.COLUMN_NAME_UPDATED + " DESC";

Cursor c = db.query(
 FeedEntry.TABLE_NAME, // The table to query
 projection, // The columns to return
 selection, // The columns for the WHERE clause
 selectionArgs, // The values for the WHERE clause
 null, // don't group the rows
 null, // don't filter by row groups
 sortOrder // The sort order
);

To look at a row in the cursor, use one of the Cursor move methods, which you must always call before
you begin reading values. Generally, you should start by calling moveToFirst(), which places the "read
position" on the first entry in the results. For each row, you can read a column's value by calling one of the
Cursor get methods, such as getString() or getLong(). For each of the get methods, you must pass
the index position of the column you desire, which you can get by calling getColumnIndex() or
getColumnIndexOrThrow(). For example:

cursor.moveToFirst();
long itemId = cursor.getLong(
 cursor.getColumnIndexOrThrow(FeedEntry._ID)
);

Delete Information from a Database
To delete rows from a table, you need to provide selection criteria that identify the rows. The database API
provides a mechanism for creating selection criteria that protects against SQL injection. The mechanism
divides the selection specification into a selection clause and selection arguments. The clause defines the
columns to look at, and also allows you to combine column tests. The arguments are values to test against
that are bound into the clause. Because the result isn't handled the same as a regular SQL statement, it is
immune to SQL injection.

// Define 'where' part of query.
String selection = FeedEntry.COLUMN_NAME_ENTRY_ID + " LIKE ?";
// Specify arguments in placeholder order.
String[] selectionArgs = { String.valueOf(rowId) };
// Issue SQL statement.
db.delete(table_name, selection, selectionArgs);

Update a Database
When you need to modify a subset of your database values, use the update() method.

Saving Data in SQL Databases

94
Content from developer.android.com/training/basics/data-storage/databases.html through their Creative Commons Attribution 2.5 license

Updating the table combines the content values syntax of insert() with the where syntax of delete().

SQLiteDatabase db = mDbHelper.getReadableDatabase();

// New value for one column
ContentValues values = new ContentValues();
values.put(FeedEntry.COLUMN_NAME_TITLE, title);

// Which row to update, based on the ID
String selection = FeedEntry.COLUMN_NAME_ENTRY_ID + " LIKE ?";
String[] selectionArgs = { String.valueOf(rowId) };

int count = db.update(
 FeedReaderDbHelper.FeedEntry.TABLE_NAME,
 values,
 selection,
 selectionArgs);

Interacting with Other Apps

95
Content from developer.android.com/training/basics/intents/index.html through their Creative Commons Attribution 2.5 license

29. Interacting with Other Apps
Content from developer.android.com/training/basics/intents/index.html through their Creative Commons Attribution 2.5 license

An Android app typically has several activities.
Each activity displays a user interface that allows
the user to perform a specific task (such as view a
map or take a photo). To take the user from one
activity to another, your app must use an Intent
to define your app's "intent" to do something.
When you pass an Intent to the system with a
method such as startActivity(), the system
uses the Intent to identify and start the
appropriate app component. Using intents even
allows your app to start an activity that is
contained in a separate app.
An Intent can be explicit in order to start a
specific component (a specific Activity
instance) or implicit in order to start any
component that can handle the intended action
(such as "capture a photo").
This class shows you how to use an Intent to perform some basic interactions with other apps, such as
start another app, receive a result from that app, and make your app able to respond to intents from other
apps.

Lessons
Sending the User to Another App

Shows how you can create implicit intents to launch other apps that can perform an action.
Getting a Result from an Activity

Shows how to start another activity and receive a result from the activity.
Allowing Other Apps to Start Your Activity

Shows how to make activities in your app open for use by other apps by defining intent filters that
declare the implicit intents your app accepts.

Dependencies and prerequisites

• Basic understanding of the Activity
lifecycle (see Managing the Activity
Lifecycle)

You should also read

• Sharing Simple Data
• Sharing Files
• Integrating Application with Intents

(blog post)
• Intents and Intent Filters

Sending the User to Another App

96
Content from developer.android.com/training/basics/intents/sending.html through their Creative Commons Attribution 2.5 license

30. Sending the User to Another App
Content from developer.android.com/training/basics/intents/sending.html through their Creative Commons Attribution 2.5 license

One of Android's most important features is an
app's ability to send the user to another app
based on an "action" it would like to perform. For
example, if your app has the address of a
business that you'd like to show on a map, you
don't have to build an activity in your app that
shows a map. Instead, you can create a request
to view the address using an Intent. The
Android system then starts an app that's able to
show the address on a map.
As explained in the first class, Building Your First
App, you must use intents to navigate between
activities in your own app. You generally do so
with an explicit intent, which defines the exact class name of the component you want to start. However,
when you want to have a separate app perform an action, such as "view a map," you must use an implicit
intent.
This lesson shows you how to create an implicit intent for a particular action, and how to use it to start an
activity that performs the action in another app.

Build an Implicit Intent
Implicit intents do not declare the class name of the component to start, but instead declare an action to
perform. The action specifies the thing you want to do, such as view, edit, send, or get something. Intents
often also include data associated with the action, such as the address you want to view, or the email
message you want to send. Depending on the intent you want to create, the data might be a Uri, one of
several other data types, or the intent might not need data at all.
If your data is a Uri, there's a simple Intent() constructor you can use define the action and data.
For example, here's how to create an intent to initiate a phone call using the Uri data to specify the
telephone number:

Uri number = Uri.parse("tel:5551234");
Intent callIntent = new Intent(Intent.ACTION_DIAL, number);

When your app invokes this intent by calling startActivity(), the Phone app initiates a call to the
given phone number.
Here are a couple other intents and their action and Uri data pairs:

• View a map:

// Map point based on address
Uri location =
Uri.parse("geo:0,0?q=1600+Amphitheatre+Parkway,+Mountain+View,+Californ
ia");
// Or map point based on latitude/longitude
// Uri location = Uri.parse("geo:37.422219,-122.08364?z=14"); // z
param is zoom level

This lesson teaches you to
• Build an Implicit Intent
• Verify There is an App to Receive the Intent
• Start an Activity with the Intent
• Show an App Chooser
You should also read

• Sharing Simple Data

Sending the User to Another App

97
Content from developer.android.com/training/basics/intents/sending.html through their Creative Commons Attribution 2.5 license

Intent mapIntent = new Intent(Intent.ACTION_VIEW, location);

•
• View a web page:

Uri webpage = Uri.parse("http://www.android.com");
Intent webIntent = new Intent(Intent.ACTION_VIEW, webpage);

•

Other kinds of implicit intents require "extra" data that provide different data types, such as a string. You
can add one or more pieces of extra data using the various putExtra() methods.
By default, the system determines the appropriate MIME type required by an intent based on the Uri data
that's included. If you don't include a Uri in the intent, you should usually use setType() to specify the
type of data associated with the intent. Setting the MIME type further specifies which kinds of activities
should receive the intent.
Here are some more intents that add extra data to specify the desired action:

• Send an email with an attachment:

Intent emailIntent = new Intent(Intent.ACTION_SEND);
// The intent does not have a URI, so declare the "text/plain" MIME
type
emailIntent.setType(HTTP.PLAIN_TEXT_TYPE);
emailIntent.putExtra(Intent.EXTRA_EMAIL, new String[]
{"jon@example.com"}); // recipients
emailIntent.putExtra(Intent.EXTRA_SUBJECT, "Email subject");
emailIntent.putExtra(Intent.EXTRA_TEXT, "Email message text");
emailIntent.putExtra(Intent.EXTRA_STREAM,
Uri.parse("content://path/to/email/attachment"));
// You can also attach multiple items by passing an ArrayList of Uris

•
• Create a calendar event:

Intent calendarIntent = new Intent(Intent.ACTION_INSERT,
Events.CONTENT_URI);
Calendar beginTime = Calendar.getInstance().set(2012, 0, 19, 7, 30);
Calendar endTime = Calendar.getInstance().set(2012, 0, 19, 10, 30);
calendarIntent.putExtra(CalendarContract.EXTRA_EVENT_BEGIN_TIME,
beginTime.getTimeInMillis());
calendarIntent.putExtra(CalendarContract.EXTRA_EVENT_END_TIME,
endTime.getTimeInMillis());
calendarIntent.putExtra(Events.TITLE, "Ninja class");
calendarIntent.putExtra(Events.EVENT_LOCATION, "Secret dojo");

Sending the User to Another App

98
Content from developer.android.com/training/basics/intents/sending.html through their Creative Commons Attribution 2.5 license

Note: This intent for a calendar event is supported only with API level 14 and higher.
Note: It's important that you define your Intent to be as specific as possible. For example, if you want to
display an image using the ACTION_VIEW intent, you should specify a MIME type of image/*. This
prevents apps that can "view" other types of data (like a map app) from being triggered by the intent.

Verify There is an App to Receive the Intent
Although the Android platform guarantees that certain intents will resolve to one of the built-in apps (such
as the Phone, Email, or Calendar app), you should always include a verification step before invoking an
intent.
Caution: If you invoke an intent and there is no app available on the device that can handle the intent,
your app will crash.
To verify there is an activity available that can respond to the intent, call queryIntentActivities() to
get a list of activities capable of handling your Intent. If the returned List is not empty, you can safely
use the intent. For example:

PackageManager packageManager = getPackageManager();
List<ResolveInfo> activities = packageManager.queryIntentActivities(intent, 0);
boolean isIntentSafe = activities.size() > 0;

If isIntentSafe is true, then at least one app will respond to the intent. If it is false, then there aren't
any apps to handle the intent.
Note: You should perform this check when your activity first starts in case you need to disable the feature
that uses the intent before the user attempts to use it. If you know of a specific app that can handle the
intent, you can also provide a link for the user to download the app (see how to link to your product on
Google Play).

Start an Activity with the Intent

Figure 1. Example of the selection dialog that appears when more than one app can handle an intent.
Once you have created your Intent and set the extra info, call startActivity() to send it to the
system. If the system identifies more than one activity that can handle the intent, it displays a dialog for the
user to select which app to use, as shown in figure 1. If there is only one activity that handles the intent,
the system immediately starts it.

startActivity(intent);

Here's a complete example that shows how to create an intent to view a map, verify that an app exists to
handle the intent, then start it:

Sending the User to Another App

99
Content from developer.android.com/training/basics/intents/sending.html through their Creative Commons Attribution 2.5 license

// Build the intent
Uri location = Uri.parse("geo:0,0?q=1600+Amphitheatre+Parkway,+Mountain+View,+California");
Intent mapIntent = new Intent(Intent.ACTION_VIEW, location);

// Verify it resolves
PackageManager packageManager = getPackageManager();
List<ResolveInfo> activities = packageManager.queryIntentActivities(mapIntent, 0);
boolean isIntentSafe = activities.size() > 0;

// Start an activity if it's safe
if (isIntentSafe) {
 startActivity(mapIntent);
}

Show an App Chooser

Figure 2. A chooser dialog.
Notice that when you start an activity by passing your Intent to startActivity() and there is more
than one app that responds to the intent, the user can select which app to use by default (by selecting a
checkbox at the bottom of the dialog; see figure 1). This is nice when performing an action for which the
user generally wants to use the same app every time, such as when opening a web page (users likely use
just one web browser) or taking a photo (users likely prefer one camera).
However, if the action to be performed could be handled by multiple apps and the user might prefer a
different app each time—such as a "share" action, for which users might have several apps through which
they might share an item—you should explicitly show a chooser dialog as shown in figure 2. The chooser
dialog forces the user to select which app to use for the action every time (the user cannot select a default
app for the action).
To show the chooser, create an Intent using createChooser() and pass it to startActivity().
For example:

Sending the User to Another App

100
Content from developer.android.com/training/basics/intents/sending.html through their Creative Commons Attribution 2.5 license

Intent intent = new Intent(Intent.ACTION_SEND);
...

// Always use string resources for UI text.
// This says something like "Share this photo with"
String title = getResources().getString(R.string.chooser_title);
// Create intent to show chooser
Intent chooser = Intent.createChooser(intent, title);

// Verify the intent will resolve to at least one activity
if (intent.resolveActivity(getPackageManager()) != null) {
 startActivity(chooser);
}

This displays a dialog with a list of apps that respond to the intent passed to the createChooser()
method and uses the supplied text as the dialog title.

Getting a Result from an Activity

101
Content from developer.android.com/training/basics/intents/result.html through their Creative Commons Attribution 2.5 license

31. Getting a Result from an Activity
Content from developer.android.com/training/basics/intents/result.html through their Creative Commons Attribution 2.5 license

Starting another activity doesn't have to be one-
way. You can also start another activity and
receive a result back. To receive a result, call
startActivityForResult() (instead of
startActivity()).
For example, your app can start a camera app
and receive the captured photo as a result. Or,
you might start the People app in order for the
user to select a contact and you'll receive the
contact details as a result.
Of course, the activity that responds must be
designed to return a result. When it does, it sends the result as another Intent object. Your activity
receives it in the onActivityResult() callback.
Note: You can use explicit or implicit intents when you call startActivityForResult(). When starting
one of your own activities to receive a result, you should use an explicit intent to ensure that you receive
the expected result.

Start the Activity
There's nothing special about the Intent object you use when starting an activity for a result, but you do
need to pass an additional integer argument to the startActivityForResult() method.
The integer argument is a "request code" that identifies your request. When you receive the result Intent,
the callback provides the same request code so that your app can properly identify the result and
determine how to handle it.
For example, here's how to start an activity that allows the user to pick a contact:

static final int PICK_CONTACT_REQUEST = 1; // The request code
...
private void pickContact() {
 Intent pickContactIntent = new Intent(Intent.ACTION_PICK,
Uri.parse("content://contacts"));
 pickContactIntent.setType(Phone.CONTENT_TYPE); // Show user only contacts w/ phone numbers
 startActivityForResult(pickContactIntent, PICK_CONTACT_REQUEST);
}

Receive the Result
When the user is done with the subsequent activity and returns, the system calls your activity's
onActivityResult() method. This method includes three arguments:

• The request code you passed to startActivityForResult().
• A result code specified by the second activity. This is either RESULT_OK if the operation was

successful or RESULT_CANCELED if the user backed out or the operation failed for some reason.
• An Intent that carries the result data.

For example, here's how you can handle the result for the "pick a contact" intent:

This lesson teaches you to
• Start the Activity
• Receive the Result
You should also read

• Sharing Simple Data
• Sharing Files

Getting a Result from an Activity

102
Content from developer.android.com/training/basics/intents/result.html through their Creative Commons Attribution 2.5 license

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 // Check which request we're responding to
 if (requestCode == PICK_CONTACT_REQUEST) {
 // Make sure the request was successful
 if (resultCode == RESULT_OK) {
 // The user picked a contact.
 // The Intent's data Uri identifies which contact was selected.

 // Do something with the contact here (bigger example below)
 }
 }
}

In this example, the result Intent returned by Android's Contacts or People app provides a content Uri
that identifies the contact the user selected.
In order to successfully handle the result, you must understand what the format of the result Intent will
be. Doing so is easy when the activity returning a result is one of your own activities. Apps included with
the Android platform offer their own APIs that you can count on for specific result data. For instance, the
People app (Contacts app on some older versions) always returns a result with the content URI that
identifies the selected contact, and the Camera app returns a Bitmap in the "data" extra (see the class
about Capturing Photos).
Bonus: Read the contact data
The code above showing how to get a result from the People app doesn't go into details about how to
actually read the data from the result, because it requires more advanced discussion about content
providers. However, if you're curious, here's some more code that shows how to query the result data to
get the phone number from the selected contact:

Getting a Result from an Activity

103
Content from developer.android.com/training/basics/intents/result.html through their Creative Commons Attribution 2.5 license

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 // Check which request it is that we're responding to
 if (requestCode == PICK_CONTACT_REQUEST) {
 // Make sure the request was successful
 if (resultCode == RESULT_OK) {
 // Get the URI that points to the selected contact
 Uri contactUri = data.getData();
 // We only need the NUMBER column, because there will be only one row in the
result
 String[] projection = {Phone.NUMBER};

 // Perform the query on the contact to get the NUMBER column
 // We don't need a selection or sort order (there's only one result for the given
URI)
 // CAUTION: The query() method should be called from a separate thread to avoid
blocking
 // your app's UI thread. (For simplicity of the sample, this code doesn't do
that.)
 // Consider using CursorLoader to perform the query.
 Cursor cursor = getContentResolver()
 .query(contactUri, projection, null, null, null);
 cursor.moveToFirst();

 // Retrieve the phone number from the NUMBER column
 int column = cursor.getColumnIndex(Phone.NUMBER);
 String number = cursor.getString(column);

 // Do something with the phone number...
 }
 }
}

Note: Before Android 2.3 (API level 9), performing a query on the Contacts Provider (like the one
shown above) requires that your app declare the READ_CONTACTS permission (see Security and
Permissions). However, beginning with Android 2.3, the Contacts/People app grants your app a temporary
permission to read from the Contacts Provider when it returns you a result. The temporary permission
applies only to the specific contact requested, so you cannot query a contact other than the one specified
by the intent's Uri, unless you do declare the READ_CONTACTS permission.

Allowing Other Apps to Start Your Activity

104
Content from developer.android.com/training/basics/intents/filters.html through their Creative Commons Attribution 2.5 license

32. Allowing Other Apps to Start Your Activity
Content from developer.android.com/training/basics/intents/filters.html through their Creative Commons Attribution 2.5 license

The previous two lessons focused on one side of
the story: starting another app's activity from your
app. But if your app can perform an action that
might be useful to another app, your app should
be prepared to respond to action requests from
other apps. For instance, if you build a social app
that can share messages or photos with the user's
friends, it's in your best interest to support the
ACTION_SEND intent so users can initiate a
"share" action from another app and launch your
app to perform the action.
To allow other apps to start your activity, you need
to add an <intent-filter> element in your manifest file for the corresponding <activity> element.
When your app is installed on a device, the system identifies your intent filters and adds the information to
an internal catalog of intents supported by all installed apps. When an app calls startActivity() or
startActivityForResult(), with an implicit intent, the system finds which activity (or activities) can
respond to the intent.

Add an Intent Filter
In order to properly define which intents your activity can handle, each intent filter you add should be as
specific as possible in terms of the type of action and data the activity accepts.
The system may send a given Intent to an activity if that activity has an intent filter fulfills the following
criteria of the Intent object:
Action

A string naming the action to perform. Usually one of the platform-defined values such as
ACTION_SEND or ACTION_VIEW.
Specify this in your intent filter with the <action> element. The value you specify in this element
must be the full string name for the action, instead of the API constant (see the examples below).

Data
A description of the data associated with the intent.
Specify this in your intent filter with the <data> element. Using one or more attributes in this
element, you can specify just the MIME type, just a URI prefix, just a URI scheme, or a
combination of these and others that indicate the data type accepted.

Note: If you don't need to declare specifics about the data Uri (such as when your activity
handles to other kind of "extra" data, instead of a URI), you should specify only the
android:mimeType attribute to declare the type of data your activity handles, such as
text/plain or image/jpeg.

Category
Provides an additional way to characterize the activity handling the intent, usually related to the
user gesture or location from which it's started. There are several different categories supported
by the system, but most are rarely used. However, all implicit intents are defined with
CATEGORY_DEFAULT by default.

This lesson teaches you to
• Add an Intent Filter
• Handle the Intent in Your Activity
• Return a Result
You should also read

• Sharing Simple Data
• Sharing Files

Allowing Other Apps to Start Your Activity

105
Content from developer.android.com/training/basics/intents/filters.html through their Creative Commons Attribution 2.5 license

Specify this in your intent filter with the <category> element.

In your intent filter, you can declare which criteria your activity accepts by declaring each of them with
corresponding XML elements nested in the <intent-filter> element.
For example, here's an activity with an intent filter that handles the ACTION_SEND intent when the data
type is either text or an image:

<activity android:name="ShareActivity">
 <intent-filter>
 <action android:name="android.intent.action.SEND"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:mimeType="text/plain"/>
 <data android:mimeType="image/*"/>
 </intent-filter>
</activity>

Each incoming intent specifies only one action and one data type, but it's OK to declare multiple instances
of the <action>, <category>, and <data> elements in each <intent-filter>.
If any two pairs of action and data are mutually exclusive in their behaviors, you should create separate
intent filters to specify which actions are acceptable when paired with which data types.
For example, suppose your activity handles both text and images for both the ACTION_SEND and
ACTION_SENDTO intents. In this case, you must define two separate intent filters for the two actions
because a ACTION_SENDTO intent must use the data Uri to specify the recipient's address using the
send or sendto URI scheme. For example:

<activity android:name="ShareActivity">
 <!-- filter for sending text; accepts SENDTO action with sms URI schemes -->
 <intent-filter>
 <action android:name="android.intent.action.SENDTO"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:scheme="sms" />
 <data android:scheme="smsto" />
 </intent-filter>
 <!-- filter for sending text or images; accepts SEND action and text or image data -->
 <intent-filter>
 <action android:name="android.intent.action.SEND"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:mimeType="image/*"/>
 <data android:mimeType="text/plain"/>
 </intent-filter>
</activity>

Note: In order to receive implicit intents, you must include the CATEGORY_DEFAULT category in the intent
filter. The methods startActivity() and startActivityForResult() treat all intents as if they
declared the CATEGORY_DEFAULT category. If you do not declare it in your intent filter, no implicit intents
will resolve to your activity.
For more information about sending and receiving ACTION_SEND intents that perform social sharing
behaviors, see the lesson about Receiving Simple Data from Other Apps.

Handle the Intent in Your Activity
In order to decide what action to take in your activity, you can read the Intent that was used to start it.

Allowing Other Apps to Start Your Activity

106
Content from developer.android.com/training/basics/intents/filters.html through their Creative Commons Attribution 2.5 license

As your activity starts, call getIntent() to retrieve the Intent that started the activity. You can do so at
any time during the lifecycle of the activity, but you should generally do so during early callbacks such as
onCreate() or onStart().
For example:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 // Get the intent that started this activity
 Intent intent = getIntent();
 Uri data = intent.getData();

 // Figure out what to do based on the intent type
 if (intent.getType().indexOf("image/") != -1) {
 // Handle intents with image data ...
 } else if (intent.getType().equals("text/plain")) {
 // Handle intents with text ...
 }
}

Return a Result
If you want to return a result to the activity that invoked yours, simply call setResult() to specify the
result code and result Intent. When your operation is done and the user should return to the original
activity, call finish() to close (and destroy) your activity. For example:

// Create intent to deliver some kind of result data
Intent result = new Intent("com.example.RESULT_ACTION", Uri.parse("content://result_uri");
setResult(Activity.RESULT_OK, result);
finish();

You must always specify a result code with the result. Generally, it's either RESULT_OK or
RESULT_CANCELED. You can then provide additional data with an Intent, as necessary.
Note: The result is set to RESULT_CANCELED by default. So, if the user presses the Back button before
completing the action and before you set the result, the original activity receives the "canceled" result.
If you simply need to return an integer that indicates one of several result options, you can set the result
code to any value higher than 0. If you use the result code to deliver an integer and you have no need to
include the Intent, you can call setResult() and pass only a result code. For example:

setResult(RESULT_COLOR_RED);
finish();

In this case, there might be only a handful of possible results, so the result code is a locally defined integer
(greater than 0). This works well when you're returning a result to an activity in your own app, because the
activity that receives the result can reference the public constant to determine the value of the result code.
Note: There's no need to check whether your activity was started with startActivity() or
startActivityForResult(). Simply call setResult() if the intent that started your activity might
expect a result. If the originating activity had called startActivityForResult(), then the system
delivers it the result you supply to setResult(); otherwise, the result is ignored.

Building Apps with Content Sharing

107
Content from developer.android.com/training/building-content-sharing.html through their Creative Commons Attribution 2.5 license

33. Building Apps with Content Sharing
Content from developer.android.com/training/building-content-sharing.html through their Creative Commons Attribution 2.5 license
These classes teach you how to create apps that share data between apps and devices.

Sharing Simple Data

108
Content from developer.android.com/training/sharing/index.html through their Creative Commons Attribution 2.5 license

34. Sharing Simple Data
Content from developer.android.com/training/sharing/index.html through their Creative Commons Attribution 2.5 license

One of the great things about Android applications
is their ability to communicate and integrate with
each other. Why reinvent functionality that isn't
core to your application when it already exists in
another application?
This class covers some common ways you can
send and receive simple data between
applications using Intent APIs and the
ActionProvider object.

Lessons
Sending Simple Data to Other Apps

Learn how to set up your application to be able to send text and binary data to other applications
with intents.

Receiving Simple Data from Other Apps
Learn how to set up your application to receive text and binary data from intents.

Adding an Easy Share Action
Learn how to add a "share" action item to your action bar.

Dependencies and prerequisites

• Android 1.0 or higher (greater
requirements where noted)

• Experience with Intents and Intent
Filters

Sending Simple Data to Other Apps

109
Content from developer.android.com/training/sharing/send.html through their Creative Commons Attribution 2.5 license

35. Sending Simple Data to Other Apps
Content from developer.android.com/training/sharing/send.html through their Creative Commons Attribution 2.5 license

When you construct an intent, you must specify
the action you want the intent to "trigger." Android
defines several actions, including ACTION_SEND
which, as you can probably guess, indicates that
the intent is sending data from one activity to
another, even across process boundaries. To
send data to another activity, all you need to do is
specify the data and its type, the system will
identify compatible receiving activities and display
them to the user (if there are multiple options) or
immediately start the activity (if there is only one
option). Similarly, you can advertise the data types
that your activities support receiving from other applications by specifying them in your manifest.
Sending and receiving data between applications with intents is most commonly used for social sharing of
content. Intents allow users to share information quickly and easily, using their favorite applications.
Note: The best way to add a share action item to an ActionBar is to use ShareActionProvider,
which became available in API level 14. ShareActionProvider is discussed in the lesson about Adding
an Easy Share Action.

Send Text Content

Figure 1. Screenshot of ACTION_SEND intent chooser on a handset.
The most straightforward and common use of the ACTION_SEND action is sending text content from one
activity to another. For example, the built-in Browser app can share the URL of the currently-displayed
page as text with any application. This is useful for sharing an article or website with friends via email or
social networking. Here is the code to implement this type of sharing:

Intent sendIntent = new Intent();
sendIntent.setAction(Intent.ACTION_SEND);
sendIntent.putExtra(Intent.EXTRA_TEXT, "This is my text to send.");
sendIntent.setType("text/plain");
startActivity(sendIntent);

If there's an installed application with a filter that matches ACTION_SEND and MIME type text/plain, the
Android system will run it; if more than one application matches, the system displays a disambiguation
dialog (a "chooser") that allows the user to choose an app.

This lesson teaches you to
• Send Text Content
• Send Binary Content
• Send Multiple Pieces of Content
You should also read

• Intents and Intent Filters

Sending Simple Data to Other Apps

110
Content from developer.android.com/training/sharing/send.html through their Creative Commons Attribution 2.5 license

However, if you call Intent.createChooser(), passing it your Intent object, it returns a version of
your intent that will always display the chooser. This has some advantages:

• Even if the user has previously selected a default action for this intent, the chooser will still be
displayed.

• If no applications match, Android displays a system message.
• You can specify a title for the chooser dialog.

Here's the updated code:

Intent sendIntent = new Intent();
sendIntent.setAction(Intent.ACTION_SEND);
sendIntent.putExtra(Intent.EXTRA_TEXT, "This is my text to send.");
sendIntent.setType("text/plain");
startActivity(Intent.createChooser(sendIntent,
getResources().getText(R.string.send_to)));

The resulting dialog is shown in figure 1.
Optionally, you can set some standard extras for the intent: EXTRA_EMAIL, EXTRA_CC, EXTRA_BCC,
EXTRA_SUBJECT. If the receiving application is not designed to use them, it simply ignores them.
Note: Some e-mail applications, such as Gmail, expect a String[] for extras like EXTRA_EMAIL and
EXTRA_CC, use putExtra(String, String[]) to add these to your intent.

Send Binary Content
Binary data is shared using the ACTION_SEND action combined with setting the appropriate MIME type
and placing the URI to the data in an extra named EXTRA_STREAM. This is commonly used to share an
image but can be used to share any type of binary content:

Intent shareIntent = new Intent();
shareIntent.setAction(Intent.ACTION_SEND);
shareIntent.putExtra(Intent.EXTRA_STREAM, uriToImage);
shareIntent.setType("image/jpeg");
startActivity(Intent.createChooser(shareIntent, getResources().getText(R.string.send_to)));

Note the following:

• You can use a MIME type of "*/*", but this will only match activities that are able to handle
generic data streams.

• The receiving application needs permission to access the data the Uri points to. The
recommended ways to do this are:

o Store the data in your own ContentProvider, making sure that other apps have the
correct permission to access your provider. The preferred mechanism for providing
access is to use per-URI permissions which are temporary and only grant access to the
receiving application. An easy way to create a ContentProvider like this is to use the
FileProvider helper class.

o Use the system MediaStore. The MediaStore is primarily aimed at video, audio and
image MIME types, however beginning with Android 3.0 (API level 11) it can also store
non-media types (see MediaStore.Files for more info). Files can be inserted into the
MediaStore using scanFile() after which a content:// style Uri suitable for
sharing is passed to the provided onScanCompleted() callback. Note that once added
to the system MediaStore the content is accessible to any app on the device.

Sending Simple Data to Other Apps

111
Content from developer.android.com/training/sharing/send.html through their Creative Commons Attribution 2.5 license

Send Multiple Pieces of Content
To share multiple pieces of content, use the ACTION_SEND_MULTIPLE action together with a list of URIs
pointing to the content. The MIME type varies according to the mix of content you're sharing. For example,
if you share 3 JPEG images, the type is still "image/jpeg". For a mixture of image types, it should be
"image/*" to match an activity that handles any type of image. You should only use "*/*" if you're
sharing out a wide variety of types. As previously stated, it's up to the receiving application to parse and
process your data. Here's an example:

ArrayList<Uri> imageUris = new ArrayList<Uri>();
imageUris.add(imageUri1); // Add your image URIs here
imageUris.add(imageUri2);

Intent shareIntent = new Intent();
shareIntent.setAction(Intent.ACTION_SEND_MULTIPLE);
shareIntent.putParcelableArrayListExtra(Intent.EXTRA_STREAM, imageUris);
shareIntent.setType("image/*");
startActivity(Intent.createChooser(shareIntent, "Share images to.."));

As before, make sure the provided URIs point to data that a receiving application can access.

Receiving Simple Data from Other Apps

112
Content from developer.android.com/training/sharing/receive.html through their Creative Commons Attribution 2.5 license

36. Receiving Simple Data from Other Apps
Content from developer.android.com/training/sharing/receive.html through their Creative Commons Attribution 2.5 license

Just as your application can send data to other
applications, so too can it easily receive data from
applications. Think about how users interact with
your application, and what data types you want to
receive from other applications. For example, a
social networking application would likely be
interested in receiving text content, like an
interesting web URL, from another app. The
Google+ Android application accepts both text
and single or multiple images. With this app, a
user can easily start a new Google+ post with photos from the Android Gallery app.

Update Your Manifest
Intent filters inform the system what intents an application component is willing to accept. Similar to how
you constructed an intent with action ACTION_SEND in the Sending Simple Data to Other Apps lesson, you
create intent filters in order to be able to receive intents with this action. You define an intent filter in your
manifest, using the <intent-filter> element. For example, if your application handles receiving text
content, a single image of any type, or multiple images of any type, your manifest would look like:

<activity android:name=".ui.MyActivity" >
 <intent-filter>
 <action android:name="android.intent.action.SEND" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="image/*" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.SEND" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="text/plain" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.SEND_MULTIPLE" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="image/*" />
 </intent-filter>
</activity>

Note: For more information on intent filters and intent resolution please read Intents and Intent Filters
When another application tries to share any of these things by constructing an intent and passing it to
startActivity(), your application will be listed as an option in the intent chooser. If the user selects
your application, the corresponding activity (.ui.MyActivity in the example above) will be started. It is
then up to you to handle the content appropriately within your code and UI.

Handle the Incoming Content
To handle the content delivered by an Intent, start by calling getIntent() to get Intent object. Once
you have the object, you can examine its contents to determine what to do next. Keep in mind that if this
activity can be started from other parts of the system, such as the launcher, then you will need to take this
into consideration when examining the intent.

This lesson teaches you to
• Update Your Manifest
• Handle the Incoming Content
You should also read

• Intents and Intent Filters

Receiving Simple Data from Other Apps

113
Content from developer.android.com/training/sharing/receive.html through their Creative Commons Attribution 2.5 license

void onCreate (Bundle savedInstanceState) {
 ...
 // Get intent, action and MIME type
 Intent intent = getIntent();
 String action = intent.getAction();
 String type = intent.getType();

 if (Intent.ACTION_SEND.equals(action) && type != null) {
 if ("text/plain".equals(type)) {
 handleSendText(intent); // Handle text being sent
 } else if (type.startsWith("image/")) {
 handleSendImage(intent); // Handle single image being sent
 }
 } else if (Intent.ACTION_SEND_MULTIPLE.equals(action) && type != null) {
 if (type.startsWith("image/")) {
 handleSendMultipleImages(intent); // Handle multiple images being sent
 }
 } else {
 // Handle other intents, such as being started from the home screen
 }
 ...
}

void handleSendText(Intent intent) {
 String sharedText = intent.getStringExtra(Intent.EXTRA_TEXT);
 if (sharedText != null) {
 // Update UI to reflect text being shared
 }
}

void handleSendImage(Intent intent) {
 Uri imageUri = (Uri) intent.getParcelableExtra(Intent.EXTRA_STREAM);
 if (imageUri != null) {
 // Update UI to reflect image being shared
 }
}

void handleSendMultipleImages(Intent intent) {
 ArrayList<Uri> imageUris = intent.getParcelableArrayListExtra(Intent.EXTRA_STREAM);
 if (imageUris != null) {
 // Update UI to reflect multiple images being shared
 }
}

Caution: Take extra care to check the incoming data, you never know what some other application may
send you. For example, the wrong MIME type might be set, or the image being sent might be extremely
large. Also, remember to process binary data in a separate thread rather than the main ("UI") thread.
Updating the UI can be as simple as populating an EditText, or it can be more complicated like applying
an interesting photo filter to an image. It's really specific to your application what happens next.

Adding an Easy Share Action

114
Content from developer.android.com/training/sharing/shareaction.html through their Creative Commons Attribution 2.5 license

37. Adding an Easy Share Action
Content from developer.android.com/training/sharing/shareaction.html through their Creative Commons Attribution 2.5 license

Implementing an effective and user friendly share
action in your ActionBar is made even easier
with the introduction of ActionProvider in
Android 4.0 (API Level 14). An
ActionProvider, once attached to a menu item
in the action bar, handles both the appearance
and behavior of that item. In the case of
ShareActionProvider, you provide a share
intent and it does the rest.
Note: ShareActionProvider is available
starting with API Level 14 and higher.

Figure 1. The ShareActionProvider in the Gallery app.

Update Menu Declarations
To get started with ShareActionProviders, define the android:actionProviderClass attribute
for the corresponding <item> in your menu resource file:

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/menu_item_share"
 android:showAsAction="ifRoom"
 android:title="Share"
 android:actionProviderClass=
 "android.widget.ShareActionProvider" />
 ...
</menu>

This delegates responsibility for the item's appearance and function to ShareActionProvider.
However, you will need to tell the provider what you would like to share.

Set the Share Intent
In order for ShareActionProvider to function, you must provide it a share intent. This share intent
should be the same as described in the Sending Simple Data to Other Apps lesson, with action
ACTION_SEND and additional data set via extras like EXTRA_TEXT and EXTRA_STREAM. To assign a

This lesson teaches you to
• Update Menu Declarations
• Set the Share Intent
You should also read

• Action Bar

Adding an Easy Share Action

115
Content from developer.android.com/training/sharing/shareaction.html through their Creative Commons Attribution 2.5 license

share intent, first find the corresponding MenuItem while inflating your menu resource in your Activity
or Fragment. Next, call MenuItem.getActionProvider() to retrieve an instance of
ShareActionProvider. Use setShareIntent() to update the share intent associated with that
action item. Here's an example:

private ShareActionProvider mShareActionProvider;
...

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate menu resource file.
 getMenuInflater().inflate(R.menu.share_menu, menu);

 // Locate MenuItem with ShareActionProvider
 MenuItem item = menu.findItem(R.id.menu_item_share);

 // Fetch and store ShareActionProvider
 mShareActionProvider = (ShareActionProvider) item.getActionProvider();

 // Return true to display menu
 return true;
}

// Call to update the share intent
private void setShareIntent(Intent shareIntent) {
 if (mShareActionProvider != null) {
 mShareActionProvider.setShareIntent(shareIntent);
 }
}

You may only need to set the share intent once during the creation of your menus, or you may want to set
it and then update it as the UI changes. For example, when you view photos full screen in the Gallery app,
the sharing intent changes as you flip between photos.
For further discussion about the ShareActionProvider object, see the Action Bar guide.

Sharing Files

116
Content from developer.android.com/training/secure-file-sharing/index.html through their Creative Commons Attribution 2.5 license

38. Sharing Files
Content from developer.android.com/training/secure-file-sharing/index.html through their Creative Commons Attribution 2.5 license

Apps often have a need to offer one or more of
their files to another app. For example, an image
gallery may want to offer files to image editors, or
a file management app may want to allow users to
copy and paste files between areas in external
storage. One way a sending app can share a file
is to respond to a request from the receiving app.
In all cases, the only secure way to offer a file
from your app to another app is to send the
receiving app the file's content URI and grant
temporary access permissions to that URI.
Content URIs with temporary URI access
permissions are secure because they apply only
to the app that receives the URI, and they expire
automatically. The Android FileProvider
component provides the method getUriForFile() for generating a file's content URI.
If you want to share small amounts of text or numeric data between apps, you should send an Intent that
contains the data. To learn how to send simple data with an Intent, see the training class Sharing Simple
Data.
This class explains how to securely share files from your app to another app using content URIs generated
by the Android FileProvider component and temporary permissions that you grant to the receiving app
for the content URI.

Lessons
Setting Up File Sharing

Learn how to set up your app to share files.
Sharing a File

Learn how to offer a file to another app by generating a content URI for the file, granting access
permissions to the URI, and sending the URI to the app.

Requesting a Shared File
Learn how to request a file shared by another app, receive the content URI for the file, and use
the content URI to open the file.

Retrieving File Information
Learn how an app can use a content URI generated by a FileProvider to retrieve file
information including MIME type and file size.

Dependencies and prerequisites

• Android 1.6 (API Level 4) or higher
• Familiarity with file operations such

as opening, reading, and writing files

You should also read

• Storage Options
• Saving Files
• Sharing Simple Data

Setting Up File Sharing

117
Content from developer.android.com/training/secure-file-sharing/setup-sharing.html through their Creative Commons Attribution 2.5 license

39. Setting Up File Sharing
Content from developer.android.com/training/secure-file-sharing/setup-sharing.html through their Creative Commons Attribution 2.5 license

To securely offer a file from your app to another
app, you need to configure your app to offer a
secure handle to the file, in the form of a content
URI. The Android FileProvider component
generates content URIs for files, based on
specifications you provide in XML. This lesson
shows you how to add the default implementation
of FileProvider to your app, and how to
specify the files you want to offer to other apps.
Note: The FileProvider class is part of the v4
Support Library. For information about including
this library in your application, see Support Library Setup.

Specify the FileProvider
Defining a FileProvider for your app requires an entry in your manifest. This entry specifies the
authority to use in generating content URIs, as well as the name of an XML file that specifies the
directories your app can share.
The following snippet shows you how to add to your manifest the <provider> element that specifies the
FileProvider class, the authority, and the XML file name:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.myapp">
 <application
 ...>
 <provider
 android:name="android.support.v4.content.FileProvider"
 android:authorities="com.example.myapp.fileprovider"
 android:grantUriPermissions="true"
 android:exported="false">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/filepaths" />
 </provider>
 ...
 </application>
</manifest>

In this example, the android:authorities attribute specifies the URI authority that you want to use for
content URIs generated by the FileProvider. In the example, the authority is
com.example.myapp.fileprovider. For your own app, specify an authority consisting of the app's
android:package value with the string "fileprovider" appended to it. To learn more about the authority
value, see the topic Content URIs and the documentation for the android:authorities attribute.
The <meta-data> child element of the <provider> points to an XML file that specifies the directories
you want to share. The android:resource attribute is the path and name of the file, without the .xml
extension.The contents of this file are described in the next section.

Specify Sharable Directories
Once you have added the FileProvider to your app manifest, you need to specify the directories that
contain the files you want to share. To specify the directories, start by creating the file filepaths.xml in

This lesson teaches you to
• Specify the FileProvider
• Specify Sharable Directories
You should also read

• Storage Options
• Saving Files

Setting Up File Sharing

118
Content from developer.android.com/training/secure-file-sharing/setup-sharing.html through their Creative Commons Attribution 2.5 license

the res/xml/ subdirectory of your project. In this file, specify the directories by adding an XML element
for each directory. The following snippet shows you an example of the contents of
res/xml/filepaths.xml. The snippet also demonstrates how to share a subdirectory of the files/
directory in your internal storage area:

<paths>
 <files-path path="images/" name="myimages" />
</paths>

In this example, the <files-path> tag shares directories within the files/ directory of your app's
internal storage. The path attribute shares the images/ subdirectory of files/. The name attribute tells
the FileProvider to add the path segment myimages to content URIs for files in the files/images/
subdirectory.
The <paths> element can have multiple children, each specifying a different directory to share. In addition
to the <files-path> element, you can use the <external-path> element to share directories in
external storage, and the <cache-path> element to share directories in your internal cache directory. To
learn more about the child elements that specify shared directories, see the FileProvider reference
documentation.
Note: The XML file is the only way you can specify the directories you want to share; you can't
programmatically add a directory.
You now have a complete specification of a FileProvider that generates content URIs for files in the
files/ directory of your app's internal storage or for files in subdirectories of files/. When your app
generates a content URI for a file, it contains the authority specified in the <provider> element
(com.example.myapp.fileprovider), the path myimages/, and the name of the file.
For example, if you define a FileProvider according to the snippets in this lesson, and you request a
content URI for the file default_image.jpg, FileProvider returns the following URI:

content://com.example.myapp.fileprovider/myimages/default_image.jpg

Sharing a File

119
Content from developer.android.com/training/secure-file-sharing/share-file.html through their Creative Commons Attribution 2.5 license

40. Sharing a File
Content from developer.android.com/training/secure-file-sharing/share-file.html through their Creative Commons Attribution 2.5 license

Once you have set up your app to share files
using content URIs, you can respond to other
apps' requests for those files. One way to respond
to these requests is to provide a file selection
interface from the server app that other
applications can invoke. This approach allows a
client application to let users select a file from the
server app and then receive the selected file's
content URI.
This lesson shows you how to create a file
selection Activity in your app that responds to
requests for files.

Receive File Requests
To receive requests for files from client apps and
respond with a content URI, your app should
provide a file selection Activity. Client apps
start this Activity by calling
startActivityForResult() with an Intent containing the action ACTION_PICK. When the client
app calls startActivityForResult(), your app can return a result to the client app, in the form of a
content URI for the file the user selected.
To learn how to implement a request for a file in a client app, see the lesson Requesting a Shared File.

Create a File Selection Activity
To set up the file selection Activity, start by specifying the Activity in your manifest, along with an
intent filter that matches the action ACTION_PICK and the categories CATEGORY_DEFAULT and
CATEGORY_OPENABLE. Also add MIME type filters for the files your app serves to other apps. The
following snippet shows you how to specify the new Activity and intent filter:

<manifest xmlns:android="http://schemas.android.com/apk/res/android">
 ...
 <application>
 ...
 <activity
 android:name=".FileSelectActivity"
 android:label="@"File Selector" >
 <intent-filter>
 <action
 android:name="android.intent.action.PICK"/>
 <category
 android:name="android.intent.category.DEFAULT"/>
 <category
 android:name="android.intent.category.OPENABLE"/>
 <data android:mimeType="text/plain"/>
 <data android:mimeType="image/*"/>
 </intent-filter>
 </activity>

Define the file selection Activity in code

This lesson teaches you to
• Receive File Requests
• Create a File Selection Activity
• Respond to a File Selection
• Grant Permissions for the File
• Share the File with the Requesting App
You should also read

• Designing Content URIs
• Implementing Content Provider

Permissions
• Permissions
• Intents and Intent Filters

Sharing a File

120
Content from developer.android.com/training/secure-file-sharing/share-file.html through their Creative Commons Attribution 2.5 license

Next, define an Activity subclass that displays the files available from your app's files/images/
directory in internal storage and allows the user to pick the desired file. The following snippet demonstrates
how to define this Activity and respond to the user's selection:

public class MainActivity extends Activity {
 // The path to the root of this app's internal storage
 private File mPrivateRootDir;
 // The path to the "images" subdirectory
 private File mImagesDir;
 // Array of files in the images subdirectory
 File[] mImageFiles;
 // Array of filenames corresponding to mImageFiles
 String[] mImageFilenames;
 // Initialize the Activity
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...
 // Set up an Intent to send back to apps that request a file
 mResultIntent =
 new Intent("com.example.myapp.ACTION_RETURN_FILE");
 // Get the files/ subdirectory of internal storage
 mPrivateRootDir = getFilesDir();
 // Get the files/images subdirectory;
 mImagesDir = new File(mPrivateRootDir, "images");
 // Get the files in the images subdirectory
 mImageFiles = mImagesDir.listFiles();
 // Set the Activity's result to null to begin with
 setResult(Activity.RESULT_CANCELED, null);
 /*
 * Display the file names in the ListView mFileListView.
 * Back the ListView with the array mImageFilenames, which
 * you can create by iterating through mImageFiles and
 * calling File.getAbsolutePath() for each File
 */
 ...
 }
 ...
}

Respond to a File Selection
Once a user selects a shared file, your application must determine what file was selected and then
generate a content URI for the file. Since the Activity displays the list of available files in a ListView,
when the user clicks a file name the system calls the method onItemClick(), in which you can get the
selected file.
In onItemClick(), get a File object for the file name of the selected file and pass it as an argument to
getUriForFile(), along with the authority that you specified in the <provider> element for the
FileProvider. The resulting content URI contains the authority, a path segment corresponding to the
file's directory (as specified in the XML meta-data), and the name of the file including its extension. How
FileProvider maps directories to path segments based on XML meta-data is described in the section
Specify Sharable Directories.
The following snippet shows you how to detect the selected file and get a content URI for it:

Sharing a File

121
Content from developer.android.com/training/secure-file-sharing/share-file.html through their Creative Commons Attribution 2.5 license

 protected void onCreate(Bundle savedInstanceState) {
 ...
 // Define a listener that responds to clicks on a file in the ListView
 mFileListView.setOnItemClickListener(
 new AdapterView.OnItemClickListener() {
 @Override
 /*
 * When a filename in the ListView is clicked, get its
 * content URI and send it to the requesting app
 */
 public void onItemClick(AdapterView<?> adapterView,
 View view,
 int position,
 long rowId) {
 /*
 * Get a File for the selected file name.
 * Assume that the file names are in the
 * mImageFilename array.
 */
 File requestFile = new File(mImageFilename[position]);
 /*
 * Most file-related method calls need to be in
 * try-catch blocks.
 */
 // Use the FileProvider to get a content URI
 try {
 fileUri = FileProvider.getUriForFile(
 MainActivity.this,
 "com.example.myapp.fileprovider",
 requestFile);
 } catch (IllegalArgumentException e) {
 Log.e("File Selector",
 "The selected file can't be shared: " +
 clickedFilename);
 }
 ...
 }
 });
 ...
 }

Remember that you can only generate content URIs for files that reside in a directory you've specified in
the meta-data file that contains the <paths> element, as described in the section Specify Sharable
Directories. If you call getUriForFile() for a File in a path that you haven't specified, you receive an
IllegalArgumentException.

Grant Permissions for the File
Now that you have a content URI for the file you want to share with another app, you need to allow the
client app to access the file. To allow access, grant permissions to the client app by adding the content
URI to an Intent and then setting permission flags on the Intent. The permissions you grant are
temporary and expire automatically when the receiving app's task stack is finished.
The following code snippet shows you how to set read permission for the file:

Sharing a File

122
Content from developer.android.com/training/secure-file-sharing/share-file.html through their Creative Commons Attribution 2.5 license

 protected void onCreate(Bundle savedInstanceState) {
 ...
 // Define a listener that responds to clicks in the ListView
 mFileListView.setOnItemClickListener(
 new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> adapterView,
 View view,
 int position,
 long rowId) {
 ...
 if (fileUri != null) {
 // Grant temporary read permission to the content URI
 mResultIntent.addFlags(
 Intent.FLAG_GRANT_READ_URI_PERMISSION);
 }
 ...
 }
 ...
 });
 ...
 }

Caution: Calling setFlags() is the only way to securely grant access to your files using temporary
access permissions. Avoid calling Context.grantUriPermission() method for a file's content URI,
since this method grants access that you can only revoke by calling
Context.revokeUriPermission().

Share the File with the Requesting App
To share the file with the app that requested it, pass the Intent containing the content URI and
permissions to setResult(). When the Activity you have just defined is finished, the system sends
the Intent containing the content URI to the client app. The following code snippet shows you how to do
this:

Sharing a File

123
Content from developer.android.com/training/secure-file-sharing/share-file.html through their Creative Commons Attribution 2.5 license

 protected void onCreate(Bundle savedInstanceState) {
 ...
 // Define a listener that responds to clicks on a file in the ListView
 mFileListView.setOnItemClickListener(
 new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> adapterView,
 View view,
 int position,
 long rowId) {
 ...
 if (fileUri != null) {
 ...
 // Put the Uri and MIME type in the result Intent
 mResultIntent.setDataAndType(
 fileUri,
 getContentResolver().getType(fileUri));
 // Set the result
 MainActivity.this.setResult(Activity.RESULT_OK,
 mResultIntent);
 } else {
 mResultIntent.setDataAndType(null, "");
 MainActivity.this.setResult(RESULT_CANCELED,
 mResultIntent);
 }
 }
 });

Provide users with an way to return immediately to the client app once they have chosen a file. One way to
do this is to provide a checkmark or Done button. Associate a method with the button using the button's
android:onClick attribute. In the method, call finish(). For example:

 public void onDoneClick(View v) {
 // Associate a method with the Done button
 finish();
 }

Requesting a Shared File

124
Content from developer.android.com/training/secure-file-sharing/request-file.html through their Creative Commons Attribution 2.5 license

41. Requesting a Shared File
Content from developer.android.com/training/secure-file-sharing/request-file.html through their Creative Commons Attribution 2.5 license

When an app wants to access a file shared by
another app, the requesting app (the client)
usually sends a request to the app sharing the
files (the server). In most cases, the request starts
an Activity in the server app that displays the
files it can share. The user picks a file, after which
the server app returns the file's content URI to the
client app.
This lesson shows you how a client app requests
a file from a server app, receives the file's content
URI from the server app, and opens the file using
the content URI.

Send a Request for the File
To request a file from the server app, the client app calls startActivityForResult with an Intent
containing the action such as ACTION_PICK and a MIME type that the client app can handle.
For example, the following code snippet demonstrates how to send an Intent to a server app in order to
start the Activity described in Sharing a File:

public class MainActivity extends Activity {
 private Intent mRequestFileIntent;
 private ParcelFileDescriptor mInputPFD;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 mRequestFileIntent = new Intent(Intent.ACTION_PICK);
 mRequestFileIntent.setType("image/jpg");
 ...
 }
 ...
 protected void requestFile() {
 /**
 * When the user requests a file, send an Intent to the
 * server app.
 * files.
 */
 startActivityForResult(mRequestFileIntent, 0);
 ...
 }
 ...
}

Access the Requested File
The server app sends the file's content URI back to the client app in an Intent. This Intent is passed to
the client app in its override of onActivityResult(). Once the client app has the file's content URI, it
can access the file by getting its FileDescriptor.

This lesson teaches you to
• Send a Request for the File
• Access the Requested File
You should also read

• Intents and Intent Filters
• Retrieving Data from the Provider

Requesting a Shared File

125
Content from developer.android.com/training/secure-file-sharing/request-file.html through their Creative Commons Attribution 2.5 license

File security is preserved in this process because the content URI is the only piece of data that the client
app receives. Since this URI doesn't contain a directory path, the client app can't discover and open any
other files in the server app. Only the client app gets access to the file, and only for the permissions
granted by the server app. The permissions are temporary, so once the client app's task stack is finished,
the file is no longer accessible outside the server app.
The next snippet demonstrates how the client app handles the Intent sent from the server app, and how
the client app gets the FileDescriptor using the content URI:

 /*
 * When the Activity of the app that hosts files sets a result and calls
 * finish(), this method is invoked. The returned Intent contains the
 * content URI of a selected file. The result code indicates if the
 * selection worked or not.
 */
 @Override
 public void onActivityResult(int requestCode, int resultCode,
 Intent returnIntent) {
 // If the selection didn't work
 if (resultCode != RESULT_OK) {
 // Exit without doing anything else
 return;
 } else {
 // Get the file's content URI from the incoming Intent
 Uri returnUri = returnIntent.getData();
 /*
 * Try to open the file for "read" access using the
 * returned URI. If the file isn't found, write to the
 * error log and return.
 */
 try {
 /*
 * Get the content resolver instance for this context, and use it
 * to get a ParcelFileDescriptor for the file.
 */
 mInputPFD = getContentResolver().openFileDescriptor(returnUri, "r");
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 Log.e("MainActivity", "File not found.");
 return;
 }
 // Get a regular file descriptor for the file
 FileDescriptor fd = mInputPFD.getFileDescriptor();
 ...
 }
 }

The method openFileDescriptor() returns a ParcelFileDescriptor for the file. From this object,
the client app gets a FileDescriptor object, which it can then use to read the file.

Retrieving File Information

126
Content from developer.android.com/training/secure-file-sharing/retrieve-info.html through their Creative Commons Attribution 2.5 license

42. Retrieving File Information
Content from developer.android.com/training/secure-file-sharing/retrieve-info.html through their Creative Commons Attribution 2.5 license

Before a client app tries to work with a file for
which it has a content URI, the app can request
information about the file from the server app,
including the file's data type and file size. The data
type helps the client app to determine if it can
handle the file, and the file size helps the client
app set up buffering and caching for the file.
This lesson demonstrates how to query the server
app's FileProvider to retrieve a file's MIME
type and size.

Retrieve a File's MIME Type
A file's data type indicates to the client app how it should handle the file's contents. To get the data type of
a shared file given its content URI, the client app calls ContentResolver.getType(). This method
returns the file's MIME type. By default, a FileProvider determines the file's MIME type from its
filename extension.
The following code snippet demonstrates how a client app retrieves the MIME type of a file once the server
app has returned the content URI to the client:

 ...
 /*
 * Get the file's content URI from the incoming Intent, then
 * get the file's MIME type
 */
 Uri returnUri = returnIntent.getData();
 String mimeType = getContentResolver().getType(returnUri);
 ...

Retrieve a File's Name and Size
The FileProvider class has a default implementation of the query() method that returns the name
and size of the file associated with a content URI in a Cursor. The default implementation returns two
columns:
DISPLAY_NAME

The file's name, as a String. This value is the same as the value returned by
File.getName().

SIZE
The size of the file in bytes, as a long This value is the same as the value returned by
File.length()

The client app can get both the DISPLAY_NAME and SIZE for a file by setting all of the arguments of
query() to null except for the content URI. For example, this code snippet retrieves a file's
DISPLAY_NAME and SIZE and displays each one in separate TextView:

This lesson teaches you to
• Retrieve a File's MIME Type
• Retrieve a File's Name and Size
You should also read

• Retrieving Data from the Provider

Retrieving File Information

127
Content from developer.android.com/training/secure-file-sharing/retrieve-info.html through their Creative Commons Attribution 2.5 license

 ...
 /*
 * Get the file's content URI from the incoming Intent,
 * then query the server app to get the file's display name
 * and size.
 */
 Uri returnUri = returnIntent.getData();
 Cursor returnCursor =
 getContentResolver().query(returnUri, null, null, null, null);
 /*
 * Get the column indexes of the data in the Cursor,
 * move to the first row in the Cursor, get the data,
 * and display it.
 */
 int nameIndex = returnCursor.getColumnIndex(OpenableColumns.DISPLAY_NAME);
 int sizeIndex = returnCursor.getColumnIndex(OpenableColumns.SIZE);
 returnCursor.moveToFirst();
 TextView nameView = (TextView) findViewById(R.id.filename_text);
 TextView sizeView = (TextView) findViewById(R.id.filesize_text);
 nameView.setText(returnCursor.getString(nameIndex));
 sizeView.setText(Long.toString(returnCursor.getLong(sizeIndex)));
 ...

Sharing Files with NFC

128
Content from developer.android.com/training/beam-files/index.html through their Creative Commons Attribution 2.5 license

43. Sharing Files with NFC
Content from developer.android.com/training/beam-files/index.html through their Creative Commons Attribution 2.5 license

Android allows you to transfer large files between
devices using the Android Beam file transfer
feature. This feature has a simple API and allows
users to start the transfer process by simply
touching devices. In response, Android Beam file
transfer automatically copies files from one device
to the other and notifies the user when it's
finished.
While the Android Beam file transfer API handles
large amounts of data, the Android Beam NDEF
transfer API introduced in Android 4.0 (API level
14) handles small amounts of data such as URIs
or other small messages. In addition, Android
Beam is only one of the features available in the Android NFC framework, which allows you to read NDEF
messages from NFC tags. To learn more about Android Beam, see the topic Beaming NDEF Messages to
Other Devices. To learn more about the NFC framework, see the Near Field Communication API guide.

Lessons
Sending Files to Another Device

Learn how to set up your app to send files to another device.
Receiving Files from Another Device

Learn how to set up your app to receive files sent by another device.

Dependencies and prerequisites

• Android 4.1 (API Level 16) or higher
• At least two NFC-enabled Android

devices (NFC is not supported in the
emulator)

You should also read

• Using the External Storage

Sending Files to Another Device

129
Content from developer.android.com/training/beam-files/send-files.html through their Creative Commons Attribution 2.5 license

44. Sending Files to Another Device
Content from developer.android.com/training/beam-files/send-files.html through their Creative Commons Attribution 2.5 license

This lesson shows you how to design your app to
send large files to another device using Android
Beam file transfer. To send files, you request
permission to use NFC and external storage, test
to ensure your device supports NFC, and provide
URIs to Android Beam file transfer.
The Android Beam file transfer feature has the
following requirements:
• Android Beam file transfer for large files is only
available in Android 4.1 (API level 16) and higher.
• Files you want to transfer must reside in
external storage. To learn more about using
external storage, read Using the External Storage.
• Each file you want to transfer must be world-
readable. You can set this permission by calling the method File.setReadable(true,false).
• You must provide a file URI for the files you want to transfer. Android Beam file transfer is unable to
handle content URIs generated by FileProvider.getUriForFile.

Declare Features in the Manifest
First, edit your app manifest to declare the permissions and features your app needs.

Request Permissions
To allow your app to use Android Beam file transfer to send files from external storage using NFC, you
must request the following permissions in your app manifest:
NFC

Allows your app to send data over NFC. To specify this permission, add the following element as
a child of the <manifest> element:

 <uses-permission android:name="android.permission.NFC" />

READ_EXTERNAL_STORAGE

Allows your app to read from external storage. To specify this permission, add the following
element as a child of the <manifest> element:

 <uses-permission
 android:name="android.permission.READ_EXTERNAL_STORAGE" />

Note: As of Android 4.2.2 (API level 17), this permission is not enforced. Future versions of the platform
may require it for apps that want to read from external storage. To ensure forward compatibility, request
the permission now, before it becomes required.

Specify the NFC feature
Specify that your app uses NFC, by adding a <uses-feature> element as a child of the <manifest>
element. Set the android:required attribute to true to indicate that your app won't function unless
NFC is present.
The following snippet shows you how to specify the <uses-feature> element:

This lesson teaches you to
• Declare Features in the Manifest
• Test for Android Beam File Transfer
Support
• Create a Callback Method That Provides
Files
• Specify the Files to Send
You should also read

• Storage Options

Sending Files to Another Device

130
Content from developer.android.com/training/beam-files/send-files.html through their Creative Commons Attribution 2.5 license

<uses-feature
 android:name="android.hardware.nfc"
 android:required="true" />

Note that if your app only uses NFC as an option, but still functions if NFC isn't present, you should set
android:required to false, and test for NFC in code.

Specify Android Beam file transfer
Since Android Beam file transfer is only available in Android 4.1 (API level 16) and later, if your app
depends on Android Beam file transfer for a key part of its functionality you must specify the <uses-sdk>
element with the android:minSdkVersion="16" attribute. Otherwise, you can set
android:minSdkVersion to another value as necessary, and test for the platform version in code, as
described in the following section.

Test for Android Beam File Transfer Support
To specify in your app manifest that NFC is optional, you use the following element:

<uses-feature android:name="android.hardware.nfc" android:required="false" />

If you set the attribute android:required="false", you must test for NFC support and Android Beam
file transfer support in code.
To test for Android Beam file transfer support in code, start by testing that the device supports NFC by
calling PackageManager.hasSystemFeature() with the argument FEATURE_NFC. Next, check that
the Android version supports Android Beam file transfer by testing the value of SDK_INT. If Android Beam
file transfer is supported, get an instance of the NFC controller, which allows you to communicate with the
NFC hardware. For example:

Sending Files to Another Device

131
Content from developer.android.com/training/beam-files/send-files.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends Activity {
 ...
 NfcAdapter mNfcAdapter;
 // Flag to indicate that Android Beam is available
 boolean mAndroidBeamAvailable = false;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...
 // NFC isn't available on the device
 if (!PackageManager.hasSystemFeature(PackageManager.FEATURE_NFC)) {
 /*
 * Disable NFC features here.
 * For example, disable menu items or buttons that activate
 * NFC-related features
 */
 ...
 // Android Beam file transfer isn't supported
 } else if (Build.VERSION.SDK_INT <
 Build.VERSION_CODES.JELLY_BEAN_MR1) {
 // If Android Beam isn't available, don't continue.
 mAndroidBeamAvailable = false;
 /*
 * Disable Android Beam file transfer features here.
 */
 ...
 // Android Beam file transfer is available, continue
 } else {
 mNfcAdapter = NfcAdapter.getDefaultAdapter(this);
 ...
 }
 }
 ...
}

Create a Callback Method that Provides Files
Once you've verified that the device supports Android Beam file transfer, add a callback method that the
system invokes when Android Beam file transfer detects that the user wants to send files to another NFC-
enabled device. In this callback method, return an array of Uri objects. Android Beam file transfer copies
the files represented by these URIs to the receiving device.
To add the callback method, implement the NfcAdapter.CreateBeamUrisCallback interface and its
method createBeamUris(). The following snippet shows you how to do this:

Sending Files to Another Device

132
Content from developer.android.com/training/beam-files/send-files.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends Activity {
 ...
 // List of URIs to provide to Android Beam
 private Uri[] mFileUris = new Uri[10];
 ...
 /**
 * Callback that Android Beam file transfer calls to get
 * files to share
 */
 private class FileUriCallback implements
 NfcAdapter.CreateBeamUrisCallback {
 public FileUriCallback() {
 }
 /**
 * Create content URIs as needed to share with another device
 */
 @Override
 public Uri[] createBeamUris(NfcEvent event) {
 return mFileUris;
 }
 }
 ...
}

Once you've implemented the interface, provide the callback to Android Beam file transfer by calling
setBeamPushUrisCallback(). The following snippet shows you how to do this:

public class MainActivity extends Activity {
 ...
 // Instance that returns available files from this app
 private FileUriCallback mFileUriCallback;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...
 // Android Beam file transfer is available, continue
 ...
 mNfcAdapter = NfcAdapter.getDefaultAdapter(this);
 /*
 * Instantiate a new FileUriCallback to handle requests for
 * URIs
 */
 mFileUriCallback = new FileUriCallback();
 // Set the dynamic callback for URI requests.
 mNfcAdapter.setBeamPushUrisCallback(mFileUriCallback,this);
 ...
 }
 ...
}

Note: You can also provide the array of Uri objects directly to the NFC framework through your app's
NfcAdapter instance. Choose this approach if you can define the URIs to transfer before the NFC touch
event occurs. To learn more about this approach, see NfcAdapter.setBeamPushUris().

Specify the Files to Send
To transfer one or more files to another NFC-enabled device, get a file URI (a URI with a file scheme)
for each file and then add the URI to an array of Uri objects. To transfer a file, you must also have

Sending Files to Another Device

133
Content from developer.android.com/training/beam-files/send-files.html through their Creative Commons Attribution 2.5 license

permanent read access for the file. For example, the following snippet shows you how to get a file URI
from a file name and then add the URI to the array:

 /*
 * Create a list of URIs, get a File,
 * and set its permissions
 */
 private Uri[] mFileUris = new Uri[10];
 String transferFile = "transferimage.jpg";
 File extDir = getExternalFilesDir(null);
 File requestFile = new File(extDir, transferFile);
 requestFile.setReadable(true, false);
 // Get a URI for the File and add it to the list of URIs
 fileUri = Uri.fromFile(requestFile);
 if (fileUri != null) {
 mFileUris[0] = fileUri;
 } else {
 Log.e("My Activity", "No File URI available for file.");
 }

Receiving Files from Another Device

134
Content from developer.android.com/training/beam-files/receive-files.html through their Creative Commons Attribution 2.5 license

45. Receiving Files from Another Device
Content from developer.android.com/training/beam-files/receive-files.html through their Creative Commons Attribution 2.5 license

Android Beam file transfer copies files to a special
directory on the receiving device. It also scans the
copied files using the Android Media Scanner and
adds entries for media files to the MediaStore
provider. This lesson shows you how to respond
when the file copy is complete, and how to locate
the copied files on the receiving device.

Respond to a Request to Display
Data
When Android Beam file transfer finishes copying
files to the receiving device, it posts a notification
containing an Intent with the action
ACTION_VIEW, the MIME type of the first file that
was transferred, and a URI that points to the first file. When the user clicks the notification, this intent is
sent out to the system. To have your app respond to this intent, add an <intent-filter> element for
the <activity> element of the Activity that should respond. In the <intent-filter> element, add
the following child elements:
<action android:name="android.intent.action.VIEW" />

Matches the ACTION_VIEW intent sent from the notification.
<category android:name="android.intent.category.CATEGORY_DEFAULT" />

Matches an Intent that doesn't have an explicit category.
<data android:mimeType="mime-type" />

Matches a MIME type. Specify only those MIME types that your app can handle.
For example, the following snippet shows you how to add an intent filter that triggers the activity
com.example.android.nfctransfer.ViewActivity:

 <activity
 android:name="com.example.android.nfctransfer.ViewActivity"
 android:label="Android Beam Viewer" >
 ...
 <intent-filter>
 <action android:name="android.intent.action.VIEW"/>
 <category android:name="android.intent.category.DEFAULT"/>
 ...
 </intent-filter>
 </activity>

Note: Android Beam file transfer is not the only source of an ACTION_VIEW intent. Other apps on the
receiving device can also send an Intent with this action. Handling this situation is discussed in the
section Get the directory from a content URI.

Request File Permissions
To read files that Android Beam file transfer copies to the device, request the permission
READ_EXTERNAL_STORAGE. For example:

This lesson teaches you to
• Respond to a Request to Display Data
• Request File Permissions
• Get the Directory for Copied Files
You should also read

• Content URIs
• Intents and Intent Filters
• Notifications
• Using the External Storage

Receiving Files from Another Device

135
Content from developer.android.com/training/beam-files/receive-files.html through their Creative Commons Attribution 2.5 license

 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

If you want to copy transferred files to your app's own storage area, request the permission
WRITE_EXTERNAL_STORAGE instead. WRITE_EXTERNAL_STORAGE includes
READ_EXTERNAL_STORAGE.
Note: As of Android 4.2.2 (API level 17), the permission READ_EXTERNAL_STORAGE is only enforced if
the user chooses to do so. Future versions of the platform may require this permission in all cases. To
ensure forward compatibility, request the permission now, before it becomes required.
Since your app has control over its internal storage area, you don't need to request write permission to
copy a transferred file to your internal storage area.

Get the Directory for Copied Files
Android Beam file transfer copies all the files in a single transfer to one directory on the receiving device.
The URI in the content Intent sent by the Android Beam file transfer notification points to the first
transferred file. However, your app may also receive an ACTION_VIEW intent from a source other than
Android Beam file transfer. To determine how you should handle the incoming Intent, you need to
examine its scheme and authority.
To get the scheme for the URI, call Uri.getScheme(). The following code snippet shows you how to
determine the scheme and handle the URI accordingly:

Receiving Files from Another Device

136
Content from developer.android.com/training/beam-files/receive-files.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends Activity {
 ...
 // A File object containing the path to the transferred files
 private File mParentPath;
 // Incoming Intent
 private Intent mIntent;
 ...
 /*
 * Called from onNewIntent() for a SINGLE_TOP Activity
 * or onCreate() for a new Activity. For onNewIntent(),
 * remember to call setIntent() to store the most
 * current Intent
 *
 */
 private void handleViewIntent() {
 ...
 // Get the Intent action
 mIntent = getIntent();
 String action = mIntent.getAction();
 /*
 * For ACTION_VIEW, the Activity is being asked to display data.
 * Get the URI.
 */
 if (TextUtils.equals(action, Intent.ACTION_VIEW)) {
 // Get the URI from the Intent
 Uri beamUri = mIntent.getData();
 /*
 * Test for the type of URI, by getting its scheme value
 */
 if (TextUtils.equals(beamUri.getScheme(), "file")) {
 mParentPath = handleFileUri(beamUri);
 } else if (TextUtils.equals(
 beamUri.getScheme(), "content")) {
 mParentPath = handleContentUri(beamUri);
 }
 }
 ...
 }
 ...
}

Get the directory from a file URI
If the incoming Intent contains a file URI, the URI contains the absolute file name of a file, including the
full directory path and file name. For Android Beam file transfer, the directory path points to the location of
the other transferred files, if any. To get the directory path, get the path part of the URI, which contains all
of the URI except the file: prefix. Create a File from the path part, then get the parent path of the
File:

Receiving Files from Another Device

137
Content from developer.android.com/training/beam-files/receive-files.html through their Creative Commons Attribution 2.5 license

 ...
 public String handleFileUri(Uri beamUri) {
 // Get the path part of the URI
 String fileName = beamUri.getPath();
 // Create a File object for this filename
 File copiedFile = new File(fileName);
 // Get a string containing the file's parent directory
 return copiedFile.getParent();
 }
 ...

Get the directory from a content URI
If the incoming Intent contains a content URI, the URI may point to a directory and file name stored in
the MediaStore content provider. You can detect a content URI for MediaStore by testing the URI's
authority value. A content URI for MediaStore may come from Android Beam file transfer or from another
app, but in both cases you can retrieve a directory and file name for the content URI.
You can also receive an incoming ACTION_VIEW intent containing a content URI for a content provider
other than MediaStore. In this case, the content URI doesn't contain the MediaStore authority value,
and the content URI usually doesn't point to a directory.
Note: For Android Beam file transfer, you receive a content URI in the ACTION_VIEW intent if the first
incoming file has a MIME type of "audio/*", "image/*", or "video/*", indicating that the file is media- related.
Android Beam file transfer indexes the media files it transfers by running Media Scanner on the directory
where it stores transferred files. Media Scanner writes its results to the MediaStore content provider,
then it passes a content URI for the first file back to Android Beam file transfer. This content URI is the one
you receive in the notification Intent. To get the directory of the first file, you retrieve it from
MediaStore using the content URI.

Determine the content provider
To determine if you can retrieve a file directory from the content URI, determine the the content provider
associated with the URI by calling Uri.getAuthority() to get the URI's authority. The result has two
possible values:
MediaStore.AUTHORITY

The URI is for a file or files tracked by MediaStore. Retrieve the full file name from
MediaStore, and get directory from the file name.

Any other authority value
A content URI from another content provider. Display the data associated with the content URI,
but don't get the file directory.

To get the directory for a MediaStore content URI, run a query that specifies the incoming content URI
for the Uri argument and the column MediaColumns.DATA for the projection. The returned Cursor
contains the full path and name for the file represented by the URI. This path also contains all the other
files that Android Beam file transfer just copied to the device.
The following snippet shows you how to test the authority of the content URI and retrieve the the path and
file name for the transferred file:

Receiving Files from Another Device

138
Content from developer.android.com/training/beam-files/receive-files.html through their Creative Commons Attribution 2.5 license

 ...
 public String handleContentUri(Uri beamUri) {
 // Position of the filename in the query Cursor
 int filenameIndex;
 // File object for the filename
 File copiedFile;
 // The filename stored in MediaStore
 String fileName;
 // Test the authority of the URI
 if (!TextUtils.equals(beamUri.getAuthority(), MediaStore.AUTHORITY)) {
 /*
 * Handle content URIs for other content providers
 */
 // For a MediaStore content URI
 } else {
 // Get the column that contains the file name
 String[] projection = { MediaStore.MediaColumns.DATA };
 Cursor pathCursor =
 getContentResolver().query(beamUri, projection,
 null, null, null);
 // Check for a valid cursor
 if (pathCursor != null &&
 pathCursor.moveToFirst()) {
 // Get the column index in the Cursor
 filenameIndex = pathCursor.getColumnIndex(
 MediaStore.MediaColumns.DATA);
 // Get the full file name including path
 fileName = pathCursor.getString(filenameIndex);
 // Create a File object for the filename
 copiedFile = new File(fileName);
 // Return the parent directory of the file
 return new File(copiedFile.getParent());
 } else {
 // The query didn't work; return null
 return null;
 }
 }
 }
 ...

To learn more about retrieving data from a content provider, see the section Retrieving Data from the
Provider.

Building Apps with Multimedia

139
Content from developer.android.com/training/building-multimedia.html through their Creative Commons Attribution 2.5 license

46. Building Apps with Multimedia
Content from developer.android.com/training/building-multimedia.html through their Creative Commons Attribution 2.5 license
These classes teach you how to create rich multimedia apps that behave the way users expect.

Managing Audio Playback

140
Content from developer.android.com/training/managing-audio/index.html through their Creative Commons Attribution 2.5 license

47. Managing Audio Playback
Content from developer.android.com/training/managing-audio/index.html through their Creative Commons Attribution 2.5 license

If your app plays audio, it’s important that your
users can control the audio in a predictable
manner. To ensure a great user experience, it’s
also important that your app manages the audio
focus to ensure multiple apps aren’t playing audio
at the same time.
After this class, you will be able to build apps that
respond to hardware audio key presses, which
request audio focus when playing audio, and
which respond appropriately to changes in audio
focus caused by the system or other applications.

Lessons
Controlling Your App’s Volume and Playback

Learn how to ensure your users can control the volume of your app using the hardware or
software volume controls and where available the play, stop, pause, skip, and previous media
playback keys.

Managing Audio Focus
With multiple apps potentially playing audio it's important to think about how they should interact.
To avoid every music app playing at the same time, Android uses audio focus to moderate audio
playback. Learn how to request the audio focus, listen for a loss of audio focus, and how to
respond when that happens.

Dealing with Audio Output Hardware
Audio can be played from a number of sources. Learn how to find out where the audio is being
played and how to handle a headset being disconnected during playback.

Dependencies and prerequisites

• Android 2.0 (API level 5) or higher
• Experience with Media Playback

You should also read

• Services

Controlling Your App’s Volume and Playback

141
Content from developer.android.com/training/managing-audio/volume-playback.html through their Creative Commons Attribution 2.5 license

48. Controlling Your App’s Volume and Playback
Content from developer.android.com/training/managing-audio/volume-playback.html through their Creative Commons Attribution 2.5 license

A good user experience is a predictable one. If
your app plays media it’s important that your users
can control the volume of your app using the
hardware or software volume controls of their
device, bluetooth headset, or headphones.
Similarly, where appropriate and available, the
play, stop, pause, skip, and previous media
playback keys should perform their respective
actions on the audio stream used by your app.

Identify Which Audio Stream to
Use
The first step to creating a predictable audio
experience is understanding which audio stream your app will use.
Android maintains a separate audio stream for playing music, alarms, notifications, the incoming call
ringer, system sounds, in-call volume, and DTMF tones. This is done primarily to allow users to control the
volume of each stream independently.
Most of these streams are restricted to system events, so unless your app is a replacement alarm clock,
you’ll almost certainly be playing your audio using the STREAM_MUSIC stream.

Use Hardware Volume Keys to Control Your App’s Audio Volume
By default, pressing the volume controls modify the volume of the active audio stream. If your app isn't
currently playing anything, hitting the volume keys adjusts the ringer volume.
If you've got a game or music app, then chances are good that when the user hits the volume keys they
want to control the volume of the game or music, even if they’re currently between songs or there’s no
music in the current game location.
You may be tempted to try and listen for volume key presses and modify the volume of your audio stream
that way. Resist the urge. Android provides the handy setVolumeControlStream() method to direct
volume key presses to the audio stream you specify.
Having identified the audio stream your application will be using, you should set it as the volume stream
target. You should make this call early in your app’s lifecycle—because you only need to call it once during
the activity lifecycle, you should typically call it within the onCreate() method (of the Activity or
Fragment that controls your media). This ensures that whenever your app is visible, the volume controls
function as the user expects.

setVolumeControlStream(AudioManager.STREAM_MUSIC);

From this point onwards, pressing the volume keys on the device affect the audio stream you specify (in
this case “music”) whenever the target activity or fragment is visible.

Use Hardware Playback Control Keys to Control Your App’s Audio
Playback
Media playback buttons such as play, pause, stop, skip, and previous are available on some handsets and
many connected or wireless headsets. Whenever a user presses one of these hardware keys, the system
broadcasts an intent with the ACTION_MEDIA_BUTTON action.

This lesson teaches you to
• Identify Which Audio Stream to Use
• Use Hardware Volume Keys to Control
Your App’s Audio Volume
• Use Hardware Playback Control Keys to
Control Your App’s Audio Playback
You should also read

• Media Playback

Controlling Your App’s Volume and Playback

142
Content from developer.android.com/training/managing-audio/volume-playback.html through their Creative Commons Attribution 2.5 license

To respond to media button clicks, you need to register a BroadcastReceiver in your manifest that
listens for this action broadcast as shown below.

<receiver android:name=".RemoteControlReceiver">
 <intent-filter>
 <action android:name="android.intent.action.MEDIA_BUTTON" />
 </intent-filter>
</receiver>

The receiver implementation itself needs to extract which key was pressed to cause the broadcast. The
Intent includes this under the EXTRA_KEY_EVENT key, while the KeyEvent class includes a list
KEYCODE_MEDIA_* static constants that represents each of the possible media buttons, such as
KEYCODE_MEDIA_PLAY_PAUSE and KEYCODE_MEDIA_NEXT.
The following snippet shows how to extract the media button pressed and affects the media playback
accordingly.

public class RemoteControlReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (Intent.ACTION_MEDIA_BUTTON.equals(intent.getAction())) {
 KeyEvent event = (KeyEvent)intent.getParcelableExtra(Intent.EXTRA_KEY_EVENT);
 if (KeyEvent.KEYCODE_MEDIA_PLAY == event.getKeyCode()) {
 // Handle key press.
 }
 }
 }
}

Because multiple applications might want to listen for media button presses, you must also
programmatically control when your app should receive media button press events.
The following code can be used within your app to register and de-register your media button event
receiver using the AudioManager. When registered, your broadcast receiver is the exclusive receiver of
all media button broadcasts.

AudioManager am = mContext.getSystemService(Context.AUDIO_SERVICE);
...

// Start listening for button presses
am.registerMediaButtonEventReceiver(RemoteControlReceiver);
...

// Stop listening for button presses
am.unregisterMediaButtonEventReceiver(RemoteControlReceiver);

Typically, apps should unregister most of their receivers whenever they become inactive or invisible (such
as during the onStop() callback). However, it’s not that simple for media playback apps—in fact,
responding to media playback buttons is most important when your application isn’t visible and therefore
can’t be controlled by the on-screen UI.
A better approach is to register and unregister the media button event receiver when your application gains
and loses the audio focus. This is covered in detail in the next lesson.

Managing Audio Focus

143
Content from developer.android.com/training/managing-audio/audio-focus.html through their Creative Commons Attribution 2.5 license

49. Managing Audio Focus
Content from developer.android.com/training/managing-audio/audio-focus.html through their Creative Commons Attribution 2.5 license

With multiple apps potentially playing audio it's
important to think about how they should interact.
To avoid every music app playing at the same
time, Android uses audio focus to moderate audio
playback—only apps that hold the audio focus
should play audio.
Before your app starts playing audio it should
request—and receive—the audio focus. Likewise,
it should know how to listen for a loss of audio
focus and respond appropriately when that
happens.

Request the Audio Focus
Before your app starts playing any audio, it should hold the audio focus for the stream it will be using. This
is done with a call to requestAudioFocus() which returns AUDIOFOCUS_REQUEST_GRANTED if your
request is successful.
You must specify which stream you're using and whether you expect to require transient or permanent
audio focus. Request transient focus when you expect to play audio for only a short time (for example
when playing navigation instructions). Request permanent audio focus when you plan to play audio for the
foreseeable future (for example, when playing music).
The following snippet requests permanent audio focus on the music audio stream. You should request the
audio focus immediately before you begin playback, such as when the user presses play or the
background music for the next game level begins.

AudioManager am = mContext.getSystemService(Context.AUDIO_SERVICE);
...

// Request audio focus for playback
int result = am.requestAudioFocus(afChangeListener,
 // Use the music stream.
 AudioManager.STREAM_MUSIC,
 // Request permanent focus.
 AudioManager.AUDIOFOCUS_GAIN);

if (result == AudioManager.AUDIOFOCUS_REQUEST_GRANTED) {
 am.unregisterMediaButtonEventReceiver(RemoteControlReceiver);
 // Start playback.
}

Once you've finished playback be sure to call abandonAudioFocus(). This notifies the system that you
no longer require focus and unregisters the associated
AudioManager.OnAudioFocusChangeListener. In the case of abandoning transient focus, this
allows any interupted app to continue playback.

// Abandon audio focus when playback complete
am.abandonAudioFocus(afChangeListener);

When requesting transient audio focus you have an additional option: whether or not you want to enable
"ducking." Normally, when a well-behaved audio app loses audio focus it immediately silences its

This lesson teaches you to
• Request the Audio Focus
• Handle the Loss of Audio Focus
• Duck!
You should also read

• Media Playback

Managing Audio Focus

144
Content from developer.android.com/training/managing-audio/audio-focus.html through their Creative Commons Attribution 2.5 license

playback. By requesting a transient audio focus that allows ducking you tell other audio apps that it’s
acceptable for them to keep playing, provided they lower their volume until the focus returns to them.

// Request audio focus for playback
int result = am.requestAudioFocus(afChangeListener,
 // Use the music stream.
 AudioManager.STREAM_MUSIC,
 // Request permanent focus.
 AudioManager.AUDIOFOCUS_GAIN_TRANSIENT_MAY_DUCK);

if (result == AudioManager.AUDIOFOCUS_REQUEST_GRANTED) {
 // Start playback.
}

Ducking is particularly suitable for apps that use the audio stream intermittently, such as for audible driving
directions.
Whenever another app requests audio focus as described above, its choice between permanent and
transient (with or without support for ducking) audio focus is received by the listener you registered when
requesting focus.

Handle the Loss of Audio Focus
If your app can request audio focus, it follows that it will in turn lose that focus when another app requests
it. How your app responds to a loss of audio focus depends on the manner of that loss.
The onAudioFocusChange() callback method of they audio focus change listener you registered when
requesting audio focus receives a parameter that describes the focus change event. Specifically, the
possible focus loss events mirror the focus request types from the previous section—permanent loss,
transient loss, and transient with ducking permitted.
Generally speaking, a transient (temporary) loss of audio focus should result in your app silencing it’s
audio stream, but otherwise maintaining the same state. You should continue to monitor changes in audio
focus and be prepared to resume playback where it was paused once you’ve regained the focus.
If the audio focus loss is permanent, it’s assumed that another application is now being used to listen to
audio and your app should effectively end itself. In practical terms, that means stopping playback,
removing media button listeners—allowing the new audio player to exclusively handle those events—and
abandoning your audio focus. At that point, you would expect a user action (pressing play in your app) to
be required before you resume playing audio.
In the following code snippet, we pause the playback or our media player object if the audio loss is
transient and resume it when we have regained the focus. If the loss is permanent, it unregisters our media
button event receiver and stops monitoring audio focus changes.

OnAudioFocusChangeListener afChangeListener = new OnAudioFocusChangeListener() {
 public void onAudioFocusChange(int focusChange) {
 if (focusChange == AUDIOFOCUS_LOSS_TRANSIENT
 // Pause playback
 } else if (focusChange == AudioManager.AUDIOFOCUS_GAIN) {
 // Resume playback
 } else if (focusChange == AudioManager.AUDIOFOCUS_LOSS) {
 am.unregisterMediaButtonEventReceiver(RemoteControlReceiver);
 am.abandonAudioFocus(afChangeListener);
 // Stop playback
 }
 }
};

Managing Audio Focus

145
Content from developer.android.com/training/managing-audio/audio-focus.html through their Creative Commons Attribution 2.5 license

In the case of a transient loss of audio focus where ducking is permitted, rather than pausing playback,
you can "duck" instead.

Duck!
Ducking is the process of lowering your audio stream output volume to make transient audio from another
app easier to hear without totally disrupting the audio from your own application.
In the following code snippet lowers the volume on our media player object when we temporarily lose
focus, then returns it to its previous level when we regain focus.

OnAudioFocusChangeListener afChangeListener = new OnAudioFocusChangeListener() {
 public void onAudioFocusChange(int focusChange) {
 if (focusChange == AUDIOFOCUS_LOSS_TRANSIENT_CAN_DUCK) {
 // Lower the volume
 } else if (focusChange == AudioManager.AUDIOFOCUS_GAIN) {
 // Raise it back to normal
 }
 }
};

A loss of audio focus is the most important broadcast to react to, but not the only one. The system
broadcasts a number of intents to alert you to changes in user’s audio experience. The next lesson
demonstrates how to monitor them to improve the user’s overall experience.

Dealing with Audio Output Hardware

146
Content from developer.android.com/training/managing-audio/audio-output.html through their Creative Commons Attribution 2.5 license

50. Dealing with Audio Output Hardware
Content from developer.android.com/training/managing-audio/audio-output.html through their Creative Commons Attribution 2.5 license

Users have a number of alternatives when it
comes to enjoying the audio from their Android
devices. Most devices have a built-in speaker,
headphone jacks for wired headsets, and many
also feature Bluetooth connectivity and support for
A2DP audio.

Check What Hardware is Being
Used
How your app behaves might be affected by which
hardware its output is being routed to.
You can query the AudioManager to determine if the audio is currently being routed to the device
speaker, wired headset, or attached Bluetooth device as shown in the following snippet:

if (isBluetoothA2dpOn()) {
 // Adjust output for Bluetooth.
} else if (isSpeakerphoneOn()) {
 // Adjust output for Speakerphone.
} else if (isWiredHeadsetOn()) {
 // Adjust output for headsets
} else {
 // If audio plays and noone can hear it, is it still playing?
}

Handle Changes in the Audio Output Hardware
When a headset is unplugged, or a Bluetooth device disconnected, the audio stream automatically
reroutes to the built in speaker. If you listen to your music at as high a volume as I do, that can be a noisy
surprise.
Luckily the system broadcasts an ACTION_AUDIO_BECOMING_NOISY intent when this happens. It’s good
practice to register a BroadcastReceiver that listens for this intent whenever you’re playing audio. In
the case of music players, users typically expect the playback to be paused—while for games you may
choose to significantly lower the volume.

This lesson teaches you to
• Check What Hardware is Being Used
• Handle Changes in the Audio Output
Hardware
You should also read

• Media Playback

Dealing with Audio Output Hardware

147
Content from developer.android.com/training/managing-audio/audio-output.html through their Creative Commons Attribution 2.5 license

private class NoisyAudioStreamReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (AudioManager.ACTION_AUDIO_BECOMING_NOISY.equals(intent.getAction())) {
 // Pause the playback
 }
 }
}

private IntentFilter intentFilter = new
IntentFilter(AudioManager.ACTION_AUDIO_BECOMING_NOISY);

private void startPlayback() {
 registerReceiver(myNoisyAudioStreamReceiver(), intentFilter);
}

private void stopPlayback() {
 unregisterReceiver(myNoisyAudioStreamReceiver);
}

Capturing Photos

148
Content from developer.android.com/training/camera/index.html through their Creative Commons Attribution 2.5 license

51. Capturing Photos
Content from developer.android.com/training/camera/index.html through their Creative Commons Attribution 2.5 license

The world was a dismal and featureless place
before rich media became prevalent. Remember
Gopher? We don't, either. For your app to become
part of your users' lives, give them a way to put
their lives into it. Using the on-board cameras,
your application can enable users to augment
what they see around them, make unique avatars,
look for zombies around the corner, or simply
share their experiences.
This class gets you clicking fast with some super-
easy ways of leveraging existing camera
applications. In later lessons, you dive deeper and
learn how to control the camera hardware directly.

Lessons
Taking Photos Simply

Leverage other applications and capture photos with just a few lines of code.
Recording Videos Simply

Leverage other applications and record videos with just a few lines of code.
Controlling the Camera

Control the camera hardware directly and implement your own camera application.

Dependencies and prerequisites

• Android 2.2 (API level 8) or higher
• A device with a camera

You should also read

• Camera
• Activities

Try it out
Download the sample
PhotoIntentActivity.zip

Taking Photos Simply

149
Content from developer.android.com/training/camera/photobasics.html through their Creative Commons Attribution 2.5 license

52. Taking Photos Simply
Content from developer.android.com/training/camera/photobasics.html through their Creative Commons Attribution 2.5 license

This lesson explains how to capture photos using
an existing camera application.
Suppose you are implementing a crowd-sourced
weather service that makes a global weather map
by blending together pictures of the sky taken by
devices running your client app. Integrating photos
is only a small part of your application. You want
to take photos with minimal fuss, not reinvent the
camera. Happily, most Android-powered devices
already have at least one camera application
installed. In this lesson, you learn how to make it
take a picture for you.

Request Camera Permission
If an essential function of your application is taking
pictures, then restrict its visibility on Google Play
to devices that have a camera. To advertise that
your application depends on having a camera, put
a <uses-feature> tag in your manifest file:

<manifest ... >
 <uses-feature android:name="android.hardware.camera"
 android:required="true" />
 ...
</manifest>

If your application uses, but does not require a camera in order to function, instead set
android:required to false. In doing so, Google Play will allow devices without a camera to download
your application. It's then your responsibility to check for the availability of the camera at runtime by calling
hasSystemFeature(PackageManager.FEATURE_CAMERA). If a camera is not available, you should
then disable your camera features.

Take a Photo with the Camera App
The Android way of delegating actions to other applications is to invoke an Intent that describes what
you want done. This process involves three pieces: The Intent itself, a call to start the external
Activity, and some code to handle the image data when focus returns to your activity.
Here's a function that invokes an intent to capture a photo.

static final int REQUEST_IMAGE_CAPTURE = 1;

private void dispatchTakePictureIntent() {
 Intent takePictureIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 if (takePictureIntent.resolveActivity(getPackageManager()) != null) {
 startActivityForResult(takePictureIntent, REQUEST_IMAGE_CAPTURE);
 }
}

This lesson teaches you to
• Request Camera Permission
• Take a Photo with the Camera App
• Get the Thumbnail
• Save the Full-size Photo
• Add the Photo to a Gallery
• Decode a Scaled Image
You should also read

• Camera
• Intents and Intent Filters

Try it out
Download the sample
PhotoIntentActivity.zip

Taking Photos Simply

150
Content from developer.android.com/training/camera/photobasics.html through their Creative Commons Attribution 2.5 license

Notice that the startActivityForResult() method is protected by a condition that calls
resolveActivity(), which returns the first activity component that can handle the intent. Performing
this check is important because if you call startActivityForResult() using an intent that no app can
handle, your app will crash. So as long as the result is not null, it's safe to use the intent.

Get the Thumbnail
If the simple feat of taking a photo is not the culmination of your app's ambition, then you probably want to
get the image back from the camera application and do something with it.
The Android Camera application encodes the photo in the return Intent delivered to
onActivityResult() as a small Bitmap in the extras, under the key "data". The following code
retrieves this image and displays it in an ImageView.

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == REQUEST_IMAGE_CAPTURE && resultCode == RESULT_OK) {
 Bundle extras = data.getExtras();
 Bitmap imageBitmap = (Bitmap) extras.get("data");
 mImageView.setImageBitmap(imageBitmap);
 }
}

Note: This thumbnail image from "data" might be good for an icon, but not a lot more. Dealing with a full-
sized image takes a bit more work.

Save the Full-size Photo
The Android Camera application saves a full-size photo if you give it a file to save into. You must provide a
fully qualified file name where the camera app should save the photo.
Generally, any photos that the user captures with the device camera should be saved on the device in the
public external storage so they are accessible by all apps. The proper directory for shared photos is
provided by getExternalStoragePublicDirectory(), with the DIRECTORY_PICTURES argument.
Because the directory provided by this method is shared among all apps, reading and writing to it requires
the READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE permissions, respectively. The write
permission implicitly allows reading, so if you need to write to the external storage then you need to
request only one permission:

<manifest ...>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 ...
</manifest>

However, if you'd like the photos to remain private to your app only, you can instead use the directory
provided by getExternalFilesDir(). On Android 4.3 and lower, writing to this directory also requires
the WRITE_EXTERNAL_STORAGE permission. Beginning with Android 4.4, the permission is no longer
required because the directory is not accessible by other apps, so you can declare the permission should
be requested only on the lower versions of Android by adding the maxSdkVersion attribute:

<manifest ...>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"
 android:maxSdkVersion="18" />
 ...
</manifest>

Taking Photos Simply

151
Content from developer.android.com/training/camera/photobasics.html through their Creative Commons Attribution 2.5 license

Note: Files you save in the directories provided by getExternalFilesDir() are deleted when the user
uninstalls your app.
Once you decide the directory for the file, you need to create a collision-resistant file name. You may wish
also to save the path in a member variable for later use. Here's an example solution in a method that
returns a unique file name for a new photo using a date-time stamp:

String mCurrentPhotoPath;

private File createImageFile() throws IOException {
 // Create an image file name
 String timeStamp = new SimpleDateFormat("yyyyMMdd_HHmmss").format(new Date());
 String imageFileName = "JPEG_" + timeStamp + "_";
 File storageDir = Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_PICTURES);
 File image = File.createTempFile(
 imageFileName, /* prefix */
 ".jpg", /* suffix */
 storageDir /* directory */
);

 // Save a file: path for use with ACTION_VIEW intents
 mCurrentPhotoPath = "file:" + image.getAbsolutePath();
 return image;
}

With this method available to create a file for the photo, you can now create and invoke the Intent like
this:

static final in REQUEST_TAKE_PHOTO = 1;

private void dispatchTakePictureIntent() {
 Intent takePictureIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 // Ensure that there's a camera activity to handle the intent
 if (takePictureIntent.resolveActivity(getPackageManager()) != null) {
 // Create the File where the photo should go
 File photoFile = null;
 try {
 photoFile = createImageFile();
 } catch (IOException ex) {
 // Error occurred while creating the File
 ...
 }
 // Continue only if the File was successfully created
 if (photoFile != null) {
 takePictureIntent.putExtra(MediaStore.EXTRA_OUTPUT,
 Uri.fromFile(photoFile));
 startActivityForResult(takePictureIntent, REQUEST_TAKE_PHOTO);
 }
 }
}

Add the Photo to a Gallery
When you create a photo through an intent, you should know where your image is located, because you
said where to save it in the first place. For everyone else, perhaps the easiest way to make your photo
accessible is to make it accessible from the system's Media Provider.

Taking Photos Simply

152
Content from developer.android.com/training/camera/photobasics.html through their Creative Commons Attribution 2.5 license

Note: If you saved your photo to the directory provided by getExternalFilesDir(), the media scanner
cannot access the files because they are private to your app.
The following example method demonstrates how to invoke the system's media scanner to add your photo
to the Media Provider's database, making it available in the Android Gallery application and to other apps.

private void galleryAddPic() {
 Intent mediaScanIntent = new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE);
 File f = new File(mCurrentPhotoPath);
 Uri contentUri = Uri.fromFile(f);
 mediaScanIntent.setData(contentUri);
 this.sendBroadcast(mediaScanIntent);
}

Decode a Scaled Image
Managing multiple full-sized images can be tricky with limited memory. If you find your application running
out of memory after displaying just a few images, you can dramatically reduce the amount of dynamic
heap used by expanding the JPEG into a memory array that's already scaled to match the size of the
destination view. The following example method demonstrates this technique.

private void setPic() {
 // Get the dimensions of the View
 int targetW = mImageView.getWidth();
 int targetH = mImageView.getHeight();

 // Get the dimensions of the bitmap
 BitmapFactory.Options bmOptions = new BitmapFactory.Options();
 bmOptions.inJustDecodeBounds = true;
 BitmapFactory.decodeFile(mCurrentPhotoPath, bmOptions);
 int photoW = bmOptions.outWidth;
 int photoH = bmOptions.outHeight;

 // Determine how much to scale down the image
 int scaleFactor = Math.min(photoW/targetW, photoH/targetH);

 // Decode the image file into a Bitmap sized to fill the View
 bmOptions.inJustDecodeBounds = false;
 bmOptions.inSampleSize = scaleFactor;
 bmOptions.inPurgeable = true;

 Bitmap bitmap = BitmapFactory.decodeFile(mCurrentPhotoPath, bmOptions);
 mImageView.setImageBitmap(bitmap);
}

Recording Videos Simply

153
Content from developer.android.com/training/camera/videobasics.html through their Creative Commons Attribution 2.5 license

53. Recording Videos Simply
Content from developer.android.com/training/camera/videobasics.html through their Creative Commons Attribution 2.5 license

This lesson explains how to capture video using
existing camera applications.
Your application has a job to do, and integrating
videos is only a small part of it. You want to take
videos with minimal fuss, and not reinvent the
camcorder. Happily, most Android-powered
devices already have a camera application that
records video. In this lesson, you make it do this
for you.

Request Camera Permission
To advertise that your application depends on
having a camera, put a <uses-feature> tag in
the manifest file:

<manifest ... >
 <uses-feature android:name="android.hardware.camera"
 android:required="true" />
 ...
</manifest>

If your application uses, but does not require a camera in order to function, set android:required to
false. In doing so, Google Play will allow devices without a camera to download your application. It's then
your responsibility to check for the availability of the camera at runtime by calling
hasSystemFeature(PackageManager.FEATURE_CAMERA). If a camera is not available, you should
then disable your camera features.

Record a Video with a Camera App
The Android way of delegating actions to other applications is to invoke an Intent that describes what
you want done. This process involves three pieces: The Intent itself, a call to start the external
Activity, and some code to handle the video when focus returns to your activity.
Here's a function that invokes an intent to capture video.

static final int REQUEST_VIDEO_CAPTURE = 1;

private void dispatchTakeVideoIntent() {
 Intent takeVideoIntent = new Intent(MediaStore.ACTION_VIDEO_CAPTURE);
 if (takeVideoIntent.resolveActivity(getPackageManager()) != null) {
 startActivityForResult(takeVideoIntent, REQUEST_VIDEO_CAPTURE);
 }
}

Notice that the startActivityForResult() method is protected by a condition that calls
resolveActivity(), which returns the first activity component that can handle the intent. Performing
this check is important because if you call startActivityForResult() using an intent that no app can
handle, your app will crash. So as long as the result is not null, it's safe to use the intent.

View the Video

This lesson teaches you to
• Request Camera Permission
• Record a Video with a Camera App
• View the Video
You should also read

• Camera
• Intents and Intent Filters

Try it out
Download the sample
PhotoIntentActivity.zip

Recording Videos Simply

154
Content from developer.android.com/training/camera/videobasics.html through their Creative Commons Attribution 2.5 license

The Android Camera application returns the video in the Intent delivered to onActivityResult() as
a Uri pointing to the video location in storage. The following code retrieves this video and displays it in a
VideoView.

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == REQUEST_VIDEO_CAPTURE && resultCode == RESULT_OK) {
 Uri videoUri = intent.getData();
 mVideoView.setVideoURI(videoUri);
 }
}

Controlling the Camera

155
Content from developer.android.com/training/camera/cameradirect.html through their Creative Commons Attribution 2.5 license

54. Controlling the Camera
Content from developer.android.com/training/camera/cameradirect.html through their Creative Commons Attribution 2.5 license

In this lesson, we discuss how to control the
camera hardware directly using the framework
APIs.
Directly controlling a device camera requires a lot
more code than requesting pictures or videos from
existing camera applications. However, if you
want to build a specialized camera application or
something fully integrated in your app UI, this
lesson shows you how.

Open the Camera Object
Getting an instance of the Camera object is the
first step in the process of directly controlling the
camera. As Android's own Camera application
does, the recommended way to access the
camera is to open Camera on a separate thread
that's launched from onCreate(). This approach is a good idea since it can take a while and might bog
down the UI thread. In a more basic implementation, opening the camera can be deferred to the
onResume() method to facilitate code reuse and keep the flow of control simple.
Calling Camera.open() throws an exception if the camera is already in use by another application, so we
wrap it in a try block.

private boolean safeCameraOpen(int id) {
 boolean qOpened = false;

 try {
 releaseCameraAndPreview();
 mCamera = Camera.open(id);
 qOpened = (mCamera != null);
 } catch (Exception e) {
 Log.e(getString(R.string.app_name), "failed to open Camera");
 e.printStackTrace();
 }

 return qOpened;
}

private void releaseCameraAndPreview() {
 mPreview.setCamera(null);
 if (mCamera != null) {
 mCamera.release();
 mCamera = null;
 }
}

Since API level 9, the camera framework supports multiple cameras. If you use the legacy API and call
open() without an argument, you get the first rear-facing camera.

Create the Camera Preview
Taking a picture usually requires that your users see a preview of their subject before clicking the shutter.
To do so, you can use a SurfaceView to draw previews of what the camera sensor is picking up.

This lesson teaches you to
• Open the Camera Object
• Create the Camera Preview
• Modify Camera Settings
• Set the Preview Orientation
• Take a Picture
• Restart the Preview
• Stop the Preview and Release the Camera
You should also read

• Building a Camera App

Controlling the Camera

156
Content from developer.android.com/training/camera/cameradirect.html through their Creative Commons Attribution 2.5 license

Preview Class
To get started with displaying a preview, you need preview class. The preview requires an implementation
of the android.view.SurfaceHolder.Callback interface, which is used to pass image data from the
camera hardware to the application.

class Preview extends ViewGroup implements SurfaceHolder.Callback {

 SurfaceView mSurfaceView;
 SurfaceHolder mHolder;

 Preview(Context context) {
 super(context);

 mSurfaceView = new SurfaceView(context);
 addView(mSurfaceView);

 // Install a SurfaceHolder.Callback so we get notified when the
 // underlying surface is created and destroyed.
 mHolder = mSurfaceView.getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 }
...
}

The preview class must be passed to the Camera object before the live image preview can be started, as
shown in the next section.

Set and Start the Preview
A camera instance and its related preview must be created in a specific order, with the camera object
being first. In the snippet below, the process of initializing the camera is encapsulated so that
Camera.startPreview() is called by the setCamera() method, whenever the user does something
to change the camera. The preview must also be restarted in the preview class surfaceChanged()
callback method.

Controlling the Camera

157
Content from developer.android.com/training/camera/cameradirect.html through their Creative Commons Attribution 2.5 license

public void setCamera(Camera camera) {
 if (mCamera == camera) { return; }

 stopPreviewAndFreeCamera();

 mCamera = camera;

 if (mCamera != null) {
 List<Size> localSizes = mCamera.getParameters().getSupportedPreviewSizes();
 mSupportedPreviewSizes = localSizes;
 requestLayout();

 try {
 mCamera.setPreviewDisplay(mHolder);
 } catch (IOException e) {
 e.printStackTrace();
 }

 // Important: Call startPreview() to start updating the preview
 // surface. Preview must be started before you can take a picture.
 mCamera.startPreview();
 }
}

Modify Camera Settings
Camera settings change the way that the camera takes pictures, from the zoom level to exposure
compensation. This example changes only the preview size; see the source code of the Camera
application for many more.

public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {
 // Now that the size is known, set up the camera parameters and begin
 // the preview.
 Camera.Parameters parameters = mCamera.getParameters();
 parameters.setPreviewSize(mPreviewSize.width, mPreviewSize.height);
 requestLayout();
 mCamera.setParameters(parameters);

 // Important: Call startPreview() to start updating the preview surface.
 // Preview must be started before you can take a picture.
 mCamera.startPreview();
}

Set the Preview Orientation
Most camera applications lock the display into landscape mode because that is the natural orientation of
the camera sensor. This setting does not prevent you from taking portrait-mode photos, because the
orientation of the device is recorded in the EXIF header. The setCameraDisplayOrientation()
method lets you change how the preview is displayed without affecting how the image is recorded.
However, in Android prior to API level 14, you must stop your preview before changing the orientation and
then restart it.

Take a Picture
Use the Camera.takePicture() method to take a picture once the preview is started. You can create
Camera.PictureCallback and Camera.ShutterCallback objects and pass them into
Camera.takePicture().

Controlling the Camera

158
Content from developer.android.com/training/camera/cameradirect.html through their Creative Commons Attribution 2.5 license

If you want to grab images continously, you can create a Camera.PreviewCallback that implements
onPreviewFrame(). For something in between, you can capture only selected preview frames, or set up
a delayed action to call takePicture().

Restart the Preview
After a picture is taken, you must restart the preview before the user can take another picture. In this
example, the restart is done by overloading the shutter button.

@Override
public void onClick(View v) {
 switch(mPreviewState) {
 case K_STATE_FROZEN:
 mCamera.startPreview();
 mPreviewState = K_STATE_PREVIEW;
 break;

 default:
 mCamera.takePicture(null, rawCallback, null);
 mPreviewState = K_STATE_BUSY;
 } // switch
 shutterBtnConfig();
}

Stop the Preview and Release the Camera
Once your application is done using the camera, it's time to clean up. In particular, you must release the
Camera object, or you risk crashing other applications, including new instances of your own application.
When should you stop the preview and release the camera? Well, having your preview surface destroyed
is a pretty good hint that it’s time to stop the preview and release the camera, as shown in these methods
from the Preview class.

public void surfaceDestroyed(SurfaceHolder holder) {
 // Surface will be destroyed when we return, so stop the preview.
 if (mCamera != null) {
 // Call stopPreview() to stop updating the preview surface.
 mCamera.stopPreview();
 }
}

/**
 * When this function returns, mCamera will be null.
 */
private void stopPreviewAndFreeCamera() {

 if (mCamera != null) {
 // Call stopPreview() to stop updating the preview surface.
 mCamera.stopPreview();

 // Important: Call release() to release the camera for use by other
 // applications. Applications should release the camera immediately
 // during onPause() and re-open() it during onResume()).
 mCamera.release();

 mCamera = null;
 }
}

Controlling the Camera

159
Content from developer.android.com/training/camera/cameradirect.html through their Creative Commons Attribution 2.5 license

Earlier in the lesson, this procedure was also part of the setCamera() method, so initializing a camera
always begins with stopping the preview.

Printing Content

160
Content from developer.android.com/training/printing/index.html through their Creative Commons Attribution 2.5 license

55. Printing Content
Content from developer.android.com/training/printing/index.html through their Creative Commons Attribution 2.5 license

Video
DevBytes: Android 4.4 Printing API
Android users frequently view content solely on
their devices, but there are times when showing
someone a screen is not an adequate way to
share information. Being able to print information from your Android application gives users a way to see a
larger version of the content from your app or share it with another person who is not using your
application. Printing also allows them to create a snapshot of information that does not depend on having a
device, sufficient battery power, or a wireless network connection.
In Android 4.4 (API level 19) and higher, the framework provides services for printing images and
documents directly from Android applications. This training describes how to enable printing in your
application, including printing images, HTML pages and creating custom documents for printing.

Lessons
Printing a Photo

This lesson shows you how to print an image.
Printing an HTML Document

This lesson shows you how to print an HTML document.
Printing a Custom Document

This lesson shows you how you connect to the Android print manager, create a print adapter and
build content for printing.

Dependencies and prerequisites

• Android 4.4 (API Level 19) or higher

Printing Photos

161
Content from developer.android.com/training/printing/photos.html through their Creative Commons Attribution 2.5 license

56. Printing Photos
Content from developer.android.com/training/printing/photos.html through their Creative Commons Attribution 2.5 license

Taking and sharing photos is one of the most
popular uses for mobile devices. If your
application takes photos, displays them, or allows
users to share images, you should consider
enabling printing of those images in your application. The Android Support Library provides a convenient
function for enabling image printing using a minimal amount of code and simple set of print layout options.
This lesson shows you how to print an image using the v4 support library PrintHelper class.

Print an Image
The Android Support Library PrintHelper class provides a simple way to print of images. The class has
a single layout option, setScaleMode(), which allows you to print with one of two options:

• SCALE_MODE_FIT - This option sizes the image so that the whole image is shown within the
printable area of the page.

• SCALE_MODE_FILL - This option scales the image so that it fills the entire printable area of the
page. Choosing this setting means that some portion of the top and bottom, or left and right
edges of the image is not printed. This option is the default value if you do not set a scale mode.

Both scaling options for setScaleMode() keep the existing aspect ratio of the image intact. The following
code example shows how to create an instance of the PrintHelper class, set the scaling option, and
start the printing process:

private void doPhotoPrint() {
 PrintHelper photoPrinter = new PrintHelper(getActivity());
 photoPrinter.setScaleMode(PrintHelper.SCALE_MODE_FIT);
 Bitmap bitmap = BitmapFactory.decodeResource(getResources(),
 R.drawable.droids);
 photoPrinter.printBitmap("droids.jpg - test print", bitmap);
}

This method can be called as the action for a menu item. Note that menu items for actions that are not
always supported (such as printing) should be placed in the overflow menu. For more information, see the
Action Bar design guide.
After the printBitmap() method is called, no further action from your application is required. The
Android print user interface appears, allowing the user to select a printer and printing options. The user
can then print the image or cancel the action. If the user chooses to print the image, a print job is created
and a printing notification appears in the system bar.
If you want to include additional content in your printouts beyond just an image, you must construct a print
document. For information on creating documents for printing, see the Printing an HTML Document or
Printing a Custom Document lessons.

This lesson teaches you to
• Print an Image

Not Found

162
Content from developer.android.com/training/printing/html through their license

57. Not Found
Content from developer.android.com/training/printing/html through their license

Printing Custom Documents

163
Content from developer.android.com/training/printing/custom-docs.html through their Creative Commons Attribution 2.5 license

58. Printing Custom Documents
Content from developer.android.com/training/printing/custom-docs.html through their Creative Commons Attribution 2.5 license

For some applications, such as drawing apps,
page layout apps and other apps that focus on
graphic output, creating beautiful printed pages is
a key feature. In this case, it is not enough to print
an image or an HTML document. The print output
for these types of applications requires precise
control of everything that goes into a page,
including fonts, text flow, page breaks, headers,
footers, and graphic elements.
Creating print output that is completely customized for your application requires more programming
investment than the previously discussed approaches. You must build components that communicate with
the print framework, adjust to printer settings, draw page elements and manage printing on multiple pages.
This lesson shows you how you connect with the print manager, create a print adapter and build content
for printing.

Connect to the Print Manager
When your application manages the printing process directly, the first step after receiving a print request
from your user is to connect to the Android print framework and obtain an instance of the PrintManager
class. This class allows you to initialize a print job and begin the printing lifecycle. The following code
example shows how to get the print manager and start the printing process.

private void doPrint() {
 // Get a PrintManager instance
 PrintManager printManager = (PrintManager) getActivity()
 .getSystemService(Context.PRINT_SERVICE);

 // Set job name, which will be displayed in the print queue
 String jobName = getActivity().getString(R.string.app_name) + " Document";

 // Start a print job, passing in a PrintDocumentAdapter implementation
 // to handle the generation of a print document
 printManager.print(jobName, new MyPrintDocumentAdapter(getActivity()),
 null); //
}

The example code above demonstrates how to name a print job and set an instance of the
PrintDocumentAdapter class which handles the steps of the printing lifecycle. The implementation of
the print adapter class is discussed in the next section.
Note: The last parameter in the print() method takes a PrintAttributes object. You can use this
parameter to provide hints to the printing framework and pre-set options based on the previous printing
cycle, thereby improving the user experience. You may also use this parameter to set options that are
more appropriate to the content being printed, such as setting the orientation to landscape when printing a
photo that is in that orientation.

Create a Print Adapter
A print adapter interacts with the Android print framework and handles the steps of the printing process.
This process requires users to select printers and print options before creating a document for printing.
These selections can influence the final output as the user chooses printers with different output
capabilities, different page sizes, or different page orientations. As these selections are made, the print

This lesson teaches you to
• Connect to the Print Manager
• Create a Print Adapter
• Compute print document info
• Write a print document file
• Drawing PDF Page Content

Printing Custom Documents

164
Content from developer.android.com/training/printing/custom-docs.html through their Creative Commons Attribution 2.5 license

framework asks your adapter to lay out and generate a print document, in preparation for final output.
Once a user taps the print button, the framework takes the final print document and passes it to a print
provider for output. During the printing process, users can choose to cancel the print action, so your print
adapter must also listen for and react to a cancellation requests.
The PrintDocumentAdapter abstract class is designed to handle the printing lifecycle, which has four
main callback methods. You must implement these methods in your print adapter in order to interact
properly with the print framework:

• onStart() - Called once at the beginning of the print process. If your application has any one-
time preparation tasks to perform, such as getting a snapshot of the data to be printed, execute
them here. Implementing this method in your adapter is not required.

• onLayout() - Called each time a user changes a print setting which impacts the output, such as
a different page size, or page orientation, giving your application an opportunity to compute the
layout of the pages to be printed. At the minimum, this method must return how many pages are
expected in the printed document.

• onWrite() - Called to render printed pages into a file to be printed. This method may be called
one or more times after each onLayout() call.

• onFinish() - Called once at the end of the print process. If your application has any one-time
tear-down tasks to perform, execute them here. Implementing this method in your adapter is not
required.

The following sections describe how to implement the layout and write methods, which are critical to the
functioning of a print adapter.
Note: These adapter methods are called on the main thread of your application. If you expect the
execution of these methods in your implementation to take a significant amount of time, implement them to
execute within a separate thread. For example, you can encapsulate the layout or print document writing
work in separate AsyncTask objects.

Compute print document info
Within an implementation of the PrintDocumentAdapter class, your application must be able to specify
the type of document it is creating and calculate the total number of pages for print job, given information
about the printed page size. The implementation of the onLayout() method in the adapter makes these
calculations and provides information about the expected output of the print job in a
PrintDocumentInfo class, including the number of pages and content type. The following code
example shows a basic implementation of the onLayout() method for a PrintDocumentAdapter:

Printing Custom Documents

165
Content from developer.android.com/training/printing/custom-docs.html through their Creative Commons Attribution 2.5 license

@Override
public void onLayout(PrintAttributes oldAttributes,
 PrintAttributes newAttributes,
 CancellationSignal cancellationSignal,
 LayoutResultCallback callback,
 Bundle metadata) {
 // Create a new PdfDocument with the requested page attributes
 mPdfDocument = new PrintedPdfDocument(getActivity(), newAttributes);

 // Respond to cancellation request
 if (cancellationSignal.isCancelled()) {
 callback.onLayoutCancelled();
 return;
 }

 // Compute the expected number of printed pages
 int pages = computePageCount(newAttributes);

 if (pages > 0) {
 // Return print information to print framework
 PrintDocumentInfo info = new PrintDocumentInfo
 .Builder("print_output.pdf")
 .setContentType(PrintDocumentInfo.CONTENT_TYPE_DOCUMENT)
 .setPageCount(pages);
 .build();
 // Content layout reflow is complete
 callback.onLayoutFinished(info, true);
 } else {
 // Otherwise report an error to the print framework
 callback.onLayoutFailed("Page count calculation failed.");
 }
}

The execution of onLayout() method can have three outcomes: completion, cancellation, or failure in the
case where calculation of the layout cannot be completed. You must indicate one of these results by
calling the appropriate method of the PrintDocumentAdapter.LayoutResultCallback object.
Note: The boolean parameter of the onLayoutFinished() method indicates whether or not the layout
content has actually changed since the last request. Setting this parameter properly allows the print
framework to avoid unnecessarily calling the onWrite() method, essentially caching the previously
written print document and improving performance.
The main work of onLayout() is calculating the number of pages that are expected as output given the
attributes of the printer. How you calculate this number is highly dependent on how your application lays
out pages for printing. The following code example shows an implementation where the number of pages
is determined by the print orientation:

Printing Custom Documents

166
Content from developer.android.com/training/printing/custom-docs.html through their Creative Commons Attribution 2.5 license

private int computePageCount(PrintAttributes printAttributes) {
 int itemsPerPage = 4; // default item count for portrait mode

 MediaSize pageSize = printAttributes.getMediaSize();
 if (!pageSize.isPortrait()) {
 // Six items per page in landscape orientation
 itemsPerPage = 6;
 }

 // Determine number of print items
 int printItemCount = getPrintItemCount();

 return (int) Math.ceil(printItemCount / itemsPerPage);
}

Write a print document file
When it is time to write print output to a file, the Android print framework calls the onWrite() method of
your application's PrintDocumentAdapter class. The method's parameters specify which pages should
be written and the output file to be used. Your implementation of this method must then render each
requested page of content to a multi-page PDF document file. When this process is complete, you call the
onWriteFinished() method of the callback object.
Note: The Android print framework may call the onWrite() method one or more times for every call to
onLayout(). For this reason, it is important to set the boolean parameter of onLayoutFinished()
method to false when the print content layout has not changed, to avoid unnecessary re-writes of the
print document.
Note: The boolean parameter of the onLayoutFinished() method indicates whether or not the layout
content has actually changed since the last request. Setting this parameter properly allows the print
framework to avoid unnecessarily calling the onLayout() method, essentially caching the previously
written print document and improving performance.
The following sample demonstrates the basic mechanics of this process using the
PrintedPdfDocument class to create a PDF file:

Printing Custom Documents

167
Content from developer.android.com/training/printing/custom-docs.html through their Creative Commons Attribution 2.5 license

@Override
public void onWrite(final PageRange[] pageRanges,
 final ParcelFileDescriptor destination,
 final CancellationSignal cancellationSignal,
 final WriteResultCallback callback) {
 // Iterate over each page of the document,
 // check if it's in the output range.
 for (int i = 0; i < totalPages; i++) {
 // Check to see if this page is in the output range.
 if (containsPage(pageRanges, i)) {
 // If so, add it to writtenPagesArray. writtenPagesArray.size()
 // is used to compute the next output page index.
 writtenPagesArray.append(writtenPagesArray.size(), i);
 PdfDocument.Page page = mPdfDocument.startPage(i);

 // check for cancellation
 if (cancellationSignal.isCancelled()) {
 callback.onWriteCancelled();
 mPdfDocument.close();
 mPdfDocument = null;
 return;
 }

 // Draw page content for printing
 drawPage(page);

 // Rendering is complete, so page can be finalized.
 mPdfDocument.finishPage(page);
 }
 }

 // Write PDF document to file
 try {
 mPdfDocument.writeTo(new FileOutputStream(
 destination.getFileDescriptor()));
 } catch (IOException e) {
 callback.onWriteFailed(e.toString());
 return;
 } finally {
 mPdfDocument.close();
 mPdfDocument = null;
 }
 PageRange[] writtenPages = computeWrittenPages();
 // Signal the print framework the document is complete
 callback.onWriteFinished(writtenPages);

 ...
}

This sample delegates rendering of PDF page content to drawPage() method, which is discussed in the
next section.
As with layout, execution of onWrite() method can have three outcomes: completion, cancellation, or
failure in the case where the the content cannot be written. You must indicate one of these results by
calling the appropriate method of the PrintDocumentAdapter.WriteResultCallback object.
Note: Rendering a document for printing can be a resource-intensive operation. In order to avoid blocking
the main user interface thread of your application, you should consider performing the page rendering and
writing operations on a separate thread, for example in an AsyncTask. For more information about
working with execution threads like asynchronous tasks, see Processes and Threads.

Printing Custom Documents

168
Content from developer.android.com/training/printing/custom-docs.html through their Creative Commons Attribution 2.5 license

Drawing PDF Page Content
When your application prints, your application must generate a PDF document and pass it to the Android
print framework for printing. You can use any PDF generation library for this purpose. This lesson shows
how to use the PrintedPdfDocument class to generate PDF pages from your content.
The PrintedPdfDocument class uses a Canvas object to draw elements on an PDF page, similar to
drawing on an activity layout. You can draw elements on the printed page using the Canvas draw
methods. The following example code demonstrates how to draw some simple elements on a PDF
document page using these methods:

private void drawPage(PdfDocument.Page page) {
 Canvas canvas = page.getCanvas();

 // units are in points (1/72 of an inch)
 int titleBaseLine = 72;
 int leftMargin = 54;

 Paint paint = new Paint();
 paint.setColor(Color.BLACK);
 paint.setTextSize(36);
 canvas.drawText("Test Title", leftMargin, titleBaseLine, paint);

 paint.setTextSize(11);
 canvas.drawText("Test paragraph", leftMargin, titleBaseLine + 25, paint);

 paint.setColor(Color.BLUE);
 canvas.drawRect(100, 100, 172, 172, paint);
}

When using Canvas to draw on a PDF page, elements are specified in points, which is 1/72 of an inch.
Make sure you use this unit of measure for specifying the size of elements on the page. For positioning of
drawn elements, the coordinate system starts at 0,0 for the top left corner of the page.
Tip: While the Canvas object allows you to place print elements on the edge of a PDF document, many
printers are not able to print to the edge of a physical piece of paper. Make sure that you account for the
unprintable edges of the page when you build a print document with this class.

Building Apps with Graphics & Animation

169
Content from developer.android.com/training/building-graphics.html through their Creative Commons Attribution 2.5 license

59. Building Apps with Graphics & Animation
Content from developer.android.com/training/building-graphics.html through their Creative Commons Attribution 2.5 license
These classes teach you how to accomplish tasks with graphics that can give your app an edge on the
competition. If you want to go beyond the basic user interface to create a beautiful visual experience, these
classes will help you get there.

Displaying Bitmaps Efficiently

170
Content from developer.android.com/training/displaying-bitmaps/index.html through their Creative Commons Attribution 2.5 license

60. Displaying Bitmaps Efficiently
Content from developer.android.com/training/displaying-bitmaps/index.html through their Creative Commons Attribution 2.5 license

Video
DevBytes: Bitmap Allocation

Video
DevBytes: Making Apps Beautiful - Part 4 -
Performance Tuning
Learn how to use common techniques to process
and load Bitmap objects in a way that keeps your
user interface (UI) components responsive and
avoids exceeding your application memory limit. If
you're not careful, bitmaps can quickly consume your available memory budget leading to an application
crash due to the dreaded exception:
java.lang.OutofMemoryError: bitmap size exceeds VM budget.
There are a number of reasons why loading bitmaps in your Android application is tricky:

• Mobile devices typically have constrained system resources. Android devices can have as little as
16MB of memory available to a single application. The Android Compatibility Definition Document
(CDD), Section 3.7. Virtual Machine Compatibility gives the required minimum application
memory for various screen sizes and densities. Applications should be optimized to perform
under this minimum memory limit. However, keep in mind many devices are configured with
higher limits.

• Bitmaps take up a lot of memory, especially for rich images like photographs. For example, the
camera on the Galaxy Nexus takes photos up to 2592x1936 pixels (5 megapixels). If the bitmap
configuration used is ARGB_8888 (the default from the Android 2.3 onward) then loading this
image into memory takes about 19MB of memory (2592*1936*4 bytes), immediately exhausting
the per-app limit on some devices.

• Android app UI’s frequently require several bitmaps to be loaded at once. Components such as
ListView, GridView and ViewPager commonly include multiple bitmaps on-screen at once
with many more potentially off-screen ready to show at the flick of a finger.

Lessons
Loading Large Bitmaps Efficiently

This lesson walks you through decoding large bitmaps without exceeding the per application
memory limit.

Processing Bitmaps Off the UI Thread
Bitmap processing (resizing, downloading from a remote source, etc.) should never take place on
the main UI thread. This lesson walks you through processing bitmaps in a background thread
using AsyncTask and explains how to handle concurrency issues.

Caching Bitmaps
This lesson walks you through using a memory and disk bitmap cache to improve the
responsiveness and fluidity of your UI when loading multiple bitmaps.

Managing Bitmap Memory
This lesson explains how to manage bitmap memory to maximize your app's performance.

Dependencies and prerequisites

• Android 2.1 (API Level 7) or higher
• Support Library

Try it out
Download the sample
BitmapFun.zip

Displaying Bitmaps Efficiently

171
Content from developer.android.com/training/displaying-bitmaps/index.html through their Creative Commons Attribution 2.5 license

Displaying Bitmaps in Your UI
This lesson brings everything together, showing you how to load multiple bitmaps into
components like ViewPager and GridView using a background thread and bitmap cache.

Loading Large Bitmaps Efficiently

172
Content from developer.android.com/training/displaying-bitmaps/load-bitmap.html through their Creative Commons Attribution 2.5 license

61. Loading Large Bitmaps Efficiently
Content from developer.android.com/training/displaying-bitmaps/load-bitmap.html through their Creative Commons Attribution 2.5 license

Images come in all shapes and sizes. In many
cases they are larger than required for a typical
application user interface (UI). For example, the
system Gallery application displays photos taken
using your Android devices's camera which are
typically much higher resolution than the screen
density of your device.
Given that you are working with limited memory,
ideally you only want to load a lower resolution
version in memory. The lower resolution version should match the size of the UI component that displays
it. An image with a higher resolution does not provide any visible benefit, but still takes up precious
memory and incurs additional performance overhead due to additional on the fly scaling.
This lesson walks you through decoding large bitmaps without exceeding the per application memory limit
by loading a smaller subsampled version in memory.

Read Bitmap Dimensions and Type
The BitmapFactory class provides several decoding methods (decodeByteArray(),
decodeFile(), decodeResource(), etc.) for creating a Bitmap from various sources. Choose the
most appropriate decode method based on your image data source. These methods attempt to allocate
memory for the constructed bitmap and therefore can easily result in an OutOfMemory exception. Each
type of decode method has additional signatures that let you specify decoding options via the
BitmapFactory.Options class. Setting the inJustDecodeBounds property to true while decoding
avoids memory allocation, returning null for the bitmap object but setting outWidth, outHeight and
outMimeType. This technique allows you to read the dimensions and type of the image data prior to
construction (and memory allocation) of the bitmap.

BitmapFactory.Options options = new BitmapFactory.Options();
options.inJustDecodeBounds = true;
BitmapFactory.decodeResource(getResources(), R.id.myimage, options);
int imageHeight = options.outHeight;
int imageWidth = options.outWidth;
String imageType = options.outMimeType;

To avoid java.lang.OutOfMemory exceptions, check the dimensions of a bitmap before decoding it,
unless you absolutely trust the source to provide you with predictably sized image data that comfortably fits
within the available memory.

Load a Scaled Down Version into Memory
Now that the image dimensions are known, they can be used to decide if the full image should be loaded
into memory or if a subsampled version should be loaded instead. Here are some factors to consider:

• Estimated memory usage of loading the full image in memory.
• Amount of memory you are willing to commit to loading this image given any other memory

requirements of your application.
• Dimensions of the target ImageView or UI component that the image is to be loaded into.
• Screen size and density of the current device.

This lesson teaches you to
• Read Bitmap Dimensions and Type
• Load a Scaled Down Version into Memory
Try it out
Download the sample
BitmapFun.zip

Loading Large Bitmaps Efficiently

173
Content from developer.android.com/training/displaying-bitmaps/load-bitmap.html through their Creative Commons Attribution 2.5 license

For example, it’s not worth loading a 1024x768 pixel image into memory if it will eventually be displayed in
a 128x96 pixel thumbnail in an ImageView.
To tell the decoder to subsample the image, loading a smaller version into memory, set inSampleSize to
true in your BitmapFactory.Options object. For example, an image with resolution 2048x1536 that is
decoded with an inSampleSize of 4 produces a bitmap of approximately 512x384. Loading this into
memory uses 0.75MB rather than 12MB for the full image (assuming a bitmap configuration of
ARGB_8888). Here’s a method to calculate a sample size value that is a power of two based on a target
width and height:

public static int calculateInSampleSize(
 BitmapFactory.Options options, int reqWidth, int reqHeight) {
 // Raw height and width of image
 final int height = options.outHeight;
 final int width = options.outWidth;
 int inSampleSize = 1;

 if (height > reqHeight || width > reqWidth) {

 final int halfHeight = height / 2;
 final int halfWidth = width / 2;

 // Calculate the largest inSampleSize value that is a power of 2 and keeps both
 // height and width larger than the requested height and width.
 while ((halfHeight / inSampleSize) > reqHeight
 && (halfWidth / inSampleSize) > reqWidth) {
 inSampleSize *= 2;
 }
 }

 return inSampleSize;
}

Note: A power of two value is calculated because the decoder uses a final value by rounding down to the
nearest power of two, as per the inSampleSize documentation.
To use this method, first decode with inJustDecodeBounds set to true, pass the options through and
then decode again using the new inSampleSize value and inJustDecodeBounds set to false:

public static Bitmap decodeSampledBitmapFromResource(Resources res, int resId,
 int reqWidth, int reqHeight) {

 // First decode with inJustDecodeBounds=true to check dimensions
 final BitmapFactory.Options options = new BitmapFactory.Options();
 options.inJustDecodeBounds = true;
 BitmapFactory.decodeResource(res, resId, options);

 // Calculate inSampleSize
 options.inSampleSize = calculateInSampleSize(options, reqWidth, reqHeight);

 // Decode bitmap with inSampleSize set
 options.inJustDecodeBounds = false;
 return BitmapFactory.decodeResource(res, resId, options);
}

This method makes it easy to load a bitmap of arbitrarily large size into an ImageView that displays a
100x100 pixel thumbnail, as shown in the following example code:

Loading Large Bitmaps Efficiently

174
Content from developer.android.com/training/displaying-bitmaps/load-bitmap.html through their Creative Commons Attribution 2.5 license

mImageView.setImageBitmap(
 decodeSampledBitmapFromResource(getResources(), R.id.myimage, 100, 100));

You can follow a similar process to decode bitmaps from other sources, by substituting the appropriate
BitmapFactory.decode* method as needed.

Processing Bitmaps Off the UI Thread

175
Content from developer.android.com/training/displaying-bitmaps/process-bitmap.html through their Creative Commons Attribution 2.5 license

62. Processing Bitmaps Off the UI Thread
Content from developer.android.com/training/displaying-bitmaps/process-bitmap.html through their Creative Commons Attribution 2.5 license

The BitmapFactory.decode* methods,
discussed in the Load Large Bitmaps Efficiently
lesson, should not be executed on the main UI
thread if the source data is read from disk or a
network location (or really any source other than
memory). The time this data takes to load is
unpredictable and depends on a variety of factors
(speed of reading from disk or network, size of
image, power of CPU, etc.). If one of these tasks
blocks the UI thread, the system flags your
application as non-responsive and the user has
the option of closing it (see Designing for
Responsiveness for more information).
This lesson walks you through processing bitmaps
in a background thread using AsyncTask and
shows you how to handle concurrency issues.

Use an AsyncTask
The AsyncTask class provides an easy way to execute some work in a background thread and publish
the results back on the UI thread. To use it, create a subclass and override the provided methods. Here’s
an example of loading a large image into an ImageView using AsyncTask and
decodeSampledBitmapFromResource():

class BitmapWorkerTask extends AsyncTask<Integer, Void, Bitmap> {
 private final WeakReference<ImageView> imageViewReference;
 private int data = 0;

 public BitmapWorkerTask(ImageView imageView) {
 // Use a WeakReference to ensure the ImageView can be garbage collected
 imageViewReference = new WeakReference<ImageView>(imageView);
 }

 // Decode image in background.
 @Override
 protected Bitmap doInBackground(Integer... params) {
 data = params[0];
 return decodeSampledBitmapFromResource(getResources(), data, 100, 100));
 }

 // Once complete, see if ImageView is still around and set bitmap.
 @Override
 protected void onPostExecute(Bitmap bitmap) {
 if (imageViewReference != null && bitmap != null) {
 final ImageView imageView = imageViewReference.get();
 if (imageView != null) {
 imageView.setImageBitmap(bitmap);
 }
 }
 }
}

This lesson teaches you to
• Use an AsyncTask
• Handle Concurrency
You should also read

• Designing for Responsiveness
• Multithreading for Performance

Try it out
Download the sample
BitmapFun.zip

Processing Bitmaps Off the UI Thread

176
Content from developer.android.com/training/displaying-bitmaps/process-bitmap.html through their Creative Commons Attribution 2.5 license

The WeakReference to the ImageView ensures that the AsyncTask does not prevent the ImageView
and anything it references from being garbage collected. There’s no guarantee the ImageView is still
around when the task finishes, so you must also check the reference in onPostExecute(). The
ImageView may no longer exist, if for example, the user navigates away from the activity or if a
configuration change happens before the task finishes.
To start loading the bitmap asynchronously, simply create a new task and execute it:

public void loadBitmap(int resId, ImageView imageView) {
 BitmapWorkerTask task = new BitmapWorkerTask(imageView);
 task.execute(resId);
}

Handle Concurrency
Common view components such as ListView and GridView introduce another issue when used in
conjunction with the AsyncTask as demonstrated in the previous section. In order to be efficient with
memory, these components recycle child views as the user scrolls. If each child view triggers an
AsyncTask, there is no guarantee that when it completes, the associated view has not already been
recycled for use in another child view. Furthermore, there is no guarantee that the order in which
asynchronous tasks are started is the order that they complete.
The blog post Multithreading for Performance further discusses dealing with concurrency, and offers a
solution where the ImageView stores a reference to the most recent AsyncTask which can later be
checked when the task completes. Using a similar method, the AsyncTask from the previous section can
be extended to follow a similar pattern.
Create a dedicated Drawable subclass to store a reference back to the worker task. In this case, a
BitmapDrawable is used so that a placeholder image can be displayed in the ImageView while the task
completes:

static class AsyncDrawable extends BitmapDrawable {
 private final WeakReference<BitmapWorkerTask> bitmapWorkerTaskReference;

 public AsyncDrawable(Resources res, Bitmap bitmap,
 BitmapWorkerTask bitmapWorkerTask) {
 super(res, bitmap);
 bitmapWorkerTaskReference =
 new WeakReference<BitmapWorkerTask>(bitmapWorkerTask);
 }

 public BitmapWorkerTask getBitmapWorkerTask() {
 return bitmapWorkerTaskReference.get();
 }
}

Before executing the BitmapWorkerTask, you create an AsyncDrawable and bind it to the target
ImageView:

Processing Bitmaps Off the UI Thread

177
Content from developer.android.com/training/displaying-bitmaps/process-bitmap.html through their Creative Commons Attribution 2.5 license

public void loadBitmap(int resId, ImageView imageView) {
 if (cancelPotentialWork(resId, imageView)) {
 final BitmapWorkerTask task = new BitmapWorkerTask(imageView);
 final AsyncDrawable asyncDrawable =
 new AsyncDrawable(getResources(), mPlaceHolderBitmap, task);
 imageView.setImageDrawable(asyncDrawable);
 task.execute(resId);
 }
}

The cancelPotentialWork method referenced in the code sample above checks if another running
task is already associated with the ImageView. If so, it attempts to cancel the previous task by calling
cancel(). In a small number of cases, the new task data matches the existing task and nothing further
needs to happen. Here is the implementation of cancelPotentialWork:

public static boolean cancelPotentialWork(int data, ImageView imageView) {
 final BitmapWorkerTask bitmapWorkerTask = getBitmapWorkerTask(imageView);

 if (bitmapWorkerTask != null) {
 final int bitmapData = bitmapWorkerTask.data;
 if (bitmapData != data) {
 // Cancel previous task
 bitmapWorkerTask.cancel(true);
 } else {
 // The same work is already in progress
 return false;
 }
 }
 // No task associated with the ImageView, or an existing task was cancelled
 return true;
}

A helper method, getBitmapWorkerTask(), is used above to retrieve the task associated with a
particular ImageView:

private static BitmapWorkerTask getBitmapWorkerTask(ImageView imageView) {
 if (imageView != null) {
 final Drawable drawable = imageView.getDrawable();
 if (drawable instanceof AsyncDrawable) {
 final AsyncDrawable asyncDrawable = (AsyncDrawable) drawable;
 return asyncDrawable.getBitmapWorkerTask();
 }
 }
 return null;
}

The last step is updating onPostExecute() in BitmapWorkerTask so that it checks if the task is
cancelled and if the current task matches the one associated with the ImageView:

Processing Bitmaps Off the UI Thread

178
Content from developer.android.com/training/displaying-bitmaps/process-bitmap.html through their Creative Commons Attribution 2.5 license

class BitmapWorkerTask extends AsyncTask<Integer, Void, Bitmap> {
 ...

 @Override
 protected void onPostExecute(Bitmap bitmap) {
 if (isCancelled()) {
 bitmap = null;
 }

 if (imageViewReference != null && bitmap != null) {
 final ImageView imageView = imageViewReference.get();
 final BitmapWorkerTask bitmapWorkerTask =
 getBitmapWorkerTask(imageView);
 if (this == bitmapWorkerTask && imageView != null) {
 imageView.setImageBitmap(bitmap);
 }
 }
 }
}

This implementation is now suitable for use in ListView and GridView components as well as any other
components that recycle their child views. Simply call loadBitmap where you normally set an image to
your ImageView. For example, in a GridView implementation this would be in the getView() method
of the backing adapter.

Caching Bitmaps

179
Content from developer.android.com/training/displaying-bitmaps/cache-bitmap.html through their Creative Commons Attribution 2.5 license

63. Caching Bitmaps
Content from developer.android.com/training/displaying-bitmaps/cache-bitmap.html through their Creative Commons Attribution 2.5 license

Loading a single bitmap into your user interface
(UI) is straightforward, however things get more
complicated if you need to load a larger set of
images at once. In many cases (such as with
components like ListView, GridView or
ViewPager), the total number of images on-
screen combined with images that might soon
scroll onto the screen are essentially unlimited.
Memory usage is kept down with components like
this by recycling the child views as they move off-
screen. The garbage collector also frees up your
loaded bitmaps, assuming you don't keep any
long lived references. This is all good and well, but
in order to keep a fluid and fast-loading UI you
want to avoid continually processing these images
each time they come back on-screen. A memory
and disk cache can often help here, allowing components to quickly reload processed images.
This lesson walks you through using a memory and disk bitmap cache to improve the responsiveness and
fluidity of your UI when loading multiple bitmaps.

Use a Memory Cache
A memory cache offers fast access to bitmaps at the cost of taking up valuable application memory. The
LruCache class (also available in the Support Library for use back to API Level 4) is particularly well
suited to the task of caching bitmaps, keeping recently referenced objects in a strong referenced
LinkedHashMap and evicting the least recently used member before the cache exceeds its designated
size.
Note: In the past, a popular memory cache implementation was a SoftReference or WeakReference
bitmap cache, however this is not recommended. Starting from Android 2.3 (API Level 9) the garbage
collector is more aggressive with collecting soft/weak references which makes them fairly ineffective. In
addition, prior to Android 3.0 (API Level 11), the backing data of a bitmap was stored in native memory
which is not released in a predictable manner, potentially causing an application to briefly exceed its
memory limits and crash.
In order to choose a suitable size for a LruCache, a number of factors should be taken into consideration,
for example:

• How memory intensive is the rest of your activity and/or application?
• How many images will be on-screen at once? How many need to be available ready to come on-

screen?
• What is the screen size and density of the device? An extra high density screen (xhdpi) device

like Galaxy Nexus will need a larger cache to hold the same number of images in memory
compared to a device like Nexus S (hdpi).

• What dimensions and configuration are the bitmaps and therefore how much memory will each
take up?

• How frequently will the images be accessed? Will some be accessed more frequently than
others? If so, perhaps you may want to keep certain items always in memory or even have
multiple LruCache objects for different groups of bitmaps.

This lesson teaches you to
• Use a Memory Cache
• Use a Disk Cache
• Handle Configuration Changes
You should also read

• Handling Runtime Changes

Try it out
Download the sample
BitmapFun.zip

Caching Bitmaps

180
Content from developer.android.com/training/displaying-bitmaps/cache-bitmap.html through their Creative Commons Attribution 2.5 license

• Can you balance quality against quantity? Sometimes it can be more useful to store a larger
number of lower quality bitmaps, potentially loading a higher quality version in another
background task.

There is no specific size or formula that suits all applications, it's up to you to analyze your usage and
come up with a suitable solution. A cache that is too small causes additional overhead with no benefit, a
cache that is too large can once again cause java.lang.OutOfMemory exceptions and leave the rest of
your app little memory to work with.
Here’s an example of setting up a LruCache for bitmaps:

private LruCache<String, Bitmap> mMemoryCache;

@Override
protected void onCreate(Bundle savedInstanceState) {
 ...
 // Get max available VM memory, exceeding this amount will throw an
 // OutOfMemory exception. Stored in kilobytes as LruCache takes an
 // int in its constructor.
 final int maxMemory = (int) (Runtime.getRuntime().maxMemory() / 1024);

 // Use 1/8th of the available memory for this memory cache.
 final int cacheSize = maxMemory / 8;

 mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {
 @Override
 protected int sizeOf(String key, Bitmap bitmap) {
 // The cache size will be measured in kilobytes rather than
 // number of items.
 return bitmap.getByteCount() / 1024;
 }
 };
 ...
}

public void addBitmapToMemoryCache(String key, Bitmap bitmap) {
 if (getBitmapFromMemCache(key) == null) {
 mMemoryCache.put(key, bitmap);
 }
}

public Bitmap getBitmapFromMemCache(String key) {
 return mMemoryCache.get(key);
}

Note: In this example, one eighth of the application memory is allocated for our cache. On a normal/hdpi
device this is a minimum of around 4MB (32/8). A full screen GridView filled with images on a device with
800x480 resolution would use around 1.5MB (800*480*4 bytes), so this would cache a minimum of around
2.5 pages of images in memory.
When loading a bitmap into an ImageView, the LruCache is checked first. If an entry is found, it is used
immediately to update the ImageView, otherwise a background thread is spawned to process the image:

Caching Bitmaps

181
Content from developer.android.com/training/displaying-bitmaps/cache-bitmap.html through their Creative Commons Attribution 2.5 license

public void loadBitmap(int resId, ImageView imageView) {
 final String imageKey = String.valueOf(resId);

 final Bitmap bitmap = getBitmapFromMemCache(imageKey);
 if (bitmap != null) {
 mImageView.setImageBitmap(bitmap);
 } else {
 mImageView.setImageResource(R.drawable.image_placeholder);
 BitmapWorkerTask task = new BitmapWorkerTask(mImageView);
 task.execute(resId);
 }
}

The BitmapWorkerTask also needs to be updated to add entries to the memory cache:

class BitmapWorkerTask extends AsyncTask<Integer, Void, Bitmap> {
 ...
 // Decode image in background.
 @Override
 protected Bitmap doInBackground(Integer... params) {
 final Bitmap bitmap = decodeSampledBitmapFromResource(
 getResources(), params[0], 100, 100));
 addBitmapToMemoryCache(String.valueOf(params[0]), bitmap);
 return bitmap;
 }
 ...
}

Use a Disk Cache
A memory cache is useful in speeding up access to recently viewed bitmaps, however you cannot rely on
images being available in this cache. Components like GridView with larger datasets can easily fill up a
memory cache. Your application could be interrupted by another task like a phone call, and while in the
background it might be killed and the memory cache destroyed. Once the user resumes, your application
has to process each image again.
A disk cache can be used in these cases to persist processed bitmaps and help decrease loading times
where images are no longer available in a memory cache. Of course, fetching images from disk is slower
than loading from memory and should be done in a background thread, as disk read times can be
unpredictable.
Note: A ContentProvider might be a more appropriate place to store cached images if they are
accessed more frequently, for example in an image gallery application.
The sample code of this class uses a DiskLruCache implementation that is pulled from the Android
source. Here’s updated example code that adds a disk cache in addition to the existing memory cache:

Caching Bitmaps

182
Content from developer.android.com/training/displaying-bitmaps/cache-bitmap.html through their Creative Commons Attribution 2.5 license

private DiskLruCache mDiskLruCache;
private final Object mDiskCacheLock = new Object();
private boolean mDiskCacheStarting = true;
private static final int DISK_CACHE_SIZE = 1024 * 1024 * 10; // 10MB
private static final String DISK_CACHE_SUBDIR = "thumbnails";

@Override
protected void onCreate(Bundle savedInstanceState) {
 ...
 // Initialize memory cache
 ...
 // Initialize disk cache on background thread
 File cacheDir = getDiskCacheDir(this, DISK_CACHE_SUBDIR);
 new InitDiskCacheTask().execute(cacheDir);
 ...
}

class InitDiskCacheTask extends AsyncTask<File, Void, Void> {
 @Override
 protected Void doInBackground(File... params) {
 synchronized (mDiskCacheLock) {
 File cacheDir = params[0];
 mDiskLruCache = DiskLruCache.open(cacheDir, DISK_CACHE_SIZE);
 mDiskCacheStarting = false; // Finished initialization
 mDiskCacheLock.notifyAll(); // Wake any waiting threads
 }
 return null;
 }
}

class BitmapWorkerTask extends AsyncTask<Integer, Void, Bitmap> {
 ...
 // Decode image in background.
 @Override
 protected Bitmap doInBackground(Integer... params) {
 final String imageKey = String.valueOf(params[0]);

 // Check disk cache in background thread
 Bitmap bitmap = getBitmapFromDiskCache(imageKey);

 if (bitmap == null) { // Not found in disk cache
 // Process as normal
 final Bitmap bitmap = decodeSampledBitmapFromResource(
 getResources(), params[0], 100, 100));
 }

 // Add final bitmap to caches
 addBitmapToCache(imageKey, bitmap);

 return bitmap;
 }
 ...
}

public void addBitmapToCache(String key, Bitmap bitmap) {
 // Add to memory cache as before
 if (getBitmapFromMemCache(key) == null) {
 mMemoryCache.put(key, bitmap);
 }

Caching Bitmaps

183
Content from developer.android.com/training/displaying-bitmaps/cache-bitmap.html through their Creative Commons Attribution 2.5 license

 // Also add to disk cache
 synchronized (mDiskCacheLock) {
 if (mDiskLruCache != null && mDiskLruCache.get(key) == null) {
 mDiskLruCache.put(key, bitmap);
 }
 }
}

public Bitmap getBitmapFromDiskCache(String key) {
 synchronized (mDiskCacheLock) {
 // Wait while disk cache is started from background thread
 while (mDiskCacheStarting) {
 try {
 mDiskCacheLock.wait();
 } catch (InterruptedException e) {}
 }
 if (mDiskLruCache != null) {
 return mDiskLruCache.get(key);
 }
 }
 return null;
}

// Creates a unique subdirectory of the designated app cache directory. Tries to use external
// but if not mounted, falls back on internal storage.
public static File getDiskCacheDir(Context context, String uniqueName) {
 // Check if media is mounted or storage is built-in, if so, try and use external cache dir
 // otherwise use internal cache dir
 final String cachePath =
 Environment.MEDIA_MOUNTED.equals(Environment.getExternalStorageState()) ||
 !isExternalStorageRemovable() ? getExternalCacheDir(context).getPath() :
 context.getCacheDir().getPath();

 return new File(cachePath + File.separator + uniqueName);
}

Note: Even initializing the disk cache requires disk operations and therefore should not take place on the
main thread. However, this does mean there's a chance the cache is accessed before initialization. To
address this, in the above implementation, a lock object ensures that the app does not read from the disk
cache until the cache has been initialized.
While the memory cache is checked in the UI thread, the disk cache is checked in the background thread.
Disk operations should never take place on the UI thread. When image processing is complete, the final
bitmap is added to both the memory and disk cache for future use.

Handle Configuration Changes
Runtime configuration changes, such as a screen orientation change, cause Android to destroy and restart
the running activity with the new configuration (For more information about this behavior, see Handling
Runtime Changes). You want to avoid having to process all your images again so the user has a smooth
and fast experience when a configuration change occurs.
Luckily, you have a nice memory cache of bitmaps that you built in the Use a Memory Cache section. This
cache can be passed through to the new activity instance using a Fragment which is preserved by calling
setRetainInstance(true)). After the activity has been recreated, this retained Fragment is
reattached and you gain access to the existing cache object, allowing images to be quickly fetched and re-
populated into the ImageView objects.
Here’s an example of retaining a LruCache object across configuration changes using a Fragment:

Caching Bitmaps

184
Content from developer.android.com/training/displaying-bitmaps/cache-bitmap.html through their Creative Commons Attribution 2.5 license

private LruCache<String, Bitmap> mMemoryCache;

@Override
protected void onCreate(Bundle savedInstanceState) {
 ...
 RetainFragment retainFragment =
 RetainFragment.findOrCreateRetainFragment(getFragmentManager());
 mMemoryCache = retainFragment.mRetainedCache;
 if (mMemoryCache == null) {
 mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {
 ... // Initialize cache here as usual
 }
 retainFragment.mRetainedCache = mMemoryCache;
 }
 ...
}

class RetainFragment extends Fragment {
 private static final String TAG = "RetainFragment";
 public LruCache<String, Bitmap> mRetainedCache;

 public RetainFragment() {}

 public static RetainFragment findOrCreateRetainFragment(FragmentManager fm) {
 RetainFragment fragment = (RetainFragment) fm.findFragmentByTag(TAG);
 if (fragment == null) {
 fragment = new RetainFragment();
 fm.beginTransaction().add(fragment, TAG).commit();
 }
 return fragment;
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 }
}

To test this out, try rotating a device both with and without retaining the Fragment. You should notice little
to no lag as the images populate the activity almost instantly from memory when you retain the cache. Any
images not found in the memory cache are hopefully available in the disk cache, if not, they are processed
as usual.

Managing Bitmap Memory

185
Content from developer.android.com/training/displaying-bitmaps/manage-memory.html through their Creative Commons Attribution 2.5 license

64. Managing Bitmap Memory
Content from developer.android.com/training/displaying-bitmaps/manage-memory.html through their Creative Commons Attribution 2.5 license

In addition to the steps described in Caching
Bitmaps, there are specific things you can do to
facilitate garbage collection and bitmap reuse. The
recommended strategy depends on which
version(s) of Android you are targeting. The
BitmapFun sample app included with this class
shows you how to design your app to work
efficiently across different versions of Android.
To set the stage for this lesson, here is how
Android's management of bitmap memory has
evolved:

• On Android Android 2.2 (API level 8) and
lower, when garbage collection occurs,
your app's threads get stopped. This
causes a lag that can degrade
performance. Android 2.3 adds
concurrent garbage collection, which
means that the memory is reclaimed
soon after a bitmap is no longer
referenced.

• On Android 2.3.3 (API level 10) and lower, the backing pixel data for a bitmap is stored in native
memory. It is separate from the bitmap itself, which is stored in the Dalvik heap. The pixel data in
native memory is not released in a predictable manner, potentially causing an application to
briefly exceed its memory limits and crash. As of Android 3.0 (API level 11), the pixel data is
stored on the Dalvik heap along with the associated bitmap.

The following sections describe how to optimize bitmap memory management for different Android
versions.

Manage Memory on Android 2.3.3 and Lower
On Android 2.3.3 (API level 10) and lower, using recycle() is recommended. If you're displaying large
amounts of bitmap data in your app, you're likely to run into OutOfMemoryError errors. The recycle()
method allows an app to reclaim memory as soon as possible.
Caution: You should use recycle() only when you are sure that the bitmap is no longer being used. If
you call recycle() and later attempt to draw the bitmap, you will get the error: "Canvas: trying to
use a recycled bitmap".
The following code snippet gives an example of calling recycle(). It uses reference counting (in the
variables mDisplayRefCount and mCacheRefCount) to track whether a bitmap is currently being
displayed or in the cache. The code recycles the bitmap when these conditions are met:

• The reference count for both mDisplayRefCount and mCacheRefCount is 0.
• The bitmap is not null, and it hasn't been recycled yet.

This lesson teaches you to
• Manage Memory on Android 2.3.3 and
Lower
• Manage Memory on Android 3.0 and Higher
You should also read

• Memory Analysis for Android
Applications blog post

• Memory management for Android
Apps Google I/O presentation

• Android Design: Swipe Views
• Android Design: Grid Lists

Try it out
Download the sample
BitmapFun.zip

Managing Bitmap Memory

186
Content from developer.android.com/training/displaying-bitmaps/manage-memory.html through their Creative Commons Attribution 2.5 license

private int mCacheRefCount = 0;
private int mDisplayRefCount = 0;
...
// Notify the drawable that the displayed state has changed.
// Keep a count to determine when the drawable is no longer displayed.
public void setIsDisplayed(boolean isDisplayed) {
 synchronized (this) {
 if (isDisplayed) {
 mDisplayRefCount++;
 mHasBeenDisplayed = true;
 } else {
 mDisplayRefCount--;
 }
 }
 // Check to see if recycle() can be called.
 checkState();
}

// Notify the drawable that the cache state has changed.
// Keep a count to determine when the drawable is no longer being cached.
public void setIsCached(boolean isCached) {
 synchronized (this) {
 if (isCached) {
 mCacheRefCount++;
 } else {
 mCacheRefCount--;
 }
 }
 // Check to see if recycle() can be called.
 checkState();
}

private synchronized void checkState() {
 // If the drawable cache and display ref counts = 0, and this drawable
 // has been displayed, then recycle.
 if (mCacheRefCount <= 0 && mDisplayRefCount <= 0 && mHasBeenDisplayed
 && hasValidBitmap()) {
 getBitmap().recycle();
 }
}

private synchronized boolean hasValidBitmap() {
 Bitmap bitmap = getBitmap();
 return bitmap != null && !bitmap.isRecycled();
}

Manage Memory on Android 3.0 and Higher
Android 3.0 (API level 11) introduces the BitmapFactory.Options.inBitmap field. If this option is set,
decode methods that take the Options object will attempt to reuse an existing bitmap when loading
content. This means that the bitmap's memory is reused, resulting in improved performance, and removing
both memory allocation and de-allocation. However, there are certain restrictions with how inBitmap can
be used. In particular, before Android 4.4 (API level 19), only equal sized bitmaps are supported. For
details, please see the inBitmap documentation.

Save a bitmap for later use

Managing Bitmap Memory

187
Content from developer.android.com/training/displaying-bitmaps/manage-memory.html through their Creative Commons Attribution 2.5 license

The following snippet demonstrates how an existing bitmap is stored for possible later use in the sample
app. When an app is running on Android 3.0 or higher and a bitmap is evicted from the LruCache, a soft
reference to the bitmap is placed in a HashSet, for possible reuse later with inBitmap:

Set<SoftReference<Bitmap>> mReusableBitmaps;
private LruCache<String, BitmapDrawable> mMemoryCache;

// If you're running on Honeycomb or newer, create a
// synchronized HashSet of references to reusable bitmaps.
if (Utils.hasHoneycomb()) {
 mReusableBitmaps =
 Collections.synchronizedSet(new HashSet<SoftReference<Bitmap>>());
}

mMemoryCache = new LruCache<String, BitmapDrawable>(mCacheParams.memCacheSize) {

 // Notify the removed entry that is no longer being cached.
 @Override
 protected void entryRemoved(boolean evicted, String key,
 BitmapDrawable oldValue, BitmapDrawable newValue) {
 if (RecyclingBitmapDrawable.class.isInstance(oldValue)) {
 // The removed entry is a recycling drawable, so notify it
 // that it has been removed from the memory cache.
 ((RecyclingBitmapDrawable) oldValue).setIsCached(false);
 } else {
 // The removed entry is a standard BitmapDrawable.
 if (Utils.hasHoneycomb()) {
 // We're running on Honeycomb or later, so add the bitmap
 // to a SoftReference set for possible use with inBitmap later.
 mReusableBitmaps.add
 (new SoftReference<Bitmap>(oldValue.getBitmap()));
 }
 }
 }
....
}

Use an existing bitmap
In the running app, decoder methods check to see if there is an existing bitmap they can use. For example:

public static Bitmap decodeSampledBitmapFromFile(String filename,
 int reqWidth, int reqHeight, ImageCache cache) {

 final BitmapFactory.Options options = new BitmapFactory.Options();
 ...
 BitmapFactory.decodeFile(filename, options);
 ...

 // If we're running on Honeycomb or newer, try to use inBitmap.
 if (Utils.hasHoneycomb()) {
 addInBitmapOptions(options, cache);
 }
 ...
 return BitmapFactory.decodeFile(filename, options);
}

Managing Bitmap Memory

188
Content from developer.android.com/training/displaying-bitmaps/manage-memory.html through their Creative Commons Attribution 2.5 license

The next snippet shows the addInBitmapOptions() method that is called in the above snippet. It looks
for an existing bitmap to set as the value for inBitmap. Note that this method only sets a value for
inBitmap if it finds a suitable match (your code should never assume that a match will be found):

private static void addInBitmapOptions(BitmapFactory.Options options,
 ImageCache cache) {
 // inBitmap only works with mutable bitmaps, so force the decoder to
 // return mutable bitmaps.
 options.inMutable = true;

 if (cache != null) {
 // Try to find a bitmap to use for inBitmap.
 Bitmap inBitmap = cache.getBitmapFromReusableSet(options);

 if (inBitmap != null) {
 // If a suitable bitmap has been found, set it as the value of
 // inBitmap.
 options.inBitmap = inBitmap;
 }
 }
}

// This method iterates through the reusable bitmaps, looking for one
// to use for inBitmap:
protected Bitmap getBitmapFromReusableSet(BitmapFactory.Options options) {
 Bitmap bitmap = null;

 if (mReusableBitmaps != null && !mReusableBitmaps.isEmpty()) {
 synchronized (mReusableBitmaps) {
 final Iterator<SoftReference<Bitmap>> iterator
 = mReusableBitmaps.iterator();
 Bitmap item;

 while (iterator.hasNext()) {
 item = iterator.next().get();

 if (null != item && item.isMutable()) {
 // Check to see it the item can be used for inBitmap.
 if (canUseForInBitmap(item, options)) {
 bitmap = item;

 // Remove from reusable set so it can't be used again.
 iterator.remove();
 break;
 }
 } else {
 // Remove from the set if the reference has been cleared.
 iterator.remove();
 }
 }
 }
 }
 return bitmap;
}

Finally, this method determines whether a candidate bitmap satisfies the size criteria to be used for
inBitmap:

Managing Bitmap Memory

189
Content from developer.android.com/training/displaying-bitmaps/manage-memory.html through their Creative Commons Attribution 2.5 license

static boolean canUseForInBitmap(
 Bitmap candidate, BitmapFactory.Options targetOptions) {

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
 // From Android 4.4 (KitKat) onward we can re-use if the byte size of
 // the new bitmap is smaller than the reusable bitmap candidate
 // allocation byte count.
 int width = targetOptions.outWidth / targetOptions.inSampleSize;
 int height = targetOptions.outHeight / targetOptions.inSampleSize;
 int byteCount = width * height * getBytesPerPixel(candidate.getConfig());
 return byteCount <= candidate.getAllocationByteCount();
 }

 // On earlier versions, the dimensions must match exactly and the inSampleSize must be 1
 return candidate.getWidth() == targetOptions.outWidth
 && candidate.getHeight() == targetOptions.outHeight
 && targetOptions.inSampleSize == 1;
}

/**
 * A helper function to return the byte usage per pixel of a bitmap based on its
configuration.
 */
static int getBytesPerPixel(Config config) {
 if (config == Config.ARGB_8888) {
 return 4;
 } else if (config == Config.RGB_565) {
 return 2;
 } else if (config == Config.ARGB_4444) {
 return 2;
 } else if (config == Config.ALPHA_8) {
 return 1;
 }
 return 1;
}

Displaying Bitmaps in Your UI

190
Content from developer.android.com/training/displaying-bitmaps/display-bitmap.html through their Creative Commons Attribution 2.5 license

65. Displaying Bitmaps in Your UI
Content from developer.android.com/training/displaying-bitmaps/display-bitmap.html through their Creative Commons Attribution 2.5 license

This lesson brings together everything from
previous lessons, showing you how to load
multiple bitmaps into ViewPager and GridView
components using a background thread and
bitmap cache, while dealing with concurrency and
configuration changes.

Load Bitmaps into a ViewPager
Implementation
The swipe view pattern is an excellent way to
navigate the detail view of an image gallery. You
can implement this pattern using a ViewPager
component backed by a PagerAdapter.
However, a more suitable backing adapter is the
subclass FragmentStatePagerAdapter which
automatically destroys and saves state of the
Fragments in the ViewPager as they disappear
off-screen, keeping memory usage down.
Note: If you have a smaller number of images and are confident they all fit within the application memory
limit, then using a regular PagerAdapter or FragmentPagerAdapter might be more appropriate.
Here’s an implementation of a ViewPager with ImageView children. The main activity holds the
ViewPager and the adapter:

This lesson teaches you to
• Load Bitmaps into a ViewPager
Implementation
• Load Bitmaps into a GridView
Implementation
You should also read

• Android Design: Swipe Views
• Android Design: Grid Lists

Try it out
Download the sample
BitmapFun.zip

Displaying Bitmaps in Your UI

191
Content from developer.android.com/training/displaying-bitmaps/display-bitmap.html through their Creative Commons Attribution 2.5 license

public class ImageDetailActivity extends FragmentActivity {
 public static final String EXTRA_IMAGE = "extra_image";

 private ImagePagerAdapter mAdapter;
 private ViewPager mPager;

 // A static dataset to back the ViewPager adapter
 public final static Integer[] imageResIds = new Integer[] {
 R.drawable.sample_image_1, R.drawable.sample_image_2, R.drawable.sample_image_3,
 R.drawable.sample_image_4, R.drawable.sample_image_5, R.drawable.sample_image_6,
 R.drawable.sample_image_7, R.drawable.sample_image_8, R.drawable.sample_image_9};

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.image_detail_pager); // Contains just a ViewPager

 mAdapter = new ImagePagerAdapter(getSupportFragmentManager(), imageResIds.length);
 mPager = (ViewPager) findViewById(R.id.pager);
 mPager.setAdapter(mAdapter);
 }

 public static class ImagePagerAdapter extends FragmentStatePagerAdapter {
 private final int mSize;

 public ImagePagerAdapter(FragmentManager fm, int size) {
 super(fm);
 mSize = size;
 }

 @Override
 public int getCount() {
 return mSize;
 }

 @Override
 public Fragment getItem(int position) {
 return ImageDetailFragment.newInstance(position);
 }
 }
}

Here is an implementation of the details Fragment which holds the ImageView children. This might seem
like a perfectly reasonable approach, but can you see the drawbacks of this implementation? How could it
be improved?

Displaying Bitmaps in Your UI

192
Content from developer.android.com/training/displaying-bitmaps/display-bitmap.html through their Creative Commons Attribution 2.5 license

public class ImageDetailFragment extends Fragment {
 private static final String IMAGE_DATA_EXTRA = "resId";
 private int mImageNum;
 private ImageView mImageView;

 static ImageDetailFragment newInstance(int imageNum) {
 final ImageDetailFragment f = new ImageDetailFragment();
 final Bundle args = new Bundle();
 args.putInt(IMAGE_DATA_EXTRA, imageNum);
 f.setArguments(args);
 return f;
 }

 // Empty constructor, required as per Fragment docs
 public ImageDetailFragment() {}

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mImageNum = getArguments() != null ? getArguments().getInt(IMAGE_DATA_EXTRA) : -1;
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 // image_detail_fragment.xml contains just an ImageView
 final View v = inflater.inflate(R.layout.image_detail_fragment, container, false);
 mImageView = (ImageView) v.findViewById(R.id.imageView);
 return v;
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 final int resId = ImageDetailActivity.imageResIds[mImageNum];
 mImageView.setImageResource(resId); // Load image into ImageView
 }
}

Hopefully you noticed the issue: the images are being read from resources on the UI thread, which can
lead to an application hanging and being force closed. Using an AsyncTask as described in the
Processing Bitmaps Off the UI Thread lesson, it’s straightforward to move image loading and processing to
a background thread:

Displaying Bitmaps in Your UI

193
Content from developer.android.com/training/displaying-bitmaps/display-bitmap.html through their Creative Commons Attribution 2.5 license

public class ImageDetailActivity extends FragmentActivity {
 ...

 public void loadBitmap(int resId, ImageView imageView) {
 mImageView.setImageResource(R.drawable.image_placeholder);
 BitmapWorkerTask task = new BitmapWorkerTask(mImageView);
 task.execute(resId);
 }

 ... // include BitmapWorkerTask class
}

public class ImageDetailFragment extends Fragment {
 ...

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 if (ImageDetailActivity.class.isInstance(getActivity())) {
 final int resId = ImageDetailActivity.imageResIds[mImageNum];
 // Call out to ImageDetailActivity to load the bitmap in a background thread
 ((ImageDetailActivity) getActivity()).loadBitmap(resId, mImageView);
 }
 }
}

Any additional processing (such as resizing or fetching images from the network) can take place in the
BitmapWorkerTask without affecting responsiveness of the main UI. If the background thread is doing
more than just loading an image directly from disk, it can also be beneficial to add a memory and/or disk
cache as described in the lesson Caching Bitmaps. Here's the additional modifications for a memory
cache:

public class ImageDetailActivity extends FragmentActivity {
 ...
 private LruCache<String, Bitmap> mMemoryCache;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...
 // initialize LruCache as per Use a Memory Cache section
 }

 public void loadBitmap(int resId, ImageView imageView) {
 final String imageKey = String.valueOf(resId);

 final Bitmap bitmap = mMemoryCache.get(imageKey);
 if (bitmap != null) {
 mImageView.setImageBitmap(bitmap);
 } else {
 mImageView.setImageResource(R.drawable.image_placeholder);
 BitmapWorkerTask task = new BitmapWorkerTask(mImageView);
 task.execute(resId);
 }
 }

 ... // include updated BitmapWorkerTask from Use a Memory Cache section
}

Displaying Bitmaps in Your UI

194
Content from developer.android.com/training/displaying-bitmaps/display-bitmap.html through their Creative Commons Attribution 2.5 license

Putting all these pieces together gives you a responsive ViewPager implementation with minimal image
loading latency and the ability to do as much or as little background processing on your images as needed.

Load Bitmaps into a GridView Implementation
The grid list building block is useful for showing image data sets and can be implemented using a
GridView component in which many images can be on-screen at any one time and many more need to
be ready to appear if the user scrolls up or down. When implementing this type of control, you must ensure
the UI remains fluid, memory usage remains under control and concurrency is handled correctly (due to
the way GridView recycles its children views).
To start with, here is a standard GridView implementation with ImageView children placed inside a
Fragment. Again, this might seem like a perfectly reasonable approach, but what would make it better?

Displaying Bitmaps in Your UI

195
Content from developer.android.com/training/displaying-bitmaps/display-bitmap.html through their Creative Commons Attribution 2.5 license

public class ImageGridFragment extends Fragment implements AdapterView.OnItemClickListener {
 private ImageAdapter mAdapter;

 // A static dataset to back the GridView adapter
 public final static Integer[] imageResIds = new Integer[] {
 R.drawable.sample_image_1, R.drawable.sample_image_2, R.drawable.sample_image_3,
 R.drawable.sample_image_4, R.drawable.sample_image_5, R.drawable.sample_image_6,
 R.drawable.sample_image_7, R.drawable.sample_image_8, R.drawable.sample_image_9};

 // Empty constructor as per Fragment docs
 public ImageGridFragment() {}

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mAdapter = new ImageAdapter(getActivity());
 }

 @Override
 public View onCreateView(
 LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState) {
 final View v = inflater.inflate(R.layout.image_grid_fragment, container, false);
 final GridView mGridView = (GridView) v.findViewById(R.id.gridView);
 mGridView.setAdapter(mAdapter);
 mGridView.setOnItemClickListener(this);
 return v;
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 final Intent i = new Intent(getActivity(), ImageDetailActivity.class);
 i.putExtra(ImageDetailActivity.EXTRA_IMAGE, position);
 startActivity(i);
 }

 private class ImageAdapter extends BaseAdapter {
 private final Context mContext;

 public ImageAdapter(Context context) {
 super();
 mContext = context;
 }

 @Override
 public int getCount() {
 return imageResIds.length;
 }

 @Override
 public Object getItem(int position) {
 return imageResIds[position];
 }

 @Override
 public long getItemId(int position) {
 return position;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup container) {

Displaying Bitmaps in Your UI

196
Content from developer.android.com/training/displaying-bitmaps/display-bitmap.html through their Creative Commons Attribution 2.5 license

 ImageView imageView;
 if (convertView == null) { // if it's not recycled, initialize some attributes
 imageView = new ImageView(mContext);
 imageView.setScaleType(ImageView.ScaleType.CENTER_CROP);
 imageView.setLayoutParams(new GridView.LayoutParams(
 LayoutParams.MATCH_PARENT, LayoutParams.MATCH_PARENT));
 } else {
 imageView = (ImageView) convertView;
 }
 imageView.setImageResource(imageResIds[position]); // Load image into
ImageView
 return imageView;
 }
 }
}

Once again, the problem with this implementation is that the image is being set in the UI thread. While this
may work for small, simple images (due to system resource loading and caching), if any additional
processing needs to be done, your UI grinds to a halt.
The same asynchronous processing and caching methods from the previous section can be implemented
here. However, you also need to wary of concurrency issues as the GridView recycles its children views.
To handle this, use the techniques discussed in the Processing Bitmaps Off the UI Thread lesson. Here is
the updated solution:

Displaying Bitmaps in Your UI

197
Content from developer.android.com/training/displaying-bitmaps/display-bitmap.html through their Creative Commons Attribution 2.5 license

public class ImageGridFragment extends Fragment implements AdapterView.OnItemClickListener {
 ...

 private class ImageAdapter extends BaseAdapter {
 ...

 @Override
 public View getView(int position, View convertView, ViewGroup container) {
 ...
 loadBitmap(imageResIds[position], imageView)
 return imageView;
 }
 }

 public void loadBitmap(int resId, ImageView imageView) {
 if (cancelPotentialWork(resId, imageView)) {
 final BitmapWorkerTask task = new BitmapWorkerTask(imageView);
 final AsyncDrawable asyncDrawable =
 new AsyncDrawable(getResources(), mPlaceHolderBitmap, task);
 imageView.setImageDrawable(asyncDrawable);
 task.execute(resId);
 }
 }

 static class AsyncDrawable extends BitmapDrawable {
 private final WeakReference<BitmapWorkerTask> bitmapWorkerTaskReference;

 public AsyncDrawable(Resources res, Bitmap bitmap,
 BitmapWorkerTask bitmapWorkerTask) {
 super(res, bitmap);
 bitmapWorkerTaskReference =
 new WeakReference<BitmapWorkerTask>(bitmapWorkerTask);
 }

 public BitmapWorkerTask getBitmapWorkerTask() {
 return bitmapWorkerTaskReference.get();
 }
 }

 public static boolean cancelPotentialWork(int data, ImageView imageView) {
 final BitmapWorkerTask bitmapWorkerTask = getBitmapWorkerTask(imageView);

 if (bitmapWorkerTask != null) {
 final int bitmapData = bitmapWorkerTask.data;
 if (bitmapData != data) {
 // Cancel previous task
 bitmapWorkerTask.cancel(true);
 } else {
 // The same work is already in progress
 return false;
 }
 }
 // No task associated with the ImageView, or an existing task was cancelled
 return true;
 }

 private static BitmapWorkerTask getBitmapWorkerTask(ImageView imageView) {
 if (imageView != null) {
 final Drawable drawable = imageView.getDrawable();
 if (drawable instanceof AsyncDrawable) {

Displaying Bitmaps in Your UI

198
Content from developer.android.com/training/displaying-bitmaps/display-bitmap.html through their Creative Commons Attribution 2.5 license

 final AsyncDrawable asyncDrawable = (AsyncDrawable) drawable;
 return asyncDrawable.getBitmapWorkerTask();
 }
 }
 return null;
 }

 ... // include updated BitmapWorkerTask class

Note: The same code can easily be adapted to work with ListView as well.
This implementation allows for flexibility in how the images are processed and loaded without impeding the
smoothness of the UI. In the background task you can load images from the network or resize large digital
camera photos and the images appear as the tasks finish processing.
For a full example of this and other concepts discussed in this lesson, please see the included sample
application.

Displaying Graphics with OpenGL ES

199
Content from developer.android.com/training/graphics/opengl/index.html through their Creative Commons Attribution 2.5 license

66. Displaying Graphics with OpenGL ES
Content from developer.android.com/training/graphics/opengl/index.html through their Creative Commons Attribution 2.5 license

The Android framework provides plenty of
standard tools for creating attractive, functional
graphical user interfaces. However, if you want
more control of what your application draws on
screen, or are venturing into three dimensional
graphics, you need to use a different tool. The
OpenGL ES APIs provided by the Android
framework offers a set of tools for displaying high-
end, animated graphics that are limited only by
your imagination and can also benefit from the
acceleration of graphics processing units (GPUs)
provided on many Android devices.
This class walks you through the basics of
developing applications that use OpenGL,
including setup, drawing objects, moving drawn
elements and responding to touch input.
The example code in this class uses the OpenGL ES 2.0 APIs, which is the recommended API version to
use with current Android devices. For more information about versions of OpenGL ES, see the OpenGL
developer guide.
Note: Be careful not to mix OpenGL ES 1.x API calls with OpenGL ES 2.0 methods! The two APIs are not
interchangeable and trying to use them together only results in frustration and sadness.

Lessons
Building an OpenGL ES Environment

Learn how to set up an Android application to be able to draw OpenGL graphics.
Defining Shapes

Learn how to define shapes and why you need to know about faces and winding.
Drawing Shapes

Learn how to draw OpenGL shapes in your application.
Applying Projection and Camera Views

Learn how to use projection and camera views to get a new perspective on your drawn objects.
Adding Motion

Learn how to do basic movement and animation of drawn objects with OpenGL.
Responding to Touch Events

Learn how to do basic interaction with OpenGL graphics.

Dependencies and prerequisites

• Android 2.2 (API Level 8) or higher
• Experience building an Android app

You should also read

• OpenGL

Try it out
Download the sample
OpenGLES.zip

Building an OpenGL ES Environment

200
Content from developer.android.com/training/graphics/opengl/environment.html through their Creative Commons Attribution 2.5 license

67. Building an OpenGL ES Environment
Content from developer.android.com/training/graphics/opengl/environment.html through their Creative Commons Attribution 2.5 license

In order to draw graphics with OpenGL ES in your
Android application, you must create a view
container for them. One of the more straight-
forward ways to do this is to implement both a
GLSurfaceView and a
GLSurfaceView.Renderer. A
GLSurfaceView is a view container for graphics
drawn with OpenGL and
GLSurfaceView.Renderer controls what is
drawn within that view. For more information
about these classes, see the OpenGL ES
developer guide.
GLSurfaceView is just one way to incorporate
OpenGL ES graphics into your application. For a
full-screen or near-full screen graphics view, it is a
reasonable choice. Developers who want to
incorporate OpenGL ES graphics in a small
portion of their layouts should take a look at TextureView. For real, do-it-yourself developers, it is also
possible to build up an OpenGL ES view using SurfaceView, but this requires writing quite a bit of
additional code.
This lesson explains how to complete a minimal implementation of GLSurfaceView and
GLSurfaceView.Renderer in a simple application activity.

Declare OpenGL ES Use in the Manifest
In order for your application to use the OpenGL ES 2.0 API, you must add the following declaration to your
manifest:

<uses-feature android:glEsVersion="0x00020000" android:required="true" />

If your application uses texture compression, you must also declare which compression formats you
support so that devices that do not support theses formats do not try to run your application:

<supports-gl-texture android:name="GL_OES_compressed_ETC1_RGB8_texture" />
<supports-gl-texture android:name="GL_OES_compressed_paletted_texture" />

For more information about texture compression formats, see the OpenGL developer guide.

Create an Activity for OpenGL ES Graphics
Android applications that use OpenGL ES have activities just like any other application that has a user
interface. The main difference from other applications is what you put in the layout for your activity. While
in many applications you might use TextView, Button and ListView, in an app that uses OpenGL ES,
you can also add a GLSurfaceView.
The following code example shows a minimal implementation of an activity that uses a GLSurfaceView
as its primary view:

This lesson teaches you to
• Declare OpenGL ES Use in the Manifest
• Create an Activity for OpenGL ES Graphics
• Build a GLSurfaceView Object
• Build a Renderer Class
You should also read

• OpenGL

Try it out
Download the sample
OpenGLES.zip

Building an OpenGL ES Environment

201
Content from developer.android.com/training/graphics/opengl/environment.html through their Creative Commons Attribution 2.5 license

public class OpenGLES20Activity extends Activity {

 private GLSurfaceView mGLView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Create a GLSurfaceView instance and set it
 // as the ContentView for this Activity.
 mGLView = new MyGLSurfaceView(this);
 setContentView(mGLView);
 }
}

Note: OpenGL ES 2.0 requires Android 2.2 (API Level 8) or higher, so make sure your Android project
targets that API or higher.

Build a GLSurfaceView Object
A GLSurfaceView is a specialized view where you can draw OpenGL ES graphics. It does not do much
by itself. The actual drawing of objects is controlled in the GLSurfaceView.Renderer that you set on
this view. In fact, the code for this object is so thin, you may be tempted to skip extending it and just create
an unmodified GLSurfaceView instance, but don’t do that. You need to extend this class in order to
capture touch events, which is covered in the Responding to Touch Events lesson.
The essential code for a GLSurfaceView is minimal, so for a quick implementation, it is common to just
create an inner class in the activity that uses it:

class MyGLSurfaceView extends GLSurfaceView {

 public MyGLSurfaceView(Context context){
 super(context);

 // Set the Renderer for drawing on the GLSurfaceView
 setRenderer(new MyRenderer());
 }
}

When using OpenGL ES 2.0, you must add another call to your GLSurfaceView constructor, specifying
that you want to use the 2.0 API:

// Create an OpenGL ES 2.0 context
setEGLContextClientVersion(2);

Note: If you are using the OpenGL ES 2.0 API, make sure you declare this in your application manifest.
For more information, see Declare OpenGL ES Use in the Manifest.
One other optional addition to your GLSurfaceView implementation is to set the render mode to only
draw the view when there is a change to your drawing data using the
GLSurfaceView.RENDERMODE_WHEN_DIRTY setting:

// Render the view only when there is a change in the drawing data
setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);

This setting prevents the GLSurfaceView frame from being redrawn until you call requestRender(),
which is more efficient for this sample app.

Building an OpenGL ES Environment

202
Content from developer.android.com/training/graphics/opengl/environment.html through their Creative Commons Attribution 2.5 license

Build a Renderer Class
The implementation of the GLSurfaceView.Renderer class, or renderer, within an application that uses
OpenGL ES is where things start to get interesting. This class controls what gets drawn on the
GLSurfaceView with which it is associated. There are three methods in a renderer that are called by the
Android system in order to figure out what and how to draw on a GLSurfaceView:

• onSurfaceCreated() - Called once to set up the view's OpenGL ES environment.
• onDrawFrame() - Called for each redraw of the view.
• onSurfaceChanged() - Called if the geometry of the view changes, for example when the

device's screen orientation changes.

Here is a very basic implementation of an OpenGL ES renderer, that does nothing more than draw a gray
background in the GLSurfaceView:

public class MyGLRenderer implements GLSurfaceView.Renderer {

 public void onSurfaceCreated(GL10 unused, EGLConfig config) {
 // Set the background frame color
 GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 }

 public void onDrawFrame(GL10 unused) {
 // Redraw background color
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);
 }

 public void onSurfaceChanged(GL10 unused, int width, int height) {
 GLES20.glViewport(0, 0, width, height);
 }
}

That’s all there is to it! The code examples above create a simple Android application that displays a gray
screen using OpenGL. While this code does not do anything very interesting, by creating these classes,
you have laid the foundation you need to start drawing graphic elements with OpenGL.
Note: You may wonder why these methods have a GL10 parameter, when you are using the OpengGL ES
2.0 APIs. These method signatures are simply reused for the 2.0 APIs to keep the Android framework
code simpler.
If you are familiar with the OpenGL ES APIs, you should now be able to set up a OpenGL ES environment
in your app and start drawing graphics. However, if you need a bit more help getting started with OpenGL,
head on to the next lessons for a few more hints.

Defining Shapes

203
Content from developer.android.com/training/graphics/opengl/shapes.html through their Creative Commons Attribution 2.5 license

68. Defining Shapes
Content from developer.android.com/training/graphics/opengl/shapes.html through their Creative Commons Attribution 2.5 license

Being able to define shapes to be drawn in the
context of an OpenGL ES view is the first step in
creating your high-end graphics masterpiece.
Drawing with OpenGL ES can be a little tricky
without knowing a few basic things about how
OpenGL ES expects you to define graphic
objects.
This lesson explains the OpenGL ES coordinate
system relative to an Android device screen, the
basics of defining a shape, shape faces, as well
as defining a triangle and a square.

Define a Triangle
OpenGL ES allows you to define drawn objects using coordinates in three-dimensional space. So, before
you can draw a triangle, you must define its coordinates. In OpenGL, the typical way to do this is to define
a vertex array of floating point numbers for the coordinates. For maximum efficiency, you write these
coordinates into a ByteBuffer, that is passed into the OpenGL ES graphics pipeline for processing.

public class Triangle {

 private FloatBuffer vertexBuffer;

 // number of coordinates per vertex in this array
 static final int COORDS_PER_VERTEX = 3;
 static float triangleCoords[] = { // in counterclockwise order:
 0.0f, 0.622008459f, 0.0f, // top
 -0.5f, -0.311004243f, 0.0f, // bottom left
 0.5f, -0.311004243f, 0.0f // bottom right
 };

 // Set color with red, green, blue and alpha (opacity) values
 float color[] = { 0.63671875f, 0.76953125f, 0.22265625f, 1.0f };

 public Triangle() {
 // initialize vertex byte buffer for shape coordinates
 ByteBuffer bb = ByteBuffer.allocateDirect(
 // (number of coordinate values * 4 bytes per float)
 triangleCoords.length * 4);
 // use the device hardware's native byte order
 bb.order(ByteOrder.nativeOrder());

 // create a floating point buffer from the ByteBuffer
 vertexBuffer = bb.asFloatBuffer();
 // add the coordinates to the FloatBuffer
 vertexBuffer.put(triangleCoords);
 // set the buffer to read the first coordinate
 vertexBuffer.position(0);
 }
}

This lesson teaches you to
• Define a Triangle
• Define a Square
You should also read

• OpenGL

Download the sample
OpenGLES.zip

Defining Shapes

204
Content from developer.android.com/training/graphics/opengl/shapes.html through their Creative Commons Attribution 2.5 license

By default, OpenGL ES assumes a coordinate system where [0,0,0] (X,Y,Z) specifies the center of the
GLSurfaceView frame, [1,1,0] is the top right corner of the frame and [-1,-1,0] is bottom left corner of the
frame. For an illustration of this coordinate system, see the OpenGL ES developer guide.
Note that the coordinates of this shape are defined in a counterclockwise order. The drawing order is
important because it defines which side is the front face of the shape, which you typically want to have
drawn, and the back face, which you can choose to not draw using the OpenGL ES cull face feature. For
more information about faces and culling, see the OpenGL ES developer guide.

Define a Square
Defining triangles is pretty easy in OpenGL, but what if you want to get a just a little more complex? Say, a
square? There are a number of ways to do this, but a typical path to drawing such a shape in OpenGL ES
is to use two triangles drawn together:

Figure 1. Drawing a square using two triangles.
Again, you should define the vertices in a counterclockwise order for both triangles that represent this
shape, and put the values in a ByteBuffer. In order to avoid defining the two coordinates shared by each
triangle twice, use a drawing list to tell the OpenGL ES graphics pipeline how to draw these vertices.
Here’s the code for this shape:

Defining Shapes

205
Content from developer.android.com/training/graphics/opengl/shapes.html through their Creative Commons Attribution 2.5 license

public class Square {

 private FloatBuffer vertexBuffer;
 private ShortBuffer drawListBuffer;

 // number of coordinates per vertex in this array
 static final int COORDS_PER_VERTEX = 3;
 static float squareCoords[] = {
 -0.5f, 0.5f, 0.0f, // top left
 -0.5f, -0.5f, 0.0f, // bottom left
 0.5f, -0.5f, 0.0f, // bottom right
 0.5f, 0.5f, 0.0f }; // top right

 private short drawOrder[] = { 0, 1, 2, 0, 2, 3 }; // order to draw vertices

 public Square() {
 // initialize vertex byte buffer for shape coordinates
 ByteBuffer bb = ByteBuffer.allocateDirect(
 // (# of coordinate values * 4 bytes per float)
 squareCoords.length * 4);
 bb.order(ByteOrder.nativeOrder());
 vertexBuffer = bb.asFloatBuffer();
 vertexBuffer.put(squareCoords);
 vertexBuffer.position(0);

 // initialize byte buffer for the draw list
 ByteBuffer dlb = ByteBuffer.allocateDirect(
 // (# of coordinate values * 2 bytes per short)
 drawOrder.length * 2);
 dlb.order(ByteOrder.nativeOrder());
 drawListBuffer = dlb.asShortBuffer();
 drawListBuffer.put(drawOrder);
 drawListBuffer.position(0);
 }
}

This example gives you a peek at what it takes to create more complex shapes with OpenGL. In general,
you use collections of triangles to draw objects. In the next lesson, you learn how to draw these shapes on
screen.

Drawing Shapes

206
Content from developer.android.com/training/graphics/opengl/draw.html through their Creative Commons Attribution 2.5 license

69. Drawing Shapes
Content from developer.android.com/training/graphics/opengl/draw.html through their Creative Commons Attribution 2.5 license

After you define shapes to be drawn with
OpenGL, you probably want to draw them.
Drawing shapes with the OpenGL ES 2.0 takes a
bit more code than you might imagine, because
the API provides a great deal of control over the
graphics rendering pipeline.
This lesson explains how to draw the shapes you
defined in the previous lesson using the OpenGL
ES 2.0 API.

Initialize Shapes
Before you do any drawing, you must initialize and
load the shapes you plan to draw. Unless the structure (the original coordinates) of the shapes you use in
your program change during the course of execution, you should initialize them in the
onSurfaceCreated() method of your renderer for memory and processing efficiency.

public void onSurfaceCreated(GL10 unused, EGLConfig config) {
 ...

 // initialize a triangle
 mTriangle = new Triangle();
 // initialize a square
 mSquare = new Square();
}

Draw a Shape
Drawing a defined shape using OpenGL ES 2.0 requires a significant amount of code, because you must
provide a lot of details to the graphics rendering pipeline. Specifically, you must define the following:

• Vertex Shader - OpenGL ES graphics code for rendering the vertices of a shape.
• Fragment Shader - OpenGL ES code for rendering the face of a shape with colors or textures.
• Program - An OpenGL ES object that contains the shaders you want to use for drawing one or

more shapes.

You need at least one vertex shader to draw a shape and one fragment shader to color that shape. These
shaders must be complied and then added to an OpenGL ES program, which is then used to draw the
shape. Here is an example of how to define basic shaders you can use to draw a shape:

This lesson teaches you to
• Initialize Shapes
• Draw a Shape
You should also read

• OpenGL

Download the sample
OpenGLES.zip

Drawing Shapes

207
Content from developer.android.com/training/graphics/opengl/draw.html through their Creative Commons Attribution 2.5 license

private final String vertexShaderCode =
 "attribute vec4 vPosition;" +
 "void main() {" +
 " gl_Position = vPosition;" +
 "}";

private final String fragmentShaderCode =
 "precision mediump float;" +
 "uniform vec4 vColor;" +
 "void main() {" +
 " gl_FragColor = vColor;" +
 "}";

Shaders contain OpenGL Shading Language (GLSL) code that must be compiled prior to using it in the
OpenGL ES environment. To compile this code, create a utility method in your renderer class:

public static int loadShader(int type, String shaderCode){

 // create a vertex shader type (GLES20.GL_VERTEX_SHADER)
 // or a fragment shader type (GLES20.GL_FRAGMENT_SHADER)
 int shader = GLES20.glCreateShader(type);

 // add the source code to the shader and compile it
 GLES20.glShaderSource(shader, shaderCode);
 GLES20.glCompileShader(shader);

 return shader;
}

In order to draw your shape, you must compile the shader code, add them to a OpenGL ES program
object and then link the program. Do this in your drawn object’s constructor, so it is only done once.
Note: Compiling OpenGL ES shaders and linking programs is expensive in terms of CPU cycles and
processing time, so you should avoid doing this more than once. If you do not know the content of your
shaders at runtime, you should build your code such that they only get created once and then cached for
later use.

public class Triangle() {
 ...

 int vertexShader = loadShader(GLES20.GL_VERTEX_SHADER, vertexShaderCode);
 int fragmentShader = loadShader(GLES20.GL_FRAGMENT_SHADER, fragmentShaderCode);

 mProgram = GLES20.glCreateProgram(); // create empty OpenGL ES Program
 GLES20.glAttachShader(mProgram, vertexShader); // add the vertex shader to program
 GLES20.glAttachShader(mProgram, fragmentShader); // add the fragment shader to program
 GLES20.glLinkProgram(mProgram); // creates OpenGL ES program executables
}

At this point, you are ready to add the actual calls that draw your shape. Drawing shapes with OpenGL ES
requires that you specify several parameters to tell the rendering pipeline what you want to draw and how
to draw it. Since drawing options can vary by shape, it's a good idea to have your shape classes contain
their own drawing logic.
Create a draw() method for drawing the shape. This code sets the position and color values to the
shape’s vertex shader and fragment shader, and then executes the drawing function.

Drawing Shapes

208
Content from developer.android.com/training/graphics/opengl/draw.html through their Creative Commons Attribution 2.5 license

public void draw() {
 // Add program to OpenGL ES environment
 GLES20.glUseProgram(mProgram);

 // get handle to vertex shader's vPosition member
 mPositionHandle = GLES20.glGetAttribLocation(mProgram, "vPosition");

 // Enable a handle to the triangle vertices
 GLES20.glEnableVertexAttribArray(mPositionHandle);

 // Prepare the triangle coordinate data
 GLES20.glVertexAttribPointer(mPositionHandle, COORDS_PER_VERTEX,
 GLES20.GL_FLOAT, false,
 vertexStride, vertexBuffer);

 // get handle to fragment shader's vColor member
 mColorHandle = GLES20.glGetUniformLocation(mProgram, "vColor");

 // Set color for drawing the triangle
 GLES20.glUniform4fv(mColorHandle, 1, color, 0);

 // Draw the triangle
 GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, vertexCount);

 // Disable vertex array
 GLES20.glDisableVertexAttribArray(mPositionHandle);
}

Once you have all this code in place, drawing this object just requires a call to the draw() method from
within your renderer’s onDrawFrame() method. When you run the application, it should look something
like this:

Figure 1. Triangle drawn without a projection or camera view.
There are a few problems with this code example. First of all, it is not going to impress your friends.
Secondly, the triangle is a bit squashed and changes shape when you change the screen orientation of the
device. The reason the shape is skewed is due to the fact that the object’s vertices have not been
corrected for the proportions of the screen area where the GLSurfaceView is displayed. You can fix that
problem using a projection and camera view in the next lesson.
Lastly, the triangle is stationary, which is a bit boring. In the Adding Motion lesson, you make this shape
rotate and make more interesting use of the OpenGL ES graphics pipeline.

Applying Projection and Camera Views

209
Content from developer.android.com/training/graphics/opengl/projection.html through their Creative Commons Attribution 2.5 license

70. Applying Projection and Camera Views
Content from developer.android.com/training/graphics/opengl/projection.html through their Creative Commons Attribution 2.5 license

In the OpenGL ES environment, projection and
camera views allow you to display drawn objects
in a way that more closely resembles how you see
physical objects with your eyes. This simulation of
physical viewing is done with mathematical
transformations of drawn object coordinates:

• Projection - This transformation adjusts
the coordinates of drawn objects based
on the width and height of the
GLSurfaceView where they are
displayed. Without this calculation,
objects drawn by OpenGL ES are
skewed by the unequal proportions of the
view window. A projection transformation
typically only has to be calculated when the proportions of the OpenGL view are established or
changed in the onSurfaceChanged() method of your renderer. For more information about
OpenGL ES projections and coordinate mapping, see Mapping Coordinates for Drawn Objects.

• Camera View - This transformation adjusts the coordinates of drawn objects based on a virtual
camera position. It’s important to note that OpenGL ES does not define an actual camera object,
but instead provides utility methods that simulate a camera by transforming the display of drawn
objects. A camera view transformation might be calculated only once when you establish your
GLSurfaceView, or might change dynamically based on user actions or your application’s
function.

This lesson describes how to create a projection and camera view and apply it to shapes drawn in your
GLSurfaceView.

Define a Projection
The data for a projection transformation is calculated in the onSurfaceChanged() method of your
GLSurfaceView.Renderer class. The following example code takes the height and width of the
GLSurfaceView and uses it to populate a projection transformation Matrix using the
Matrix.frustumM() method:

@Override
public void onSurfaceChanged(GL10 unused, int width, int height) {
 GLES20.glViewport(0, 0, width, height);

 float ratio = (float) width / height;

 // this projection matrix is applied to object coordinates
 // in the onDrawFrame() method
 Matrix.frustumM(mProjectionMatrix, 0, -ratio, ratio, -1, 1, 3, 7);
}

This code populates a projection matrix, mProjectionMatrix which you can then combine with a
camera view transformation in the onDrawFrame() method, which is shown in the next section.

This lesson teaches you to
• Define a Projection
• Define a Camera View
• Apply Projection and Camera
Transformations
You should also read

• OpenGL

Download the sample
OpenGLES.zip

Applying Projection and Camera Views

210
Content from developer.android.com/training/graphics/opengl/projection.html through their Creative Commons Attribution 2.5 license

Note: Just applying a projection transformation to your drawing objects typically results in a very empty
display. In general, you must also apply a camera view transformation in order for anything to show up on
screen.

Define a Camera View
Complete the process of transforming your drawn objects by adding a camera view transformation as part
of the drawing process. In the following example code, the camera view transformation is calculated using
the Matrix.setLookAtM() method and then combined with the previously calculated projection matrix.
The combined transformation matrices are then passed to the drawn shape.

@Override
public void onDrawFrame(GL10 unused) {
 ...
 // Set the camera position (View matrix)
 Matrix.setLookAtM(mViewMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);

 // Calculate the projection and view transformation
 Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mViewMatrix, 0);

 // Draw shape
 mTriangle.draw(mMVPMatrix);
}

Apply Projection and Camera Transformations
In order to use the combined projection and camera view transformation matrix shown in the previews
sections, modify the draw() method of your graphic objects to accept the combined transformation matrix
and apply it to the shape:

public void draw(float[] mvpMatrix) { // pass in the calculated transformation matrix
 ...

 // get handle to shape's transformation matrix
 mMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");

 // Pass the projection and view transformation to the shader
 GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mvpMatrix, 0);

 // Draw the triangle
 GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, vertexCount);
 ...
}

Once you have correctly calculated and applied the projection and camera view transformations, your
graphic objects are drawn in correct proportions and should look like this:

Figure 1. Triangle drawn with a projection and camera view applied.

Applying Projection and Camera Views

211
Content from developer.android.com/training/graphics/opengl/projection.html through their Creative Commons Attribution 2.5 license

Now that you have an application that displays your shapes in correct proportions, it's time to add motion
to your shapes.

Adding Motion

212
Content from developer.android.com/training/graphics/opengl/motion.html through their Creative Commons Attribution 2.5 license

71. Adding Motion
Content from developer.android.com/training/graphics/opengl/motion.html through their Creative Commons Attribution 2.5 license

Drawing objects on screen is a pretty basic
feature of OpenGL, but you can do this with other
Android graphics framwork classes, including
Canvas and Drawable objects. OpenGL ES
provides additional capabilities for moving and
transforming drawn objects in three dimensions or
in other unique ways to create compelling user
experiences.
In this lesson, you take another step forward into
using OpenGL ES by learning how to add motion
to a shape with rotation.

Rotate a Shape
Rotating a drawing object with OpenGL ES 2.0 is relatively simple. You create another transformation
matrix (a rotation matrix) and then combine it with your projection and camera view transformation
matrices:

private float[] mRotationMatrix = new float[16];
public void onDrawFrame(GL10 gl) {
 ...
 float[] scratch = new float[16];

 // Create a rotation transformation for the triangle
 long time = SystemClock.uptimeMillis() % 4000L;
 float angle = 0.090f * ((int) time);
 Matrix.setRotateM(mRotationMatrix, 0, angle, 0, 0, -1.0f);

 // Combine the rotation matrix with the projection and camera view
 // Note that the mMVPMatrix factor *must be first* in order
 // for the matrix multiplication product to be correct.
 Matrix.multiplyMM(scratch, 0, mMVPMatrix, 0, mRotationMatrix, 0);

 // Draw triangle
 mTriangle.draw(scratch);
}

If your triangle does not rotate after making these changes, make sure you have commented out the
GLSurfaceView.RENDERMODE_WHEN_DIRTY setting, as described in the next section.

Enable Continuous Rendering
If you have diligently followed along with the example code in this class to this point, make sure you
comment out the line that sets the render mode only draw when dirty, otherwise OpenGL rotates the shape
only one increment and then waits for a call to requestRender() from the GLSurfaceView container:

public MyGLSurfaceView(Context context) {
 ...
 // Render the view only when there is a change in the drawing data.
 // To allow the triangle to rotate automatically, this line is commented out:
 //setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
}

This lesson teaches you to
• Rotate a Shape
• Enable Continuous Rendering
You should also read

• OpenGL

Download the sample
OpenGLES.zip

Adding Motion

213
Content from developer.android.com/training/graphics/opengl/motion.html through their Creative Commons Attribution 2.5 license

Unless you have objects changing without any user interaction, it’s usually a good idea have this flag
turned on. Be ready to uncomment this code, because the next lesson makes this call applicable once
again.

Responding to Touch Events

214
Content from developer.android.com/training/graphics/opengl/touch.html through their Creative Commons Attribution 2.5 license

72. Responding to Touch Events
Content from developer.android.com/training/graphics/opengl/touch.html through their Creative Commons Attribution 2.5 license

Making objects move according to a preset
program like the rotating triangle is useful for
getting some attention, but what if you want to
have users interact with your OpenGL ES
graphics? The key to making your OpenGL ES
application touch interactive is expanding your
implementation of GLSurfaceView to override
the onTouchEvent() to listen for touch events.
This lesson shows you how to listen for touch
events to let users rotate an OpenGL ES object.

Setup a Touch Listener
In order to make your OpenGL ES application
respond to touch events, you must implement the onTouchEvent() method in your GLSurfaceView
class. The example implementation below shows how to listen for MotionEvent.ACTION_MOVE events
and translate them to an angle of rotation for a shape.

@Override
public boolean onTouchEvent(MotionEvent e) {
 // MotionEvent reports input details from the touch screen
 // and other input controls. In this case, you are only
 // interested in events where the touch position changed.

 float x = e.getX();
 float y = e.getY();

 switch (e.getAction()) {
 case MotionEvent.ACTION_MOVE:

 float dx = x - mPreviousX;
 float dy = y - mPreviousY;

 // reverse direction of rotation above the mid-line
 if (y > getHeight() / 2) {
 dx = dx * -1 ;
 }

 // reverse direction of rotation to left of the mid-line
 if (x < getWidth() / 2) {
 dy = dy * -1 ;
 }

 mRenderer.setAngle(
 mRenderer.getAngle() +
 ((dx + dy) * TOUCH_SCALE_FACTOR); // = 180.0f / 320
 requestRender();
 }

 mPreviousX = x;
 mPreviousY = y;
 return true;
}

This lesson teaches you to
• Setup a Touch Listener
• Expose the Rotation Angle
• Apply Rotation
You should also read

• OpenGL

Download the sample
OpenGLES.zip

Responding to Touch Events

215
Content from developer.android.com/training/graphics/opengl/touch.html through their Creative Commons Attribution 2.5 license

Notice that after calculating the rotation angle, this method calls requestRender() to tell the renderer
that it is time to render the frame. This approach is the most efficient in this example because the frame
does not need to be redrawn unless there is a change in the rotation. However, it does not have any
impact on efficiency unless you also request that the renderer only redraw when the data changes using
the setRenderMode() method, so make sure this line is uncommented in the renderer:

public MyGLSurfaceView(Context context) {
 ...
 // Render the view only when there is a change in the drawing data
 setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
}

Expose the Rotation Angle
The example code above requires that you expose the rotation angle through your renderer by adding a
public member. Since the renderer code is running on a separate thread from the main user interface
thread of your application, you must declare this public variable as volatile. Here is the code to do that:

public class MyGLRenderer implements GLSurfaceView.Renderer {
 ...
 public volatile float mAngle;

Apply Rotation
To apply the rotation generated by touch input, comment out the code that generates an angle and add
mAngle, which contains the touch input generated angle:

public void onDrawFrame(GL10 gl) {
 ...
 float[] scratch = new float[16];

 // Create a rotation for the triangle
 // long time = SystemClock.uptimeMillis() % 4000L;
 // float angle = 0.090f * ((int) time);
 Matrix.setRotateM(mRotationMatrix, 0, mAngle, 0, 0, -1.0f);

 // Combine the rotation matrix with the projection and camera view
 // Note that the mMVPMatrix factor *must be first* in order
 // for the matrix multiplication product to be correct.
 Matrix.multiplyMM(scratch, 0, mMVPMatrix, 0, mRotationMatrix, 0);

 // Draw triangle
 mTriangle.draw(scratch);
}

When you have completed the steps described above, run the program and drag your finger over the
screen to rotate the triangle:

Responding to Touch Events

216
Content from developer.android.com/training/graphics/opengl/touch.html through their Creative Commons Attribution 2.5 license

Figure 1. Triangle being rotated with touch input (circle shows touch location).

Adding Animations

217
Content from developer.android.com/training/animation/index.html through their Creative Commons Attribution 2.5 license

73. Adding Animations
Content from developer.android.com/training/animation/index.html through their Creative Commons Attribution 2.5 license

Animations can add subtle visual cues that notify
users about what's going on in your app and
improve their mental model of your app's
interface. Animations are especially useful when
the screen changes state, such as when content
loads or new actions become available.
Animations can also add a polished look to your
app, which gives your app a higher quality feel.
Keep in mind though, that overusing animations or
using them at the wrong time can be detrimental,
such as when they cause delays. This training
class shows you how to implement some common
types of animations that can increase usability
and add flair without annoying your users.

Lessons
Crossfading Two Views

Learn how to crossfade between two overlapping views. This lesson shows you how to crossfade
a progress indicator to a view that contains text content.

Using ViewPager for Screen Slides
Learn how to animate between horizontally adjacent screens with a sliding transition.

Displaying Card Flip Animations
Learn how to animate between two views with a flipping motion.

Zooming a View
Learn how to enlarge views with a touch-to-zoom animation.

Animating Layout Changes
Learn how to enable built-in animations when adding, removing, or updating child views in a
layout.

Dependencies and prerequisites

• Android 4.0 or later
• Experience building an Android User

Interface

You should also read

• Property Animation

Try it out
Download the sample app
Animations.zip

Crossfading Two Views

218
Content from developer.android.com/training/animation/crossfade.html through their Creative Commons Attribution 2.5 license

74. Crossfading Two Views
Content from developer.android.com/training/animation/crossfade.html through their Creative Commons Attribution 2.5 license

Crossfade animations (also know as dissolve)
gradually fade out one UI component while
simultaneously fading in another. This animation
is useful for situations where you want to switch
content or views in your app. Crossfades are very
subtle and short but offer a fluid transition from
one screen to the next. When you don't use them,
however, transitions often feel abrupt or hurried.
Here's an example of a crossfade from a progress
indicator to some text content.

Crossfade animation

If you want to jump ahead and see a full working example, download and run the sample app and select
the Crossfade example. See the following files for the code implementation:

• src/CrossfadeActivity.java
• layout/activity_crossfade.xml
• menu/activity_crossfade.xml

Create the Views
Create the two views that you want to crossfade. The following example creates a progress indicator and a
scrollable text view:

This lesson teaches you to:
• Create the Views
• Set up the Animation
• Crossfade the Views
Try it out
Download the sample app
Animations.zip

Crossfading Two Views

219
Content from developer.android.com/training/animation/crossfade.html through their Creative Commons Attribution 2.5 license

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/content"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView style="?android:textAppearanceMedium"
 android:lineSpacingMultiplier="1.2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/lorem_ipsum"
 android:padding="16dp" />

 </ScrollView>

 <ProgressBar android:id="@+id/loading_spinner"
 style="?android:progressBarStyleLarge"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center" />

</FrameLayout>

Set up the Animation
To set up the animation:
• Create member variables for the views that you want to crossfade. You need these references later
when modifying the views during the animation.
• For the view that is being faded in, set its visibility to GONE. This prevents the view from taking up layout
space and omits it from layout calculations, speeding up processing.
• Cache the config_shortAnimTime system property in a member variable. This property defines a
standard "short" duration for the animation. This duration is ideal for subtle animations or animations that
occur very frequently. config_longAnimTime and config_mediumAnimTime are also available if you
wish to use them.
Here's an example using the layout from the previous code snippet as the activity content view:

Crossfading Two Views

220
Content from developer.android.com/training/animation/crossfade.html through their Creative Commons Attribution 2.5 license

public class CrossfadeActivity extends Activity {

 private View mContentView;
 private View mLoadingView;
 private int mShortAnimationDuration;

 ...

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_crossfade);

 mContentView = findViewById(R.id.content);
 mLoadingView = findViewById(R.id.loading_spinner);

 // Initially hide the content view.
 mContentView.setVisibility(View.GONE);

 // Retrieve and cache the system's default "short" animation time.
 mShortAnimationDuration = getResources().getInteger(
 android.R.integer.config_shortAnimTime);
 }

Crossfade the Views
Now that the views are properly set up, crossfade them by doing the following:
• For the view that is fading in, set the alpha value to 0 and the visibility to VISIBLE. (Remember that it
was initially set to GONE.) This makes the view visible but completely transparent.
• For the view that is fading in, animate its alpha value from 0 to 1. At the same time, for the view that is
fading out, animate the alpha value from 1 to 0.
• Using onAnimationEnd() in an Animator.AnimatorListener, set the visibility of the view that
was fading out to GONE. Even though the alpha value is 0, setting the view's visibility to GONE prevents the
view from taking up layout space and omits it from layout calculations, speeding up processing.
The following method shows an example of how to do this:

Crossfading Two Views

221
Content from developer.android.com/training/animation/crossfade.html through their Creative Commons Attribution 2.5 license

private View mContentView;
private View mLoadingView;
private int mShortAnimationDuration;

...

private void crossfade() {

 // Set the content view to 0% opacity but visible, so that it is visible
 // (but fully transparent) during the animation.
 mContentView.setAlpha(0f);
 mContentView.setVisibility(View.VISIBLE);

 // Animate the content view to 100% opacity, and clear any animation
 // listener set on the view.
 mContentView.animate()
 .alpha(1f)
 .setDuration(mShortAnimationDuration)
 .setListener(null);

 // Animate the loading view to 0% opacity. After the animation ends,
 // set its visibility to GONE as an optimization step (it won't
 // participate in layout passes, etc.)
 mLoadingView.animate()
 .alpha(0f)
 .setDuration(mShortAnimationDuration)
 .setListener(new AnimatorListenerAdapter() {
 @Override
 public void onAnimationEnd(Animator animation) {
 mLoadingView.setVisibility(View.GONE);
 }
 });
}

Using ViewPager for Screen Slides

222
Content from developer.android.com/training/animation/screen-slide.html through their Creative Commons Attribution 2.5 license

75. Using ViewPager for Screen Slides
Content from developer.android.com/training/animation/screen-slide.html through their Creative Commons Attribution 2.5 license

Screen slides are transitions between one entire
screen to another and are common with UIs like
setup wizards or slideshows. This lesson shows
you how to do screen slides with a ViewPager
provided by the support library. ViewPagers can
animate screen slides automatically. Here's what
a screen slide looks like that transitions from one
screen of content to the next:

Screen slide animation

If you want to jump ahead and see a full working
example, download and run the sample app and
select the Screen Slide example. See the following files for the code implementation:

• src/ScreenSlidePageFragment.java
• src/ScreenSlideActivity.java
• layout/activity_screen_slide.xml
• layout/fragment_screen_slide_page.xml

Create the Views
Create a layout file that you'll later use for the content of a fragment. The following example contains a text
view to display some text:

<com.example.android.animationsdemo.ScrollView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/content"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView style="?android:textAppearanceMedium"
 android:padding="16dp"
 android:lineSpacingMultiplier="1.2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/lorem_ipsum" />

</com.example.android.animationsdemo.ScrollView>

Create the Fragment
Create a Fragment class that returns the layout that you just created in the onCreateView() method.
You can then create instances of this fragment in the parent activity whenever you need a new page to
display to the user:

This lesson teaches you to
• Create the Views
• Create the Fragment
• Add a ViewPager
• Customize the Animation with
PageTransformer
Try it out
Download the sample app
Animations.zip

Using ViewPager for Screen Slides

223
Content from developer.android.com/training/animation/screen-slide.html through their Creative Commons Attribution 2.5 license

public class ScreenSlidePageFragment extends Fragment {

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ViewGroup rootView = (ViewGroup) inflater.inflate(
 R.layout.fragment_screen_slide_page, container, false);

 return rootView;
 }
}

Add a ViewPager
ViewPagers have built-in swipe gestures to transition through pages, and they display screen slide
animations by default, so you don't need to create any. ViewPagers use PagerAdapters as a supply for
new pages to display, so the PagerAdapter will use the fragment class that you created earlier.
To begin, create a layout that contains a ViewPager:

<android.support.v4.view.ViewPager
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

Create an activity that does the following things:

• Sets the content view to be the layout with the ViewPager.
• Creates a class that extends the FragmentStatePagerAdapter abstract class and

implements the getItem() method to supply instances of ScreenSlidePageFragment as
new pages. The pager adapter also requires that you implement the getCount() method, which
returns the amount of pages the adapter will create (five in the example).

• Hooks up the PagerAdapter to the ViewPager.
• Handles the device's back button by moving backwards in the virtual stack of fragments. If the

user is already on the first page, go back on the activity back stack.

Using ViewPager for Screen Slides

224
Content from developer.android.com/training/animation/screen-slide.html through their Creative Commons Attribution 2.5 license

public class ScreenSlidePagerActivity extends FragmentActivity {
 /**
 * The number of pages (wizard steps) to show in this demo.
 */
 private static final int NUM_PAGES = 5;

 /**
 * The pager widget, which handles animation and allows swiping horizontally to access
previous
 * and next wizard steps.
 */
 private ViewPager mPager;

 /**
 * The pager adapter, which provides the pages to the view pager widget.
 */
 private PagerAdapter mPagerAdapter;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_screen_slide_pager);

 // Instantiate a ViewPager and a PagerAdapter.
 mPager = (ViewPager) findViewById(R.id.pager);
 mPagerAdapter = new ScreenSlidePagerAdapter(getFragmentManager());
 mPager.setAdapter(mPagerAdapter);
 }

 @Override
 public void onBackPressed() {
 if (mPager.getCurrentItem() == 0) {
 // If the user is currently looking at the first step, allow the system to handle
the
 // Back button. This calls finish() on this activity and pops the back stack.
 super.onBackPressed();
 } else {
 // Otherwise, select the previous step.
 mPager.setCurrentItem(mPager.getCurrentItem() - 1);
 }
 }

 /**
 * A simple pager adapter that represents 5 ScreenSlidePageFragment objects, in
 * sequence.
 */
 private class ScreenSlidePagerAdapter extends FragmentStatePagerAdapter {
 public ScreenSlidePagerAdapter(FragmentManager fm) {
 super(fm);
 }

 @Override
 public Fragment getItem(int position) {
 return new ScreenSlidePageFragment();
 }

 @Override
 public int getCount() {
 return NUM_PAGES;
 }

Using ViewPager for Screen Slides

225
Content from developer.android.com/training/animation/screen-slide.html through their Creative Commons Attribution 2.5 license

 }
}

Customize the Animation with PageTransformer
To display a different animation from the default screen slide animation, implement the
ViewPager.PageTransformer interface and supply it to the view pager. The interface exposes a single
method, transformPage(). At each point in the screen's transition, this method is called once for each
visible page (generally there's only one visible page) and for adjacent pages just off the screen. For
example, if page three is visible and the user drags towards page four, transformPage() is called for
pages two, three, and four at each step of the gesture.
In your implementation of transformPage(), you can then create custom slide animations by
determining which pages need to be transformed based on the position of the page on the screen, which is
obtained from the position parameter of the transformPage() method.
The position parameter indicates where a given page is located relative to the center of the screen. It is
a dynamic property that changes as the user scrolls through the pages. When a page fills the screen, its
position value is 0. When a page is drawn just off the right side of the screen, its position value is 1. If the
user scrolls halfway between pages one and two, page one has a position of -0.5 and page two has a
position of 0.5. Based on the position of the pages on the screen, you can create custom slide animations
by setting page properties with methods such as setAlpha(), setTranslationX(), or setScaleY().
When you have an implementation of a PageTransformer, call setPageTransformer() with your
implementation to apply your custom animations. For example, if you have a PageTransformer named
ZoomOutPageTransformer, you can set your custom animations like this:

ViewPager pager = (ViewPager) findViewById(R.id.pager);
...
pager.setPageTransformer(true, new ZoomOutPageTransformer());

See the Zoom-out page transformer and Depth page transformer sections for examples and videos of a
PageTransformer.

Zoom-out page transformer
This page transformer shrinks and fades pages when scrolling between adjacent pages. As a page gets
closer to the center, it grows back to its normal size and fades in.

ZoomOutPageTransformer example

Using ViewPager for Screen Slides

226
Content from developer.android.com/training/animation/screen-slide.html through their Creative Commons Attribution 2.5 license

public class ZoomOutPageTransformer implements ViewPager.PageTransformer {
 private static float MIN_SCALE = 0.85f;
 private static float MIN_ALPHA = 0.5f;

 public void transformPage(View view, float position) {
 int pageWidth = view.getWidth();
 int pageHeight = view.getHeight();

 if (position < -1) { // [-Infinity,-1)
 // This page is way off-screen to the left.
 view.setAlpha(0);

 } else if (position <= 1) { // [-1,1]
 // Modify the default slide transition to shrink the page as well
 float scaleFactor = Math.max(MIN_SCALE, 1 - Math.abs(position));
 float vertMargin = pageHeight * (1 - scaleFactor) / 2;
 float horzMargin = pageWidth * (1 - scaleFactor) / 2;
 if (position < 0) {
 view.setTranslationX(horzMargin - vertMargin / 2);
 } else {
 view.setTranslationX(-horzMargin + vertMargin / 2);
 }

 // Scale the page down (between MIN_SCALE and 1)
 view.setScaleX(scaleFactor);
 view.setScaleY(scaleFactor);

 // Fade the page relative to its size.
 view.setAlpha(MIN_ALPHA +
 (scaleFactor - MIN_SCALE) /
 (1 - MIN_SCALE) * (1 - MIN_ALPHA));

 } else { // (1,+Infinity]
 // This page is way off-screen to the right.
 view.setAlpha(0);
 }
 }
}

Depth page transformer
This page transformer uses the default slide animation for sliding pages to the left, while using a "depth"
animation for sliding pages to the right. This depth animation fades the page out, and scales it down
linearly.

DepthPageTransformer example

Note: During the depth animation, the default animation (a screen slide) still takes place, so you must
counteract the screen slide with a negative X translation. For example:

view.setTranslationX(-1 * view.getWidth() * position);

The following example shows how to counteract the default screen slide animation in a working page
transformer:

Using ViewPager for Screen Slides

227
Content from developer.android.com/training/animation/screen-slide.html through their Creative Commons Attribution 2.5 license

public class DepthPageTransformer implements ViewPager.PageTransformer {
 private static float MIN_SCALE = 0.75f;

 public void transformPage(View view, float position) {
 int pageWidth = view.getWidth();

 if (position < -1) { // [-Infinity,-1)
 // This page is way off-screen to the left.
 view.setAlpha(0);

 } else if (position <= 0) { // [-1,0]
 // Use the default slide transition when moving to the left page
 view.setAlpha(1);
 view.setTranslationX(0);
 view.setScaleX(1);
 view.setScaleY(1);

 } else if (position <= 1) { // (0,1]
 // Fade the page out.
 view.setAlpha(1 - position);

 // Counteract the default slide transition
 view.setTranslationX(pageWidth * -position);

 // Scale the page down (between MIN_SCALE and 1)
 float scaleFactor = MIN_SCALE
 + (1 - MIN_SCALE) * (1 - Math.abs(position));
 view.setScaleX(scaleFactor);
 view.setScaleY(scaleFactor);

 } else { // (1,+Infinity]
 // This page is way off-screen to the right.
 view.setAlpha(0);
 }
 }
}

Displaying Card Flip Animations

228
Content from developer.android.com/training/animation/cardflip.html through their Creative Commons Attribution 2.5 license

76. Displaying Card Flip Animations
Content from developer.android.com/training/animation/cardflip.html through their Creative Commons Attribution 2.5 license

This lesson shows you how to do a card flip
animation with custom fragment animations. Card
flips animate between views of content by
showing an animation that emulates a card
flipping over.
Here's what a card flip looks like:

Card flip animation

If you want to jump ahead and see a full working
example, download and run the sample app and
select the Card Flip example. See the following files for the code implementation:

• src/CardFlipActivity.java
• animator/card_flip_right_in.xml
• animator/card_flip_right_out.xml
• animator/card_flip_left_in.xml
• animator/card_flip_left_out.xml
• layout/fragment_card_back.xml
• layout/fragment_card_front.xml

Create the Animators
Create the animations for the card flips. You'll need two animators for when the front of the card animates
out and to the left and in and from the left. You'll also need two animators for when the back of the card
animates in and from the right and out and to the right.
card_flip_left_in.xml

This lesson teaches you to
• Create the Animators
• Create the Views
• Create the Fragment
• Animate the Card Flip
Try it out
Download the sample app
Animations.zip

Displaying Card Flip Animations

229
Content from developer.android.com/training/animation/cardflip.html through their Creative Commons Attribution 2.5 license

<set xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- Before rotating, immediately set the alpha to 0. -->
 <objectAnimator
 android:valueFrom="1.0"
 android:valueTo="0.0"
 android:propertyName="alpha"
 android:duration="0" />

 <!-- Rotate. -->
 <objectAnimator
 android:valueFrom="-180"
 android:valueTo="0"
 android:propertyName="rotationY"
 android:interpolator="@android:interpolator/accelerate_decelerate"
 android:duration="@integer/card_flip_time_full" />

 <!-- Half-way through the rotation (see startOffset), set the alpha to 1. -->
 <objectAnimator
 android:valueFrom="0.0"
 android:valueTo="1.0"
 android:propertyName="alpha"
 android:startOffset="@integer/card_flip_time_half"
 android:duration="1" />
</set>

card_flip_left_out.xml

<set xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- Rotate. -->
 <objectAnimator
 android:valueFrom="0"
 android:valueTo="180"
 android:propertyName="rotationY"
 android:interpolator="@android:interpolator/accelerate_decelerate"
 android:duration="@integer/card_flip_time_full" />

 <!-- Half-way through the rotation (see startOffset), set the alpha to 0. -->
 <objectAnimator
 android:valueFrom="1.0"
 android:valueTo="0.0"
 android:propertyName="alpha"
 android:startOffset="@integer/card_flip_time_half"
 android:duration="1" />
</set>

card_flip_right_in.xml

Displaying Card Flip Animations

230
Content from developer.android.com/training/animation/cardflip.html through their Creative Commons Attribution 2.5 license

<set xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- Before rotating, immediately set the alpha to 0. -->
 <objectAnimator
 android:valueFrom="1.0"
 android:valueTo="0.0"
 android:propertyName="alpha"
 android:duration="0" />

 <!-- Rotate. -->
 <objectAnimator
 android:valueFrom="180"
 android:valueTo="0"
 android:propertyName="rotationY"
 android:interpolator="@android:interpolator/accelerate_decelerate"
 android:duration="@integer/card_flip_time_full" />

 <!-- Half-way through the rotation (see startOffset), set the alpha to 1. -->
 <objectAnimator
 android:valueFrom="0.0"
 android:valueTo="1.0"
 android:propertyName="alpha"
 android:startOffset="@integer/card_flip_time_half"
 android:duration="1" />

card_flip_right_out.xml

<set xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- Rotate. -->
 <objectAnimator
 android:valueFrom="0"
 android:valueTo="-180"
 android:propertyName="rotationY"
 android:interpolator="@android:interpolator/accelerate_decelerate"
 android:duration="@integer/card_flip_time_full" />

 <!-- Half-way through the rotation (see startOffset), set the alpha to 0. -->
 <objectAnimator
 android:valueFrom="1.0"
 android:valueTo="0.0"
 android:propertyName="alpha"
 android:startOffset="@integer/card_flip_time_half"
 android:duration="1" />
</set>

Create the Views
Each side of the "card" is a separate layout that can contain any content you want, such as two screens of
text, two images, or any combination of views to flip between. You'll then use the two layouts in the
fragments that you'll later animate. The following layouts create one side of a card that shows text:

Displaying Card Flip Animations

231
Content from developer.android.com/training/animation/cardflip.html through their Creative Commons Attribution 2.5 license

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:background="#a6c"
 android:padding="16dp"
 android:gravity="bottom">

 <TextView android:id="@android:id/text1"
 style="?android:textAppearanceLarge"
 android:textStyle="bold"
 android:textColor="#fff"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/card_back_title" />

 <TextView style="?android:textAppearanceSmall"
 android:textAllCaps="true"
 android:textColor="#80ffffff"
 android:textStyle="bold"
 android:lineSpacingMultiplier="1.2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/card_back_description" />

</LinearLayout>

and the other side of the card that displays an ImageView:

<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:width="" height="" src="http://developer.android.com/@drawable/image1"
 android:scaleType="centerCrop"
 android:contentDescription="@string/description_image_1" />

Create the Fragment
Create fragment classes for the front and back of the card. These classes return the layouts that you
created previously in the onCreateView() method of each fragment. You can then create instances of
this fragment in the parent activity where you want to show the card. The following example shows nested
fragment classes inside of the parent activity that uses them:

Displaying Card Flip Animations

232
Content from developer.android.com/training/animation/cardflip.html through their Creative Commons Attribution 2.5 license

public class CardFlipActivity extends Activity {
 ...
 /**
 * A fragment representing the front of the card.
 */
 public class CardFrontFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_card_front, container, false);
 }
 }

 /**
 * A fragment representing the back of the card.
 */
 public class CardBackFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_card_back, container, false);
 }
 }
}

Animate the Card Flip
Now, you'll need to display the fragments inside of a parent activity. To do this, first create the layout for
your activity. The following example creates a FrameLayout that you can add fragments to at runtime:

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

In the activity code, set the content view to be the layout that you just created. It's also good idea to show a
default fragment when the activity is created, so the following example activity shows you how to display
the front of the card by default:

public class CardFlipActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_activity_card_flip);

 if (savedInstanceState == null) {
 getFragmentManager()
 .beginTransaction()
 .add(R.id.container, new CardFrontFragment())
 .commit();
 }
 }
 ...
}

Displaying Card Flip Animations

233
Content from developer.android.com/training/animation/cardflip.html through their Creative Commons Attribution 2.5 license

Now that you have the front of the card showing, you can show the back of the card with the flip animation
at an appropriate time. Create a method to show the other side of the card that does the following things:

• Sets the custom animations that you created earlier for the fragment transitions.
• Replaces the currently displayed fragment with a new fragment and animates this event with the

custom animations that you created.
• Adds the previously displayed fragment to the fragment back stack so when the user presses the

Back button, the card flips back over.

private void flipCard() {
 if (mShowingBack) {
 getFragmentManager().popBackStack();
 return;
 }

 // Flip to the back.

 mShowingBack = true;

 // Create and commit a new fragment transaction that adds the fragment for the back of
 // the card, uses custom animations, and is part of the fragment manager's back stack.

 getFragmentManager()
 .beginTransaction()

 // Replace the default fragment animations with animator resources representing
 // rotations when switching to the back of the card, as well as animator
 // resources representing rotations when flipping back to the front (e.g. when
 // the system Back button is pressed).
 .setCustomAnimations(
 R.animator.card_flip_right_in, R.animator.card_flip_right_out,
 R.animator.card_flip_left_in, R.animator.card_flip_left_out)

 // Replace any fragments currently in the container view with a fragment
 // representing the next page (indicated by the just-incremented currentPage
 // variable).
 .replace(R.id.container, new CardBackFragment())

 // Add this transaction to the back stack, allowing users to press Back
 // to get to the front of the card.
 .addToBackStack(null)

 // Commit the transaction.
 .commit();
}

Zooming a View

234
Content from developer.android.com/training/animation/zoom.html through their Creative Commons Attribution 2.5 license

77. Zooming a View
Content from developer.android.com/training/animation/zoom.html through their Creative Commons Attribution 2.5 license

This lesson demonstrates how to do a touch-to-
zoom animation, which is useful for apps such as
photo galleries to animate a view from a thumbnail
to a full-size image that fills the screen.
Here's what a touch-to-zoom animation looks like
that expands an image thumbnail to fill the screen:

Zoom animation

If you want to jump ahead and see a full working
example, download and run the sample app and select the Zoom example. See the following files for the
code implementation:

• src/TouchHighlightImageButton.java (a simple helper class that shows a blue touch
highlight when the image button is pressed)

• src/ZoomActivity.java
• layout/activity_zoom.xml

Create the Views
Create a layout file that contains the small and large version of the content that you want to zoom. The
following example creates an ImageButton for clickable image thumbnail and an ImageView that
displays the enlarged view of the image:

This lesson teaches you to:
• Create the Views
• Set up the Zoom Animation
• Zoom the View
Try it out
Download the sample app
Animations.zip

Zooming a View

235
Content from developer.android.com/training/animation/zoom.html through their Creative Commons Attribution 2.5 license

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/container"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <LinearLayout android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:padding="16dp">

 <ImageButton
 android:id="@+id/thumb_button_1"
 android:layout_width="100dp"
 android:layout_height="75dp"
 android:layout_marginRight="1dp"
 android:width="" height="" src="http://developer.android.com/@drawable/thumb1"
 android:scaleType="centerCrop"
 android:contentDescription="@string/description_image_1" />

 </LinearLayout>

 <!-- This initially-hidden ImageView will hold the expanded/zoomed version of
 the images above. Without transformations applied, it takes up the entire
 screen. To achieve the "zoom" animation, this view's bounds are animated
 from the bounds of the thumbnail button above, to its final laid-out
 bounds.
 -->

 <ImageView
 android:id="@+id/expanded_image"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:visibility="invisible"
 android:contentDescription="@string/description_zoom_touch_close" />

</FrameLayout>

Set up the Zoom Animation
Once you apply your layout, set up the event handlers that trigger the zoom animation. The following
example adds a View.OnClickListener to the ImageButton to execute the zoom animation when the
user clicks the image button:

Zooming a View

236
Content from developer.android.com/training/animation/zoom.html through their Creative Commons Attribution 2.5 license

public class ZoomActivity extends FragmentActivity {
 // Hold a reference to the current animator,
 // so that it can be canceled mid-way.
 private Animator mCurrentAnimator;

 // The system "short" animation time duration, in milliseconds. This
 // duration is ideal for subtle animations or animations that occur
 // very frequently.
 private int mShortAnimationDuration;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_zoom);

 // Hook up clicks on the thumbnail views.

 final View thumb1View = findViewById(R.id.thumb_button_1);
 thumb1View.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 zoomImageFromThumb(thumb1View, R.drawable.image1);
 }
 });

 // Retrieve and cache the system's default "short" animation time.
 mShortAnimationDuration = getResources().getInteger(
 android.R.integer.config_shortAnimTime);
 }
 ...
}

Zoom the View
You'll now need to animate from the normal sized view to the zoomed view when appropriate. In general,
you need to animate from the bounds of the normal-sized view to the bounds of the larger-sized view. The
following method shows you how to implement a zoom animation that zooms from an image thumbnail to
an enlarged view by doing the following things:
• Assign the high-res image to the hidden "zoomed-in" (enlarged) ImageView. The following example
loads a large image resource on the UI thread for simplicity. You will want to do this loading in a separate
thread to prevent blocking on the UI thread and then set the bitmap on the UI thread. Ideally, the bitmap
should not be larger than the screen size.
• Calculate the starting and ending bounds for the ImageView.
• Animate each of the four positioning and sizing properties X, Y, (SCALE_X, and SCALE_Y)
simultaneously, from the starting bounds to the ending bounds. These four animations are added to an
AnimatorSet so that they can be started at the same time.
• Zoom back out by running a similar animation but in reverse when the user touches the screen when the
image is zoomed in. You can do this by adding a View.OnClickListener to the ImageView. When
clicked, the ImageView minimizes back down to the size of the image thumbnail and sets its visibility to
GONE to hide it.

Zooming a View

237
Content from developer.android.com/training/animation/zoom.html through their Creative Commons Attribution 2.5 license

private void zoomImageFromThumb(final View thumbView, int imageResId) {
 // If there's an animation in progress, cancel it
 // immediately and proceed with this one.
 if (mCurrentAnimator != null) {
 mCurrentAnimator.cancel();
 }

 // Load the high-resolution "zoomed-in" image.
 final ImageView expandedImageView = (ImageView) findViewById(
 R.id.expanded_image);
 expandedImageView.setImageResource(imageResId);

 // Calculate the starting and ending bounds for the zoomed-in image.
 // This step involves lots of math. Yay, math.
 final Rect startBounds = new Rect();
 final Rect finalBounds = new Rect();
 final Point globalOffset = new Point();

 // The start bounds are the global visible rectangle of the thumbnail,
 // and the final bounds are the global visible rectangle of the container
 // view. Also set the container view's offset as the origin for the
 // bounds, since that's the origin for the positioning animation
 // properties (X, Y).
 thumbView.getGlobalVisibleRect(startBounds);
 findViewById(R.id.container)
 .getGlobalVisibleRect(finalBounds, globalOffset);
 startBounds.offset(-globalOffset.x, -globalOffset.y);
 finalBounds.offset(-globalOffset.x, -globalOffset.y);

 // Adjust the start bounds to be the same aspect ratio as the final
 // bounds using the "center crop" technique. This prevents undesirable
 // stretching during the animation. Also calculate the start scaling
 // factor (the end scaling factor is always 1.0).
 float startScale;
 if ((float) finalBounds.width() / finalBounds.height()
 > (float) startBounds.width() / startBounds.height()) {
 // Extend start bounds horizontally
 startScale = (float) startBounds.height() / finalBounds.height();
 float startWidth = startScale * finalBounds.width();
 float deltaWidth = (startWidth - startBounds.width()) / 2;
 startBounds.left -= deltaWidth;
 startBounds.right += deltaWidth;
 } else {
 // Extend start bounds vertically
 startScale = (float) startBounds.width() / finalBounds.width();
 float startHeight = startScale * finalBounds.height();
 float deltaHeight = (startHeight - startBounds.height()) / 2;
 startBounds.top -= deltaHeight;
 startBounds.bottom += deltaHeight;
 }

 // Hide the thumbnail and show the zoomed-in view. When the animation
 // begins, it will position the zoomed-in view in the place of the
 // thumbnail.
 thumbView.setAlpha(0f);
 expandedImageView.setVisibility(View.VISIBLE);

 // Set the pivot point for SCALE_X and SCALE_Y transformations
 // to the top-left corner of the zoomed-in view (the default
 // is the center of the view).

Zooming a View

238
Content from developer.android.com/training/animation/zoom.html through their Creative Commons Attribution 2.5 license

 expandedImageView.setPivotX(0f);
 expandedImageView.setPivotY(0f);

 // Construct and run the parallel animation of the four translation and
 // scale properties (X, Y, SCALE_X, and SCALE_Y).
 AnimatorSet set = new AnimatorSet();
 set
 .play(ObjectAnimator.ofFloat(expandedImageView, View.X,
 startBounds.left, finalBounds.left))
 .with(ObjectAnimator.ofFloat(expandedImageView, View.Y,
 startBounds.top, finalBounds.top))
 .with(ObjectAnimator.ofFloat(expandedImageView, View.SCALE_X,
 startScale, 1f)).with(ObjectAnimator.ofFloat(expandedImageView,
 View.SCALE_Y, startScale, 1f));
 set.setDuration(mShortAnimationDuration);
 set.setInterpolator(new DecelerateInterpolator());
 set.addListener(new AnimatorListenerAdapter() {
 @Override
 public void onAnimationEnd(Animator animation) {
 mCurrentAnimator = null;
 }

 @Override
 public void onAnimationCancel(Animator animation) {
 mCurrentAnimator = null;
 }
 });
 set.start();
 mCurrentAnimator = set;

 // Upon clicking the zoomed-in image, it should zoom back down
 // to the original bounds and show the thumbnail instead of
 // the expanded image.
 final float startScaleFinal = startScale;
 expandedImageView.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 if (mCurrentAnimator != null) {
 mCurrentAnimator.cancel();
 }

 // Animate the four positioning/sizing properties in parallel,
 // back to their original values.
 AnimatorSet set = new AnimatorSet();
 set.play(ObjectAnimator
 .ofFloat(expandedImageView, View.X, startBounds.left))
 .with(ObjectAnimator
 .ofFloat(expandedImageView,
 View.Y,startBounds.top))
 .with(ObjectAnimator
 .ofFloat(expandedImageView,
 View.SCALE_X, startScaleFinal))
 .with(ObjectAnimator
 .ofFloat(expandedImageView,
 View.SCALE_Y, startScaleFinal));
 set.setDuration(mShortAnimationDuration);
 set.setInterpolator(new DecelerateInterpolator());
 set.addListener(new AnimatorListenerAdapter() {
 @Override
 public void onAnimationEnd(Animator animation) {
 thumbView.setAlpha(1f);

Zooming a View

239
Content from developer.android.com/training/animation/zoom.html through their Creative Commons Attribution 2.5 license

 expandedImageView.setVisibility(View.GONE);
 mCurrentAnimator = null;
 }

 @Override
 public void onAnimationCancel(Animator animation) {
 thumbView.setAlpha(1f);
 expandedImageView.setVisibility(View.GONE);
 mCurrentAnimator = null;
 }
 });
 set.start();
 mCurrentAnimator = set;
 }
 });
}

Animating Layout Changes

240
Content from developer.android.com/training/animation/layout.html through their Creative Commons Attribution 2.5 license

78. Animating Layout Changes
Content from developer.android.com/training/animation/layout.html through their Creative Commons Attribution 2.5 license

A layout animation is a pre-loaded animation that
the system runs each time you make a change to
the layout configuration. All you need to do is set
an attribute in the layout to tell the Android system
to animate these layout changes, and system-
default animations are carried out for you.
Tip: If you want to supply custom layout
animations, create a LayoutTransition object
and supply it to the layout with the
setLayoutTransition() method.
Here's what a default layout animation looks like when adding items to a list:

Layout animation

If you want to jump ahead and see a full working example, download and run the sample app and select
the Crossfade example. See the following files for the code implementation:
• src/LayoutChangesActivity.java
• layout/activity_layout_changes.xml
• menu/activity_layout_changes.xml

Create the Layout
In your activity's layout XML file, set the android:animateLayoutChanges attribute to true for the
layout that you want to enable animations for. For instance:

<LinearLayout android:id="@+id/container"
 android:animateLayoutChanges="true"
 ...
/>

Add, Update, or Remove Items from the Layout
Now, all you need to do is add, remove, or update items in the layout and the items are animated
automatically:

private ViewGroup mContainerView;
...
private void addItem() {
 View newView;
 ...
 mContainerView.addView(newView, 0);
}

This lesson teaches you to:
• Create the Layout
• Add, Update, or Remove Items from the
Layout
Try it out
Download the sample app
Animations.zip

Building Apps with Connectivity & the Cloud

241
Content from developer.android.com/training/building-connectivity.html through their Creative Commons Attribution 2.5 license

79. Building Apps with Connectivity & the Cloud
Content from developer.android.com/training/building-connectivity.html through their Creative Commons Attribution 2.5 license
These classes teach you how to connect your app to the world beyond the user's device. You'll learn how
to connect to other devices in the area, connect to the Internet, backup and sync your app's data, and
more.

Connecting Devices Wirelessly

242
Content from developer.android.com/training/connect-devices-wirelessly/index.html through their Creative Commons Attribution 2.5 license

80. Connecting Devices Wirelessly
Content from developer.android.com/training/connect-devices-wirelessly/index.html through their Creative Commons Attribution 2.5 license

Video
DevBytes: Network Service Discovery
Besides enabling communication with the cloud,
Android's wireless APIs also enable
communication with other devices on the same
local network, and even devices which are not on
a network, but are physically nearby. The addition
of Network Service Discovery (NSD) takes this
further by allowing an application to seek out a
nearby device running services with which it can
communicate. Integrating this functionality into your application helps you provide a wide range of features,
such as playing games with users in the same room, pulling images from a networked NSD-enabled
webcam, or remotely logging into other machines on the same network.
This class describes the key APIs for finding and connecting to other devices from your application.
Specifically, it describes the NSD API for discovering available services and the Wi-Fi Peer-to-Peer (P2P)
API for doing peer-to-peer wireless connections. This class also shows you how to use NSD and Wi-Fi
P2P in combination to detect the services offered by a device and connect to the device when neither
device is connected to a network.

Lessons
Using Network Service Discovery

Learn how to broadcast services offered by your own application, discover services offered on the
local network, and use NSD to determine the connection details for the service you wish to
connect to.

Creating P2P Connections with Wi-Fi
Learn how to fetch a list of nearby peer devices, create an access point for legacy devices, and
connect to other devices capable of Wi-Fi P2P connections.

Using Wi-Fi P2P for Service Discovery
Learn how to discover services published by nearby devices without being on the same network,
using Wi-Fi P2P.

Dependencies and prerequisites

• Android 4.1 or higher

You should also read

• Wi-Fi P2P

Using Network Service Discovery

243
Content from developer.android.com/training/connect-devices-wirelessly/nsd.html through their Creative Commons Attribution 2.5 license

81. Using Network Service Discovery
Content from developer.android.com/training/connect-devices-wirelessly/nsd.html through their Creative Commons Attribution 2.5 license

Adding Network Service Discovery (NSD) to your
app allows your users to identify other devices on
the local network that support the services your
app requests. This is useful for a variety of peer-
to-peer applications such as file sharing or multi-
player gaming. Android's NSD APIs simplify the
effort required for you to implement such features.
This lesson shows you how to build an application
that can broadcast its name and connection
information to the local network and scan for
information from other applications doing the
same. Finally, this lesson shows you how to
connect to the same application running on
another device.

Register Your Service on the Network
Note: This step is optional. If you don't care about broadcasting your app's services over the local network,
you can skip forward to the next section, Discover Services on the Network.
To register your service on the local network, first create a NsdServiceInfo object. This object provides
the information that other devices on the network use when they're deciding whether to connect to your
service.

public void registerService(int port) {
 // Create the NsdServiceInfo object, and populate it.
 NsdServiceInfo serviceInfo = new NsdServiceInfo();

 // The name is subject to change based on conflicts
 // with other services advertised on the same network.
 serviceInfo.setServiceName("NsdChat");
 serviceInfo.setServiceType("_http._tcp.");
 serviceInfo.setPort(port);

}

This code snippet sets the service name to "NsdChat". The name is visible to any device on the network
that is using NSD to look for local services. Keep in mind that the name must be unique for any service on
the network, and Android automatically handles conflict resolution. If two devices on the network both have
the NsdChat application installed, one of them changes the service name automatically, to something like
"NsdChat (1)".
The second parameter sets the service type, specifies which protocol and transport layer the application
uses. The syntax is "_<protocol>._<transportlayer>". In the code snippet, the service uses HTTP protocol
running over TCP. An application offering a printer service (for instance, a network printer) would set the
service type to "_ipp._tcp".
Note: The International Assigned Numbers Authority (IANA) manages a centralized, authoritative list of
service types used by service discovery protocols such as NSD and Bonjour. You can download the list
from the IANA list of service names and port numbers. If you intend to use a new service type, you should
reserve it by filling out the IANA Ports and Service registration form.

This lesson teaches you how to
• Register Your Service on the Network
• Discover Services on the Network
• Connect to Services on the Network
• Unregister Your Service on Application
Close
Try it out
Download the sample app
NsdChat.zip

Using Network Service Discovery

244
Content from developer.android.com/training/connect-devices-wirelessly/nsd.html through their Creative Commons Attribution 2.5 license

When setting the port for your service, avoid hardcoding it as this conflicts with other applications. For
instance, assuming that your application always uses port 1337 puts it in potential conflict with other
installed applications that use the same port. Instead, use the device's next available port. Because this
information is provided to other apps by a service broadcast, there's no need for the port your application
uses to be known by other applications at compile-time. Instead, the applications can get this information
from your service broadcast, right before connecting to your service.
If you're working with sockets, here's how you can initialize a socket to any available port simply by setting
it to 0.

public void initializeServerSocket() {
 // Initialize a server socket on the next available port.
 mServerSocket = new ServerSocket(0);

 // Store the chosen port.
 mLocalPort = mServerSocket.getLocalPort();
 ...
}

Now that you've defined the NsdServiceInfo object, you need to implement the
RegistrationListener interface. This interface contains callbacks used by Android to alert your
application of the success or failure of service registration and unregistration.

public void initializeRegistrationListener() {
 mRegistrationListener = new NsdManager.RegistrationListener() {

 @Override
 public void onServiceRegistered(NsdServiceInfo NsdServiceInfo) {
 // Save the service name. Android may have changed it in order to
 // resolve a conflict, so update the name you initially requested
 // with the name Android actually used.
 mServiceName = NsdServiceInfo.getServiceName();
 }

 @Override
 public void onRegistrationFailed(NsdServiceInfo serviceInfo, int errorCode) {
 // Registration failed! Put debugging code here to determine why.
 }

 @Override
 public void onServiceUnregistered(NsdServiceInfo arg0) {
 // Service has been unregistered. This only happens when you call
 // NsdManager.unregisterService() and pass in this listener.
 }

 @Override
 public void onUnregistrationFailed(NsdServiceInfo serviceInfo, int errorCode) {
 // Unregistration failed. Put debugging code here to determine why.
 }
 };
}

Now you have all the pieces to register your service. Call the method registerService().
Note that this method is asynchronous, so any code that needs to run after the service has been registered
must go in the onServiceRegistered() method.

Using Network Service Discovery

245
Content from developer.android.com/training/connect-devices-wirelessly/nsd.html through their Creative Commons Attribution 2.5 license

public void registerService(int port) {
 NsdServiceInfo serviceInfo = new NsdServiceInfo();
 serviceInfo.setServiceName("NsdChat");
 serviceInfo.setServiceType("_http._tcp.");
 serviceInfo.setPort(port);

 mNsdManager = Context.getSystemService(Context.NSD_SERVICE);

 mNsdManager.registerService(
 serviceInfo, NsdManager.PROTOCOL_DNS_SD, mRegistrationListener);
}

Discover Services on the Network
The network is teeming with life, from the beastly network printers to the docile network webcams, to the
brutal, fiery battles of nearby tic-tac-toe players. The key to letting your application see this vibrant
ecosystem of functionality is service discovery. Your application needs to listen to service broadcasts on
the network to see what services are available, and filter out anything the application can't work with.
Service discovery, like service registration, has two steps: setting up a discovery listener with the relevant
callbacks, and making a single asynchronous API call to discoverServices().
First, instantiate an anonymous class that implements NsdManager.DiscoveryListener. The
following snippet shows a simple example:

Using Network Service Discovery

246
Content from developer.android.com/training/connect-devices-wirelessly/nsd.html through their Creative Commons Attribution 2.5 license

public void initializeDiscoveryListener() {

 // Instantiate a new DiscoveryListener
 mDiscoveryListener = new NsdManager.DiscoveryListener() {

 // Called as soon as service discovery begins.
 @Override
 public void onDiscoveryStarted(String regType) {
 Log.d(TAG, "Service discovery started");
 }

 @Override
 public void onServiceFound(NsdServiceInfo service) {
 // A service was found! Do something with it.
 Log.d(TAG, "Service discovery success" + service);
 if (!service.getServiceType().equals(SERVICE_TYPE)) {
 // Service type is the string containing the protocol and
 // transport layer for this service.
 Log.d(TAG, "Unknown Service Type: " + service.getServiceType());
 } else if (service.getServiceName().equals(mServiceName)) {
 // The name of the service tells the user what they'd be
 // connecting to. It could be "Bob's Chat App".
 Log.d(TAG, "Same machine: " + mServiceName);
 } else if (service.getServiceName().contains("NsdChat")){
 mNsdManager.resolveService(service, mResolveListener);
 }
 }

 @Override
 public void onServiceLost(NsdServiceInfo service) {
 // When the network service is no longer available.
 // Internal bookkeeping code goes here.
 Log.e(TAG, "service lost" + service);
 }

 @Override
 public void onDiscoveryStopped(String serviceType) {
 Log.i(TAG, "Discovery stopped: " + serviceType);
 }

 @Override
 public void onStartDiscoveryFailed(String serviceType, int errorCode) {
 Log.e(TAG, "Discovery failed: Error code:" + errorCode);
 mNsdManager.stopServiceDiscovery(this);
 }

 @Override
 public void onStopDiscoveryFailed(String serviceType, int errorCode) {
 Log.e(TAG, "Discovery failed: Error code:" + errorCode);
 mNsdManager.stopServiceDiscovery(this);
 }
 };
}

The NSD API uses the methods in this interface to inform your application when discovery is started, when
it fails, and when services are found and lost (lost means "is no longer available"). Notice that this snippet
does several checks when a service is found.
• The service name of the found service is compared to the service name of the local service to determine
if the device just picked up its own broadcast (which is valid).

Using Network Service Discovery

247
Content from developer.android.com/training/connect-devices-wirelessly/nsd.html through their Creative Commons Attribution 2.5 license

• The service type is checked, to verify it's a type of service your application can connect to.
• The service name is checked to verify connection to the correct application.
Checking the service name isn't always necessary, and is only relevant if you want to connect to a specific
application. For instance, the application might only want to connect to instances of itself running on other
devices. However, if the application wants to connect to a network printer, it's enough to see that the
service type is "_ipp._tcp".
After setting up the listener, call discoverServices(), passing in the service type your application
should look for, the discovery protocol to use, and the listener you just created.

 mNsdManager.discoverServices(
 SERVICE_TYPE, NsdManager.PROTOCOL_DNS_SD, mDiscoveryListener);

Connect to Services on the Network
When your application finds a service on the network to connect to, it must first determine the connection
information for that service, using the resolveService() method. Implement a
NsdManager.ResolveListener to pass into this method, and use it to get a NsdServiceInfo
containing the connection information.

public void initializeResolveListener() {
 mResolveListener = new NsdManager.ResolveListener() {

 @Override
 public void onResolveFailed(NsdServiceInfo serviceInfo, int errorCode) {
 // Called when the resolve fails. Use the error code to debug.
 Log.e(TAG, "Resolve failed" + errorCode);
 }

 @Override
 public void onServiceResolved(NsdServiceInfo serviceInfo) {
 Log.e(TAG, "Resolve Succeeded. " + serviceInfo);

 if (serviceInfo.getServiceName().equals(mServiceName)) {
 Log.d(TAG, "Same IP.");
 return;
 }
 mService = serviceInfo;
 int port = mService.getPort();
 InetAddress host = mService.getHost();
 }
 };
}

Once the service is resolved, your application receives detailed service information including an IP address
and port number. This is everything you need to create your own network connection to the service.

Unregister Your Service on Application Close
It's important to enable and disable NSD functionality as appropriate during the application's lifecycle.
Unregistering your application when it closes down helps prevent other applications from thinking it's still
active and attempting to connect to it. Also, service discovery is an expensive operation, and should be
stopped when the parent Activity is paused, and re-enabled when the Activity is resumed. Override the
lifecycle methods of your main Activity and insert code to start and stop service broadcast and discovery
as appropriate.

Using Network Service Discovery

248
Content from developer.android.com/training/connect-devices-wirelessly/nsd.html through their Creative Commons Attribution 2.5 license

//In your application's Activity

 @Override
 protected void onPause() {
 if (mNsdHelper != null) {
 mNsdHelper.tearDown();
 }
 super.onPause();
 }

 @Override
 protected void onResume() {
 super.onResume();
 if (mNsdHelper != null) {
 mNsdHelper.registerService(mConnection.getLocalPort());
 mNsdHelper.discoverServices();
 }
 }

 @Override
 protected void onDestroy() {
 mNsdHelper.tearDown();
 mConnection.tearDown();
 super.onDestroy();
 }

 // NsdHelper's tearDown method
 public void tearDown() {
 mNsdManager.unregisterService(mRegistrationListener);
 mNsdManager.stopServiceDiscovery(mDiscoveryListener);
 }

Creating P2P Connections with Wi-Fi

249
Content from developer.android.com/training/connect-devices-wirelessly/wifi-direct.html through their Creative Commons Attribution 2.5 license

82. Creating P2P Connections with Wi-Fi
Content from developer.android.com/training/connect-devices-wirelessly/wifi-direct.html through their Creative Commons Attribution 2.5 license

The Wi-Fi peer-to-peer (P2P) APIs allow
applications to connect to nearby devices without
needing to connect to a network or hotspot
(Android's Wi-Fi P2P framework complies with the
Wi-Fi Direct™ certification program). Wi-Fi P2P
allows your application to quickly find and interact
with nearby devices, at a range beyond the
capabilities of Bluetooth.
This lesson shows you how to find and connect to
nearby devices using Wi-Fi P2P.

Set Up Application Permissions
In order to use Wi-Fi P2P, add the
CHANGE_WIFI_STATE, ACCESS_WIFI_STATE,
and INTERNET permissions to your manifest. Wi-
Fi P2P doesn't require an internet connection, but it does use standard Java sockets, which require the
INTERNET permission. So you need the following permissions to use Wi-Fi P2P.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.android.nsdchat"
 ...

 <uses-permission
 android:required="true"
 android:name="android.permission.ACCESS_WIFI_STATE"/>
 <uses-permission
 android:required="true"
 android:name="android.permission.CHANGE_WIFI_STATE"/>
 <uses-permission
 android:required="true"
 android:name="android.permission.INTERNET"/>
 ...

Set Up a Broadcast Receiver and Peer-to-Peer Manager
To use Wi-Fi P2P, you need to listen for broadcast intents that tell your application when certain events
have occurred. In your application, instantiate an IntentFilter and set it to listen for the following:
WIFI_P2P_STATE_CHANGED_ACTION

Indicates whether Wi-Fi P2P is enabled
WIFI_P2P_PEERS_CHANGED_ACTION

Indicates that the available peer list has changed.
WIFI_P2P_CONNECTION_CHANGED_ACTION

Indicates the state of Wi-Fi P2P connectivity has changed.
WIFI_P2P_THIS_DEVICE_CHANGED_ACTION

Indicates this device's configuration details have changed.

This lesson teaches you how to
• Set Up Application Permissions
• Set Up the Broadcast Receiver and Peer-to-
Peer Manager
• Initiate Peer Discovery
• Fetch the List of Peers
• Connect to a Peer
You should also read

• Wi-Fi Peer-to-Peer

Creating P2P Connections with Wi-Fi

250
Content from developer.android.com/training/connect-devices-wirelessly/wifi-direct.html through their Creative Commons Attribution 2.5 license

private final IntentFilter intentFilter = new IntentFilter();
...
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Indicates a change in the Wi-Fi P2P status.
 intentFilter.addAction(WifiP2pManager.WIFI_P2P_STATE_CHANGED_ACTION);

 // Indicates a change in the list of available peers.
 intentFilter.addAction(WifiP2pManager.WIFI_P2P_PEERS_CHANGED_ACTION);

 // Indicates the state of Wi-Fi P2P connectivity has changed.
 intentFilter.addAction(WifiP2pManager.WIFI_P2P_CONNECTION_CHANGED_ACTION);

 // Indicates this device's details have changed.
 intentFilter.addAction(WifiP2pManager.WIFI_P2P_THIS_DEVICE_CHANGED_ACTION);

 ...
}

At the end of the onCreate() method, get an instance of the WifiP2pManager, and call its
initialize() method. This method returns a WifiP2pManager.Channel object, which you'll use
later to connect your app to the Wi-Fi P2P framework.

@Override

Channel mChannel;

public void onCreate(Bundle savedInstanceState) {

 mManager = (WifiP2pManager) getSystemService(Context.WIFI_P2P_SERVICE);
 mChannel = mManager.initialize(this, getMainLooper(), null);
}

Now create a new BroadcastReceiver class that you'll use to listen for changes to the System's Wi-Fi
P2P state. In the onReceive() method, add a condition to handle each P2P state change listed above.

Creating P2P Connections with Wi-Fi

251
Content from developer.android.com/training/connect-devices-wirelessly/wifi-direct.html through their Creative Commons Attribution 2.5 license

 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();
 if (WifiP2pManager.WIFI_P2P_STATE_CHANGED_ACTION.equals(action)) {
 // Determine if Wifi P2P mode is enabled or not, alert
 // the Activity.
 int state = intent.getIntExtra(WifiP2pManager.EXTRA_WIFI_STATE, -1);
 if (state == WifiP2pManager.WIFI_P2P_STATE_ENABLED) {
 activity.setIsWifiP2pEnabled(true);
 } else {
 activity.setIsWifiP2pEnabled(false);
 }
 } else if (WifiP2pManager.WIFI_P2P_PEERS_CHANGED_ACTION.equals(action)) {

 // The peer list has changed! We should probably do something about
 // that.

 } else if (WifiP2pManager.WIFI_P2P_CONNECTION_CHANGED_ACTION.equals(action)) {

 // Connection state changed! We should probably do something about
 // that.

 } else if (WifiP2pManager.WIFI_P2P_THIS_DEVICE_CHANGED_ACTION.equals(action)) {
 DeviceListFragment fragment = (DeviceListFragment) activity.getFragmentManager()
 .findFragmentById(R.id.frag_list);
 fragment.updateThisDevice((WifiP2pDevice) intent.getParcelableExtra(
 WifiP2pManager.EXTRA_WIFI_P2P_DEVICE));

 }
 }

Finally, add code to register the intent filter and broadcast receiver when your main activity is active, and
unregister them when the activity is paused. The best place to do this is the onResume() and onPause()
methods.

 /** register the BroadcastReceiver with the intent values to be matched */
 @Override
 public void onResume() {
 super.onResume();
 receiver = new WiFiDirectBroadcastReceiver(mManager, mChannel, this);
 registerReceiver(receiver, intentFilter);
 }

 @Override
 public void onPause() {
 super.onPause();
 unregisterReceiver(receiver);
 }

Initiate Peer Discovery
To start searching for nearby devices with Wi-Fi P2P, call discoverPeers(). This method takes the
following arguments:

• The WifiP2pManager.Channel you received back when you initialized the peer-to-peer
mManager

Creating P2P Connections with Wi-Fi

252
Content from developer.android.com/training/connect-devices-wirelessly/wifi-direct.html through their Creative Commons Attribution 2.5 license

• An implementation of WifiP2pManager.ActionListener with methods the system invokes
for successful and unsuccessful discovery.

mManager.discoverPeers(mChannel, new WifiP2pManager.ActionListener() {

 @Override
 public void onSuccess() {
 // Code for when the discovery initiation is successful goes here.
 // No services have actually been discovered yet, so this method
 // can often be left blank. Code for peer discovery goes in the
 // onReceive method, detailed below.
 }

 @Override
 public void onFailure(int reasonCode) {
 // Code for when the discovery initiation fails goes here.
 // Alert the user that something went wrong.
 }
});

Keep in mind that this only initiates peer discovery. The discoverPeers() method starts the discovery
process and then immediately returns. The system notifies you if the peer discovery process is
successfully initiated by calling methods in the provided action listener. Also, discovery will remain active
until a connection is initiated or a P2P group is formed.

Fetch the List of Peers
Now write the code that fetches and processes the list of peers. First implement the
WifiP2pManager.PeerListListener interface, which provides information about the peers that Wi-Fi
P2P has detected. The following code snippet illustrates this.

 private List peers = new ArrayList();
 ...

 private PeerListListener peerListListener = new PeerListListener() {
 @Override
 public void onPeersAvailable(WifiP2pDeviceList peerList) {

 // Out with the old, in with the new.
 peers.clear();
 peers.addAll(peerList.getDeviceList());

 // If an AdapterView is backed by this data, notify it
 // of the change. For instance, if you have a ListView of available
 // peers, trigger an update.
 ((WiFiPeerListAdapter) getListAdapter()).notifyDataSetChanged();
 if (peers.size() == 0) {
 Log.d(WiFiDirectActivity.TAG, "No devices found");
 return;
 }
 }
 }

Now modify your broadcast receiver's onReceive() method to call requestPeers() when an intent
with the action WIFI_P2P_PEERS_CHANGED_ACTION is received. You need to pass this listener into the
receiver somehow. One way is to send it as an argument to the broadcast receiver's constructor.

Creating P2P Connections with Wi-Fi

253
Content from developer.android.com/training/connect-devices-wirelessly/wifi-direct.html through their Creative Commons Attribution 2.5 license

public void onReceive(Context context, Intent intent) {
 ...
 else if (WifiP2pManager.WIFI_P2P_PEERS_CHANGED_ACTION.equals(action)) {

 // Request available peers from the wifi p2p manager. This is an
 // asynchronous call and the calling activity is notified with a
 // callback on PeerListListener.onPeersAvailable()
 if (mManager != null) {
 mManager.requestPeers(mChannel, peerListListener);
 }
 Log.d(WiFiDirectActivity.TAG, "P2P peers changed");
 }...
}

Now, an intent with the action WIFI_P2P_PEERS_CHANGED_ACTION intent will trigger a request for an
updated peer list.

Connect to a Peer
In order to connect to a peer, create a new WifiP2pConfig object, and copy data into it from the
WifiP2pDevice representing the device you want to connect to. Then call the connect() method.

 @Override
 public void connect() {
 // Picking the first device found on the network.
 WifiP2pDevice device = peers.get(0);

 WifiP2pConfig config = new WifiP2pConfig();
 config.deviceAddress = device.deviceAddress;
 config.wps.setup = WpsInfo.PBC;

 mManager.connect(mChannel, config, new ActionListener() {

 @Override
 public void onSuccess() {
 // WiFiDirectBroadcastReceiver will notify us. Ignore for now.
 }

 @Override
 public void onFailure(int reason) {
 Toast.makeText(WiFiDirectActivity.this, "Connect failed. Retry.",
 Toast.LENGTH_SHORT).show();
 }
 });
 }

The WifiP2pManager.ActionListener implemented in this snippet only notifies you when the
initiation succeeds or fails. To listen for changes in connection state, implement the
WifiP2pManager.ConnectionInfoListener interface. Its onConnectionInfoAvailable()
callback will notify you when the state of the connection changes. In cases where multiple devices are
going to be connected to a single device (like a game with 3 or more players, or a chat app), one device
will be designated the "group owner".

Creating P2P Connections with Wi-Fi

254
Content from developer.android.com/training/connect-devices-wirelessly/wifi-direct.html through their Creative Commons Attribution 2.5 license

 @Override
 public void onConnectionInfoAvailable(final WifiP2pInfo info) {

 // InetAddress from WifiP2pInfo struct.
 InetAddress groupOwnerAddress = info.groupOwnerAddress.getHostAddress());

 // After the group negotiation, we can determine the group owner.
 if (info.groupFormed && info.isGroupOwner) {
 // Do whatever tasks are specific to the group owner.
 // One common case is creating a server thread and accepting
 // incoming connections.
 } else if (info.groupFormed) {
 // The other device acts as the client. In this case,
 // you'll want to create a client thread that connects to the group
 // owner.
 }
 }

Now go back to the onReceive() method of the broadcast receiver, and modify the section that listens
for a WIFI_P2P_CONNECTION_CHANGED_ACTION intent. When this intent is received, call
requestConnectionInfo(). This is an asynchronous call, so results will be received by the connection
info listener you provide as a parameter.

 ...
 } else if (WifiP2pManager.WIFI_P2P_CONNECTION_CHANGED_ACTION.equals(action)) {

 if (mManager == null) {
 return;
 }

 NetworkInfo networkInfo = (NetworkInfo) intent
 .getParcelableExtra(WifiP2pManager.EXTRA_NETWORK_INFO);

 if (networkInfo.isConnected()) {

 // We are connected with the other device, request connection
 // info to find group owner IP

 mManager.requestConnectionInfo(mChannel, connectionListener);
 }
 ...

Using Wi-Fi P2P for Service Discovery

255
Content from developer.android.com/training/connect-devices-wirelessly/nsd-wifi-direct.html through their Creative Commons Attribution 2.5 license

83. Using Wi-Fi P2P for Service Discovery
Content from developer.android.com/training/connect-devices-wirelessly/nsd-wifi-direct.html through their Creative Commons Attribution 2.5 license

The first lesson in this class, Using Network
Service Discovery, showed you how to discover
services that are connected to a local network.
However, using Wi-Fi Peer-to-Peer (P2P) Service
Discovery allows you to discover the services of
nearby devices directly, without being connected
to a network. You can also advertise the services
running on your device. These capabilities help you communicate between apps, even when no local
network or hotspot is available.
While this set of APIs is similar in purpose to the Network Service Discovery APIs outlined in a previous
lesson, implementing them in code is very different. This lesson shows you how to discover services
available from other devices, using Wi-Fi P2P. The lesson assumes that you're already familiar with the
Wi-Fi P2P API.

Set Up the Manifest
In order to use Wi-Fi P2P, add the CHANGE_WIFI_STATE, ACCESS_WIFI_STATE, and INTERNET
permissions to your manifest. Even though Wi-Fi P2P doesn't require an Internet connection, it uses
standard Java sockets, and using these in Android requires the requested permissions.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.android.nsdchat"
 ...

 <uses-permission
 android:required="true"
 android:name="android.permission.ACCESS_WIFI_STATE"/>
 <uses-permission
 android:required="true"
 android:name="android.permission.CHANGE_WIFI_STATE"/>
 <uses-permission
 android:required="true"
 android:name="android.permission.INTERNET"/>
 ...

Add a Local Service
If you're providing a local service, you need to register it for service discovery. Once your local service is
registered, the framework automatically responds to service discovery requests from peers.
To create a local service:
• Create a WifiP2pServiceInfo object.
• Populate it with information about your service.
• Call addLocalService() to register the local service for service discovery.

This lesson teaches you to
• Set Up the Manifest
• Add a Local Service
• Discover Nearby Services

Using Wi-Fi P2P for Service Discovery

256
Content from developer.android.com/training/connect-devices-wirelessly/nsd-wifi-direct.html through their Creative Commons Attribution 2.5 license

 private void startRegistration() {
 // Create a string map containing information about your service.
 Map record = new HashMap();
 record.put("listenport", String.valueOf(SERVER_PORT));
 record.put("buddyname", "John Doe" + (int) (Math.random() * 1000));
 record.put("available", "visible");

 // Service information. Pass it an instance name, service type
 // _protocol._transportlayer , and the map containing
 // information other devices will want once they connect to this one.
 WifiP2pDnsSdServiceInfo serviceInfo =
 WifiP2pDnsSdServiceInfo.newInstance("_test", "_presence._tcp", record);

 // Add the local service, sending the service info, network channel,
 // and listener that will be used to indicate success or failure of
 // the request.
 mManager.addLocalService(channel, serviceInfo, new ActionListener() {
 @Override
 public void onSuccess() {
 // Command successful! Code isn't necessarily needed here,
 // Unless you want to update the UI or add logging statements.
 }

 @Override
 public void onFailure(int arg0) {
 // Command failed. Check for P2P_UNSUPPORTED, ERROR, or BUSY
 }
 });
 }

Discover Nearby Services
Android uses callback methods to notify your application of available services, so the first thing to do is set
those up. Create a WifiP2pManager.DnsSdTxtRecordListener to listen for incoming records. This
record can optionally be broadcast by other devices. When one comes in, copy the device address and
any other relevant information you want into a data structure external to the current method, so you can
access it later. The following example assumes that the record contains a "buddyname" field, populated
with the user's identity.

Using Wi-Fi P2P for Service Discovery

257
Content from developer.android.com/training/connect-devices-wirelessly/nsd-wifi-direct.html through their Creative Commons Attribution 2.5 license

final HashMap<String, String> buddies = new HashMap<String, String>();
...
private void discoverService() {
 DnsSdTxtRecordListener txtListener = new DnsSdTxtRecordListener() {
 @Override
 /* Callback includes:
 * fullDomain: full domain name: e.g "printer._ipp._tcp.local."
 * record: TXT record dta as a map of key/value pairs.
 * device: The device running the advertised service.
 */

 public void onDnsSdTxtRecordAvailable(
 String fullDomain, Map record, WifiP2pDevice device) {
 Log.d(TAG, "DnsSdTxtRecord available -" + record.toString());
 buddies.put(device.deviceAddress, record.get("buddyname"));
 }
 };
 ...
}

To get the service information, create a WifiP2pManager.DnsSdServiceResponseListener. This
receives the actual description and connection information. The previous code snippet implemented a Map
object to pair a device address with the buddy name. The service response listener uses this to link the
DNS record with the corresponding service information. Once both listeners are implemented, add them to
the WifiP2pManager using the setDnsSdResponseListeners() method.

private void discoverService() {
...

 DnsSdServiceResponseListener servListener = new DnsSdServiceResponseListener() {
 @Override
 public void onDnsSdServiceAvailable(String instanceName, String registrationType,
 WifiP2pDevice resourceType) {

 // Update the device name with the human-friendly version from
 // the DnsTxtRecord, assuming one arrived.
 resourceType.deviceName = buddies
 .containsKey(resourceType.deviceAddress) ? buddies
 .get(resourceType.deviceAddress) : resourceType.deviceName;

 // Add to the custom adapter defined specifically for showing
 // wifi devices.
 WiFiDirectServicesList fragment = (WiFiDirectServicesList)
getFragmentManager()
 .findFragmentById(R.id.frag_peerlist);
 WiFiDevicesAdapter adapter = ((WiFiDevicesAdapter) fragment
 .getListAdapter());

 adapter.add(resourceType);
 adapter.notifyDataSetChanged();
 Log.d(TAG, "onBonjourServiceAvailable " + instanceName);
 }
 };

 mManager.setDnsSdResponseListeners(channel, servListener, txtListener);
 ...
}

Using Wi-Fi P2P for Service Discovery

258
Content from developer.android.com/training/connect-devices-wirelessly/nsd-wifi-direct.html through their Creative Commons Attribution 2.5 license

Now create a service request and call addServiceRequest(). This method also takes a listener to
report success or failure.

 serviceRequest = WifiP2pDnsSdServiceRequest.newInstance();
 mManager.addServiceRequest(channel,
 serviceRequest,
 new ActionListener() {
 @Override
 public void onSuccess() {
 // Success!
 }

 @Override
 public void onFailure(int code) {
 // Command failed. Check for P2P_UNSUPPORTED, ERROR, or BUSY
 }
 });

Finally, make the call to discoverServices().

 mManager.discoverServices(channel, new ActionListener() {

 @Override
 public void onSuccess() {
 // Success!
 }

 @Override
 public void onFailure(int code) {
 // Command failed. Check for P2P_UNSUPPORTED, ERROR, or BUSY
 if (code == WifiP2pManager.P2P_UNSUPPORTED) {
 Log.d(TAG, "P2P isn't supported on this device.");
 else if(...)
 ...
 }
 });

If all goes well, hooray, you're done! If you encounter problems, remember that the asynchronous calls
you've made take an WifiP2pManager.ActionListener as an argument, and this provides you with
callbacks indicating success or failure. To diagnose problems, put debugging code in onFailure(). The
error code provided by the method hints at the problem. Here are the possible error values and what they
mean
P2P_UNSUPPORTED

Wi-Fi P2P isn't supported on the device running the app.
BUSY

The system is to busy to process the request.
ERROR

The operation failed due to an internal error.

Performing Network Operations

259
Content from developer.android.com/training/basics/network-ops/index.html through their Creative Commons Attribution 2.5 license

84. Performing Network Operations
Content from developer.android.com/training/basics/network-ops/index.html through their Creative Commons Attribution 2.5 license

This class explains the basic tasks involved in
connecting to the network, monitoring the network
connection (including connection changes), and
giving users control over an app's network usage.
It also describes how to parse and consume XML
data.
This class includes a sample application that
illustrates how to perform common network
operations. You can download the sample (to the
right) and use it as a source of reusable code for
your own application.
By going through these lessons, you'll have the
fundamental building blocks for creating Android
applications that download content and parse data
efficiently, while minimizing network traffic.

Lessons
Connecting to the Network

Learn how to connect to the network,
choose an HTTP client, and perform network operations outside of the UI thread.

Managing Network Usage
Learn how to check a device's network connection, create a preferences UI for controlling
network usage, and respond to connection changes.

Parsing XML Data
Learn how to parse and consume XML data.

Dependencies and prerequisites

• Android 1.6 (API level 4) or higher
• A device that is able to connect to

mobile and Wi-Fi networks

You should also read

• Optimizing Battery Life
• Transferring Data Without Draining

the Battery
• Web Apps Overview

Try it out
Download the sample
NetworkUsage.zip

Connecting to the Network

260
Content from developer.android.com/training/basics/network-ops/connecting.html through their Creative Commons Attribution 2.5 license

85. Connecting to the Network
Content from developer.android.com/training/basics/network-ops/connecting.html through their Creative Commons Attribution 2.5 license

This lesson shows you how to implement a simple
application that connects to the network. It
explains some of the best practices you should
follow in creating even the simplest network-
connected app.
Note that to perform the network operations
described in this lesson, your application manifest
must include the following permissions:

<uses-permission
android:name="android.permission.INTERNET"
/>
<uses-permission
android:name="android.permission.ACCESS_NETW
ORK_STATE" />

Choose an HTTP Client
Most network-connected Android apps use HTTP
to send and receive data. Android includes two
HTTP clients: HttpURLConnection and Apache HttpClient. Both support HTTPS, streaming uploads
and downloads, configurable timeouts, IPv6, and connection pooling. We recommend using
HttpURLConnection for applications targeted at Gingerbread and higher. For more discussion of this
topic, see the blog post Android's HTTP Clients.

Check the Network Connection
Before your app attempts to connect to the network, it should check to see whether a network connection
is available using getActiveNetworkInfo() and isConnected(). Remember, the device may be out
of range of a network, or the user may have disabled both Wi-Fi and mobile data access. For more
discussion of this topic, see the lesson Managing Network Usage.

public void myClickHandler(View view) {
 ...
 ConnectivityManager connMgr = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();
 if (networkInfo != null && networkInfo.isConnected()) {
 // fetch data
 } else {
 // display error
 }
 ...
}

Perform Network Operations on a Separate Thread
Network operations can involve unpredictable delays. To prevent this from causing a poor user
experience, always perform network operations on a separate thread from the UI. The AsyncTask class
provides one of the simplest ways to fire off a new task from the UI thread. For more discussion of this
topic, see the blog post Multithreading For Performance.

This lesson teaches you to
• Choose an HTTP Client
• Check the Network Connection
• Perform Network Operations on a Separate
Thread
• Connect and Download Data
• Convert the InputStream to a String
You should also read

• Optimizing Battery Life
• Transferring Data Without Draining

the Battery
• Web Apps Overview
• Application Fundamentals

Connecting to the Network

261
Content from developer.android.com/training/basics/network-ops/connecting.html through their Creative Commons Attribution 2.5 license

In the following snippet, the myClickHandler() method invokes new
DownloadWebpageTask().execute(stringUrl). The DownloadWebpageTask class is a subclass
of AsyncTask. DownloadWebpageTask implements the following AsyncTask methods:

• doInBackground() executes the method downloadUrl(). It passes the web page URL as a
parameter. The method downloadUrl() fetches and processes the web page content. When it
finishes, it passes back a result string.

• onPostExecute() takes the returned string and displays it in the UI.

Connecting to the Network

262
Content from developer.android.com/training/basics/network-ops/connecting.html through their Creative Commons Attribution 2.5 license

public class HttpExampleActivity extends Activity {
 private static final String DEBUG_TAG = "HttpExample";
 private EditText urlText;
 private TextView textView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 urlText = (EditText) findViewById(R.id.myUrl);
 textView = (TextView) findViewById(R.id.myText);
 }

 // When user clicks button, calls AsyncTask.
 // Before attempting to fetch the URL, makes sure that there is a network connection.
 public void myClickHandler(View view) {
 // Gets the URL from the UI's text field.
 String stringUrl = urlText.getText().toString();
 ConnectivityManager connMgr = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();
 if (networkInfo != null && networkInfo.isConnected()) {
 new DownloadWebpageTask().execute(stringUrl);
 } else {
 textView.setText("No network connection available.");
 }
 }

 // Uses AsyncTask to create a task away from the main UI thread. This task takes a
 // URL string and uses it to create an HttpUrlConnection. Once the connection
 // has been established, the AsyncTask downloads the contents of the webpage as
 // an InputStream. Finally, the InputStream is converted into a string, which is
 // displayed in the UI by the AsyncTask's onPostExecute method.
 private class DownloadWebpageTask extends AsyncTask<String, Void, String> {
 @Override
 protected String doInBackground(String... urls) {

 // params comes from the execute() call: params[0] is the url.
 try {
 return downloadUrl(urls[0]);
 } catch (IOException e) {
 return "Unable to retrieve web page. URL may be invalid.";
 }
 }
 // onPostExecute displays the results of the AsyncTask.
 @Override
 protected void onPostExecute(String result) {
 textView.setText(result);
 }
 }
 ...
}

The sequence of events in this snippet is as follows:
• When users click the button that invokes myClickHandler(), the app passes the specified URL to the
AsyncTask subclass DownloadWebpageTask.
• The AsyncTask method doInBackground() calls the downloadUrl() method.
• The downloadUrl() method takes a URL string as a parameter and uses it to create a URL object.

Connecting to the Network

263
Content from developer.android.com/training/basics/network-ops/connecting.html through their Creative Commons Attribution 2.5 license

• The URL object is used to establish an HttpURLConnection.
• Once the connection has been established, the HttpURLConnection object fetches the web page
content as an InputStream.
• The InputStream is passed to the readIt() method, which converts the stream to a string.
• Finally, the AsyncTask's onPostExecute() method displays the string in the main activity's UI.

Connect and Download Data
In your thread that performs your network transactions, you can use HttpURLConnection to perform a
GET and download your data. After you call connect(), you can get an InputStream of the data by
calling getInputStream().
In the following snippet, the doInBackground() method calls the method downloadUrl(). The
downloadUrl() method takes the given URL and uses it to connect to the network via
HttpURLConnection. Once a connection has been established, the app uses the method
getInputStream() to retrieve the data as an InputStream.

// Given a URL, establishes an HttpUrlConnection and retrieves
// the web page content as a InputStream, which it returns as
// a string.
private String downloadUrl(String myurl) throws IOException {
 InputStream is = null;
 // Only display the first 500 characters of the retrieved
 // web page content.
 int len = 500;

 try {
 URL url = new URL(myurl);
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();
 conn.setReadTimeout(10000 /* milliseconds */);
 conn.setConnectTimeout(15000 /* milliseconds */);
 conn.setRequestMethod("GET");
 conn.setDoInput(true);
 // Starts the query
 conn.connect();
 int response = conn.getResponseCode();
 Log.d(DEBUG_TAG, "The response is: " + response);
 is = conn.getInputStream();

 // Convert the InputStream into a string
 String contentAsString = readIt(is, len);
 return contentAsString;

 // Makes sure that the InputStream is closed after the app is
 // finished using it.
 } finally {
 if (is != null) {
 is.close();
 }
 }
}

Note that the method getResponseCode() returns the connection's status code. This is a useful way of
getting additional information about the connection. A status code of 200 indicates success.

Convert the InputStream to a String

Connecting to the Network

264
Content from developer.android.com/training/basics/network-ops/connecting.html through their Creative Commons Attribution 2.5 license

An InputStream is a readable source of bytes. Once you get an InputStream, it's common to decode
or convert it into a target data type. For example, if you were downloading image data, you might decode
and display it like this:

InputStream is = null;
...
Bitmap bitmap = BitmapFactory.decodeStream(is);
ImageView imageView = (ImageView) findViewById(R.id.image_view);
imageView.setImageBitmap(bitmap);

In the example shown above, the InputStream represents the text of a web page. This is how the
example converts the InputStream to a string so that the activity can display it in the UI:

// Reads an InputStream and converts it to a String.
public String readIt(InputStream stream, int len) throws IOException,
UnsupportedEncodingException {
 Reader reader = null;
 reader = new InputStreamReader(stream, "UTF-8");
 char[] buffer = new char[len];
 reader.read(buffer);
 return new String(buffer);
}

Managing Network Usage

265
Content from developer.android.com/training/basics/network-ops/managing.html through their Creative Commons Attribution 2.5 license

86. Managing Network Usage
Content from developer.android.com/training/basics/network-ops/managing.html through their Creative Commons Attribution 2.5 license

This lesson describes how to write applications
that have fine-grained control over their usage of
network resources. If your application performs a
lot of network operations, you should provide user
settings that allow users to control your app’s data
habits, such as how often your app syncs data,
whether to perform uploads/downloads only when
on Wi-Fi, whether to use data while roaming, and
so on. With these controls available to them, users
are much less likely to disable your app’s access
to background data when they approach their
limits, because they can instead precisely control
how much data your app uses.
For general guidelines on how to write apps that
minimize the battery life impact of downloads and
network connections, see Optimizing Battery Life
and Transferring Data Without Draining the
Battery.

Check a Device's Network
Connection
A device can have various types of network connections. This lesson focuses on using either a Wi-Fi or a
mobile network connection. For the full list of possible network types, see ConnectivityManager.
Wi-Fi is typically faster. Also, mobile data is often metered, which can get expensive. A common strategy
for apps is to only fetch large data if a Wi-Fi network is available.
Before you perform network operations, it's good practice to check the state of network connectivity.
Among other things, this could prevent your app from inadvertently using the wrong radio. If a network
connection is unavailable, your application should respond gracefully. To check the network connection,
you typically use the following classes:

• ConnectivityManager: Answers queries about the state of network connectivity. It also
notifies applications when network connectivity changes.

• NetworkInfo: Describes the status of a network interface of a given type (currently either
Mobile or Wi-Fi).

This code snippet tests network connectivity for Wi-Fi and mobile. It determines whether these network
interfaces are available (that is, whether network connectivity is possible) and/or connected (that is,
whether network connectivity exists and if it is possible to establish sockets and pass data):

This lesson teaches you to
• Check a Device's Network Connection
• Manage Network Usage
• Implement a Preferences Activity
• Respond to Preference Changes
• Detect Connection Changes
You should also read

• Optimizing Battery Life
• Transferring Data Without Draining

the Battery
• Web Apps Overview

Try it out
Download the sample
NetworkUsage.zip

Managing Network Usage

266
Content from developer.android.com/training/basics/network-ops/managing.html through their Creative Commons Attribution 2.5 license

private static final String DEBUG_TAG = "NetworkStatusExample";
...
ConnectivityManager connMgr = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
NetworkInfo networkInfo = connMgr.getNetworkInfo(ConnectivityManager.TYPE_WIFI);
boolean isWifiConn = networkInfo.isConnected();
networkInfo = connMgr.getNetworkInfo(ConnectivityManager.TYPE_MOBILE);
boolean isMobileConn = networkInfo.isConnected();
Log.d(DEBUG_TAG, "Wifi connected: " + isWifiConn);
Log.d(DEBUG_TAG, "Mobile connected: " + isMobileConn);

Note that you should not base decisions on whether a network is "available." You should always check
isConnected() before performing network operations, since isConnected() handles cases like flaky
mobile networks, airplane mode, and restricted background data.
A more concise way of checking whether a network interface is available is as follows. The method
getActiveNetworkInfo() returns a NetworkInfo instance representing the first connected network
interface it can find, or null if none of the interfaces is connected (meaning that an internet connection is
not available):

public boolean isOnline() {
 ConnectivityManager connMgr = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();
 return (networkInfo != null && networkInfo.isConnected());
}

To query more fine-grained state you can use NetworkInfo.DetailedState, but this should seldom
be necessary.

Manage Network Usage
You can implement a preferences activity that gives users explicit control over your app's usage of network
resources. For example:

• You might allow users to upload videos only when the device is connected to a Wi-Fi network.
• You might sync (or not) depending on specific criteria such as network availability, time interval,

and so on.

To write an app that supports network access and managing network usage, your manifest must have the
right permissions and intent filters.

• The manifest excerpted below includes the following permissions:
o android.permission.INTERNET—Allows applications to open network sockets.
o android.permission.ACCESS_NETWORK_STATE—Allows applications to access

information about networks.
• You can declare the intent filter for the ACTION_MANAGE_NETWORK_USAGE action (introduced in

Android 4.0) to indicate that your application defines an activity that offers options to control data
usage. ACTION_MANAGE_NETWORK_USAGE shows settings for managing the network data usage
of a specific application. When your app has a settings activity that allows users to control
network usage, you should declare this intent filter for that activity. In the sample application, this
action is handled by the class SettingsActivity, which displays a preferences UI to let users
decide when to download a feed.

Managing Network Usage

267
Content from developer.android.com/training/basics/network-ops/managing.html through their Creative Commons Attribution 2.5 license

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.android.networkusage"
 ...>

 <uses-sdk android:minSdkVersion="4"
 android:targetSdkVersion="14" />

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <application
 ...>
 ...
 <activity android:label="SettingsActivity" android:name=".SettingsActivity">
 <intent-filter>
 <action android:name="android.intent.action.MANAGE_NETWORK_USAGE" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Implement a Preferences Activity
As you can see in the manifest excerpt above, the sample app's activity SettingsActivity has an
intent filter for the ACTION_MANAGE_NETWORK_USAGE action. SettingsActivity is a subclass of
PreferenceActivity. It displays a preferences screen (shown in figure 1) that lets users specify the
following:

• Whether to display summaries for each XML feed entry, or just a link for each entry.
• Whether to download the XML feed if any network connection is available, or only if Wi-Fi is

available.

Managing Network Usage

268
Content from developer.android.com/training/basics/network-ops/managing.html through their Creative Commons Attribution 2.5 license

Figure 1. Preferences activity.
Here is SettingsActivity. Note that it implements OnSharedPreferenceChangeListener. When
a user changes a preference, it fires onSharedPreferenceChanged(), which sets refreshDisplay
to true. This causes the display to refresh when the user returns to the main activity:

Managing Network Usage

269
Content from developer.android.com/training/basics/network-ops/managing.html through their Creative Commons Attribution 2.5 license

public class SettingsActivity extends PreferenceActivity implements
OnSharedPreferenceChangeListener {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Loads the XML preferences file
 addPreferencesFromResource(R.xml.preferences);
 }

 @Override
 protected void onResume() {
 super.onResume();

 // Registers a listener whenever a key changes

getPreferenceScreen().getSharedPreferences().registerOnSharedPreferenceChangeListener(this);
 }

 @Override
 protected void onPause() {
 super.onPause();

 // Unregisters the listener set in onResume().
 // It's best practice to unregister listeners when your app isn't using them to cut
down on
 // unnecessary system overhead. You do this in onPause().

getPreferenceScreen().getSharedPreferences().unregisterOnSharedPreferenceChangeListener(this);
 }

 // When the user changes the preferences selection,
 // onSharedPreferenceChanged() restarts the main activity as a new
 // task. Sets the refreshDisplay flag to "true" to indicate that
 // the main activity should update its display.
 // The main activity queries the PreferenceManager to get the latest settings.

 @Override
 public void onSharedPreferenceChanged(SharedPreferences sharedPreferences, String key) {
 // Sets refreshDisplay to true so that when the user returns to the main
 // activity, the display refreshes to reflect the new settings.
 NetworkActivity.refreshDisplay = true;
 }
}

Respond to Preference Changes
When the user changes preferences in the settings screen, it typically has consequences for the app's
behavior. In this snippet, the app checks the preferences settings in onStart(). if there is a match
between the setting and the device's network connection (for example, if the setting is "Wi-Fi" and the
device has a Wi-Fi connection), the app downloads the feed and refreshes the display.

Managing Network Usage

270
Content from developer.android.com/training/basics/network-ops/managing.html through their Creative Commons Attribution 2.5 license

public class NetworkActivity extends Activity {
 public static final String WIFI = "Wi-Fi";
 public static final String ANY = "Any";
 private static final String URL =
"http://stackoverflow.com/feeds/tag?tagnames=android&sort=newest";

 // Whether there is a Wi-Fi connection.
 private static boolean wifiConnected = false;
 // Whether there is a mobile connection.
 private static boolean mobileConnected = false;
 // Whether the display should be refreshed.
 public static boolean refreshDisplay = true;

 // The user's current network preference setting.
 public static String sPref = null;

 // The BroadcastReceiver that tracks network connectivity changes.
 private NetworkReceiver receiver = new NetworkReceiver();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Registers BroadcastReceiver to track network connection changes.
 IntentFilter filter = new IntentFilter(ConnectivityManager.CONNECTIVITY_ACTION);
 receiver = new NetworkReceiver();
 this.registerReceiver(receiver, filter);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 // Unregisters BroadcastReceiver when app is destroyed.
 if (receiver != null) {
 this.unregisterReceiver(receiver);
 }
 }

 // Refreshes the display if the network connection and the
 // pref settings allow it.

 @Override
 public void onStart () {
 super.onStart();

 // Gets the user's network preference settings
 SharedPreferences sharedPrefs = PreferenceManager.getDefaultSharedPreferences(this);

 // Retrieves a string value for the preferences. The second parameter
 // is the default value to use if a preference value is not found.
 sPref = sharedPrefs.getString("listPref", "Wi-Fi");

 updateConnectedFlags();

 if(refreshDisplay){
 loadPage();
 }
 }

 // Checks the network connection and sets the wifiConnected and mobileConnected

Managing Network Usage

271
Content from developer.android.com/training/basics/network-ops/managing.html through their Creative Commons Attribution 2.5 license

 // variables accordingly.
 public void updateConnectedFlags() {
 ConnectivityManager connMgr = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);

 NetworkInfo activeInfo = connMgr.getActiveNetworkInfo();
 if (activeInfo != null && activeInfo.isConnected()) {
 wifiConnected = activeInfo.getType() == ConnectivityManager.TYPE_WIFI;
 mobileConnected = activeInfo.getType() == ConnectivityManager.TYPE_MOBILE;
 } else {
 wifiConnected = false;
 mobileConnected = false;
 }
 }

 // Uses AsyncTask subclass to download the XML feed from stackoverflow.com.
 public void loadPage() {
 if (((sPref.equals(ANY)) && (wifiConnected || mobileConnected))
 || ((sPref.equals(WIFI)) && (wifiConnected))) {
 // AsyncTask subclass
 new DownloadXmlTask().execute(URL);
 } else {
 showErrorPage();
 }
 }
...

}

Detect Connection Changes
The final piece of the puzzle is the BroadcastReceiver subclass, NetworkReceiver. When the
device's network connection changes, NetworkReceiver intercepts the action
CONNECTIVITY_ACTION, determines what the network connection status is, and sets the flags
wifiConnected and mobileConnected to true/false accordingly. The upshot is that the next time the
user returns to the app, the app will only download the latest feed and update the display if
NetworkActivity.refreshDisplay is set to true.
Setting up a BroadcastReceiver that gets called unnecessarily can be a drain on system resources. The
sample application registers the BroadcastReceiver NetworkReceiver in onCreate(), and it
unregisters it in onDestroy(). This is more lightweight than declaring a <receiver> in the manifest.
When you declare a <receiver> in the manifest, it can wake up your app at any time, even if you haven't
run it for weeks. By registering and unregistering NetworkReceiver within the main activity, you ensure
that the app won't be woken up after the user leaves the app. If you do declare a <receiver> in the
manifest and you know exactly where you need it, you can use setComponentEnabledSetting() to
enable and disable it as appropriate.
Here is NetworkReceiver:

Managing Network Usage

272
Content from developer.android.com/training/basics/network-ops/managing.html through their Creative Commons Attribution 2.5 license

public class NetworkReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {
 ConnectivityManager conn = (ConnectivityManager)
 context.getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo networkInfo = conn.getActiveNetworkInfo();

 // Checks the user prefs and the network connection. Based on the result, decides whether
 // to refresh the display or keep the current display.
 // If the userpref is Wi-Fi only, checks to see if the device has a Wi-Fi connection.
 if (WIFI.equals(sPref) && networkInfo != null && networkInfo.getType() ==
ConnectivityManager.TYPE_WIFI) {
 // If device has its Wi-Fi connection, sets refreshDisplay
 // to true. This causes the display to be refreshed when the user
 // returns to the app.
 refreshDisplay = true;
 Toast.makeText(context, R.string.wifi_connected, Toast.LENGTH_SHORT).show();

 // If the setting is ANY network and there is a network connection
 // (which by process of elimination would be mobile), sets refreshDisplay to true.
 } else if (ANY.equals(sPref) && networkInfo != null) {
 refreshDisplay = true;

 // Otherwise, the app can't download content--either because there is no network
 // connection (mobile or Wi-Fi), or because the pref setting is WIFI, and there
 // is no Wi-Fi connection.
 // Sets refreshDisplay to false.
 } else {
 refreshDisplay = false;
 Toast.makeText(context, R.string.lost_connection, Toast.LENGTH_SHORT).show();
 }
}

Parsing XML Data

273
Content from developer.android.com/training/basics/network-ops/xml.html through their Creative Commons Attribution 2.5 license

87. Parsing XML Data
Content from developer.android.com/training/basics/network-ops/xml.html through their Creative Commons Attribution 2.5 license

Extensible Markup Language (XML) is a set of
rules for encoding documents in machine-
readable form. XML is a popular format for sharing
data on the internet. Websites that frequently
update their content, such as news sites or blogs,
often provide an XML feed so that external
programs can keep abreast of content changes.
Uploading and parsing XML data is a common
task for network-connected apps. This lesson
explains how to parse XML documents and use
their data.

Choose a Parser
We recommend XmlPullParser, which is an
efficient and maintainable way to parse XML on
Android. Historically Android has had two
implementations of this interface:

• KXmlParser via
XmlPullParserFactory.newPullPa
rser().

• ExpatPullParser, via Xml.newPullParser().

Either choice is fine. The example in this section uses ExpatPullParser, via Xml.newPullParser().

Analyze the Feed
The first step in parsing a feed is to decide which fields you're interested in. The parser extracts data for
those fields and ignores the rest.
Here is an excerpt from the feed that's being parsed in the sample app. Each post to StackOverflow.com
appears in the feed as an entry tag that contains several nested tags:

This lesson teaches you to
• Choose a Parser
• Analyze the Feed
• Instantiate the Parser
• Read the Feed
• Parse XML
• Skip Tags You Don't Care About
• Consume XML Data
You should also read

• Web Apps Overview

Try it out
Download the sample
NetworkUsage.zip

Parsing XML Data

274
Content from developer.android.com/training/basics/network-ops/xml.html through their Creative Commons Attribution 2.5 license

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom"
xmlns:creativeCommons="http://backend.userland.com/creativeCommonsRssModule" ...">
<title type="text">newest questions tagged android - Stack Overflow</title>
...
 <entry>
 ...
 </entry>
 <entry>
 <id>http://stackoverflow.com/q/9439999</id>
 <re:rank scheme="http://stackoverflow.com">0</re:rank>
 <title type="text">Where is my data file?</title>
 <category
scheme="http://stackoverflow.com/feeds/tag?tagnames=android&sort=newest/tags" term="android"/>
 <category
scheme="http://stackoverflow.com/feeds/tag?tagnames=android&sort=newest/tags" term="file"/>
 <author>
 <name>cliff2310</name>
 <uri>http://stackoverflow.com/users/1128925</uri>
 </author>
 <link rel="alternate" href="http://stackoverflow.com/questions/9439999/where-is-my-
data-file" />
 <published>2012-02-25T00:30:54Z</published>
 <updated>2012-02-25T00:30:54Z</updated>
 <summary type="html">
 <p>I have an Application that requires a data file...</p>

 </summary>
 </entry>
 <entry>
 ...
 </entry>
...
</feed>

The sample app extracts data for the entry tag and its nested tags title, link, and summary.

Instantiate the Parser
The next step is to instantiate a parser and kick off the parsing process. In this snippet, a parser is
initialized to not process namespaces, and to use the provided InputStream as its input. It starts the
parsing process with a call to nextTag() and invokes the readFeed() method, which extracts and
processes the data the app is interested in:

Parsing XML Data

275
Content from developer.android.com/training/basics/network-ops/xml.html through their Creative Commons Attribution 2.5 license

public class StackOverflowXmlParser {
 // We don't use namespaces
 private static final String ns = null;

 public List parse(InputStream in) throws XmlPullParserException, IOException {
 try {
 XmlPullParser parser = Xml.newPullParser();
 parser.setFeature(XmlPullParser.FEATURE_PROCESS_NAMESPACES, false);
 parser.setInput(in, null);
 parser.nextTag();
 return readFeed(parser);
 } finally {
 in.close();
 }
 }
 ...
}

Read the Feed
The readFeed() method does the actual work of processing the feed. It looks for elements tagged "entry"
as a starting point for recursively processing the feed. If a tag isn't an entry tag, it skips it. Once the
whole feed has been recursively processed, readFeed() returns a List containing the entries (including
nested data members) it extracted from the feed. This List is then returned by the parser.

private List readFeed(XmlPullParser parser) throws XmlPullParserException, IOException {
 List entries = new ArrayList();

 parser.require(XmlPullParser.START_TAG, ns, "feed");
 while (parser.next() != XmlPullParser.END_TAG) {
 if (parser.getEventType() != XmlPullParser.START_TAG) {
 continue;
 }
 String name = parser.getName();
 // Starts by looking for the entry tag
 if (name.equals("entry")) {
 entries.add(readEntry(parser));
 } else {
 skip(parser);
 }
 }
 return entries;
}

Parse XML
The steps for parsing an XML feed are as follows:
• As described in Analyze the Feed, identify the tags you want to include in your app. This example
extracts data for the entry tag and its nested tags title, link, and summary.
• Create the following methods:

• A "read" method for each tag you're interested in. For example, readEntry(), readTitle(),
and so on. The parser reads tags from the input stream. When it encounters a tag named entry,
title, link or summary, it calls the appropriate method for that tag. Otherwise, it skips the tag.

Parsing XML Data

276
Content from developer.android.com/training/basics/network-ops/xml.html through their Creative Commons Attribution 2.5 license

• Methods to extract data for each different type of tag and to advance the parser to the next tag.
For example:

o For the title and summary tags, the parser calls readText(). This method extracts
data for these tags by calling parser.getText().

o For the link tag, the parser extracts data for links by first determining if the link is the
kind it's interested in. Then it uses parser.getAttributeValue() to extract the
link's value.

o For the entry tag, the parser calls readEntry(). This method parses the entry's
nested tags and returns an Entry object with the data members title, link, and
summary.

• A helper skip() method that's recursive. For more discussion of this topic, see Skip Tags You
Don't Care About.

This snippet shows how the parser parses entries, titles, links, and summaries.

Parsing XML Data

277
Content from developer.android.com/training/basics/network-ops/xml.html through their Creative Commons Attribution 2.5 license

public static class Entry {
 public final String title;
 public final String link;
 public final String summary;

 private Entry(String title, String summary, String link) {
 this.title = title;
 this.summary = summary;
 this.link = link;
 }
}

// Parses the contents of an entry. If it encounters a title, summary, or link tag, hands them
off
// to their respective "read" methods for processing. Otherwise, skips the tag.
private Entry readEntry(XmlPullParser parser) throws XmlPullParserException, IOException {
 parser.require(XmlPullParser.START_TAG, ns, "entry");
 String title = null;
 String summary = null;
 String link = null;
 while (parser.next() != XmlPullParser.END_TAG) {
 if (parser.getEventType() != XmlPullParser.START_TAG) {
 continue;
 }
 String name = parser.getName();
 if (name.equals("title")) {
 title = readTitle(parser);
 } else if (name.equals("summary")) {
 summary = readSummary(parser);
 } else if (name.equals("link")) {
 link = readLink(parser);
 } else {
 skip(parser);
 }
 }
 return new Entry(title, summary, link);
}

// Processes title tags in the feed.
private String readTitle(XmlPullParser parser) throws IOException, XmlPullParserException {
 parser.require(XmlPullParser.START_TAG, ns, "title");
 String title = readText(parser);
 parser.require(XmlPullParser.END_TAG, ns, "title");
 return title;
}

// Processes link tags in the feed.
private String readLink(XmlPullParser parser) throws IOException, XmlPullParserException {
 String link = "";
 parser.require(XmlPullParser.START_TAG, ns, "link");
 String tag = parser.getName();
 String relType = parser.getAttributeValue(null, "rel");
 if (tag.equals("link")) {
 if (relType.equals("alternate")){
 link = parser.getAttributeValue(null, "href");
 parser.nextTag();
 }
 }
 parser.require(XmlPullParser.END_TAG, ns, "link");
 return link;

Parsing XML Data

278
Content from developer.android.com/training/basics/network-ops/xml.html through their Creative Commons Attribution 2.5 license

}

// Processes summary tags in the feed.
private String readSummary(XmlPullParser parser) throws IOException, XmlPullParserException {
 parser.require(XmlPullParser.START_TAG, ns, "summary");
 String summary = readText(parser);
 parser.require(XmlPullParser.END_TAG, ns, "summary");
 return summary;
}

// For the tags title and summary, extracts their text values.
private String readText(XmlPullParser parser) throws IOException, XmlPullParserException {
 String result = "";
 if (parser.next() == XmlPullParser.TEXT) {
 result = parser.getText();
 parser.nextTag();
 }
 return result;
}
 ...
}

Skip Tags You Don't Care About
One of the steps in the XML parsing described above is for the parser to skip tags it's not interested in.
Here is the parser's skip() method:

private void skip(XmlPullParser parser) throws XmlPullParserException, IOException {
 if (parser.getEventType() != XmlPullParser.START_TAG) {
 throw new IllegalStateException();
 }
 int depth = 1;
 while (depth != 0) {
 switch (parser.next()) {
 case XmlPullParser.END_TAG:
 depth--;
 break;
 case XmlPullParser.START_TAG:
 depth++;
 break;
 }
 }
 }

This is how it works:

• It throws an exception if the current event isn't a START_TAG.
• It consumes the START_TAG, and all events up to and including the matching END_TAG.
• To make sure that it stops at the correct END_TAG and not at the first tag it encounters after the

original START_TAG, it keeps track of the nesting depth.

Thus if the current element has nested elements, the value of depth won't be 0 until the parser has
consumed all events between the original START_TAG and its matching END_TAG. For example, consider
how the parser skips the <author> element, which has 2 nested elements, <name> and <uri>:

Parsing XML Data

279
Content from developer.android.com/training/basics/network-ops/xml.html through their Creative Commons Attribution 2.5 license

• The first time through the while loop, the next tag the parser encounters after <author> is the
START_TAG for <name>. The value for depth is incremented to 2.

• The second time through the while loop, the next tag the parser encounters is the END_TAG
</name>. The value for depth is decremented to 1.

• The third time through the while loop, the next tag the parser encounters is the START_TAG
<uri>. The value for depth is incremented to 2.

• The fourth time through the while loop, the next tag the parser encounters is the END_TAG
</uri>. The value for depth is decremented to 1.

• The fifth time and final time through the while loop, the next tag the parser encounters is the
END_TAG </author>. The value for depth is decremented to 0, indicating that the <author>
element has been successfully skipped.

Consume XML Data
The example application fetches and parses the XML feed within an AsyncTask. This takes the
processing off the main UI thread. When processing is complete, the app updates the UI in the main
activity (NetworkActivity).
In the excerpt shown below, the loadPage() method does the following:

• Initializes a string variable with the URL for the XML feed.
• If the user's settings and the network connection allow it, invokes new

DownloadXmlTask().execute(url). This instantiates a new DownloadXmlTask object
(AsyncTask subclass) and runs its execute() method, which downloads and parses the feed
and returns a string result to be displayed in the UI.

public class NetworkActivity extends Activity {
 public static final String WIFI = "Wi-Fi";
 public static final String ANY = "Any";
 private static final String URL =
"http://stackoverflow.com/feeds/tag?tagnames=android&sort=newest";

 // Whether there is a Wi-Fi connection.
 private static boolean wifiConnected = false;
 // Whether there is a mobile connection.
 private static boolean mobileConnected = false;
 // Whether the display should be refreshed.
 public static boolean refreshDisplay = true;
 public static String sPref = null;

 ...

 // Uses AsyncTask to download the XML feed from stackoverflow.com.
 public void loadPage() {

 if((sPref.equals(ANY)) && (wifiConnected || mobileConnected)) {
 new DownloadXmlTask().execute(URL);
 }
 else if ((sPref.equals(WIFI)) && (wifiConnected)) {
 new DownloadXmlTask().execute(URL);
 } else {
 // show error
 }
 }

Parsing XML Data

280
Content from developer.android.com/training/basics/network-ops/xml.html through their Creative Commons Attribution 2.5 license

The AsyncTask subclass shown below, DownloadXmlTask, implements the following AsyncTask
methods:

• doInBackground() executes the method loadXmlFromNetwork(). It passes the feed URL
as a parameter. The method loadXmlFromNetwork() fetches and processes the feed. When it
finishes, it passes back a result string.

• onPostExecute() takes the returned string and displays it in the UI.

// Implementation of AsyncTask used to download XML feed from stackoverflow.com.
private class DownloadXmlTask extends AsyncTask<String, Void, String> {
 @Override
 protected String doInBackground(String... urls) {
 try {
 return loadXmlFromNetwork(urls[0]);
 } catch (IOException e) {
 return getResources().getString(R.string.connection_error);
 } catch (XmlPullParserException e) {
 return getResources().getString(R.string.xml_error);
 }
 }

 @Override
 protected void onPostExecute(String result) {
 setContentView(R.layout.main);
 // Displays the HTML string in the UI via a WebView
 WebView myWebView = (WebView) findViewById(R.id.webview);
 myWebView.loadData(result, "text/html", null);
 }
}

Below is the method loadXmlFromNetwork() that is invoked from DownloadXmlTask. It does the
following:
• Instantiates a StackOverflowXmlParser. It also creates variables for a List of Entry objects
(entries), and title, url, and summary, to hold the values extracted from the XML feed for those
fields.
• Calls downloadUrl(), which fetches the feed and returns it as an InputStream.
• Uses StackOverflowXmlParser to parse the InputStream. StackOverflowXmlParser
populates a List of entries with data from the feed.
• Processes the entries List, and combines the feed data with HTML markup.
• Returns an HTML string that is displayed in the main activity UI by the AsyncTask method
onPostExecute().

Parsing XML Data

281
Content from developer.android.com/training/basics/network-ops/xml.html through their Creative Commons Attribution 2.5 license

// Uploads XML from stackoverflow.com, parses it, and combines it with
// HTML markup. Returns HTML string.
private String loadXmlFromNetwork(String urlString) throws XmlPullParserException, IOException
{
 InputStream stream = null;
 // Instantiate the parser
 StackOverflowXmlParser stackOverflowXmlParser = new StackOverflowXmlParser();
 List<Entry> entries = null;
 String title = null;
 String url = null;
 String summary = null;
 Calendar rightNow = Calendar.getInstance();
 DateFormat formatter = new SimpleDateFormat("MMM dd h:mmaa");

 // Checks whether the user set the preference to include summary text
 SharedPreferences sharedPrefs = PreferenceManager.getDefaultSharedPreferences(this);
 boolean pref = sharedPrefs.getBoolean("summaryPref", false);

 StringBuilder htmlString = new StringBuilder();
 htmlString.append("<h3>" + getResources().getString(R.string.page_title) + "</h3>");
 htmlString.append("" + getResources().getString(R.string.updated) + " " +
 formatter.format(rightNow.getTime()) + "");

 try {
 stream = downloadUrl(urlString);
 entries = stackOverflowXmlParser.parse(stream);
 // Makes sure that the InputStream is closed after the app is
 // finished using it.
 } finally {
 if (stream != null) {
 stream.close();
 }
 }

 // StackOverflowXmlParser returns a List (called "entries") of Entry objects.
 // Each Entry object represents a single post in the XML feed.
 // This section processes the entries list to combine each entry with HTML markup.
 // Each entry is displayed in the UI as a link that optionally includes
 // a text summary.
 for (Entry entry : entries) {
 htmlString.append("<p><a href='");
 htmlString.append(entry.link);
 htmlString.append("'>" + entry.title + "</p>");
 // If the user set the preference to include summary text,
 // adds it to the display.
 if (pref) {
 htmlString.append(entry.summary);
 }
 }
 return htmlString.toString();
}

// Given a string representation of a URL, sets up a connection and gets
// an input stream.
private InputStream downloadUrl(String urlString) throws IOException {
 URL url = new URL(urlString);
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();
 conn.setReadTimeout(10000 /* milliseconds */);
 conn.setConnectTimeout(15000 /* milliseconds */);
 conn.setRequestMethod("GET");

Parsing XML Data

282
Content from developer.android.com/training/basics/network-ops/xml.html through their Creative Commons Attribution 2.5 license

 conn.setDoInput(true);
 // Starts the query
 conn.connect();
 return conn.getInputStream();
}

Transferring Data Without Draining the Battery

283
Content from developer.android.com/training/efficient-downloads/index.html through their Creative Commons Attribution 2.5 license

88. Transferring Data Without Draining the Battery
Content from developer.android.com/training/efficient-downloads/index.html through their Creative Commons Attribution 2.5 license

In this class you will learn to minimize the battery
life impact of downloads and network connections,
particularly in relation to the wireless radio.
This class demonstrates the best practices for
scheduling and executing downloads using
techniques such as caching, polling, and
prefetching. You will learn how the power-use
profile of the wireless radio can affect your
choices on when, what, and how to transfer data
in order to minimize impact on battery life.

Lessons
Optimizing Downloads for Efficient Network Access

This lesson introduces the wireless radio state machine, explains how your app’s connectivity
model interacts with it, and how you can minimize your data connection and use prefetching and
bundling to minimize the battery drain associated with your data transfers.

Minimizing the Effect of Regular Updates
This lesson will examine how your refresh frequency can be varied to best mitigate the effect of
background updates on the underlying wireless radio state machine.

Redundant Downloads are Redundant
The most fundamental way to reduce your downloads is to download only what you need. This
lesson introduces some best practices to eliminate redundant downloads.

Modifying your Download Patterns Based on the Connectivity Type
When it comes to impact on battery life, not all connection types are created equal. Not only does
the Wi-Fi radio use significantly less battery than its wireless radio counterparts, but the radios
used in different wireless radio technologies have different battery implications.

Dependencies and prerequisites

• Android 2.0 (API Level 5) or higher

You should also read

• Optimizing Battery Life

Optimizing Downloads for Efficient Network Access

284
Content from developer.android.com/training/efficient-downloads/efficient-network-access.html through their Creative Commons Attribution 2.5 license

89. Optimizing Downloads for Efficient Network Access
Content from developer.android.com/training/efficient-downloads/efficient-network-access.html through their Creative Commons Attribution 2.5 license

Using the wireless radio to transfer data is
potentially one of your app's most significant
sources of battery drain. To minimize the battery
drain associated with network activity, it's critical
that you understand how your connectivity model
will affect the underlying radio hardware.
This lesson introduces the wireless radio state
machine and explains how your app's connectivity
model interacts with it. It goes on to propose ways
to minimize your data connections, use
prefetching, and bundle your transfers in order to
minimize the battery drain associated with your
data transfers.

The Radio State Machine
A fully active wireless radio consumes significant
power, so it transitions between different energy
states in order to conserve power when not in use, while attempting to minimize latency associated with
"powering up" the radio when it's required.
The state machine for a typical 3G network radio consists of three energy states:
• Full power: Used when a connection is active, allowing the device to transfer data at its highest
possible rate.
• Low power: An intermediate state that uses around 50% of the battery power at the full state.
• Standby: The minimal energy state during which no network connection is active or required.
While the low and idle states drain significantly less battery, they also introduce significant latency to
network requests. Returning to full power from the low state takes around 1.5 seconds, while moving from
idle to full can take over 2 seconds.
To minimize latency, the state machine uses a delay to postpone the transition to lower energy states.
Figure 1 uses AT&T's timings for a typical 3G radio.

Figure 1. Typical 3G wireless radio state machine.
The radio state machine on each device, particularly the associated transition delay ("tail time") and startup
latency, will vary based on the wireless radio technology employed (2G, 3G, LTE, etc.) and is defined and
configured by the carrier network over which the device is operating.
This lesson describes a representative state machine for a typical 3G wireless radio, based on data
provided by AT&T. However, the general principles and resulting best practices are applicable for all
wireless radio implementations.

This lesson teaches you to
• Understand the radio state machine
• Understand how apps can impact the radio
state machine
• Efficiently prefetch data
• Batch transfers and connections
• Reduce the number of connections you use
• Use the DDMS Network Traffic Tool to
identify areas of concern
You should also read

• Optimizing Battery Life

Optimizing Downloads for Efficient Network Access

285
Content from developer.android.com/training/efficient-downloads/efficient-network-access.html through their Creative Commons Attribution 2.5 license

This approach is particularly effective for typical web browsing as it prevents unwelcome latency while
users browse the web. The relatively low tail-time also ensures that once a browsing session has finished,
the radio can move to a lower energy state.
Unfortunately, this approach can lead to inefficient apps on modern smartphone OSs like Android, where
apps run both in the foreground (where latency is important) and in the background (where battery life
should be prioritized).

How Apps Impact the Radio State Machine
Every time you create a new network connection, the radio transitions to the full power state. In the case of
the typical 3G radio state machine described above, it will remain at full power for the duration of your
transfer—plus an additional 5 seconds of tail time—followed by 12 seconds at the low energy state. So for
a typical 3G device, every data transfer session will cause the radio to draw energy for almost 20 seconds.
In practice, this means an app that transfers unbundled data for 1 second every 18 seconds will keep the
wireless radio perpetually active, moving it back to high power just as it was about to become idle. As a
result, every minute it will consume battery at the high power state for 18 seconds, and at the low power
state for the remaining 42 seconds.
By comparison, the same app that bundles transfers of 3 seconds of every minute will keep the radio in the
high power state for only 8 seconds, and will keep it in the low power state for only an additional 12
seconds.
The second example allows the radio to be idle for an additional 40 second every minute, resulting in a
massive reduction in battery consumption.

Figure 2. Relative wireless radio power use for bundled versus unbundled transfers.

Prefetch Data
Prefetching data is an effective way to reduce the number of independent data transfer sessions.
Prefetching allows you to download all the data you are likely to need for a given time period in a single
burst, over a single connection, at full capacity.
By front loading your transfers, you reduce the number of radio activations required to download the data.
As a result you not only conserve battery life, but also improve the latency, lower the required bandwidth,
and reduce download times.
Prefetching also provides an improved user experience by minimizing in-app latency caused by waiting for
downloads to complete before performing an action or viewing data.
However, used too aggressively, prefetching introduces the risk of increasing battery drain and bandwidth
use—as well as download quota—by downloading data that isn't used. It's also important to ensure that
prefetching doesn't delay application startup while the app waits for the prefetch to complete. In practical
terms that might mean processing data progressively, or initiating consecutive transfers prioritized such
that the data required for application startup is downloaded and processed first.
How aggressively you prefetch depends on the size of the data being downloaded and the likelihood of it
being used. As a rough guide, based on the state machine described above, for data that has a 50%

Optimizing Downloads for Efficient Network Access

286
Content from developer.android.com/training/efficient-downloads/efficient-network-access.html through their Creative Commons Attribution 2.5 license

chance of being used within the current user session, you can typically prefetch for around 6 seconds
(approximately 1-2 Mb) before the potential cost of downloading unused data matches the potential
savings of not downloading that data to begin with.
Generally speaking, it's good practice to prefetch data such that you will only need to initiate another
download every 2 to 5 minutes, and in the order of 1 to 5 megabytes.
Following this principle, large downloads—such as video files—should be downloaded in chunks at regular
intervals (every 2 to 5 minutes), effectively prefetching only the video data likely to be viewed in the next
few minutes.
Note that further downloads should be bundled, as described in the next section, Batch Transfers and
Connections, and that these approximations will vary based on the connection type and speed, as
discussed in Modify your Download Patterns Based on the Connectivity Type.
Let's look at some practical examples:
A music player
You could choose to prefetch an entire album, however should the user stop listening after the first song,
you've wasted a significant amount of bandwidth and battery life.
A better approach would be to maintain a buffer of one song in addition to the one being played. For
streaming music, rather than maintaining a continuous stream that keeps the radio active at all times,
consider using HTTP live streaming to transmit the audio stream in bursts, simulating the prefetching
approach described above.
A news reader
Many news apps attempt to reduce bandwidth by downloading headlines only after a category has been
selected, full articles only when the user wants to read them, and thumbnails just as they scroll into view.
Using this approach, the radio will be forced to remain active for the majority of users' news-reading
session as they scroll headlines, change categories, and read articles. Not only that, but the constant
switching between energy states will result in significant latency when switching categories or reading
articles.
A better approach would be to prefetch a reasonable amount of data at startup, beginning with the first set
of news headlines and thumbnails—ensuring a low latency startup time—and continuing with the
remaining headlines and thumbnails, as well as the article text for each article available from at least the
primary headline list.
Another alternative is to prefetch every headline, thumbnail, article text, and possibly even full article
pictures—typically in the background on a predetermined schedule. This approach risks spending
significant bandwidth and battery life downloading content that's never used, so it should be implemented
with caution.
One solution is to schedule the full download to occur only when connected to Wi-Fi, and possibly only
when the device is charging. This is investigated in more detail in Modify your Download Patterns Based
on the Connectivity Type.

Batch Transfers and Connections
Every time you initiate a connection—irrespective of the size of the associated data transfer—you
potentially cause the radio to draw power for nearly 20 seconds when using a typical 3G wireless radio.
An app that pings the server every 20 seconds, just to acknowledge that the app is running and visible to
the user, will keep the radio powered on indefinitely, resulting in a significant battery cost for almost no
actual data transfer.
With that in mind it's important to bundle your data transfers and create a pending transfer queue. Done
correctly, you can effectively phase-shift transfers that are due to occur within a similar time window, to

Optimizing Downloads for Efficient Network Access

287
Content from developer.android.com/training/efficient-downloads/efficient-network-access.html through their Creative Commons Attribution 2.5 license

make them all happen simultaneously—ensuring that the radio draws power for as short a duration as
possible.
The underlying philosophy of this approach is to transfer as much data as possible during each transfer
session in an effort to limit the number of sessions you require.
That means you should batch your transfers by queuing delay tolerant transfers, and preempting
scheduled updates and prefetches, so that they are all executed when time-sensitive transfers are
required. Similarly, your scheduled updates and regular prefetching should initiate the execution of your
pending transfer queue.
For a practical example, let's return to the earlier examples from Prefetch Data.
Take a news application that uses the prefetching routine described above. The news reader collects
analytics information to understand the reading patterns of its users and to rank the most popular stories.
To keep the news fresh, it checks for updates every hour. To conserve bandwidth, rather than download
full photos for each article, it prefetches only thumbnails and downloads the full photos when they are
selected.
In this example, all the analytics information collected within the app should be bundled together and
queued for download, rather than being transmitted as it's collected. The resulting bundle should be
transferred when either a full-sized photo is being downloaded, or when an hourly update is being
performed.
Any time-sensitive or on-demand transfer—such as downloading a full-sized image—should preempt
regularly scheduled updates. The planned update should be executed at the same time as the on-demand
transfer, with the next update scheduled to occur after the set interval. This approach mitigates the cost of
performing a regular update by piggy-backing on the necessary time-sensitive photo download.

Reduce Connections
It's generally more efficient to reuse existing network connections than to initiate new ones. Reusing
connections also allows the network to more intelligently react to congestion and related network data
issues.
Rather than creating multiple simultaneous connections to download data, or chaining multiple consecutive
GET requests, where possible you should bundle those requests into a single GET.
For example, it would be more efficient to make a single request for every news article to be returned in a
single request / response than to make multiple queries for several news categories. The wireless radio
needs to become active in order to transmit the termination / termination acknowledgement packets
associated with server and client timeout, so it's also good practice to close your connections when they
aren't in use, rather than waiting for these timeouts.
That said, closing a connection too early can prevent it from being reused, which then requires additional
overhead for establishing a new connection. A useful compromise is not to close the connection
immediately, but to still close it before the inherent timeout expires.

Use the DDMS Network Traffic Tool to Identify Areas of Concern
The Android DDMS (Dalvik Debug Monitor Server) includes a Detailed Network Usage tab that makes it
possible to track when your application is making network requests. Using this tool, you can monitor how
and when your app transfers data and optimize the underlying code appropriately.
Figure 3 shows a pattern of transferring small amounts of data roughly 15 seconds apart, suggesting that
efficiency could be dramatically improved by prefetching each request or bundling the uploads.

Optimizing Downloads for Efficient Network Access

288
Content from developer.android.com/training/efficient-downloads/efficient-network-access.html through their Creative Commons Attribution 2.5 license

Figure 3. Tracking network usage with DDMS.
By monitoring the frequency of your data transfers, and the amount of data transferred during each
connection, you can identify areas of your application that can be made more battery-efficient. Generally,
you will be looking for short spikes that can be delayed, or that should cause a later transfer to be
preempted.
To better identify the cause of transfer spikes, the Traffic Stats API allows you to tag the data transfers
occurring within a thread using the TrafficStats.setThreadStatsTag() method, followed by
manually tagging (and untagging) individual sockets using tagSocket() and untagSocket(). For
example:

TrafficStats.setThreadStatsTag(0xF00D);
TrafficStats.tagSocket(outputSocket);
// Transfer data using socket
TrafficStats.untagSocket(outputSocket);

The Apache HttpClient and URLConnection libraries automatically tag sockets based on the current
getThreadStatsTag() value. These libraries also tag and untag sockets when recycled through keep-
alive pools.

TrafficStats.setThreadStatsTag(0xF00D);
try {
 // Make network request using HttpClient.execute()
} finally {
 TrafficStats.clearThreadStatsTag();
}

Socket tagging is supported in Android 4.0, but real-time stats will only be displayed on devices running
Android 4.0.3 or higher.

Minimizing the Effect of Regular Updates

289
Content from developer.android.com/training/efficient-downloads/regular_updates.html through their Creative Commons Attribution 2.5 license

90. Minimizing the Effect of Regular Updates
Content from developer.android.com/training/efficient-downloads/regular_updates.html through their Creative Commons Attribution 2.5 license

The optimal frequency of regular updates will vary
based on device state, network connectivity, user
behavior, and explicit user preferences.
Optimizing Battery Life discusses how to build
battery-efficient apps that modify their refresh
frequency based on the state of the host device.
That includes disabling background service
updates when you lose connectivity and reducing
the rate of updates when the battery level is low.
This lesson will examine how your refresh
frequency can be varied to best mitigate the effect
of background updates on the underlying wireless
radio state machine.

Use Google Cloud Messaging as an Alternative to Polling
Every time your app polls your server to check if an update is required, you activate the wireless radio,
drawing power unnecessarily, for up to 20 seconds on a typical 3G connection.
Google Cloud Messaging for Android (GCM) is a lightweight mechanism used to transmit data from a
server to a particular app instance. Using GCM, your server can notify your app running on a particular
device that there is new data available for it.
Compared to polling, where your app must regularly ping the server to query for new data, this event-
driven model allows your app to create a new connection only when it knows there is data to download.
The result is a reduction in unnecessary connections, and a reduced latency for updated data within your
application.
GCM is implemented using a persistent TCP/IP connection. While it's possible to implement your own
push service, it's best practice to use GCM. This minimizes the number of persistent connections and
allows the platform to optimize bandwidth and minimize the associated impact on battery life.

Optimize Polling with Inexact Repeating Alarms and Exponential Backoffs
Where polling is required, it's good practice to set the default data refresh frequency of your app as low as
possible without detracting from the user experience.
A simple approach is to offer preferences to allow users to explicitly set their required update rate, allowing
them to define their own balance between data freshness and battery life.
When scheduling updates, use inexact repeating alarms that allow the system to "phase shift" the exact
moment each alarm triggers.

int alarmType = AlarmManager.ELAPSED_REALTIME;
long interval = AlarmManager.INTERVAL_HOUR;
long start = System.currentTimeMillis() + interval;

alarmManager.setInexactRepeating(alarmType, start, interval, pi);

If several alarms are scheduled to trigger at similar times, this phase-shifting will cause them to be
triggered simultaneously, allowing each update to piggyback on top of a single active radio state change.

This lesson teaches you to
• Use Google Cloud Messaging as an
alternative to polling
• Optimize polling with inexact repeating
alarms and exponential back-offs
You should also read

• Optimizing Battery Life
• Google Cloud Messaging for Android

Minimizing the Effect of Regular Updates

290
Content from developer.android.com/training/efficient-downloads/regular_updates.html through their Creative Commons Attribution 2.5 license

Wherever possible, set your alarm type to ELAPSED_REALTIME or RTC rather than to their _WAKEUP
equivalents. This further reduces battery impact by waiting until the phone is no longer in standby mode
before the alarm triggers.
You can further reduce the impact of these scheduled alarms by opportunistically reducing their frequency
based on how recently your app was used.
One approach is to implement an exponential back-off pattern to reduce the frequency of your updates
(and / or the degree of prefetching you perform) if the app hasn't been used since the previous update. It's
often useful to assert a minimum update frequency and to reset the frequency whenever the app is used,
for example:

SharedPreferences sp =
 context.getSharedPreferences(PREFS, Context.MODE_WORLD_READABLE);

boolean appUsed = sp.getBoolean(PREFS_APPUSED, false);
long updateInterval = sp.getLong(PREFS_INTERVAL, DEFAULT_REFRESH_INTERVAL);

if (!appUsed)
 if ((updateInterval *= 2) > MAX_REFRESH_INTERVAL)
 updateInterval = MAX_REFRESH_INTERVAL;

Editor spEdit = sp.edit();
spEdit.putBoolean(PREFS_APPUSED, false);
spEdit.putLong(PREFS_INTERVAL, updateInterval);
spEdit.apply();

rescheduleUpdates(updateInterval);
executeUpdateOrPrefetch();

You can use a similar exponential back-off pattern to reduce the effect of failed connections and download
errors.
The cost of initiating a network connection is the same whether you are able to contact your server and
download data or not. For time-sensitive transfers where successful completion is important, an
exponential back-off algorithm can be used to reduce the frequency of retries in order to minimize the
associated battery impact, for example:

private void retryIn(long interval) {
 boolean success = attemptTransfer();

 if (!success) {
 retryIn(interval*2 < MAX_RETRY_INTERVAL ?
 interval*2 : MAX_RETRY_INTERVAL);
 }
}

Alternatively, for transfers that are failure tolerant (such as regular updates), you can simply ignore failed
connection and transfer attempts.

Redundant Downloads are Redundant

291
Content from developer.android.com/training/efficient-downloads/redundant_redundant.html through their Creative Commons Attribution 2.5 license

91. Redundant Downloads are Redundant
Content from developer.android.com/training/efficient-downloads/redundant_redundant.html through their Creative Commons Attribution 2.5 license

The most fundamental way to reduce your
downloads is to download only what you need. In
terms of data, that means implementing REST
APIs that allow you to specify query criteria that
limit the returned data by using parameters such
as the time of your last update.
Similarly, when downloading images, it's good
practice to reduce the size of the images server-
side, rather than downloading full-sized images
that are reduced on the client.

Cache Files Locally
Another important technique is to avoid downloading duplicate data. You can do this by aggressive
caching. Always cache static resources, including on-demand downloads such as full size images, for as
long as reasonably possible. On-demand resources should be stored separately to enable you to regularly
flush your on-demand cache to manage its size.
To ensure that your caching doesn't result in your app displaying stale data, be sure to extract the time at
which the requested content was last updated, and when it expires, from within the HTTP response
headers. This will allow you to determine when the associated content should be refreshed.

long currentTime = System.currentTimeMillis());

HttpURLConnection conn = (HttpURLConnection) url.openConnection();

long expires = conn.getHeaderFieldDate("Expires", currentTime);
long lastModified = conn.getHeaderFieldDate("Last-Modified", currentTime);

setDataExpirationDate(expires);

if (lastModified < lastUpdateTime) {
 // Skip update
} else {
 // Parse update
}

Using this approach, you can also effectively cache dynamic content while ensuring it doesn't result in your
application displaying stale information.
You can cache non-sensitive data can in the unmanaged external cache directory:

Context.getExternalCacheDir();

Alternatively, you can use the managed / secure application cache. Note that this internal cache may be
flushed when the system is running low on available storage.

Context.getCache();

Files stored in either cache location will be erased when the application is uninstalled.

Use the HttpURLConnection Response Cache

This lesson teaches you to
• Cache files locally
• Use the HttpURLConnection response
cache
You should also read

• Optimizing Battery Life

Redundant Downloads are Redundant

292
Content from developer.android.com/training/efficient-downloads/redundant_redundant.html through their Creative Commons Attribution 2.5 license

Android 4.0 added a response cache to HttpURLConnection. You can enable HTTP response caching
on supported devices using reflection as follows:

private void enableHttpResponseCache() {
 try {
 long httpCacheSize = 10 * 1024 * 1024; // 10 MiB
 File httpCacheDir = new File(getCacheDir(), "http");
 Class.forName("android.net.http.HttpResponseCache")
 .getMethod("install", File.class, long.class)
 .invoke(null, httpCacheDir, httpCacheSize);
 } catch (Exception httpResponseCacheNotAvailable) {
 Log.d(TAG, "HTTP response cache is unavailable.");
 }
}

This sample code will turn on the response cache on Android 4.0+ devices without affecting earlier
releases.
With the cache installed, fully cached HTTP requests can be served directly from local storage, eliminating
the need to open a network connection. Conditionally cached responses can validate their freshness from
the server, eliminating the bandwidth cost associated with the download.
Uncached responses get stored in the response cache for for future requests.

Modifying your Download Patterns Based on the Connectivity Type

293
Content from developer.android.com/training/efficient-downloads/connectivity_patterns.html through their Creative Commons Attribution 2.5 license

92. Modifying your Download Patterns Based on the
Connectivity Type

Content from developer.android.com/training/efficient-downloads/connectivity_patterns.html through their Creative Commons Attribution 2.5 license

When it comes to impact on battery life, not all
connection types are created equal. Not only does
the Wi-Fi radio use significantly less battery than
its wireless radio counterparts, but the radios used
in different wireless radio technologies have
different battery implications.

Use Wi-Fi
In most cases a Wi-Fi radio will offer greater
bandwidth at a significantly lower battery cost. As
a result, you should endeavor to perform data
transfers when connected over Wi-Fi whenever possible.
You can use a broadcast receiver to listen for connectivity changes that indicate when a Wi-Fi connection
has been established to execute significant downloads, preempt scheduled updates, and potentially even
temporarily increase the frequency of regular updates as described in Optimizing Battery Life lesson
Determining and Monitoring the Connectivity Status.

Use Greater Bandwidth to Download More Data Less Often
When connected over a wireless radio, higher bandwidth generally comes at the price of higher battery
cost. Meaning that LTE typically consumes more energy than 3G, which is in turn more expensive than
2G.
This means that while the underlying radio state machine varies based on the radio technology, generally
speaking the relative battery impact of the state change tail-time is greater for higher bandwidth radios.
At the same time, the higher bandwidth means you can prefetch more aggressively, downloading more
data over the same time. Perhaps less intuitively, because the tail-time battery cost is relatively higher, it's
also more efficient to keep the radio active for longer periods during each transfer session to reduce the
frequency of updates.
For example, if an LTE radio is has double the bandwidth and double the energy cost of 3G, you should
download 4 times as much data during each session—or potentially as much as 10mb. When downloading
this much data, it's important to consider the effect of your prefetching on the available local storage and
flush your prefetch cache regularly.
You can use the connectivity manager to determine the active wireless radio, and modify your prefetching
routines accordingly:

This lesson teaches you to
• Use Wi-Fi
• Use greater bandwidth to download more
data less often
You should also read

• Optimizing Battery Life

Modifying your Download Patterns Based on the Connectivity Type

294
Content from developer.android.com/training/efficient-downloads/connectivity_patterns.html through their Creative Commons Attribution 2.5 license

ConnectivityManager cm =
 (ConnectivityManager)getSystemService(Context.CONNECTIVITY_SERVICE);

TelephonyManager tm =
 (TelephonyManager)getSystemService(Context.TELEPHONY_SERVICE);

NetworkInfo activeNetwork = cm.getActiveNetworkInfo();

int PrefetchCacheSize = DEFAULT_PREFETCH_CACHE;

switch (activeNetwork.getType()) {
 case (ConnectivityManager.TYPE_WIFI):
 PrefetchCacheSize = MAX_PREFETCH_CACHE; break;
 case (ConnectivityManager.TYPE_MOBILE): {
 switch (tm.getNetworkType()) {
 case (TelephonyManager.NETWORK_TYPE_LTE |
 TelephonyManager.NETWORK_TYPE_HSPAP):
 PrefetchCacheSize *= 4;
 break;
 case (TelephonyManager.NETWORK_TYPE_EDGE |
 TelephonyManager.NETWORK_TYPE_GPRS):
 PrefetchCacheSize /= 2;
 break;
 default: break;
 }
 break;
 }
 default: break;
}

Syncing to the Cloud

295
Content from developer.android.com/training/cloudsync/index.html through their Creative Commons Attribution 2.5 license

93. Syncing to the Cloud
Content from developer.android.com/training/cloudsync/index.html through their Creative Commons Attribution 2.5 license
By providing powerful APIs for internet connectivity, the Android framework helps you build rich cloud-
enabled apps that sync their data to a remote web service, making sure all your devices always stay in
sync, and your valuable data is always backed up to the cloud.
This class covers different strategies for cloud enabled applications. It covers syncing data with the cloud
using your own back-end web application, and backing up data using the cloud so that users can restore
their data when installing your application on a new device.

Lessons
Using the Backup API

Learn how to integrate the Backup API into your Android Application, so that user data such as
preferences, notes, and high scores update seamlessly across all of a user's devices

Making the Most of Google Cloud Messaging
Learn how to efficiently send multicast messages, react intelligently to incoming Google Cloud
Messaging (GCM) messages, and use GCM messages to efficiently sync with the server.

Using the Backup API

296
Content from developer.android.com/training/cloudsync/backupapi.html through their Creative Commons Attribution 2.5 license

94. Using the Backup API
Content from developer.android.com/training/cloudsync/backupapi.html through their Creative Commons Attribution 2.5 license

When a user purchases a new device or resets
their existing one, they might expect that when
Google Play restores your app back to their
device during the initial setup, the previous data
associated with the app restores as well. By
default, that doesn't happen and all the user's
accomplishments or settings in your app are lost.
For situations where the volume of data is
relatively light (less than a megabyte), like the
user's preferences, notes, game high scores or
other stats, the Backup API provides a lightweight
solution. This lesson walks you through integrating
the Backup API into your application, and
restoring data to new devices using the Backup
API.

Register for the Android Backup Service
This lesson requires the use of the Android Backup Service, which requires registration. Go ahead and
register here. Once that's done, the service pre-populates an XML tag for insertion in your Android
Manifest, which looks like this:

<meta-data android:name="com.google.android.backup.api_key"
android:value="ABcDe1FGHij2KlmN3oPQRs4TUvW5xYZ" />

Note that each backup key works with a specific package name. If you have different applications, register
separate keys for each one.

Configure Your Manifest
Use of the Android Backup Service requires two additions to your application manifest. First, declare the
name of the class that acts as your backup agent, then add the snippet above as a child element of the
Application tag. Assuming your backup agent is going to be called TheBackupAgent, here's an example
of what the manifest looks like with this tag included:

<application android:label="MyApp"
 android:backupAgent="TheBackupAgent">
 ...
 <meta-data android:name="com.google.android.backup.api_key"
 android:value="ABcDe1FGHij2KlmN3oPQRs4TUvW5xYZ" />
 ...
</application>

Write Your Backup Agent
The easiest way to create your backup agent is by extending the wrapper class BackupAgentHelper.
Creating this helper class is actually a very simple process. Just create a class with the same name as you
used in the manifest in the previous step (in this example, TheBackupAgent), and extend
BackupAgentHelper. Then override the onCreate().
Inside the onCreate() method, create a BackupHelper. These helpers are specialized classes for
backing up certain kinds of data. The Android framework currently includes two such helpers:

This lesson teaches you to
• Register for the Android Backup Service
• Configure Your Manifest
• Write Your Backup Agent
• Request a Backup
• Restore from a Backup
You should also read

• Data Backup

Using the Backup API

297
Content from developer.android.com/training/cloudsync/backupapi.html through their Creative Commons Attribution 2.5 license

FileBackupHelper and SharedPreferencesBackupHelper. After you create the helper and point it
at the data you want to back up, just add it to the BackupAgentHelper using the addHelper() method,
adding a key which is used to retrieve the data later. In most cases the entire implementation is perhaps
10 lines of code.
Here's an example that backs up a high scores file.

 import android.app.backup.BackupAgentHelper;
 import android.app.backup.FileBackupHelper;

 public class TheBackupAgent extends BackupAgentHelper {
 // The name of the SharedPreferences file
 static final String HIGH_SCORES_FILENAME = "scores";

 // A key to uniquely identify the set of backup data
 static final String FILES_BACKUP_KEY = "myfiles";

 // Allocate a helper and add it to the backup agent
 @Override
 void onCreate() {
 FileBackupHelper helper = new FileBackupHelper(this, HIGH_SCORES_FILENAME);
 addHelper(FILES_BACKUP_KEY, helper);
 }
}

For added flexibility, FileBackupHelper's constructor can take a variable number of filenames. You
could just as easily have backed up both a high scores file and a game progress file just by adding an
extra parameter, like this:

 @Override
 void onCreate() {
 FileBackupHelper helper = new FileBackupHelper(this, HIGH_SCORES_FILENAME,
PROGRESS_FILENAME);
 addHelper(FILES_BACKUP_KEY, helper);
 }

Backing up preferences is similarly easy. Create a SharedPreferencesBackupHelper the same way
you did a FileBackupHelper. In this case, instead of adding filenames to the constructor, add the
names of the shared preference groups being used by your application. Here's an example of how your
backup agent helper might look if high scores are implemented as preferences instead of a flat file:

Using the Backup API

298
Content from developer.android.com/training/cloudsync/backupapi.html through their Creative Commons Attribution 2.5 license

 import android.app.backup.BackupAgentHelper;
 import android.app.backup.SharedPreferencesBackupHelper;

 public class TheBackupAgent extends BackupAgentHelper {
 // The names of the SharedPreferences groups that the application maintains. These
 // are the same strings that are passed to getSharedPreferences(String, int).
 static final String PREFS_DISPLAY = "displayprefs";
 static final String PREFS_SCORES = "highscores";

 // An arbitrary string used within the BackupAgentHelper implementation to
 // identify the SharedPreferencesBackupHelper's data.
 static final String MY_PREFS_BACKUP_KEY = "myprefs";

 // Simply allocate a helper and install it
 void onCreate() {
 SharedPreferencesBackupHelper helper =
 new SharedPreferencesBackupHelper(this, PREFS_DISPLAY, PREFS_SCORES);
 addHelper(MY_PREFS_BACKUP_KEY, helper);
 }
 }

You can add as many backup helper instances to your backup agent helper as you like, but remember that
you only need one of each type. One FileBackupHelper handles all the files that you need to back up,
and one SharedPreferencesBackupHelper handles all the shared preferencegroups you need
backed up.

Request a Backup
In order to request a backup, just create an instance of the BackupManager, and call it's
dataChanged() method.

 import android.app.backup.BackupManager;
 ...

 public void requestBackup() {
 BackupManager bm = new BackupManager(this);
 bm.dataChanged();
 }

This call notifies the backup manager that there is data ready to be backed up to the cloud. At some point
in the future, the backup manager then calls your backup agent's onBackup() method. You can make the
call whenever your data has changed, without having to worry about causing excessive network activity. If
you request a backup twice before a backup occurs, the backup only occurs once.

Restore from a Backup
Typically you shouldn't ever have to manually request a restore, as it happens automatically when your
application is installed on a device. However, if it is necessary to trigger a manual restore, just call the
requestRestore() method.

Making the Most of Google Cloud Messaging

299
Content from developer.android.com/training/cloudsync/gcm.html through their Creative Commons Attribution 2.5 license

95. Making the Most of Google Cloud Messaging
Content from developer.android.com/training/cloudsync/gcm.html through their Creative Commons Attribution 2.5 license

Google Cloud Messaging (GCM) is a free service
for sending messages to Android devices. GCM
messaging can greatly enhance the user
experience. Your application can stay up to date
without wasting battery power on waking up the
radio and polling the server when there are no
updates. Also, GCM allows you to attach up to
1,000 recipients to a single message, letting you
easily contact large user bases quickly when
appropriate, while minimizing the work load on
your server.
This lesson covers some of the best practices for
integrating GCM into your application, and
assumes you are already familiar with basic implementation of this service. If this is not the case, you can
read the GCM demo app tutorial.

Send Multicast Messages Efficiently
One of the most useful features in GCM is support for up to 1,000 recipients for a single message. This
capability makes it much easier to send out important messages to your entire user base. For instance,
let's say you had a message that needed to be sent to 1,000,000 of your users, and your server could
handle sending out about 500 messages per second. If you send each message with only a single
recipient, it would take 1,000,000/500 = 2,000 seconds, or around half an hour. However, attaching 1,000
recipients to each message, the total time required to send a message out to 1,000,000 recipients
becomes (1,000,000/1,000) / 500 = 2 seconds. This is not only useful, but important for timely data, such
as natural disaster alerts or sports scores, where a 30 minute interval might render the information
useless.
Taking advantage of this functionality is easy. If you're using the GCM helper library for Java, simply
provide a List collection of registration IDs to the send or sendNoRetry method, instead of a single
registration ID.

// This method name is completely fabricated, but you get the idea.
List regIds = whoShouldISendThisTo(message);

// If you want the SDK to automatically retry a certain number of times, use the
// standard send method.
MulticastResult result = sender.send(message, regIds, 5);

// Otherwise, use sendNoRetry.
MulticastResult result = sender.sendNoRetry(message, regIds);

For those implementing GCM support in a language other than Java, construct an HTTP POST request
with the following headers:

• Authorization: key=YOUR_API_KEY
• Content-type: application/json

Then encode the parameters you want into a JSON object, listing all the registration IDs under the key
registration_ids. The snippet below serves as an example. All parameters except

This lesson teaches you to
• Send Multicast Messages Efficiently
• Collapse Messages that can Be Replaced
• Embed Data Directly in the GCM Message
• React Intelligently to GCM Messages
You should also read

• Google Cloud Messaging for Android

Making the Most of Google Cloud Messaging

300
Content from developer.android.com/training/cloudsync/gcm.html through their Creative Commons Attribution 2.5 license

registration_ids are optional, and the items nested in data represent the user-defined payload, not
GCM-defined parameters. The endpoint for this HTTP POST message will be
https://android.googleapis.com/gcm/send.

{ "collapse_key": "score_update",
 "time_to_live": 108,
 "delay_while_idle": true,
 "data": {
 "score": "4 x 8",
 "time": "15:16.2342"
 },
 "registration_ids":["4", "8", "15", "16", "23", "42"]
}

For a more thorough overview of the format of multicast GCM messages, see the Sending Messages
section of the GCM guide.

Collapse Messages that Can Be Replaced
GCM messages are often a tickle, telling the mobile application to contact the server for fresh data. In
GCM, it's possible (and recommended) to create collapsible messages for this situation, wherein new
messages replace older ones. Let's take the example of sports scores. If you send out a message to all
users following a certain game with the updated score, and then 15 minutes later an updated score
message goes out, the earlier one no longer matters. For any users who haven't received the first
message yet, there's no reason to send both, and force the device to react (and possibly alert the user)
twice when only one of the messages is still important.
When you define a collapse key, when multiple messages are queued up in the GCM servers for the same
user, only the last one with any given collapse key is delivered. For a situation like with sports scores, this
saves the device from doing needless work and potentially over-notifying the user. For situations that
involve a server sync (like checking email), this can cut down on the number of syncs the device has to do.
For instance, if there are 10 emails waiting on the server, and ten "new email" GCM tickles have been sent
to the device, it only needs one, since it should only sync once.
In order to use this feature, just add a collapse key to your outgoing message. If you're using the GCM
helper library, use the Message class's collapseKey(String key) method.

Message message = new Message.Builder(regId)
 .collapseKey("game4_scores") // The key for game 4.
 .ttl(600) // Time in seconds to keep message queued if device offline.
 .delayWhileIdle(true) // Wait for device to become active before sending.
 .addPayload("key1", "value1")
 .addPayload("key2", "value2")
 .build();

If not using the helper library, simply add a variable to the POST header you're constructing, with
collapse_key as the field name, and the string you're using for that set of updates as the value.

Embed Data Directly in the GCM Message
Often, GCM messages are meant to be a tickle, or indication to the device that there's fresh data waiting
on a server somewhere. However, a GCM message can be up to 4kb in size, so sometimes it makes
sense to simply send the data within the GCM message itself, so that the device doesn't need to contact
the server at all. Consider this approach for situations where all of the following statements are true:

• The total data fits inside the 4kb limit.
• Each message is important, and should be preserved.

Making the Most of Google Cloud Messaging

301
Content from developer.android.com/training/cloudsync/gcm.html through their Creative Commons Attribution 2.5 license

• It doesn't make sense to collapse multiple GCM messages into a single "new data on the server"
tickle.

For instance, short messages or encoded player moves in a turn-based network game are examples of
good use-cases for data to embed directly into a GCM message. Email is an example of a bad use-case,
since messages are often larger than 4kb, and users don't need a GCM message for each email waiting
for them on the server.
Also consider this approach when sending multicast messages, so you don't tell every device across your
user base to hit your server for updates simultaneously.
This strategy isn't appropriate for sending large amounts of data, for a few reasons:

• Rate limits are in place to prevent malicious or poorly coded apps from spamming an individual
device with messages.

• Messages aren't guaranteed to arrive in-order.
• Messages aren't guaranteed to arrive as fast as you send them out. Even if the device receives

one GCM message a second, at a max of 1K, that's 8kbps, or about the speed of home dial-up
internet in the early 1990's. Your app rating on Google Play will reflect having done that to your
users.

When used appropriately, directly embedding data in the GCM message can speed up the perceived
speediness of your application, by letting it skip a round trip to the server.

React Intelligently to GCM Messages
Your application should not only react to incoming GCM messages, but react intelligently. How to react
depends on the context.

Don't be irritating
When it comes to alerting your user of fresh data, it's easy to cross the line from "useful" to "annoying". If
your application uses status bar notifications, update your existing notification instead of creating a second
one. If you beep or vibrate to alert the user, consider setting up a timer. Don't let the application alert more
than once a minute, lest users be tempted to uninstall your application, turn the device off, or toss it in a
nearby river.

Sync smarter, not harder
When using GCM as an indicator to the device that data needs to be downloaded from the server,
remember you have 4kb of metadata you can send along to help your application be smart about it. For
instance, if you have a feed reading app, and your user has 100 feeds that they follow, help the device be
smart about what it downloads from the server! Look at the following examples of what metadata is sent to
your application in the GCM payload, and how the application can react:

• refresh — Your app basically got told to request a dump of every feed it follows. Your app
would either need to send feed requests to 100 different servers, or if you have an aggregator on
your server, send a request to retrieve, bundle and transmit recent data from 100 different feeds,
every time one updates.

• refresh, feedID — Better: Your app knows to check a specific feed for updates.
• refresh, feedID, timestamp — Best: If the user happened to manually refresh before the

GCM message arrived, the application can compare timestamps of the most recent post, and
determine that it doesn't need to do anything.

Resolving Cloud Save Conflicts

302
Content from developer.android.com/training/cloudsave/conflict-res.html through their Creative Commons Attribution 2.5 license

96. Resolving Cloud Save Conflicts
Content from developer.android.com/training/cloudsave/conflict-res.html through their Creative Commons Attribution 2.5 license

This article describes how to design a robust
conflict resolution strategy for apps that save data
to the cloud using the Cloud Save service. The
Cloud Save service allows you to store application
data for each user of an application on Google's
servers. Your application can retrieve and update
this user data from Android devices, iOS devices,
or web applications by using the Cloud Save APIs.
Saving and loading progress in Cloud Save is
straightforward: it's just a matter of serializing the
player's data to and from byte arrays and storing
those arrays in the cloud. However, when your
user has multiple devices and two or more of them
attempt to save data to the cloud, the saves might
conflict, and you must decide how to resolve it.
The structure of your cloud save data largely
dictates how robust your conflict resolution can
be, so you must design your data carefully in
order to allow your conflict resolution logic to
handle each case correctly.
The article starts by describing a few flawed approaches and explains where they fall short. Then it
presents a solution for avoiding conflicts. The discussion focuses on games, but you can apply the same
principles to any app that saves data to the cloud.

Get Notified of Conflicts
The OnStateLoadedListener methods are responsible for loading an application's state data from
Google's servers. The callback OnStateLoadedListener.onStateConflict provides a mechanism
for your application to resolve conflicts between the local state on a user's device and the state stored in
the cloud:

@Override
public void onStateConflict(int stateKey, String resolvedVersion,
 byte[] localData, byte[] serverData) {
 // resolve conflict, then call mAppStateClient.resolveConflict()
 ...
}

At this point your application must choose which one of the data sets should be kept, or it can submit a
new data set that represents the merged data. It is up to you to implement this conflict resolution logic.
It's important to realize that the Cloud Save service synchronizes data in the background. Therefore, you
should ensure that your app is prepared to receive that callback outside of the context where you originally
generated the data. Specifically, if the Google Play services application detects a conflict in the
background, the callback will be called the next time you attempt to load the data, which might not happen
until the next time the user starts the app.
Therefore, design of your cloud save data and conflict resolution code must be context-independent: given
two conflicting save states, you must be able to resolve the conflict using only the data available within the
data sets, without consulting any external context.

In this section
• Get Notified of Conflicts
• Handle the Simple Cases
• Design a Strategy for More Complex Cases
• First Attempt: Store Only the Total
• Second Attempt: Store the Total and the
Delta
• Solution: Store the Sub-totals per Device
• Clean Up Your Data
You should also read

• Cloud Save
• Cloud Save in Android

Resolving Cloud Save Conflicts

303
Content from developer.android.com/training/cloudsave/conflict-res.html through their Creative Commons Attribution 2.5 license

Handle the Simple Cases
Here are some simple cases of conflict resolution. For many apps, it is sufficient to adopt a variant of one
of these strategies:

• New is better than old. In some cases, new data should always replace old data. For example, if
the data represents the player's choice for a character's shirt color, then a more recent choice
should override an older choice. In this case, you would probably choose to store the timestamp
in the cloud save data. When resolving the conflict, pick the data set with the most recent
timestamp (remember to use a reliable clock, and be careful about time zone differences).

• One set of data is clearly better than the other. In other cases, it will always be clear which
data can be defined as "best". For example, if the data represents the player's best time in a
racing game, then it's clear that, in case of conflicts, you should keep the best (smallest) time.

• Merge by union. It may be possible to resolve the conflict by computing a union of the two
conflicting sets. For example, if your data represents the set of levels that player has unlocked,
then the resolved data is simply the union of the two conflicting sets. This way, players won't lose
any levels they have unlocked. The CollectAllTheStars sample game uses a variant of this
strategy.

Design a Strategy for More Complex Cases
A more complicated case happens when your game allows the player to collect fungible items or units,
such as gold coins or experience points. Let's consider a hypothetical game, called Coin Run, an infinite
runner where the goal is to collect coins and become very, very rich. Each coin collected gets added to the
player's piggy bank.
The following sections describe three strategies for resolving sync conflicts between multiple devices: two
that sound good but ultimately fail to successfully resolve all scenarios, and one final solution that can
manage conflicts between any number of devices.

First Attempt: Store Only the Total
At first thought, it might seem that the cloud save data should simply be the number of coins in the bank.
But if that data is all that's available, conflict resolution will be severely limited. The best you could do
would be to pick the largest of the two numbers in case of a conflict.
Consider the scenario illustrated in Table 1. Suppose the player initially has 20 coins, and then collects 10
coins on device A and 15 coins on device B. Then device B saves the state to the cloud. When device A
attempts to save, a conflict is detected. The "store only the total" conflict resolution algorithm would resolve
the conflict by writing 35 (the largest of the two numbers).
Table 1. Storing only the total number of coins (failed strategy).

Event Data on
Device A

Data on
Device B

Data on
Cloud

Actual
Total

Starting conditions 20 20 20 20

Player collects 10 coins on device A 30 20 20 30

Player collects 15 coins on device B 30 35 20 45

Resolving Cloud Save Conflicts

304
Content from developer.android.com/training/cloudsave/conflict-res.html through their Creative Commons Attribution 2.5 license

Device B saves state to cloud 30 35 35 45

Device A tries to save state to cloud.
Conflict detected.

30 35 35 45

Device A resolves conflict by picking largest
of the two numbers.

35 35 35 45

This strategy would fail—the player's bank has gone from 20 to 35, when the user actually collected a total
of 25 coins (10 on device A and 15 on device B). So 10 coins were lost. Storing only the total number of
coins in the cloud save is not enough to implement a robust conflict resolution algorithm.

Second Attempt: Store the Total and the Delta
A different approach is to include an additional field in the save data: the number of coins added (the delta)
since the last commit. In this approach the save data can be represented by a tuple (T,d) where T is the
total number of coins and d is the number of coins that you just added.
With this structure, your conflict resolution algorithm has room to be more robust, as illustrated below. But
this approach still doesn't give your app a reliable picture of the player's overall state.
Here is the conflict resolution algorithm for including the delta:

• Local data: (T, d)
• Cloud data: (T', d')
• Resolved data: (T' + d, d)

For example, when you get a conflict between the local state (T,d) and the cloud state (T',d'), you can
resolve it as (T'+d, d). What this means is that you are taking the delta from your local data and
incorporating it into the cloud data, hoping that this will correctly account for any gold coins that were
collected on the other device.
This approach might sound promising, but it breaks down in a dynamic mobile environment:

• Users might save state when the device is offline. These changes will be queued up for
submission when the device comes back online.

• The way that sync works is that the most recent change overwrites any previous changes. In
other words, the second write is the only one that gets sent to the cloud (this happens when the
device eventually comes online), and the delta in the first write is ignored.

To illustrate, consider the scenario illustrated by Table 2. After the series of operations shown in the table,
the cloud state will be (130, +5). This means the resolved state would be (140, +10). This is incorrect
because in total, the user has collected 110 coins on device A and 120 coins on device B. The total should
be 250 coins.
Table 2. Failure case for total+delta strategy.

Event Data on
Device A

Data on
Device B

Data on
Cloud

Actual
Total

Resolving Cloud Save Conflicts

305
Content from developer.android.com/training/cloudsave/conflict-res.html through their Creative Commons Attribution 2.5 license

Starting conditions (20, x) (20, x) (20, x) 20

Player collects 100 coins on device A (120, +100) (20, x) (20, x) 120

Player collects 10 more coins on device A (130, +10) (20, x) (20, x) 130

Player collects 115 coins on device B (130, +10) (125, +115) (20, x) 245

Player collects 5 more coins on device B (130, +10) (130, +5) (20, x) 250

Device B uploads its data to the cloud (130, +10) (130, +5) (130, +5) 250

Device A tries to upload its data to the
cloud.
Conflict detected.

(130, +10) (130, +5) (130, +5) 250

Device A resolves the conflict by applying
the local delta to the cloud total.

(140, +10) (130, +5) (140, +10) 250

(*): x represents data that is irrelevant to our scenario.
You might try to fix the problem by not resetting the delta after each save, so that the second save on each
device accounts for all the coins collected thus far. With that change the second save made by device A
would be (130, +110) instead of (130, +10). However, you would then run into the problem illustrated in
Table 3.
Table 3. Failure case for the modified algorithm.

Event Data on
Device A

Data on
Device B

Data on
Cloud

Actual
Total

Starting conditions (20, x) (20, x) (20, x) 20

Player collects 100 coins on device A (120, +100) (20, x) (20, x) 120

Device A saves state to cloud (120, +100) (20, x) (120, +100) 120

Player collects 10 more coins on device A (130, +110) (20, x) (120, +100) 130

Player collects 1 coin on device B (130, +110) (21, +1) (120, +100) 131

Resolving Cloud Save Conflicts

306
Content from developer.android.com/training/cloudsave/conflict-res.html through their Creative Commons Attribution 2.5 license

Device B attempts to save state to cloud.
Conflict detected.

(130, +110) (21, +1) (120, +100) 131

Device B solves conflict by applying local
delta to cloud total.

(130, +110) (121, +1) (121, +1) 131

Device A tries to upload its data to the
cloud.
Conflict detected.

(130, +110) (121, +1) (121, +1) 131

Device A resolves the conflict by applying
the local delta to the cloud total.

(231, +110) (121, +1) (231, +110) 131

(*): x represents data that is irrelevant to our scenario.
Now you have the opposite problem: you are giving the player too many coins. The player has gained 211
coins, when in fact she has collected only 111 coins.

Solution: Store the Sub-totals per Device
Analyzing the previous attempts, it seems that what those strategies fundamentally miss is the ability to
know which coins have already been counted and which coins have not been counted yet, especially in the
presence of multiple consecutive commits coming from different devices.
The solution to the problem is to change the structure of your cloud save to be a dictionary that maps
strings to integers. Each key-value pair in this dictionary represents a "drawer" that contains coins, and the
total number of coins in the save is the sum of the values of all entries. The fundamental principle of this
design is that each device has its own drawer, and only the device itself can put coins into that drawer.
The structure of the dictionary is (A:a, B:b, C:c, ...), where a is the total number of coins in the drawer A, b
is the total number of coins in drawer B, and so on.
The new conflict resolution algorithm for the "drawer" solution is as follows:

• Local data: (A:a, B:b, C:c, ...)
• Cloud data: (A:a', B:b', C:c', ...)
• Resolved data: (A:max(a,a'), B:max(b,b'), C:max(c,c'), ...)

For example, if the local data is (A:20, B:4, C:7) and the cloud data is (B:10, C:2, D:14), then the resolved
data will be (A:20, B:10, C:7, D:14). Note that how you apply conflict resolution logic to this dictionary data
may vary depending on your app. For example, for some apps you might want to take the lower value.
To test this new algorithm, apply it to any of the test scenarios mentioned above. You will see that it arrives
at the correct result.
Table 4 illustrates this, based on the scenario from Table 3. Note the following:

• In the initial state, the player has 20 coins. This is accurately reflected on each device and the
cloud. This value is represented as a dictionary (X:20), where the value of X isn't significant—we
don't care where this initial data came from.

• When the player collects 100 coins on device A, this change is packaged as a dictionary and
saved to the cloud. The dictionary's value is 100 because that is the number of coins that the

Resolving Cloud Save Conflicts

307
Content from developer.android.com/training/cloudsave/conflict-res.html through their Creative Commons Attribution 2.5 license

player collected on device A. There is no calculation being performed on the data at this point—
device A is simply reporting the number of coins the player collected on it.

• Each new submission of coins is packaged as a dictionary associated with the device that saved
it to the cloud. When the player collects 10 more coins on device A, for example, the device A
dictionary value is updated to be 110.

• The net result is that the app knows the total number of coins the player has collected on each
device. Thus it can easily calculate the total.

Table 4. Successful application of the key-value pair strategy.

Event Data on Device A Data on Device B Data on Cloud Actual
Total

Starting conditions (X:20, x) (X:20, x) (X:20, x) 20

Player collects 100 coins on
device A

(X:20, A:100) (X:20) (X:20) 120

Device A saves state to cloud (X:20, A:100) (X:20) (X:20, A:100) 120

Player collects 10 more coins
on device A

(X:20, A:110) (X:20) (X:20, A:100) 130

Player collects 1 coin on
device B

(X:20, A:110) (X:20, B:1) (X:20, A:100) 131

Device B attempts to save
state to cloud.
Conflict detected.

(X:20, A:110) (X:20, B:1) (X:20, A:100) 131

Device B solves conflict (X:20, A:110) (X:20, A:100, B:1) (X:20, A:100, B:1) 131

Device A tries to upload its
data to the cloud.
Conflict detected.

(X:20, A:110) (X:20, A:100, B:1) (X:20, A:100, B:1) 131

Device A resolves the conflict (X:20, A:110, B:1) (X:20, A:100, B:1) (X:20, A:110, B:1)
total 131

131

Clean Up Your Data
There is a limit to the size of cloud save data, so in following the strategy outlined in this article, take care
not to create arbitrarily large dictionaries. At first glance it may seem that the dictionary will have only one
entry per device, and even the very enthusiastic user is unlikely to have thousands of them. However,

Resolving Cloud Save Conflicts

308
Content from developer.android.com/training/cloudsave/conflict-res.html through their Creative Commons Attribution 2.5 license

obtaining a device ID is difficult and considered a bad practice, so instead you should use an installation
ID, which is easier to obtain and more reliable. This means that the dictionary might have one entry for
each time the user installed the application on each device. Assuming each key-value pair takes 32 bytes,
and since an individual cloud save buffer can be up to 128K in size, you are safe if you have up to 4,096
entries.
In real-life situations, your data will probably be more complex than a number of coins. In this case, the
number of entries in this dictionary may be much more limited. Depending on your implementation, it might
make sense to store the timestamp for when each entry in the dictionary was modified. When you detect
that a given entry has not been modified in the last several weeks or months, it is probably safe to transfer
the coins into another entry and delete the old entry.

Transferring Data Using Sync Adapters

309
Content from developer.android.com/training/sync-adapters/index.html through their Creative Commons Attribution 2.5 license

97. Transferring Data Using Sync Adapters
Content from developer.android.com/training/sync-adapters/index.html through their Creative Commons Attribution 2.5 license

Synchronizing data between an Android device
and web servers can make your application
significantly more useful and compelling for your
users. For example, transferring data to a web
server makes a useful backup, and transferring
data from a server makes it available to the user
even when the device is offline. In some cases,
users may find it easier to enter and edit their data
in a web interface and then have that data
available on their device, or they may want to
collect data over time and then upload it to a
central storage area.
Although you can design your own system for
doing data transfers in your app, you should
consider using Android's sync adapter framework.
This framework helps manage and automate data
transfers, and coordinates synchronization
operations across different apps. When you use this framework, you can take advantage of several
features that aren't available to data transfer schemes you design yourself:
Plug-in architecture

Allows you to add data transfer code to the system in the form of callable components.
Automated execution

Allows you to automate data transfer based on a variety of criteria, including data changes,
elapsed time, or time of day. In addition, the system adds transfers that are unable to run to a
queue, and runs them when possible.

Automated network checking
The system only runs your data transfer when the device has network connectivity.

Improved battery performance
Allows you to centralize all of your app's data transfer tasks in one place, so that they all run at
the same time. Your data transfer is also scheduled in conjunction with data transfers from other
apps. These factors reduce the number of times the system has to switch on the network, which
reduces battery usage.

Account management and authentication
If your app requires user credentials or server login, you can optionally integrate account
management and authentication into your data transfer.

This class shows you how to create a sync adapter and the bound Service that wraps it, how to provide
the other components that help you plug the sync adapter into the framework, and how to run the sync
adapter to run in various ways.
Note: Sync adapters run asynchronously, so you should use them with the expectation that they transfer
data regularly and efficiently, but not instantaneously. If you need to do real-time data transfer, you should
do it in an AsyncTask or an IntentService.

Lessons
Creating a Stub Authenticator

Dependencies and prerequisites

• Android 2.1 (API Level 7) or higher

You should also read

• Bound Services
• Content Providers
• Creating a Custom Account Type

Try it out
Download the sample
BasicSyncAdapter.zip

Transferring Data Using Sync Adapters

310
Content from developer.android.com/training/sync-adapters/index.html through their Creative Commons Attribution 2.5 license

Learn how to add an account-handling component that the sync adapter framework expects to be
part of your app. This lesson shows you how to create a stub authentication component for
simplicity.

Creating a Stub Content Provider
Learn how to add a content provider component that the sync adapter framework expects to be
part of your app. This lesson assumes that your app doesn't use a content provider, so it shows
you how to add a stub component. If you have a content provider already in your app, you can
skip this lesson.

Creating a Sync Adapter
Learn how to encapsulate your data transfer code in a component that the sync adapter
framework can run automatically.

Running a Sync Adapter
Learn how to trigger and schedule data transfers using the sync adapter framework.

Creating a Stub Authenticator

311
Content from developer.android.com/training/sync-adapters/creating-authenticator.html through their Creative Commons Attribution 2.5 license

98. Creating a Stub Authenticator
Content from developer.android.com/training/sync-adapters/creating-authenticator.html through their Creative Commons Attribution 2.5 license

The sync adapter framework assumes that your
sync adapter transfers data between device
storage associated with an account and server
storage that requires login access. For this
reason, the framework expects you to provide a
component called an authenticator as part of your
sync adapter. This component plugs into the
Android accounts and authentication framework
and provides a standard interface for handling
user credentials such as login information.
Even if your app doesn't use accounts, you still
need to provide an authenticator component. If
you don't use accounts or server login, the
information handled by the authenticator is
ignored, so you can provide an authenticator
component that contains stub method
implementations. You also need to provide a
bound Service that allows the sync adapter framework to call the authenticator's methods.
This lesson shows you how to define all the parts of a stub authenticator that you need to satisfy the
requirements of the sync adapter framework. If you need to provide a real authenticator that handles user
accounts, read the reference documentation for AbstractAccountAuthenticator.

Add a Stub Authenticator Component
To add a stub authenticator component to your app, create a class that extends
AbstractAccountAuthenticator, and then stub out the required methods, either by returning null
or by throwing an exception.
The following snippet shows an example of a stub authenticator class:

This lesson teaches you to
• Add a Stub Authenticator Component
• Bind the Authenticator to the Framework
• Add the Authenticator Metadata File
• Declare the Authenticator in the Manifest
You should also read

• Bound Services

Try it out
Download the sample
BasicSyncAdapter.zip

Creating a Stub Authenticator

312
Content from developer.android.com/training/sync-adapters/creating-authenticator.html through their Creative Commons Attribution 2.5 license

/*
 * Implement AbstractAccountAuthenticator and stub out all
 * of its methods
 */
public class Authenticator extends AbstractAccountAuthenticator {
 // Simple constructor
 public Authenticator(Context context) {
 super(context);
 }
 // Editing properties is not supported
 @Override
 public Bundle editProperties(
 AccountAuthenticatorResponse r, String s) {
 throw new UnsupportedOperationException();
 }
 // Don't add additional accounts
 @Override
 public Bundle addAccount(
 AccountAuthenticatorResponse r,
 String s,
 String s2,
 String[] strings,
 Bundle bundle) throws NetworkErrorException {
 return null;
 }
 // Ignore attempts to confirm credentials
 @Override
 public Bundle confirmCredentials(
 AccountAuthenticatorResponse r,
 Account account,
 Bundle bundle) throws NetworkErrorException {
 return null;
 }
 // Getting an authentication token is not supported
 @Override
 public Bundle getAuthToken(
 AccountAuthenticatorResponse r,
 Account account,
 String s,
 Bundle bundle) throws NetworkErrorException {
 throw new UnsupportedOperationException();
 }
 // Getting a label for the auth token is not supported
 @Override
 public String getAuthTokenLabel(String s) {
 throw new UnsupportedOperationException();
 }
 // Updating user credentials is not supported
 @Override
 public Bundle updateCredentials(
 AccountAuthenticatorResponse r,
 Account account,
 String s, Bundle bundle) throws NetworkErrorException {
 throw new UnsupportedOperationException();
 }
 // Checking features for the account is not supported
 @Override
 public Bundle hasFeatures(
 AccountAuthenticatorResponse r,
 Account account, String[] strings) throws NetworkErrorException {

Creating a Stub Authenticator

313
Content from developer.android.com/training/sync-adapters/creating-authenticator.html through their Creative Commons Attribution 2.5 license

 throw new UnsupportedOperationException();
 }
}

Bind the Authenticator to the Framework
In order for the sync adapter framework to access your authenticator, you must create a bound Service for
it. This service provides an Android binder object that allows the framework to call your authenticator and
pass data between the authenticator and the framework.
Since the framework starts this Service the first time it needs to access the authenticator, you can also
use the service to instantiate the authenticator, by calling the authenticator constructor in the
Service.onCreate() method of the service.
The following snippet shows you how to define the bound Service:

/**
 * A bound Service that instantiates the authenticator
 * when started.
 */
public class AuthenticatorService extends Service {
 ...
 // Instance field that stores the authenticator object
 private Authenticator mAuthenticator;
 @Override
 public void onCreate() {
 // Create a new authenticator object
 mAuthenticator = new Authenticator(this);
 }
 /*
 * When the system binds to this Service to make the RPC call
 * return the authenticator's IBinder.
 */
 @Override
 public IBinder onBind(Intent intent) {
 return mAuthenticator.getIBinder();
 }
}

Add the Authenticator Metadata File
To plug your authenticator component into the sync adapter and account frameworks, you need to provide
these framework with metadata that describes the component. This metadata declares the account type
you've created for your sync adapter and declares user interface elements that the system displays if you
want to make your account type visible to the user. Declare this metadata in a XML file stored in the
/res/xml/ directory in your app project. You can give any name to the file, although it's usually called
authenticator.xml.
This XML file contains a single element <account-authenticator> that has the following attributes:
android:accountType

The sync adapter framework requires each sync adapter to have an account type, in the form of a
domain name. The framework uses the account type as part of the sync adapter's internal
identification. For servers that require login, the account type along with a user account is sent to
the server as part of the login credentials.

Creating a Stub Authenticator

314
Content from developer.android.com/training/sync-adapters/creating-authenticator.html through their Creative Commons Attribution 2.5 license

If your server doesn't require login, you still have to provide an account type. For the value, use a
domain name that you control. While the framework uses it to manage your sync adapter, the
value is not sent to your server.

android:icon
Pointer to a Drawable resource containing an icon. If you make the sync adapter visible by
specifying the attribute android:userVisible="true" in res/xml/syncadapter.xml,
then you must provide this icon resource. It appears in the Accounts section of the system's
Settings app.

android:smallIcon
Pointer to a Drawable resource containing a small version of the icon. This resource may be used
instead of android:icon in the Accounts section of the system's Settings app, depending on
the screen size.

android:label
Localizable string that identifies the account type to users. If you make the sync adapter visible by
specifying the attribute android:userVisible="true" in res/xml/syncadapter.xml,
then you should provide this string. It appears in the Accounts section of the system's Settings
app, next to the icon you define for the authenticator.

The following snippet shows the XML file for the authenticator you created previously:

<?xml version="1.0" encoding="utf-8"?>
<account-authenticator
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:accountType="example.com"
 android:icon="@drawable/ic_launcher"
 android:smallIcon="@drawable/ic_launcher"
 android:label="@string/app_name"/>

Declare the Authenticator in the Manifest
In a previous step, you created a bound Service that links the authenticator to the sync adapter
framework. To identify this service to the system, declare it in your app manifest by adding the following
<service> element as a child element of <application>:

 <service
 android:name="com.example.android.syncadapter.AuthenticatorService">
 <intent-filter>
 <action android:name="android.accounts.AccountAuthenticator"/>
 </intent-filter>
 <meta-data
 android:name="android.accounts.AccountAuthenticator"
 android:resource="@xml/authenticator" />
 </service>

The <intent-filter> element sets up a filter that's triggered by the intent action
android.accounts.AccountAuthenticator, which sent by the system to run the authenticator.
When the filter is triggered, the system starts AuthenticatorService, the bound Service you have
provided to wrap the authenticator.
The <meta-data> element declares the metadata for the authenticator. The android:name attribute
links the meta-data to the authentication framework. The android:resource element specifies the
name of the authenticator metadata file you created previously.

Creating a Stub Authenticator

315
Content from developer.android.com/training/sync-adapters/creating-authenticator.html through their Creative Commons Attribution 2.5 license

Besides an authenticator, a sync adapter also requires a content provider. If your app doesn't use a
content provider already, go to the next lesson to learn how to create a stub content provider; otherwise,
go to the lesson Creating a Sync Adapter.

Creating a Stub Content Provider

316
Content from developer.android.com/training/sync-adapters/creating-stub-provider.html through their Creative Commons Attribution 2.5 license

99. Creating a Stub Content Provider
Content from developer.android.com/training/sync-adapters/creating-stub-provider.html through their Creative Commons Attribution 2.5 license

The sync adapter framework is designed to work
with device data managed by the flexible and
highly secure content provider framework. For this
reason, the sync adapter framework expects that
an app that uses the framework has already
defined a content provider for its local data. If the
sync adapter framework tries to run your sync
adapter, and your app doesn't have a content
provider, your sync adapter crashes.
If you're developing a new app that transfers data
from a server to the device, you should strongly
consider storing the local data in a content
provider. Besides their importance for sync
adapters, content providers offer a variety of
security benefits and are specifically designed to handle data storage on Android systems. To learn more
about creating a content provider, see Creating a Content Provider.
However, if you're already storing local data in another form, you can still use a sync adapter to handle
data transfer. To satisfy the sync adapter framework requirement for a content provider, add a stub content
provider to your app. A stub provider implements the content provider class, but all of its required methods
return null or 0. If you add a stub provider, you can then use a sync adapter to transfer data from any
storage mechanism you choose.
If you already have a content provider in your app, you don't need a stub content provider. In that case,
you can skip this lesson and proceed to the lesson Creating a Sync Adapter. If you don't yet have a
content provider, this lesson shows you how to add a stub content provider that allows you to plug your
sync adapter into the framework.

Add a Stub Content Provider
To create a stub content provider for your app, extend the class ContentProvider and stub out its
required methods. The following snippet shows you how to create the stub provider:

This lesson teaches you to
• Add a Stub Content Provider
• Declare the Provider in the Manifest
You should also read

• Content Provider Basics

Try it out
Download the sample
BasicSyncAdapter.zip

Creating a Stub Content Provider

317
Content from developer.android.com/training/sync-adapters/creating-stub-provider.html through their Creative Commons Attribution 2.5 license

/*
 * Define an implementation of ContentProvider that stubs out
 * all methods
 */
public class StubProvider extends ContentProvider {
 /*
 * Always return true, indicating that the
 * provider loaded correctly.
 */
 @Override
 public boolean onCreate() {
 return true;
 }
 /*
 * Return an empty String for MIME type
 */
 @Override
 public String getType() {
 return new String();
 }
 /*
 * query() always returns no results
 *
 */
 @Override
 public Cursor query(
 Uri uri,
 String[] projection,
 String selection,
 String[] selectionArgs,
 String sortOrder) {
 return null;
 }
 /*
 * insert() always returns null (no URI)
 */
 @Override
 public Uri insert(Uri uri, ContentValues values) {
 return null;
 }
 /*
 * delete() always returns "no rows affected" (0)
 */
 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 return 0;
 }
 /*
 * update() always returns "no rows affected" (0)
 */
 public int update(
 Uri uri,
 ContentValues values,
 String selection,
 String[] selectionArgs) {
 return 0;
 }
}

Creating a Stub Content Provider

318
Content from developer.android.com/training/sync-adapters/creating-stub-provider.html through their Creative Commons Attribution 2.5 license

Declare the Provider in the Manifest
The sync adapter framework verifies that your app has a content provider by checking that your app has
declared a provider in its app manifest. To declare the stub provider in the manifest, add a <provider>
element with the following attributes:
android:name="com.example.android.datasync.provider.StubProvider"

Specifies the fully-qualified name of the class that implements the stub content provider.
android:authorities="com.example.android.datasync.provider"

A URI authority that identifies the stub content provider. Make this value your app's package
name with the string ".provider" appended to it. Even though you're declaring your stub provider
to the system, nothing tries to access the provider itself.

android:exported="false"
Determines whether other apps can access the content provider. For your stub content provider,
set the value to false, since there's no need to allow other apps to see the provider. This value
doesn't affect the interaction between the sync adapter framework and the content provider.

android:syncable="true"
Sets a flag that indicates that the provider is syncable. If you set this flag to true, you don't have
to call setIsSyncable() in your code. The flag allows the sync adapter framework to make
data transfers with the content provider, but transfers only occur if you do them explicitly.

The following snippet shows you how to add the <provider> element to the app manifest:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.android.network.sync.BasicSyncAdapter"
 android:versionCode="1"
 android:versionName="1.0" >
 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 ...
 <provider
 android:name="com.example.android.datasync.provider.StubProvider"
 android:authorities="com.example.android.datasync.provider"
 android:export="false"
 android:syncable="true"/>
 ...
 </application>
</manifest>

Now that you have created the dependencies required by the sync adapter framework, you can create the
component that encapsulates your data transfer code. This component is called a sync adapter. The next
lesson shows you how to add this component to your app.

Creating a Sync Adapter

319
Content from developer.android.com/training/sync-adapters/creating-sync-adapter.html through their Creative Commons Attribution 2.5 license

100. Creating a Sync Adapter
Content from developer.android.com/training/sync-adapters/creating-sync-adapter.html through their Creative Commons Attribution 2.5 license

The sync adapter component in your app
encapsulates the code for the tasks that transfer
data between the device and a server. Based on
the scheduling and triggers you provide in your
app, the sync adapter framework runs the code in
the sync adapter component. To add a sync
adapter component to your app, you need to add
the following pieces:
Sync adapter class.

A class that wraps your data transfer
code in an interface compatible with the
sync adapter framework.

Bound Service.
A component that allows the sync
adapter framework to run the code in
your sync adapter class.

Sync adapter XML metadata file.
A file containing information about your
sync adapter. The framework reads this
file to find out how to load and schedule
your data transfer.

Declarations in the app manifest.
XML that declares the bound service and points to sync adapter-specific metadata.

This lesson shows you how to define these elements.

Create a Sync Adapter Class
In this part of the lesson you learn how to create the sync adapter class that encapsulates the data transfer
code. Creating the class includes extending the sync adapter base class, defining constructors for the
class, and implementing the method where you define the data transfer tasks.

Extend the base sync adapter class AbstractThreadedSyncAdapter
To create the sync adapter component, start by extending AbstractThreadedSyncAdapter and writing
its constructors. Use the constructors to run setup tasks each time your sync adapter component is
created from scratch, just as you use Activity.onCreate() to set up an activity. For example, if your
app uses a content provider to store data, use the constructors to get a ContentResolver instance.
Since a second form of the constructor was added in Android platform version 3.0 to support the
parallelSyncs argument, you need to create two forms of the constructor to maintain compatibility.
Note: The sync adapter framework is designed to work with sync adapter components that are singleton
instances. Instantiating the sync adapter component is covered in more detail in the section Bind the Sync
Adapter to the Framework.
The following example shows you how to implement AbstractThreadedSyncAdapterand its
constructors:

This lesson teaches you to
• Create the Sync Adapter Class
• Bind the Sync Adapter to the Framework
• Add the Account Required by the
Framework
• Add the Sync Adapter Metadata File
• Declare the Sync Adapter in the Manifest
You should also read

• Bound Services
• Content Providers
• Creating a Custom Account Type

Try it out
Download the sample
BasicSyncAdapter.zip

Creating a Sync Adapter

320
Content from developer.android.com/training/sync-adapters/creating-sync-adapter.html through their Creative Commons Attribution 2.5 license

/**
 * Handle the transfer of data between a server and an
 * app, using the Android sync adapter framework.
 */
public class SyncAdapter extends AbstractThreadedSyncAdapter {
 ...
 // Global variables
 // Define a variable to contain a content resolver instance
 ContentResolver mContentResolver;
 /**
 * Set up the sync adapter
 */
 public SyncAdapter(Context context, boolean autoInitialize) {
 super(context, autoInitialize);
 /*
 * If your app uses a content resolver, get an instance of it
 * from the incoming Context
 */
 mContentResolver = context.getContentResolver();
 }
 ...
 /**
 * Set up the sync adapter. This form of the
 * constructor maintains compatibility with Android 3.0
 * and later platform versions
 */
 public SyncAdapter(
 Context context,
 boolean autoInitialize,
 boolean allowParallelSyncs) {
 super(context, autoInitialize, allowParallelSyncs);
 /*
 * If your app uses a content resolver, get an instance of it
 * from the incoming Context
 */
 mContentResolver = context.getContentResolver();
 ...
 }

Add the data transfer code to onPerformSync()
The sync adapter component does not automatically do data transfer. Instead, it encapsulates your data
transfer code, so that the sync adapter framework can run the data transfer in the background, without
involvement from your app. When the framework is ready to sync your application's data, it invokes your
implementation of the method onPerformSync().
To facilitate the transfer of data from your main app code to the sync adapter component, the sync adapter
framework calls onPerformSync() with the following arguments:
Account

An Account object associated with the event that triggered the sync adapter. If your server
doesn't use accounts, you don't need to use the information in this object.

Extras
A Bundle containing flags sent by the event that triggered the sync adapter.

Authority
The authority of a content provider in the system. Your app has to have access to this provider.
Usually, the authority corresponds to a content provider in your own app.

Creating a Sync Adapter

321
Content from developer.android.com/training/sync-adapters/creating-sync-adapter.html through their Creative Commons Attribution 2.5 license

Content provider client
A ContentProviderClient for the content provider pointed to by the authority argument. A
ContentProviderClient is a lightweight public interface to a content provider. It has the
same basic functionality as a ContentResolver. If you're using a content provider to store data
for your app, you can connect to the provider with this object. Otherwise, you can ignore it.

Sync result
A SyncResult object that you use to send information to the sync adapter framework.

The following snippet shows the overall structure of onPerformSync():

 /*
 * Specify the code you want to run in the sync adapter. The entire
 * sync adapter runs in a background thread, so you don't have to set
 * up your own background processing.
 */
 @Override
 public void onPerformSync(
 Account account,
 Bundle extras,
 String authority,
 ContentProviderClient provider,
 SyncResult syncResult) {
 /*
 * Put the data transfer code here.
 */
 ...
 }

While the actual implementation of onPerformSync() is specific to your app's data synchronization
requirements and server connection protocols, there are a few general tasks your implementation should
perform:
Connecting to a server

Although you can assume that the network is available when your data transfer starts, the sync
adapter framework doesn't automatically connect to a server.

Downloading and uploading data
A sync adapter doesn't automate any data transfer tasks. If you want to download data from a
server and store it in a content provider, you have to provide the code that requests the data,
downloads it, and inserts it in the provider. Similarly, if you want to send data to a server, you
have to read it from a file, database, or provider, and send the necessary upload request. You
also have to handle network errors that occur while your data transfer is running.

Handling data conflicts or determining how current the data is
A sync adapter doesn't automatically handle conflicts between data on the server and data on the
device. Also, it doesn't automatically detect if the data on the server is newer than the data on the
device, or vice versa. Instead, you have to provide your own algorithms for handling this situation.

Clean up.
Always close connections to a server and clean up temp files and caches at the end of your data
transfer.

Note: The sync adapter framework runs onPerformSync() on a background thread, so you don't have
to set up your own background processing.
In addition to your sync-related tasks, you should try to combine your regular network-related tasks and
add them to onPerformSync(). By concentrating all of your network tasks in this method, you conserve

Creating a Sync Adapter

322
Content from developer.android.com/training/sync-adapters/creating-sync-adapter.html through their Creative Commons Attribution 2.5 license

the battery power that's needed to start and stop the network interfaces. To learn more about making
network access more efficient, see the training class Transferring Data Without Draining the Battery, which
describes several network access tasks you can include in your data transfer code.

Bind the Sync Adapter to the Framework
You now have your data transfer code encapsulated in a sync adapter component, but you have to provide
the framework with access to your code. To do this, you need to create a bound Service that passes a
special Android binder object from the sync adapter component to the framework. With this binder object,
the framework can invoke the onPerformSync() method and pass data to it.
Instantiate your sync adapter component as a singleton in the onCreate() method of the service. By
instantiating the component in onCreate(), you defer creating it until the service starts, which happens
when the framework first tries to run your data transfer. You need to instantiate the component in a thread-
safe manner, in case the sync adapter framework queues up multiple executions of your sync adapter in
response to triggers or scheduling.
For example, the following snippet shows you how to create a class that implements the bound Service,
instantiates your sync adapter component, and gets the Android binder object:

Creating a Sync Adapter

323
Content from developer.android.com/training/sync-adapters/creating-sync-adapter.html through their Creative Commons Attribution 2.5 license

package com.example.android.syncadapter;
/**
 * Define a Service that returns an IBinder for the
 * sync adapter class, allowing the sync adapter framework to call
 * onPerformSync().
 */
public class SyncService extends Service {
 // Storage for an instance of the sync adapter
 private static SyncAdapter sSyncAdapter = null;
 // Object to use as a thread-safe lock
 private static final Object sSyncAdapterLock = new Object();
 /*
 * Instantiate the sync adapter object.
 */
 @Override
 public void onCreate() {
 /*
 * Create the sync adapter as a singleton.
 * Set the sync adapter as syncable
 * Disallow parallel syncs
 */
 synchronized (sSyncAdapterLock) {
 if (sSyncAdapter == null) {
 sSyncAdapter = new SyncAdapter(getApplicationContext(), true);
 }
 }
 }
 /**
 * Return an object that allows the system to invoke
 * the sync adapter.
 *
 */
 @Override
 public IBinder onBind(Intent intent) {
 /*
 * Get the object that allows external processes
 * to call onPerformSync(). The object is created
 * in the base class code when the SyncAdapter
 * constructors call super()
 */
 return sSyncAdapter.getSyncAdapterBinder();
 }
}

Note: To see a more detailed example of a bound service for a sync adapter, see the sample app.

Add the Account Required by the Framework
The sync adapter framework requires each sync adapter to have an account type. You declared the
account type value in the section Add the Authenticator Metadata File. Now you have to set up this
account type in the Android system. To set up the account type, add a dummy account that uses the
account type by calling addAccountExplicitly().
The best place to call the method is in the onCreate() method of your app's opening activity. The
following code snippet shows you how to do this:

Creating a Sync Adapter

324
Content from developer.android.com/training/sync-adapters/creating-sync-adapter.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity {
 ...
 ...
 // Constants
 // The authority for the sync adapter's content provider
 public static final String AUTHORITY = "com.example.android.datasync.provider"
 // An account type, in the form of a domain name
 public static final String ACCOUNT_TYPE = "example.com";
 // The account name
 public static final String ACCOUNT = "dummyaccount";
 // Instance fields
 Account mAccount;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 // Create the dummy account
 mAccount = CreateSyncAccount(this);
 ...
 }
 ...
 /**
 * Create a new dummy account for the sync adapter
 *
 * @param context The application context
 */
 public static Account CreateSyncAccount(Context context) {
 // Create the account type and default account
 Account newAccount = new Account(
 ACCOUNT, ACCOUNT_TYPE);
 // Get an instance of the Android account manager
 AccountManager accountManager =
 (AccountManager) context.getSystemService(
 ACCOUNT_SERVICE);
 /*
 * Add the account and account type, no password or user data
 * If successful, return the Account object, otherwise report an error.
 */
 if (accountManager.addAccountExplicitly(newAccount, null, null))) {
 /*
 * If you don't set android:syncable="true" in
 * in your <provider> element in the manifest,
 * then call context.setIsSyncable(account, AUTHORITY, 1)
 * here.
 */
 } else {
 /*
 * The account exists or some other error occurred. Log this, report it,
 * or handle it internally.
 */
 }
 }
 ...
}

Add the Sync Adapter Metadata File

Creating a Sync Adapter

325
Content from developer.android.com/training/sync-adapters/creating-sync-adapter.html through their Creative Commons Attribution 2.5 license

To plug your sync adapter component into the framework, you need to provide the framework with
metadata that describes the component and provides additional flags. The metadata specifies the account
type you've created for your sync adapter, declares a content provider authority associated with your app,
controls a part of the system user interface related to sync adapters, and declares other sync-related flags.
Declare this metadata in a special XML file stored in the /res/xml/ directory in your app project. You can
give any name to the file, although it's usually called syncadapter.xml.
This XML file contains a single XML element <sync-adapter> that has the following attributes:
android:contentAuthority

The URI authority for your content provider. If you created a stub content provider for your app in
the previous lesson Creating a Stub Content Provider, use the value you specified for the attribute
android:authorities in the <provider> element you added to your app manifest. This
attribute is described in more detail in the section Declare the Provider in the Manifest.
If you're transferring data from a content provider to a server with your sync adapter, this value
should be the same as the content URI authority you're using for that data. This value is also one
of the authorities you specify in the android:authorities attribute of the <provider>
element that declares your provider in your app manifest.

android:accountType
The account type required by the sync adapter framework. The value must be the same as the
account type value you provided when you created the authenticator metadata file, as described
in the section Add the Authenticator Metadata File. It's also the value you specified for the
constant ACCOUNT_TYPE in the code snippet in the section Add the Account Required by the
Framework.

Settings attributes
android:userVisible
Sets the visibility of the sync adapter's account type. By default, the account icon and label
associated with the account type are visible in the Accounts section of the system's Settings
app, so you should make your sync adapter invisible unless you have an account type or domain
that's easily associated with your app. If you make your account type invisible, you can still allow
users to control your sync adapter with a user interface in one of your app's activities.
android:supportsUploading
Allows you to upload data to the cloud. Set this to false if your app only downloads data.
android:allowParallelSyncs
Allows multiple instances of your sync adapter component to run at the same time. Use this if
your app supports multiple user accounts and you want to allow multiple users to transfer data in
parallel. This flag has no effect if you never run multiple data transfers.
android:isAlwaysSyncable
Indicates to the sync adapter framework that it can run your sync adapter at any time you've
specified. If you want to programmatically control when your sync adapter can run, set this flag to
false, and then call requestSync() to run the sync adapter. To learn more about running a
sync adapter, see the lesson Running a Sync Adapter

The following example shows the XML for a sync adapter that uses a single dummy account and only
does downloads.

Creating a Sync Adapter

326
Content from developer.android.com/training/sync-adapters/creating-sync-adapter.html through their Creative Commons Attribution 2.5 license

<?xml version="1.0" encoding="utf-8"?>
<sync-adapter
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:contentAuthority="com.example.android.datasync.provider"
 android:accountType="com.android.example.datasync"
 android:userVisible="false"
 android:supportsUploading="false"
 android:allowParallelSyncs="false"
 android:isAlwaysSyncable="true"/>

Declare the Sync Adapter in the Manifest
Once you've added the sync adapter component to your app, you have to request permissions related to
using the component, and you have to declare the bound Service you've added.
Since the sync adapter component runs code that transfers data between the network and the device, you
need to request permission to access the Internet. In addition, your app needs to request permission to
read and write sync adapter settings, so you can control the sync adapter programmatically from other
components in your app. You also need to request a special permission that allows your app to use the
authenticator component you created in the lesson Creating a Stub Authenticator.
To request these permissions, add the following to your app manifest as child elements of <manifest>:
android.permission.INTERNET

Allows the sync adapter code to access the Internet so that it can download or upload data from
the device to a server. You don't need to add this permission again if you were requesting it
previously.

android.permission.READ_SYNC_SETTINGS
Allows your app to read the current sync adapter settings. For example, you need this permission
in order to call getIsSyncable().

android.permission.WRITE_SYNC_SETTINGS
Allows your app to control sync adapter settings. You need this permission in order to set periodic
sync adapter runs using addPeriodicSync(). This permission is not required to call
requestSync(). To learn more about running the sync adapter, see Running A Sync Adapter.

android.permission.AUTHENTICATE_ACCOUNTS
Allows you to use the authenticator component you created in the lesson Creating a Stub
Authenticator.

The following snippet shows how to add the permissions:

<manifest>
...
 <uses-permission
 android:name="android.permission.INTERNET"/>
 <uses-permission
 android:name="android.permission.READ_SYNC_SETTINGS"/>
 <uses-permission
 android:name="android.permission.WRITE_SYNC_SETTINGS"/>
 <uses-permission
 android:name="android.permission.AUTHENTICATE_ACCOUNTS"/>
...
</manifest>

Finally, to declare the bound Service that the framework uses to interact with your sync adapter, add the
following XML to your app manifest as a child element of <application>:

Creating a Sync Adapter

327
Content from developer.android.com/training/sync-adapters/creating-sync-adapter.html through their Creative Commons Attribution 2.5 license

 <service
 android:name="com.example.android.datasync.SyncService"
 android:exported="true"
 android:process=":sync">
 <intent-filter>com.example.android.datasync.provider
 <action android:name="android.content.SyncAdapter"/>
 </intent-filter>
 <meta-data android:name="android.content.SyncAdapter"
 android:resource="@xml/syncadapter" />
 </service>

The <intent-filter> element sets up a filter that's triggered by the intent action
android.content.SyncAdapter, sent by the system to run the sync adapter. When the filter is
triggered, the system starts the bound service you've created, which in this example is SyncService. The
attribute android:exported="true" allows processes other than your app (including the system) to
access the Service. The attribute android:process=":sync" tells the system to run the Service in
a global shared process named sync. If you have multiple sync adapters in your app they can share this
process, which reduces overhead.
The <meta-data> element provides provides the name of the sync adapter metadata XML file you
created previously. The android:name attribute indicates that this metadata is for the sync adapter
framework. The android:resource element specifies the name of the metadata file.
You now have all of the components for your sync adapter. The next lesson shows you how to tell the sync
adapter framework to run your sync adapter, either in response to an event or on a regular schedule.

Running a Sync Adapter

328
Content from developer.android.com/training/sync-adapters/running-sync-adapter.html through their Creative Commons Attribution 2.5 license

101. Running a Sync Adapter
Content from developer.android.com/training/sync-adapters/running-sync-adapter.html through their Creative Commons Attribution 2.5 license

In the previous lessons in this class, you learned
how to create a sync adapter component that
encapsulates data transfer code, and how to add
the additional components that allow you to plug
the sync adapter into the system. You now have
everything you need to install an app that includes
a sync adapter, but none of the code you've seen
actually runs the sync adapter.
You should try to run your sync adapter based on
a schedule or as the indirect result of some event.
For example, you may want your sync adapter to
run on a regular schedule, either after a certain
period of time or at a particular time of the day.
You may also want to run your sync adapter when
there are changes to data stored on the device.
You should avoid running your sync adapter as
the direct result of a user action, because by doing
this you don't get the full benefit of the sync
adapter framework's scheduling ability. For
example, you should avoid providing a refresh
button in your user interface.
You have the following options for running your sync adapter:
When server data changes

Run the sync adapter in response to a message from a server, indicating that server-based data
has changed. This option allows you to refresh data from the server to the device without
degrading performance or wasting battery life by polling the server.

When device data changes
Run a sync adapter when data changes on the device. This option allows you to send modified
data from the device to a server, and is especially useful if you need to ensure that the server
always has the latest device data. This option is straightforward to implement if you actually store
data in your content provider. If you're using a stub content provider, detecting data changes may
be more difficult.

When the system sends out a network message
Run a sync adapter when the Android system sends out a network message that keeps the
TCP/IP connection open; this message is a basic part of the networking framework. Using this
option is one way to run the sync adapter automatically. Consider using it in conjunction with
interval-based sync adapter runs.

At regular intervals
Run a sync adapter after the expiration of an interval you choose, or run it at a certain time every
day.

On demand
Run the sync adapter in response to a user action. However, to provide the best user experience
you should rely primarily on one of the more automated options. By using automated options, you
conserve battery and network resources.

The rest of this lesson describes each of the options in more detail.

This lesson teaches you how to:
• Run the Sync Adapter When Server Data
Changes
• Run the Sync Adapter When Content
Provider Data Changes
• Run the Sync Adapter After a Network
Message
• Run the Sync Adapter Periodically
• Run the Sync Adapter On Demand
You should also read

• Content Providers

Try it out
Download the sample
BasicSyncAdapter.zip

Running a Sync Adapter

329
Content from developer.android.com/training/sync-adapters/running-sync-adapter.html through their Creative Commons Attribution 2.5 license

Run the Sync Adapter When Server Data Changes
If your app transfers data from a server and the server data changes frequently, you can use a sync
adapter to do downloads in response to data changes. To run the sync adapter, have the server send a
special message to a BroadcastReceiver in your app. In response to this message, call
ContentResolver.requestSync() to signal the sync adapter framework to run your sync adapter.
Google Cloud Messaging (GCM) provides both the server and device components you need to make this
messaging system work. Using GCM to trigger transfers is more reliable and more efficient than polling
servers for status. While polling requires a Service that is always active, GCM uses a
BroadcastReceiver that's activated when a message arrives. While polling at regular intervals uses
battery power even if no updates are available, GCM only sends messages when needed.
Note: If you use GCM to trigger your sync adapter via a broadcast to all devices where your app is
installed, remember that they receive your message at roughly the same time. This situation can cause
multiple instance of your sync adapter to run at the same time, causing server and network overload. To
avoid this situation for a broadcast to all devices, you should consider deferring the start of the sync
adapter for a period that's unique for each device.
The following code snippet shows you how to run requestSync() in response to an incoming GCM
message:

Running a Sync Adapter

330
Content from developer.android.com/training/sync-adapters/running-sync-adapter.html through their Creative Commons Attribution 2.5 license

public class GcmBroadcastReceiver extends BroadcastReceiver {
 ...
 // Constants
 // Content provider authority
 public static final String AUTHORITY = "com.example.android.datasync.provider"
 // Account type
 public static final String ACCOUNT_TYPE = "com.example.android.datasync";
 // Account
 public static final String ACCOUNT = "default_account";
 // Incoming Intent key for extended data
 public static final String KEY_SYNC_REQUEST =
 "com.example.android.datasync.KEY_SYNC_REQUEST";
 ...
 @Override
 public void onReceive(Context context, Intent intent) {
 // Get a GCM object instance
 GoogleCloudMessaging gcm =
 GoogleCloudMessaging.getInstance(context);
 // Get the type of GCM message
 String messageType = gcm.getMessageType(intent);
 /*
 * Test the message type and examine the message contents.
 * Since GCM is a general-purpose messaging system, you
 * may receive normal messages that don't require a sync
 * adapter run.
 * The following code tests for a a boolean flag indicating
 * that the message is requesting a transfer from the device.
 */
 if (GoogleCloudMessaging.MESSAGE_TYPE_MESSAGE.equals(messageType)
 &&
 intent.getBooleanExtra(KEY_SYNC_REQUEST)) {
 /*
 * Signal the framework to run your sync adapter. Assume that
 * app initialization has already created the account.
 */
 ContentResolver.requestSync(ACCOUNT, AUTHORITY, null);
 ...
 }
 ...
 }
 ...
}

Run the Sync Adapter When Content Provider Data Changes
If your app collects data in a content provider, and you want to update the server whenever you update the
provider, you can set up your app to run your sync adapter automatically. To do this, you register an
observer for the content provider. When data in your content provider changes, the content provider
framework calls the observer. In the observer, call requestSync() to tell the framework to run your sync
adapter.
Note: If you're using a stub content provider, you don't have any data in the content provider and
onChange() is never called. In this case, you have to provide your own mechanism for detecting changes
to device data. This mechanism is also responsible for calling requestSync() when the data changes.
To create an observer for your content provider, extend the class ContentObserver and implement both
forms of its onChange() method. In onChange(), call requestSync() to start the sync adapter.

Running a Sync Adapter

331
Content from developer.android.com/training/sync-adapters/running-sync-adapter.html through their Creative Commons Attribution 2.5 license

To register the observer, pass it as an argument in a call to registerContentObserver(). In this call,
you also have to pass in a content URI for the data you want to watch. The content provider framework
compares this watch URI to content URIs passed in as arguments to ContentResolver methods that
modify your provider, such as ContentResolver.insert(). If there's a match, your implementation of
ContentObserver.onChange() is called.
The following code snippet shows you how to define a ContentObserver that calls requestSync()
when a table changes:

Running a Sync Adapter

332
Content from developer.android.com/training/sync-adapters/running-sync-adapter.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity {
 ...
 // Constants
 // Content provider scheme
 public static final String SCHEME = "content://";
 // Content provider authority
 public static final String AUTHORITY = "com.example.android.datasync.provider";
 // Path for the content provider table
 public static final String TABLE_PATH = "data_table";
 // Account
 public static final String ACCOUNT = "default_account";
 // Global variables
 // A content URI for the content provider's data table
 Uri mUri;
 // A content resolver for accessing the provider
 ContentResolver mResolver;
 ...
 public class TableObserver extends ContentObserver {
 /*
 * Define a method that's called when data in the
 * observed content provider changes.
 * This method signature is provided for compatibility with
 * older platforms.
 */
 @Override
 public void onChange(boolean selfChange) {
 /*
 * Invoke the method signature available as of
 * Android platform version 4.1, with a null URI.
 */
 onChange(selfChange, null);
 }
 /*
 * Define a method that's called when data in the
 * observed content provider changes.
 */
 @Override
 public void onChange(boolean selfChange, Uri changeUri) {
 /*
 * Ask the framework to run your sync adapter.
 * To maintain backward compatibility, assume that
 * changeUri is null.
 ContentResolver.requestSync(ACCOUNT, AUTHORITY, null);
 }
 ...
 }
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 // Get the content resolver object for your app
 mResolver = getContentResolver();
 // Construct a URI that points to the content provider data table
 mUri = new Uri.Builder()
 .scheme(SCHEME)
 .authority(AUTHORITY)
 .path(TABLE_PATH)
 .build();
 /*

Running a Sync Adapter

333
Content from developer.android.com/training/sync-adapters/running-sync-adapter.html through their Creative Commons Attribution 2.5 license

 * Create a content observer object.
 * Its code does not mutate the provider, so set
 * selfChange to "false"
 */
 TableObserver observer = new TableObserver(false);
 /*
 * Register the observer for the data table. The table's path
 * and any of its subpaths trigger the observer.
 */
 mResolver.registerContentObserver(mUri, true, observer);
 ...
 }
 ...
}

Run the Sync Adapter After a Network Message
When a network connection is available, the Android system sends out a message every few seconds to
keep the device's TCP/IP connection open. This message also goes to the ContentResolver of each
app. By calling setSyncAutomatically(), you can run the sync adapter whenever the
ContentResolver receives the message.
By scheduling your sync adapter to run when the network message is sent, you ensure that your sync
adapter is always scheduled to run while the network is available. Use this option if you don't have to force
a data transfer in response to data changes, but you do want to ensure your data is regularly updated.
Similarly, you can use this option if you don't want a fixed schedule for your sync adapter, but you do want
it to run frequently.
Since the method setSyncAutomatically() doesn't disable addPeriodicSync(), your sync adapter
may be triggered repeatedly in a short period of time. If you do want to run your sync adapter periodically
on a regular schedule, you should disable setSyncAutomatically().
The following code snippet shows you how to configure your ContentResolver to run your sync adapter
in response to a network message:

public class MainActivity extends FragmentActivity {
 ...
 // Constants
 // Content provider authority
 public static final String AUTHORITY = "com.example.android.datasync.provider";
 // Account
 public static final String ACCOUNT = "default_account";
 // Global variables
 // A content resolver for accessing the provider
 ContentResolver mResolver;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 // Get the content resolver for your app
 mResolver = getContentResolver();
 // Turn on automatic syncing for the default account and authority
 mResolver.setSyncAutomatically(ACCOUNT, AUTHORITY, true);
 ...
 }
 ...
}

Running a Sync Adapter

334
Content from developer.android.com/training/sync-adapters/running-sync-adapter.html through their Creative Commons Attribution 2.5 license

Run the Sync Adapter Periodically
You can run your sync adapter periodically by setting a period of time to wait between runs, or by running it
at certain times of the day, or both. Running your sync adapter periodically allows you to roughly match the
update interval of your server.
Similarly, you can upload data from the device when your server is relatively idle, by scheduling your sync
adapter to run at night. Most users leave their powered on and plugged in at night, so this time is usually
available. Moreover, the device is not running other tasks at the same time as your sync adapter. If you
take this approach, however, you need to ensure that each device triggers a data transfer at a slightly
different time. If all devices run your sync adapter at the same time, you are likely to overload your server
and cell provider data networks.
In general, periodic runs make sense if your users don't need instant updates, but expect to have regular
updates. Periodic runs also make sense if you want to balance the availability of up-to-date data with the
efficiency of smaller sync adapter runs that don't over-use device resources.
To run your sync adapter at regular intervals, call addPeriodicSync(). This schedules your sync
adapter to run after a certain amount of time has elapsed. Since the sync adapter framework has to
account for other sync adapter executions and tries to maximize battery efficiency, the elapsed time may
vary by a few seconds. Also, the framework won't run your sync adapter if the network is not available.
Notice that addPeriodicSync() doesn't run the sync adapter at a particular time of day. To run your
sync adapter at roughly the same time every day, use a repeating alarm as a trigger. Repeating alarms are
described in more detail in the reference documentation for AlarmManager. If you use the method
setInexactRepeating() to set time-of-day triggers that have some variation, you should still
randomize the start time to ensure that sync adapter runs from different devices are staggered.
The method addPeriodicSync() doesn't disable setSyncAutomatically(), so you may get
multiple sync runs in a relatively short period of time. Also, only a few sync adapter control flags are
allowed in a call to addPeriodicSync(); the flags that are not allowed are described in the referenced
documentation for addPeriodicSync().
The following code snippet shows you how to schedule periodic sync adapter runs:

Running a Sync Adapter

335
Content from developer.android.com/training/sync-adapters/running-sync-adapter.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity {
 ...
 // Constants
 // Content provider authority
 public static final String AUTHORITY = "com.example.android.datasync.provider";
 // Account
 public static final String ACCOUNT = "default_account";
 // Sync interval constants
 public static final long MILLISECONDS_PER_SECOND = 1000L;
 public static final long SECONDS_PER_MINUTE = 60L;
 public static final long SYNC_INTERVAL_IN_MINUTES = 60L;
 public static final long SYNC_INTERVAL =
 SYNC_INTERVAL_IN_MINUTES *
 SECONDS_PER_MINUTE *
 MILLISECONDS_PER_SECOND;
 // Global variables
 // A content resolver for accessing the provider
 ContentResolver mResolver;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 // Get the content resolver for your app
 mResolver = getContentResolver();
 /*
 * Turn on periodic syncing
 */
 ContentResolver.addPeriodicSync(
 ACCOUNT,
 AUTHORITY,
 null,
 SYNC_INTERVAL);
 ...
 }
 ...
}

Run the Sync Adapter On Demand
Running your sync adapter in response to a user request is the least preferable strategy for running a sync
adapter. The framework is specifically designed to conserve battery power when it runs sync adapters
according to a schedule. Options that run a sync in response to data changes use battery power
effectively, since the power is used to provide new data.
In comparison, allowing users to run a sync on demand means that the sync runs by itself, which is
inefficient use of network and power resources. Also, providing sync on demand leads users to request a
sync even if there's no evidence that the data has changed, and running a sync that doesn't refresh data is
an ineffective use of battery power. In general, your app should either use other signals to trigger a sync or
schedule them at regular intervals, without user input.
However, if you still want to run the sync adapter on demand, set the sync adapter flags for a manual sync
adapter run, then call ContentResolver.requestSync().
Run on demand transfers with the following flags:
SYNC_EXTRAS_MANUAL

Forces a manual sync. The sync adapter framework ignores the existing settings, such as the flag
set by setSyncAutomatically().

Running a Sync Adapter

336
Content from developer.android.com/training/sync-adapters/running-sync-adapter.html through their Creative Commons Attribution 2.5 license

SYNC_EXTRAS_EXPEDITED
Forces the sync to start immediately. If you don't set this, the system may wait several seconds
before running the sync request, because it tries to optimize battery use by scheduling many
requests in a short period of time.

The following code snippet shows you how to call requestSync() in response to a button click:

public class MainActivity extends FragmentActivity {
 ...
 // Constants
 // Content provider authority
 public static final String AUTHORITY =
 "com.example.android.datasync.provider"
 // Account type
 public static final String ACCOUNT_TYPE = "com.example.android.datasync";
 // Account
 public static final String ACCOUNT = "default_account";
 // Instance fields
 Account mAccount;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 /*
 * Create the dummy account. The code for CreateSyncAccount
 * is listed in the lesson Creating a Sync Adapter
 */

 mAccount = CreateSyncAccount(this);
 ...
 }
 /**
 * Respond to a button click by calling requestSync(). This is an
 * asynchronous operation.
 *
 * This method is attached to the refresh button in the layout
 * XML file
 *
 * @param v The View associated with the method call,
 * in this case a Button
 */
 public void onRefreshButtonClick(View v) {
 ...
 // Pass the settings flags by inserting them in a bundle
 Bundle settingsBundle = new Bundle();
 settingsBundle.putBoolean(
 ContentResolver.SYNC_EXTRAS_MANUAL, true);
 settingsBundle.putBoolean(
 ContentResolver.SYNC_EXTRAS_EXPEDITED, true);
 /*
 * Request the sync for the default account, authority, and
 * manual sync settings
 */
 ContentResolver.requestSync(mAccount, AUTHORITY, settingsBundle);
 }

Building Apps with User Info & Location

337
Content from developer.android.com/training/building-userinfo.html through their Creative Commons Attribution 2.5 license

102. Building Apps with User Info & Location
Content from developer.android.com/training/building-userinfo.html through their Creative Commons Attribution 2.5 license
These classes teach you how to add user personalization to your app. Some of the ways you can do this is
by identifying users, providing information that's relevant to them, and providing information about the
world around them.

Accessing Contacts Data

338
Content from developer.android.com/training/contacts-provider/index.html through their Creative Commons Attribution 2.5 license

103. Accessing Contacts Data
Content from developer.android.com/training/contacts-provider/index.html through their Creative Commons Attribution 2.5 license

The Contacts Provider is the central repository of
the user's contacts information, including data
from contacts apps and social networking apps. In
your apps, you can access Contacts Provider
information directly by calling ContentResolver
methods or by sending intents to a contacts app.
This class focuses on retrieving lists of contacts,
displaying the details for a particular contact, and
modifying contacts using intents. The basic
techniques described here can be extended to
perform more complex tasks. In addition, this
class helps you understand the overall structure
and operation of the Contacts Provider.

Lessons
Retrieving a List of Contacts

Learn how to retrieve a list of contacts for
which the data matches all or part of a
search string, using the following techniques:

• Match by contact name
• Match any type of contact data
• Match a specific type of contact data, such as a phone number

Retrieving Details for a Contact
Learn how to retrieve the details for a single contact. A contact's details are data such as phone
numbers and email addresses. You can retrieve all details, or you can retrieve details of a specific
type, such as all email addresses.

Modifying Contacts Using Intents
Learn how to modify a contact by sending an intent to the People app.

Displaying the Quick Contact Badge
Learn how to display the QuickContactBadge widget. When the user clicks the contact badge
widget, a dialog opens that displays the contact's details and action buttons for apps that can
handle the details. For example, if the contact has an email address, the dialog displays an action
button for the default email app.

Dependencies and prerequisites

• Android 2.0 (API Level 5) or higher
• Experience in using Intent objects
• Experience in using content

providers

You should also read

• Content Provider Basics
• Contacts Provider

Try it out
Download the sample
ContactsList.zip

Retrieving a List of Contacts

339
Content from developer.android.com/training/contacts-provider/retrieve-names.html through their Creative Commons Attribution 2.5 license

104. Retrieving a List of Contacts
Content from developer.android.com/training/contacts-provider/retrieve-names.html through their Creative Commons Attribution 2.5 license

This lesson shows you how to retrieve a list of
contacts whose data matches all or part of a
search string, using the following techniques:
Match contact names

Retrieve a list of contacts by matching
the search string to all or part of the
contact name data. The Contacts
Provider allows multiple instances of the
same name, so this technique can return
a list of matches.

Match a specific type of data, such as a phone
number

Retrieve a list of contacts by matching
the search string to a particular type of
detail data such as an email address. For
example, this technique allows you to list
all of the contacts whose email address
matches the search string.

Match any type of data
Retrieve a list of contacts by matching
the search string to any type of detail data, including name, phone number, street address, email
address, and so forth. For example, this technique allows you to accept any type of data for a
search string and then list the contacts for which the data matches the string.

Note: All the examples in this lesson use a CursorLoader to retrieve data from the Contacts Provider. A
CursorLoader runs its query on a thread that's separate from the UI thread. This ensures that the query
doesn't slow down UI response times and cause a poor user experience. For more information, see the
Android training class Loading Data in the Background.

Request Permission to Read the Provider
To do any type of search of the Contacts Provider, your app must have READ_CONTACTS permission. To
request this, add this <uses-permission> element to your manifest file as a child element of
<manifest>:

 <uses-permission android:name="android.permission.READ_CONTACTS" />

Match a Contact by Name and List the Results
This technique tries to match a search string to the name of a contact or contacts in the Contact Provider's
ContactsContract.Contacts table. You usually want to display the results in a ListView, to allow
the user to choose among the matched contacts.

Define ListView and item layouts
To display the search results in a ListView, you need a main layout file that defines the entire UI
including the ListView, and an item layout file that defines one line of the ListView. For example, you
can define the main layout file res/layout/contacts_list_view.xml that contains the following
XML:

This lesson teaches you to
• Request Permission to Read the Provider
• Match a Contact by Name and List the
Results
• Match a Contact By a Specific Type of Data
• Match a Contact By Any Type of Data
You should also read

• Content Provider Basics
• Contacts Provider
• Loaders
• Creating a Search Interface

Try it out
Download the sample
ContactsList.zip

Retrieving a List of Contacts

340
Content from developer.android.com/training/contacts-provider/retrieve-names.html through their Creative Commons Attribution 2.5 license

<?xml version="1.0" encoding="utf-8"?>
<ListView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

This XML uses the built-in Android ListView widget android:id/list.
Define the item layout file contacts_list_item.xml with the following XML:

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/text1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"/>

This XML uses the built-in Android TextView widget android:text1.
Note: This lesson doesn't describe the UI for getting a search string from the user, because you may want
to get the string indirectly. For example, you can give the user an option to search for contacts whose
name matches a string in an incoming text message.
The two layout files you've written define a user interface that shows a ListView. The next step is to write
code that uses this UI to display a list of contacts.

Define a Fragment that displays the list of contacts
To display the list of contacts, start by defining a Fragment that's loaded by an Activity. Using a
Fragment is a more flexible technique, because you can use one Fragment to display the list and a
second Fragment to display the details for a contact that the user chooses from the list. Using this
approach, you can combine one of the techniques presented in this lesson with one from the lesson
Retrieving Details for a Contact.
To learn how to use one or more Fragment objects from an an Activity, read the training class
Building a Dynamic UI with Fragments.
To help you write queries against the Contacts Provider, the Android framework provides a contracts class
called ContactsContract, which defines useful constants and methods for accessing the provider.
When you use this class, you don't have to define your own constants for content URIs, table names, or
columns. To use this class, include the following statement:

import android.provider.ContactsContract;

Since the code uses a CursorLoader to retrieve data from the provider, you must specify that it
implements the loader interface LoaderManager.LoaderCallbacks. Also, to help detect which contact
the user selects from the list of search results, implement the adapter interface
AdapterView.OnItemClickListener. For example:

...
import android.support.v4.app.Fragment;
import android.support.v4.app.LoaderManager.LoaderCallbacks;
import android.widget.AdapterView;
...
public class ContactsFragment extends Fragment implements
 LoaderManager.LoaderCallbacks<Cursor>,
 AdapterView.OnItemClickListener {

Retrieving a List of Contacts

341
Content from developer.android.com/training/contacts-provider/retrieve-names.html through their Creative Commons Attribution 2.5 license

Define global variables
Define global variables that are used in other parts of the code:

 ...
 /*
 * Defines an array that contains column names to move from
 * the Cursor to the ListView.
 */
 @SuppressLint("InlinedApi")
 private final static String[] FROM_COLUMNS = {
 Build.VERSION.SDK_INT
 >= Build.VERSION_CODES.HONEYCOMB ?
 Contacts.DISPLAY_NAME_PRIMARY :
 Contacts.DISPLAY_NAME
 };
 /*
 * Defines an array that contains resource ids for the layout views
 * that get the Cursor column contents. The id is pre-defined in
 * the Android framework, so it is prefaced with "android.R.id"
 */
 private final static int[] TO_IDS = {
 android.R.id.text1
 };
 // Define global mutable variables
 // Define a ListView object
 ListView mContactsList;
 // Define variables for the contact the user selects
 // The contact's _ID value
 long mContactId;
 // The contact's LOOKUP_KEY
 String mContactKey;
 // A content URI for the selected contact
 Uri mContactUri;
 // An adapter that binds the result Cursor to the ListView
 private SimpleCursorAdapter mCursorAdapter;
 ...

Note: Since Contacts.DISPLAY_NAME_PRIMARY requires Android 3.0 (API version 11) or later, setting
your app's minSdkVersion to 10 or below generates an Android Lint warning in Eclipse with ADK. To
turn off this warning, add the annotation @SuppressLint("InlinedApi") before the definition of
FROM_COLUMNS.

Initialize the Fragment
Initialize the Fragment. Add the empty, public constructor required by the Android system, and inflate the
Fragment object's UI in the callback method onCreateView(). For example:

 // Empty public constructor, required by the system
 public ContactsFragment() {}

 // A UI Fragment must inflate its View
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 // Inflate the fragment layout
 return inflater.inflate(R.layout.contacts_list_layout, container, false);
 }

Retrieving a List of Contacts

342
Content from developer.android.com/training/contacts-provider/retrieve-names.html through their Creative Commons Attribution 2.5 license

Set up the CursorAdapter for the ListView
Set up the SimpleCursorAdapter that binds the results of the search to the ListView. To get the
ListView object that displays the contacts, you need to call Activity.findViewById() using the
parent activity of the Fragment. Use the Context of the parent activity when you call setAdapter().
For example:

 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 ...
 // Gets the ListView from the View list of the parent activity
 mContactsList = (ListView) getActivity().findViewById(R.layout.contact_list_view);
 // Gets a CursorAdapter
 mCursorAdapter = new SimpleCursorAdapter(
 getActivity(),
 R.layout.contact_list_item,
 null,
 FROM_COLUMNS, TO_IDS,
 0);
 // Sets the adapter for the ListView
 mContactsList.setAdapter(mCursorAdapter);
 }

Set the selected contact listener
When you display the results of a search, you usually want to allow the user to select a single contact for
further processing. For example, when the user clicks a contact you can display the contact's address on a
map. To provide this feature, you first defined the current Fragment as the click listener by specifying that
the class implements AdapterView.OnItemClickListener, as shown in the section Define a
Fragment that displays the list of contacts.
To continue setting up the listener, bind it to the ListView by calling the method
setOnItemClickListener() in onActivityCreated(). For example:

 public void onActivityCreated(Bundle savedInstanceState) {
 ...
 // Set the item click listener to be the current fragment.
 mContactsList.setOnItemClickListener(this);
 ...
 }

Since you specified that the current Fragment is the OnItemClickListener for the ListView, you
now need to implement its required method onItemClick(), which handles the click event. This is
described in a succeeding section.

Define a projection
Define a constant that contains the columns you want to return from your query. Each item in the
ListView displays the contact's display name, which contains the main form of the contact's name. In
Android 3.0 (API version 11) and later, the name of this column is Contacts.DISPLAY_NAME_PRIMARY;
in versions previous to that, its name is Contacts.DISPLAY_NAME.
The column Contacts._ID is used by the SimpleCursorAdapter binding process. Contacts._ID
and LOOKUP_KEY are used together to construct a content URI for the contact the user selects.

Retrieving a List of Contacts

343
Content from developer.android.com/training/contacts-provider/retrieve-names.html through their Creative Commons Attribution 2.5 license

...
@SuppressLint("InlinedApi")
private static final String[] PROJECTION =
 {
 Contacts._ID,
 Contacts.LOOKUP_KEY,
 Build.VERSION.SDK_INT
 >= Build.VERSION_CODES.HONEYCOMB ?
 Contacts.DISPLAY_NAME_PRIMARY :
 Contacts.DISPLAY_NAME

 };

Define constants for the Cursor column indexes
To get data from an individual column in a Cursor, you need the column's index within the Cursor. You
can define constants for the indexes of the Cursor columns, because the indexes are the same as the
order of the column names in your projection. For example:

// The column index for the _ID column
private static final int CONTACT_ID_INDEX = 0;
// The column index for the LOOKUP_KEY column
private static final int LOOKUP_KEY_INDEX = 1;

Specify the selection criteria
To specify the data you want, create a combination of text expressions and variables that tell the provider
the data columns to search and the values to find.
For the text expression, define a constant that lists the search columns. Although this expression can
contain values as well, the preferred practice is to represent the values with a "?" placeholder. During
retrieval, the placeholder is replaced with values from an array. Using "?" as a placeholder ensures that the
search specification is generated by binding rather than by SQL compilation. This practice eliminates the
possibility of malicious SQL injection. For example:

 // Defines the text expression
 @SuppressLint("InlinedApi")
 private static final String SELECTION =
 Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB ?
 Contacts.DISPLAY_NAME_PRIMARY + " LIKE ?" :
 Contacts.DISPLAY_NAME + " LIKE ?";
 // Defines a variable for the search string
 private String mSearchString;
 // Defines the array to hold values that replace the ?
 private String[] mSelectionArgs = { mSearchString };

Define the onItemClick() method
In a previous section, you set the item click listener for the ListView. Now implement the action for the
listener by defining the method AdapterView.OnItemClickListener.onItemClick():

Retrieving a List of Contacts

344
Content from developer.android.com/training/contacts-provider/retrieve-names.html through their Creative Commons Attribution 2.5 license

 @Override
 public void onItemClick(
 AdapterView<?> parent, View item, int position, long rowID) {
 // Get the Cursor
 Cursor cursor = parent.getAdapter().getCursor();
 // Move to the selected contact
 cursor.moveToPosition(position);
 // Get the _ID value
 mContactId = getLong(CONTACT_ID_INDEX);
 // Get the selected LOOKUP KEY
 mContactKey = getString(CONTACT_KEY_INDEX);
 // Create the contact's content Uri
 mContactUri = Contacts.getLookupUri(mContactId, mContactKey);
 /*
 * You can use mContactUri as the content URI for retrieving
 * the details for a contact.
 */
 }

Initialize the loader
Since you're using a CursorLoader to retrieve data, you must initialize the background thread and other
variables that control asynchronous retrieval. Do the initialization in onActivityCreated(), which is
invoked immediately before the Fragment UI appears, as shown in the following example:

public class ContactsFragment extends Fragment implements
 LoaderManager.LoaderCallbacks<Cursor> {
 ...
 // Called just before the Fragment displays its UI
 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 // Always call the super method first
 super.onActivityCreated(savedInstanceState);
 ...
 // Initializes the loader
 getLoaderManager().initLoader(0, null, this);

Implement onCreateLoader()
Implement the method onCreateLoader(), which is called by the loader framework immediately after
you call initLoader().
In onCreateLoader(), set up the search string pattern. To make a string into a pattern, insert "%"
(percent) characters to represent a sequence of zero or more characters, or "_" (underscore) characters to
represent a single character, or both. For example, the pattern "%Jefferson%" would match both "Thomas
Jefferson" and "Jefferson Davis".
Return a new CursorLoader from the method. For the content URI, use Contacts.CONTENT_URI. This
URI refers to the entire table, as shown in the following example:

Retrieving a List of Contacts

345
Content from developer.android.com/training/contacts-provider/retrieve-names.html through their Creative Commons Attribution 2.5 license

 ...
 @Override
 public Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
 /*
 * Makes search string into pattern and
 * stores it in the selection array
 */
 mSelectionArgs[0] = "%" + mSearchString + "%";
 // Starts the query
 return new CursorLoader(
 getActivity(),
 Contacts.CONTENT_URI,
 PROJECTION,
 SELECTION,
 mSelectionArgs,
 null
);
 }

Implement onLoadFinished() and onLoaderReset()
Implement the onLoadFinished() method. The loader framework calls onLoadFinished() when the
Contacts Provider returns the results of the query. In this method, put the result Cursor in the
SimpleCursorAdapter. This automatically updates the ListView with the search results:

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 // Put the result Cursor in the adapter for the ListView
 mCursorAdapter.swapCursor(cursor);
 }

The method onLoaderReset() is invoked when the loader framework detects that the result Cursor
contains stale data. Delete the SimpleCursorAdapter reference to the existing Cursor. If you don't,
the loader framework will not recycle the Cursor, which causes a memory leak. For example:

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 // Delete the reference to the existing Cursor
 mCursorAdapter.swapCursor(null);

 }

You now have the key pieces of an app that matches a search string to contact names and returns the
result in a ListView. The user can click a contact name to select it. This triggers a listener, in which you
can work further with the contact's data. For example, you can retrieve the contact's details. To learn how
to do this, continue with the next lesson, Retrieving Details for a Contact.
To learn more about search user interfaces, read the API guide Creating a Search Interface.
The remaining sections in this lesson demonstrate other ways of finding contacts in the Contacts Provider.

Match a Contact By a Specific Type of Data
This technique allows you to specify the type of data you want to match. Retrieving by name is a specific
example of this type of query, but you can also do it for any of the types of detail data associated with a
contact. For example, you can retrieve contacts that have a specific postal code; in this case, the search
string has to match data stored in a postal code row.
To implement this type of retrieval, first implement the following code, as listed in previous sections:

Retrieving a List of Contacts

346
Content from developer.android.com/training/contacts-provider/retrieve-names.html through their Creative Commons Attribution 2.5 license

• Request Permission to Read the Provider.
• Define ListView and item layouts.
• Define a Fragment that displays the list of contacts.
• Define global variables.
• Initialize the Fragment.
• Set up the CursorAdapter for the ListView.
• Set the selected contact listener.
• Define constants for the Cursor column indexes.

Although you're retrieving data from a different table, the order of the columns in the projection is
the same, so you can use the same indexes for the Cursor.

• Define the onItemClick() method.
• Initialize the loader.
• Implement onLoadFinished() and onLoaderReset().

The following steps show you the additional code you need to match a search string to a particular type of
detail data and display the results.

Choose the data type and table
To search for a particular type of detail data, you have to know the custom MIME type value for the data
type. Each data type has a unique MIME type value defined by a constant CONTENT_ITEM_TYPE in the
subclass of ContactsContract.CommonDataKinds associated with the data type. The subclasses
have names that indicate their data type; for example, the subclass for email data is
ContactsContract.CommonDataKinds.Email, and the custom MIME type for email data is defined
by the constant Email.CONTENT_ITEM_TYPE.
Use the ContactsContract.Data table for your search. All of the constants you need for your
projection, selection clause, and sort order are defined in or inherited by this table.

Define a projection
To define a projection, choose one or more of the columns defined in ContactsContract.Data or the
classes from which it inherits. The Contacts Provider does an implicit join between
ContactsContract.Data and other tables before it returns rows. For example:

 @SuppressLint("InlinedApi")
 private static final String[] PROJECTION =
 {
 /*
 * The detail data row ID. To make a ListView work,
 * this column is required.
 */
 Data._ID,
 // The primary display name
 Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB ?
 Data.DISPLAY_NAME_PRIMARY :
 Data.DISPLAY_NAME,
 // The contact's _ID, to construct a content URI
 Data.CONTACT_ID
 // The contact's LOOKUP_KEY, to construct a content URI
 Data.LOOKUP_KEY (a permanent link to the contact
 };

Retrieving a List of Contacts

347
Content from developer.android.com/training/contacts-provider/retrieve-names.html through their Creative Commons Attribution 2.5 license

Define search criteria
To search for a string within a particular type of data, construct a selection clause from the following:

• The name of the column that contains your search string. This name varies by data type, so you
need to find the subclass of ContactsContract.CommonDataKinds that corresponds to the
data type and then choose the column name from that subclass. For example, to search for email
addresses, use the column Email.ADDRESS.

• The search string itself, represented as the "?" character in the selection clause.
• The name of the column that contains the custom MIME type value. This name is always

Data.MIMETYPE.
• The custom MIME type value for the data type. As described previously, this is the constant

CONTENT_ITEM_TYPE in the ContactsContract.CommonDataKinds subclass. For example,
the MIME type value for email data is Email.CONTENT_ITEM_TYPE. Enclose the value in single
quotes by concatenating a "'" (single quote) character to the start and end of the constant;
otherwise, the provider interprets the value as a variable name rather than as a string value. You
don't need to use a placeholder for this value, because you're using a constant rather than a user-
supplied value.

For example:

 /*
 * Constructs search criteria from the search string
 * and email MIME type
 */
 private static final String SELECTION =
 /*
 * Searches for an email address
 * that matches the search string
 */
 Email.ADDRESS + " LIKE ? " + "AND " +
 /*
 * Searches for a MIME type that matches
 * the value of the constant
 * Email.CONTENT_ITEM_TYPE. Note the
 * single quotes surrounding Email.CONTENT_ITEM_TYPE.
 */
 Data.MIMETYPE + " = '" + Email.CONTENT_ITEM_TYPE + "'";

Next, define variables to contain the selection argument:

 String mSearchString;
 String[] mSelectionArgs = { "" };

Implement onCreateLoader()
Now that you've specified the data you want and how to find it, define a query in your implementation of
onCreateLoader(). Return a new CursorLoader from this method, using your projection, selection
text expression, and selection array as arguments. For a content URI, use Data.CONTENT_URI. For
example:

Retrieving a List of Contacts

348
Content from developer.android.com/training/contacts-provider/retrieve-names.html through their Creative Commons Attribution 2.5 license

 @Override
 public Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
 // OPTIONAL: Makes search string into pattern
 mSearchString = "%" + mSearchString + "%";
 // Puts the search string into the selection criteria
 mSelectionArgs[0] = mSearchString;
 // Starts the query
 return new CursorLoader(
 getActivity(),
 Data.CONTENT_URI,
 PROJECTION,
 SELECTION,
 mSelectionArgs,
 null
);
 }

These code snippets are the basis of a simple reverse lookup based on a specific type of detail data. This
is the best technique to use if your app focuses on a particular type of data, such as emails, and you want
allow users to get the names associated with a piece of data.

Match a Contact By Any Type of Data
Retrieving a contact based on any type of data returns contacts if any of their data matches a the search
string, including name, email address, postal address, phone number, and so forth. This results in a broad
set of search results. For example, if the search string is "Doe", then searching for any data type returns
the contact "John Doe"; it also returns contacts who live on "Doe Street".
To implement this type of retrieval, first implement the following code, as listed in previous sections:

• Request Permission to Read the Provider.
• Define ListView and item layouts.
• Define a Fragment that displays the list of contacts.
• Define global variables.
• Initialize the Fragment.
• Set up the CursorAdapter for the ListView.
• Set the selected contact listener.
• Define a projection.
• Define constants for the Cursor column indexes.

For this type of retrieval, you're using the same table you used in the section Match a Contact by
Name and List the Results. Use the same column indexes as well.

• Define the onItemClick() method.
• Initialize the loader.
• Implement onLoadFinished() and onLoaderReset().

The following steps show you the additional code you need to match a search string to any type of data
and display the results.

Remove selection criteria
Don't define the SELECTION constants or the mSelectionArgs variable. These aren't used in this type
of retrieval.

Retrieving a List of Contacts

349
Content from developer.android.com/training/contacts-provider/retrieve-names.html through their Creative Commons Attribution 2.5 license

Implement onCreateLoader()
Implement the onCreateLoader() method, returning a new CursorLoader. You don't need to convert
the search string into a pattern, because the Contacts Provider does that automatically. Use
Contacts.CONTENT_FILTER_URI as the base URI, and append your search string to it by calling
Uri.withAppendedPath(). Using this URI automatically triggers searching for any data type, as shown
in the following example:

 @Override
 public Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
 /*
 * Appends the search string to the base URI. Always
 * encode search strings to ensure they're in proper
 * format.
 */
 Uri contentUri = Uri.withAppendedPath(
 Contacts.CONTENT_FILTER_URI,
 Uri.encode(mSearchString));
 // Starts the query
 return new CursorLoader(
 getActivity(),
 contentUri,
 PROJECTION,
 null,
 null,
 null
);
 }

These code snippets are the basis of an app that does a broad search of the Contacts Provider. The
technique is useful for apps that want to implement functionality similar to the People app's contact list
screen.

Retrieving Details for a Contact

350
Content from developer.android.com/training/contacts-provider/retrieve-details.html through their Creative Commons Attribution 2.5 license

105. Retrieving Details for a Contact
Content from developer.android.com/training/contacts-provider/retrieve-details.html through their Creative Commons Attribution 2.5 license

This lesson shows how to retrieve detail data for a
contact, such as email addresses, phone
numbers, and so forth. It's the details that users
are looking for when they retrieve a contact. You
can give them all the details for a contact, or only
display details of a particular type, such as email
addresses.
The steps in this lesson assume that you already
have a ContactsContract.Contacts row for
a contact the user has picked. The Retrieving
Contact Names lesson shows how to retrieve a list
of contacts.

Retrieve All Details for a Contact
To retrieve all the details for a contact, search the
ContactsContract.Data table for any rows
that contain the contact's LOOKUP_KEY. This column is available in the ContactsContract.Data table,
because the Contacts Provider makes an implicit join between the ContactsContract.Contacts table
and the ContactsContract.Data table. The LOOKUP_KEY column is described in more detail in the
Retrieving Contact Names lesson.
Note: Retrieving all the details for a contact reduces the performance of a device, because it needs to
retrieve all of the columns in the ContactsContract.Data table. Consider the performance impact
before you use this technique.

Request permissions
To read from the Contacts Provider, your app must have READ_CONTACTS permission. To request this
permission, add the following child element of <manifest> to your manifest file:

 <uses-permission android:name="android.permission.READ_CONTACTS" />

Set up a projection
Depending on the data type a row contains, it may use only a few columns or many. In addition, the data is
in different columns depending on the data type. To ensure you get all the possible columns for all possible
data types, you need to add all the column names to your projection. Always retrieve Data._ID if you're
binding the result Cursor to a ListView; otherwise, the binding won't work. Also retrieve
Data.MIMETYPE so you can identify the data type of each row you retrieve. For example:

This lesson teaches you to
• Retrieve All Details for a Contact
• Retrieve Specific Details for a Contact
You should also read

• Content Provider Basics
• Contacts Provider
• Loaders

Try it out
Download the sample
ContactsList.zip

Retrieving Details for a Contact

351
Content from developer.android.com/training/contacts-provider/retrieve-details.html through their Creative Commons Attribution 2.5 license

 private static final String PROJECTION =
 {
 Data._ID,
 Data.MIMETYPE,
 Data.DATA1,
 Data.DATA2,
 Data.DATA3,
 Data.DATA4,
 Data.DATA5,
 Data.DATA6,
 Data.DATA7,
 Data.DATA8,
 Data.DATA9,
 Data.DATA10,
 Data.DATA11,
 Data.DATA12,
 Data.DATA13,
 Data.DATA14,
 Data.DATA15
 };

This projection retrieves all the columns for a row in the ContactsContract.Data table, using the
column names defined in the ContactsContract.Data class.
Optionally, you can also use any other column constants defined in or inherited by the
ContactsContract.Data class. Notice, however, that the columns SYNC1 through SYNC4 are meant to
be used by sync adapters, so their data is not useful.

Define the selection criteria
Define a constant for your selection clause, an array to hold selection arguments, and a variable to hold
the selection value. Use the Contacts.LOOKUP_KEY column to find the contact. For example:

 // Defines the selection clause
 private static final String SELECTION = Data.LOOKUP_KEY + " = ?";
 // Defines the array to hold the search criteria
 private String[] mSelectionArgs = { "" };
 /*
 * Defines a variable to contain the selection value. Once you
 * have the Cursor from the Contacts table, and you've selected
 * the desired row, move the row's LOOKUP_KEY value into this
 * variable.
 */
 private String mLookupKey;

Using "?" as a placeholder in your selection text expression ensures that the resulting search is generated
by binding rather than SQL compilation. This approach eliminates the possibility of malicious SQL
injection.

Define the sort order
Define the sort order you want in the resulting Cursor. To keep all rows for a particular data type together,
sort by Data.MIMETYPE. This query argument groups all email rows together, all phone rows together,
and so forth. For example:

Retrieving Details for a Contact

352
Content from developer.android.com/training/contacts-provider/retrieve-details.html through their Creative Commons Attribution 2.5 license

 /*
 * Defines a string that specifies a sort order of MIME type
 */
 private static final String SORT_ORDER = Data.MIMETYPE;

Note: Some data types don't use a subtype, so you can't sort on subtype. Instead, you have to iterate
through the returned Cursor, determine the data type of the current row, and store data for rows that use
a subtype. When you finish reading the cursor, you can then sort each data type by subtype and display
the results.

Initialize the Loader
Always do retrievals from the Contacts Provider (and all other content providers) in a background thread.
Use the Loader framework defined by the LoaderManager class and the
LoaderManager.LoaderCallbacks interface to do background retrievals.
When you're ready to retrieve the rows, initialize the loader framework by calling initLoader(). Pass an
integer identifier to the method; this identifier is passed to LoaderManager.LoaderCallbacks
methods. The identifier helps you use multiple loaders in an app by allowing you to differentiate between
them.
The following snippet shows how to initialize the loader framework:

public class DetailsFragment extends Fragment implements
 LoaderManager.LoaderCallbacks<Cursor> {
 ...
 // Defines a constant that identifies the loader
 DETAILS_QUERY_ID = 0;
 ...
 /*
 * Invoked when the parent Activity is instantiated
 * and the Fragment's UI is ready. Put final initialization
 * steps here.
 */
 @Override
 onActivityCreated(Bundle savedInstanceState) {
 ...
 // Initializes the loader framework
 getLoaderManager().initLoader(DETAILS_QUERY_ID, null, this);

Implement onCreateLoader()
Implement the onCreateLoader() method, which is called by the loader framework immediately after
you call initLoader(). Return a CursorLoader from this method. Since you're searching the
ContactsContract.Data table, use the constant Data.CONTENT_URI as the content URI. For
example:

Retrieving Details for a Contact

353
Content from developer.android.com/training/contacts-provider/retrieve-details.html through their Creative Commons Attribution 2.5 license

 @Override
 public Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
 // Choose the proper action
 switch (loaderId) {
 case DETAILS_QUERY_ID:
 // Assigns the selection parameter
 mSelectionArgs[0] = mLookupKey;
 // Starts the query
 CursorLoader mLoader =
 new CursorLoader(
 getActivity(),
 Data.CONTENT_URI,
 PROJECTION,
 SELECTION,
 mSelectionArgs,
 SORT_ORDER
);
 ...
 }

Implement onLoadFinished() and onLoaderReset()
Implement the onLoadFinished() method. The loader framework calls onLoadFinished() when the
Contacts Provider returns the results of the query. For example:

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 switch (loader.getId()) {
 case DETAILS_QUERY_ID:
 /*
 * Process the resulting Cursor here.
 */
 }
 break;
 ...
 }
 }

The method onLoaderReset() is invoked when the loader framework detects that the data backing the
result Cursor has changed. At this point, remove any existing references to the Cursor by setting them
to null. If you don't, the loader framework won't destroy the old Cursor, and you'll get a memory leak. For
example:

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 switch (loader.getId()) {
 case DETAILS_QUERY_ID:
 /*
 * If you have current references to the Cursor,
 * remove them here.
 */
 }
 break;
 }

Retrieving Details for a Contact

354
Content from developer.android.com/training/contacts-provider/retrieve-details.html through their Creative Commons Attribution 2.5 license

Retrieve Specific Details for a Contact
Retrieving a specific data type for a contact, such as all the emails, follows the same pattern as retrieving
all details. These are the only changes you need to make to the code listed in Retrieve All Details for a
Contact:
Projection

Modify your projection to retrieve the columns that are specific to the data type. Also modify the
projection to use the column name constants defined in the
ContactsContract.CommonDataKinds subclass corresponding to the data type.

Selection
Modify the selection text to search for the MIMETYPE value that's specific to your data type.

Sort order
Since you're only selecting a single detail type, don't group the returned Cursor by
Data.MIMETYPE.

These modifications are described in the following sections.

Define a projection
Define the columns you want to retrieve, using the column name constants in the subclass of
ContactsContract.CommonDataKinds for the data type. If you plan to bind your Cursor to a
ListView, be sure to retrieve the _ID column. For example, to retrieve email data, define the following
projection:

 private static final String[] PROJECTION =
 {
 Email._ID,
 Email.ADDRESS,
 Email.TYPE,
 Email.LABEL
 };

Notice that this projection uses the column names defined in the class
ContactsContract.CommonDataKinds.Email, instead of the column names defined in the class
ContactsContract.Data. Using the email-specific column names makes the code more readable.
In the projection, you can also use any of the other columns defined in the
ContactsContract.CommonDataKinds subclass.

Define selection criteria
Define a search text expression that retrieves rows for a specific contact's LOOKUP_KEY and the
Data.MIMETYPE of the details you want. Enclose the MIMETYPE value in single quotes by concatenating
a "'" (single-quote) character to the start and end of the constant; otherwise, the provider interprets the
constant as a variable name rather than as a string value. You don't need to use a placeholder for this
value, because you're using a constant rather than a user-supplied value. For example:

Retrieving Details for a Contact

355
Content from developer.android.com/training/contacts-provider/retrieve-details.html through their Creative Commons Attribution 2.5 license

 /*
 * Defines the selection clause. Search for a lookup key
 * and the Email MIME type
 */
 private static final String SELECTION =
 Data.LOOKUP_KEY + " = ?" +
 " AND " +
 Data.MIMETYPE + " = " +
 "'" + Email.CONTENT_ITEM_TYPE + "'";
 // Defines the array to hold the search criteria
 private String[] mSelectionArgs = { "" };

Define a sort order
Define a sort order for the returned Cursor. Since you're retrieving a specific data type, omit the sort on
MIMETYPE. Instead, if the type of detail data you're searching includes a subtype, sort on it. For example,
for email data you can sort on Email.TYPE:

 private static final String SORT_ORDER = Email.TYPE + " ASC ";

Modifying Contacts Using Intents

356
Content from developer.android.com/training/contacts-provider/modify-data.html through their Creative Commons Attribution 2.5 license

106. Modifying Contacts Using Intents
Content from developer.android.com/training/contacts-provider/modify-data.html through their Creative Commons Attribution 2.5 license

This lesson shows you how to use an Intent to
insert a new contact or modify a contact's data.
Instead of accessing the Contacts Provider
directly, an Intent starts the contacts app, which
runs the appropriate Activity. For the
modification actions described in this lesson, if
you send extended data in the Intent it's
entered into the UI of the Activity that is
started.
Using an Intent to insert or update a single
contact is the preferred way of modifying the
Contacts Provider, for the following reasons:

• It saves you the time and and effort of
developing your own UI and code.

• It avoids introducing errors caused by
modifications that don't follow the
Contacts Provider's rules.

• It reduces the number of permissions you need to request. Your app doesn't need permission to
write to the Contacts Provider, because it delegates modifications to the contacts app, which
already has that permission.

Insert a New Contact Using an Intent
You often want to allow the user to insert a new contact when your app receives new data. For example, a
restaurant review app can allow users to add the restaurant as a contact as they're reviewing it. To do this
using an intent, create the intent using as much data as you have available, and then send the intent to the
contacts app.
Inserting a contact using the contacts app inserts a new raw contact into the Contacts Provider's
ContactsContract.RawContacts table. If necessary, the contacts app prompts users for the account
type and account to use when creating the raw contact. The contacts app also notifies users if the raw
contact already exists. Users then have option of canceling the insertion, in which case no contact is
created. To learn more about raw contacts, see the Contacts Provider API guide.

Create an Intent
To start, create a new Intent object with the action Intents.Insert.ACTION. Set the MIME type to
RawContacts.CONTENT_TYPE. For example:

...
// Creates a new Intent to insert a contact
Intent intent = new Intent(Intents.Insert.ACTION);
// Sets the MIME type to match the Contacts Provider
intent.setType(ContactsContract.RawContacts.CONTENT_TYPE);

If you already have details for the contact, such as a phone number or email address, you can insert them
into the intent as extended data. For a key value, use the appropriate constant from Intents.Insert.
The contacts app displays the data in its insert screen, allowing users to make further edits and additions.

This lesson teaches you to
• Insert a New Contact Using an Intent
• Edit an Existing Contact Using an Intent
• Let Users Choose to Insert or Edit Using an
Intent
You should also read

• Content Provider Basics
• Contacts Provider
• Intents and Intent Filters

Try it out
Download the sample
ContactsList.zip

Modifying Contacts Using Intents

357
Content from developer.android.com/training/contacts-provider/modify-data.html through their Creative Commons Attribution 2.5 license

/* Assumes EditText fields in your UI contain an email address
 * and a phone number.
 *
 */
private EditText mEmailAddress = (EditText) findViewById(R.id.email);
private EditText mPhoneNumber = (EditText) findViewById(R.id.phone);
...
/*
 * Inserts new data into the Intent. This data is passed to the
 * contacts app's Insert screen
 */
// Inserts an email address
intent.putExtra(Intents.Insert.EMAIL, mEmailAddress.getText())
/*
 * In this example, sets the email type to be a work email.
 * You can set other email types as necessary.
 */
 .putExtra(Intents.Insert.EMAIL_TYPE, CommonDataKinds.Email.TYPE_WORK)
// Inserts a phone number
 .putExtra(Intents.Insert.PHONE, mPhoneNumber.getText())
/*
 * In this example, sets the phone type to be a work phone.
 * You can set other phone types as necessary.
 */
 .putExtra(Intents.Insert.PHONE_TYPE, Phone.TYPE_WORK);

Once you've created the Intent, send it by calling startActivity().

 /* Sends the Intent
 */
 startActivity(intent);

This call opens a screen in the contacts app that allows users to enter a new contact. The account type
and account name for the contact is listed at the top of the screen. Once users enter the data and click
Done, the contacts app's contact list appears. Users return to your app by clicking Back.

Edit an Existing Contact Using an Intent
Editing an existing contact using an Intent is useful if the user has already chosen a contact of interest.
For example, an app that finds contacts that have postal addresses but lack a postal code could give users
the option of looking up the code and then adding it to the contact.
To edit an existing contact using an intent, use a procedure similar to inserting a contact. Create an intent
as described in the section Insert a New Contact Using an Intent, but add the contact's
Contacts.CONTENT_LOOKUP_URI and the MIME type Contacts.CONTENT_ITEM_TYPE to the intent.
If you want to edit the contact with details you already have, you can put them in the intent's extended
data. Notice that some name columns can't be edited using an intent; these columns are listed in the
summary section of the API reference for the class ContactsContract.Contacts under the heading
"Update".
Finally, send the intent. In response, the contacts app displays an edit screen. When the user finishes
editing and saves the edits, the contacts app displays a contact list. When the user clicks Back, your app is
displayed.

Modifying Contacts Using Intents

358
Content from developer.android.com/training/contacts-provider/modify-data.html through their Creative Commons Attribution 2.5 license

Create the Intent
To edit a contact, call Intent(action) to create
an intent with the action ACTION_EDIT. Call
setDataAndType() to set the data value for the
intent to the contact's
Contacts.CONTENT_LOOKUP_URI and the
MIME type to Contacts.CONTENT_ITEM_TYPE
MIME type; because a call to setType() overwrites the current data value for the Intent, you must set
the data and the MIME type at the same time.
To get a contact's Contacts.CONTENT_LOOKUP_URI, call Contacts.getLookupUri(id,
lookupkey) with the contact's Contacts._ID and Contacts.LOOKUP_KEY values as arguments.
The following snippet shows you how to create an intent:

 // The Cursor that contains the Contact row
 public Cursor mCursor;
 // The index of the lookup key column in the cursor
 public int mLookupKeyIndex;
 // The index of the contact's _ID value
 public int mIdIndex;
 // The lookup key from the Cursor
 public String mCurrentLookupKey;
 // The _ID value from the Cursor
 public long mCurrentId;
 // A content URI pointing to the contact
 Uri mSelectedContactUri;
 ...
 /*
 * Once the user has selected a contact to edit,
 * this gets the contact's lookup key and _ID values from the
 * cursor and creates the necessary URI.
 */
 // Gets the lookup key column index
 mLookupKeyIndex = mCursor.getColumnIndex(Contacts.LOOKUP_KEY);
 // Gets the lookup key value
 mCurrentLookupKey = mCursor.getString(mLookupKeyIndex);
 // Gets the _ID column index
 mIdIndex = mCursor.getColumnIndex(Contacts._ID);
 mCurrentId = mCursor.getLong(mIdIndex);
 mSelectedContactUri =
 Contacts.getLookupUri(mCurrentId, mCurrentLookupKey);
 ...
 // Creates a new Intent to edit a contact
 Intent editIntent = new Intent(Intent.ACTION_EDIT);
 /*
 * Sets the contact URI to edit, and the data type that the
 * Intent must match
 */
 editIntent.setDataAndType(mSelectedContactUri,Contacts.CONTENT_ITEM_TYPE);

Add the navigation flag
In Android 4.0 (API version 14) and later, a problem in the contacts app causes incorrect navigation. When
your app sends an edit intent to the contacts app, and users edit and save a contact, when they click Back
they see the contacts list screen. To navigate back to your app, they have to click Recents and choose
your app.

Contacts Lookup Key
A contact's LOOKUP_KEY value is the identifier
that you should use to retrieve a contact. It
remains constant, even if the provider
changes the contact's row ID to handle
internal operations.

Modifying Contacts Using Intents

359
Content from developer.android.com/training/contacts-provider/modify-data.html through their Creative Commons Attribution 2.5 license

To work around this problem in Android 4.0.3 (API version 15) and later, add the extended data key
finishActivityOnSaveCompleted to the intent, with a value of true. Android versions prior to
Android 4.0 accept this key, but it has no effect. To set the extended data, do the following:

 // Sets the special extended data for navigation
 editIntent.putExtra("finishActivityOnSaveCompleted", true);

Add other extended data
To add additional extended data to the Intent, call putExtra() as desired. You can add extended data
for common contact fields by using the key values specified in Intents.Insert. Remember that some
columns in the ContactsContract.Contacts table can't be modified. These columns are listed in the
summary section of the API reference for the class ContactsContract.Contacts under the heading
"Update".

Send the Intent
Finally, send the intent you've constructed. For example:

 // Sends the Intent
 startActivity(editIntent);

Let Users Choose to Insert or Edit Using an Intent
You can allow users to choose whether to insert a contact or edit an existing one by sending an Intent
with the action ACTION_INSERT_OR_EDIT. For example, an email client app could allow users to add an
incoming email address to a new contact, or add it as an additional address for an existing contact. Set the
MIME type for this intent to Contacts.CONTENT_ITEM_TYPE, but don't set the data URI.
When you send this intent, the contacts app displays a list of contacts. Users can either insert a new
contact or pick an existing contact and edit it. Any extended data fields you add to the intent populates the
screen that appears. You can use any of the key values specified in Intents.Insert. The following
code snippet shows how to construct and send the intent:

 // Creates a new Intent to insert or edit a contact
 Intent intentInsertEdit = new Intent(Intent.ACTION_INSERT_OR_EDIT);
 // Sets the MIME type
 intentInsertEdit.setType(Contacts.CONTENT_ITEM_TYPE);
 // Add code here to insert extended data, if desired
 ...
 // Sends the Intent with an request ID
 startActivity(intentInsertEdit);

Displaying the Quick Contact Badge

360
Content from developer.android.com/training/contacts-provider/display-contact-badge.html through their Creative Commons Attribution 2.5 license

107. Displaying the Quick Contact Badge
Content from developer.android.com/training/contacts-provider/display-contact-badge.html through their Creative Commons Attribution 2.5 license

This lesson shows you how to add a
QuickContactBadge to your UI and how to bind
data to it. A QuickContactBadge is a widget
that initially appears as a thumbnail image.
Although you can use any Bitmap for the
thumbnail image, you usually use a Bitmap
decoded from the contact's photo thumbnail
image.
The small image acts as a control; when users
click on the image, the QuickContactBadge
expands into a dialog containing the following:
A large image

The large image associated with the
contact, or no image is available, a
placeholder graphic.

App icons
An app icon for each piece of detail data that can be handled by a built-in app. For example, if the
contact's details include one or more email addresses, an email icon appears. When users click
the icon, all of the contact's email addresses appear. When users click one of the addresses, the
email app displays a screen for composing a message to the selected email address.

The QuickContactBadge view provides instant access to a contact's details, as well as a fast way of
communicating with the contact. Users don't have to look up a contact, find and copy information, and then
paste it into the appropriate app. Instead, they can click on the QuickContactBadge, choose the
communication method they want to use, and send the information for that method directly to the
appropriate app.

Add a QuickContactBadge View
To add a QuickContactBadge, insert a <QuickContactBadge> element in your layout. For example:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
...
 <QuickContactBadge
 android:id=@+id/quickbadge
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:scaleType="centerCrop"/>
 ...
</RelativeLayout>

Retrieve provider data
To display a contact in the QuickContactBadge, you need a content URI for the contact and a Bitmap
for the small image. You generate both the content URI and the Bitmap from columns retrieved from the
Contacts Provider. Specify these columns as part of the projection you use to load data into your Cursor.
For Android 3.0 (API level 11) and later, include the following columns in your projection:

This lesson teaches you to
• Add a QuickContactBadge View
• Set the Contact URI and Thumbnail
• Add a QuickContactBadge to a ListView
You should also read

• Content Provider Basics
• Contacts Provider

Try it out
Download the sample
ContactsList.zip

Displaying the Quick Contact Badge

361
Content from developer.android.com/training/contacts-provider/display-contact-badge.html through their Creative Commons Attribution 2.5 license

• Contacts._ID
• Contacts.LOOKUP_KEY
• Contacts.PHOTO_THUMBNAIL_URI

For Android 2.3.3 (API level 10) and earlier, use the following columns:

• Contacts._ID
• Contacts.LOOKUP_KEY

The remainder of this lesson assumes that you've already loaded a Cursor that contains these columns
as well as others you may have chosen. To learn how to retrieve this columns in a Cursor, read the
lesson Retrieving a List of Contacts.

Set the Contact URI and Thumbnail
Once you have the necessary columns, you can bind data to the QuickContactBadge.

Set the Contact URI
To set the content URI for the contact, call getLookupUri(id,lookupKey) to get a
CONTENT_LOOKUP_URI, then call assignContactUri() to set the contact. For example:

 // The Cursor that contains contact rows
 Cursor mCursor;
 // The index of the _ID column in the Cursor
 int mIdColumn;
 // The index of the LOOKUP_KEY column in the Cursor
 int mLookupKeyColumn;
 // A content URI for the desired contact
 Uri mContactUri;
 // A handle to the QuickContactBadge view
 QuickContactBadge mBadge;
 ...
 mBadge = (QuickContactBadge) findViewById(R.id.quickbadge);
 /*
 * Insert code here to move to the desired cursor row
 */
 // Gets the _ID column index
 mIdColumn = mCursor.getColumnIndex(Contacts._ID);
 // Gets the LOOKUP_KEY index
 mLookupKeyColumn = mCursor.getColumnIndex(Contacts.LOOKUP_KEY);
 // Gets a content URI for the contact
 mContactUri =
 Contacts.getLookupUri(
 mCursor.getLong(mIdColumn),
 mCursor.getString(mLookupKeyColumn)
);
 mBadge.assignContactUri(mContactUri);

When users click the QuickContactBadge icon, the contact's details automatically appear in the dialog.

Set the photo thumbnail
Setting the contact URI for the QuickContactBadge does not automatically load the contact's thumbnail
photo. To load the photo, get a URI for the photo from the contact's Cursor row, use it to open the file
containing the compressed thumbnail photo, and read the file into a Bitmap.

Displaying the Quick Contact Badge

362
Content from developer.android.com/training/contacts-provider/display-contact-badge.html through their Creative Commons Attribution 2.5 license

Note: The PHOTO_THUMBNAIL_URI column isn't available in platform versions prior to 3.0. For those
versions, you must retrieve the URI from the Contacts.Photo subtable.
First, set up variables for accessing the Cursor containing the Contacts._ID and
Contacts.LOOKUP_KEY columns, as described previously:

 // The column in which to find the thumbnail ID
 int mThumbnailColumn;
 /*
 * The thumbnail URI, expressed as a String.
 * Contacts Provider stores URIs as String values.
 */
 String mThumbnailUri;
 ...
 /*
 * Gets the photo thumbnail column index if
 * platform version >= Honeycomb
 */
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 mThumbnailColumn =
 mCursor.getColumnIndex(Contacts.PHOTO_THUMBNAIL_URI);
 // Otherwise, sets the thumbnail column to the _ID column
 } else {
 mThumbnailColumn = mIdColumn;
 }
 /*
 * Assuming the current Cursor position is the contact you want,
 * gets the thumbnail ID
 */
 mThumbnailUri = mCursor.getString(mThumbnailColumn);
 ...

Define a method that takes photo-related data for the contact and dimensions for the destination view, and
returns the properly-sized thumbnail in a Bitmap. Start by constructing a URI that points to the thumbnail:

Displaying the Quick Contact Badge

363
Content from developer.android.com/training/contacts-provider/display-contact-badge.html through their Creative Commons Attribution 2.5 license

 /**
 * Load a contact photo thumbnail and return it as a Bitmap,
 * resizing the image to the provided image dimensions as needed.
 * @param photoData photo ID Prior to Honeycomb, the contact's _ID value.
 * For Honeycomb and later, the value of PHOTO_THUMBNAIL_URI.
 * @return A thumbnail Bitmap, sized to the provided width and height.
 * Returns null if the thumbnail is not found.
 */
 private Bitmap loadContactPhotoThumbnail(String photoData) {
 // Creates an asset file descriptor for the thumbnail file.
 AssetFileDescriptor afd = null;
 // try-catch block for file not found
 try {
 // Creates a holder for the URI.
 Uri thumbUri;
 // If Android 3.0 or later
 if (Build.VERSION.SDK_INT
 >=
 Build.VERSION_CODES.HONEYCOMB) {
 // Sets the URI from the incoming PHOTO_THUMBNAIL_URI
 thumbUri = Uri.parse(photoData);
 } else {
 // Prior to Android 3.0, constructs a photo Uri using _ID
 /*
 * Creates a contact URI from the Contacts content URI
 * incoming photoData (_ID)
 */
 final Uri contactUri = Uri.withAppendedPath(
 Contacts.CONTENT_URI, photoData);
 /*
 * Creates a photo URI by appending the content URI of
 * Contacts.Photo.
 */
 thumbUri =
 Uri.withAppendedPath(
 contactUri, Photo.CONTENT_DIRECTORY);
 }

 /*
 * Retrieves an AssetFileDescriptor object for the thumbnail
 * URI
 * using ContentResolver.openAssetFileDescriptor
 */
 afd = getActivity().getContentResolver().
 openAssetFileDescriptor(thumbUri, "r");
 /*
 * Gets a file descriptor from the asset file descriptor.
 * This object can be used across processes.
 */
 FileDescriptor fileDescriptor = afd.getFileDescriptor();
 // Decode the photo file and return the result as a Bitmap
 // If the file descriptor is valid
 if (fileDescriptor != null) {
 // Decodes the bitmap
 return BitmapFactory.decodeFileDescriptor(
 fileDescriptor, null, null);
 }
 // If the file isn't found
 } catch (FileNotFoundException e) {
 /*

Displaying the Quick Contact Badge

364
Content from developer.android.com/training/contacts-provider/display-contact-badge.html through their Creative Commons Attribution 2.5 license

 * Handle file not found errors
 */
 }
 // In all cases, close the asset file descriptor
 } finally {
 if (afd != null) {
 try {
 afd.close();
 } catch (IOException e) {}
 }
 }
 return null;
 }

Call the loadContactPhotoThumbnail() method in your code to get the thumbnail Bitmap, and use
the result to set the photo thumbnail in your QuickContactBadge:

 ...
 /*
 * Decodes the thumbnail file to a Bitmap.
 */
 Bitmap mThumbnail =
 loadContactPhotoThumbnail(mThumbnailUri);
 /*
 * Sets the image in the QuickContactBadge
 * QuickContactBadge inherits from ImageView, so
 */
 mBadge.setImageBitmap(mThumbnail);

Add a QuickContactBadge to a ListView
A QuickContactBadge is a useful addition to a ListView that displays a list of contacts. Use the
QuickContactBadge to display a thumbnail photo for each contact; when users click the thumbnail, the
QuickContactBadge dialog appears.

Add the QuickContactBadge element
To start, add a QuickContactBadge view element to your item layout For example, if you want to display
a QuickContactBadge and a name for each contact you retrieve, put the following XML into a layout file:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <QuickContactBadge
 android:id="@+id/quickcontact"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:scaleType="centerCrop"/>
 <TextView android:id="@+id/displayname"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@+id/quickcontact"
 android:gravity="center_vertical"
 android:layout_alignParentRight="true"
 android:layout_alignParentTop="true"/>
</RelativeLayout>

In the following sections, this file is referred to as contact_item_layout.xml.

Displaying the Quick Contact Badge

365
Content from developer.android.com/training/contacts-provider/display-contact-badge.html through their Creative Commons Attribution 2.5 license

Set up a custom CursorAdapter
To bind a CursorAdapter to a ListView containing a QuickContactBadge, define a custom adapter
that extends CursorAdapter. This approach allows you to process the data in the Cursor before you
bind it to the QuickContactBadge. This approach also allows you to bind multiple Cursor columns to
the QuickContactBadge. Neither of these operations is possible in a regular CursorAdapter.
The subclass of CursorAdapter that you define must override the following methods:
CursorAdapter.newView()

Inflates a new View object to hold the item layout. In the override of this method, store handles to
the child View objects of the layout, including the child QuickContactBadge. By taking this
approach, you avoid having to get handles to the child View objects each time you inflate a new
layout.
You must override this method so you can get handles to the individual child View objects. This
technique allows you to control their binding in CursorAdapter.bindView().

CursorAdapter.bindView()
Moves data from the current Cursor row to the child View objects of the item layout. You must
override this method so you can bind both the contact's URI and thumbnail to the
QuickContactBadge. The default implementation only allows a 1-to-1 mapping between a
column and a View

The following code snippet contains an example of a custom subclass of CursorAdapter:

Define the custom list adapter
Define the subclass of CursorAdapter including its constructor, and override newView() and
bindView():

Displaying the Quick Contact Badge

366
Content from developer.android.com/training/contacts-provider/display-contact-badge.html through their Creative Commons Attribution 2.5 license

 /**
 *
 *
 */
 private class ContactsAdapter extends CursorAdapter {
 private LayoutInflater mInflater;
 ...
 public ContactsAdapter(Context context) {
 super(context, null, 0);

 /*
 * Gets an inflater that can instantiate
 * the ListView layout from the file.
 */
 mInflater = LayoutInflater.from(context);
 ...
 }
 ...
 /**
 * Defines a class that hold resource IDs of each item layout
 * row to prevent having to look them up each time data is
 * bound to a row.
 */
 private class ViewHolder {
 TextView displayname;
 QuickContactBadge quickcontact;
 }
 ..
 @Override
 public View newView(
 Context context,
 Cursor cursor,
 ViewGroup viewGroup) {
 /* Inflates the item layout. Stores resource IDs in a
 * in a ViewHolder class to prevent having to look
 * them up each time bindView() is called.
 */
 final View itemView =
 mInflater.inflate(
 R.layout.contact_list_layout,
 viewGroup,
 false
);
 final ViewHolder holder = new ViewHolder();
 holder.displayname =
 (TextView) view.findViewById(R.id.displayname);
 holder.quickcontact =
 (QuickContactBadge)
 view.findViewById(R.id.quickcontact);
 view.setTag(holder);
 return view;
 }
 ...
 @Override
 public void bindView(
 View view,
 Context context,
 Cursor cursor) {
 final ViewHolder holder = (ViewHolder) view.getTag();
 final String photoData =

Displaying the Quick Contact Badge

367
Content from developer.android.com/training/contacts-provider/display-contact-badge.html through their Creative Commons Attribution 2.5 license

 cursor.getString(mPhotoDataIndex);
 final String displayName =
 cursor.getString(mDisplayNameIndex);
 ...
 // Sets the display name in the layout
 holder.displayname = cursor.getString(mDisplayNameIndex);
 ...
 /*
 * Generates a contact URI for the QuickContactBadge.
 */
 final Uri contactUri = Contacts.getLookupUri(
 cursor.getLong(mIdIndex),
 cursor.getString(mLookupKeyIndex));
 holder.quickcontact.assignContactUri(contactUri);
 String photoData = cursor.getString(mPhotoDataIndex);
 /*
 * Decodes the thumbnail file to a Bitmap.
 * The method loadContactPhotoThumbnail() is defined
 * in the section "Set the Contact URI and Thumbnail"
 */
 Bitmap thumbnailBitmap =
 loadContactPhotoThumbnail(photoData);
 /*
 * Sets the image in the QuickContactBadge
 * QuickContactBadge inherits from ImageView
 */
 holder.quickcontact.setImageBitmap(thumbnailBitmap);
 }

Set up variables
In your code, set up variables, including a Cursor projection that includes the necessary columns.
Note: The following code snippets use the method loadContactPhotoThumbnail(), which is defined
in the section Set the Contact URI and Thumbnail
For example:

Displaying the Quick Contact Badge

368
Content from developer.android.com/training/contacts-provider/display-contact-badge.html through their Creative Commons Attribution 2.5 license

public class ContactsFragment extends Fragment implements
 LoaderManager.LoaderCallbacks<Cursor> {
...
 // Defines a ListView
 private ListView mListView;
 // Defines a ContactsAdapter
 private ContactsAdapter mAdapter;
 ...
 // Defines a Cursor to contain the retrieved data
 private Cursor mCursor;
 /*
 * Defines a projection based on platform version. This ensures
 * that you retrieve the correct columns.
 */
 private static final String[] PROJECTION =
 {
 Contacts._ID,
 Contacts.LOOKUP_KEY,
 (Build.VERSION.SDK_INT >=
 Build.VERSION_CODES.HONEYCOMB) ?
 Contacts.DISPLAY_NAME_PRIMARY :
 Contacts.DISPLAY_NAME
 (Build.VERSION.SDK_INT >=
 Build.VERSION_CODES.HONEYCOMB) ?
 Contacts.PHOTO_THUMBNAIL_ID :
 /*
 * Although it's not necessary to include the
 * column twice, this keeps the number of
 * columns the same regardless of version
 */
 Contacts_ID
 ...
 };
 /*
 * As a shortcut, defines constants for the
 * column indexes in the Cursor. The index is
 * 0-based and always matches the column order
 * in the projection.
 */
 // Column index of the _ID column
 private int mIdIndex = 0;
 // Column index of the LOOKUP_KEY column
 private int mLookupKeyIndex = 1;
 // Column index of the display name column
 private int mDisplayNameIndex = 3;
 /*
 * Column index of the photo data column.
 * It's PHOTO_THUMBNAIL_URI for Honeycomb and later,
 * and _ID for previous versions.
 */
 private int mPhotoDataIndex =
 Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB ?
 3 :
 0;
 ...

Set up the ListView
In Fragment.onCreate(), instantiate the custom cursor adapter and get a handle to the ListView:

Displaying the Quick Contact Badge

369
Content from developer.android.com/training/contacts-provider/display-contact-badge.html through their Creative Commons Attribution 2.5 license

 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...
 /*
 * Instantiates the subclass of
 * CursorAdapter
 */
 ContactsAdapter mContactsAdapter =
 new ContactsAdapter(getActivity());
 /*
 * Gets a handle to the ListView in the file
 * contact_list_layout.xml
 */
 mListView = (ListView) findViewById(R.layout.contact_list_layout);
 ...
 }
 ...

In onActivityCreated(), bind the ContactsAdapter to the ListView:

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 ...
 // Sets up the adapter for the ListView
 mListView.setAdapter(mAdapter);
 ...
 }
 ...

When you get back a Cursor containing the contacts data, usually in onLoadFinished(), call
swapCursor() to move the Cursor data to the ListView. This displays the QuickContactBadge for
each entry in the list of contacts:

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 // When the loader has completed, swap the cursor into the adapter.
 mContactsAdapter.swapCursor(cursor);
 }

When you bind a Cursor to a ListView with a CursorAdapter (or subclass), and you use a
CursorLoader to load the Cursor, always clear references to the Cursor in your implementation of
onLoaderReset(). For example:

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 // Removes remaining reference to the previous Cursor
 mContactsAdapter.swapCursor(null);
 }

Making Your App Location-Aware

370
Content from developer.android.com/training/location/index.html through their Creative Commons Attribution 2.5 license

108. Making Your App Location-Aware
Content from developer.android.com/training/location/index.html through their Creative Commons Attribution 2.5 license

One of the unique features of mobile applications
is location awareness. Mobile users bring their
devices with them everywhere, and adding
location awareness to your app offers users a
more contextual experience. The new Location
Services API available in Google Play services
facilitates adding location awareness to your app
with automated location tracking, geofencing, and
activity recognition. This API adds significant
advantages over the plaform's location API.
This class shows you how to use Location
Services in your app to get the current location,
get periodic location updates, look up addresses,
create and monitor geofences, and detect user activities. The class includes sample apps and code
snippets that you can use as a starting point for adding location awareness to your own app.
Note: Since this class is based on the Google Play services client library, make sure you install the latest
version before using the sample apps or code snippets. To learn how to set up the client library with the
latest version, see Setup in the Google Play services guide.

Lessons
Retrieving the Current Location

Learn how to retrieve the user's current location.
Receiving Location Updates

Learn how to request and receive periodic location updates.
Displaying a Location Address

Learn how to convert a location's latitude and longitude into an address (reverse geocoding).
Creating and Monitoring Geofences

Learn how to define one or more geographic areas as locations of interest, called geofences, and
detect when the user is close to or inside a geofence.

Recognizing the User's Current Activity
Learn how to recognize the user's current activity, such as walking, bicycling, or driving a car, and
how to use this information to modify your app's location strategy.

Testing Using Mock Locations
Learn how to test a location-aware app by injecting mock locations into Location Services. In
mock mode, Location Services sends out mock locations that you inject instead of sensor-based
locations.

Dependencies and prerequisites

• Google Play services client library
(latest version)

• Android version 2.2 (API level 8) or
later

You should also read

• Setup Google Play Services SDK

Retrieving the Current Location

371
Content from developer.android.com/training/location/retrieve-current.html through their Creative Commons Attribution 2.5 license

109. Retrieving the Current Location
Content from developer.android.com/training/location/retrieve-current.html through their Creative Commons Attribution 2.5 license

Location Services automatically maintains the
user's current location, so all your app has to do is
retrieve it as needed. The location's accuracy is
based on the location permissions you've
requested and location sensors that are currently
active for the device.
Location Services sends the current location to
your app through a location client, which is an
instance of the Location Services class
LocationClient. All requests for location
information go through this client.
Note: Before you start the lesson, be sure that
your development environment and test device
are set up correctly. To learn more about this,
read the Setup section in the Google Play
services guide.

Specify App Permissions
Apps that use Location Services must request location permissions. Android has two location permissions:
ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION. The permission you choose controls the
accuracy of the current location. If you request only coarse location permission, Location Services
obfuscates the returned location to an accuracy that's roughly equivalent to a city block.
Requesting ACCESS_FINE_LOCATION implies a request for ACCESS_COARSE_LOCATION.
For example, to add ACCESS_COARSE_LOCATION, insert the following as a child element of the
<manifest> element:

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

Check for Google Play Services
Location Services is part of the Google Play services APK. Since it's hard to anticipate the state of the
user's device, you should always check that the APK is installed before you attempt to connect to Location
Services. To check that the APK is installed, call
GooglePlayServicesUtil.isGooglePlayServicesAvailable(), which returns one of the integer
result codes listed in the reference documentation for ConnectionResult. If you encounter an error, call
GooglePlayServicesUtil.getErrorDialog() to retrieve localized dialog that prompts users to take
the correct action, then display the dialog in a DialogFragment. The dialog may allow the user to correct
the problem, in which case Google Play services may send a result back to your activity. To handle this
result, override the method onActivityResult().
Since you usually need to check for Google Play services in more than one place in your code, define a
method that encapsulates the check, then call the method before each connection attempt. The following
snippet contains all of the code required to check for Google Play services:

This lesson teaches you to
• Specify App Permissions
• Check for Google Play services
• Define Location Services Callbacks
• Connect the Location Client
• Get the Current Location
You should also read

• Setup Google Play Services SDK

Try it out
Download the sample
LocationUpdates.zip

Retrieving the Current Location

372
Content from developer.android.com/training/location/retrieve-current.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity {
 ...
 // Global constants
 /*
 * Define a request code to send to Google Play services
 * This code is returned in Activity.onActivityResult
 */
 private final static int
 CONNECTION_FAILURE_RESOLUTION_REQUEST = 9000;
 ...
 // Define a DialogFragment that displays the error dialog
 public static class ErrorDialogFragment extends DialogFragment {
 // Global field to contain the error dialog
 private Dialog mDialog;
 // Default constructor. Sets the dialog field to null
 public ErrorDialogFragment() {
 super();
 mDialog = null;
 }
 // Set the dialog to display
 public void setDialog(Dialog dialog) {
 mDialog = dialog;
 }
 // Return a Dialog to the DialogFragment.
 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 return mDialog;
 }
 }
 ...
 /*
 * Handle results returned to the FragmentActivity
 * by Google Play services
 */
 @Override
 protected void onActivityResult(
 int requestCode, int resultCode, Intent data) {
 // Decide what to do based on the original request code
 switch (requestCode) {
 ...
 case CONNECTION_FAILURE_RESOLUTION_REQUEST :
 /*
 * If the result code is Activity.RESULT_OK, try
 * to connect again
 */
 switch (resultCode) {
 case Activity.RESULT_OK :
 /*
 * Try the request again
 */
 ...
 break;
 }
 ...
 }
 }
 ...
 private boolean servicesConnected() {
 // Check that Google Play services is available
 int resultCode =

Retrieving the Current Location

373
Content from developer.android.com/training/location/retrieve-current.html through their Creative Commons Attribution 2.5 license

 GooglePlayServicesUtil.
 isGooglePlayServicesAvailable(this);
 // If Google Play services is available
 if (ConnectionResult.SUCCESS == resultCode) {
 // In debug mode, log the status
 Log.d("Location Updates",
 "Google Play services is available.");
 // Continue
 return true;
 // Google Play services was not available for some reason
 } else {
 // Get the error code
 int errorCode = connectionResult.getErrorCode();
 // Get the error dialog from Google Play services
 Dialog errorDialog = GooglePlayServicesUtil.getErrorDialog(
 errorCode,
 this,
 CONNECTION_FAILURE_RESOLUTION_REQUEST);

 // If Google Play services can provide an error dialog
 if (errorDialog != null) {
 // Create a new DialogFragment for the error dialog
 ErrorDialogFragment errorFragment =
 new ErrorDialogFragment();
 // Set the dialog in the DialogFragment
 errorFragment.setDialog(errorDialog);
 // Show the error dialog in the DialogFragment
 errorFragment.show(getSupportFragmentManager(),
 "Location Updates");
 }
 }
 }
 ...
}

Snippets in the following sections call this method to verify that Google Play services is available.

Define Location Services Callbacks
To get the current location, create a location client, connect it to Location Services, and then call its
getLastLocation() method. The return value is the best, most recent location, based on the
permissions your app requested and the currently-enabled location sensors.
Before you create the location client, implement the interfaces that Location Services uses to communicate
with your app:
ConnectionCallbacks

Specifies methods that Location Services calls when a location client is connected or
disconnected.

OnConnectionFailedListener
Specifies a method that Location Services calls if an error occurs while attempting to connect the
location client. This method uses the previously-defined showErrorDialog method to display
an error dialog that attempts to fix the problem using Google Play services.

The following snippet shows how to specify the interfaces and define the methods:

Retrieving the Current Location

374
Content from developer.android.com/training/location/retrieve-current.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 GooglePlayServicesClient.ConnectionCallbacks,
 GooglePlayServicesClient.OnConnectionFailedListener {
 ...
 /*
 * Called by Location Services when the request to connect the
 * client finishes successfully. At this point, you can
 * request the current location or start periodic updates
 */
 @Override
 public void onConnected(Bundle dataBundle) {
 // Display the connection status
 Toast.makeText(this, "Connected", Toast.LENGTH_SHORT).show();

 }
 ...
 /*
 * Called by Location Services if the connection to the
 * location client drops because of an error.
 */
 @Override
 public void onDisconnected() {
 // Display the connection status
 Toast.makeText(this, "Disconnected. Please re-connect.",
 Toast.LENGTH_SHORT).show();
 }
 ...
 /*
 * Called by Location Services if the attempt to
 * Location Services fails.
 */
 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) {
 /*
 * Google Play services can resolve some errors it detects.
 * If the error has a resolution, try sending an Intent to
 * start a Google Play services activity that can resolve
 * error.
 */
 if (connectionResult.hasResolution()) {
 try {
 // Start an Activity that tries to resolve the error
 connectionResult.startResolutionForResult(
 this,
 CONNECTION_FAILURE_RESOLUTION_REQUEST);
 /*
 * Thrown if Google Play services canceled the original
 * PendingIntent
 */
 } catch (IntentSender.SendIntentException e) {
 // Log the error
 e.printStackTrace();
 }
 } else {
 /*
 * If no resolution is available, display a dialog to the
 * user with the error.
 */
 showErrorDialog(connectionResult.getErrorCode());
 }

Retrieving the Current Location

375
Content from developer.android.com/training/location/retrieve-current.html through their Creative Commons Attribution 2.5 license

 }
 ...
}

Connect the Location Client
Now that the callback methods are in place, create the location client and connect it to Location Services.
You should create the location client in onCreate(), then connect it in onStart(), so that Location
Services maintains the current location while your activity is fully visible. Disconnect the client in
onStop(), so that when your app is not visible, Location Services is not maintaining the current location.
Following this pattern of connection and disconnection helps save battery power. For example:
Note: The current location is only maintained while a location client is connected to Location Service.
Assuming that no other apps are connected to Location Services, if you disconnect the client and then
sometime later call getLastLocation(), the result may be out of date.

public class MainActivity extends FragmentActivity implements
 GooglePlayServicesClient.ConnectionCallbacks,
 GooglePlayServicesClient.OnConnectionFailedListener {
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...
 /*
 * Create a new location client, using the enclosing class to
 * handle callbacks.
 */
 mLocationClient = new LocationClient(this, this, this);
 ...
 }
 ...
 /*
 * Called when the Activity becomes visible.
 */
 @Override
 protected void onStart() {
 super.onStart();
 // Connect the client.
 mLocationClient.connect();
 }
 ...
 /*
 * Called when the Activity is no longer visible.
 */
 @Override
 protected void onStop() {
 // Disconnecting the client invalidates it.
 mLocationClient.disconnect();
 super.onStop();
 }
 ...
}

Get the Current Location
To get the current location, call getLastLocation(). For example:

Retrieving the Current Location

376
Content from developer.android.com/training/location/retrieve-current.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 GooglePlayServicesClient.ConnectionCallbacks,
 GooglePlayServicesClient.OnConnectionFailedListener {
 ...
 // Global variable to hold the current location
 Location mCurrentLocation;
 ...
 mCurrentLocation = mLocationClient.getLastLocation();
 ...
}

The next lesson, Receiving Location Updates, shows you how to receive periodic location updates from
Location Services.

Receiving Location Updates

377
Content from developer.android.com/training/location/receive-location-updates.html through their Creative Commons Attribution 2.5 license

110. Receiving Location Updates
Content from developer.android.com/training/location/receive-location-updates.html through their Creative Commons Attribution 2.5 license

If your app does navigation or tracking, you
probably want to get the user's location at regular
intervals. While you can do this with
LocationClient.getLastLocation(), a
more direct approach is to request periodic
updates from Location Services. In response,
Location Services automatically updates your app
with the best available location, based on the
currently-available location providers such as WiFi
and GPS.
To get periodic location updates from Location
Services, you send a request using a location
client. Depending on the form of the request,
Location Services either invokes a callback
method and passes in a Location object, or
issues an Intent that contains the location in its
extended data. The accuracy and frequency of the
updates are affected by the location permissions
you've requested and the parameters you pass to
Location Services with the request.

Specify App Permissions
Apps that use Location Services must request location permissions. Android has two location permissions,
ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION. The permission you choose affects the
accuracy of the location updates you receive. For example, If you request only coarse location permission,
Location Services obfuscates the updated location to an accuracy that's roughly equivalent to a city block.
Requesting ACCESS_FINE_LOCATION implies a request for ACCESS_COARSE_LOCATION.
For example, to add the coarse location permission to your manifest, insert the following as a child element
of the <manifest> element:

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

Check for Google Play Services
Location Services is part of the Google Play services APK. Since it's hard to anticipate the state of the
user's device, you should always check that the APK is installed before you attempt to connect to Location
Services. To check that the APK is installed, call
GooglePlayServicesUtil.isGooglePlayServicesAvailable(), which returns one of the integer
result codes listed in the API reference documentation. If you encounter an error, call
GooglePlayServicesUtil.getErrorDialog() to retrieve localized dialog that prompts users to take
the correct action, then display the dialog in a DialogFragment. The dialog may allow the user to correct
the problem, in which case Google Play services may send a result back to your activity. To handle this
result, override the method onActivityResult()
Note: To make your app compatible with platform version 1.6 and later, the activity that displays the
DialogFragment must subclass FragmentActivity instead of Activity. Using
FragmentActivity also allows you to call getSupportFragmentManager() to display the
DialogFragment.

This lesson teaches you to
• Request Location Permission
• Check for Google Play Services
• Define Location Services Callbacks
• Specify Update Parameters
• Start Location Updates
• Stop Location Updates
You should also read

• Setup Google Play Services SDK
• Retrieving the Current Location

Try it out
Download the sample
LocationUpdates.zip

Receiving Location Updates

378
Content from developer.android.com/training/location/receive-location-updates.html through their Creative Commons Attribution 2.5 license

Since you usually need to check for Google Play services in more than one place in your code, define a
method that encapsulates the check, then call the method before each connection attempt. The following
snippet contains all of the code required to check for Google Play services:

Receiving Location Updates

379
Content from developer.android.com/training/location/receive-location-updates.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity {
 ...
 // Global constants
 /*
 * Define a request code to send to Google Play services
 * This code is returned in Activity.onActivityResult
 */
 private final static int
 CONNECTION_FAILURE_RESOLUTION_REQUEST = 9000;
 ...
 // Define a DialogFragment that displays the error dialog
 public static class ErrorDialogFragment extends DialogFragment {
 // Global field to contain the error dialog
 private Dialog mDialog;
 // Default constructor. Sets the dialog field to null
 public ErrorDialogFragment() {
 super();
 mDialog = null;
 }
 // Set the dialog to display
 public void setDialog(Dialog dialog) {
 mDialog = dialog;
 }
 // Return a Dialog to the DialogFragment.
 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 return mDialog;
 }
 }
 ...
 /*
 * Handle results returned to the FragmentActivity
 * by Google Play services
 */
 @Override
 protected void onActivityResult(
 int requestCode, int resultCode, Intent data) {
 // Decide what to do based on the original request code
 switch (requestCode) {
 ...
 case CONNECTION_FAILURE_RESOLUTION_REQUEST :
 /*
 * If the result code is Activity.RESULT_OK, try
 * to connect again
 */
 switch (resultCode) {
 case Activity.RESULT_OK :
 /*
 * Try the request again
 */
 ...
 break;
 }
 ...
 }
 ...
 }
 ...
 private boolean servicesConnected() {
 // Check that Google Play services is available

Receiving Location Updates

380
Content from developer.android.com/training/location/receive-location-updates.html through their Creative Commons Attribution 2.5 license

 int resultCode =
 GooglePlayServicesUtil.
 isGooglePlayServicesAvailable(this);
 // If Google Play services is available
 if (ConnectionResult.SUCCESS == resultCode) {
 // In debug mode, log the status
 Log.d("Location Updates",
 "Google Play services is available.");
 // Continue
 return true;
 // Google Play services was not available for some reason
 } else {
 // Get the error code
 int errorCode = connectionResult.getErrorCode();
 // Get the error dialog from Google Play services
 Dialog errorDialog = GooglePlayServicesUtil.getErrorDialog(
 errorCode,
 this,
 CONNECTION_FAILURE_RESOLUTION_REQUEST);
 // If Google Play services can provide an error dialog
 if (errorDialog != null) {
 // Create a new DialogFragment for the error dialog
 ErrorDialogFragment errorFragment =
 new ErrorDialogFragment();
 // Set the dialog in the DialogFragment
 errorFragment.setDialog(errorDialog);
 // Show the error dialog in the DialogFragment
 errorFragment.show(
 getSupportFragmentManager(),
 "Location Updates");
 }
 }
 }
 ...
}

Snippets in the following sections call this method to verify that Google Play services is available.

Define Location Services Callbacks
Before you request location updates, you must first implement the interfaces that Location Services uses
to communicate connection status to your app:
ConnectionCallbacks

Specifies methods that Location Services calls when a location client is connected or
disconnected.

OnConnectionFailedListener
Specifies a method that Location Services calls if an error occurs while attempting to connect the
location client. This method uses the previously-defined showErrorDialog method to display
an error dialog that attempts to fix the problem using Google Play services.

The following snippet shows how to specify the interfaces and define the methods:

Receiving Location Updates

381
Content from developer.android.com/training/location/receive-location-updates.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 GooglePlayServicesClient.ConnectionCallbacks,
 GooglePlayServicesClient.OnConnectionFailedListener {
 ...
 /*
 * Called by Location Services when the request to connect the
 * client finishes successfully. At this point, you can
 * request the current location or start periodic updates
 */
 @Override
 public void onConnected(Bundle dataBundle) {
 // Display the connection status
 Toast.makeText(this, "Connected", Toast.LENGTH_SHORT).show();
 }
 ...
 /*
 * Called by Location Services if the connection to the
 * location client drops because of an error.
 */
 @Override
 public void onDisconnected() {
 // Display the connection status
 Toast.makeText(this, "Disconnected. Please re-connect.",
 Toast.LENGTH_SHORT).show();
 }
 ...
 /*
 * Called by Location Services if the attempt to
 * Location Services fails.
 */
 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) {
 /*
 * Google Play services can resolve some errors it detects.
 * If the error has a resolution, try sending an Intent to
 * start a Google Play services activity that can resolve
 * error.
 */
 if (connectionResult.hasResolution()) {
 try {
 // Start an Activity that tries to resolve the error
 connectionResult.startResolutionForResult(
 this,
 CONNECTION_FAILURE_RESOLUTION_REQUEST);
 /*
 * Thrown if Google Play services canceled the original
 * PendingIntent
 */
 } catch (IntentSender.SendIntentException e) {
 // Log the error
 e.printStackTrace();
 }
 } else {
 /*
 * If no resolution is available, display a dialog to the
 * user with the error.
 */
 showErrorDialog(connectionResult.getErrorCode());
 }
 }

Receiving Location Updates

382
Content from developer.android.com/training/location/receive-location-updates.html through their Creative Commons Attribution 2.5 license

 ...
}

Define the location update callback
Location Services sends location updates to your app either as an Intent or as an argument passed to a
callback method you define. This lesson shows you how to get the update using a callback method,
because that pattern works best for most use cases. If you want to receive updates in the form of an
Intent, read the lesson Recognizing the User's Current Activity, which presents a similar pattern.
The callback method that Location Services invokes to send a location update to your app is specified in
the LocationListener interface, in the method onLocationChanged(). The incoming argument is a
Location object containing the location's latitude and longitude. The following snippet shows how to
specify the interface and define the method:

public class MainActivity extends FragmentActivity implements
 GooglePlayServicesClient.ConnectionCallbacks,
 GooglePlayServicesClient.OnConnectionFailedListener,
 LocationListener {
 ...
 // Define the callback method that receives location updates
 @Override
 public void onLocationChanged(Location location) {
 // Report to the UI that the location was updated
 String msg = "Updated Location: " +
 Double.toString(location.getLatitude()) + "," +
 Double.toString(location.getLongitude());
 Toast.makeText(this, msg, Toast.LENGTH_SHORT).show();
 }
 ...
}

Now that you have the callbacks prepared, you can set up the request for location updates. The first step
is to specify the parameters that control the updates.

Specify Update Parameters
Location Services allows you to control the interval between updates and the location accuracy you want,
by setting the values in a LocationRequest object and then sending this object as part of your request
to start updates.
First, set the following interval parameters:
Update interval

Set by LocationRequest.setInterval(). This method sets the rate in milliseconds at which
your app prefers to receive location updates. If no other apps are receiving updates from Location
Services, your app will receive updates at this rate.

Fastest update interval
Set by LocationRequest.setFastestInterval(). This method sets the fastest rate in
milliseconds at which your app can handle location updates. You need to set this rate because
other apps also affect the rate at which updates are sent. Location Services sends out updates at
the fastest rate that any app requested by calling LocationRequest.setInterval(). If this
rate is faster than your app can handle, you may encounter problems with UI flicker or data
overflow. To prevent this, call LocationRequest.setFastestInterval() to set an upper
limit to the update rate.
Calling LocationRequest.setFastestInterval() also helps to save power. When you
request a preferred update rate by calling LocationRequest.setInterval(), and a

Receiving Location Updates

383
Content from developer.android.com/training/location/receive-location-updates.html through their Creative Commons Attribution 2.5 license

maximum rate by calling LocationRequest.setFastestInterval(), then your app gets the
same update rate as the fastest rate in the system. If other apps have requested a faster rate,
you get the benefit of a faster rate. If no other apps have a faster rate request outstanding, your
app receives updates at the rate you specified with LocationRequest.setInterval().

Next, set the accuracy parameter. In a foreground app, you need constant location updates with high
accuracy, so use the setting LocationRequest.PRIORITY_HIGH_ACCURACY.
The following snippet shows how to set the update interval and accuracy in onCreate():

public class MainActivity extends FragmentActivity implements
 GooglePlayServicesClient.ConnectionCallbacks,
 GooglePlayServicesClient.OnConnectionFailedListener,
 LocationListener {
 ...
 // Global constants
 ...
 // Milliseconds per second
 private static final int MILLISECONDS_PER_SECOND = 1000;
 // Update frequency in seconds
 public static final int UPDATE_INTERVAL_IN_SECONDS = 5;
 // Update frequency in milliseconds
 private static final long UPDATE_INTERVAL =
 MILLISECONDS_PER_SECOND * UPDATE_INTERVAL_IN_SECONDS;
 // The fastest update frequency, in seconds
 private static final int FASTEST_INTERVAL_IN_SECONDS = 1;
 // A fast frequency ceiling in milliseconds
 private static final long FASTEST_INTERVAL =
 MILLISECONDS_PER_SECOND * FASTEST_INTERVAL_IN_SECONDS;
 ...
 // Define an object that holds accuracy and frequency parameters
 LocationRequest mLocationRequest;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Create the LocationRequest object
 mLocationRequest = LocationRequest.create();
 // Use high accuracy
 mLocationRequest.setPriority(
 LocationRequest.PRIORITY_HIGH_ACCURACY);
 // Set the update interval to 5 seconds
 mLocationRequest.setInterval(UPDATE_INTERVAL);
 // Set the fastest update interval to 1 second
 mLocationRequest.setFastestInterval(FASTEST_INTERVAL);
 ...
 }
 ...
}

Note: If your app accesses the network or does other long-running work after receiving a location update,
adjust the fastest interval to a slower value. This prevents your app from receiving updates it can't use.
Once the long-running work is done, set the fastest interval back to a fast value.

Start Location Updates
To send the request for location updates, create a location client in onCreate(), then connect it and
make the request by calling requestLocationUpdates(). Since your client must be connected for your
app to receive updates, you should connect the client in onStart(). This ensures that you always have a

Receiving Location Updates

384
Content from developer.android.com/training/location/receive-location-updates.html through their Creative Commons Attribution 2.5 license

valid, connected client while your app is visible. Since you need a connection before you can request
updates, make the update request in ConnectionCallbacks.onConnected()
Remember that the user may want to turn off location updates for various reasons. You should provide a
way for the user to do this, and you should ensure that you don't start updates in onStart() if updates
were previously turned off. To track the user's preference, store it in your app's SharedPreferences in
onPause() and retrieve it in onResume().
The following snippet shows how to set up the client in onCreate(), and how to connect it and request
updates in onStart():

Receiving Location Updates

385
Content from developer.android.com/training/location/receive-location-updates.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 GooglePlayServicesClient.ConnectionCallbacks,
 GooglePlayServicesClient.OnConnectionFailedListener,
 LocationListener {
 ...
 // Global variables
 ...
 LocationClient mLocationClient;
 boolean mUpdatesRequested;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...
 // Open the shared preferences
 mPrefs = getSharedPreferences("SharedPreferences",
 Context.MODE_PRIVATE);
 // Get a SharedPreferences editor
 mEditor = mPrefs.edit();
 /*
 * Create a new location client, using the enclosing class to
 * handle callbacks.
 */
 mLocationClient = new LocationClient(this, this, this);
 // Start with updates turned off
 mUpdatesRequested = false;
 ...
 }
 ...
 @Override
 protected void onPause() {
 // Save the current setting for updates
 mEditor.putBoolean("KEY_UPDATES_ON", mUpdatesRequested);
 mEditor.commit();
 super.onPause();
 }
 ...
 @Override
 protected void onStart() {
 ...
 mLocationClient.connect();
 }
 ...
 @Override
 protected void onResume() {
 /*
 * Get any previous setting for location updates
 * Gets "false" if an error occurs
 */
 if (mPrefs.contains("KEY_UPDATES_ON")) {
 mUpdatesRequested =
 mPrefs.getBoolean("KEY_UPDATES_ON", false);

 // Otherwise, turn off location updates
 } else {
 mEditor.putBoolean("KEY_UPDATES_ON", false);
 mEditor.commit();
 }
 }
 ...
 /*

Receiving Location Updates

386
Content from developer.android.com/training/location/receive-location-updates.html through their Creative Commons Attribution 2.5 license

 * Called by Location Services when the request to connect the
 * client finishes successfully. At this point, you can
 * request the current location or start periodic updates
 */
 @Override
 public void onConnected(Bundle dataBundle) {
 // Display the connection status
 Toast.makeText(this, "Connected", Toast.LENGTH_SHORT).show();
 // If already requested, start periodic updates
 if (mUpdatesRequested) {
 mLocationClient.requestLocationUpdates(mLocationRequest, this);
 }
 }
 ...
}

For more information about saving preferences, read Saving Key-Value Sets.

Stop Location Updates
To stop location updates, save the state of the update flag in onPause(), and stop updates in onStop()
by calling removeLocationUpdates(LocationListener). For example:

public class MainActivity extends FragmentActivity implements
 GooglePlayServicesClient.ConnectionCallbacks,
 GooglePlayServicesClient.OnConnectionFailedListener,
 LocationListener {
 ...
 /*
 * Called when the Activity is no longer visible at all.
 * Stop updates and disconnect.
 */
 @Override
 protected void onStop() {
 // If the client is connected
 if (mLocationClient.isConnected()) {
 /*
 * Remove location updates for a listener.
 * The current Activity is the listener, so
 * the argument is "this".
 */
 removeLocationUpdates(this);
 }
 /*
 * After disconnect() is called, the client is
 * considered "dead".
 */
 mLocationClient.disconnect();
 super.onStop();
 }
 ...
}

You now have the basic structure of an app that requests and receives periodic location updates. You can
combine the features described in this lesson with the geofencing, activity recognition, or reverse
geocoding features described in other lessons in this class.
The next lesson, Displaying a Location Address, shows you how to use the current location to display the
current street address.

Displaying a Location Address

387
Content from developer.android.com/training/location/display-address.html through their Creative Commons Attribution 2.5 license

111. Displaying a Location Address
Content from developer.android.com/training/location/display-address.html through their Creative Commons Attribution 2.5 license

The lessons Retrieving the Current Location and
Receiving Location Updates describe how to get
the user's current location in the form of a
Location object that contains latitude and
longitude coordinates. Although latitude and
longitude are useful for calculating distance or
displaying a map position, in many cases the
address of the location is more useful.
The Android platform API provides a feature that
returns an estimated street addresses for latitude
and longitude values. This lesson shows you how
to use this address lookup feature.
Note: Address lookup requires a backend service
that is not included in the core Android framework.
If this backend service is not available,
Geocoder.getFromLocation() returns an
empty list. The helper method isPresent(),
available in API level 9 and later, checks to see if the backend service is available.
The snippets in the following sections assume that your app has already retrieved the current location and
stored it as a Location object in the global variable mLocation.

Define the Address Lookup Task
To get an address for a given latitude and longitude, call Geocoder.getFromLocation(), which returns
a list of addresses. The method is synchronous, and may take a long time to do its work, so you should
call the method from the doInBackground() method of an AsyncTask.
While your app is getting the address, display an indeterminate activity indicator to show that your app is
working in the background. Set the indicator's initial state to android:visibility="gone", to make it
invisible and remove it from the layout hierarchy. When you start the address lookup, you set its visibility to
"visible".
The following snippet shows how to add an indeterminate ProgressBar to your layout file:

<ProgressBar
android:id="@+id/address_progress"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:indeterminate="true"
android:visibility="gone" />

To create the background task, define a subclass of AsyncTask that calls getFromLocation() and
returns an address. Define a TextView object mAddress to contain the returned address, and a
ProgressBar object that allows you to control the indeterminate activity indicator. For example:

This lesson teaches you to
• Define the Address Lookup Task
• Define a Method to Display the Results
• Run the Lookup Task
You should also read

• Setup Google Play Services SDK
• Retrieving the Current Location
• Receiving Location Updates

Try it out
Download the sample app
LocationUpdates.zip

Displaying a Location Address

388
Content from developer.android.com/training/location/display-address.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity {
 ...
 private TextView mAddress;
 private ProgressBar mActivityIndicator;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 mAddress = (TextView) findViewById(R.id.address);
 mActivityIndicator =
 (ProgressBar) findViewById(R.id.address_progress);
 }
 ...
 /**
 * A subclass of AsyncTask that calls getFromLocation() in the
 * background. The class definition has these generic types:
 * Location - A Location object containing
 * the current location.
 * Void - indicates that progress units are not used
 * String - An address passed to onPostExecute()
 */
 private class GetAddressTask extends
 AsyncTask<Location, Void, String> {
 Context mContext;
 public GetAddressTask(Context context) {
 super();
 mContext = context;
 }
 ...
 /**
 * Get a Geocoder instance, get the latitude and longitude
 * look up the address, and return it
 *
 * @params params One or more Location objects
 * @return A string containing the address of the current
 * location, or an empty string if no address can be found,
 * or an error message
 */
 @Override
 protected String doInBackground(Location... params) {
 Geocoder geocoder =
 new Geocoder(mContext, Locale.getDefault());
 // Get the current location from the input parameter list
 Location loc = params[0];
 // Create a list to contain the result address
 List<Address> addresses = null;
 try {
 /*
 * Return 1 address.
 */
 addresses = geocoder.getFromLocation(loc.getLatitude(),
 loc.getLongitude(), 1);
 } catch (IOException e1) {
 Log.e("LocationSampleActivity",
 "IO Exception in getFromLocation()");
 e1.printStackTrace();
 return ("IO Exception trying to get address");
 } catch (IllegalArgumentException e2) {
 // Error message to post in the log

Displaying a Location Address

389
Content from developer.android.com/training/location/display-address.html through their Creative Commons Attribution 2.5 license

 String errorString = "Illegal arguments " +
 Double.toString(loc.getLatitude()) +
 " , " +
 Double.toString(loc.getLongitude()) +
 " passed to address service";
 Log.e("LocationSampleActivity", errorString);
 e2.printStackTrace();
 return errorString;
 }
 // If the reverse geocode returned an address
 if (addresses != null && addresses.size() > 0) {
 // Get the first address
 Address address = addresses.get(0);
 /*
 * Format the first line of address (if available),
 * city, and country name.
 */
 String addressText = String.format(
 "%s, %s, %s",
 // If there's a street address, add it
 address.getMaxAddressLineIndex() > 0 ?
 address.getAddressLine(0) : "",
 // Locality is usually a city
 address.getLocality(),
 // The country of the address
 address.getCountryName());
 // Return the text
 return addressText;
 } else {
 return "No address found";
 }
 }
 ...
 }
 ...
}

The next section shows you how to display the address in the user interface.

Define a Method to Display the Results
doInBackground() returns the result of the address lookup as a String. This value is passed to
onPostExecute(), where you do further processing on the results. Since onPostExecute() runs on
the UI thread, it can update the user interface; for example, it can turn off the activity indicator and display
the results to the user:

Displaying a Location Address

390
Content from developer.android.com/training/location/display-address.html through their Creative Commons Attribution 2.5 license

 private class GetAddressTask extends
 AsyncTask<Location, Void, String> {
 ...
 /**
 * A method that's called once doInBackground() completes. Turn
 * off the indeterminate activity indicator and set
 * the text of the UI element that shows the address. If the
 * lookup failed, display the error message.
 */
 @Override
 protected void onPostExecute(String address) {
 // Set activity indicator visibility to "gone"
 mActivityIndicator.setVisibility(View.GONE);
 // Display the results of the lookup.
 mAddress.setText(address);
 }
 ...
 }

The final step is to run the address lookup.

Run the Lookup Task
To get the address, call execute(). For example, the following snippet starts the address lookup when
the user clicks the "Get Address" button:

public class MainActivity extends FragmentActivity {
 ...
 /**
 * The "Get Address" button in the UI is defined with
 * android:onClick="getAddress". The method is invoked whenever the
 * user clicks the button.
 *
 * @param v The view object associated with this method,
 * in this case a Button.
 */
 public void getAddress(View v) {
 // Ensure that a Geocoder services is available
 if (Build.VERSION.SDK_INT >=
 Build.VERSION_CODES.GINGERBREAD
 &&
 Geocoder.isPresent()) {
 // Show the activity indicator
 mActivityIndicator.setVisibility(View.VISIBLE);
 /*
 * Reverse geocoding is long-running and synchronous.
 * Run it on a background thread.
 * Pass the current location to the background task.
 * When the task finishes,
 * onPostExecute() displays the address.
 */
 (new GetAddressTask(this)).execute(mLocation);
 }
 ...
 }
 ...
}

Displaying a Location Address

391
Content from developer.android.com/training/location/display-address.html through their Creative Commons Attribution 2.5 license

The next lesson, Creating and Monitoring Geofences, demonstrates how to define locations of interest
called geofences and how to use geofence monitoring to detect the user's proximity to a location of
interest.

Creating and Monitoring Geofences

392
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

112. Creating and Monitoring Geofences
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

Geofencing combines awareness of the user's
current location with awareness of nearby
features, defined as the user's proximity to
locations that may be of interest. To mark a
location of interest, you specify its latitude and
longitude. To adjust the proximity for the location,
you add a radius. The latitude, longitude, and
radius define a geofence. You can have multiple
active geofences at one time.
Location Services treats a geofences as an area
rather than as a points and proximity. This allows
it to detect when the user enters or exits a
geofence. For each geofence, you can ask
Location Services to send you entrance events or
exit events or both. You can also limit the duration
of a geofence by specifying an expiration duration
in milliseconds. After the geofence expires, Location Services automatically removes it.

Request Geofence Monitoring
The first step in requesting geofence monitoring is to request the necessary permission. To use
geofencing, your app must request ACCESS_FINE_LOCATION. To request this permission, add the
following element as a child element of the <manifest> element:

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

Check for Google Play Services
Location Services is part of the Google Play services APK. Since it's hard to anticipate the state of the
user's device, you should always check that the APK is installed before you attempt to connect to Location
Services. To check that the APK is installed, call
GooglePlayServicesUtil.isGooglePlayServicesAvailable(), which returns one of the integer
result codes listed in the API reference documentation. If you encounter an error, call
GooglePlayServicesUtil.getErrorDialog() to retrieve localized dialog that prompts users to take
the correct action, then display the dialog in a DialogFragment. The dialog may allow the user to correct
the problem, in which case Google Play services may send a result back to your activity. To handle this
result, override the method onActivityResult()
Note: To make your app compatible with platform version 1.6 and later, the activity that displays the
DialogFragment must subclass FragmentActivity instead of Activity. Using
FragmentActivity also allows you to call getSupportFragmentManager() to display the
DialogFragment.
Since you usually need to check for Google Play services in more than one place in your code, define a
method that encapsulates the check, then call the method before each connection attempt. The following
snippet contains all of the code required to check for Google Play services:

This lesson teaches you to
• Request Geofence Monitoring
• Handle Geofence Transitions
• Stop Geofence Monitoring
You should also read

• Setup Google Play Services SDK

Try it out
Download the sample
GeofenceDetection.zip

Creating and Monitoring Geofences

393
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity {
 ...
 // Global constants
 /*
 * Define a request code to send to Google Play services
 * This code is returned in Activity.onActivityResult
 */
 private final static int
 CONNECTION_FAILURE_RESOLUTION_REQUEST = 9000;
 ...
 // Define a DialogFragment that displays the error dialog
 public static class ErrorDialogFragment extends DialogFragment {
 // Global field to contain the error dialog
 private Dialog mDialog;
 ...
 // Default constructor. Sets the dialog field to null
 public ErrorDialogFragment() {
 super();
 mDialog = null;
 }
 ...
 // Set the dialog to display
 public void setDialog(Dialog dialog) {
 mDialog = dialog;
 }
 ...
 // Return a Dialog to the DialogFragment.
 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 return mDialog;
 }
 ...
 }
 ...
 /*
 * Handle results returned to the FragmentActivity
 * by Google Play services
 */
 @Override
 protected void onActivityResult(
 int requestCode, int resultCode, Intent data) {
 // Decide what to do based on the original request code
 switch (requestCode) {
 ...
 case CONNECTION_FAILURE_RESOLUTION_REQUEST :
 /*
 * If the result code is Activity.RESULT_OK, try
 * to connect again
 */
 switch (resultCode) {
 ...
 case Activity.RESULT_OK :
 /*
 * Try the request again
 */
 ...
 break;
 }
 ...
 }

Creating and Monitoring Geofences

394
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

 ...
 }
 ...
 private boolean servicesConnected() {
 // Check that Google Play services is available
 int resultCode =
 GooglePlayServicesUtil.
 isGooglePlayServicesAvailable(this);
 // If Google Play services is available
 if (ConnectionResult.SUCCESS == resultCode) {
 // In debug mode, log the status
 Log.d("Geofence Detection",
 "Google Play services is available.");
 // Continue
 return true;
 // Google Play services was not available for some reason
 } else {
 // Get the error code
 int errorCode = connectionResult.getErrorCode();
 // Get the error dialog from Google Play services
 Dialog errorDialog = GooglePlayServicesUtil.getErrorDialog(
 errorCode,
 this,
 CONNECTION_FAILURE_RESOLUTION_REQUEST);

 // If Google Play services can provide an error dialog
 if (errorDialog != null) {
 // Create a new DialogFragment for the error dialog
 ErrorDialogFragment errorFragment =
 new ErrorDialogFragment();
 // Set the dialog in the DialogFragment
 errorFragment.setDialog(errorDialog);
 // Show the error dialog in the DialogFragment
 errorFragment.show(
 getSupportFragmentManager(),
 "Geofence Detection");
 }
 }
 }
 ...
}

Snippets in the following sections call this method to verify that Google Play services is available.
To use geofencing, start by defining the geofences you want to monitor. Although you usually store
geofence data in a local database or download it from the network, you need to send a geofence to
Location Services as an instance of Geofence, which you create with Geofence.Builder. Each
Geofence object contains the following information:
Latitude, longitude, and radius

Define a circular area for the geofence. Use the latitude and longitude to mark a location of
interest, and then use the radius to adjust how close the user needs to approach the location
before the geofence is detected. The larger the radius, the more likely the user will trigger a
geofence transition alert by approaching the geofence. For example, providing a large radius for a
geofencing app that turns on lights in the user's house as the user returns home might cause the
lights to go on even if the user is simply passing by.

Expiration time

Creating and Monitoring Geofences

395
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

How long the geofence should remain active. Once the expiration time is reached, Location
Services deletes the geofence. Most of the time, you should specify an expiration time, but you
may want to keep permanent geofences for the user's home or place of work.

Transition type
Location Services can detect when the user steps within the radius of the geofence ("entry") and
when the user steps outside the radius of the geofence ("exit"), or both.

Geofence ID
A string that is stored with the geofence. You should make this unique, so that you can use it to
remove a geofence from Location Services tracking.

Define geofence storage
A geofencing app needs to read and write geofence data to persistent storage. You shouldn't use
Geofence objects to do this; instead, use storage techniques such as databases that can store groups of
related data.
As an example of storing geofence data, the following snippet defines two classes that use the app's
SharedPreferences instance for persistent storage. The class SimpleGeofence, analogous to a
database record, stores the data for a single Geofence object in a "flattened" form. The class
SimpleGeofenceStore, analogous to a database, reads and writes SimpleGeofence data to the
SharedPreferences instance.

Creating and Monitoring Geofences

396
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity {
 ...
 /**
 * A single Geofence object, defined by its center and radius.
 */
 public class SimpleGeofence {
 // Instance variables
 private final String mId;
 private final double mLatitude;
 private final double mLongitude;
 private final float mRadius;
 private long mExpirationDuration;
 private int mTransitionType;

 /**
 * @param geofenceId The Geofence's request ID
 * @param latitude Latitude of the Geofence's center.
 * @param longitude Longitude of the Geofence's center.
 * @param radius Radius of the geofence circle.
 * @param expiration Geofence expiration duration
 * @param transition Type of Geofence transition.
 */
 public SimpleGeofence(
 String geofenceId,
 double latitude,
 double longitude,
 float radius,
 long expiration,
 int transition) {
 // Set the instance fields from the constructor
 this.mId = geofenceId;
 this.mLatitude = latitude;
 this.mLongitude = longitude;
 this.mRadius = radius;
 this.mExpirationDuration = expiration;
 this.mTransitionType = transition;
 }
 // Instance field getters
 public String getId() {
 return mId;
 }
 public double getLatitude() {
 return mLatitude;
 }
 public double getLongitude() {
 return mLongitude;
 }
 public float getRadius() {
 return mRadius;
 }
 public long getExpirationDuration() {
 return mExpirationDuration;
 }
 public int getTransitionType() {
 return mTransitionType;
 }
 /**
 * Creates a Location Services Geofence object from a
 * SimpleGeofence.
 *

Creating and Monitoring Geofences

397
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

 * @return A Geofence object
 */
 public Geofence toGeofence() {
 // Build a new Geofence object
 return new Geofence.Builder()
 .setRequestId(getId())
 .setTransitionTypes(mTransitionType)
 .setCircularRegion(
 getLatitude(), getLongitude(), getRadius())
 .setExpirationDuration(mExpirationDuration)
 .build();
 }
 }
 ...
 /**
 * Storage for geofence values, implemented in SharedPreferences.
 */
 public class SimpleGeofenceStore {
 // Keys for flattened geofences stored in SharedPreferences
 public static final String KEY_LATITUDE =
 "com.example.android.geofence.KEY_LATITUDE";
 public static final String KEY_LONGITUDE =
 "com.example.android.geofence.KEY_LONGITUDE";
 public static final String KEY_RADIUS =
 "com.example.android.geofence.KEY_RADIUS";
 public static final String KEY_EXPIRATION_DURATION =
 "com.example.android.geofence.KEY_EXPIRATION_DURATION";
 public static final String KEY_TRANSITION_TYPE =
 "com.example.android.geofence.KEY_TRANSITION_TYPE";
 // The prefix for flattened geofence keys
 public static final String KEY_PREFIX =
 "com.example.android.geofence.KEY";
 /*
 * Invalid values, used to test geofence storage when
 * retrieving geofences
 */
 public static final long INVALID_LONG_VALUE = -999l;
 public static final float INVALID_FLOAT_VALUE = -999.0f;
 public static final int INVALID_INT_VALUE = -999;
 // The SharedPreferences object in which geofences are stored
 private final SharedPreferences mPrefs;
 // The name of the SharedPreferences
 private static final String SHARED_PREFERENCES =
 "SharedPreferences";
 // Create the SharedPreferences storage with private access only
 public SimpleGeofenceStore(Context context) {
 mPrefs =
 context.getSharedPreferences(
 SHARED_PREFERENCES,
 Context.MODE_PRIVATE);
 }
 /**
 * Returns a stored geofence by its id, or returns null
 * if it's not found.
 *
 * @param id The ID of a stored geofence
 * @return A geofence defined by its center and radius. See
 */
 public SimpleGeofence getGeofence(String id) {
 /*
 * Get the latitude for the geofence identified by id, or

Creating and Monitoring Geofences

398
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

 * INVALID_FLOAT_VALUE if it doesn't exist
 */
 double lat = mPrefs.getFloat(
 getGeofenceFieldKey(id, KEY_LATITUDE),
 INVALID_FLOAT_VALUE);
 /*
 * Get the longitude for the geofence identified by id, or
 * INVALID_FLOAT_VALUE if it doesn't exist
 */
 double lng = mPrefs.getFloat(
 getGeofenceFieldKey(id, KEY_LONGITUDE),
 INVALID_FLOAT_VALUE);
 /*
 * Get the radius for the geofence identified by id, or
 * INVALID_FLOAT_VALUE if it doesn't exist
 */
 float radius = mPrefs.getFloat(
 getGeofenceFieldKey(id, KEY_RADIUS),
 INVALID_FLOAT_VALUE);
 /*
 * Get the expiration duration for the geofence identified
 * by id, or INVALID_LONG_VALUE if it doesn't exist
 */
 long expirationDuration = mPrefs.getLong(
 getGeofenceFieldKey(id, KEY_EXPIRATION_DURATION),
 INVALID_LONG_VALUE);
 /*
 * Get the transition type for the geofence identified by
 * id, or INVALID_INT_VALUE if it doesn't exist
 */
 int transitionType = mPrefs.getInt(
 getGeofenceFieldKey(id, KEY_TRANSITION_TYPE),
 INVALID_INT_VALUE);
 // If none of the values is incorrect, return the object
 if (
 lat != GeofenceUtils.INVALID_FLOAT_VALUE &&
 lng != GeofenceUtils.INVALID_FLOAT_VALUE &&
 radius != GeofenceUtils.INVALID_FLOAT_VALUE &&
 expirationDuration !=
 GeofenceUtils.INVALID_LONG_VALUE &&
 transitionType != GeofenceUtils.INVALID_INT_VALUE) {

 // Return a true Geofence object
 return new SimpleGeofence(
 id, lat, lng, radius, expirationDuration,
 transitionType);
 // Otherwise, return null.
 } else {
 return null;
 }
 }
 /**
 * Save a geofence.
 * @param geofence The SimpleGeofence containing the
 * values you want to save in SharedPreferences
 */
 public void setGeofence(String id, SimpleGeofence geofence) {
 /*
 * Get a SharedPreferences editor instance. Among other
 * things, SharedPreferences ensures that updates are atomic
 * and non-concurrent

Creating and Monitoring Geofences

399
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

 */
 Editor editor = mPrefs.edit();
 // Write the Geofence values to SharedPreferences
 editor.putFloat(
 getGeofenceFieldKey(id, KEY_LATITUDE),
 (float) geofence.getLatitude());
 editor.putFloat(
 getGeofenceFieldKey(id, KEY_LONGITUDE),
 (float) geofence.getLongitude());
 editor.putFloat(
 getGeofenceFieldKey(id, KEY_RADIUS),
 geofence.getRadius());
 editor.putLong(
 getGeofenceFieldKey(id, KEY_EXPIRATION_DURATION),
 geofence.getExpirationDuration());
 editor.putInt(
 getGeofenceFieldKey(id, KEY_TRANSITION_TYPE),
 geofence.getTransitionType());
 // Commit the changes
 editor.commit();
 }
 public void clearGeofence(String id) {
 /*
 * Remove a flattened geofence object from storage by
 * removing all of its keys
 */
 Editor editor = mPrefs.edit();
 editor.remove(getGeofenceFieldKey(id, KEY_LATITUDE));
 editor.remove(getGeofenceFieldKey(id, KEY_LONGITUDE));
 editor.remove(getGeofenceFieldKey(id, KEY_RADIUS));
 editor.remove(getGeofenceFieldKey(id,
 KEY_EXPIRATION_DURATION));
 editor.remove(getGeofenceFieldKey(id, KEY_TRANSITION_TYPE));
 editor.commit();
 }
 /**
 * Given a Geofence object's ID and the name of a field
 * (for example, KEY_LATITUDE), return the key name of the
 * object's values in SharedPreferences.
 *
 * @param id The ID of a Geofence object
 * @param fieldName The field represented by the key
 * @return The full key name of a value in SharedPreferences
 */
 private String getGeofenceFieldKey(String id,
 String fieldName) {
 return KEY_PREFIX + "_" + id + "_" + fieldName;
 }
 }
 ...
}

Create Geofence objects
The following snippet uses the SimpleGeofence and SimpleGeofenceStore classes gets geofence
data from the UI, stores it in SimpleGeofence objects, stores these objects in a
SimpleGeofenceStore object, and then creates Geofence objects:

Creating and Monitoring Geofences

400
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity {
 ...
 /*
 * Use to set an expiration time for a geofence. After this amount
 * of time Location Services will stop tracking the geofence.
 */
 private static final long SECONDS_PER_HOUR = 60;
 private static final long MILLISECONDS_PER_SECOND = 1000;
 private static final long GEOFENCE_EXPIRATION_IN_HOURS = 12;
 private static final long GEOFENCE_EXPIRATION_TIME =
 GEOFENCE_EXPIRATION_IN_HOURS *
 SECONDS_PER_HOUR *
 MILLISECONDS_PER_SECOND;
 ...
 /*
 * Handles to UI views containing geofence data
 */
 // Handle to geofence 1 latitude in the UI
 private EditText mLatitude1;
 // Handle to geofence 1 longitude in the UI
 private EditText mLongitude1;
 // Handle to geofence 1 radius in the UI
 private EditText mRadius1;
 // Handle to geofence 2 latitude in the UI
 private EditText mLatitude2;
 // Handle to geofence 2 longitude in the UI
 private EditText mLongitude2;
 // Handle to geofence 2 radius in the UI
 private EditText mRadius2;
 /*
 * Internal geofence objects for geofence 1 and 2
 */
 private SimpleGeofence mUIGeofence1;
 private SimpleGeofence mUIGeofence2;
 ...
 // Internal List of Geofence objects
 List<Geofence> mGeofenceList;
 // Persistent storage for geofences
 private SimpleGeofenceStore mGeofenceStorage;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 // Instantiate a new geofence storage area
 mGeofenceStorage = new SimpleGeofenceStore(this);

 // Instantiate the current List of geofences
 mCurrentGeofences = new ArrayList<Geofence>();
 }
 ...
 /**
 * Get the geofence parameters for each geofence from the UI
 * and add them to a List.
 */
 public void createGeofences() {
 /*
 * Create an internal object to store the data. Set its
 * ID to "1". This is a "flattened" object that contains
 * a set of strings

Creating and Monitoring Geofences

401
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

 */
 mUIGeofence1 = new SimpleGeofence(
 "1",
 Double.valueOf(mLatitude1.getText().toString()),
 Double.valueOf(mLongitude1.getText().toString()),
 Float.valueOf(mRadius1.getText().toString()),
 GEOFENCE_EXPIRATION_TIME,
 // This geofence records only entry transitions
 Geofence.GEOFENCE_TRANSITION_ENTER);
 // Store this flat version
 mGeofenceStorage.setGeofence("1", mUIGeofence1);
 // Create another internal object. Set its ID to "2"
 mUIGeofence2 = new SimpleGeofence(
 "2",
 Double.valueOf(mLatitude2.getText().toString()),
 Double.valueOf(mLongitude2.getText().toString()),
 Float.valueOf(mRadius2.getText().toString()),
 GEOFENCE_EXPIRATION_TIME,
 // This geofence records both entry and exit transitions
 Geofence.GEOFENCE_TRANSITION_ENTER |
 Geofence.GEOFENCE_TRANSITION_EXIT);
 // Store this flat version
 mGeofenceStorage.setGeofence(2, mUIGeofence2);
 mGeofenceList.add(mUIGeofence1.toGeofence());
 mGeofenceList.add(mUIGeofence2.toGeofence());
 }
 ...
}

In addition to the List of Geofence objects you want to monitor, you need to provide Location Services
with the Intent that it sends to your app when it detects geofence transitions.
Define a Intent for geofence transitions
The Intent sent from Location Services can trigger various actions in your app, but you should not have
it start an activity or fragment, because components should only become visible in response to a user
action. In many cases, an IntentService is a good way to handle the intent. An IntentService can
post a notification, do long-running background work, send intents to other services, or send a broadcast
intent. The following snippet shows how how to define a PendingIntent that starts an IntentService:

Creating and Monitoring Geofences

402
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity {
 ...
 /*
 * Create a PendingIntent that triggers an IntentService in your
 * app when a geofence transition occurs.
 */
 private PendingIntent getTransitionPendingIntent() {
 // Create an explicit Intent
 Intent intent = new Intent(this,
 ReceiveTransitionsIntentService.class);
 /*
 * Return the PendingIntent
 */
 return PendingIntent.getService(
 this,
 0,
 intent,
 PendingIntent.FLAG_UPDATE_CURRENT);
 }
 ...
}

Now you have all the code you need to send a request to monitor geofences to Location Services.

Send the monitoring request
Sending the monitoring request requires two asynchronous operations. The first operation gets a location
client for the request, and the second makes the request using the client. In both cases, Location Services
invokes a callback method when it finishes the operation. The best way to handle these operations is to
chain together the method calls. The following snippets demonstrate how to set up an activity, define the
methods, and call them in the proper order.
First, modify the activity's class definition to implement the necessary callback interfaces. Add the following
interfaces:
ConnectionCallbacks

Specifies methods that Location Services calls when a location client is connected or
disconnected.

OnConnectionFailedListener
Specifies a method that Location Services calls if an error occurs while attempting to connect the
location client.

OnAddGeofencesResultListener
Specifies a method that Location Services calls once it has added the geofences.

For example:

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
}

Start the request process
Next, define a method that starts the request process by connecting to Location Services. Mark this as a
request to add a geofence by setting a global variable. This allows you to use the callback

Creating and Monitoring Geofences

403
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

ConnectionCallbacks.onConnected() to add geofences and to remove them, as described in
succeeding sections.
To guard against race conditions that might arise if your app tries to start another request before the first
one finishes, define a boolean flag that tracks the state of the current request:

Creating and Monitoring Geofences

404
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 // Holds the location client
 private LocationClient mLocationClient;
 // Stores the PendingIntent used to request geofence monitoring
 private PendingIntent mGeofenceRequestIntent;
 // Defines the allowable request types.
 public enum REQUEST_TYPE = {ADD}
 private REQUEST_TYPE mRequestType;
 // Flag that indicates if a request is underway.
 private boolean mInProgress;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...
 // Start with the request flag set to false
 mInProgress = false;
 ...
 }
 ...
 /**
 * Start a request for geofence monitoring by calling
 * LocationClient.connect().
 */
 public void addGeofences() {
 // Start a request to add geofences
 mRequestType = ADD;
 /*
 * Test for Google Play services after setting the request type.
 * If Google Play services isn't present, the proper request
 * can be restarted.
 */
 if (!servicesConnected()) {
 return;
 }
 /*
 * Create a new location client object. Since the current
 * activity class implements ConnectionCallbacks and
 * OnConnectionFailedListener, pass the current activity object
 * as the listener for both parameters
 */
 mLocationClient = new LocationClient(this, this, this)
 // If a request is not already underway
 if (!mInProgress) {
 // Indicate that a request is underway
 mInProgress = true;
 // Request a connection from the client to Location Services
 mLocationClient.connect();
 } else {
 /*
 * A request is already underway. You can handle
 * this situation by disconnecting the client,
 * re-setting the flag, and then re-trying the
 * request.
 */
 }
 }

Creating and Monitoring Geofences

405
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

 ...
}

Send a request to add the geofences
In your implementation of ConnectionCallbacks.onConnected(), call
LocationClient.addGeofences(). Notice that if the connection fails, onConnected() isn't called,
and the request stops.

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 /*
 * Provide the implementation of ConnectionCallbacks.onConnected()
 * Once the connection is available, send a request to add the
 * Geofences
 */
 @Override
 private void onConnected(Bundle dataBundle) {
 ...
 switch (mRequestType) {
 case ADD :
 // Get the PendingIntent for the request
 mTransitionPendingIntent =
 getTransitionPendingIntent();
 // Send a request to add the current geofences
 mLocationClient.addGeofences(
 mCurrentGeofences, pendingIntent, this);
 ...
 }
 }
 ...
}

Notice that addGeofences() returns immediately, but the status of the request is indeterminate until
Location Services calls onAddGeofencesResult() Once this method is called, you can determine if the
request was successful or not.
Check the result returned by Location Services
When Location Services invokes your implementation of the callback method
onAddGeofencesResult(), indicating that the request is complete, examine the incoming status code.
If the request was successful, the geofences you requested are active. If the request was unsuccessful,
the geofences aren't active, and you need to re-try the request or report an error. For example:

Creating and Monitoring Geofences

406
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 /*
 * Provide the implementation of
 * OnAddGeofencesResultListener.onAddGeofencesResult.
 * Handle the result of adding the geofences
 *
 */
 @Override
 public void onAddGeofencesResult(
 int statusCode, String[] geofenceRequestIds) {
 // If adding the geofences was successful
 if (LocationStatusCodes.SUCCESS == statusCode) {
 /*
 * Handle successful addition of geofences here.
 * You can send out a broadcast intent or update the UI.
 * geofences into the Intent's extended data.
 */
 } else {
 // If adding the geofences failed
 /*
 * Report errors here.
 * You can log the error using Log.e() or update
 * the UI.
 */
 }
 // Turn off the in progress flag and disconnect the client
 mInProgress = false;
 mLocationClient.disconnect();
 }
 ...
}

Handle disconnections
In some cases, Location Services may disconnect from the activity recognition client before you call
disconnect(). To handle this situation, implement onDisconnected(). In this method, set the request
flag to indicate that a request is not in progress, and delete the client:

Creating and Monitoring Geofences

407
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 /*
 * Implement ConnectionCallbacks.onDisconnected()
 * Called by Location Services once the location client is
 * disconnected.
 */
 @Override
 public void onDisconnected() {
 // Turn off the request flag
 mInProgress = false;
 // Destroy the current location client
 mLocationClient = null;
 }
 ...
}

Handle connection errors
Besides handling the normal callbacks from Location Services, you have to provide a callback method that
Location Services calls if a connection error occurs. This callback method can re-use the
DialogFragment class that you defined to handle the check for Google Play services. It can also re-use
the override you defined for onActivityResult() that receives any Google Play services results that
occur when the user interacts with the error dialog. The following snippet shows you a sample
implementation of the callback method:

Creating and Monitoring Geofences

408
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 // Implementation of OnConnectionFailedListener.onConnectionFailed
 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) {
 // Turn off the request flag
 mInProgress = false;
 /*
 * If the error has a resolution, start a Google Play services
 * activity to resolve it.
 */
 if (connectionResult.hasResolution()) {
 try {
 connectionResult.startResolutionForResult(
 this,
 CONNECTION_FAILURE_RESOLUTION_REQUEST);
 } catch (SendIntentException e) {
 // Log the error
 e.printStackTrace();
 }
 // If no resolution is available, display an error dialog
 } else {
 // Get the error code
 int errorCode = connectionResult.getErrorCode();
 // Get the error dialog from Google Play services
 Dialog errorDialog = GooglePlayServicesUtil.getErrorDialog(
 errorCode,
 this,
 CONNECTION_FAILURE_RESOLUTION_REQUEST);
 // If Google Play services can provide an error dialog
 if (errorDialog != null) {
 // Create a new DialogFragment for the error dialog
 ErrorDialogFragment errorFragment =
 new ErrorDialogFragment();
 // Set the dialog in the DialogFragment
 errorFragment.setDialog(errorDialog);
 // Show the error dialog in the DialogFragment
 errorFragment.show(
 getSupportFragmentManager(),
 "Geofence Detection");
 }
 }
 }
 ...
}

Handle Geofence Transitions
When Location Services detects that the user has entered or exited a geofence, it sends out the Intent
contained in the PendingIntent you included in the request to add geofences. This Intent is

Define an IntentService
The following snippet shows how to define an IntentService that posts a notification when a geofence
transition occurs. When the user clicks the notification, the app's main activity appears:

Creating and Monitoring Geofences

409
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class ReceiveTransitionsIntentService extends IntentService {
 ...
 /**
 * Sets an identifier for the service
 */
 public ReceiveTransitionsIntentService() {
 super("ReceiveTransitionsIntentService");
 }
 /**
 * Handles incoming intents
 *@param intent The Intent sent by Location Services. This
 * Intent is provided
 * to Location Services (inside a PendingIntent) when you call
 * addGeofences()
 */
 @Override
 protected void onHandleIntent(Intent intent) {
 // First check for errors
 if (LocationClient.hasError(intent)) {
 // Get the error code with a static method
 int errorCode = LocationClient.getErrorCode(intent);
 // Log the error
 Log.e("ReceiveTransitionsIntentService",
 "Location Services error: " +
 Integer.toString(errorCode));
 /*
 * You can also send the error code to an Activity or
 * Fragment with a broadcast Intent
 */
 /*
 * If there's no error, get the transition type and the IDs
 * of the geofence or geofences that triggered the transition
 */
 } else {
 // Get the type of transition (entry or exit)
 int transitionType =
 LocationClient.getGeofenceTransition(intent);
 // Test that a valid transition was reported
 if (
 (transitionType == Geofence.GEOFENCE_TRANSITION_ENTER)
 ||
 (transitionType == Geofence.GEOFENCE_TRANSITION_EXIT)
) {
 List <Geofence> triggerList =
 getTriggeringGeofences(intent);

 String[] triggerIds = new String[geofenceList.size()];

 for (int i = 0; i < triggerIds.length; i++) {
 // Store the Id of each geofence
 triggerIds[i] = triggerList.get(i).getRequestId();
 }
 /*
 * At this point, you can store the IDs for further use
 * display them, or display the details associated with
 * them.
 */
 }
 // An invalid transition was reported
 } else {

Creating and Monitoring Geofences

410
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

 Log.e("ReceiveTransitionsIntentService",
 "Geofence transition error: " +
 Integer.toString()transitionType));
 }
 }
 ...
}

Specify the IntentService in the manifest
To identify the IntentService to the system, add a <service> element to the app manifest. For
example:

<service
 android:name="com.example.android.location.ReceiveTransitionsIntentService"
 android:label="@string/app_name"
 android:exported="false">
</service>

Notice that you don't have to specify intent filters for the service, because it only receives explicit intents.
How the incoming geofence transition intents are created is described in the section Send the monitoring
request.

Stop Geofence Monitoring
To stop geofence monitoring, you remove the geofences themselves. You can remove a specific set of
geofences or all the geofences associated with a PendingIntent. The procedure is similar to adding
geofences. The first operation gets a location client for the removal request, and the second makes the
request using the client.
The callback methods that Location Services invokes when it has finished removing geofences are defined
in the interface LocationClient.OnRemoveGeofencesResultListener. Declare this interface as
part of your class definition, and then add definitions for its two methods:
onRemoveGeofencesByPendingIntentResult()

Callback invoked when Location Services finishes a request to remove all geofences made by the
method removeGeofences(PendingIntent,
LocationClient.OnRemoveGeofencesResultListener).

onRemoveGeofencesByRequestIdsResult(List<String>,
LocationClient.OnRemoveGeofencesResultListener)

Callback invoked when Location Services finished a request to remove a set of geofences,
specified by their geofence IDs, by the method removeGeofences(List<String>,
LocationClient.OnRemoveGeofencesResultListener).

Examples of implementing these methods are shown in the next snippets.

Remove all geofences
Since removing geofences uses some of the methods you use to add geofences, start by defining another
request type:

Creating and Monitoring Geofences

411
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 // Enum type for controlling the type of removal requested
 public enum REQUEST_TYPE = {ADD, REMOVE_INTENT}
 ...
}

Start the removal request by getting a connection to Location Services. If the connection fails,
onConnected() isn't called, and the request stops. The following snippet shows how to start the request:

Creating and Monitoring Geofences

412
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 /**
 * Start a request to remove geofences by calling
 * LocationClient.connect()
 */
 public void removeGeofences(PendingIntent requestIntent) {
 // Record the type of removal request
 mRequestType = REMOVE_INTENT;
 /*
 * Test for Google Play services after setting the request type.
 * If Google Play services isn't present, the request can be
 * restarted.
 */
 if (!servicesConnected()) {
 return;
 }
 // Store the PendingIntent
 mGeofenceRequestIntent = requestIntent;
 /*
 * Create a new location client object. Since the current
 * activity class implements ConnectionCallbacks and
 * OnConnectionFailedListener, pass the current activity object
 * as the listener for both parameters
 */
 mLocationClient = new LocationClient(this, this, this);
 // If a request is not already underway
 if (!mInProgress) {
 // Indicate that a request is underway
 mInProgress = true;
 // Request a connection from the client to Location Services
 mLocationClient.connect();
 } else {
 /*
 * A request is already underway. You can handle
 * this situation by disconnecting the client,
 * re-setting the flag, and then re-trying the
 * request.
 */
 }
 }
 ...
}

When Location Services invokes the callback method indicating that the connection is open, make the
request to remove all geofences. Disconnect the client after making the request. For example:

Creating and Monitoring Geofences

413
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 /**
 * Once the connection is available, send a request to remove the
 * Geofences. The method signature used depends on which type of
 * remove request was originally received.
 */
 private void onConnected(Bundle dataBundle) {
 /*
 * Choose what to do based on the request type set in
 * removeGeofences
 */
 switch (mRequestType) {
 ...
 case REMOVE_INTENT :
 mLocationClient.removeGeofences(
 mGeofenceRequestIntent, this);
 break;
 ...
 }
 }
 ...
}

Although the call to removeGeofences(PendingIntent,
LocationClient.OnRemoveGeofencesResultListener) Services calls returns immediately, the
result of the removal request is indeterminate until Location Services calls
onRemoveGeofencesByPendingIntentResult(). The following snippet shows how to define this
method:

Creating and Monitoring Geofences

414
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 /**
 * When the request to remove geofences by PendingIntent returns,
 * handle the result.
 *
 *@param statusCode the code returned by Location Services
 *@param requestIntent The Intent used to request the removal.
 */
 @Override
 public void onRemoveGeofencesByPendingIntentResult(int statusCode,
 PendingIntent requestIntent) {
 // If removing the geofences was successful
 if (statusCode == LocationStatusCodes.SUCCESS) {
 /*
 * Handle successful removal of geofences here.
 * You can send out a broadcast intent or update the UI.
 * geofences into the Intent's extended data.
 */
 } else {
 // If adding the geocodes failed
 /*
 * Report errors here.
 * You can log the error using Log.e() or update
 * the UI.
 */
 }
 /*
 * Disconnect the location client regardless of the
 * request status, and indicate that a request is no
 * longer in progress
 */
 mInProgress = false;
 mLocationClient.disconnect();
 }
 ...
}

Remove individual geofences
The procedure for removing an individual geofence or set of geofences is similar to the removal of all
geofences. To specify the geofences you want remove, add their geofence ID values to a List of String
objects. Pass this List to a different definition of removeGeofences with the appropriate signature. This
method then starts the removal process.
Start by adding a request type for removing geofences by a list, and also add a global variable for storing
the list of geofences:

 ...
 // Enum type for controlling the type of removal requested
 public enum REQUEST_TYPE = {ADD, REMOVE_INTENT, REMOVE_LIST}
 // Store the list of geofence Ids to remove
 String<List> mGeofencesToRemove;

Next, define a list of geofences you want to remove. For example, this snippet removes the Geofence
defined by the geofence ID "1":

Creating and Monitoring Geofences

415
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 List<String> listOfGeofences =
 Collections.singletonList("1");
 removeGeofences(listOfGeofences);
 ...
}

The following snippet defines the removeGeofences() method:

Creating and Monitoring Geofences

416
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 /**
 * Start a request to remove monitoring by
 * calling LocationClient.connect()
 *
 */
 public void removeGeofences(List<String> geofenceIds) {
 // If Google Play services is unavailable, exit
 // Record the type of removal request
 mRequestType = REMOVE_LIST;
 /*
 * Test for Google Play services after setting the request type.
 * If Google Play services isn't present, the request can be
 * restarted.
 */
 if (!servicesConnected()) {
 return;
 }
 // Store the list of geofences to remove
 mGeofencesToRemove = geofenceIds;
 /*
 * Create a new location client object. Since the current
 * activity class implements ConnectionCallbacks and
 * OnConnectionFailedListener, pass the current activity object
 * as the listener for both parameters
 */
 mLocationClient = new LocationClient(this, this, this);
 // If a request is not already underway
 if (!mInProgress) {
 // Indicate that a request is underway
 mInProgress = true;
 // Request a connection from the client to Location Services
 mLocationClient.connect();
 } else {
 /*
 * A request is already underway. You can handle
 * this situation by disconnecting the client,
 * re-setting the flag, and then re-trying the
 * request.
 */
 }
 }
 ...
}

When Location Services invokes the callback method indicating that the connection is open, make the
request to remove the list of geofences. Disconnect the client after making the request. For example:

Creating and Monitoring Geofences

417
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 private void onConnected(Bundle dataBundle) {
 ...
 switch (mRequestType) {
 ...
 // If removeGeofencesById was called
 case REMOVE_LIST :
 mLocationClient.removeGeofences(
 mGeofencesToRemove, this);
 break;
 ...
 }
 ...
 }
 ...
}

Define an implementation of onRemoveGeofencesByRequestIdsResult(). Location Services invokes
this callback method to indicate that the request to remove a list of geofences is complete. In this method,
examine the incoming status code and take the appropriate action:

Creating and Monitoring Geofences

418
Content from developer.android.com/training/location/geofencing.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks,
 OnConnectionFailedListener,
 OnAddGeofencesResultListener {
 ...
 /**
 * When the request to remove geofences by IDs returns, handle the
 * result.
 *
 * @param statusCode The code returned by Location Services
 * @param geofenceRequestIds The IDs removed
 */
 @Override
 public void onRemoveGeofencesByRequestIdsResult(
 int statusCode, String[] geofenceRequestIds) {
 // If removing the geocodes was successful
 if (LocationStatusCodes.SUCCESS == statusCode) {
 /*
 * Handle successful removal of geofences here.
 * You can send out a broadcast intent or update the UI.
 * geofences into the Intent's extended data.
 */
 } else {
 // If removing the geofences failed
 /*
 * Report errors here.
 * You can log the error using Log.e() or update
 * the UI.
 */
 }
 // Indicate that a request is no longer in progress
 mInProgress = false;
 // Disconnect the location client
 mLocationClient.disconnect();
 }
 ...
}

You can combine geofencing with other location-aware features, such as periodic location updates or
activity recognition, which are described in other lessons in this class.
The next lesson, Recognizing the User's Current Activity, shows you how to request and receive activity
updates. At regular intervals, Location Services can send you information about the user's current physical
activity. Based on this information, you can change your app's behavior; for example, you can switch to a
longer update interval if you detect that the user is walking instead of driving.

Recognizing the User's Current Activity

419
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

113. Recognizing the User's Current Activity
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

Activity recognition tries to detect the user's
current physical activity, such as walking, driving,
or standing still. Requests for updates go through
an activity recognition client, which, while different
from the location client used by location or
geofencing, follows a similar pattern. Based on the
update interval you choose, Location Services
sends out activity information containing one or
more possible activities and the confidence level
for each one. This lesson shows you how to
request activity recognition updates from Location
Services.

Request Activity Recognition
Updates
Requesting activity recognition updates from
Location Services is similar to requesting periodic
location updates. You send the request through a client, and Location Services sends updates back to
your app by means of a PendingIntent. However, you need to request a special permission before you
request activity updates, and you use a different type of client to make requests. The following sections
show how to request the permission, connect the client, and request updates.

Request permission to receive updates
An app that wants to get activity recognition updates must have the permission
com.google.android.gms.permission.ACTIVITY_RECOGNITION. To request this permission for
your app, add the following XML element to your manifest as a child element of the <manifest> element:

<uses-permission
 android:name="com.google.android.gms.permission.ACTIVITY_RECOGNITION"/>

Activity recognition does not require the permissions ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION.

Check for Google Play Services
Location Services is part of the Google Play services APK. Since it's hard to anticipate the state of the
user's device, you should always check that the APK is installed before you attempt to connect to Location
Services. To check that the APK is installed, call
GooglePlayServicesUtil.isGooglePlayServicesAvailable(), which returns one of the integer
result codes listed in the API reference documentation. If you encounter an error, call
GooglePlayServicesUtil.getErrorDialog() to retrieve localized dialog that prompts users to take
the correct action, then display the dialog in a DialogFragment. The dialog may allow the user to correct
the problem, in which case Google Play services may send a result back to your activity. To handle this
result, override the method onActivityResult()
Note: To make your app compatible with platform version 1.6 and later, the activity that displays the
DialogFragment must subclass FragmentActivity instead of Activity. Using
FragmentActivity also allows you to call getSupportFragmentManager() to display the
DialogFragment.

This lesson teaches you to
• Request Activity Recognition Updates
• Handle Activity Updates
• Stop Activity Recognition Updates
You should also read

• Setup Google Play Services SDK
• Receiving Location Updates

Try it out
Download the sample
ActivityRecognition.zip

Recognizing the User's Current Activity

420
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

Since you usually need to check for Google Play services in more than one place in your code, define a
method that encapsulates the check, then call the method before each connection attempt. The following
snippet contains all of the code required to check for Google Play services:

Recognizing the User's Current Activity

421
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity {
 ...
 // Global constants
 /*
 * Define a request code to send to Google Play services
 * This code is returned in Activity.onActivityResult
 */
 private final static int
 CONNECTION_FAILURE_RESOLUTION_REQUEST = 9000;
 ...
 // Define a DialogFragment that displays the error dialog
 public static class ErrorDialogFragment extends DialogFragment {
 // Global field to contain the error dialog
 private Dialog mDialog;
 // Default constructor. Sets the dialog field to null
 public ErrorDialogFragment() {
 super();
 mDialog = null;
 }
 // Set the dialog to display
 public void setDialog(Dialog dialog) {
 mDialog = dialog;
 }
 // Return a Dialog to the DialogFragment.
 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 return mDialog;
 }
 }
 ...
 /*
 * Handle results returned to the FragmentActivity
 * by Google Play services
 */
 @Override
 protected void onActivityResult(
 int requestCode, int resultCode, Intent data) {
 // Decide what to do based on the original request code
 switch (requestCode) {
 ...
 case CONNECTION_FAILURE_RESOLUTION_REQUEST :
 /*
 * If the result code is Activity.RESULT_OK, try
 * to connect again
 */
 switch (resultCode) {
 case Activity.RESULT_OK :
 /*
 * Try the request again
 */
 ...
 break;
 }
 ...
 }
 ...
 }
 ...
 private boolean servicesConnected() {
 // Check that Google Play services is available

Recognizing the User's Current Activity

422
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

 int resultCode =
 GooglePlayServicesUtil.
 isGooglePlayServicesAvailable(this);
 // If Google Play services is available
 if (ConnectionResult.SUCCESS == resultCode) {
 // In debug mode, log the status
 Log.d("Activity Recognition",
 "Google Play services is available.");
 // Continue
 return true;
 // Google Play services was not available for some reason
 } else {
 // Get the error dialog from Google Play services
 Dialog errorDialog = GooglePlayServicesUtil.getErrorDialog(
 resultCode,
 this,
 CONNECTION_FAILURE_RESOLUTION_REQUEST);

 // If Google Play services can provide an error dialog
 if (errorDialog != null) {
 // Create a new DialogFragment for the error dialog
 ErrorDialogFragment errorFragment =
 new ErrorDialogFragment();
 // Set the dialog in the DialogFragment
 errorFragment.setDialog(errorDialog);
 // Show the error dialog in the DialogFragment
 errorFragment.show(
 getSupportFragmentManager(),
 "Activity Recognition");
 }
 return false;
 }
 }
 ...
}

Snippets in the following sections call this method to verify that Google Play services is available.

Send the activity update request
Send the update request from an Activity or Fragment that implements the callback methods required
by Location Services. Making the request is an asynchronous process that starts when you request a
connection to an activity recognition client. When the client is connected, Location Services invokes your
implementation of onConnected(). In this method, you can send the update request to Location
Services; this request is synchronous. Once you've made the request, you can disconnect the client.
This process is described in the following snippets.
Define the Activity or Fragment
Define an FragmentActivity or Fragment that implements the following interfaces:
ConnectionCallbacks

Specifies methods that Location Services calls when the client is connected or disconnected.
OnConnectionFailedListener

Specifies a method that Location Services calls if an error occurs while attempting to connect the
client.

For example:

Recognizing the User's Current Activity

423
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks, OnConnectionFailedListener {
 ...
}

Next, define global variables and constants. Define constants for the update interval, add a variable for the
activity recognition client, and another for the PendingIntent that Location Services uses to send
updates to your app:

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks, OnConnectionFailedListener {
 ...
 // Constants that define the activity detection interval
 public static final int MILLISECONDS_PER_SECOND = 1000;
 public static final int DETECTION_INTERVAL_SECONDS = 20;
 public static final int DETECTION_INTERVAL_MILLISECONDS =
 MILLISECONDS_PER_SECOND * DETECTION_INTERVAL_SECONDS;
 ...
 /*
 * Store the PendingIntent used to send activity recognition events
 * back to the app
 */
 private PendingIntent mActivityRecognitionPendingIntent;
 // Store the current activity recognition client
 private ActivityRecognitionClient mActivityRecognitionClient;
 ...
}

In onCreate(), instantiate the activity recognition client and the PendingIntent:

Recognizing the User's Current Activity

424
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks, OnConnectionFailedListener {
 ...
 @Override
 onCreate(Bundle savedInstanceState) {
 ...
 /*
 * Instantiate a new activity recognition client. Since the
 * parent Activity implements the connection listener and
 * connection failure listener, the constructor uses "this"
 * to specify the values of those parameters.
 */
 mActivityRecognitionClient =
 new ActivityRecognitionClient(mContext, this, this);
 /*
 * Create the PendingIntent that Location Services uses
 * to send activity recognition updates back to this app.
 */
 Intent intent = new Intent(
 mContext, ActivityRecognitionIntentService.class);
 /*
 * Return a PendingIntent that starts the IntentService.
 */
 mActivityRecognitionPendingIntent =
 PendingIntent.getService(mContext, 0, intent,
 PendingIntent.FLAG_UPDATE_CURRENT);
 ...
 }
 ...
}

Start the request process
Define a method that requests activity recognition updates. In the method, request a connection to
Location Services. You can call this method from anywhere in your activity; its purpose is to start the chain
of method calls for requesting updates.
To guard against race conditions that might arise if your app tries to start another request before the first
one finishes, define a boolean flag that tracks the state of the current request. Set the flag to true when
you start a request, and then set it to false when the request completes.
The following snippet shows how to start a request for updates:

Recognizing the User's Current Activity

425
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks, OnConnectionFailedListener {
 ...
 // Global constants
 ...
 // Flag that indicates if a request is underway.
 private boolean mInProgress;
 ...
 @Override
 onCreate(Bundle savedInstanceState) {
 ...
 // Start with the request flag set to false
 mInProgress = false;
 ...
 }
 ...
 /**
 * Request activity recognition updates based on the current
 * detection interval.
 *
 */
 public void startUpdates() {
 // Check for Google Play services

 if (!servicesConnected()) {
 return;
 }
 // If a request is not already underway
 if (!mInProgress) {
 // Indicate that a request is in progress
 mInProgress = true;
 // Request a connection to Location Services
 mActivityRecognitionClient.connect();
 //
 } else {
 /*
 * A request is already underway. You can handle
 * this situation by disconnecting the client,
 * re-setting the flag, and then re-trying the
 * request.
 */
 }
 }
 ...
}

Implement onConnected(). In this method, request activity recognition updates from Location Services.
When Location Services finishes connecting to the client and calls onConnected(), the update request is
called immediately:

Recognizing the User's Current Activity

426
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks, OnConnectionFailedListener {
 ...
 /*
 * Called by Location Services once the location client is connected.
 *
 * Continue by requesting activity updates.
 */
 @Override
 public void onConnected(Bundle dataBundle) {
 /*
 * Request activity recognition updates using the preset
 * detection interval and PendingIntent. This call is
 * synchronous.
 */
 mActivityRecognitionClient.requestActivityUpdates(
 DETECTION_INTERVAL_MILLISECONDS,
 mActivityRecognitionPendingIntent);
 /*
 * Since the preceding call is synchronous, turn off the
 * in progress flag and disconnect the client
 */
 mInProgress = false;
 mActivityRecognitionClient.disconnect();
 }
 ...
}

Handle disconnections
In some cases, Location Services may disconnect from the activity recognition client before you call
disconnect(). To handle this situation, implement onDisconnected(). In this method, set the request
flag to indicate that a request is not in progress, and delete the client:

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks, OnConnectionFailedListener {
 ...
 /*
 * Called by Location Services once the activity recognition
 * client is disconnected.
 */
 @Override
 public void onDisconnected() {
 // Turn off the request flag
 mInProgress = false;
 // Delete the client
 mActivityRecognitionClient = null;
 }
 ...
}

Handle connection errors
Besides handling the normal callbacks from Location Services, you have to provide a callback method that
Location Services calls if a connection error occurs. This callback method can re-use the
DialogFragment class that you defined to handle the check for Google Play services. It can also re-use
the override you defined for onActivityResult() that receives any Google Play services results that

Recognizing the User's Current Activity

427
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

occur when the user interacts with the error dialog. The following snippet shows you a sample
implementation of the callback method:

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks, OnConnectionFailedListener {
 ...
 // Implementation of OnConnectionFailedListener.onConnectionFailed
 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) {
 // Turn off the request flag
 mInProgress = false;
 /*
 * If the error has a resolution, start a Google Play services
 * activity to resolve it.
 */
 if (connectionResult.hasResolution()) {
 try {
 connectionResult.startResolutionForResult(
 this,
 CONNECTION_FAILURE_RESOLUTION_REQUEST);
 } catch (SendIntentException e) {
 // Log the error
 e.printStackTrace();
 }
 // If no resolution is available, display an error dialog
 } else {
 // Get the error code
 int errorCode = connectionResult.getErrorCode();
 // Get the error dialog from Google Play services
 Dialog errorDialog = GooglePlayServicesUtil.getErrorDialog(
 errorCode,
 this,
 CONNECTION_FAILURE_RESOLUTION_REQUEST);
 // If Google Play services can provide an error dialog
 if (errorDialog != null) {
 // Create a new DialogFragment for the error dialog
 ErrorDialogFragment errorFragment =
 new ErrorDialogFragment();
 // Set the dialog in the DialogFragment
 errorFragment.setDialog(errorDialog);
 // Show the error dialog in the DialogFragment
 errorFragment.show(
 getSupportFragmentManager(),
 "Activity Recognition");
 }
 }
 ...
 }
 ...
}

Handle Activity Updates
To handle the Intent that Location Services sends for each update interval, define an IntentService
and its required method onHandleIntent(). Location Services sends out activity recognition updates as
Intent objects, using the the PendingIntent you provided when you called
requestActivityUpdates(). Since you provided an explicit intent for the PendingIntent, the only
component that receives the intent is the IntentService you're defining.

Recognizing the User's Current Activity

428
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

The following snippets demonstrate how to examine the data in an activity recognition update.

Define an IntentService
Start by defining the class and the required method onHandleIntent():

/**
 * Service that receives ActivityRecognition updates. It receives
 * updates in the background, even if the main Activity is not visible.
 */
public class ActivityRecognitionIntentService extends IntentService {
 ...
 /**
 * Called when a new activity detection update is available.
 */
 @Override
 protected void onHandleIntent(Intent intent) {
 ...
 }
 ...
}

Next, examine the data in the intent. From the update, you can get a list of possible activities and the
probability of each one. The following snippet shows how to get the most probable activity, the confidence
level for the activity (the probability that this is the actual activity), and its type:

Recognizing the User's Current Activity

429
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

public class ActivityRecognitionIntentService extends IntentService {
 ...
 @Override
 protected void onHandleIntent(Intent intent) {
 ...
 // If the incoming intent contains an update
 if (ActivityRecognitionResult.hasResult(intent)) {
 // Get the update
 ActivityRecognitionResult result =
 ActivityRecognitionResult.extractResult(intent);
 // Get the most probable activity
 DetectedActivity mostProbableActivity =
 result.getMostProbableActivity();
 /*
 * Get the probability that this activity is the
 * the user's actual activity
 */
 int confidence = mostProbableActivity.getConfidence();
 /*
 * Get an integer describing the type of activity
 */
 int activityType = mostProbableActivity.getType();
 String activityName = getNameFromType(activityType);
 /*
 * At this point, you have retrieved all the information
 * for the current update. You can display this
 * information to the user in a notification, or
 * send it to an Activity or Service in a broadcast
 * Intent.
 */
 ...
 } else {
 /*
 * This implementation ignores intents that don't contain
 * an activity update. If you wish, you can report them as
 * errors.
 */
 }
 ...
 }
 ...
}

The method getNameFromType() converts activity types into descriptive strings. In a production app,
you should retrieve the strings from resources instead of using fixed values:

Recognizing the User's Current Activity

430
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

public class ActivityRecognitionIntentService extends IntentService {
 ...
 /**
 * Map detected activity types to strings
 *@param activityType The detected activity type
 *@return A user-readable name for the type
 */
 private String getNameFromType(int activityType) {
 switch(activityType) {
 case DetectedActivity.IN_VEHICLE:
 return "in_vehicle";
 case DetectedActivity.ON_BICYCLE:
 return "on_bicycle";
 case DetectedActivity.ON_FOOT:
 return "on_foot";
 case DetectedActivity.STILL:
 return "still";
 case DetectedActivity.UNKNOWN:
 return "unknown";
 case DetectedActivity.TILTING:
 return "tilting";
 }
 return "unknown";
 }
 ...
}

Specify the IntentService in the manifest
To identify the IntentService to the system, add a <service> element to the app manifest. For
example:

<service
 android:name="com.example.android.location.ActivityRecognitionIntentService"
 android:label="@string/app_name"
 android:exported="false">
</service>

Notice that you don't have to specify intent filters for the service, because it only receives explicit intents.
How the incoming activity update intents are created is described in the section Define the Activity or
Fragment.

Stop Activity Recognition Updates
To stop activity recognition updates, use the same pattern you used to request updates, but call
removeActivityUpdates() instead of requestActivityUpdates().
Since removing updates uses some of the methods you use to add updates, start by defining request
types for the two operations:

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks, OnConnectionFailedListener {
 ...
 public enum REQUEST_TYPE {START, STOP}
 private REQUEST_TYPE mRequestType;
 ...
}

Recognizing the User's Current Activity

431
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

Modify the code that starts activity recognition so that it uses the START request type:

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks, OnConnectionFailedListener {
 ...
 public void startUpdates() {
 // Set the request type to START
 mRequestType = REQUEST_TYPE.START;
 /*
 * Test for Google Play services after setting the request type.
 * If Google Play services isn't present, the proper request type
 * can be restarted.
 */
 if (!servicesConnected()) {
 return;
 }
 ...
 }
 ...
 public void onConnected(Bundle dataBundle) {
 switch (mRequestType) {
 case START :
 /*
 * Request activity recognition updates using the
 * preset detection interval and PendingIntent.
 * This call is synchronous.
 */
 mActivityRecognitionClient.requestActivityUpdates(
 DETECTION_INTERVAL_MILLISECONDS,
 mActivityRecognitionPendingIntent);
 break;
 ...
 /*
 * An enum was added to the definition of REQUEST_TYPE,
 * but it doesn't match a known case. Throw an exception.
 */
 default :
 throw new Exception("Unknown request type in onConnected().");
 break;
 }
 ...
 }
 ...
}

Start the process
Define a method that requests a stop to activity recognition updates. In the method, set the request type
and then request a connection to Location Services. You can call this method from anywhere in your
activity; its purpose is to start the chain of method calls that stop activity updates:

Recognizing the User's Current Activity

432
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks, OnConnectionFailedListener {
 ...
 /**
 * Turn off activity recognition updates
 *
 */
 public void stopUpdates() {
 // Set the request type to STOP
 mRequestType = REQUEST_TYPE.STOP;
 /*
 * Test for Google Play services after setting the request type.
 * If Google Play services isn't present, the request can be
 * restarted.
 */
 if (!servicesConnected()) {
 return;
 }
 // If a request is not already underway
 if (!mInProgress) {
 // Indicate that a request is in progress
 mInProgress = true;
 // Request a connection to Location Services
 mActivityRecognitionClient.connect();
 //
 } else {
 /*
 * A request is already underway. You can handle
 * this situation by disconnecting the client,
 * re-setting the flag, and then re-trying the
 * request.
 */
 }
 ...
 }
 ...
}

In onConnected(), if the request type is STOP, call removeActivityUpdates(). Pass the
PendingIntent you used to start updates as the parameter to removeActivityUpdates():

public class MainActivity extends FragmentActivity implements
 ConnectionCallbacks, OnConnectionFailedListener {
 ...
 public void onConnected(Bundle dataBundle) {
 switch (mRequestType) {
 ...
 case STOP :
 mActivityRecognitionClient.removeActivityUpdates(
 mActivityRecognitionPendingIntent);
 break;
 ...
 }
 ...
 }
 ...
}

Recognizing the User's Current Activity

433
Content from developer.android.com/training/location/activity-recognition.html through their Creative Commons Attribution 2.5 license

You do not have to modify your implementation of onDisconnected() or onConnectionFailed(),
because these methods do not depend on the request type.
You now have the basic structure of an app that implements activity recognition. You can combine activity
recognition with other location-aware features, such as periodic location updates or geofencing, which are
described in other lessons in this class.

Testing Using Mock Locations

434
Content from developer.android.com/training/location/location-testing.html through their Creative Commons Attribution 2.5 license

114. Testing Using Mock Locations
Content from developer.android.com/training/location/location-testing.html through their Creative Commons Attribution 2.5 license

To test a location-aware app that uses Location
Services, you don't need to move your device
from place to place to generate location data.
Instead, you can put Location Services into mock
mode. In this mode, you can send mock
Location objects to Location Services, which
then sends them to location clients. In mock
mode, Location Services also uses mock
Location objects to trigger geofences.
Using mock locations has several advantages:

• Mock locations allow you to create
specific mock data, instead of trying to
approximate data by moving an actual
device.

• Since mock locations come from
Location Services, they test every part of
your location-handling code. In addition,
since you can send the mock data from
outside your production app, you don't
have to disable or remove test code before you publish.

• Since you don't have to generate test locations by moving a device, you can test an app using the
emulator.

The best way to use mock locations is to send them from a separate mock location provider app. This
lesson includes a provider app that you can download and use to test your own software. Modify the
provider app as necessary to suit your own needs. Some ideas for providing test data to the app are listed
in the section Managing test data.
The remainder of this lesson shows you how to turn on mock mode and use a location client to send mock
locations to Location Services.
Note: Mock locations have no effect on the activity recognition algorithm used by Location Services. To
learn more about activity recognition, see the lesson Recognizing the User's Current Activity.

Turn On Mock Mode
To send mock locations to Location Services in mock mode, a test app must request the permission
ACCESS_MOCK_LOCATION. In addition, you must enable mock locations on the test device using the
option Enable mock locations. To learn how to enable mock locations on the device, see Setting up a
Device for Development.
To turn on mock mode in Location Services, start by connecting a location client to Location Services, as
described in the lesson Retrieving the Current Location. Next, call the method
LocationClient.setMockMode(true). Once you call this method, Location Services turns off its
internal location providers and only sends out the mock locations you provide it. The following snippet
shows you how to call LocationClient.setMockMode(true):

This lesson teaches you to
• Turn On Mock Mode
• Send Mock Locations
• Run the Mock Location Provider App
• Testing Tips
You should also read

• Receiving Location Updates
• Creating and Monitoring Geofences
• Services
• Processes and Threads

Example Test App
Download the sample
LocationProvider.zip

Testing Using Mock Locations

435
Content from developer.android.com/training/location/location-testing.html through their Creative Commons Attribution 2.5 license

 // Define a LocationClient object
 public LocationClient mLocationClient;
 ...
 // Connect to Location Services
 mLocationClient.connect();
 ...
 // When the location client is connected, set mock mode
 mLocationClinet.setMockMode(true);

Once you have connected the location client to Location Services, you must keep it connected until you
finish sending out mock locations. Once you call LocationClient.disconnect(), Location Services
returns to using its internal location providers. To turn off mock mode while the location client is connected,
call LocationClient.setMockMode(false).

Send Mock Locations
Once you have set mock mode, you can create mock Location objects and send them to Location
Services. In turn, Location Services sends these mock Location objects to connected location clients.
Location Services also uses the mock Location objects to control geofence triggering.
To create a new mock Location, create a new Location object using your test data. Always set the
provider value to flp, which is the code that Location Services puts into the Location objects it sends
out. The following snippet shows you how to create a new mock Location:

 private static final String PROVIDER = "flp";
 private static final double LAT = 37.377166;
 private static final double LNG = -122.086966;
 private static final float ACCURACY = 3.0f;
 ...
 /*
 * From input arguments, create a single Location with provider set to
 * "flp"
 */
 public Location createLocation(double lat, double lng, float accuracy) {
 // Create a new Location
 Location newLocation = new Location(PROVIDER);
 newLocation.setLatitude(lat);
 newLocation.setLongitude(lng);
 newLocation.setAccuracy(accuracy);
 return newLocation;
 }
 ...
 // Example of creating a new Location from test data
 Location testLocation = createLocation(LAT, LNG, ACCURACY);

In mock mode, to send a mock location to Location Services call the method
LocationClient.setMockLocation(). For example:

 mLocationClient.setMockLocation(testLocation);

Location Services sets this mock location as the current location, and this location is sent out as the next
location update. If this new mock location moves across a geofence boundary, Location Services triggers
the geofence.

Run the Mock Location Provider App
This section contains a brief overview of the mock location provider sample app (available for download
above) and gives you directions for testing an app using the sample app.

Testing Using Mock Locations

436
Content from developer.android.com/training/location/location-testing.html through their Creative Commons Attribution 2.5 license

Overview
The mock location provider app included with this lesson sends mock Location objects to Location
Services from a background thread running in a started Service. By using a started service, the provider
app is able to keep running even if the app's main Activity is destroyed because of a configuration
change or other system event. By using a background thread, the service is able to perform a long-running
test without blocking the UI thread.
The Activity that starts when you run the provider app allows you to send test parameters to the
Service and control the type of test you want. You have the following options:
Pause before test

The number of seconds to wait before the provider app starts sending test data to Location
Services. This interval allows you to switch from the provider app to the app under test before the
testing actually starts.

Send interval
The number of seconds that the provider app waits before it sends another mock location to
Location Services. See the section Testing Tips to learn more about setting the send interval.

Run once
Switch from normal mode to mock mode, run through the test data once, switch back to normal
mode, and then kill the Service.

Run continuously
Switch from normal mode to mock mode, then run through the test data indefinitely. The
background thread and the started Service continue to run, even if the main Activity is
destroyed.

Stop test
If a continuous test is in progress, stop it; otherwise, return a warning message. The started
Service switches from mock mode to normal mode and then stops itself. This also stops the
background thread.

Besides the options, the provider app has two status displays:
App status

Displays messages related to the lifecycle of the provider app.
Connection status

Displays messages related to the state of the location client connection.
While the started Service is running, it also posts notifications with the testing status. These notifications
allow you to see status updates even if the app is not in the foreground. When you click on a notification,
the main Activity of the provider app returns to the foreground.

Test using the mock location provider app
To test mock location data coming from the mock location provider app:
• Install the mock location provider app on a device that has Google Play services installed. Location
Services is part of Google Play services.
• On the device, enable mock locations. To learn how to do this, see the topic Setting up a Device for
Development.
• Start the provider app from the Launcher, then choose the options you want from the main screen.
• Unless you've removed the pause interval feature, the mock location provider app pauses for a few
seconds, and then starts sending mock location data to Location Services.

Testing Using Mock Locations

437
Content from developer.android.com/training/location/location-testing.html through their Creative Commons Attribution 2.5 license

• Run the app you want to test. While the mock location provider app is running, the app you're testing
receives mock locations instead of real locations.
• If the provider app is in the midst of a continuous test, you can switch back to real locations by clicking
Stop test. This forces the started Service to turn off mock mode and then stop itself. When the service
stops itself, the background thread is also destroyed.

Testing Tips
The following sections contain tips for creating mock location data and using the data with a mock location
provider app.

Choosing a send interval
Each location provider that contributes to the fused location sent out by Location Services has its own
minimum update cycle. For example, the GPS provider can't send a new location more often than once per
second, and the Wi-Fi provider can't send a new location more often than once every five seconds. These
cycle times are handled automatically for real locations, but you should account for them when you send
mock locations. For example, you shouldn't send a new mock location more than once per second. If
you're testing indoor locations, which rely heavily on the Wi-Fi provider, then you should consider using a
send interval of five seconds.

Simulating speed
To simulate the speed of an actual device, shorten or lengthen the distance between two successive
locations. For example, changing the location by 88 feet every second simulates car travel, because this
change works out to 60 miles an hour. In comparison, changing the location by 1.5 feet every second
simulates brisk walking, because this change works out to 3 miles per hour.

Calculating location data
By searching the web, you can find a variety of small programs that calculate a new set of latitude and
longitude coordinates from a starting location and a distance, as well as references to formulas for
calculating the distance between two points based on their latitude and longitude. In addition, the
Location class offers two methods for calculating the distance between points:
distanceBetween()

A static method that calculates the distance between two points specified by latitude and
longitude.

distanceTo()
For a given Location, returns the distance to another Location.

Geofence testing
When you test an app that uses geofence detection, use test data that reflects different modes of travel,
including walking, cycling, driving, and traveling by train. For a slow mode of travel, make small changes in
position between points. Conversely, for a fast mode of travel, make a large change in position between
points.

Managing test data
The mock location provider app included with this lesson contains test latitude, longitude, and accuracy
values in the form of constants. You may want to consider other ways of organizing data as well:
XML

Store location data in XML files that are including in the provider app. By separating the data from
the code, you facilitate changes to the data.

Server download

Testing Using Mock Locations

438
Content from developer.android.com/training/location/location-testing.html through their Creative Commons Attribution 2.5 license

Store location data on a server and then have the provider app download it. Since the data is
completely separate from the app, you can change the data without having to rebuild the app.
You can also change the data on the server and have the changes reflected immediately in the
mock locations you're testing.

Recorded data
Instead of making up test data, write a utility app that records location data as you move the
device. Use the recorded data as your test data, or use the data to guide you in developing test
data. For example, record locations as you walk with a device, and then create mock locations
that have an appropriate change in latitude and longitude over time.

Best Practices for Interaction and Engagement

439
Content from developer.android.com/training/best-ux.html through their Creative Commons Attribution 2.5 license

115. Best Practices for Interaction and Engagement
Content from developer.android.com/training/best-ux.html through their Creative Commons Attribution 2.5 license
These classes teach you how to engage and retain your users by implementing the best interaction
patterns for Android. For instance, to help users quickly discover content in your app, your app should
match their expectations for user interaction on Android. And to keep your users coming back, you should
take advantage of platform capabilities that reveal and open your content without requiring users to go
through the app launcher.

Designing Effective Navigation

440
Content from developer.android.com/training/design-navigation/index.html through their Creative Commons Attribution 2.5 license

116. Designing Effective Navigation
Content from developer.android.com/training/design-navigation/index.html through their Creative Commons Attribution 2.5 license

One of the very first steps to designing and
developing an Android application is to determine
what users are able to see and do with the app.
Once you know what kinds of data users are
interacting with in the app, the next step is to
design the interactions that allow users to
navigate across, into, and back out from the
different pieces of content within the app.
This class shows you how to plan out the high-
level screen hierarchy for your application and
then choose appropriate forms of navigation to
allow users to effectively and intuitively traverse
your content. Each lesson covers various stages
in the interaction design process for navigation in
Android applications, in roughly chronological order. After going through the lessons in this class, you
should be able to apply the methodology and navigation paradigms outlined here to your own applications,
providing a coherent navigation experience for your users.

Lessons
Planning Screens and Their Relationships

Learn how to choose which screens your application should contain. Also learn how to choose
which screens should be directly reachable from others. This lesson introduces a hypothetical
news application to serve as an example for later lessons.

Planning for Multiple Touchscreen Sizes
Learn how to group related screens together on larger-screen devices to optimize use of available
screen space.

Providing Descendant and Lateral Navigation
Learn about techniques for allowing users to navigate deep into, as well as across, your content
hierarchy. Also learn about pros and cons of, and best practices for, specific navigational UI
elements for various situations.

Providing Ancestral and Temporal Navigation
Learn how to allow users to navigate upwards in the content hierarchy. Also learn about best
practices for the Back button and temporal navigation, or navigation to previous screens that may
not be hierarchically related.

Putting it All Together: Wireframing the Example App
Learn how to create screen wireframes (low-fidelity graphic mockups) representing the screens in
a news application based on the desired information model. These wireframes utilize navigational
elements discussed in previous lessons to demonstrate intuitive and efficient navigation.

Dependencies and prerequisites
This class is not specific to any particular
version of the Android platform. It is also
primarily design-focused and does not require
knowledge of the Android SDK. That said, you
should have experience using an Android
device for a better understanding of the
context in which Android applications run.
You should also have basic familiarity with the
Action Bar (pattern docs at Android Design),
used across most applications in devices
running Android 3.0 and later.

Planning Screens and Their Relationships

441
Content from developer.android.com/training/design-navigation/screen-planning.html through their Creative Commons Attribution 2.5 license

117. Planning Screens and Their Relationships
Content from developer.android.com/training/design-navigation/screen-planning.html through their Creative Commons Attribution 2.5 license

Most apps have an inherent information model
that can be expressed as a tree or graph of object
types. In more obvious terms, you can draw a
diagram of different kinds of information that
represents the types of things users interact with
in your app. Software engineers and data
architects often use entity-relationship diagrams
(ERDs) to describe an application's information model.
Let's consider an example application that allows users to browse through a set of categorized news
stories and photos. One possible model for such an app is shown below in the form of an ERD.

Figure 1. Entity-relationship diagram for the example news application.

Create a Screen List
Once you define the information model, you can begin to define the contexts necessary to enable users to
effectively discover, view, and act upon the data in your application. In practice, one way to do this is to
determine the exhaustive set of screens needed to allow users to navigate to and interact with the data.
The set of screens we actually expose should generally vary depending on the target device; it's important
to consider this early in the design process to ensure that the application can adapt to its environment.
In our example application, we want to enable users to view, save, and share categorized stories and
photos. Below is an exhaustive list of screens that covers these use cases.

• Home or "launchpad" screen for accessing stories and photos
• List of categories
• List of news stories for a given category
• Story detail view (from which we can save and share)
• List of photos, uncategorized
• Photo detail view (from which we can save and share)
• List of all saved items
• List of saved photos
• List of saved stories

Diagram Screen Relationships
Now we can define the directed relationships between screens; an arrow from one screen A to another
screen B implies that screen B should be directly reachable via some user interaction in screen A. Once
we define both the set of screens and the relationships between them, we can express these in concert as
a screen map, which shows all of your screens and their relationships:

This lesson teaches you to
• Create a Screen List
• Diagram Screen Relationships
• Go Beyond a Simplistic Design

Planning Screens and Their Relationships

442
Content from developer.android.com/training/design-navigation/screen-planning.html through their Creative Commons Attribution 2.5 license

Figure 2. Exhaustive screen map for the example news application.
If we later wanted to allow users to submit news stories or upload photos, we could add additional screens
to this diagram.

Go Beyond a Simplistic Design
At this point, it's possible to design a completely functional application from this exhaustive screen map. A
simplistic user interface could consist of lists and buttons leading to child screens:

• Buttons leading to different sections (e.g., stories, photos, saved items)
• Vertical lists representing collections (e.g., story lists, photo lists, etc.)
• Detail information (e.g., story view, full-screen photo view, etc.)

However, you can use screen grouping techniques and more sophisticated navigation elements to present
content in a more intuitive and device-sensitive way. In the next lesson, we explore screen grouping
techniques, such as providing multi-pane layouts for tablet devices. Later, we'll dive into the various
navigation patterns common on Android.

Planning for Multiple Touchscreen Sizes

443
Content from developer.android.com/training/design-navigation/multiple-sizes.html through their Creative Commons Attribution 2.5 license

118. Planning for Multiple Touchscreen Sizes
Content from developer.android.com/training/design-navigation/multiple-sizes.html through their Creative Commons Attribution 2.5 license

The exhaustive screen map from the previous
lesson isn't tied to a particular device form factor,
although it can generally look and work okay on a
handset or similar-size device. But Android
applications need to adapt to a number of different
types of devices, from 3" handsets to 10" tablets
to 42" TVs. In this lesson we explore reasons and
tactics for grouping together multiple screens from
the exhaustive map.
Note: Designing applications for television sets
also requires attention to other factors, including
interaction methods (i.e., the lack of a touch
screen), legibility of text at large reading distances, and more. Although this discussion is outside the
scope of this class, you can find more information on designing for TVs in the Google TV documentation
for design patterns.

Group Screens with Multi-pane Layouts
Multi-pane Layout Design
For design guidelines, read Android Design's Multi-pane Layouts pattern guide.
3 to 4-inch screens are generally only suitable for showing a single vertical pane of content at a time, be it
a list of items, or detail information about an item, etc. Thus on such devices, screens generally map one-
to-one with levels in the information hierarchy (categories → object list → object detail).
Larger screens such as those found on tablets and TVs, on the other hand, generally have much more
available screen space and are able to present multiple panes of content. In landscape, panes are usually
ordered from left to right in increasing detail order. Users are especially accustomed to multiple panes on
larger screens from years and years of desktop application and desktop web site use. Many desktop
applications and websites offer a left-hand navigation pane or use a master/detail two-pane layout.
In addition to addressing these user expectations, it's usually necessary to provide multiple panes of
information on tablets to avoid leaving too much whitespace or unwittingly introducing awkward
interactions, for example 10 x 0.5-inch buttons.
The following figures demonstrate some of the problems that can arise when moving a UI (user interface)
design into a larger layout and how to address these issues with multi-pane layouts:

This lesson teaches you to
• Group Screens with Multi-pane Layouts
• Design for Multiple Tablet Orientations
• Group Screens in the Screen Map
You should also read

• Android Design: Multi-pane Layouts
• Designing for Multiple Screens

Planning for Multiple Touchscreen Sizes

444
Content from developer.android.com/training/design-navigation/multiple-sizes.html through their Creative Commons Attribution 2.5 license

Figure 1. Single pane layouts on large screens in landscape lead to awkward whitespace and exceedingly
long line lengths.

Figure 2. Multi-pane layouts in landscape result in a better visual balance while offering more utility and
legibility.
Implementation Note: After deciding on the screen size at which to draw the line between single-pane
and multi-pane layouts, you can provide different layouts containing one or multiple panes for devices in
varying screen size buckets (such as large/xlarge) or varying minimum screen widths (such as
sw600dp).
Implementation Note: While a single screen is implemented as an Activity subclass, individual
content panes can be implemented as Fragment subclasses. This maximizes code re-use across
different form factors and across screens that share content.

Design for Multiple Tablet Orientations
Although we haven't begun arranging user interface elements on our screens yet, this is a good time to
consider how your multi-pane screens will adapt to different device orientations. Multi-pane layouts in
landscape work quite well because of the large amount of available horizontal space. However, in the
portrait orientation, your horizontal space is more limited, so you may need to design a separate layout for
this orientation.

Planning for Multiple Touchscreen Sizes

445
Content from developer.android.com/training/design-navigation/multiple-sizes.html through their Creative Commons Attribution 2.5 license

Below are a few common strategies for creating portrait tablet layouts.

• Stretch

The most straightforward strategy is to simply stretch each pane's width to best present the
content in each pane in the portrait orientation. Panes could have fixed widths or take a certain
percentage of the available screen width.

• Expand/collapse

A variation on the stretch strategy is to collapse the contents of the left pane when in portrait. This
works quite well with master/detail panes where the left (master) pane contains easily collapsible
list items. An example would be for a realtime chat application. In landscape, the left list could
contain chat contact photos, names, and online statuses. In portrait, horizontal space could be
collapsed by hiding contact names and only showing photos and online status indicator icons.
Optionally also provide an expand control that allows the user to expand the left pane content to
its larger width and vice versa.

• Show/Hide

In this scenario, the left pane is completely hidden in portrait mode. However, to ensure the
functional parity of your screen in portrait and landscape, the left pane should be made available
via an onscreen affordance (such as a button). It's usually appropriate to use the Up button in the
Action Bar (pattern docs at Android Design) to show the left pane, as is discussed in a later
lesson.

• Stack

The last strategy is to vertically stack your normally horizontally-arranged panes in portrait. This
strategy works well when your panes aren't simple text-based lists, or when there are multiple
blocks of content running along the primary content pane. Be careful to avoid the awkward
whitespace problem discussed above when using this strategy.

Group Screens in the Screen Map
Now that we are able to group individual screens together by providing multi-pane layouts on larger-screen
devices, let's apply this technique to our exhaustive screen map from the previous lesson to get a better
sense of our application's hierarchy on such devices:

Planning for Multiple Touchscreen Sizes

446
Content from developer.android.com/training/design-navigation/multiple-sizes.html through their Creative Commons Attribution 2.5 license

Figure 3. Updated example news application screen map for tablets.
In the next lesson we discuss descendant and lateral navigation, and explore more ways of grouping
screens to maximize the intuitiveness and speed of content access in the application's user interface.

Providing Descendant and Lateral Navigation

447
Content from developer.android.com/training/design-navigation/descendant-lateral.html through their Creative Commons Attribution 2.5 license

119. Providing Descendant and Lateral Navigation
Content from developer.android.com/training/design-navigation/descendant-lateral.html through their Creative Commons Attribution 2.5 license

One way of providing access to the full range of
an application's screens is to expose hierarchical
navigation. In this lesson we discuss descendant
navigation, allowing users to descend 'down' a
screen hierarchy into a child screen, and lateral
navigation, allowing users to access sibling
screens.

Figure 1. Descendant and lateral navigation.
There are two types of sibling screens: collection-related and section-related screens. Collection-related
screens represent individual items in the collection represented by the parent. Section-related screens
represent different sections of information about the parent. For example, one section may show textual
information about an object while another may provide a map of the object's geographic location. The
number of section-related screens for a given parent is generally small.

Figure 2. Collection-related children and section-related children.
Descendant and lateral navigation can be provided using lists, tabs, and other user interface patterns.
User interface patterns, much like software design patterns, are generalized, common solutions to
recurring interaction design problems. We explore a few common lateral navigation patterns in the sections
below.

Buttons and Simple Targets
Button Design
For design guidelines, read Android Design's Buttons guide.
For section-related screens, offering touchable and keyboard-focusable targets in the parent is generally
the most straightforward and familiar kind of touch-based navigation interface. Examples of such targets
include buttons, fixed-size list views, or text links, although the latter is not an ideal UI (user interface)
element for touch-based navigation. Upon selecting one of these targets, the child screen is opened,

This lesson teaches you about:
• Buttons and Simple Targets
• Lists, Grids, Carousels, and Stacks
• Tabs
• Horizontal Paging (Swipe Views)
You should also read

• Android Design: Buttons
• Android Design: Lists
• Android Design: Grid Lists
• Android Design: Tabs
• Android Design: Swipe Views

Providing Descendant and Lateral Navigation

448
Content from developer.android.com/training/design-navigation/descendant-lateral.html through their Creative Commons Attribution 2.5 license

replacing the current context (screen) entirely. Buttons and other simple targets are rarely used for
representing items in a collection.

Figure 3. Example button-based navigation interface with relevant screen map excerpt. Also shows
dashboard pattern discussed below.
A common, button-based pattern for accessing different top-level application sections, is the dashboard
pattern. A dashboard is a grid of large, iconic buttons that constitutes the entirety, or most of, the parent
screen. The grid generally has either 2 or 3 rows and columns, depending on the number of top-level
sections in the app. This pattern is a great way to present all the sections of the app in a visually rich way.
The large touch targets also make this UI very easy to use. Dashboards are best used when each section
is equally important, as determined by product decisions or better yet, real-world usage. However, this
pattern doesn't visually work well on larger screens, and requires users to take an extra step to jump
directly into the app's content.
More sophisticated user interfaces can make use of a variety of other user interaction patterns to improve
content immediacy and presentation uniqueness, all the while remaining intuitive.

Lists, Grids, Carousels, and Stacks
List and Grid List Design
For design guidelines, read Android Design's Lists and Grid Lists guides.
For collection-related screens, and especially for textual information, vertically scrolling lists are often the
most straightforward and familiar kind of interface. For more visual or media-rich content items such as
photos or videos, vertically scrolling grids of items, horizontally scrolling lists (sometimes referred to as
carousels), or stacks (sometimes referred to as cards) can be used instead. These UI elements are
generally best used for presenting item collections or large sets of child screens (for example, a list of
stories or a list of 10 or more news topics), rather than a small set of unrelated, sibling child screens.

Figure 4. Example list-, grid-, and carousel-based navigation interfaces with relevant screen map excerpt.
There are several issues with this pattern. Deep, list-based navigation, known as drill-down list navigation,
where lists lead to more lists which lead to even more lists, is often inefficient and cumbersome. The

Providing Descendant and Lateral Navigation

449
Content from developer.android.com/training/design-navigation/descendant-lateral.html through their Creative Commons Attribution 2.5 license

number of touches required to access a piece of content with this kind of navigation is generally very high,
leading to a poor user experience—especially for users on-the-go.
Using vertical lists can also lead to awkward user interactions and poor use of whitespace on larger
screens, as list items generally span the entire width of the screen yet have a fixed height. One way to
alleviate this is to provide additional information, such as text summaries, that fills the available horizontal
space. Another way is to provide additional information in a separate horizontal pane adjacent to the list.

Tabs
Tab Design
For design guidelines, read Android Design's Tabs guide.
Using tabs is a very popular solution for lateral navigation. This pattern allows grouping of sibling screens,
in that the tab content container in the parent screen can embed child screens that otherwise would be
entirely separate contexts. Tabs are most appropriate for small sets (4 or fewer) of section-related
screens.

Figure 5. Example phone and tablet tab-based navigation interfaces with relevant screen map excerpt.
Several best practices apply when using tabs. Tabs should be persistent across immediate related
screens. Only the designated content region should change when selecting a tab, and tab indicators
should remain available at all times. Additionally, tab switches should not be treated as history. For
example, if a user switches from a tab A to another tab B, pressing the Back button (more on that in the
next lesson) should not re-select tab A. Tabs are usually laid out horizontally, although other presentations
of tab navigation such as using a drop-down list in the Action Bar (pattern docs at Android Design) are
sometimes appropriate. Lastly, and most importantly, tabs should always run along the top of the screen,
and should not be aligned to the bottom of the screen.
There are some obvious immediate benefits of tabs over simpler list- and button-based navigation:

• Since there is a single, initially-selected tab, users have immediate access to that tab's content
from the parent screen.

• Users can navigate quickly between related screens, without needing to first revisit the parent.

Note: when switching tabs, it is important to maintain this tab-switching immediacy; do not block
access to tab indicators by showing modal dialogs while loading content.

A common criticism is that space must be reserved for the tab indicators, detracting from the space
available to tab contents. This consequence is usually acceptable, and the tradeoff commonly weighs in
favor of using this pattern. You should also feel free to customize tab indicators, showing text and/or icons
to make optimal use of vertical space. When adjusting indicator heights however, ensure that tab
indicators are large enough for a human finger to touch without error.

Horizontal Paging (Swipe Views)
Swipe Views Design

Providing Descendant and Lateral Navigation

450
Content from developer.android.com/training/design-navigation/descendant-lateral.html through their Creative Commons Attribution 2.5 license

For design guidelines, read Android Design's Swipe Views pattern guides.
Another popular lateral navigation pattern is horizontal paging, also referred to as swipe views. This
pattern applies best to collection-related sibling screens, such as a list of categories (world, business,
technology, and health stories). Like tabs, this pattern also allows grouping screens in that the parent
presents the contents of child screens embedded within its own layout.

Figure 6. Example horizontal paging navigation interface with relevant screen map excerpt.
In a horizontal paging UI, a single child screen (referred to as a page here) is presented one at a time.
Users are able to navigate to sibling screens by touching and dragging the screen horizontally in the
direction of the desired adjacent page. This gestural interaction is often complemented by another UI
element indicating the current page and available pages, to aid discoverability and provide more context to
the user. This practice is especially necessary when using this pattern for lateral navigation of section-
related sibling screens. Examples of such elements include tick marks, scrolling labels, and tabs.

Figure 7. Example paging companion UI elements.
It's also best to avoid this pattern when child screens contain horizontal panning surfaces (such as maps),
as these conflicting interactions may deter your screen's usability.
Additionally, for sibling-related screens, horizontal paging is most appropriate where there is some
similarity in content type and when the number of siblings is relatively small. In these cases, this pattern
can be used along with tabs above the content region to maximize the interface's intuitiveness. For
collection-related screens, horizontal paging is most intuitive when there is a natural ordered relationship
between screens, for example if each page represents consecutive calendar days. For infinite collections
(again, calendar days), especially those with content in both directions, this paging mechanism can work
quite well.
In the next lesson, we discuss mechanisms for allowing users to navigate up our information hierarchy and
back, to previously visited screens.

Providing Ancestral and Temporal Navigation

451
Content from developer.android.com/training/design-navigation/ancestral-temporal.html through their Creative Commons Attribution 2.5 license

120. Providing Ancestral and Temporal Navigation
Content from developer.android.com/training/design-navigation/ancestral-temporal.html through their Creative Commons Attribution 2.5 license

Now that users can navigate deep into the
application's screen hierarchy, we need to provide
a method for navigating up the hierarchy, to
parent and ancestor screens. Additionally, we
should ensure that temporal navigation via the
Back button is respected to respect Android
conventions.
Back/Up Navigation Design
For design guidelines, read Android Design's
Navigation pattern guide.

Support Temporal Navigation:
Back
Temporal navigation, or navigation between historical screens, is deeply rooted in the Android system. All
Android users expect the Back button to take them to the previous screen, regardless of other state. The
set of historical screens is always rooted at the user's Launcher application (the phone's "home" screen).
That is, pressing Back enough times should land you back at the Launcher, after which the Back button
will do nothing.

Figure 1. The Back button behavior after entering the Email app from the People (or Contacts) app.
Applications generally don't have to worry about managing the Back button themselves; the system
handles tasks and the back stack, or the list of previous screens, automatically. The Back button by default
simply traverses this list of screens, removing the current screen from the list upon being pressed.
There are, however, cases where you may want to override the behavior for Back. For example, if your
screen contains an embedded web browser where users can interact with page elements to navigate
between web pages, you may wish to trigger the embedded browser's default back behavior when users
press the device's Back button. Upon reaching the beginning of the browser's internal history, you should
always defer to the system's default behavior for the Back button.

Provide Ancestral Navigation: Up and Home
Before Android 3.0, the most common form of ancestral navigation was the Home metaphor. This was
generally implemented as a Home item accessible via the device's Menu button, or a Home button at the
top-left of the screen, usually as a component of the Action Bar (pattern docs at Android Design). Upon
selecting Home, the user would be taken to the screen at the top of the screen hierarchy, generally known
as the application's home screen.
Providing direct access to the application's home screen can give the user a sense of comfort and security.
Regardless of where they are in the application, if they get lost in the app, they can select Home to arrive
back at the familiar home screen.
Android 3.0 introduced the Up metaphor, which is presented in the Action Bar as a substitute for the Home
button described above. Upon tapping Up, the user should be taken to the parent screen in the hierarchy.
This navigation step is usually the previous screen (as described with the Back button discussion above),

This lesson teaches you to:
• Support Temporal Navigation: Back
• Provide Ancestral Navigation: Up and
Home
You should also read

• Android Design: Navigation
• Tasks and Back Stack

Providing Ancestral and Temporal Navigation

452
Content from developer.android.com/training/design-navigation/ancestral-temporal.html through their Creative Commons Attribution 2.5 license

but this is not universally the case. Thus, developers must ensure that Up for each screen navigates to a
single, predetermined parent screen.

Figure 2. Example behavior for up navigation after entering the Email app from the People app.
In some cases, it's appropriate for Up to perform an action rather than navigating to a parent screen. Take
for example, the Gmail application for Android 3.0-based tablets. When viewing a mail conversation while
holding the device in landscape, the conversation list, as well as the conversation details are presented
side-by-side. This is a form of parent-child screen grouping, as discussed in a previous lesson. However,
when viewing a mail conversation in the portrait orientation, only the conversation details are shown. The
Up button is used to temporarily show the parent pane, which slides in from the left of the screen. Pressing
the Up button again while the left pane is visible exits the context of the individual conversation, up to a
full-screen list of conversations.
Implementation Note: As a best practice, when implementing either Home or Up, make sure to clear the
back stack of any descendent screens. For Home, the only remaining screen on the back stack should be
the home screen. For Up navigation, the current screen should be removed from the back stack, unless
Back navigates across screen hierarchies. You can use the FLAG_ACTIVITY_CLEAR_TOP and
FLAG_ACTIVITY_NEW_TASK intent flags together to achieve this.
In the last lesson, we apply the concepts discussed in all of the lessons so far to create interaction design
wireframes for our example news application.

Putting it All Together: Wireframing the Example App

453
Content from developer.android.com/training/design-navigation/wireframing.html through their Creative Commons Attribution 2.5 license

121. Putting it All Together: Wireframing the Example App
Content from developer.android.com/training/design-navigation/wireframing.html through their Creative Commons Attribution 2.5 license

Now that we have a solid understanding of
navigation patterns and screen grouping
techniques, it's time to apply them to our screens.
Let's take another look at our exhaustive screen
map for the example news application from the
first lesson, below.

Figure 1. Exhaustive screen map for the example news application.
Our next step is to choose and apply navigation patterns discussed in the previous lessons to this screen
map, maximizing navigation speed and minimizing the number of touches to access data, while keeping
the interface intuitive and consistent with Android best practices. We also need to make different choices
for our different target device form factors. For simplicity, let's focus on tablets and handsets.

Choose Patterns
First, our second-level screens (Story Category List, Photo List, and Saved Item List) can be grouped
together using tabs. Note that we don't necessarily have to use horizontally arranged tabs; in some cases
a drop-down list UI element can serve as a suitable replacement, especially on devices with narrow
screens such as handsets. We can also group the Saved Photo List and Saved Story List screens together
using tabs on handsets, or use multiple vertical content panes on tablets.
Finally, let's look at how we present news stories. The first option to simplify navigation across different
story categories is to use horizontal paging, with a set of labels above the horizontal swiping surface,
indicating the currently visible and adjacently accessible categories. On tablets in the landscape
orientation, we can go a step further and present the horizontally-pageable Story List screen as a left
pane, and the Story View screen as the primary content pane on the right.
Below are diagrams representing the new screen maps for handsets and tablets after applying these
navigation patterns.

This lesson teaches you to:
• Choose Patterns
• Sketch and Wireframe
• Create Digital Wireframes

Putting it All Together: Wireframing the Example App

454
Content from developer.android.com/training/design-navigation/wireframing.html through their Creative Commons Attribution 2.5 license

Figure 2. Final screen map for the example news application on handsets.

Figure 3. Final screen map for the example news application on tablets, in landscape.
At this point, it's a good idea to think of screen map variations, in case your chosen patterns don't apply
well in practice (when you sketch the application's screen layouts). Below is an example screen map
variation for tablets that presents story lists for different categories side-by-side, with story view screens
remaining independent.

Figure 4. Example alternate screen map for tablets, in landscape.

Sketch and Wireframe
Wireframing is the step in the design process where you begin to lay out your screens. Get creative and
begin imagining how to arrange UI elements to allow users to navigate your app. Keep in mind that at this
point, pixel-perfect precision (creating high-fidelity mockups) is not important.

Putting it All Together: Wireframing the Example App

455
Content from developer.android.com/training/design-navigation/wireframing.html through their Creative Commons Attribution 2.5 license

The easiest and fastest way to get started is to sketch out your screens by hand using paper and pencils.
Once you begin sketching, you may uncover practicality issues in your original screen map or decisions on
which patterns to use. In some cases, patterns may apply well to a given design problem in theory, but in
practice they may break down and cause visual clutter or interactional issues (for example, if there are two
rows of tabs on the screen). If that happens, explore other navigation patterns, or variations on chosen
patterns, to arrive at a more optimal set of sketches.
After you're satisfied with initial sketches, it's a good idea to move on to digital wireframing using software
such as Adobe® Illustrator, Adobe® Fireworks, OmniGraffle, or any other vector illustration tools. When
choosing which tool to use, consider the following features:

• Are interactive wireframes possible? Tools such as Adobe® Fireworks offer this functionality.
• Is there screen 'master' functionality, allowing re-use of visual elements across different screens?

For example, Action Bars should be visible on almost every screen in your application.
• What's the learning curve? Professional vector illustration tools may have a steep learning curve,

while tools designed for wireframing may offer a smaller set of features that are more relevant to
the task.

Lastly, the XML Layout Editor that comes with the Android Development Tools (ADT) plugin for Eclipse
can often be used for prototyping. However, you should be careful to focus more on the high-level layout
and less on visual design details at this point.

Create Digital Wireframes
After sketching out layouts on paper and choosing a digital wireframing tool that works for you, you can
create the digital wireframes that will serve as the starting point for your application's visual design. Below
are example wireframes for our news application, corresponding one-to-one with our screen maps from
earlier in this lesson.

Putting it All Together: Wireframing the Example App

456
Content from developer.android.com/training/design-navigation/wireframing.html through their Creative Commons Attribution 2.5 license

Figure 5. Example news application wireframes, for handsets in portrait. (Download SVG)

Figure 6. Example news application wireframes, for tablets in landscape. Also includes an alternate layout
for presenting story lists. (Download SVG)
(Download SVG for device wireframe art)

Next Steps

Putting it All Together: Wireframing the Example App

457
Content from developer.android.com/training/design-navigation/wireframing.html through their Creative Commons Attribution 2.5 license

Now that you've designed effective and intuitive intra-app navigation for your application, you can begin to
spend time refining the user interface for each individual screen. For example, you can choose to use
richer widgets in place of simple text labels, images, and buttons when displaying interactive content. You
can also begin defining the visual styling of your application, incorporating elements from your brand's
visual language in the process.
Lastly, it may be time to begin implementing your designs and writing the code for the application using the
Android SDK. To get started, take a look at the following resources:

• Developer's Guide: User Interface: learn how to implement your user interface designs using the
Android SDK.

• Action Bar: implement tabs, up navigation, on-screen actions, etc.
• Fragments: implement re-usable, multi-pane layouts
• Support Library: implement horizontal paging (swipe views) using ViewPager

Implementing Effective Navigation

458
Content from developer.android.com/training/implementing-navigation/index.html through their Creative Commons Attribution 2.5 license

122. Implementing Effective Navigation
Content from developer.android.com/training/implementing-navigation/index.html through their Creative Commons Attribution 2.5 license

This class demonstrates how to implement the
key navigation design patterns detailed in the
Designing Effective Navigation class.
After reading the lessons in this class, you should
have a strong understanding of how to implement
navigation patterns with tabs, swipe views, and a
navigation drawer. You should also understand
how to provide proper Up and Back navigation.
Note: Several elements of this class require the
Support Library APIs. If you have not used the
Support Library before, follow the instructions in
the Support Library Setup document.

Lessons
Creating Swipe Views with Tabs

Learn how to implement tabs in the
action bar and provide horizontal paging
(swipe views) to navigate between tabs.

Creating a Navigation Drawer
Learn how to build an interface with a
hidden navigation drawer on the side of the screen that opens with a swipe or by pressing the
action bar's app icon.

Providing Up Navigation
Learn how to implement Up navigation using the action bar's app icon.

Providing Proper Back Navigation
Learn how to correctly handle the Back button in special cases, including how to insert activities
into the back stack when deep-linking the user from notifications or app widgets.

Implementing Descendant Navigation
Learn the finer points of navigating down into your application's information hierarchy.

Dependencies and prerequisites

• Android 2.2 or higher
• Understanding of fragments and

Android layouts
• Android Support Library
• Designing Effective Navigation

You should also read

• Action Bar
• Fragments
• Designing for Multiple Screens

Try it out
Download the sample app
EffectiveNavigation.zip

Creating Swipe Views with Tabs

459
Content from developer.android.com/training/implementing-navigation/lateral.html through their Creative Commons Attribution 2.5 license

123. Creating Swipe Views with Tabs
Content from developer.android.com/training/implementing-navigation/lateral.html through their Creative Commons Attribution 2.5 license

Swipe views provide lateral navigation between
sibling screens such as tabs with a horizontal
finger gesture (a pattern sometimes known as
horizontal paging). This lesson teaches you how
to create a tab layout with swipe views for
switching between tabs, or how to show a title
strip instead of tabs.
Swipe View Design
Before implementing these features, you should
understand the concepts and recommendations
as described in Designing Effective Navigation
and the Swipe Views design guide.

Implement Swipe Views
You can create swipe views in your app using the
ViewPager widget, available in the Support
Library. The ViewPager is a layout widget in
which each child view is a separate page (a
separate tab) in the layout.
To set up your layout with ViewPager, add a <ViewPager> element to your XML layout. For example, if
each page in the swipe view should consume the entire layout, then your layout looks like this:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

To insert child views that represent each page, you need to hook this layout to a PagerAdapter. There
are two kinds of adapter you can use:
FragmentPagerAdapter

This is best when navigating between sibling screens representing a fixed, small number of
pages.

FragmentStatePagerAdapter
This is best for paging across a collection of objects for which the number of pages is
undetermined. It destroys fragments as the user navigates to other pages, minimizing memory
usage.

For example, here's how you might use FragmentStatePagerAdapter to swipe across a collection of
Fragment objects:

This lesson teaches you to
• Implement Swipe Views
• Add Tabs to the Action Bar
• Change Tabs with Swipe Views
• Use a Title Strip Instead of Tabs
You should also read

• Providing Descendant and Lateral
Navigation

• Android Design: Tabs
• Android Design: Swipe Views

Try it out
Download the sample app
EffectiveNavigation.zip

Creating Swipe Views with Tabs

460
Content from developer.android.com/training/implementing-navigation/lateral.html through their Creative Commons Attribution 2.5 license

public class CollectionDemoActivity extends FragmentActivity {
 // When requested, this adapter returns a DemoObjectFragment,
 // representing an object in the collection.
 DemoCollectionPagerAdapter mDemoCollectionPagerAdapter;
 ViewPager mViewPager;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_collection_demo);

 // ViewPager and its adapters use support library
 // fragments, so use getSupportFragmentManager.
 mDemoCollectionPagerAdapter =
 new DemoCollectionPagerAdapter(
 getSupportFragmentManager());
 mViewPager = (ViewPager) findViewById(R.id.pager);
 mViewPager.setAdapter(mDemoCollectionPagerAdapter);
 }
}

// Since this is an object collection, use a FragmentStatePagerAdapter,
// and NOT a FragmentPagerAdapter.
public class DemoCollectionPagerAdapter extends FragmentStatePagerAdapter {
 public DemoCollectionPagerAdapter(FragmentManager fm) {
 super(fm);
 }

 @Override
 public Fragment getItem(int i) {
 Fragment fragment = new DemoObjectFragment();
 Bundle args = new Bundle();
 // Our object is just an integer :-P
 args.putInt(DemoObjectFragment.ARG_OBJECT, i + 1);
 fragment.setArguments(args);
 return fragment;
 }

 @Override
 public int getCount() {
 return 100;
 }

 @Override
 public CharSequence getPageTitle(int position) {
 return "OBJECT " + (position + 1);
 }
}

// Instances of this class are fragments representing a single
// object in our collection.
public static class DemoObjectFragment extends Fragment {
 public static final String ARG_OBJECT = "object";

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 // The last two arguments ensure LayoutParams are inflated
 // properly.
 View rootView = inflater.inflate(
 R.layout.fragment_collection_object, container, false);

Creating Swipe Views with Tabs

461
Content from developer.android.com/training/implementing-navigation/lateral.html through their Creative Commons Attribution 2.5 license

 Bundle args = getArguments();
 ((TextView) rootView.findViewById(android.R.id.text1)).setText(
 Integer.toString(args.getInt(ARG_OBJECT)));
 return rootView;
 }
}

This example shows only the code necessary to create the swipe views. The following sections show how
you can add tabs to help facilitate navigation between pages.

Add Tabs to the Action Bar
Action bar tabs offer users a familiar interface for navigating between and identifying sibling screens in
your app.
To create tabs using ActionBar, you need to enable NAVIGATION_MODE_TABS, then create several
instances of ActionBar.Tab and supply an implementation of the ActionBar.TabListener interface
for each one. For example, in your activity's onCreate() method, you can use code similar to this:

@Override
public void onCreate(Bundle savedInstanceState) {
 final ActionBar actionBar = getActionBar();
 ...

 // Specify that tabs should be displayed in the action bar.
 actionBar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

 // Create a tab listener that is called when the user changes tabs.
 ActionBar.TabListener tabListener = new ActionBar.TabListener() {
 public void onTabSelected(ActionBar.Tab tab, FragmentTransaction ft) {
 // show the given tab
 }

 public void onTabUnselected(ActionBar.Tab tab, FragmentTransaction ft) {
 // hide the given tab
 }

 public void onTabReselected(ActionBar.Tab tab, FragmentTransaction ft) {
 // probably ignore this event
 }
 };

 // Add 3 tabs, specifying the tab's text and TabListener
 for (int i = 0; i < 3; i++) {
 actionBar.addTab(
 actionBar.newTab()
 .setText("Tab " + (i + 1))
 .setTabListener(tabListener));
 }
}

How you handle the ActionBar.TabListener callbacks to change tabs depends on how you've
constructed your content. But if you're using fragments for each tab with ViewPager as shown above, the
following section shows how to switch between pages when the user selects a tab and also update the
selected tab when the user swipes between pages.

Change Tabs with Swipe Views

Creating Swipe Views with Tabs

462
Content from developer.android.com/training/implementing-navigation/lateral.html through their Creative Commons Attribution 2.5 license

To switch between pages in a ViewPager when the user selects a tab, implement your
ActionBar.TabListener to select the appropriate page by calling setCurrentItem() on your
ViewPager:

@Override
public void onCreate(Bundle savedInstanceState) {
 ...

 // Create a tab listener that is called when the user changes tabs.
 ActionBar.TabListener tabListener = new ActionBar.TabListener() {
 public void onTabSelected(ActionBar.Tab tab, FragmentTransaction ft) {
 // When the tab is selected, switch to the
 // corresponding page in the ViewPager.
 mViewPager.setCurrentItem(tab.getPosition());
 }
 ...
 };
}

Likewise, you should select the corresponding tab when the user swipes between pages with a touch
gesture. You can set up this behavior by implementing the ViewPager.OnPageChangeListener
interface to change the current tab each time the page changes. For example:

@Override
public void onCreate(Bundle savedInstanceState) {
 ...

 mViewPager = (ViewPager) findViewById(R.id.pager);
 mViewPager.setOnPageChangeListener(
 new ViewPager.SimpleOnPageChangeListener() {
 @Override
 public void onPageSelected(int position) {
 // When swiping between pages, select the
 // corresponding tab.
 getActionBar().setSelectedNavigationItem(position);
 }
 });
 ...
}

Use a Title Strip Instead of Tabs
If you don't want to include action bar tabs and prefer to provide scrollable tabs for a shorter visual profile,
you can use PagerTitleStrip with your swipe views.
Below is an example layout XML file for an activity whose entire contents are a ViewPager and a top-
aligned PagerTitleStrip inside it. Individual pages (provided by the adapter) occupy the remaining
space inside the ViewPager.

Creating Swipe Views with Tabs

463
Content from developer.android.com/training/implementing-navigation/lateral.html through their Creative Commons Attribution 2.5 license

<android.support.v4.view.ViewPager
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.v4.view.PagerTitleStrip
 android:id="@+id/pager_title_strip"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
 android:background="#33b5e5"
 android:textColor="#fff"
 android:paddingTop="4dp"
 android:paddingBottom="4dp" />

</android.support.v4.view.ViewPager>

Creating a Navigation Drawer

464
Content from developer.android.com/training/implementing-navigation/nav-drawer.html through their Creative Commons Attribution 2.5 license

124. Creating a Navigation Drawer
Content from developer.android.com/training/implementing-navigation/nav-drawer.html through their Creative Commons Attribution 2.5 license

Download the Action Bar Icon Pack
Android_Design_Icons_20130926.zip
The navigation drawer is a panel that displays the
app’s main navigation options on the left edge of
the screen. It is hidden most of the time, but is
revealed when the user swipes a finger from the
left edge of the screen or, while at the top level of
the app, the user touches the app icon in the
action bar.
This lesson describes how to implement a
navigation drawer using the DrawerLayout APIs
available in the Support Library.
Navigation Drawer Design
Before you decide to use a navigation drawer in your app, you should understand the use cases and
design principles defined in the Navigation Drawer design guide.

Create a Drawer Layout
To add a navigation drawer, declare your user interface with a DrawerLayout object as the root view of
your layout. Inside the DrawerLayout, add one view that contains the main content for the screen (your
primary layout when the drawer is hidden) and another view that contains the contents of the navigation
drawer.
For example, the following layout uses a DrawerLayout with two child views: a FrameLayout to contain
the main content (populated by a Fragment at runtime), and a ListView for the navigation drawer.

<android.support.v4.widget.DrawerLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/drawer_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <!-- The main content view -->
 <FrameLayout
 android:id="@+id/content_frame"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 <!-- The navigation drawer -->
 <ListView android:id="@+id/left_drawer"
 android:layout_width="240dp"
 android:layout_height="match_parent"
 android:layout_gravity="start"
 android:choiceMode="singleChoice"
 android:divider="@android:color/transparent"
 android:dividerHeight="0dp"
 android:background="#111"/>
</android.support.v4.widget.DrawerLayout>

This layout demonstrates some important layout characteristics:

• The main content view (the FrameLayout above) must be the first child in the DrawerLayout
because the XML order implies z-ordering and the drawer must be on top of the content.

This lesson teaches you to:
• Create a Drawer Layout
• Initialize the Drawer List
• Handle Navigation Click Events
• Listen for Open and Close Events
• Open and Close with the App Icon
Try it out
Download the sample app
NavigationDrawer.zip

Creating a Navigation Drawer

465
Content from developer.android.com/training/implementing-navigation/nav-drawer.html through their Creative Commons Attribution 2.5 license

• The main content view is set to match the parent view's width and height, because it represents
the entire UI when the navigation drawer is hidden.

• The drawer view (the ListView) must specify its horizontal gravity with the
android:layout_gravity attribute. To support right-to-left (RTL) languages, specify the
value with "start" instead of "left" (so the drawer appears on the right when the layout is
RTL).

• The drawer view specifies its width in dp units and the height matches the parent view. The
drawer width should be no more than 320dp so the user can always see a portion of the main
content.

Initialize the Drawer List
In your activity, one of the first things to do is initialize the navigation drawer's list of items. How you do so
depends on the content of your app, but a navigation drawer often consists of a ListView, so the list
should be populated by an Adapter (such as ArrayAdapter or SimpleCursorAdapter).
For example, here's how you can initialize the navigation list with a string array:

public class MainActivity extends Activity {
 private String[] mPlanetTitles;
 private DrawerLayout mDrawerLayout;
 private ListView mDrawerList;
 ...

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mPlanetTitles = getResources().getStringArray(R.array.planets_array);
 mDrawerLayout = (DrawerLayout) findViewById(R.id.drawer_layout);
 mDrawerList = (ListView) findViewById(R.id.left_drawer);

 // Set the adapter for the list view
 mDrawerList.setAdapter(new ArrayAdapter<String>(this,
 R.layout.drawer_list_item, mPlanetTitles));
 // Set the list's click listener
 mDrawerList.setOnItemClickListener(new DrawerItemClickListener());

 ...
 }
}

This code also calls setOnItemClickListener() to receive click events in the navigation drawer's list.
The next section shows how to implement this interface and change the content view when the user
selects an item.

Handle Navigation Click Events
When the user selects an item in the drawer's list, the system calls onItemClick() on the
OnItemClickListener given to setOnItemClickListener().
What you do in the onItemClick() method depends on how you've implemented your app structure. In
the following example, selecting each item in the list inserts a different Fragment into the main content
view (the FrameLayout element identified by the R.id.content_frame ID):

Creating a Navigation Drawer

466
Content from developer.android.com/training/implementing-navigation/nav-drawer.html through their Creative Commons Attribution 2.5 license

private class DrawerItemClickListener implements ListView.OnItemClickListener {
 @Override
 public void onItemClick(AdapterView
 parent, View view, int position, long id) {
 selectItem(position);
 }
}

/** Swaps fragments in the main content view */
private void selectItem(int position) {
 // Create a new fragment and specify the planet to show based on position
 Fragment fragment = new PlanetFragment();
 Bundle args = new Bundle();
 args.putInt(PlanetFragment.ARG_PLANET_NUMBER, position);
 fragment.setArguments(args);

 // Insert the fragment by replacing any existing fragment
 FragmentManager fragmentManager = getFragmentManager();
 fragmentManager.beginTransaction()
 .replace(R.id.content_frame, fragment)
 .commit();

 // Highlight the selected item, update the title, and close the drawer
 mDrawerList.setItemChecked(position, true);
 setTitle(mPlanetTitles[position]);
 mDrawerLayout.closeDrawer(mDrawerList);
}

@Override
public void setTitle(CharSequence title) {
 mTitle = title;
 getActionBar().setTitle(mTitle);
}

Listen for Open and Close Events
To listen for drawer open and close events, call setDrawerListener() on your DrawerLayout and
pass it an implementation of DrawerLayout.DrawerListener. This interface provides callbacks for
drawer events such as onDrawerOpened() and onDrawerClosed().
However, rather than implementing the DrawerLayout.DrawerListener, if your activity includes the
action bar, you can instead extend the ActionBarDrawerToggle class. The
ActionBarDrawerToggle implements DrawerLayout.DrawerListener so you can still override
those callbacks, but it also facilitates the proper interaction behavior between the action bar icon and the
navigation drawer (discussed further in the next section).
As discussed in the Navigation Drawer design guide, you should modify the contents of the action bar
when the drawer is visible, such as to change the title and remove action items that are contextual to the
main content. The following code shows how you can do so by overriding
DrawerLayout.DrawerListener callback methods with an instance of the
ActionBarDrawerToggle class:

Creating a Navigation Drawer

467
Content from developer.android.com/training/implementing-navigation/nav-drawer.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends Activity {
 private DrawerLayout mDrawerLayout;
 private ActionBarDrawerToggle mDrawerToggle;
 private CharSequence mDrawerTitle;
 private CharSequence mTitle;
 ...

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 ...

 mTitle = mDrawerTitle = getTitle();
 mDrawerLayout = (DrawerLayout) findViewById(R.id.drawer_layout);
 mDrawerToggle = new ActionBarDrawerToggle(this, mDrawerLayout,
 R.drawable.ic_drawer, R.string.drawer_open, R.string.drawer_close) {

 /** Called when a drawer has settled in a completely closed state. */
 public void onDrawerClosed(View view) {
 getActionBar().setTitle(mTitle);
 invalidateOptionsMenu(); // creates call to onPrepareOptionsMenu()
 }

 /** Called when a drawer has settled in a completely open state. */
 public void onDrawerOpened(View drawerView) {
 getActionBar().setTitle(mDrawerTitle);
 invalidateOptionsMenu(); // creates call to onPrepareOptionsMenu()
 }
 };

 // Set the drawer toggle as the DrawerListener
 mDrawerLayout.setDrawerListener(mDrawerToggle);
 }

 /* Called whenever we call invalidateOptionsMenu() */
 @Override
 public boolean onPrepareOptionsMenu(Menu menu) {
 // If the nav drawer is open, hide action items related to the content view
 boolean drawerOpen = mDrawerLayout.isDrawerOpen(mDrawerList);
 menu.findItem(R.id.action_websearch).setVisible(!drawerOpen);
 return super.onPrepareOptionsMenu(menu);
 }
}

The next section describes the ActionBarDrawerToggle constructor arguments and the other steps
required to set it up to handle interaction with the action bar icon.

Open and Close with the App Icon
Users can open and close the navigation drawer with a swipe gesture from or towards the left edge of the
screen, but if you're using the action bar, you should also allow users to open and close it by touching the
app icon. And the app icon should also indicate the presence of the navigation drawer with a special icon.
You can implement all this behavior by using the ActionBarDrawerToggle shown in the previous
section.
To make ActionBarDrawerToggle work, create an instance of it with its constructor, which requires the
following arguments:

Creating a Navigation Drawer

468
Content from developer.android.com/training/implementing-navigation/nav-drawer.html through their Creative Commons Attribution 2.5 license

• The Activity hosting the drawer.
• The DrawerLayout.
• A drawable resource to use as the drawer indicator.

The standard navigation drawer icon is available in the Download the Action Bar Icon Pack.

• A String resource to describe the "open drawer" action (for accessibility).
• A String resource to describe the "close drawer" action (for accessibility).

Then, whether or not you've created a subclass of ActionBarDrawerToggle as your drawer listener,
you need to call upon your ActionBarDrawerToggle in a few places throughout your activity lifecycle:

Creating a Navigation Drawer

469
Content from developer.android.com/training/implementing-navigation/nav-drawer.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends Activity {
 private DrawerLayout mDrawerLayout;
 private ActionBarDrawerToggle mDrawerToggle;
 ...

 public void onCreate(Bundle savedInstanceState) {
 ...

 mDrawerLayout = (DrawerLayout) findViewById(R.id.drawer_layout);
 mDrawerToggle = new ActionBarDrawerToggle(
 this, /* host Activity */
 mDrawerLayout, /* DrawerLayout object */
 R.drawable.ic_drawer, /* nav drawer icon to replace 'Up' caret */
 R.string.drawer_open, /* "open drawer" description */
 R.string.drawer_close /* "close drawer" description */
) {

 /** Called when a drawer has settled in a completely closed state. */
 public void onDrawerClosed(View view) {
 getActionBar().setTitle(mTitle);
 }

 /** Called when a drawer has settled in a completely open state. */
 public void onDrawerOpened(View drawerView) {
 getActionBar().setTitle(mDrawerTitle);
 }
 };

 // Set the drawer toggle as the DrawerListener
 mDrawerLayout.setDrawerListener(mDrawerToggle);

 getActionBar().setDisplayHomeAsUpEnabled(true);
 getActionBar().setHomeButtonEnabled(true);
 }

 @Override
 protected void onPostCreate(Bundle savedInstanceState) {
 super.onPostCreate(savedInstanceState);
 // Sync the toggle state after onRestoreInstanceState has occurred.
 mDrawerToggle.syncState();
 }

 @Override
 public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);
 mDrawerToggle.onConfigurationChanged(newConfig);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Pass the event to ActionBarDrawerToggle, if it returns
 // true, then it has handled the app icon touch event
 if (mDrawerToggle.onOptionsItemSelected(item)) {
 return true;
 }
 // Handle your other action bar items...

 return super.onOptionsItemSelected(item);
 }

Creating a Navigation Drawer

470
Content from developer.android.com/training/implementing-navigation/nav-drawer.html through their Creative Commons Attribution 2.5 license

 ...
}

For a complete example of a navigation drawer, download the sample available at the top of the page.

Providing Up Navigation

471
Content from developer.android.com/training/implementing-navigation/ancestral.html through their Creative Commons Attribution 2.5 license

125. Providing Up Navigation
Content from developer.android.com/training/implementing-navigation/ancestral.html through their Creative Commons Attribution 2.5 license

All screens in your app that are not the main
entrance to your app (the "home" screen) should
offer the user a way to navigate to the logical
parent screen in the app's hierarchy by pressing
the Up button in the action bar. This lesson shows
you how to properly implement this behavior.
Up Navigation Design
The concepts and principles for Up navigation are
described in Designing Effective Navigation and
the Navigation design guide.

Figure 1. The Up button in the action bar.

Specify the Parent Activity
To implement Up navigation, the first step is to
declare which activity is the appropriate parent for each activity. Doing so allows the system to facilitate
navigation patterns such as Up because the system can determine the logical parent activity from the
manifest file.
Beginning in Android 4.1 (API level 16), you can declare the logical parent of each activity by specifying
the android:parentActivityName attribute in the <activity> element.
If your app supports Android 4.0 and lower, include the Support Library with your app and add a <meta-
data> element inside the <activity>. Then specify the parent activity as the value for
android.support.PARENT_ACTIVITY, matching the android:parentActivityName attribute.
For example:

<application ... >
 ...
 <!-- The main/home activity (it has no parent activity) -->
 <activity
 android:name="com.example.myfirstapp.MainActivity" ...>
 ...
 </activity>
 <!-- A child of the main activity -->
 <activity
 android:name="com.example.myfirstapp.DisplayMessageActivity"
 android:label="@string/title_activity_display_message"
 android:parentActivityName="com.example.myfirstapp.MainActivity" >
 <!-- Parent activity meta-data to support 4.0 and lower -->
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.example.myfirstapp.MainActivity" />
 </activity>
</application>

With the parent activity declared this way, you can navigate Up to the appropriate parent using the
NavUtils APIs, as shown in the following sections.

This lesson teaches you to:
• Specify the Parent Activity
• Add Up Action
• Navigate Up to Parent Activity
You should also read

• Providing Ancestral and Temporal
Navigation

• Tasks and Back Stack
• Android Design: Navigation

Try it out
Download the sample app
EffectiveNavigation.zip

Providing Up Navigation

472
Content from developer.android.com/training/implementing-navigation/ancestral.html through their Creative Commons Attribution 2.5 license

Add Up Action
To allow Up navigation with the app icon in the action bar, call setDisplayHomeAsUpEnabled():

@Override
public void onCreate(Bundle savedInstanceState) {
 ...
 getActionBar().setDisplayHomeAsUpEnabled(true);
}

This adds a left-facing caret alongside the app icon and enables it as an action button such that when the
user presses it, your activity receives a call to onOptionsItemSelected(). The ID for the action is
android.R.id.home.

Navigate Up to Parent Activity
To navigate up when the user presses the app icon, you can use the NavUtils class's static method,
navigateUpFromSameTask(). When you call this method, it finishes the current activity and starts (or
resumes) the appropriate parent activity. If the target parent activity is in the task's back stack, it is brought
forward as defined by FLAG_ACTIVITY_CLEAR_TOP.
For example:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 // Respond to the action bar's Up/Home button
 case android.R.id.home:
 NavUtils.navigateUpFromSameTask(this);
 return true;
 }
 return super.onOptionsItemSelected(item);
}

However, using navigateUpFromSameTask() is suitable only when your app is the owner of the
current task (that is, the user began this task from your app). If that's not true and your activity was
started in a task that belongs to a different app, then navigating Up should create a new task that belongs
to your app, which requires that you create a new back stack.

Navigate up with a new back stack
If your activity provides any intent filters that allow other apps to start the activity, you should implement the
onOptionsItemSelected() callback such that if the user presses the Up button after entering your
activity from another app's task, your app starts a new task with the appropriate back stack before
navigating up.
You can do so by first calling shouldUpRecreateTask() to check whether the current activity instance
exists in a different app's task. If it returns true, then build a new task with TaskStackBuilder.
Otherwise, you can use the navigateUpFromSameTask() method as shown above.
For example:

Providing Up Navigation

473
Content from developer.android.com/training/implementing-navigation/ancestral.html through their Creative Commons Attribution 2.5 license

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 // Respond to the action bar's Up/Home button
 case android.R.id.home:
 Intent upIntent = NavUtils.getParentActivityIntent(this);
 if (NavUtils.shouldUpRecreateTask(this, upIntent)) {
 // This activity is NOT part of this app's task, so create a new task
 // when navigating up, with a synthesized back stack.
 TaskStackBuilder.create(this)
 // Add all of this activity's parents to the back stack
 .addNextIntentWithParentStack(upIntent)
 // Navigate up to the closest parent
 .startActivities();
 } else {
 // This activity is part of this app's task, so simply
 // navigate up to the logical parent activity.
 NavUtils.navigateUpTo(this, upIntent);
 }
 return true;
 }
 return super.onOptionsItemSelected(item);
}

Note: In order for the addNextIntentWithParentStack() method to work, you must declare the
logical parent of each activity in your manifest file, using the android:parentActivityName attribute
(and corresponding <meta-data> element) as described above.

Providing Proper Back Navigation

474
Content from developer.android.com/training/implementing-navigation/temporal.html through their Creative Commons Attribution 2.5 license

126. Providing Proper Back Navigation
Content from developer.android.com/training/implementing-navigation/temporal.html through their Creative Commons Attribution 2.5 license

Back navigation is how users move backward
through the history of screens they previously
visited. All Android devices provide a Back button
for this type of navigation, so your app should
not add a Back button to the UI.
In almost all situations, the system maintains a
back stack of activities while the user navigates
your application. This allows the system to
properly navigate backward when the user
presses the Back button. However, there are a
few cases in which your app should manually
specify the Back behavior in order to provide the
best user experience.
Back Navigation Design
Before continuing with this document, you should
understand the concepts and principles for Back navigation as described in the Navigation design guide.
Navigation patterns that require you to manually specify the Back behavior include:

• When the user enters a deep-level activity directly from a notification, an app widget, or the
navigation drawer.

• Certain cases in which the user navigates between fragments.
• When the user navigates web pages in a WebView.

How to implement proper Back navigation in these situations is described in the following sections.

Synthesize a new Back Stack for Deep Links
Ordinarily, the system incrementally builds the back stack as the user navigates from one activity to the
next. However, when the user enters your app with a deep link that starts the activity in its own task, it's
necessary for you to synthesize a new back stack because the activity is running in a new task without any
back stack at all.
For example, when a notification takes the user to an activity deep in your app hierarchy, you should add
activities into your task's back stack so that pressing Back navigates up the app hierarchy instead of
exiting the app. This pattern is described further in the Navigation design guide.

Specify parent activities in the manifest
Beginning in Android 4.1 (API level 16), you can declare the logical parent of each activity by specifying
the android:parentActivityName attribute in the <activity> element. This allows the system to
facilitate navigation patterns because it can determine the logical Back or Up navigation path with this
information.
If your app supports Android 4.0 and lower, include the Support Library with your app and add a <meta-
data> element inside the <activity>. Then specify the parent activity as the value for
android.support.PARENT_ACTIVITY, matching the android:parentActivityName attribute.
For example:

This lesson teaches you to:
• Synthesize a new Back Stack for Deep
Links
• Implement Back Navigation for Fragments
• Implement Back Navigation for WebViews
You should also read

• Providing Ancestral and Temporal
Navigation

• Tasks and Back Stack
• Android Design: Navigation

Providing Proper Back Navigation

475
Content from developer.android.com/training/implementing-navigation/temporal.html through their Creative Commons Attribution 2.5 license

<application ... >
 ...
 <!-- The main/home activity (it has no parent activity) -->
 <activity
 android:name="com.example.myfirstapp.MainActivity" ...>
 ...
 </activity>
 <!-- A child of the main activity -->
 <activity
 android:name="com.example.myfirstapp.DisplayMessageActivity"
 android:label="@string/title_activity_display_message"
 android:parentActivityName="com.example.myfirstapp.MainActivity" >
 <!-- The meta-data element is needed for versions lower than 4.1 -->
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.example.myfirstapp.MainActivity" />
 </activity>
</application>

With the parent activity declared this way, you can use the NavUtils APIs to synthesize a new back
stack by identifying which activity is the appropriate parent for each activity.

Create back stack when starting the activity
Adding activities to the back stack begins upon the event that takes the user into your app. That is, instead
of calling startActivity(), use the TaskStackBuilder APIs to define each activity that should be
placed into a new back stack. Then begin the target activity by calling startActivities(), or create
the appropriate PendingIntent by calling getPendingIntent().
For example, when a notification takes the user to an activity deep in your app hierarchy, you can use this
code to create a PendingIntent that starts an activity and inserts a new back stack into the target task:

// Intent for the activity to open when user selects the notification
Intent detailsIntent = new Intent(this, DetailsActivity.class);

// Use TaskStackBuilder to build the back stack and get the PendingIntent
PendingIntent pendingIntent =
 TaskStackBuilder.create(this)
 // add all of DetailsActivity's parents to the stack,
 // followed by DetailsActivity itself
 .addNextIntentWithParentStack(upIntent)
 .getPendingIntent(0, PendingIntent.FLAG_UPDATE_CURRENT);

NotificationCompat.Builder builder = new NotificationCompat.Builder(this);
builder.setContentIntent(pendingIntent);
...

The resulting PendingIntent specifies not only the activity to start (as defined by detailsIntent), but
also the back stack that should be inserted into the task (all parents of the DetailsActivity defined by
detailsIntent). So when the DetailsActivity starts, pressing Back navigates backward through
each of the DetailsActivity class's parent activities.
Note: In order for the addNextIntentWithParentStack() method to work, you must declare the
logical parent of each activity in your manifest file, using the android:parentActivityName attribute
(and corresponding <meta-data> element) as described above.

Implement Back Navigation for Fragments

Providing Proper Back Navigation

476
Content from developer.android.com/training/implementing-navigation/temporal.html through their Creative Commons Attribution 2.5 license

When using fragments in your app, individual FragmentTransaction objects may represent context
changes that should be added to the back stack. For example, if you are implementing a master/detail flow
on a handset by swapping out fragments, you should ensure that pressing the Back button on a detail
screen returns the user to the master screen. To do so, call addToBackStack() before you commit the
transaction:

// Works with either the framework FragmentManager or the
// support package FragmentManager (getSupportFragmentManager).
getSupportFragmentManager().beginTransaction()
 .add(detailFragment, "detail")
 // Add this transaction to the back stack
 .addToBackStack()
 .commit();

When there are FragmentTransaction objects on the back stack and the user presses the Back button,
the FragmentManager pops the most recent transaction off the back stack and performs the reverse
action (such as removing a fragment if the transaction added it).
Note: You should not add transactions to the back stack when the transaction is for horizontal
navigation (such as when switching tabs) or when modifying the content appearance (such as when
adjusting filters). For more information, about when Back navigation is appropriate, see the Navigation
design guide.
If your application updates other user interface elements to reflect the current state of your fragments, such
as the action bar, remember to update the UI when you commit the transaction. You should update your
user interface after the back stack changes in addition to when you commit the transaction. You can listen
for when a FragmentTransaction is reverted by setting up an
FragmentManager.OnBackStackChangedListener:

getSupportFragmentManager().addOnBackStackChangedListener(
 new FragmentManager.OnBackStackChangedListener() {
 public void onBackStackChanged() {
 // Update your UI here.
 }
 });

Implement Back Navigation for WebViews
If a part of your application is contained in a WebView, it may be appropriate for Back to traverse browser
history. To do so, you can override onBackPressed() and proxy to the WebView if it has history state:

@Override
public void onBackPressed() {
 if (mWebView.canGoBack()) {
 mWebView.goBack();
 return;
 }

 // Otherwise defer to system default behavior.
 super.onBackPressed();
}

Be careful when using this mechanism with highly dynamic web pages that can grow a large history.
Pages that generate an extensive history, such as those that make frequent changes to the document
hash, may make it tedious for users to get out of your activity.
For more information about using WebView, read Building Web Apps in WebView.

Implementing Descendant Navigation

477
Content from developer.android.com/training/implementing-navigation/descendant.html through their Creative Commons Attribution 2.5 license

127. Implementing Descendant Navigation
Content from developer.android.com/training/implementing-navigation/descendant.html through their Creative Commons Attribution 2.5 license

Descendant navigation is navigation down the
application's information hierarchy. This is
described in Designing Effective Navigation and
also covered in Android Design: Application
Structure.
Descendant navigation is usually implemented
using Intent objects and startActivity(),
or by adding fragments to an activity using
FragmentTransaction objects. This lesson
covers other interesting cases that arise when
implementing descendant navigation.

Implement Master/Detail Flows
Across Handsets and Tablets
In a master/detail navigation flow, a master screen
contains a list of items in a collection, and a detail
screen shows detailed information about a specific
item within that collection. Implementing
navigation from the master screen to the detail screen is one form of descendant navigation.
Handset touchscreens are most suitable for displaying one screen at a time (either the master or the detail
screen); this concern is further discussed in Planning for Multiple Touchscreen Sizes. Descendant
navigation in this case is often implemented using an Intent that starts an activity representing the detail
screen. On the other hand, tablet displays, especially when viewed in the landscape orientation, are best
suited for showing multiple content panes at a time: the master on the left, and the detail to the right).
Here, descendant navigation is usually implemented using a FragmentTransaction that adds,
removes, or replaces the detail pane with new content.
The basics of implementing this pattern are described in the Implementing Adaptive UI Flows lesson of the
Designing for Multiple Screens class. The class describes how to implement a master/detail flow using two
activities on a handset and a single activity on a tablet.

Navigate into External Activities
There are cases where descending into your application's information hierarchy leads to activities from
other applications. For example, when viewing the contact details screen for an entry in the phone address
book, a child screen detailing recent posts by the contact on a social network may belong to a social
networking application.
When launching another application's activity to allow the user to say, compose an email or pick a photo
attachment, you generally don't want the user to return to this activity if they relaunch your application from
the Launcher (the device home screen). It would be confusing if touching your application icon brought the
user to a "compose email" screen.
To prevent this from occurring, simply add the FLAG_ACTIVITY_CLEAR_WHEN_TASK_RESET flag to the
intent used to launch the external activity, like so:

This lesson teaches you to:
• Implement Master/Detail Flows Across
Handsets and Tablets
• Navigate into External Activities
You should also read

• Providing Descendant and Lateral
Navigation

• Android Design: App Structure
• Android Design: Multi-pane Layouts

Try it out
Download the sample app
EffectiveNavigation.zip

Implementing Descendant Navigation

478
Content from developer.android.com/training/implementing-navigation/descendant.html through their Creative Commons Attribution 2.5 license

Intent externalActivityIntent = new Intent(Intent.ACTION_PICK);
externalActivityIntent.setType("image/*");
externalActivityIntent.addFlags(
 Intent.FLAG_ACTIVITY_CLEAR_WHEN_TASK_RESET);
startActivity(externalActivityIntent);

Notifying the User

479
Content from developer.android.com/training/notify-user/index.html through their Creative Commons Attribution 2.5 license

128. Notifying the User
Content from developer.android.com/training/notify-user/index.html through their Creative Commons Attribution 2.5 license

A notification is a user interface element that you
display outside your app's normal UI to indicate
that an event has occurred. Users can choose to
view the notification while using other apps and
respond to it when it's convenient for them.
The Notifications design guide shows you how to
design effective notifications and when to use
them. This class shows you how to implement the
most common notification designs.

Lessons
Building a Notification

Learn how to create a notification
Builder, set the required features, and
issue the notification.

Preserving Navigation when Starting an
Activity

Learn how to enforce the proper navigation for an Activity started from a notification.
Updating Notifications

Learn how to update and remove notifications.
Using Big View Styles

Learn how to create a big view within an expanded notification, while still maintaining backward
compatibility.

Displaying Progress in a Notification
Learn how to display the progress of an operation in a notification, both for operations where you
can estimate how much has been completed (determinate progress) and operations where you
don't know how much has been completed (indefinite progress).

Dependencies and prerequisites

• Android 1.6 (API Level 4) or higher

You should also read

• Notifications API Guide
• Intents and Intent Filters
• Notifications Design Guide

Try it out
Download the sample
NotifyUser.zip

Building a Notification

480
Content from developer.android.com/training/notify-user/build-notification.html through their Creative Commons Attribution 2.5 license

129. Building a Notification
Content from developer.android.com/training/notify-user/build-notification.html through their Creative Commons Attribution 2.5 license

This lesson explains how to create and issue a
notification.
The examples in this class are based on the
NotificationCompat.Builder class.
NotificationCompat.Builder is in the
Support Library. You should use
NotificationCompat and its subclasses,
particularly NotificationCompat.Builder, to
provide the best notification support for a wide
range of platforms.

Create a Notification Builder
When creating a notification, specify the UI
content and actions with a
NotificationCompat.Builder object. At bare
minimum, a Builder object must include the following:

• A small icon, set by setSmallIcon()
• A title, set by setContentTitle()
• Detail text, set by setContentText()

For example:

NotificationCompat.Builder mBuilder =
 new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.notification_icon)
 .setContentTitle("My notification")
 .setContentText("Hello World!");

Define the Notification's Action
Although actions are optional, you should add at least one action to your notification. An action takes users
directly from the notification to an Activity in your application, where they can look at the event that
caused the notification or do further work. Inside a notification, the action itself is defined by a
PendingIntent containing an Intent that starts an Activity in your application.
How you construct the PendingIntent depends on what type of Activity you're starting. When you
start an Activity from a notification, you must preserve the user's expected navigation experience. In
the snippet below, clicking the notification opens a new activity that effectively extends the behavior of the
notification. In this case there is no need to create an artificial back stack (see Preserving Navigation when
Starting an Activity for more information):

This lesson teaches you to
• Create a Notification Builder
• Define the Notification's Action
• Set the Notification's Click Behavior
• Issue the Notification
You should also read

• Notifications API Guide
• Intents and Intent Filters
• Notifications Design Guide

Building a Notification

481
Content from developer.android.com/training/notify-user/build-notification.html through their Creative Commons Attribution 2.5 license

Intent resultIntent = new Intent(this, ResultActivity.class);
...
// Because clicking the notification opens a new ("special") activity, there's
// no need to create an artificial back stack.
PendingIntent resultPendingIntent =
 PendingIntent.getActivity(
 this,
 0,
 resultIntent,
 PendingIntent.FLAG_UPDATE_CURRENT
);

Set the Notification's Click Behavior
To associate the PendingIntent created in the previous step with a gesture, call the appropriate method
of NotificationCompat.Builder. For example, to start an activity when the user clicks the notification
text in the notification drawer, add the PendingIntent by calling setContentIntent(). For example:

PendingIntent resultPendingIntent;
...
mBuilder.setContentIntent(resultPendingIntent);

Issue the Notification
To issue the notification:

• Get an instance of NotificationManager.
• Use the notify() method to issue the notification. When you call notify(), specify a

notification ID. You can use this ID to update the notification later on. This is described in more
detail in Managing Notifications.

• Call build(), which returns a Notification object containing your specifications.
• For example:

NotificationCompat.Builder mBuilder;
...
// Sets an ID for the notification
int mNotificationId = 001;
// Gets an instance of the NotificationManager service
NotificationManager mNotifyMgr =
 (NotificationManager) getSystemService(NOTIFICATION_SERVICE);
// Builds the notification and issues it.
mNotifyMgr.notify(mNotificationId, mBuilder.build());

•

Preserving Navigation when Starting an Activity

482
Content from developer.android.com/training/notify-user/navigation.html through their Creative Commons Attribution 2.5 license

130. Preserving Navigation when Starting an Activity
Content from developer.android.com/training/notify-user/navigation.html through their Creative Commons Attribution 2.5 license

Part of designing a notification is preserving the
user's expected navigation experience. For a
detailed discussion of this topic, see the
Notifications API guide. There are two general
situations:
Regular activity

You're starting an Activity that's part
of the application's normal workflow.

Special activity
The user only sees this Activity if it's
started from a notification. In a sense, the
Activity extends the notification by providing information that would be hard to display in the
notification itself.

Set Up a Regular Activity PendingIntent
To set up a PendingIntent that starts a direct entry Activity, follow these steps:
• Define your application's Activity hierarchy in the manifest. The final XML should look like this:

<activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>
<activity
 android:name=".ResultActivity"
 android:parentActivityName=".MainActivity">
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value=".MainActivity"/>
</activity>

•
• Create a back stack based on the Intent that starts the Activity. For example:

...
Intent resultIntent = new Intent(this, ResultActivity.class);
TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);
// Adds the back stack
stackBuilder.addParentStack(ResultActivity.class);
// Adds the Intent to the top of the stack
stackBuilder.addNextIntent(resultIntent);
// Gets a PendingIntent containing the entire back stack
PendingIntent resultPendingIntent =
 stackBuilder.getPendingIntent(0, PendingIntent.FLAG_UPDATE_CURRENT);
...

This lesson teaches you to
• Set up a regular activity PendingIntent
• Set up a special activity PendingIntent
You should also read

• Notifications API Guide
• Intents and Intent Filters
• Notifications Design Guide

Preserving Navigation when Starting an Activity

483
Content from developer.android.com/training/notify-user/navigation.html through their Creative Commons Attribution 2.5 license

NotificationCompat.Builder builder = new NotificationCompat.Builder(this);
builder.setContentIntent(resultPendingIntent);
NotificationManager mNotificationManager =
 (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);
mNotificationManager.notify(id, builder.build());

Set Up a Special Activity PendingIntent
A special Activity doesn't need a back stack, so you don't have to define its Activity hierarchy in the
manifest, and you don't have to call addParentStack() to build a back stack. Instead, use the manifest
to set up the Activity task options, and create the PendingIntent by calling getActivity():
• In your manifest, add the following attributes to the <activity> element for the Activity:
android:name="activityclass"

The activity's fully-qualified class name.
android:taskAffinity=""

Combined with the FLAG_ACTIVITY_NEW_TASK flag that you set in code, this ensures that this
Activity doesn't go into the application's default task. Any existing tasks that have the
application's default affinity are not affected.

android:excludeFromRecents="true"
Excludes the new task from Recents, so that the user can't accidentally navigate back to it.

This snippet shows the element:

<activity
 android:name=".ResultActivity"
...
 android:launchMode="singleTask"
 android:taskAffinity=""
 android:excludeFromRecents="true">
</activity>
...

•
• Build and issue the notification:
• Create an Intent that starts the Activity.
• Set the Activity to start in a new, empty task by calling setFlags() with the flags
FLAG_ACTIVITY_NEW_TASK and FLAG_ACTIVITY_CLEAR_TASK.
• Set any other options you need for the Intent.
• Create a PendingIntent from the Intent by calling getActivity(). You can then use this
PendingIntent as the argument to setContentIntent().
The following code snippet demonstrates the process:

Preserving Navigation when Starting an Activity

484
Content from developer.android.com/training/notify-user/navigation.html through their Creative Commons Attribution 2.5 license

// Instantiate a Builder object.
NotificationCompat.Builder builder = new NotificationCompat.Builder(this);
// Creates an Intent for the Activity
Intent notifyIntent =
 new Intent(new ComponentName(this, ResultActivity.class));
// Sets the Activity to start in a new, empty task
notifyIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |
 Intent.FLAG_ACTIVITY_CLEAR_TASK);
// Creates the PendingIntent
PendingIntent notifyIntent =
 PendingIntent.getActivity(
 this,
 0,
 notifyIntent,
 PendingIntent.FLAG_UPDATE_CURRENT
);

// Puts the PendingIntent into the notification builder
builder.setContentIntent(notifyIntent);
// Notifications are issued by sending them to the
// NotificationManager system service.
NotificationManager mNotificationManager =
 (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);
// Builds an anonymous Notification object from the builder, and
// passes it to the NotificationManager
mNotificationManager.notify(id, builder.build());

•

Updating Notifications

485
Content from developer.android.com/training/notify-user/managing.html through their Creative Commons Attribution 2.5 license

131. Updating Notifications
Content from developer.android.com/training/notify-user/managing.html through their Creative Commons Attribution 2.5 license

When you need to issue a notification multiple
times for the same type of event, you should avoid
making a completely new notification. Instead, you
should consider updating a previous notification,
either by changing some of its values or by adding
to it, or both.
The following section describes how to update
notifications and also how to remove them.

Modify a Notification
To set up a notification so it can be updated, issue
it with a notification ID by calling
NotificationManager.notify(ID, notification). To update this notification once you've issued
it, update or create a NotificationCompat.Builder object, build a Notification object from it, and
issue the Notification with the same ID you used previously.
The following snippet demonstrates a notification that is updated to reflect the number of events that have
occurred. It stacks the notification, showing a summary:

mNotificationManager =
 (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);
// Sets an ID for the notification, so it can be updated
int notifyID = 1;
mNotifyBuilder = new NotificationCompat.Builder(this)
 .setContentTitle("New Message")
 .setContentText("You've received new messages.")
 .setSmallIcon(R.drawable.ic_notify_status)
numMessages = 0;
// Start of a loop that processes data and then notifies the user
...
 mNotifyBuilder.setContentText(currentText)
 .setNumber(++numMessages);
 // Because the ID remains unchanged, the existing notification is
 // updated.
 mNotificationManager.notify(
 notifyID,
 mNotifyBuilder.build());
...

Remove Notifications
Notifications remain visible until one of the following happens:

• The user dismisses the notification either individually or by using "Clear All" (if the notification can
be cleared).

• The user touches the notification, and you called setAutoCancel() when you created the
notification.

• You call cancel() for a specific notification ID. This method also deletes ongoing notifications.
• You call cancelAll(), which removes all of the notifications you previously issued.

This lesson teaches you to
• Modify a Notification
• Remove Notifications
You should also read

• Notifications API Guide
• Intents and Intent Filters
• Notifications Design Guide

Using Big View Styles

486
Content from developer.android.com/training/notify-user/expanded.html through their Creative Commons Attribution 2.5 license

132. Using Big View Styles
Content from developer.android.com/training/notify-user/expanded.html through their Creative Commons Attribution 2.5 license

Notifications in the notification drawer appear in
two main visual styles, normal view and big view.
The big view of a notification only appears when
the notification is expanded. This happens when
the notification is at the top of the drawer, or the
user clicks the notification.
Big views were introduced in Android 4.1, and
they're not supported on older devices. This
lesson describes how to incorporate big view
notifications into your app while still providing full
functionality via the normal view. See the
Notifications API guide for more discussion of big
views.
Here is an example of a normal view:

Figure 1. Normal view notification.
Here is an example of a big view:

Figure 2. Big view notification.
In the sample application shown in this lesson, both the normal view and the big view give users access to
same functionality:

• The ability to snooze or dismiss the notification.
• A way to view the reminder text the user set as part of the timer.

The normal view provides these features through a new activity that launches when the user clicks the
notification. Keep this in mind as you design your notifications—first provide the functionality in the normal
view, since this is how many users will interact with the notification.

Set Up the Notification to Launch a New Activity
The sample application uses an IntentService subclass (PingService) to construct and issue the
notification.
In this snippet, the IntentService method onHandleIntent() specifies the new activity that will be
launched if the user clicks the notification itself. The method setContentIntent() defines a pending
intent that should be fired when the user clicks the notification, thereby launching the activity.

This lesson teaches you to
• Set Up the Notification to Launch a New
Activity
• Construct the Big View
You should also read

• Notifications API Guide
• Intents and Intent Filters
• Notifications Design Guide

Using Big View Styles

487
Content from developer.android.com/training/notify-user/expanded.html through their Creative Commons Attribution 2.5 license

Intent resultIntent = new Intent(this, ResultActivity.class);
resultIntent.putExtra(CommonConstants.EXTRA_MESSAGE, msg);
resultIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |
 Intent.FLAG_ACTIVITY_CLEAR_TASK);

// Because clicking the notification launches a new ("special") activity,
// there's no need to create an artificial back stack.
PendingIntent resultPendingIntent =
 PendingIntent.getActivity(
 this,
 0,
 resultIntent,
 PendingIntent.FLAG_UPDATE_CURRENT
);

// This sets the pending intent that should be fired when the user clicks the
// notification. Clicking the notification launches a new activity.
builder.setContentIntent(resultPendingIntent);

Construct the Big View
This snippet shows how to set up the buttons that will appear in the big view:

// Sets up the Snooze and Dismiss action buttons that will appear in the
// big view of the notification.
Intent dismissIntent = new Intent(this, PingService.class);
dismissIntent.setAction(CommonConstants.ACTION_DISMISS);
PendingIntent piDismiss = PendingIntent.getService(this, 0, dismissIntent, 0);

Intent snoozeIntent = new Intent(this, PingService.class);
snoozeIntent.setAction(CommonConstants.ACTION_SNOOZE);
PendingIntent piSnooze = PendingIntent.getService(this, 0, snoozeIntent, 0);

This snippet shows how to construct the Builder object. It sets the style for the big view to be "big text,"
and sets its content to be the reminder message. It uses addAction() to add the Snooze and Dismiss
buttons (and their associated pending intents) that will appear in the notification's big view:

// Constructs the Builder object.
NotificationCompat.Builder builder =
 new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.ic_stat_notification)
 .setContentTitle(getString(R.string.notification))
 .setContentText(getString(R.string.ping))
 .setDefaults(Notification.DEFAULT_ALL) // requires VIBRATE permission
 /*
 * Sets the big view "big text" style and supplies the
 * text (the user's reminder message) that will be displayed
 * in the detail area of the expanded notification.
 * These calls are ignored by the support library for
 * pre-4.1 devices.
 */
 .setStyle(new NotificationCompat.BigTextStyle()
 .bigText(msg))
 .addAction (R.drawable.ic_stat_dismiss,
 getString(R.string.dismiss), piDismiss)
 .addAction (R.drawable.ic_stat_snooze,
 getString(R.string.snooze), piSnooze);

Using Big View Styles

488
Content from developer.android.com/training/notify-user/expanded.html through their Creative Commons Attribution 2.5 license

Displaying Progress in a Notification

489
Content from developer.android.com/training/notify-user/display-progress.html through their Creative Commons Attribution 2.5 license

133. Displaying Progress in a Notification
Content from developer.android.com/training/notify-user/display-progress.html through their Creative Commons Attribution 2.5 license

Notifications can include an animated progress
indicator that shows users the status of an
ongoing operation. If you can estimate how long
the operation takes and how much of it is
complete at any time, use the "determinate" form
of the indicator (a progress bar). If you can't
estimate the length of the operation, use the
"indeterminate" form of the indicator (an activity
indicator).
Progress indicators are displayed with the
platform's implementation of the ProgressBar
class.
To use a progress indicator, call setProgress(). The determinate and indeterminate forms are
described in the following sections.

Display a Fixed-duration Progress Indicator
To display a determinate progress bar, add the bar to your notification by calling setProgress(max,
progress, false) and then issue the notification. The third argument is a boolean that indicates
whether the progress bar is indeterminate (true) or determinate (false). As your operation proceeds,
increment progress, and update the notification. At the end of the operation, progress should equal
max. A common way to call setProgress() is to set max to 100 and then increment progress as a
"percent complete" value for the operation.
You can either leave the progress bar showing when the operation is done, or remove it. In either case,
remember to update the notification text to show that the operation is complete. To remove the progress
bar, call setProgress(0, 0, false). For example:

This lesson teaches you to
• Display a Fixed-duration progress Indicator
• Display a Continuing Activity Indicator
You should also read

• Notifications API Guide
• Intents and Intent Filters
• Notifications Design Guide

Displaying Progress in a Notification

490
Content from developer.android.com/training/notify-user/display-progress.html through their Creative Commons Attribution 2.5 license

...
mNotifyManager =
 (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);
mBuilder = new NotificationCompat.Builder(this);
mBuilder.setContentTitle("Picture Download")
 .setContentText("Download in progress")
 .setSmallIcon(R.drawable.ic_notification);
// Start a lengthy operation in a background thread
new Thread(
 new Runnable() {
 @Override
 public void run() {
 int incr;
 // Do the "lengthy" operation 20 times
 for (incr = 0; incr <= 100; incr+=5) {
 // Sets the progress indicator to a max value, the
 // current completion percentage, and "determinate"
 // state
 mBuilder.setProgress(100, incr, false);
 // Displays the progress bar for the first time.
 mNotifyManager.notify(0, mBuilder.build());
 // Sleeps the thread, simulating an operation
 // that takes time
 try {
 // Sleep for 5 seconds
 Thread.sleep(5*1000);
 } catch (InterruptedException e) {
 Log.d(TAG, "sleep failure");
 }
 }
 // When the loop is finished, updates the notification
 mBuilder.setContentText("Download complete")
 // Removes the progress bar
 .setProgress(0,0,false);
 mNotifyManager.notify(ID, mBuilder.build());
 }
 }
// Starts the thread by calling the run() method in its Runnable
).start();

The resulting notifications are shown in figure 1. On the left side is a snapshot of the notification during the
operation; on the right side is a snapshot of it after the operation has finished.

Figure 1. The progress bar during and after the operation.

Display a Continuing Activity Indicator
To display a continuing (indeterminate) activity indicator, add it to your notification with setProgress(0,
0, true) and issue the notification. The first two arguments are ignored, and the third argument declares
that the indicator is indeterminate. The result is an indicator that has the same style as a progress bar,
except that its animation is ongoing.
Issue the notification at the beginning of the operation. The animation will run until you modify your
notification. When the operation is done, call setProgress(0, 0, false) and then update the
notification to remove the activity indicator. Always do this; otherwise, the animation will run even when the

Displaying Progress in a Notification

491
Content from developer.android.com/training/notify-user/display-progress.html through their Creative Commons Attribution 2.5 license

operation is complete. Also remember to change the notification text to indicate that the operation is
complete.
To see how continuing activity indicators work, refer to the preceding snippet. Locate the following lines:

// Sets the progress indicator to a max value, the current completion
// percentage, and "determinate" state
mBuilder.setProgress(100, incr, false);
// Issues the notification
mNotifyManager.notify(0, mBuilder.build());

Replace the lines you've found with the following lines. Notice that the third parameter in the
setProgress() call is set to true to indicate that the progress bar is indeterminate:

 // Sets an activity indicator for an operation of indeterminate length
mBuilder.setProgress(0, 0, true);
// Issues the notification
mNotifyManager.notify(0, mBuilder.build());

The resulting indicator is shown in figure 2:

Figure 2. An ongoing activity indicator.

Adding Search Functionality

492
Content from developer.android.com/training/search/index.html through their Creative Commons Attribution 2.5 license

134. Adding Search Functionality
Content from developer.android.com/training/search/index.html through their Creative Commons Attribution 2.5 license

Android's built-in search features offer apps an
easy way to provide a consistent search
experience for all users. There are two ways to
implement search in your app depending on the
version of Android that is running on the device.
This class covers how to add search with
SearchView, which was introduced in Android
3.0, while maintaining backward compatibility with
older versions of Android by using the default
search dialog provided by the system.

Lessons
Setting Up the Search Interface

Learn how to add a search interface to
your app and how to configure an activity to handle search queries.

Storing and Searching for Data
Learn a simple way to store and search for data in a SQLite virtual database table.

Remaining Backward Compatible
Learn how to keep search features backward compatible with older devices by using.

Dependencies and prerequisites

• Android 3.0 or later (with some
support for Android 2.1)

• Experience building an Android User
Interface

You should also read

• Search
• Searchable Dictionary Sample App

Setting Up the Search Interface

493
Content from developer.android.com/training/search/setup.html through their Creative Commons Attribution 2.5 license

135. Setting Up the Search Interface
Content from developer.android.com/training/search/setup.html through their Creative Commons Attribution 2.5 license

Beginning in Android 3.0, using the SearchView
widget as an item in the action bar is the preferred
way to provide search in your app. Like with all
items in the action bar, you can define the
SearchView to show at all times, only when
there is room, or as a collapsible action, which
displays the SearchView as an icon initially, then
takes up the entire action bar as a search field
when the user clicks the icon.
Note: Later in this class, you will learn how to
make your app compatible down to Android 2.1
(API level 7) for devices that do not support
SearchView.

Add the Search View to the Action Bar
To add a SearchView widget to the action bar, create a file named res/menu/options_menu.xml in
your project and add the following code to the file. This code defines how to create the search item, such
as the icon to use and the title of the item. The collapseActionView attribute allows your SearchView
to expand to take up the whole action bar and collapse back down into a normal action bar item when not
in use. Because of the limited action bar space on handset devices, using the collapsibleActionView
attribute is recommended to provide a better user experience.

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/search"
 android:title="@string/search_title"
 android:icon="@drawable/ic_search"
 android:showAsAction="collapseActionView|ifRoom"
 android:actionViewClass="android.widget.SearchView" />
</menu>

Note: If you already have an existing XML file for your menu items, you can add the <item> element to
that file instead.
To display the SearchView in the action bar, inflate the XML menu resource
(res/menu/options_menu.xml) in the onCreateOptionsMenu() method of your activity:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.options_menu, menu);

 return true;
}

If you run your app now, the SearchView appears in your app's action bar, but it isn't functional. You now
need to define how the SearchView behaves.

This lesson teaches you to

• Add the Search View to the Action
Bar

• Create a Searchable Configuration
• Create a Searchable Activity

You should also read:

• Action Bar

Setting Up the Search Interface

494
Content from developer.android.com/training/search/setup.html through their Creative Commons Attribution 2.5 license

Create a Searchable Configuration
A searchable configuration defines how the SearchView behaves and is defined in a
res/xml/searchable.xml file. At a minimum, a searchable configuration must contain an
android:label attribute that has the same value as the android:label attribute of the <application>
or <activity> element in your Android manifest. However, we also recommend adding an android:hint
attribute to give the user an idea of what to enter into the search box:

<?xml version="1.0" encoding="utf-8"?>

<searchable xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/app_name"
 android:hint="@string/search_hint" />

In your application's manifest file, declare a <meta-data> element that points to the
res/xml/searchable.xml file, so that your application knows where to find it. Declare the element in
an <activity> that you want to display the SearchView in:

<activity ... >
 ...
 <meta-data android:name="android.app.searchable"
 android:resource="@xml/searchable" />

</activity>

In the onCreateOptionsMenu() method that you created before, associate the searchable configuration
with the SearchView by calling setSearchableInfo(SearchableInfo):

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.options_menu, menu);

 // Associate searchable configuration with the SearchView
 SearchManager searchManager =
 (SearchManager) getSystemService(Context.SEARCH_SERVICE);
 SearchView searchView =
 (SearchView) menu.findItem(R.id.search).getActionView();
 searchView.setSearchableInfo(
 searchManager.getSearchableInfo(getComponentName()));

 return true;
}

The call to getSearchableInfo() obtains a SearchableInfo object that is created from the
searchable configuration XML file. When the searchable configuration is correctly associated with your
SearchView, the SearchView starts an activity with the ACTION_SEARCH intent when a user submits a
query. You now need an activity that can filter for this intent and handle the search query.

Create a Searchable Activity
A SearchView tries to start an activity with the ACTION_SEARCH when a user submits a search query. A
searchable activity filters for the ACTION_SEARCH intent and searches for the query in some sort of data
set. To create a searchable activity, declare an activity of your choice to filter for the ACTION_SEARCH
intent:

Setting Up the Search Interface

495
Content from developer.android.com/training/search/setup.html through their Creative Commons Attribution 2.5 license

<activity android:name=".SearchResultsActivity" ... >
 ...
 <intent-filter>
 <action android:name="android.intent.action.SEARCH" />
 </intent-filter>
 ...
</activity>

In your searchable activity, handle the ACTION_SEARCH intent by checking for it in your onCreate()
method.
Note: If your searchable activity launches in single top mode (android:launchMode="singleTop"),
also handle the ACTION_SEARCH intent in the onNewIntent() method. In single top mode, only one
instance of your activity is created and subsequent calls to start your activity do not create a new activity
on the stack. This launch mode is useful so users can perform searches from the same activity without
creating a new activity instance every time.

public class SearchResultsActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...
 handleIntent(getIntent());
 }

 @Override
 protected void onNewIntent(Intent intent) {
 ...
 handleIntent(intent);
 }

 private void handleIntent(Intent intent) {

 if (Intent.ACTION_SEARCH.equals(intent.getAction())) {
 String query = intent.getStringExtra(SearchManager.QUERY);
 //use the query to search your data somehow
 }
 }
 ...
}

If you run your app now, the SearchView can accept the user's query and start your searchable activity
with the ACTION_SEARCH intent. It is now up to you to figure out how to store and search your data given
a query.

Storing and Searching for Data

496
Content from developer.android.com/training/search/search.html through their Creative Commons Attribution 2.5 license

136. Storing and Searching for Data
Content from developer.android.com/training/search/search.html through their Creative Commons Attribution 2.5 license

There are many ways to store your data, such as
in an online database, in a local SQLite database,
or even in a text file. It is up to you to decide what
is the best solution for your application. This
lesson shows you how to create a SQLite virtual
table that can provide robust full-text searching.
The table is populated with data from a text file
that contains a word and definition pair on each
line in the file.

Create the Virtual Table
A virtual table behaves similarly to a SQLite table, but reads and writes to an object in memory via
callbacks, instead of to a database file. To create a virtual table, create a class for the table:

public class DatabaseTable {
 private final DatabaseOpenHelper mDatabaseOpenHelper;

 public DatabaseTable(Context context) {
 mDatabaseOpenHelper = new DatabaseOpenHelper(context);
 }
}

Create an inner class in DatabaseTable that extends SQLiteOpenHelper. The SQLiteOpenHelper
class defines abstract methods that you must override so that your database table can be created and
upgraded when necessary. For example, here is some code that declares a database table that will
contain words for a dictionary app:

This lesson teaches you to

• Create the Virtual Table
• Populate the Virtual Table
• Search for the Query

Storing and Searching for Data

497
Content from developer.android.com/training/search/search.html through their Creative Commons Attribution 2.5 license

public class DatabaseTable {

 private static final String TAG = "DictionaryDatabase";

 //The columns we'll include in the dictionary table
 public static final String COL_WORD = "WORD";
 public static final String COL_DEFINITION = "DEFINITION";

 private static final String DATABASE_NAME = "DICTIONARY";
 private static final String FTS_VIRTUAL_TABLE = "FTS";
 private static final int DATABASE_VERSION = 1;

 private final DatabaseOpenHelper mDatabaseOpenHelper;

 public DatabaseTable(Context context) {
 mDatabaseOpenHelper = new DatabaseOpenHelper(context);
 }

 private static class DatabaseOpenHelper extends SQLiteOpenHelper {

 private final Context mHelperContext;
 private SQLiteDatabase mDatabase;

 private static final String FTS_TABLE_CREATE =
 "CREATE VIRTUAL TABLE " + FTS_VIRTUAL_TABLE +
 " USING fts3 (" +
 COL_WORD + ", " +
 COL_DEFINITION + ")";

 DatabaseOpenHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 mHelperContext = context;
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 mDatabase = db;
 mDatabase.execSQL(FTS_TABLE_CREATE);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 Log.w(TAG, "Upgrading database from version " + oldVersion + " to "
 + newVersion + ", which will destroy all old data");
 db.execSQL("DROP TABLE IF EXISTS " + FTS_VIRTUAL_TABLE);
 onCreate(db);
 }
 }
}

Populate the Virtual Table
The table now needs data to store. The following code shows you how to read a text file (located in
res/raw/definitions.txt) that contains words and their definitions, how to parse that file, and how
to insert each line of that file as a row in the virtual table. This is all done in another thread to prevent the
UI from locking. Add the following code to your DatabaseOpenHelper inner class.
Tip: You also might want to set up a callback to notify your UI activity of this thread's completion.

Storing and Searching for Data

498
Content from developer.android.com/training/search/search.html through their Creative Commons Attribution 2.5 license

private void loadDictionary() {
 new Thread(new Runnable() {
 public void run() {
 try {
 loadWords();
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
 }).start();
 }

private void loadWords() throws IOException {
 final Resources resources = mHelperContext.getResources();
 InputStream inputStream = resources.openRawResource(R.raw.definitions);
 BufferedReader reader = new BufferedReader(new InputStreamReader(inputStream));

 try {
 String line;
 while ((line = reader.readLine()) != null) {
 String[] strings = TextUtils.split(line, "-");
 if (strings.length < 2) continue;
 long id = addWord(strings[0].trim(), strings[1].trim());
 if (id < 0) {
 Log.e(TAG, "unable to add word: " + strings[0].trim());
 }
 }
 } finally {
 reader.close();
 }
}

public long addWord(String word, String definition) {
 ContentValues initialValues = new ContentValues();
 initialValues.put(COL_WORD, word);
 initialValues.put(COL_DEFINITION, definition);

 return mDatabase.insert(FTS_VIRTUAL_TABLE, null, initialValues);
}

Call the loadDictionary() method wherever appropriate to populate the table. A good place would be
in the onCreate() method of the DatabaseOpenHelper class, right after you create the table:

@Override
public void onCreate(SQLiteDatabase db) {
 mDatabase = db;
 mDatabase.execSQL(FTS_TABLE_CREATE);
 loadDictionary();
}

Search for the Query
When you have the virtual table created and populated, use the query supplied by your SearchView to
search the data. Add the following methods to the DatabaseTable class to build a SQL statement that
searches for the query:

Storing and Searching for Data

499
Content from developer.android.com/training/search/search.html through their Creative Commons Attribution 2.5 license

public Cursor getWordMatches(String query, String[] columns) {
 String selection = COL_WORD + " MATCH ?";
 String[] selectionArgs = new String[] {query+"*"};

 return query(selection, selectionArgs, columns);
}

private Cursor query(String selection, String[] selectionArgs, String[] columns) {
 SQLiteQueryBuilder builder = new SQLiteQueryBuilder();
 builder.setTables(FTS_VIRTUAL_TABLE);

 Cursor cursor = builder.query(mDatabaseOpenHelper.getReadableDatabase(),
 columns, selection, selectionArgs, null, null, null);

 if (cursor == null) {
 return null;
 } else if (!cursor.moveToFirst()) {
 cursor.close();
 return null;
 }
 return cursor;
}

Search for a query by calling getWordMatches(). Any matching results are returned in a Cursor that
you can iterate through or use to build a ListView. This example calls getWordMatches() in the
handleIntent() method of the searchable activity. Remember that the searchable activity receives the
query inside of the ACTION_SEARCH intent as an extra, because of the intent filter that you previously
created:

DatabaseTable db = new DatabaseTable(this);

...

private void handleIntent(Intent intent) {

 if (Intent.ACTION_SEARCH.equals(intent.getAction())) {
 String query = intent.getStringExtra(SearchManager.QUERY);
 Cursor c = db.getWordMatches(query, null);
 //process Cursor and display results
 }
}

Remaining Backward Compatible

500
Content from developer.android.com/training/search/backward-compat.html through their Creative Commons Attribution 2.5 license

137. Remaining Backward Compatible
Content from developer.android.com/training/search/backward-compat.html through their Creative Commons Attribution 2.5 license

The SearchView and action bar are only
available on Android 3.0 and later. To support
older platforms, you can fall back to the search
dialog. The search dialog is a system provided UI
that overlays on top of your application when
invoked.

Set Minimum and Target API levels
To setup the search dialog, first declare in your
manifest that you want to support older devices,
but want to target Android 3.0 or later versions. When you do this, your application automatically uses the
action bar on Android 3.0 or later and uses the traditional menu system on older devices:

<uses-sdk android:minSdkVersion="7" android:targetSdkVersion="15" />

<application>
...

Provide the Search Dialog for Older Devices
To invoke the search dialog on older devices, call onSearchRequested() whenever a user selects the
search menu item from the options menu. Because Android 3.0 and higher devices show the SearchView
in the action bar (as demonstrated in the first lesson), only versions older than 3.0 call
onOptionsItemSelected() when the user selects the search menu item.

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.search:
 onSearchRequested();
 return true;
 default:
 return false;
 }
}

Check the Android Build Version at Runtime
At runtime, check the device version to make sure an unsupported use of SearchView does not occur on
older devices. In our example code, this happens in the onCreateOptionsMenu() method:

This lesson teaches you to

• Set Minimum and Target API levels
• Provide the Search Dialog for Older

Devices
• Check the Android Build Version at

Runtime

Remaining Backward Compatible

501
Content from developer.android.com/training/search/backward-compat.html through their Creative Commons Attribution 2.5 license

@Override
public boolean onCreateOptionsMenu(Menu menu) {

 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.options_menu, menu);

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 SearchManager searchManager =
 (SearchManager) getSystemService(Context.SEARCH_SERVICE);
 SearchView searchView =
 (SearchView) menu.findItem(R.id.search).getActionView();
 searchView.setSearchableInfo(
 searchManager.getSearchableInfo(getComponentName()));
 searchView.setIconifiedByDefault(false);
 }
 return true;
}

Making Your App Searchable

502
Content from developer.android.com/training/app-indexing/index.html through their Creative Commons Attribution 2.5 license

138. Making Your App Searchable
Content from developer.android.com/training/app-indexing/index.html through their Creative Commons Attribution 2.5 license

Video
DevBytes: App Indexing
As mobile apps become more pervasive, users
are looking for relevant information not only from
web sites but also from apps they have installed.
You can enable Google to crawl through your app
content and present your Android app as a
destination to users through Google Search
results, when that content corresponds to a web
page that you own.
You can make it possible for Google Search to
open specific content in your app by providing
intent filters for your activities. Google Search app indexing complements this capability by presenting links
to relevant app content alongside links to your web pages in users' search results. Users on mobile
devices can then click on a link to open your app from their search results, allowing them to directly view
your app's content instead of a web page.
To enable Google Search app indexing, you need to provide Google with information about the relationship
between your app and web site. This process involves the following steps:
• Enable deep linking to specific content in your app by adding intent filters in your app manifest.
• Annotate these links in the associated web pages on your web site or in a Sitemap file.
• Opt in to allow Googlebot to crawl through your APK in the Google Play store to index your app content.
You are automatically opted-in when you join as a participant in the early adopter program.
Note: Currently, the Google Search app indexing capability is restricted to English-only Android apps from
developers participating in the early adopter program. You can sign up to be a participant by submitting the
App Indexing Expression of Interest form.
This class shows how to enable deep linking and indexing of your application content so that users can
open this content directly from mobile search results.

Lessons
Enabling Deep Links for App Content

Shows how to add intent filters to enable deep linking to app content.
Specifying App Content for Indexing

Shows how to annotate web site metadata to allow Google's algorithms to index app content.

Dependencies and prerequisites

• Android 2.3 (API level 9) and higher

You Should Also Read

• The power of Search, now across
apps (blog post)

• App Indexing for Google Search
• Intents and Intent Filters

Enabling Deep Links for App Content

503
Content from developer.android.com/training/app-indexing/deep-linking.html through their Creative Commons Attribution 2.5 license

139. Enabling Deep Links for App Content
Content from developer.android.com/training/app-indexing/deep-linking.html through their Creative Commons Attribution 2.5 license

To enable Google to crawl your app content and
allow users to enter your app from search results,
you must add intent filters for the relevant
activities in your app manifest. These intent filters
allow deep linking to the content in any of your
activities. For example, the user might click on a
deep link to view a page within a shopping app
that describes a product offering that the user is
searching for.

Add Intent Filters for Your Deep
Links
To create a deep link to your app content, add an
intent filter that contains these elements and attribute values in your manifest:
<action>

Specify the ACTION_VIEW intent action so that the intent filter can be reached from Google
Search.

<data>
Add one or more <data> tags, where each tag represents a URI format that resolves to the
activity. At minimum, the <data> tag must include the android:scheme attribute.
You can add additional attributes to further refine the type of URI that the activity accepts. For
example, you might have multiple activities that accept similar URIs, but which differ simply based
on the path name. In this case, use the android:path attribute or its variants (pathPattern
or pathPrefix) to differentiate which activity the system should open for different URI paths.

<category>
Include the BROWSABLE category. The BROWSABLE category is required in order for the intent
filter to be accessible from a web browser. Without it, clicking a link in a browser cannot resolve to
your app. The DEFAULT category is optional, but recommended. Without this category, the
activity can be started only with an explicit intent, using your app component name.

The following XML snippet shows how you might specify an intent filter in your manifest for deep linking.
The URIs “example://gizmos” and “http://www.example.com/gizmos” both resolve to this
activity.

This lesson teaches you to
• Add Intent Filters for Your Deep Links
• Read Data from Incoming Intents
• Test Your Deep Links
You should also read

• Intents and Intent Filters
• Allow Other Apps to Start Your

Activity

Enabling Deep Links for App Content

504
Content from developer.android.com/training/app-indexing/deep-linking.html through their Creative Commons Attribution 2.5 license

<activity
 android:name="com.example.android.GizmosActivity"
 android:label="@string/title_gizmos" >
 <intent-filter android:label="@string/filter_title_viewgizmos">
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <!-- Accepts URIs that begin with "example://gizmos” -->
 <data android:scheme="example"
 android:host="gizmos" />
 <!-- Accepts URIs that begin with "http://www.example.com/gizmos” -->
 <data android:scheme="http"
 android:host="www.example.com"
 android:pathPrefix="gizmos" />
 </intent-filter>
</activity>

Once you've added intent filters with URIs for activity content to your app manifest, Android is able to route
any Intent that has matching URIs to your app at runtime.
To learn more about defining intent filters, see Allow Other Apps to Start Your Activity.

Read Data from Incoming Intents
Once the system starts your activity through an intent filter, you can use data provided by the Intent to
determine what you need to render. Call the getData() and getAction() methods to retrieve the data
and action associated with the incoming Intent. You can call these methods at any time during the
lifecycle of the activity, but you should generally do so during early callbacks such as onCreate() or
onStart().
Here’s a snippet that shows how to retrieve data from an Intent:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Intent intent = getIntent();
 String action = intent.getAction();
 Uri data = intent.getData();
}

Follow these best practices to improve the user's experience:

• The deep link should take users directly to the content, without any prompts, interstitial pages, or
logins. Make sure that users can see the app content even if they never previously opened the
application. It is okay to prompt users on subsequent interactions or when they open the app from
the Launcher. This is the same principle as the first click free experience for web sites.

• Follow the design guidance described in Navigation with Back and Up so that your app matches
users' expectations for backward navigation after they enter your app through a deep link.

Test Your Deep Links
You can use the Android Debug Bridge with the activity manager (am) tool to test that the intent filter URIs
you specified for deep linking resolve to the correct app activity. You can run the adb command against a
device or an emulator.

Enabling Deep Links for App Content

505
Content from developer.android.com/training/app-indexing/deep-linking.html through their Creative Commons Attribution 2.5 license

The general syntax for testing an intent filter URI with adb is:

$ adb shell am start
 -W -a android.intent.action.VIEW
 -d <URI> <PACKAGE>

For example, the command below tries to view a target app activity that is associated with the specified
URI.

$ adb shell am start
 -W -a android.intent.action.VIEW
 -d "example://gizmos" com.example.android

Specifying App Content for Indexing

506
Content from developer.android.com/training/app-indexing/enabling-app-indexing.html through their Creative Commons Attribution 2.5 license

140. Specifying App Content for Indexing
Content from developer.android.com/training/app-indexing/enabling-app-indexing.html through their Creative Commons Attribution 2.5 license

Google's web crawling bot (Googlebot), which
crawls and indexes web sites for the Google
search engine, can also index content in your
Android app. By opting in, you can allow
Googlebot to crawl the content in the APK through
the Google Play Store to index the app content.
To indicate which app content you’d like Google to
index, simply add link elements either to your
existing Sitemap file or in the <head> element of
each web page in your site, in the same way as
you would for web pages.
Note: Currently, the Google Search app indexing
capability is restricted to English-only Android
apps from developers participating in the early
adopter program. You can sign up to be a
participant by submitting the App Indexing Expression of Interest form.
The deep links that you share with Google Search must take this URI format:

android-app://<package_name>/<scheme>/<host_path>

The components that make up the URI format are:

• package_name. Represents the package name for your APK as listed in the Google Play
Developer Console.

• scheme. The URI scheme that matches your intent filter.
• host_path. Identifies the specific content within your application.

The following sections describe how to add a deep link URI to your Sitemap or web pages.

Add Deep Links in Your Sitemap
To annotate the deep link for Google Search app indexing in your Sitemap, use the <xhtml:link> tag
and specify the deep link as an alternate URI.
For example, the following XML snippet shows how you might specify a link to your web page by using the
<loc> tag, and a corresponding deep link to your Android app by using the <xhtml:link> tag.

<?xml version="1.0" encoding="UTF-8" ?>
<urlset
 xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
 xmlns:xhtml="http://www.w3.org/1999/xhtml">
 <url>
 <loc>example://gizmos</loc>
 <xhtml:link
 rel="alternate"
 href="android-app://com.example.android/example/gizmos" />
 </url>
 ...
</urlset>

This lesson teaches you to
• Add Deep Links in Your Sitemap
• Add Deep Links in Your Web Pages
• Allow Google to Crawl URLs Requested By
Your App
You should also read

• Webmaster Tools
• Creating Sitemaps
• Googlebot

Specifying App Content for Indexing

507
Content from developer.android.com/training/app-indexing/enabling-app-indexing.html through their Creative Commons Attribution 2.5 license

Add Deep Links in Your Web Pages
Instead of specifying the deep links for Google Search app indexing in your Sitemap file, you can annotate
the deep links in the HTML markup of your web pages. You can do this in the <head> section for each
web page by adding a <link> tag and specifying the deep link as an alternate URI.
For example, the following HTML snippet shows how you might specify the corresponding deep link in a
web page that has the URL example://gizmos.

<html>
<head>
 <link rel="alternate"
 href="android-app://com.example.android/example/gizmos" />
 ...
</head>
<body> ... </body>

Allow Google to Crawl URLs Requested By Your App
Typically, you control how Googlebot crawls publicly accessible URLs on your site by using a
robots.txt file. When Googlebot indexes your app content, your app might make HTTP requests as
part of its normal operations. However, these requests will appear to your servers as originating from
Googlebot. Therefore, you must configure your server's robots.txt file properly to allow these requests.
For example, the following robots.txt directive shows how you might allow access to a specific
directory in your web site (for example, /api/) that your app needs to access, while restricting
Googlebot's access to other parts of your site.

User-Agent: Googlebot
Allow: /api/
Disallow: /

To learn more about how to modify robots.txt to control web crawling, see the Controlling Crawling and
Indexing Getting Started guide.

Best Practices for User Interface

508
Content from developer.android.com/training/best-ui.html through their Creative Commons Attribution 2.5 license

141. Best Practices for User Interface
Content from developer.android.com/training/best-ui.html through their Creative Commons Attribution 2.5 license
These classes teach you how to build a user interface using Android layouts for all types of devices.
Android provides a flexible framework for UI design that allows your app to display different layouts for
different devices, create custom UI widgets, and even control aspects of the system UI outside your app's
window.

Designing for Multiple Screens

509
Content from developer.android.com/training/multiscreen/index.html through their Creative Commons Attribution 2.5 license

142. Designing for Multiple Screens
Content from developer.android.com/training/multiscreen/index.html through their Creative Commons Attribution 2.5 license

Android powers hundreds of device types with
several different screen sizes, ranging from small
phones to large TV sets. Therefore, it’s important
that you design your application to be compatible
with all screen sizes so it’s available to as many
users as possible.
But being compatible with different device types is
not enough. Each screen size offers different
possibilities and challenges for user interaction, so
in order to truly satisfy and impress your users,
your application must go beyond merely
supporting multiple screens: it must optimize the
user experience for each screen configuration.
This class shows you how to implement a user
interface that's optimized for several screen
configurations.
The code in each lesson comes from a sample
application that demonstrates best practices in
optimizing for multiple screens. You can download
the sample (to the right) and use it as a source of
reusable code for your own application.
Note: This class and the associated sample use the support library in order to use the Fragment APIs on
versions lower than Android 3.0. You must download and add the library to your application in order to use
all APIs in this class.

Lessons
Supporting Different Screen Sizes

This lesson walks you through how to design layouts that adapts several different screen sizes
(using flexible dimensions for views, RelativeLayout, screen size and orientation qualifiers,
alias filters, and nine-patch bitmaps).

Supporting Different Screen Densities
This lesson shows you how to support screens that have different pixel densities (using density-
independent pixels and providing bitmaps appropriate for each density).

Implementing Adaptative UI Flows
This lesson shows you how to implement your UI flow in a way that adapts to several screen
size/density combinations (run-time detection of active layout, reacting according to current
layout, handling screen configuration changes).

Dependencies and prerequisites

• Android 1.6 or higher (2.1+ for the
sample app)

• Basic knowledge of Activities and
Fragments

• Experience building an Android User
Interface

• Several features require the use of
the support library

You should also read

• Supporting Multiple Screens

Try it out
Download the sample app
NewsReader.zip

Supporting Different Screen Sizes

510
Content from developer.android.com/training/multiscreen/screensizes.html through their Creative Commons Attribution 2.5 license

143. Supporting Different Screen Sizes
Content from developer.android.com/training/multiscreen/screensizes.html through their Creative Commons Attribution 2.5 license

This lesson shows you how to support different
screen sizes by:

• Ensuring your layout can be adequately
resized to fit the screen

• Providing appropriate UI layout according
to screen configuration

• Ensuring the correct layout is applied to
the correct screen

• Providing bitmaps that scale correctly

Use "wrap_content" and
"match_parent"
To ensure that your layout is flexible and adapts to
different screen sizes, you should use
"wrap_content" and "match_parent" for the
width and height of some view components. If you
use "wrap_content", the width or height of the
view is set to the minimum size necessary to fit
the content within that view, while "match_parent" (also known as "fill_parent" before API level 8)
makes the component expand to match the size of its parent view.
By using the "wrap_content" and "match_parent" size values instead of hard-coded sizes, your
views either use only the space required for that view or expand to fill the available space, respectively.
For example:

This lesson teaches you to
• Use "wrap_content" and "match_parent"
• Use RelativeLayout
• Use Size Qualifiers
• Use the Smallest-width Qualifier
• Use Layout Aliases
• Use Orientation Qualifiers
• Use Nine-patch Bitmaps
You should also read

• Supporting Multiple Screens

Try it out
Download the sample app
NewsReader.zip

Supporting Different Screen Sizes

511
Content from developer.android.com/training/multiscreen/screensizes.html through their Creative Commons Attribution 2.5 license

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <LinearLayout android:layout_width="match_parent"
 android:id="@+id/linearLayout1"
 android:gravity="center"
 android:layout_height="50dp">
 <ImageView android:id="@+id/imageView1"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:width="" height=""
src="http://developer.android.com/@drawable/logo"
 android:paddingRight="30dp"
 android:layout_gravity="left"
 android:layout_weight="0" />
 <View android:layout_height="wrap_content"
 android:id="@+id/view1"
 android:layout_width="wrap_content"
 android:layout_weight="1" />
 <Button android:id="@+id/categorybutton"
 android:background="@drawable/button_bg"
 android:layout_height="match_parent"
 android:layout_weight="0"
 android:layout_width="120dp"
 style="@style/CategoryButtonStyle"/>
 </LinearLayout>

 <fragment android:id="@+id/headlines"
 android:layout_height="fill_parent"
 android:name="com.example.android.newsreader.HeadlinesFragment"
 android:layout_width="match_parent" />
</LinearLayout>

Notice how the sample uses "wrap_content" and "match_parent" for component sizes rather than
specific dimensions. This allows the layout to adapt correctly to different screen sizes and orientations.
For example, this is what this layout looks like in portrait and landscape mode. Notice that the sizes of the
components adapt automatically to the width and height:

Figure 1. The News Reader sample app in portrait (left) and landscape (right).

Use RelativeLayout

Supporting Different Screen Sizes

512
Content from developer.android.com/training/multiscreen/screensizes.html through their Creative Commons Attribution 2.5 license

You can construct fairly complex layouts using nested instances of LinearLayout and combinations of
"wrap_content" and "match_parent" sizes. However, LinearLayout does not allow you to
precisely control the spacial relationships of child views; views in a LinearLayout simply line up side-by-
side. If you need child views to be oriented in variations other than a straight line, a better solution is often
to use a RelativeLayout, which allows you to specify your layout in terms of the spacial relationships
between components. For instance, you can align one child view on the left side and another view on the
right side of the screen.
For example:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/label"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Type here:"/>
 <EditText
 android:id="@+id/entry"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/label"/>
 <Button
 android:id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/entry"
 android:layout_alignParentRight="true"
 android:layout_marginLeft="10dp"
 android:text="OK" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/ok"
 android:layout_alignTop="@id/ok"
 android:text="Cancel" />
</RelativeLayout>

Figure 2 shows how this layout appears on a QVGA screen.

Figure 2. Screenshot on a QVGA screen (small screen).
Figure 3 shows how it appears on a larger screen.

Supporting Different Screen Sizes

513
Content from developer.android.com/training/multiscreen/screensizes.html through their Creative Commons Attribution 2.5 license

Figure 3. Screenshot on a WSVGA screen (large screen).
Notice that although the size of the components changed, their spatial relationships are preserved as
specified by the RelativeLayout.LayoutParams.

Use Size Qualifiers
There's only so much mileage you can get from a flexible layout or relative layout like the one in the
previous sections. While those layouts adapt to different screens by stretching the space within and
around components, they may not provide the best user experience for each screen size. Therefore, your
application should not only implement flexible layouts, but should also provide several alternative layouts
to target different screen configurations. You do so by using configuration qualifiers, which allows the
runtime to automatically select the appropriate resource based on the current device’s configuration (such
as a different layout design for different screen sizes).
For example, many applications implement the "two pane" pattern for large screens (the app might show a
list of items on one pane and the content on another pane). Tablets and TVs are large enough for both
panes to fit simultaneously on screen, but phone screens have to show them separately. So, to implement
these layouts, you could have the following files:

• res/layout/main.xml, single-pane (default) layout:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <fragment android:id="@+id/headlines"
 android:layout_height="fill_parent"

android:name="com.example.android.newsreader.HeadlinesFragment"
 android:layout_width="match_parent" />
</LinearLayout>

•
• res/layout-large/main.xml, two-pane layout:

Supporting Different Screen Sizes

514
Content from developer.android.com/training/multiscreen/screensizes.html through their Creative Commons Attribution 2.5 license

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal">
 <fragment android:id="@+id/headlines"
 android:layout_height="fill_parent"

android:name="com.example.android.newsreader.HeadlinesFragment"
 android:layout_width="400dp"
 android:layout_marginRight="10dp"/>
 <fragment android:id="@+id/article"
 android:layout_height="fill_parent"

android:name="com.example.android.newsreader.ArticleFragment"
 android:layout_width="fill_parent" />
</LinearLayout>

•

Notice the large qualifier in the directory name of the second layout. This layout will be selected on
devices with screens classified as large (for example, 7" tablets and above). The other layout (without
qualifiers) will be selected for smaller devices.

Use the Smallest-width Qualifier
One of the difficulties developers had in pre-3.2 Android devices was the "large" screen size bin, which
encompasses the Dell Streak, the original Galaxy Tab, and 7" tablets in general. However, many
applications may want to show different layouts for different devices in this category (such as for 5" and 7"
devices), even though they are all considered to be "large" screens. That's why Android introduced the
"Smallest-width" qualifier (amongst others) in Android 3.2.
The Smallest-width qualifier allows you to target screens that have a certain minimum width given in dp.
For example, the typical 7" tablet has a minimum width of 600 dp, so if you want your UI to have two panes
on those screens (but a single list on smaller screens), you can use the same two layouts from the
previous section for single and two-pane layouts, but instead of the large size qualifier, use sw600dp to
indicate the two-pane layout is for screens on which the smallest-width is 600 dp:

• res/layout/main.xml, single-pane (default) layout:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <fragment android:id="@+id/headlines"
 android:layout_height="fill_parent"

android:name="com.example.android.newsreader.HeadlinesFragment"
 android:layout_width="match_parent" />
</LinearLayout>

Supporting Different Screen Sizes

515
Content from developer.android.com/training/multiscreen/screensizes.html through their Creative Commons Attribution 2.5 license

•
• res/layout-sw600dp/main.xml, two-pane layout:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal">
 <fragment android:id="@+id/headlines"
 android:layout_height="fill_parent"

android:name="com.example.android.newsreader.HeadlinesFragment"
 android:layout_width="400dp"
 android:layout_marginRight="10dp"/>
 <fragment android:id="@+id/article"
 android:layout_height="fill_parent"

android:name="com.example.android.newsreader.ArticleFragment"
 android:layout_width="fill_parent" />
</LinearLayout>

•

This means that devices whose smallest width is greater than or equal to 600dp will select the layout-
sw600dp/main.xml (two-pane) layout, while smaller screens will select the layout/main.xml (single-
pane) layout.
However, this won't work well on pre-3.2 devices, because they don't recognize sw600dp as a size
qualifier, so you still have to use the large qualifier as well. So, you should have a file named
res/layout-large/main.xml which is identical to res/layout-sw600dp/main.xml. In the next
section you'll see a technique that allows you to avoid duplicating the layout files this way.

Use Layout Aliases
The smallest-width qualifier is available only on Android 3.2 and above. Therefore, you should also still use
the abstract size bins (small, normal, large and xlarge) to be compatible with earlier versions. For example,
if you want to design your UI so that it shows a single-pane UI on phones but a multi-pane UI on 7" tablets,
TVs and other large devices, you'd have to supply these files:

• res/layout/main.xml: single-pane layout
• res/layout-large: multi-pane layout
• res/layout-sw600dp: multi-pane layout

The last two files are identical, because one of them will be matched by Android 3.2 devices, and the other
one is for the benefit of tablets and TVs with earlier versions of Android.
To avoid this duplication of the same file for tablets and TVs (and the maintenance headache resulting
from it), you can use alias files. For example, you can define the following layouts:

• res/layout/main.xml, single-pane layout
• res/layout/main_twopanes.xml, two-pane layout

Supporting Different Screen Sizes

516
Content from developer.android.com/training/multiscreen/screensizes.html through their Creative Commons Attribution 2.5 license

And add these two files:

• res/values-large/layout.xml:

<resources>
 <item name="main" type="layout">@layout/main_twopanes</item>
</resources>

•
• res/values-sw600dp/layout.xml:

<resources>
 <item name="main" type="layout">@layout/main_twopanes</item>
</resources>

•

These latter two files have identical content, but they don’t actually define the layout. They merely set up
main to be an alias to main_twopanes. Since these files have large and sw600dp selectors, they are
applied to tablets and TVs regardless of Android version (pre-3.2 tablets and TVs match large, and post-
3.2 will match sw600dp).

Use Orientation Qualifiers
Some layouts work well in both landscape and portrait orientations, but most of them can benefit from
adjustments. In the News Reader sample app, here is how the layout behaves in each screen size and
orientation:

• small screen, portrait: single pane, with logo
• small screen, landscape: single pane, with logo
• 7" tablet, portrait: single pane, with action bar
• 7" tablet, landscape: dual pane, wide, with action bar
• 10" tablet, portrait: dual pane, narrow, with action bar
• 10" tablet, landscape: dual pane, wide, with action bar
• TV, landscape: dual pane, wide, with action bar

So each of these layouts is defined in an XML file in the res/layout/ directory. To then assign each
layout to the various screen configurations, the app uses layout aliases to match them to each
configuration:
res/layout/onepane.xml:

Supporting Different Screen Sizes

517
Content from developer.android.com/training/multiscreen/screensizes.html through their Creative Commons Attribution 2.5 license

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <fragment android:id="@+id/headlines"
 android:layout_height="fill_parent"
 android:name="com.example.android.newsreader.HeadlinesFragment"
 android:layout_width="match_parent" />
</LinearLayout>

res/layout/onepane_with_bar.xml:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <LinearLayout android:layout_width="match_parent"
 android:id="@+id/linearLayout1"
 android:gravity="center"
 android:layout_height="50dp">
 <ImageView android:id="@+id/imageView1"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:width="" height=""
src="http://developer.android.com/@drawable/logo"
 android:paddingRight="30dp"
 android:layout_gravity="left"
 android:layout_weight="0" />
 <View android:layout_height="wrap_content"
 android:id="@+id/view1"
 android:layout_width="wrap_content"
 android:layout_weight="1" />
 <Button android:id="@+id/categorybutton"
 android:background="@drawable/button_bg"
 android:layout_height="match_parent"
 android:layout_weight="0"
 android:layout_width="120dp"
 style="@style/CategoryButtonStyle"/>
 </LinearLayout>

 <fragment android:id="@+id/headlines"
 android:layout_height="fill_parent"
 android:name="com.example.android.newsreader.HeadlinesFragment"
 android:layout_width="match_parent" />
</LinearLayout>

res/layout/twopanes.xml:

Supporting Different Screen Sizes

518
Content from developer.android.com/training/multiscreen/screensizes.html through their Creative Commons Attribution 2.5 license

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal">
 <fragment android:id="@+id/headlines"
 android:layout_height="fill_parent"
 android:name="com.example.android.newsreader.HeadlinesFragment"
 android:layout_width="400dp"
 android:layout_marginRight="10dp"/>
 <fragment android:id="@+id/article"
 android:layout_height="fill_parent"
 android:name="com.example.android.newsreader.ArticleFragment"
 android:layout_width="fill_parent" />
</LinearLayout>

res/layout/twopanes_narrow.xml:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal">
 <fragment android:id="@+id/headlines"
 android:layout_height="fill_parent"
 android:name="com.example.android.newsreader.HeadlinesFragment"
 android:layout_width="200dp"
 android:layout_marginRight="10dp"/>
 <fragment android:id="@+id/article"
 android:layout_height="fill_parent"
 android:name="com.example.android.newsreader.ArticleFragment"
 android:layout_width="fill_parent" />
</LinearLayout>

Now that all possible layouts are defined, it's just a matter of mapping the correct layout to each
configuration using the configuration qualifiers. You can now do it using the layout alias technique:
res/values/layouts.xml:

<resources>
 <item name="main_layout" type="layout">@layout/onepane_with_bar</item>
 <bool name="has_two_panes">false</bool>
</resources>

res/values-sw600dp-land/layouts.xml:

<resources>
 <item name="main_layout" type="layout">@layout/twopanes</item>
 <bool name="has_two_panes">true</bool>
</resources>

res/values-sw600dp-port/layouts.xml:

<resources>
 <item name="main_layout" type="layout">@layout/onepane</item>
 <bool name="has_two_panes">false</bool>
</resources>

res/values-large-land/layouts.xml:

Supporting Different Screen Sizes

519
Content from developer.android.com/training/multiscreen/screensizes.html through their Creative Commons Attribution 2.5 license

<resources>
 <item name="main_layout" type="layout">@layout/twopanes</item>
 <bool name="has_two_panes">true</bool>
</resources>

res/values-large-port/layouts.xml:

<resources>
 <item name="main_layout" type="layout">@layout/twopanes_narrow</item>
 <bool name="has_two_panes">true</bool>
</resources>

Use Nine-patch Bitmaps
Supporting different screen sizes usually means that your image resources must also be capable of
adapting to different sizes. For example, a button background must fit whichever button shape it is applied
to.
If you use simple images on components that can change size, you will quickly notice that the results are
somewhat less than impressive, since the runtime will stretch or shrink your images uniformly. The solution
is using nine-patch bitmaps, which are specially formatted PNG files that indicate which areas can and
cannot be stretched.
Therefore, when designing bitmaps that will be used on components with variable size, always use nine-
patches. To convert a bitmap into a nine-patch, you can start with a regular image (figure 4, shown with in
4x zoom for clarity).

Figure 4. button.png
And then run it through the draw9patch utility of the SDK (which is located in the tools/ directory), in
which you can mark the areas that should be stretched by drawing pixels along the left and top borders.
You can also mark the area that should hold the content by drawing pixels along the right and bottom
borders, resulting in figure 5.

Figure 5. button.9.png
Notice the black pixels along the borders. The ones on the top and left borders indicate the places where
the image can be stretched, and the ones on the right and bottom borders indicate where the content
should be placed.
Also, notice the .9.png extension. You must use this extension, since this is how the framework detects
that this is a nine-patch image, as opposed to a regular PNG image.
When you apply this background to a component (by setting
android:background="@drawable/button"), the framework stretches the image correctly to
accommodate the size of the button, as shown in various sizes in figure 6.

Supporting Different Screen Sizes

520
Content from developer.android.com/training/multiscreen/screensizes.html through their Creative Commons Attribution 2.5 license

Figure 6. A button using the button.9.png nine-patch in various sizes.

Supporting Different Densities

521
Content from developer.android.com/training/multiscreen/screendensities.html through their Creative Commons Attribution 2.5 license

144. Supporting Different Densities
Content from developer.android.com/training/multiscreen/screendensities.html through their Creative Commons Attribution 2.5 license

This lesson shows you how to support different
screen densities by providing different resources
and using resolution-independent units of
measurements.

Use Density-independent Pixels
One common pitfall you must avoid when
designing your layouts is using absolute pixels to
define distances or sizes. Defining layout
dimensions with pixels is a problem because
different screens have different pixel densities, so
the same number of pixels may correspond to
different physical sizes on different devices.
Therefore, when specifying dimensions, always
use either dp or sp units. A dp is a density-
independent pixel that corresponds to the physical size of a pixel at 160 dpi. An sp is the same base unit,
but is scaled by the user's preferred text size (it’s a scale-independent pixel), so you should use this
measurement unit when defining text size (but never for layout sizes).
For example, when you specify spacing between two views, use dp rather than px:

<Button android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/clickme"
 android:layout_marginTop="20dp" />

When specifying text size, always use sp:

<TextView android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textSize="20sp" />

Provide Alternative Bitmaps
Since Android runs in devices with a wide variety of screen densities, you should always provide your
bitmap resources tailored to each of the generalized density buckets: low, medium, high and extra-high
density. This will help you achieve good graphical quality and performance on all screen densities.
To generate these images, you should start with your raw resource in vector format and generate the
images for each density using the following size scale:

• xhdpi: 2.0
• hdpi: 1.5
• mdpi: 1.0 (baseline)
• ldpi: 0.75

This means that if you generate a 200x200 image for xhdpi devices, you should generate the same
resource in 150x150 for hdpi, 100x100 for mdpi and finally a 75x75 image for ldpi devices.

This lesson teaches you to
• Use Density-independent Pixels
• Provide Alternative Bitmaps
You should also read

• Supporting Multiple Screens
• Icon Design Guidelines

Try it out
Download the sample app
NewsReader.zip

Supporting Different Densities

522
Content from developer.android.com/training/multiscreen/screendensities.html through their Creative Commons Attribution 2.5 license

Then, place the generated image files in the appropriate subdirectory under res/ and the system will pick
the correct one automatically based on the screen density of the device your application is running on:

MyProject/
 res/
 drawable-xhdpi/
 awesomeimage.png
 drawable-hdpi/
 awesomeimage.png
 drawable-mdpi/
 awesomeimage.png
 drawable-ldpi/
 awesomeimage.png

Then, any time you reference @drawable/awesomeimage, the system selects the appropriate bitmap
based on the screen's dpi.
For more tips and guidelines for creating icon assets for your application, see the Icon Design Guidelines.

Implementing Adaptative UI Flows

523
Content from developer.android.com/training/multiscreen/adaptui.html through their Creative Commons Attribution 2.5 license

145. Implementing Adaptative UI Flows
Content from developer.android.com/training/multiscreen/adaptui.html through their Creative Commons Attribution 2.5 license

Depending on the layout that your application is
currently showing, the UI flow may be different.
For example, if your application is in the dual-pane
mode, clicking on an item on the left pane will
simply display the content on the right pane; if it is
in single-pane mode, the content should be
displayed on its own (in a different activity).

Determine the Current Layout
Since your implementation of each layout will be a
little different, one of the first things you will
probably have to do is determine what layout the
user is currently viewing. For example, you might
want to know whether the user is in "single pane"
mode or "dual pane" mode. You can do that by
querying if a given view exists and is visible:

public class NewsReaderActivity extends FragmentActivity {
 boolean mIsDualPane;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main_layout);

 View articleView = findViewById(R.id.article);
 mIsDualPane = articleView != null &&
 articleView.getVisibility() == View.VISIBLE;
 }
}

Notice that this code queries whether the "article" pane is available or not, which is much more flexible
than hard-coding a query for a specific layout.
Another example of how you can adapt to the existence of different components is to check whether they
are available before performing an operation on them. For example, in the News Reader sample app,
there is a button that opens a menu, but that button only exists when running on versions older than
Android 3.0 (because it's function is taken over by the ActionBar on API level 11+). So, to add the event
listener for this button, you can do:

Button catButton = (Button) findViewById(R.id.categorybutton);
OnClickListener listener = /* create your listener here */;
if (catButton != null) {
 catButton.setOnClickListener(listener);
}

React According to Current Layout

This lesson teaches you to
• Determine the Current Layout
• React According to Current Layout
• Reuse Fragments in Other Activities
• Handle Screen Configuration Changes
You should also read

• Supporting Tablets and Handsets

Try it out
Download the sample app
NewsReader.zip

Implementing Adaptative UI Flows

524
Content from developer.android.com/training/multiscreen/adaptui.html through their Creative Commons Attribution 2.5 license

Some actions may have a different result depending on the current layout. For example, in the News
Reader sample, clicking on a headline from the headlines list opens the article in the right hand-side pane
if the UI is in dual pane mode, but will launch a separate activity if the UI is in single-pane mode:

@Override
public void onHeadlineSelected(int index) {
 mArtIndex = index;
 if (mIsDualPane) {
 /* display article on the right pane */
 mArticleFragment.displayArticle(mCurrentCat.getArticle(index));
 } else {
 /* start a separate activity */
 Intent intent = new Intent(this, ArticleActivity.class);
 intent.putExtra("catIndex", mCatIndex);
 intent.putExtra("artIndex", index);
 startActivity(intent);
 }
}

Likewise, if the app is in dual-pane mode, it should set up the action bar with tabs for navigation, whereas
if the app is in single-pane mode, it should set up navigation with a spinner widget. So your code should
also check which case is appropriate:

final String CATEGORIES[] = { "Top Stories", "Politics", "Economy", "Technology" };

public void onCreate(Bundle savedInstanceState) {

 if (mIsDualPane) {
 /* use tabs for navigation */
 actionBar.setNavigationMode(android.app.ActionBar.NAVIGATION_MODE_TABS);
 int i;
 for (i = 0; i < CATEGORIES.length; i++) {
 actionBar.addTab(actionBar.newTab().setText(
 CATEGORIES[i]).setTabListener(handler));
 }
 actionBar.setSelectedNavigationItem(selTab);
 }
 else {
 /* use list navigation (spinner) */
 actionBar.setNavigationMode(android.app.ActionBar.NAVIGATION_MODE_LIST);
 SpinnerAdapter adap = new ArrayAdapter(this,
 R.layout.headline_item, CATEGORIES);
 actionBar.setListNavigationCallbacks(adap, handler);
 }
}

Reuse Fragments in Other Activities
A recurring pattern in designing for multiple screens is having a portion of your interface that's
implemented as a pane on some screen configurations and as a separate activity on other configurations.
For example, in the News Reader sample, the news article text is presented in the right side pane on large
screens, but is a separate activity on smaller screens.
In cases like this, you can usually avoid code duplication by reusing the same Fragment subclass in
several activities. For example, ArticleFragment is used in the dual-pane layout:

Implementing Adaptative UI Flows

525
Content from developer.android.com/training/multiscreen/adaptui.html through their Creative Commons Attribution 2.5 license

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal">
 <fragment android:id="@+id/headlines"
 android:layout_height="fill_parent"
 android:name="com.example.android.newsreader.HeadlinesFragment"
 android:layout_width="400dp"
 android:layout_marginRight="10dp"/>
 <fragment android:id="@+id/article"
 android:layout_height="fill_parent"
 android:name="com.example.android.newsreader.ArticleFragment"
 android:layout_width="fill_parent" />
</LinearLayout>

And reused (without a layout) in the activity layout for smaller screens (ArticleActivity):

ArticleFragment frag = new ArticleFragment();
getSupportFragmentManager().beginTransaction().add(android.R.id.content, frag).commit();

Naturally, this has the same effect as declaring the fragment in an XML layout, but in this case an XML
layout is unnecessary work because the article fragment is the only component of this activity.
One very important point to keep in mind when designing your fragments is to not create a strong coupling
to a specific activity. You can usually do that by defining an interface that abstracts all the ways in which
the fragment needs to interact with its host activity, and then the host activity implements that interface:
For example, the News Reader app's HeadlinesFragment does precisely that:

public class HeadlinesFragment extends ListFragment {
 ...
 OnHeadlineSelectedListener mHeadlineSelectedListener = null;

 /* Must be implemented by host activity */
 public interface OnHeadlineSelectedListener {
 public void onHeadlineSelected(int index);
 }
 ...

 public void setOnHeadlineSelectedListener(OnHeadlineSelectedListener listener) {
 mHeadlineSelectedListener = listener;
 }
}

Then, when the user selects a headline, the fragment notifies the listener specified by the host activity (as
opposed to notifying a specific hard-coded activity):

Implementing Adaptative UI Flows

526
Content from developer.android.com/training/multiscreen/adaptui.html through their Creative Commons Attribution 2.5 license

public class HeadlinesFragment extends ListFragment {
 ...
 @Override
 public void onItemClick(AdapterView<?> parent,
 View view, int position, long id) {
 if (null != mHeadlineSelectedListener) {
 mHeadlineSelectedListener.onHeadlineSelected(position);
 }
 }
 ...
}

This technique is discussed further in the guide to Supporting Tablets and Handsets.

Handle Screen Configuration Changes
If you are using separate activities to implement separate parts of your interface, you have to keep in mind
that it may be necessary to react to certain configuration changes (such as a rotation change) in order to
keep your interface consistent.
For example, on a typical 7" tablet running Android 3.0 or higher, the News Reader sample uses a
separate activity to display the news article when running in portrait mode, but uses a two-pane layout
when in landscape mode.
This means that when the user is in portrait mode and the activity for viewing an article is onscreen, you
need to detect that the orientation changed to landscape and react appropriately by ending the activity and
return to the main activity so the content can display in the two-pane layout:

public class ArticleActivity extends FragmentActivity {
 int mCatIndex, mArtIndex;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mCatIndex = getIntent().getExtras().getInt("catIndex", 0);
 mArtIndex = getIntent().getExtras().getInt("artIndex", 0);

 // If should be in two-pane mode, finish to return to main activity
 if (getResources().getBoolean(R.bool.has_two_panes)) {
 finish();
 return;
 }
 ...
}

Designing for TV

527
Content from developer.android.com/training/tv/index.html through their Creative Commons Attribution 2.5 license

146. Designing for TV
Content from developer.android.com/training/tv/index.html through their Creative Commons Attribution 2.5 license

Video
DevBytes: Design for Large Displays - Part 1
Smart TVs powered by Android bring your favorite
Android apps to the best screen in your house.
Thousands of apps in the Google Play Store are
already optimized for TVs. This class shows how you can optimize your Android app for TVs, including
how to build a layout that works great when the user is ten feet away and navigating with a remote control.

Lessons
Optimizing Layouts for TV

Shows you how to optimize app layouts for TV screens, which have some unique characteristics
such as:

• permanent "landscape" mode
• high-resolution displays
• "10 foot UI" environment.

Optimizing Navigation for TV
Shows you how to design navigation for TVs, including:

• handling D-pad navigation
• providing navigational feedback
• providing easily-accessible controls on the screen.

Handling features not supported on TV
Lists the hardware features that are usually not available on TVs. This lesson also shows you
how to provide alternatives for missing features or check for missing features and disable code at
run time.

Dependencies and prerequisites

• Android 2.0 (API Level 5) or higher

Optimizing Layouts for TV

528
Content from developer.android.com/training/tv/optimizing-layouts-tv.html through their Creative Commons Attribution 2.5 license

147. Optimizing Layouts for TV
Content from developer.android.com/training/tv/optimizing-layouts-tv.html through their Creative Commons Attribution 2.5 license

When your application is running on a television
set, you should assume that the user is sitting
about ten feet away from the screen. This user
environment is referred to as the 10-foot UI. To
provide your users with a usable and enjoyable
experience, you should style and lay out your UI
accordingly..
This lesson shows you how to optimize layouts for
TV by:

• Providing appropriate layout resources
for landscape mode.

• Ensuring that text and controls are large enough to be visible from a distance.
• Providing high resolution bitmaps and icons for HD TV screens.

Design Landscape Layouts
TV screens are always in landscape orientation. Follow these tips to build landscape layouts optimized for
TV screens:

• Put on-screen navigational controls on the left or right side of the screen and save the vertical
space for content.

• Create UIs that are divided into sections, by using Fragments and use view groups like
GridView instead of ListView to make better use of the horizontal screen space.

• Use view groups such as RelativeLayout or LinearLayout to arrange views. This allows
the Android system to adjust the position of the views to the size, alignment, aspect ratio, and
pixel density of the TV screen.

• Add sufficient margins between layout controls to avoid a cluttered UI.

For example, the following layout is optimized for TV:

In this layout, the controls are on the lefthand side. The UI is displayed within a GridView, which is well-
suited to landscape orientation. In this layout both GridView and Fragment have the width and height set
dynamically, so they can adjust to the screen resolution. Controls are added to the left side Fragment
programatically at runtime. The layout file for this UI is res/layout-land-
large/photogrid_tv.xml. (This layout file is placed in layout-land-large because TVs have
large screens with landscape orientation. For details refer to Supporting Multiple Screens.)

This lesson teaches you to
• Design Landscape Layouts
• Make Text and Controls Easy to See
• Design for High-Density Large Screens
• Design to Handle Large Bitmaps
You should also read

• Supporting Multiple Screens

Optimizing Layouts for TV

529
Content from developer.android.com/training/tv/optimizing-layouts-tv.html through their Creative Commons Attribution 2.5 license

res/layout-land-large/photogrid_tv.xml

<RelativeLayout
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >

 <fragment
 android:id="@+id/leftsidecontrols"
 android:layout_width="0dip"
 android:layout_marginLeft="5dip"
 android:layout_height="match_parent" />

 <GridView
 android:id="@+id/gridview"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</RelativeLayout>

To set up action bar items on the left side of the screen, you can also include the Left navigation bar library
in your application to set up action items on the left side of the screen, instead of creating a custom
Fragment to add controls:

LeftNavBar bar = (LeftNavBarService.instance()).getLeftNavBar(this);

When you have an activity in which the content scrolls vertically, always use a left navigation bar;
otherwise, your users have to scroll to the top of the content to switch between the content view and the
ActionBar. Look at the Left navigation bar sample app to see how to simple it is to include the left
navigation bar in your app.

Make Text and Controls Easy to See
The text and controls in a TV application's UI should be easily visible and navigable from a distance.
Follow these tips to make them easier to see from a distance :

• Break text into small chunks that users can quickly scan.
• Use light text on a dark background. This style is easier to read on a TV.
• Avoid lightweight fonts or fonts that have both very narrow and very broad strokes. Use simple

sans-serif fonts and use anti-aliasing to increase readability.
• Use Android's standard font sizes:

 <TextView
 android:id="@+id/atext"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center_vertical"
 android:singleLine="true"
 android:textAppearance="?android:attr/textAppearanceMedium"/>

•
• Ensure that all your view widgets are large enough to be clearly visible to someone sitting 10 feet

away from the screen (this distance is greater for very large screens). The best way to do this is

Optimizing Layouts for TV

530
Content from developer.android.com/training/tv/optimizing-layouts-tv.html through their Creative Commons Attribution 2.5 license

to use layout-relative sizing rather than absolute sizing, and density-independent pixel units
instead of absolute pixel units. For example, to set the width of a widget, use wrap_content
instead of a pixel measurement, and to set the margin for a widget, use dip instead of px values.

Design for High-Density Large Screens
The common HDTV display resolutions are 720p, 1080i, and 1080p. Design your UI for 1080p, and then
allow the Android system to downscale your UI to 720p if necessary. In general, downscaling (removing
pixels) does not degrade the UI (Notice that the converse is not true; you should avoid upscaling because
it degrades UI quality).
To get the best scaling results for images, provide them as 9-patch image elements if possible. If you
provide low quality or small images in your layouts, they will appear pixelated, fuzzy, or grainy. This is not
a good experience for the user. Instead, use high-quality images.
For more information on optimizing apps for large screens see Designing for multiple screens.

Design to Handle Large Bitmaps
The Android system has a limited amount of memory, so downloading and storing high-resolution images
can often cause out-of-memory errors in your app. To avoid this, follow these tips:

• Load images only when they're displayed on the screen. For example, when displaying multiple
images in a GridView or Gallery, only load an image when getView() is called on the View's
Adapter.

• Call recycle() on Bitmap views that are no longer needed.
• Use WeakReference for storing references to Bitmap objects in an in-memory Collection.
• If you fetch images from the network, use AsyncTask to fetch them and store them on the SD

card for faster access. Never do network transactions on the application's UI thread.
• Scale down really large images to a more appropriate size as you download them; otherwise,

downloading the image itself may cause an "Out of Memory" exception. Here is sample code that
scales down images while downloading:

 // Get the source image's dimensions
 BitmapFactory.Options options = new BitmapFactory.Options();
 // This does not download the actual image, just downloads headers.
 options.inJustDecodeBounds = true;
 BitmapFactory.decodeFile(IMAGE_FILE_URL, options);
 // The actual width of the image.
 int srcWidth = options.outWidth;
 // The actual height of the image.
 int srcHeight = options.outHeight;

 // Only scale if the source is bigger than the width of the
destination view.
 if(desiredWidth > srcWidth)
 desiredWidth = srcWidth;

 // Calculate the correct inSampleSize/scale value. This helps reduce
memory use. It should be a power of 2.
 int inSampleSize = 1;
 while(srcWidth / 2 > desiredWidth){
 srcWidth /= 2;
 srcHeight /= 2;

Optimizing Layouts for TV

531
Content from developer.android.com/training/tv/optimizing-layouts-tv.html through their Creative Commons Attribution 2.5 license

 inSampleSize *= 2;
 }

 float desiredScale = (float) desiredWidth / srcWidth;

 // Decode with inSampleSize
 options.inJustDecodeBounds = false;
 options.inDither = false;
 options.inSampleSize = inSampleSize;
 options.inScaled = false;
 // Ensures the image stays as a 32-bit ARGB_8888 image.
 // This preserves image quality.
 options.inPreferredConfig = Bitmap.Config.ARGB_8888;

 Bitmap sampledSrcBitmap = BitmapFactory.decodeFile(IMAGE_FILE_URL,
options);

 // Resize
 Matrix matrix = new Matrix();
 matrix.postScale(desiredScale, desiredScale);
 Bitmap scaledBitmap = Bitmap.createBitmap(sampledSrcBitmap, 0, 0,
 sampledSrcBitmap.getWidth(), sampledSrcBitmap.getHeight(),
matrix, true);
 sampledSrcBitmap = null;

 // Save
 FileOutputStream out = new
FileOutputStream(LOCAL_PATH_TO_STORE_IMAGE);
 scaledBitmap.compress(Bitmap.CompressFormat.JPEG, 100, out);
 scaledBitmap = null;

•

Optimizing Navigation for TV

532
Content from developer.android.com/training/tv/optimizing-navigation-tv.html through their Creative Commons Attribution 2.5 license

148. Optimizing Navigation for TV
Content from developer.android.com/training/tv/optimizing-navigation-tv.html through their Creative Commons Attribution 2.5 license

An important aspect of the user experience when
operating a TV is the direct human interface: a
remote control. As you optimize your Android
application for TVs, you should pay special
attention to how the user actually navigates
around your application when using a remote
control instead of a touchscreen.
This lesson shows you how to optimize navigation
for TV by:

• Ensuring all layout controls are D-pad
navigable.

• Providing highly obvious feedback for UI navigation.
• Placing layout controls for easy access.

Handle D-pad Navigation
On a TV, users navigate with controls on a TV remote, using either a D-pad or arrow keys. This limits
movement to up, down, left, and right. To build a great TV-optimized app, you must provide a navigation
scheme in which the user can quickly learn how to navigate your app using the remote.
When you design navigation for D-pad, follow these guidelines:

• Ensure that the D-pad can navigate to all the visible controls on the screen.
• For scrolling lists with focus, D-pad up/down keys scroll the list and Enter key selects an item in

the list. Ensure that users can select an element in the list and that the list still scrolls when an
element is selected.

• Ensure that movement between controls is straightforward and predictable.

Android usually handles navigation order between layout elements automatically, so you don't need to do
anything extra. If the screen layout makes navigation difficult, or if you want users to move through the
layout in a specific way, you can set up explicit navigation for your controls. For example, for an
android.widget.EditText, to define the next control to receive focus, use:

<EditText android:id="@+id/LastNameField" android:nextFocusDown="@+id/FirstNameField"\>

The following table lists all of the available navigation attributes:

Attribute Function

nextFocusDown Defines the next view to receive focus when the user navigates down.

nextFocusLeft Defines the next view to receive focus when the user navigates left.

This lesson teaches you to
• Handle D-pad Navigation
• Provide Clear Visual Indication for Focus
and Selection
• Design for Easy Navigation
You should also read

• Designing Effective Navigation

Optimizing Navigation for TV

533
Content from developer.android.com/training/tv/optimizing-navigation-tv.html through their Creative Commons Attribution 2.5 license

nextFocusRight Defines the next view to receive focus when the user navigates right.

nextFocusUp Defines the next view to receive focus when the user navigates up.

To use one of these explicit navigation attributes, set the value to the ID (android:id value) of another
widget in the layout. You should set up the navigation order as a loop, so that the last control directs focus
back to the first one.
Note: You should only use these attributes to modify the navigation order if the default order that the
system applies does not work well.

Provide Clear Visual Indication for Focus and Selection
Use appropriate color highlights for all navigable and selectable elements in the UI. This makes it easy for
users to know whether the control is currently focused or selected when they navigate with a D-pad. Also,
use uniform highlight scheme across your application.
Android provides Drawable State List Resources to implement highlights for selected and focused controls.
For example:
res/drawable/button.xml:

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="true"
 android:drawable="@drawable/button_pressed" /> <!-- pressed -->
 <item android:state_focused="true"
 android:drawable="@drawable/button_focused" /> <!-- focused -->
 <item android:state_hovered="true"
 android:drawable="@drawable/button_focused" /> <!-- hovered -->
 <item android:drawable="@drawable/button_normal" /> <!-- default -->
</selector>

This layout XML applies the above state list drawable to a Button:

<Button
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:background="@drawable/button" />

Provide sufficient padding within the focusable and selectable controls so that the highlights around them
are clearly visible.

Design for Easy Navigation
Users should be able to navigate to any UI control with a couple of D-pad clicks. Navigation should be
easy and intuitive to understand. For any non-intuitive actions, provide users with written help, using a
dialog triggered by a help button or action bar icon.
Predict the next screen that the user will want to navigate to and provide one click navigation to it. If the
current screen UI is very sparse, consider making it a multi pane screen. Use fragments for making multi-
pane screens. For example, consider the multi-pane UI below with continent names on the left and list of
cool places in each continent on the right.

Optimizing Navigation for TV

534
Content from developer.android.com/training/tv/optimizing-navigation-tv.html through their Creative Commons Attribution 2.5 license

The above UI consists of three Fragments - left_side_action_controls, continents and places
- as shown in its layout xml file below. Such multi-pane UIs make D-pad navigation easier and make good
use of the horizontal screen space for TVs.
res/layout/cool_places.xml

<LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal"
 >
 <fragment
 android:id="@+id/left_side_action_controls"
 android:layout_width="0px"
 android:layout_height="match_parent"
 android:layout_marginLeft="10dip"
 android:layout_weight="0.2"/>
 <fragment
 android:id="@+id/continents"
 android:layout_width="0px"
 android:layout_height="match_parent"
 android:layout_marginLeft="10dip"
 android:layout_weight="0.2"/>

 <fragment
 android:id="@+id/places"
 android:layout_width="0px"
 android:layout_height="match_parent"
 android:layout_marginLeft="10dip"
 android:layout_weight="0.6"/>

</LinearLayout>

Also, notice in the UI layout above action controls are on the left hand side of a vertically scrolling list to
make them easily accessible using D-pad. In general, for layouts with horizontally scrolling components,
place action controls on left or right hand side and vice versa for vertically scrolling components.

Handling Features Not Supported on TV

535
Content from developer.android.com/training/tv/unsupported-features-tv.html through their Creative Commons Attribution 2.5 license

149. Handling Features Not Supported on TV
Content from developer.android.com/training/tv/unsupported-features-tv.html through their Creative Commons Attribution 2.5 license

TVs are much different from other Android-
powered devices:

• They're not mobile.
• Out of habit, people use them for

watching media with little or no
interaction.

• People interact with them from a distance.

Because TVs have a different purpose from other devices, they usually don't have hardware features that
other Android-powered devices often have. For this reason, the Android system does not support the
following features for a TV device:

Hardware Android feature descriptor

Camera android.hardware.camera

GPS android.hardware.location.gps

Microphone android.hardware.microphone

Near Field Communications (NFC) android.hardware.nfc

Telephony android.hardware.telephony

Touchscreen android.hardware.touchscreen

This lesson shows you how to work around features that are not available on TV by:

• Providing work arounds for some non-supported features.
• Checking for available features at runtime and conditionally activating/deactivating certain code

paths based on availability of those features.

Work Around Features Not Supported on TV
Android doesn't support touchscreen interaction for TV devices, most TVs don't have touch screens, and
interacting with a TV using a touchscreen is not consistent with the 10 foot environment. For these
reasons, users interact with Android-powered TVs using a remote. In consideration of this, ensure that
every control in your app can be accessed with the D-pad. Refer back to the previous two lessons
Optimizing Layouts for TV and Optimize Navigation for TV for more details on this topic. The Android
system assumes that a device has a touchscreen, so if you want your application to run on a TV, you must
explicitly disable the touchscreen requirement in your manifest file:

This lesson teaches you to
• Work Around Features Not Supported on
TV
• Check for Available Features at Runtime

Handling Features Not Supported on TV

536
Content from developer.android.com/training/tv/unsupported-features-tv.html through their Creative Commons Attribution 2.5 license

<uses-feature android:name="android.hardware.touchscreen" android:required="false"/>

Although a TV doesn't have a camera, you can still provide a photography-related application on a TV. For
example, if you have an app that takes, views and edits photos, you can disable its picture-taking
functionality for TVs and still allow users to view and even edit photos. The next section talks about how to
deactivate or activate specific functions in the application based on runtime device type detection.
Because TVs are stationary, indoor devices, they don't have built-in GPS. If your application uses location
information, allow users to search for a location or use a "static" location provider to get a location from the
zip code configured during the TV setup.

LocationManager locationManager = (LocationManager)
this.getSystemService(Context.LOCATION_SERVICE);
Location location = locationManager.getLastKnownLocation("static");
Geocoder geocoder = new Geocoder(this);
Address address = null;

try {
 address = geocoder.getFromLocation(location.getLatitude(), location.getLongitude(),
1).get(0);
 Log.d("Zip code", address.getPostalCode());

} catch (IOException e) {
 Log.e(TAG, "Geocoder error", e);
}

TVs usually don't support microphones, but if you have an application that uses voice control, you can
create a mobile device app that takes voice input and then acts as a remote control for a TV.

Check for Available Features at Runtime
To check if a feature is available at runtime, call hasSystemFeature(String). This method takes a
single argument : a string corresponding to the feature you want to check. For example, to check for
touchscreen, use hasSystemFeature(String) with the argument FEATURE_TOUCHSCREEN.
The following code snippet demonstrates how to detect device type at runtime based on supported
features:

// Check if android.hardware.telephony feature is available.
if (getPackageManager().hasSystemFeature("android.hardware.telephony")) {
 Log.d("Mobile Test", "Running on phone");
// Check if android.hardware.touchscreen feature is available.
} else if (getPackageManager().hasSystemFeature("android.hardware.touchscreen")) {
 Log.d("Tablet Test", "Running on devices that don't support telphony but have a
touchscreen.");
} else {
 Log.d("TV Test", "Running on a TV!");
}

This is just one example of using runtime checks to deactivate app functionality that depends on features
that aren't available on TVs.

Creating Custom Views

537
Content from developer.android.com/training/custom-views/index.html through their Creative Commons Attribution 2.5 license

150. Creating Custom Views
Content from developer.android.com/training/custom-views/index.html through their Creative Commons Attribution 2.5 license

The Android framework has a large set of View
classes for interacting with the user and displaying
various types of data. But sometimes your app
has unique needs that aren’t covered by the built-
in views. This class shows you how to create your
own views that are robust and reusable.

Lessons
Creating a View Class

Create a class that acts like a built-in
view, with custom attributes and support
from the ADT layout editor.

Custom Drawing
Make your view visually distinctive using
the Android graphics system.

Making the View Interactive
Users expect a view to react smoothly
and naturally to input gestures. This lesson discusses how to use gesture detection, physics, and
animation to give your user interface a professional feel.

Optimizing the View
No matter how beautiful your UI is, users won't love it if it doesn't run at a consistently high frame
rate. Learn how to avoid common performance problems, and how to use hardware acceleration
to make your custom drawings run faster.

Dependencies and prerequisites

• Android 2.1 (API level 7) or higher

You should also read

• Custom Components
• Input Events
• Property Animation
• Hardware Acceleration
• Accessibility developer guide

Try it out
Download the sample
CustomView.zip

Creating a View Class

538
Content from developer.android.com/training/custom-views/create-view.html through their Creative Commons Attribution 2.5 license

151. Creating a View Class
Content from developer.android.com/training/custom-views/create-view.html through their Creative Commons Attribution 2.5 license

A well-designed custom view is much like any
other well-designed class. It encapsulates a
specific set of functionality with an easy to use
interface, it uses CPU and memory efficiently, and
so forth. In addition to being a well-designed
class, though, a custom view should:

• Conform to Android standards
• Provide custom styleable attributes that

work with Android XML layouts
• Send accessibility events
• Be compatible with multiple Android

platforms.

The Android framework provides a set of base
classes and XML tags to help you create a view
that meets all of these requirements. This lesson
discusses how to use the Android framework to
create the core functionality of a view class.

Subclass a View
All of the view classes defined in the Android framework extend View. Your custom view can also extend
View directly, or you can save time by extending one of the existing view subclasses, such as Button.
To allow the Android Developer Tools to interact with your view, at a minimum you must provide a
constructor that takes a Context and an AttributeSet object as parameters. This constructor allows
the layout editor to create and edit an instance of your view.

class PieChart extends View {
 public PieChart(Context context, AttributeSet attrs) {
 super(context, attrs);
 }
}

Define Custom Attributes
To add a built-in View to your user interface, you specify it in an XML element and control its appearance
and behavior with element attributes. Well-written custom views can also be added and styled via XML. To
enable this behavior in your custom view, you must:

• Define custom attributes for your view in a <declare-styleable> resource element
• Specify values for the attributes in your XML layout
• Retrieve attribute values at runtime
• Apply the retrieved attribute values to your view

This section discusses how to define custom attributes and specify their values. The next section deals
with retrieving and applying the values at runtime.

This lesson teaches you to
• Subclass a View
• Define Custom Attributes
• Apply Custom Attributes to a View
• Add Properties and Events
• Design For Accessibility
You should also read

• Custom Components

Try it out
Download the sample
CustomView.zip

Creating a View Class

539
Content from developer.android.com/training/custom-views/create-view.html through their Creative Commons Attribution 2.5 license

To define custom attributes, add <declare-styleable> resources to your project. It's customary to put
these resources into a res/values/attrs.xml file. Here's an example of an attrs.xml file:

<resources>
 <declare-styleable name="PieChart">
 <attr name="showText" format="boolean" />
 <attr name="labelPosition" format="enum">
 <enum name="left" value="0"/>
 <enum name="right" value="1"/>
 </attr>
 </declare-styleable>
</resources>

This code declares two custom attributes, showText and labelPosition, that belong to a styleable
entity named PieChart. The name of the styleable entity is, by convention, the same name as the name
of the class that defines the custom view. Although it's not strictly necessary to follow this convention,
many popular code editors depend on this naming convention to provide statement completion.
Once you define the custom attributes, you can use them in layout XML files just like built-in attributes. The
only difference is that your custom attributes belong to a different namespace. Instead of belonging to the
http://schemas.android.com/apk/res/android namespace, they belong to
http://schemas.android.com/apk/res/[your package name]. For example, here's how to use
the attributes defined for PieChart:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:custom="http://schemas.android.com/apk/res/com.example.customviews">
 <com.example.customviews.charting.PieChart
 custom:showText="true"
 custom:labelPosition="left" />
</LinearLayout>

In order to avoid having to repeat the long namespace URI, the sample uses an xmlns directive. This
directive assigns the alias custom to the namespace
http://schemas.android.com/apk/res/com.example.customviews. You can choose any alias
you want for your namespace.
Notice the name of the XML tag that adds the custom view to the layout. It is the fully qualified name of the
custom view class. If your view class is an inner class, you must further qualify it with the name of the
view's outer class. further. For instance, the PieChart class has an inner class called PieView. To use
the custom attributes from this class, you would use the tag
com.example.customviews.charting.PieChart$PieView.

Apply Custom Attributes
When a view is created from an XML layout, all of the attributes in the XML tag are read from the resource
bundle and passed into the view's constructor as an AttributeSet. Although it's possible to read values
from the AttributeSet directly, doing so has some disadvantages:

• Resource references within attribute values are not resolved
• Styles are not applied

Instead, pass the AttributeSet to obtainStyledAttributes(). This method passes back a
TypedArray array of values that have already been dereferenced and styled.

Creating a View Class

540
Content from developer.android.com/training/custom-views/create-view.html through their Creative Commons Attribution 2.5 license

The Android resource compiler does a lot of work for you to make calling obtainStyledAttributes()
easier. For each <declare-styleable> resource in the res directory, the generated R.java defines both
an array of attribute ids and a set of constants that define the index for each attribute in the array. You use
the predefined constants to read the attributes from the TypedArray. Here's how the PieChart class
reads its attributes:

public PieChart(Context context, AttributeSet attrs) {
 super(context, attrs);
 TypedArray a = context.getTheme().obtainStyledAttributes(
 attrs,
 R.styleable.PieChart,
 0, 0);

 try {
 mShowText = a.getBoolean(R.styleable.PieChart_showText, false);
 mTextPos = a.getInteger(R.styleable.PieChart_labelPosition, 0);
 } finally {
 a.recycle();
 }
}

Note that TypedArray objects are a shared resource and must be recycled after use.

Add Properties and Events
Attributes are a powerful way of controlling the behavior and appearance of views, but they can only be
read when the view is initialized. To provide dynamic behavior, expose a property getter and setter pair for
each custom attribute. The following snippet shows how PieChart exposes a property called showText:

public boolean isShowText() {
 return mShowText;
}

public void setShowText(boolean showText) {
 mShowText = showText;
 invalidate();
 requestLayout();
}

Notice that setShowText calls invalidate() and requestLayout(). These calls are crucial to
ensure that the view behaves reliably. You have to invalidate the view after any change to its properties
that might change its appearance, so that the system knows that it needs to be redrawn. Likewise, you
need to request a new layout if a property changes that might affect the size or shape of the view.
Forgetting these method calls can cause hard-to-find bugs.
Custom views should also support event listeners to communicate important events. For instance,
PieChart exposes a custom event called OnCurrentItemChanged to notify listeners that the user has
rotated the pie chart to focus on a new pie slice.
It's easy to forget to expose properties and events, especially when you're the only user of the custom
view. Taking some time to carefully define your view's interface reduces future maintenance costs. A good
rule to follow is to always expose any property that affects the visible appearance or behavior of your
custom view.

Design For Accessibility
Your custom view should support the widest range of users. This includes users with disabilities that
prevent them from seeing or using a touchscreen. To support users with disabilities, you should:

Creating a View Class

541
Content from developer.android.com/training/custom-views/create-view.html through their Creative Commons Attribution 2.5 license

• Label your input fields using the android:contentDescription attribute
• Send accessibility events by calling sendAccessibilityEvent() when appropriate.
• Support alternate controllers, such as D-pad and trackball

For more information on creating accessible views, see Making Applications Accessible in the Android
Developers Guide.

Custom Drawing

542
Content from developer.android.com/training/custom-views/custom-drawing.html through their Creative Commons Attribution 2.5 license

152. Custom Drawing
Content from developer.android.com/training/custom-views/custom-drawing.html through their Creative Commons Attribution 2.5 license

The most important part of a custom view is its
appearance. Custom drawing can be easy or
complex according to your application's needs.
This lesson covers some of the most common
operations.

Override onDraw()
The most important step in drawing a custom view
is to override the onDraw() method. The
parameter to onDraw() is a Canvas object that
the view can use to draw itself. The Canvas class
defines methods for drawing text, lines, bitmaps,
and many other graphics primitives. You can use
these methods in onDraw() to create your
custom user interface (UI).
Before you can call any drawing methods, though,
it's necessary to create a Paint object. The next
section discusses Paint in more detail.

Create Drawing Objects
The android.graphics framework divides drawing into two areas:

• What to draw, handled by Canvas
• How to draw, handled by Paint.

For instance, Canvas provides a method to draw a line, while Paint provides methods to define that
line's color. Canvas has a method to draw a rectangle, while Paint defines whether to fill that rectangle
with a color or leave it empty. Simply put, Canvas defines shapes that you can draw on the screen, while
Paint defines the color, style, font, and so forth of each shape you draw.
So, before you draw anything, you need to create one or more Paint objects. The PieChart example
does this in a method called init, which is called from the constructor:

This lesson teaches you to
• Override onDraw()
• Create Drawing Objects
• Handle Layout Events
• Draw!
You should also read

• Canvas and Drawables

Try it out
Download the sample
CustomView.zip

Custom Drawing

543
Content from developer.android.com/training/custom-views/custom-drawing.html through their Creative Commons Attribution 2.5 license

private void init() {
 mTextPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 mTextPaint.setColor(mTextColor);
 if (mTextHeight == 0) {
 mTextHeight = mTextPaint.getTextSize();
 } else {
 mTextPaint.setTextSize(mTextHeight);
 }

 mPiePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 mPiePaint.setStyle(Paint.Style.FILL);
 mPiePaint.setTextSize(mTextHeight);

 mShadowPaint = new Paint(0);
 mShadowPaint.setColor(0xff101010);
 mShadowPaint.setMaskFilter(new BlurMaskFilter(8, BlurMaskFilter.Blur.NORMAL));

 ...

Creating objects ahead of time is an important optimization. Views are redrawn very frequently, and many
drawing objects require expensive initialization. Creating drawing objects within your onDraw() method
significantly reduces performance and can make your UI appear sluggish.

Handle Layout Events
In order to properly draw your custom view, you need to know what size it is. Complex custom views often
need to perform multiple layout calculations depending on the size and shape of their area on screen. You
should never make assumptions about the size of your view on the screen. Even if only one app uses your
view, that app needs to handle different screen sizes, multiple screen densities, and various aspect ratios
in both portrait and landscape mode.
Although View has many methods for handling measurement, most of them do not need to be overridden.
If your view doesn't need special control over its size, you only need to override one method:
onSizeChanged().
onSizeChanged() is called when your view is first assigned a size, and again if the size of your view
changes for any reason. Calculate positions, dimensions, and any other values related to your view's size
in onSizeChanged(), instead of recalculating them every time you draw. In the PieChart example,
onSizeChanged() is where the PieChart view calculates the bounding rectangle of the pie chart and
the relative position of the text label and other visual elements.
When your view is assigned a size, the layout manager assumes that the size includes all of the view's
padding. You must handle the padding values when you calculate your view's size. Here's a snippet from
PieChart.onSizeChanged() that shows how to do this:

 // Account for padding
 float xpad = (float)(getPaddingLeft() + getPaddingRight());
 float ypad = (float)(getPaddingTop() + getPaddingBottom());

 // Account for the label
 if (mShowText) xpad += mTextWidth;

 float ww = (float)w - xpad;
 float hh = (float)h - ypad;

 // Figure out how big we can make the pie.
 float diameter = Math.min(ww, hh);

Custom Drawing

544
Content from developer.android.com/training/custom-views/custom-drawing.html through their Creative Commons Attribution 2.5 license

If you need finer control over your view's layout parameters, implement onMeasure(). This method's
parameters are View.MeasureSpec values that tell you how big your view's parent wants your view to
be, and whether that size is a hard maximum or just a suggestion. As an optimization, these values are
stored as packed integers, and you use the static methods of View.MeasureSpec to unpack the
information stored in each integer.
Here's an example implementation of onMeasure(). In this implementation, PieChart attempts to make
its area big enough to make the pie as big as its label:

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 // Try for a width based on our minimum
 int minw = getPaddingLeft() + getPaddingRight() + getSuggestedMinimumWidth();
 int w = resolveSizeAndState(minw, widthMeasureSpec, 1);

 // Whatever the width ends up being, ask for a height that would let the pie
 // get as big as it can
 int minh = MeasureSpec.getSize(w) - (int)mTextWidth + getPaddingBottom() + getPaddingTop();
 int h = resolveSizeAndState(MeasureSpec.getSize(w) - (int)mTextWidth, heightMeasureSpec,
0);

 setMeasuredDimension(w, h);
}

There are three important things to note in this code:

• The calculations take into account the view's padding. As mentioned earlier, this is the view's
responsibility.

• The helper method resolveSizeAndState() is used to create the final width and height
values. This helper returns an appropriate View.MeasureSpec value by comparing the view's
desired size to the spec passed into onMeasure().

• onMeasure() has no return value. Instead, the method communicates its results by calling
setMeasuredDimension(). Calling this method is mandatory. If you omit this call, the View
class throws a runtime exception.

Draw!
Once you have your object creation and measuring code defined, you can implement onDraw(). Every
view implements onDraw() differently, but there are some common operations that most views share:

• Draw text using drawText(). Specify the typeface by calling setTypeface(), and the text
color by calling setColor().

• Draw primitive shapes using drawRect(), drawOval(), and drawArc(). Change whether the
shapes are filled, outlined, or both by calling setStyle().

• Draw more complex shapes using the Path class. Define a shape by adding lines and curves to
a Path object, then draw the shape using drawPath(). Just as with primitive shapes, paths can
be outlined, filled, or both, depending on the setStyle().

• Define gradient fills by creating LinearGradient objects. Call setShader() to use your
LinearGradient on filled shapes.

• Draw bitmaps using drawBitmap().

For example, here's the code that draws PieChart. It uses a mix of text, lines, and shapes.

Custom Drawing

545
Content from developer.android.com/training/custom-views/custom-drawing.html through their Creative Commons Attribution 2.5 license

protected void onDraw(Canvas canvas) {
 super.onDraw(canvas);

 // Draw the shadow
 canvas.drawOval(
 mShadowBounds,
 mShadowPaint
);

 // Draw the label text
 canvas.drawText(mData.get(mCurrentItem).mLabel, mTextX, mTextY, mTextPaint);

 // Draw the pie slices
 for (int i = 0; i < mData.size(); ++i) {
 Item it = mData.get(i);
 mPiePaint.setShader(it.mShader);
 canvas.drawArc(mBounds,
 360 - it.mEndAngle,
 it.mEndAngle - it.mStartAngle,
 true, mPiePaint);
 }

 // Draw the pointer
 canvas.drawLine(mTextX, mPointerY, mPointerX, mPointerY, mTextPaint);
 canvas.drawCircle(mPointerX, mPointerY, mPointerSize, mTextPaint);
}

Making the View Interactive

546
Content from developer.android.com/training/custom-views/making-interactive.html through their Creative Commons Attribution 2.5 license

153. Making the View Interactive
Content from developer.android.com/training/custom-views/making-interactive.html through their Creative Commons Attribution 2.5 license

Drawing a UI is only one part of creating a custom
view. You also need to make your view respond to
user input in a way that closely resembles the
real-world action you're mimicking. Objects should
always act in the same way that real objects do.
For example, images should not immediately pop
out of existence and reappear somewhere else,
because objects in the real world don't do that.
Instead, images should move from one place to
another.
Users also sense subtle behavior or feel in an
interface, and react best to subtleties that mimic
the real world. For example, when users fling a UI
object, they should sense friction at the beginning
that delays the motion, and then at the end sense
momentum that carries the motion beyond the
fling.
This lesson demonstrates how to use features of the Android framework to add these real-world behaviors
to your custom view.

Handle Input Gestures
Like many other UI frameworks, Android supports an input event model. User actions are turned into
events that trigger callbacks, and you can override the callbacks to customize how your application
responds to the user. The most common input event in the Android system is touch, which triggers
onTouchEvent(android.view.MotionEvent). Override this method to handle the event:

 @
 public boolean onTouchEvent(MotionEvent event) {
 return super.onTouchEvent(event);
 }

Touch events by themselves are not particularly useful. Modern touch UIs define interactions in terms of
gestures such as tapping, pulling, pushing, flinging, and zooming. To convert raw touch events into
gestures, Android provides GestureDetector.
Construct a GestureDetector by passing in an instance of a class that implements
GestureDetector.OnGestureListener. If you only want to process a few gestures, you can extend
GestureDetector.SimpleOnGestureListener instead of implementing the
GestureDetector.OnGestureListener interface. For instance, this code creates a class that extends
GestureDetector.SimpleOnGestureListener and overrides onDown(MotionEvent).

class mListener extends GestureDetector.SimpleOnGestureListener {
 @Override
 public boolean onDown(MotionEvent e) {
 return true;
 }
}
mDetector = new GestureDetector(PieChart.this.getContext(), new mListener());

This lesson teaches you to
• Handle Input Gestures
• Create Physically Plausible Motion
• Make Your Transitions Smooth
You should also read

• Input Events
• Property Animation

Try it out
Download the sample
CustomView.zip

Making the View Interactive

547
Content from developer.android.com/training/custom-views/making-interactive.html through their Creative Commons Attribution 2.5 license

Whether or not you use GestureDetector.SimpleOnGestureListener, you must always implement
an onDown() method that returns true. This step is necessary because all gestures begin with an
onDown() message. If you return false from onDown(), as
GestureDetector.SimpleOnGestureListener does, the system assumes that you want to ignore
the rest of the gesture, and the other methods of GestureDetector.OnGestureListener never get
called. The only time you should return false from onDown() is if you truly want to ignore an entire
gesture. Once you've implemented GestureDetector.OnGestureListener and created an instance
of GestureDetector, you can use your GestureDetector to interpret the touch events you receive in
onTouchEvent().

@Override
public boolean onTouchEvent(MotionEvent event) {
 boolean result = mDetector.onTouchEvent(event);
 if (!result) {
 if (event.getAction() == MotionEvent.ACTION_UP) {
 stopScrolling();
 result = true;
 }
 }
 return result;
}

When you pass onTouchEvent() a touch event that it doesn't recognize as part of a gesture, it returns
false. You can then run your own custom gesture-detection code.

Create Physically Plausible Motion
Gestures are a powerful way to control touchscreen devices, but they can be counterintuitive and difficult
to remember unless they produce physically plausible results. A good example of this is the fling gesture,
where the user quickly moves a finger across the screen and then lifts it. This gesture makes sense if the
UI responds by moving quickly in the direction of the fling, then slowing down, as if the user had pushed on
a flywheel and set it spinning.
However, simulating the feel of a flywheel isn't trivial. A lot of physics and math are required to get a
flywheel model working correctly. Fortunately, Android provides helper classes to simulate this and other
behaviors. The Scroller class is the basis for handling flywheel-style fling gestures.
To start a fling, call fling() with the starting velocity and the minimum and maximum x and y values of
the fling. For the velocity value, you can use the value computed for you by GestureDetector.

@Override
public boolean onFling(MotionEvent e1, MotionEvent e2, float velocityX, float velocityY) {
 mScroller.fling(currentX, currentY, velocityX / SCALE, velocityY / SCALE, minX, minY, maxX,
maxY);
 postInvalidate();
}

Note: Although the velocity calculated by GestureDetector is physically accurate, many developers
feel that using this value makes the fling animation too fast. It's common to divide the x and y velocity by a
factor of 4 to 8.
The call to fling() sets up the physics model for the fling gesture. Afterwards, you need to update the
Scroller by calling Scroller.computeScrollOffset() at regular intervals.
computeScrollOffset() updates the Scroller object's internal state by reading the current time and
using the physics model to calculate the x and y position at that time. Call getCurrX() and getCurrY()
to retrieve these values.

Making the View Interactive

548
Content from developer.android.com/training/custom-views/making-interactive.html through their Creative Commons Attribution 2.5 license

Most views pass the Scroller object's x and y position directly to scrollTo(). The PieChart example
is a little different: it uses the current scroll y position to set the rotational angle of the chart.

if (!mScroller.isFinished()) {
 mScroller.computeScrollOffset();
 setPieRotation(mScroller.getCurrY());
}

The Scroller class computes scroll positions for you, but it does not automatically apply those positions
to your view. It's your responsibility to make sure you get and apply new coordinates often enough to make
the scrolling animation look smooth. There are two ways to do this:

• Call postInvalidate() after calling fling(), in order to force a redraw. This technique
requires that you compute scroll offsets in onDraw() and call postInvalidate() every time
the scroll offset changes.

• Set up a ValueAnimator to animate for the duration of the fling, and add a listener to process
animation updates by calling addUpdateListener().

The PieChart example uses the second approach. This technique is slightly more complex to set up, but it
works more closely with the animation system and doesn't require potentially unnecessary view
invalidation. The drawback is that ValueAnimator is not available prior to API level 11, so this technique
cannot be used on devices running Android versions lower than 3.0.
Note: ValueAnimator isn't available prior to API level 11, but you can still use it in applications that
target lower API levels. You just need to make sure to check the current API level at runtime, and omit the
calls to the view animation system if the current level is less than 11.

 mScroller = new Scroller(getContext(), null, true);
 mScrollAnimator = ValueAnimator.ofFloat(0,1);
 mScrollAnimator.addUpdateListener(new ValueAnimator.AnimatorUpdateListener() {
 @Override
 public void onAnimationUpdate(ValueAnimator valueAnimator) {
 if (!mScroller.isFinished()) {
 mScroller.computeScrollOffset();
 setPieRotation(mScroller.getCurrY());
 } else {
 mScrollAnimator.cancel();
 onScrollFinished();
 }
 }
 });

Make Your Transitions Smooth
Users expect a modern UI to transition smoothly between states. UI elements fade in and out instead of
appearing and disappearing. Motions begin and end smoothly instead of starting and stopping abruptly.
The Android property animation framework, introduced in Android 3.0, makes smooth transitions easy.
To use the animation system, whenever a property changes that will affect your view's appearance, do not
change the property directly. Instead, use ValueAnimator to make the change. In the following example,
modifying the currently selected pie slice in PieChart causes the entire chart to rotate so that the selection
pointer is centered in the selected slice. ValueAnimator changes the rotation over a period of several
hundred milliseconds, rather than immediately setting the new rotation value.

Making the View Interactive

549
Content from developer.android.com/training/custom-views/making-interactive.html through their Creative Commons Attribution 2.5 license

mAutoCenterAnimator = ObjectAnimator.ofInt(PieChart.this, "PieRotation", 0);
mAutoCenterAnimator.setIntValues(targetAngle);
mAutoCenterAnimator.setDuration(AUTOCENTER_ANIM_DURATION);
mAutoCenterAnimator.start();

If the value you want to change is one of the base View properties, doing the animation is even easier,
because Views have a built-in ViewPropertyAnimator that is optimized for simultaneous animation of
multiple properties. For example:

animate().rotation(targetAngle).setDuration(ANIM_DURATION).start();

Optimizing the View

550
Content from developer.android.com/training/custom-views/optimizing-view.html through their Creative Commons Attribution 2.5 license

154. Optimizing the View
Content from developer.android.com/training/custom-views/optimizing-view.html through their Creative Commons Attribution 2.5 license

Now that you have a well-designed view that
responds to gestures and transitions between
states, you need to ensure that the view runs fast.
To avoid a UI that feels sluggish or stutters during
playback, you must ensure that your animations
consistently run at 60 frames per second.

Do Less, Less Frequently
To speed up your view, eliminate unnecessary
code from routines that are called frequently. Start
by working on onDraw(), which will give you the
biggest payback. In particular you should
eliminate allocations in onDraw(), because
allocations may lead to a garbage collection that
would cause a stutter. Allocate objects during initialization, or between animations. Never make an
allocation while an animation is running.
In addition to making onDraw() leaner, you should also make sure it's called as infrequently as possible.
Most calls to onDraw() are the result of a call to invalidate(), so eliminate unnecessary calls to
invalidate(). When possible, call the four-parameter variant of invalidate() rather than the version
that takes no parameters. The no-parameter variant invalidates the entire view, while the four-parameter
variant invalidates only a specified portion of the view. This approach allows draw calls to be more efficient
and can eliminate unnecessary invalidation of views that fall outside the invalid rectangle.
Another very expensive operation is traversing layouts. Any time a view calls requestLayout(), the
Android UI system needs to traverse the entire view hierarchy to find out how big each view needs to be. If
it finds conflicting measurements, it may need to traverse the hierarchy multiple times. UI designers
sometimes create deep hierarchies of nested ViewGroup objects in order to get the UI to behave
properly. These deep view hierarchies cause performance problems. Make your view hierarchies as
shallow as possible.
If you have a complex UI, you should consider writing a custom ViewGroup to perform its layout. Unlike
the built-in views, your custom view can make application-specific assumptions about the size and shape
of its children, and thus avoid traversing its children to calculate measurements. The PieChart example
shows how to extend ViewGroup as part of a custom view. PieChart has child views, but it never
measures them. Instead, it sets their sizes directly according to its own custom layout algorithm.

Use Hardware Acceleration
As of Android 3.0, the Android 2D graphics system can be accelerated by the GPU (Graphics Processing
Unit) hardware found in most newer Android devices. GPU hardware acceleration can result in a
tremendous performance increase for many applications, but it isn't the right choice for every application.
The Android framework gives you the ability to finely control which parts of your application are or are not
hardware accelerated.
See Hardware Acceleration in the Android Developers Guide for directions on how to enable acceleration
at the application, activity, or window level. Notice that in addition to the directions in the developer guide,
you must also set your application's target API to 11 or higher by specifying <uses-sdk
android:targetSdkVersion="11"/> in your AndroidManifest.xml file.
Once you've enabled hardware acceleration, you may or may not see a performance increase. Mobile
GPUs are very good at certain tasks, such as scaling, rotating, and translating bitmapped images. They
are not particularly good at other tasks, such as drawing lines or curves. To get the most out of GPU

This lesson teaches you to
• Do Less, Less Frequently
• Use Hardware Acceleration
You should also read

• Hardware Acceleration

Try it out
Download the sample
CustomView.zip

Optimizing the View

551
Content from developer.android.com/training/custom-views/optimizing-view.html through their Creative Commons Attribution 2.5 license

acceleration, you should maximize the number of operations that the GPU is good at, and minimize the
number of operations that the GPU isn't good at.
In the PieChart example, for instance, drawing the pie is relatively expensive. Redrawing the pie each time
it's rotated causes the UI to feel sluggish. The solution is to place the pie chart into a child View and set
that View's layer type to LAYER_TYPE_HARDWARE, so that the GPU can cache it as a static image. The
sample defines the child view as an inner class of PieChart, which minimizes the amount of code
changes that are needed to implement this solution.

 private class PieView extends View {

 public PieView(Context context) {
 super(context);
 if (!isInEditMode()) {
 setLayerType(View.LAYER_TYPE_HARDWARE, null);
 }
 }

 @Override
 protected void onDraw(Canvas canvas) {
 super.onDraw(canvas);

 for (Item it : mData) {
 mPiePaint.setShader(it.mShader);
 canvas.drawArc(mBounds,
 360 - it.mEndAngle,
 it.mEndAngle - it.mStartAngle,
 true, mPiePaint);
 }
 }

 @Override
 protected void onSizeChanged(int w, int h, int oldw, int oldh) {
 mBounds = new RectF(0, 0, w, h);
 }

 RectF mBounds;
 }

After this code change, PieChart.PieView.onDraw() is called only when the view is first shown.
During the rest of the application's lifetime, the pie chart is cached as an image, and redrawn at different
rotation angles by the GPU. GPU hardware is particularly good at this sort of thing, and the performance
difference is immediately noticeable.
There is a tradeoff, though. Caching images as hardware layers consumes video memory, which is a
limited resource. For this reason, the final version of PieChart.PieView only sets its layer type to
LAYER_TYPE_HARDWARE while the user is actively scrolling. At all other times, it sets its layer type to
LAYER_TYPE_NONE, which allows the GPU to stop caching the image.
Finally, don't forget to profile your code. Techniques that improve performance on one view might
negatively affect performance on another.

Creating Backward-Compatible UIs

552
Content from developer.android.com/training/backward-compatible-ui/index.html through their Creative Commons Attribution 2.5 license

155. Creating Backward-Compatible UIs
Content from developer.android.com/training/backward-compatible-ui/index.html through their Creative Commons Attribution 2.5 license

This class demonstrates how to use UI
components and APIs available in newer versions
of Android in a backward-compatible way,
ensuring that your application still runs on
previous versions of the platform.
Throughout this class, the new Action Bar Tabs
feature introduced in Android 3.0 (API level 11)
serves as the guiding example, but you can apply
these techniques to other UI components and API
features.

Lessons
Abstracting the New APIs

Determine which features and APIs your
application needs. Learn how to define
application-specific, intermediary Java
interfaces that abstract the
implementation of the UI component to your application.

Proxying to the New APIs
Learn how to create an implementation of your interface that uses newer APIs.

Creating an Implementation with Older APIs
Learn how to create a custom implementation of your interface that uses older APIs.

Using the Version-Aware Component
Learn how to choose an implementation to use at runtime, and begin using the interface in your
application.

Dependencies and prerequisites

• API level 5
• The Android Support Package

You should also read

• ActionBarCompat
• How to have your (Cup)cake and eat

it too

Try it out
Download the sample app
TabCompat.zip

Abstracting the New APIs

553
Content from developer.android.com/training/backward-compatible-ui/abstracting.html through their Creative Commons Attribution 2.5 license

156. Abstracting the New APIs
Content from developer.android.com/training/backward-compatible-ui/abstracting.html through their Creative Commons Attribution 2.5 license

Suppose you want to use action bar tabs as the
primary form of top-level navigation in your
application. Unfortunately, the ActionBar APIs
are only available in Android 3.0 or later (API level
11+). Thus, if you want to distribute your
application to devices running earlier versions of
the platform, you need to provide an
implementation that supports the newer API while
providing a fallback mechanism that uses older
APIs.
In this class, you build a tabbed user interface (UI)
component that uses abstract classes with
version-specific implementations to provide
backward-compatibility. This lesson describes
how to create an abstraction layer for the new tab
APIs as the first step toward building the tab
component.

Prepare for Abstraction
Abstraction in the Java programming language involves the creation of one or more interfaces or abstract
classes to hide implementation details. In the case of newer Android APIs, you can use abstraction to build
version-aware components that use the current APIs on newer devices, and fallback to older, more
compatible APIs on older devices.
When using this approach, you first determine what newer classes you want to be able to use in a
backward compatible way, then create abstract classes, based on the public interfaces of the newer
classes. In defining the abstraction interfaces, you should mirror the newer API as much as possible. This
maximizes forward-compatibility and makes it easier to drop the abstraction layer in the future when it is no
longer necessary.
After creating abstract classes for these new APIs, any number of implementations can be created and
chosen at runtime. For the purposes of backward-compatibility, these implementations can vary by
required API level. Thus, one implementation may use recently released APIs, while others can use older
APIs.

Create an Abstract Tab Interface
In order to create a backward-compatible version of tabs, you should first determine which features and
specific APIs your application requires. In the case of top-level section tabs, suppose you have the
following functional requirements:
• Tab indicators should show text and an icon.
• Tabs can be associated with a fragment instance.
• The activity should be able to listen for tab changes.
Preparing these requirements in advance allows you to control the scope of your abstraction layer. This
means that you can spend less time creating multiple implementations of your abstraction layer and begin
using your new backward-compatible implementation sooner.
The key APIs for tabs are in ActionBar and ActionBar.Tab. These are the APIs to abstract in order to
make your tabs version-aware. The requirements for this example project call for compatibility back to
Eclair (API level 5) while taking advantage of the new tab features in Honeycomb (API Level 11). A

This lesson teaches you to:

• Prepare for Abstraction
• Create an Abstract Tab Interface
• Abstract ActionBar.Tab
• Abstract ActionBar Tab Methods

You should also read

• Action Bar
• Action Bar Tabs

Try it out
Download the sample app
TabCompat.zip

Abstracting the New APIs

554
Content from developer.android.com/training/backward-compatible-ui/abstracting.html through their Creative Commons Attribution 2.5 license

diagram of the class structure to support these two implementations and their abstract base classes (or
interfaces) is shown below.

Figure 1. Class diagram of abstract base classes and version-specific implementations.

Abstract ActionBar.Tab
Get started on building your tab abstraction layer by creating an abstract class representing a tab, that
mirrors the ActionBar.Tab interface:

public abstract class CompatTab {
 ...
 public abstract CompatTab setText(int resId);
 public abstract CompatTab setIcon(int resId);
 public abstract CompatTab setTabListener(
 CompatTabListener callback);
 public abstract CompatTab setFragment(Fragment fragment);

 public abstract CharSequence getText();
 public abstract Drawable getIcon();
 public abstract CompatTabListener getCallback();
 public abstract Fragment getFragment();
 ...
}

You can use an abstract class instead of an interface here to simplify the implementation of common
features such as association of tab objects with activities (not shown in the code snippet).

Abstract ActionBar Tab Methods
Next, define an abstract class that allows you to create and add tabs to an activity, like
ActionBar.newTab() and ActionBar.addTab():

public abstract class TabHelper {
 ...

 public CompatTab newTab(String tag) {
 // This method is implemented in a later lesson.
 }

 public abstract void addTab(CompatTab tab);

 ...
}

In the next lessons, you create implementations for TabHelper and CompatTab that work across both
older and newer platform versions.

Proxying to the New APIs

555
Content from developer.android.com/training/backward-compatible-ui/new-implementation.html through their Creative Commons Attribution 2.5 license

157. Proxying to the New APIs
Content from developer.android.com/training/backward-compatible-ui/new-implementation.html through their Creative Commons Attribution 2.5 license

This lesson shows you how to subclass the
CompatTab and TabHelper abstract classes
and use new APIs. Your application can use this
implementation on devices running a platform
version that supports them.

Implement Tabs Using New APIs
The concrete classes for CompatTab and
TabHelper that use newer APIs are a proxy
implementation. Since the abstract classes
defined in the previous lesson mirror the new APIs
(class structure, method signatures, etc.), the
concrete classes that use these newer APIs
simply proxy method calls and their results.
You can directly use newer APIs in these concrete
classes—and not crash on earlier devices—
because of lazy class loading. Classes are loaded and initialized on first access—instantiating the class or
accessing one of its static fields or methods for the first time. Thus, as long as you don't instantiate the
Honeycomb-specific implementations on pre-Honeycomb devices, the Dalvik VM won't throw any
VerifyError exceptions.
A good naming convention for this implementation is to append the API level or platform version code
name corresponding to the APIs required by the concrete classes. For example, the native tab
implementation can be provided by CompatTabHoneycomb and TabHelperHoneycomb classes, since
they rely on APIs available in Android 3.0 (API level 11) or later.

Figure 1. Class diagram for the Honeycomb implementation of tabs.

Implement CompatTabHoneycomb
CompatTabHoneycomb is the implementation of the CompatTab abstract class that
TabHelperHoneycomb uses to reference individual tabs. CompatTabHoneycomb simply proxies all
method calls to its contained ActionBar.Tab object.
Begin implementing CompatTabHoneycomb using the new ActionBar.Tab APIs:

This lesson teaches you to:
• Implement Tabs Using New APIs
• Implement CompatTabHoneycomb
• Implement TabHelperHoneycomb
You should also read

• Action Bar
• Action Bar Tabs

Try it out
Download the sample app
TabCompat.zip

Proxying to the New APIs

556
Content from developer.android.com/training/backward-compatible-ui/new-implementation.html through their Creative Commons Attribution 2.5 license

public class CompatTabHoneycomb extends CompatTab {
 // The native tab object that this CompatTab acts as a proxy for.
 ActionBar.Tab mTab;
 ...

 protected CompatTabHoneycomb(FragmentActivity activity, String tag) {
 ...
 // Proxy to new ActionBar.newTab API
 mTab = activity.getActionBar().newTab();
 }

 public CompatTab setText(int resId) {
 // Proxy to new ActionBar.Tab.setText API
 mTab.setText(resId);
 return this;
 }

 ...
 // Do the same for other properties (icon, callback, etc.)
}

Implement TabHelperHoneycomb
TabHelperHoneycomb is the implementation of the TabHelper abstract class that proxies method calls
to an actual ActionBar, obtained from its contained Activity.
Implement TabHelperHoneycomb, proxying method calls to the ActionBar API:

public class TabHelperHoneycomb extends TabHelper {
 ActionBar mActionBar;
 ...

 protected void setUp() {
 if (mActionBar == null) {
 mActionBar = mActivity.getActionBar();
 mActionBar.setNavigationMode(
 ActionBar.NAVIGATION_MODE_TABS);
 }
 }

 public void addTab(CompatTab tab) {
 ...
 // Tab is a CompatTabHoneycomb instance, so its
 // native tab object is an ActionBar.Tab.
 mActionBar.addTab((ActionBar.Tab) tab.getTab());
 }

 // The other important method, newTab() is part of
 // the base implementation.
}

Creating an Implementation with Older APIs

557
Content from developer.android.com/training/backward-compatible-ui/older-implementation.html through their Creative Commons Attribution 2.5 license

158. Creating an Implementation with Older APIs
Content from developer.android.com/training/backward-compatible-ui/older-implementation.html through their Creative Commons Attribution 2.5 license

This lesson discusses how to create an
implementation that mirrors newer APIs yet
supports older devices.

Decide on a Substitute Solution
The most challenging task in using newer UI
features in a backward-compatible way is deciding
on and implementing an older (fallback) solution
for older platform versions. In many cases, it's
possible to fulfill the purpose of these newer UI
components using older UI framework features. For example:

• Action bars can be implemented using a horizontal LinearLayout containing image buttons,
either as custom title bars or as views in your activity layout. Overflow actions can be presented
under the device Menu button.

• Action bar tabs can be implemented using a horizontal LinearLayout containing buttons, or
using the TabWidget UI element.

• NumberPicker and Switch widgets can be implemented using Spinner and ToggleButton
widgets, respectively.

• ListPopupWindow and PopupMenu widgets can be implemented using PopupWindow widgets.
There generally isn't a one-size-fits-all solution for backporting newer UI components to older devices. Be
mindful of the user experience: on older devices, users may not be familiar with newer design patterns and
UI components. Give some thought as to how the same functionality can be delivered using familiar
elements. In many cases this is less of a concern—if newer UI components are prominent in the
application ecosystem (such as the action bar), or where the interaction model is extremely simple and
intuitive (such as swipe views using a ViewPager).

Implement Tabs Using Older APIs
To create an older implementation of action bar tabs, you can use a TabWidget and TabHost (although
one can alternatively use horizontally laid-out Button widgets). Implement this in classes called
TabHelperEclair and CompatTabEclair, since this implementation uses APIs introduced no later
than Android 2.0 (Eclair).

Figure 1. Class diagram for the Eclair implementation of tabs.
The CompatTabEclair implementation stores tab properties such as the tab text and icon in instance
variables, since there isn't an ActionBar.Tab object available to handle this storage:

This lesson teaches you to:
• Decide on a Substitute Solution
• Implement Tabs Using Older APIs
Try it out
Download the sample app
TabCompat.zip

Creating an Implementation with Older APIs

558
Content from developer.android.com/training/backward-compatible-ui/older-implementation.html through their Creative Commons Attribution 2.5 license

public class CompatTabEclair extends CompatTab {
 // Store these properties in the instance,
 // as there is no ActionBar.Tab object.
 private CharSequence mText;
 ...

 public CompatTab setText(int resId) {
 // Our older implementation simply stores this
 // information in the object instance.
 mText = mActivity.getResources().getText(resId);
 return this;
 }

 ...
 // Do the same for other properties (icon, callback, etc.)
}

The TabHelperEclair implementation makes use of methods on the TabHost widget for creating
TabHost.TabSpec objects and tab indicators:

public class TabHelperEclair extends TabHelper {
 private TabHost mTabHost;
 ...

 protected void setUp() {
 if (mTabHost == null) {
 // Our activity layout for pre-Honeycomb devices
 // must contain a TabHost.
 mTabHost = (TabHost) mActivity.findViewById(
 android.R.id.tabhost);
 mTabHost.setup();
 }
 }

 public void addTab(CompatTab tab) {
 ...
 TabSpec spec = mTabHost
 .newTabSpec(tag)
 .setIndicator(tab.getText()); // And optional icon
 ...
 mTabHost.addTab(spec);
 }

 // The other important method, newTab() is part of
 // the base implementation.
}

You now have two implementations of CompatTab and TabHelper: one that works on devices running
Android 3.0 or later and uses new APIs, and another that works on devices running Android 2.0 or later
and uses older APIs. The next lesson discusses using these implementations in your application.

Using the Version-Aware Component

559
Content from developer.android.com/training/backward-compatible-ui/using-component.html through their Creative Commons Attribution 2.5 license

159. Using the Version-Aware Component
Content from developer.android.com/training/backward-compatible-ui/using-component.html through their Creative Commons Attribution 2.5 license

Now that you have two implementations of
TabHelper and CompatTab—one for Android
3.0 and later and one for earlier versions of the
platform—it's time to do something with these
implementations. This lesson discusses creating
the logic for switching between these
implementations, creating version-aware layouts,
and finally using the backward-compatible UI
component.

Add the Switching Logic
The TabHelper abstract class acts as a factory for creating version-appropriate TabHelper and
CompatTab instances, based on the current device's platform version:

public abstract class TabHelper {
 ...
 // Usage is TabHelper.createInstance(activity)
 public static TabHelper createInstance(FragmentActivity activity) {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 return new TabHelperHoneycomb(activity);
 } else {
 return new TabHelperEclair(activity);
 }
 }

 // Usage is mTabHelper.newTab("tag")
 public CompatTab newTab(String tag) {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 return new CompatTabHoneycomb(mActivity, tag);
 } else {
 return new CompatTabEclair(mActivity, tag);
 }
 }
 ...
}

Create a Version-Aware Activity Layout
The next step is to provide layouts for your activity that can support the two tab implementations. For the
older implementation (TabHelperEclair), you need to ensure that your activity layout contains a
TabWidget and TabHost, along with a container for tab contents:
res/layout/main.xml:

This lesson teaches you to:
• Add the Switching Logic
• Create a Version-Aware Activity Layout
• Use TabHelper in Your Activity
Try it out
Download the sample app
TabCompat.zip

Using the Version-Aware Component

560
Content from developer.android.com/training/backward-compatible-ui/using-component.html through their Creative Commons Attribution 2.5 license

<!-- This layout is for API level 5-10 only. -->
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/tabhost"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="5dp">

 <TabWidget
 android:id="@android:id/tabs"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

 <FrameLayout
 android:id="@android:id/tabcontent"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1" />

 </LinearLayout>
</TabHost>

For the TabHelperHoneycomb implementation, all you need is a FrameLayout to contain the tab
contents, since the tab indicators are provided by the ActionBar:
res/layout-v11/main.xml:

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/tabcontent"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

At runtime, Android will decide which version of the main.xml layout to inflate depending on the platform
version. This is the same logic shown in the previous section to determine which TabHelper
implementation to use.

Use TabHelper in Your Activity
In your activity's onCreate() method, you can obtain a TabHelper object and add tabs with the
following code:

Using the Version-Aware Component

561
Content from developer.android.com/training/backward-compatible-ui/using-component.html through their Creative Commons Attribution 2.5 license

@Override
public void onCreate(Bundle savedInstanceState) {
 setContentView(R.layout.main);

 TabHelper tabHelper = TabHelper.createInstance(this);
 tabHelper.setUp();

 CompatTab photosTab = tabHelper
 .newTab("photos")
 .setText(R.string.tab_photos);
 tabHelper.addTab(photosTab);

 CompatTab videosTab = tabHelper
 .newTab("videos")
 .setText(R.string.tab_videos);
 tabHelper.addTab(videosTab);
}

When running the application, this code inflates the correct activity layout and instantiates either a
TabHelperHoneycomb or TabHelperEclair object. The concrete class that's actually used is opaque
to the activity, since they share the common TabHelper interface.
Below are two screenshots of this implementation running on an Android 2.3 and Android 4.0 device.

Using the Version-Aware Component

562
Content from developer.android.com/training/backward-compatible-ui/using-component.html through their Creative Commons Attribution 2.5 license

Figure 1. Example screenshots of backward-compatible tabs running on an Android 2.3 device (using
TabHelperEclair) and an Android 4.0 device (using TabHelperHoneycomb).

Implementing Accessibility

563
Content from developer.android.com/training/accessibility/index.html through their Creative Commons Attribution 2.5 license

160. Implementing Accessibility
Content from developer.android.com/training/accessibility/index.html through their Creative Commons Attribution 2.5 license

When it comes to reaching as wide a userbase as
possible, it's important to pay attention to
accessibility in your Android application. Cues in
your user interface that may work for a majority of
users, such as a visible change in state when a
button is pressed, can be less optimal if the user
is visually impaired.
This class shows you how to make the most of the
accessibility features built into the Android
framework. It covers how to optimize your app for
accessibility, leveraging platform features like focus navigation and content descriptions. It also covers
how to build accessibility services, that can facilitate user interaction with any Android application, not just
your own.

Lessons
Developing Accessible Applications

Learn to make your Android application accessible. Allow for easy navigation with a keyboard or
directional pad, set labels and fire events that can be interpreted by an accessibility service to
facilitate a smooth user experience.

Developing Accessibility Services
Develop an accessibility service that listens for accessibility events, mines those events for
information like event type and content descriptions, and uses that information to communicate
with the user. The example will use a text-to-speech engine to speak to the user.

Dependencies and prerequisites

• Android 2.0 (API Level 5) or higher

You should also read

• Accessibility

Developing Accessible Applications

564
Content from developer.android.com/training/accessibility/accessible-app.html through their Creative Commons Attribution 2.5 license

161. Developing Accessible Applications
Content from developer.android.com/training/accessibility/accessible-app.html through their Creative Commons Attribution 2.5 license

Android has several accessibility-focused features
baked into the platform, which make it easy to
optimize your application for those with visual or
physical disabilities. However, it's not always
obvious what the correct optimizations are, or the
easiest way to leverage the framework toward this
purpose. This lesson shows you how to
implement the strategies and platform features
that make for a great accessibility-enabled
Android application.

Add Content Descriptions
A well-designed user interface (UI) often has
elements that don't require an explicit label to indicate their purpose to the user. A checkbox next to an
item in a task list application has a fairly obvious purpose, as does a trash can in a file manager
application. However, to your users with vision impairment, other UI cues are needed.
Fortunately, it's easy to add labels to UI elements in your application that can be read out loud to your user
by a speech-based accessibility service like TalkBack . If you have a label that's likely not to change during
the lifecycle of the application (such as "Pause" or "Purchase"), you can add it via the XML layout, by
setting a UI element's android:contentDescription attribute, like in this example:

<Button
 android:id=”@+id/pause_button”
 android:src=”@drawable/pause”
 android:contentDescription=”@string/pause”/>

However, there are plenty of situations where it's desirable to base the content description on some
context, such as the state of a toggle button, or a piece selectable data like a list item. To edit the content
description at runtime, use the setContentDescription() method, like this:

String contentDescription = "Select " + strValues[position];
label.setContentDescription(contentDescription);

This addition to your code is the simplest accessibility improvement you can make to your application, but
one of the most useful. Try to add content descriptions wherever there's useful information, but avoid the
web-developer pitfall of labelling everything with useless information. For instance, don't set an application
icon's content description to "app icon". That just increases the noise a user needs to navigate in order to
pull useful information from your interface.
Try it out! Download TalkBack (an accessibility service published by Google) and enable it in Settings >
Accessibility > TalkBack. Then navigate around your own application and listen for the audible cues
provided by TalkBack.

Design for Focus Navigation
Your application should support more methods of navigation than the touch screen alone. Many Android
devices come with navigation hardware other than the touchscreen, like a D-Pad, arrow keys, or a
trackball. In addition, later Android releases also support connecting external devices like keyboards via
USB or bluetooth.

This lesson teaches you to
• Add Content Descriptions
• Design for Focus Navigation
• Fire Accessibility Events
• Test Your Application
You should also read

• Making Applications Accessible

Developing Accessible Applications

565
Content from developer.android.com/training/accessibility/accessible-app.html through their Creative Commons Attribution 2.5 license

In order to enable this form of navigation, all navigational elements that the user should be able to navigate
to need to be set as focusable. This modification can be done at runtime using the
View.setFocusable() method on that UI control, or by setting the android:focusable attrubute in
your XML layout files.
Also, each UI control has 4 attributes, android:nextFocusUp, android:nextFocusDown,
android:nextFocusLeft, and android:nextFocusRight, which you can use to designate the next
view to receive focus when the user navigates in that direction. While the platform determines navigation
sequences automatically based on layout proximity, you can use these attributes to override that sequence
if it isn't appropriate in your application.
For instance, here's how you represent a button and label, both focusable, such that pressing down takes
you from the button to the text view, and pressing up would take you back to the button.

<Button android:id="@+id/doSomething"
 android:focusable="true"
 android:nextFocusDown=”@id/label”
 ... />
<TextView android:id="@+id/label"
 android:focusable=”true”
 android:text="@string/labelText"
 android:nextFocusUp=”@id/doSomething”
 ... />

Verify that your application works intuitively in these situations. The easiest way is to simply run your
application in the Android emulator, and navigate around the UI with the emulator's arrow keys, using the
OK button as a replacement for touch to select UI controls.

Fire Accessibility Events
If you're using the view components in the Android framework, an AccessibilityEvent is created
whenever you select an item or change focus in your UI. These events are examined by the accessibility
service, enabling it to provide features like text-to-speech to the user.
If you write a custom view, make sure it fires events at the appropriate times. Generate events by calling
sendAccessibilityEvent(int), with a parameter representing the type of event that occurred. A
complete list of the event types currently supported can be found in the AccessibilityEvent reference
documentation.
As an example, if you want to extend an image view such that you can write captions by typing on the
keyboard when it has focus, it makes sense to fire an TYPE_VIEW_TEXT_CHANGED event, even though
that's not normally built into image views. The code to generate that event would look like this:

public void onTextChanged(String before, String after) {
 ...
 if (AccessibilityManager.getInstance(mContext).isEnabled()) {
 sendAccessibilityEvent(AccessibilityEvent.TYPE_VIEW_TEXT_CHANGED);
 }
 ...
}

Test Your Application
Be sure to test the accessibility functionality as you add it to your application. In order to test the content
descriptions and Accessibility events, install and enable an accessibility service. One option is Talkback , a
free, open source screen reader available on Google Play. With the service enabled, test all the navigation
flows through your application and listen to the spoken feedback.

Developing Accessible Applications

566
Content from developer.android.com/training/accessibility/accessible-app.html through their Creative Commons Attribution 2.5 license

Also, attempt to navigate your application using a directional controller, instead of the touch screen. You
can use a physical device with a d-pad or trackball if one is available. If not, use the Android emulator and
it's simulated keyboard controls.
Between the service providing feedback and the directional navigation through your application, you
should get a sense of what your application is like to navigate without any visual cues. Fix problem areas
as they appear, and you'll end up with with a more accessible Android application.

Developing an Accessibility Service

567
Content from developer.android.com/training/accessibility/service.html through their Creative Commons Attribution 2.5 license

162. Developing an Accessibility Service
Content from developer.android.com/training/accessibility/service.html through their Creative Commons Attribution 2.5 license

Accessibility services are a feature of the Android
framework designed to provide alternative
navigation feedback to the user on behalf of
applications installed on Android devices. An
accessibility service can communicate to the user
on the application's behalf, such as converting text
to speech, or haptic feedback when a user is
hovering on an important area of the screen. This
lesson covers how to create an accessibility
service, process information received from the
application, and report that information back to the
user.

Create Your Accessibility Service
An accessibility service can be bundled with a normal application, or created as a standalone Android
project. The steps to creating the service are the same in either situation. Within your project, create a
class that extends AccessibilityService.

package com.example.android.apis.accessibility;

import android.accessibilityservice.AccessibilityService;

public class MyAccessibilityService extends AccessibilityService {
...
 @Override
 public void onAccessibilityEvent(AccessibilityEvent event) {
 }

 @Override
 public void onInterrupt() {
 }

...
}

Like any other service, you also declare it in the manifest file. Remember to specify that it handles the
android.accessibilityservice intent, so that the service is called when applications fire an
AccessibilityEvent.

<application ...>
...
<service android:name=".MyAccessibilityService">
 <intent-filter>
 <action android:name="android.accessibilityservice.AccessibilityService" />
 </intent-filter>
 . . .
</service>
...
</application>

This lesson teaches you to
• Create Your Accessibility Service
• Configure Your Accessibility Service
• Respond to AccessibilityEvents
• Query the View Heirarchy for More Context
You should also read

• Building Accessibility Services

Developing an Accessibility Service

568
Content from developer.android.com/training/accessibility/service.html through their Creative Commons Attribution 2.5 license

If you created a new project for this service, and don't plan on having an application, you can remove the
starter Activity class (usually called MainActivity.java) from your source. Remember to also remove the
corresponding activity element from your manifest.

Configure Your Accessibility Service
Setting the configuration variables for your accessibility service tells the system how and when you want it
to run. Which event types would you like to respond to? Should the service be active for all applications, or
only specific package names? What different feedback types does it use?
You have two options for how to set these variables. The backwards-compatible option is to set them in
code, using setServiceInfo(android.accessibilityservice.AccessibilityServiceInfo).
To do that, override the onServiceConnected() method and configure your service in there.

@Override
public void onServiceConnected() {
 // Set the type of events that this service wants to listen to. Others
 // won't be passed to this service.
 info.eventTypes = AccessibilityEvent.TYPE_VIEW_CLICKED |
 AccessibilityEvent.TYPE_VIEW_FOCUSED;

 // If you only want this service to work with specific applications, set their
 // package names here. Otherwise, when the service is activated, it will listen
 // to events from all applications.
 info.packageNames = new String[]
 {"com.example.android.myFirstApp", "com.example.android.mySecondApp"};

 // Set the type of feedback your service will provide.
 info.feedbackType = AccessibilityServiceInfo.FEEDBACK_SPOKEN;

 // Default services are invoked only if no package-specific ones are present
 // for the type of AccessibilityEvent generated. This service *is*
 // application-specific, so the flag isn't necessary. If this was a
 // general-purpose service, it would be worth considering setting the
 // DEFAULT flag.

 // info.flags = AccessibilityServiceInfo.DEFAULT;

 info.notificationTimeout = 100;

 this.setServiceInfo(info);

}

Starting with Android 4.0, there is a second option available: configure the service using an XML file.
Certain configuration options like canRetrieveWindowContent are only available if you configure your
service using XML. The same configuration options above, defined using XML, would look like this:

<accessibility-service
 android:accessibilityEventTypes="typeViewClicked|typeViewFocused"
 android:packageNames="com.example.android.myFirstApp, com.example.android.mySecondApp"
 android:accessibilityFeedbackType="feedbackSpoken"
 android:notificationTimeout="100"
 android:settingsActivity="com.example.android.apis.accessibility.TestBackActivity"
 android:canRetrieveWindowContent="true"
/>

Developing an Accessibility Service

569
Content from developer.android.com/training/accessibility/service.html through their Creative Commons Attribution 2.5 license

If you go the XML route, be sure to reference it in your manifest, by adding a <meta-data> tag to your
service declaration, pointing at the XML file. If you stored your XML file in
res/xml/serviceconfig.xml, the new tag would look like this:

<service android:name=".MyAccessibilityService">
 <intent-filter>
 <action android:name="android.accessibilityservice.AccessibilityService" />
 </intent-filter>
 <meta-data android:name="android.accessibilityservice"
 android:resource="@xml/serviceconfig" />
</service>

Respond to AccessibilityEvents
Now that your service is set up to run and listen for events, write some code so it knows what to do when
an AccessibilityEvent actually arrives! Start by overriding the
onAccessibilityEvent(AccessibilityEvent) method. In that method, use getEventType() to
determine the type of event, and getContentDescription() to extract any label text associated with
the view that fired the event.

@Override
public void onAccessibilityEvent(AccessibilityEvent event) {
 final int eventType = event.getEventType();
 String eventText = null;
 switch(eventType) {
 case AccessibilityEvent.TYPE_VIEW_CLICKED:
 eventText = "Focused: ";
 break;
 case AccessibilityEvent.TYPE_VIEW_FOCUSED:
 eventText = "Focused: ";
 break;
 }

 eventText = eventText + event.getContentDescription();

 // Do something nifty with this text, like speak the composed string
 // back to the user.
 speakToUser(eventText);
 ...
}

Query the View Heirarchy for More Context
This step is optional, but highly useful. One of the new features in Android 4.0 (API Level 14) is the ability
for an AccessibilityService to query the view hierarchy, collecting information about the UI
component that generated an event, and its parent and children. In order to do this, make sure that you set
the following line in your XML configuration:

android:canRetrieveWindowContent="true"

Once that's done, get an AccessibilityNodeInfo object using getSource(). This call only returns
an object if the window where the event originated is still the active window. If not, it will return null, so
behave accordingly. The following example is a snippet of code that, when it receives an event, does the
following:
• Immediately grab the parent of the view where the event originated

Developing an Accessibility Service

570
Content from developer.android.com/training/accessibility/service.html through their Creative Commons Attribution 2.5 license

• In that view, look for a label and a check box as children views
• If it finds them, create a string to report to the user, indicating the label and whether it was checked or
not.
• If at any point a null value is returned while traversing the view hierarchy, the method quietly gives up.

// Alternative onAccessibilityEvent, that uses AccessibilityNodeInfo

@Override
public void onAccessibilityEvent(AccessibilityEvent event) {

 AccessibilityNodeInfo source = event.getSource();
 if (source == null) {
 return;
 }

 // Grab the parent of the view that fired the event.
 AccessibilityNodeInfo rowNode = getListItemNodeInfo(source);
 if (rowNode == null) {
 return;
 }

 // Using this parent, get references to both child nodes, the label and the checkbox.
 AccessibilityNodeInfo labelNode = rowNode.getChild(0);
 if (labelNode == null) {
 rowNode.recycle();
 return;
 }

 AccessibilityNodeInfo completeNode = rowNode.getChild(1);
 if (completeNode == null) {
 rowNode.recycle();
 return;
 }

 // Determine what the task is and whether or not it's complete, based on
 // the text inside the label, and the state of the check-box.
 if (rowNode.getChildCount() < 2 || !rowNode.getChild(1).isCheckable()) {
 rowNode.recycle();
 return;
 }

 CharSequence taskLabel = labelNode.getText();
 final boolean isComplete = completeNode.isChecked();
 String completeStr = null;

 if (isComplete) {
 completeStr = getString(R.string.checked);
 } else {
 completeStr = getString(R.string.not_checked);
 }
 String reportStr = taskLabel + completeStr;
 speakToUser(reportStr);
}

Now you have a complete, functioning accessibility service. Try configuring how it interacts with the user,
by adding Android's text-to-speech engine, or using a Vibrator to provide haptic feedback!

Managing the System UI

571
Content from developer.android.com/training/system-ui/index.html through their Creative Commons Attribution 2.5 license

163. Managing the System UI
Content from developer.android.com/training/system-ui/index.html through their Creative Commons Attribution 2.5 license

Design Guide
System Bars

Video
DevBytes: Android 4.4 Immersive Mode

Figure 1. System bars, including the [1] status bar, and [2] navigation bar.
The system bars are screen areas dedicated to the display of notifications, communication of device
status, and device navigation. Typically the system bars (which consist of the status and navigation bars,
as shown in figure 1) are displayed concurrently with your app. Apps that display immersive content, such
as movies or images, can temporarily dim the system bar icons for a less distracting experience, or
temporarily hide the bars for a fully immersive experience.
If you're familiar with the Android Design Guide, you know the importance of designing your apps to
conform to standard Android UI guidelines and usage patterns. You should carefully consider your users'
needs and expectations before modifying the system bars, since they give users a standard way of
navigating a device and viewing its status.
This class describes how to dim or hide system bars across different versions of Android to create an
immersive user experience, while still preserving easy access to the system bars.

Lessons
Dimming the System Bars

Learn how to dim the status and navigation bars.
Hiding the Status Bar

Learn how to hide the status bar on different versions of Android.
Hiding the Navigation Bar

Dependencies and prerequisites

• Android 1.6 (API Level 4) or higher

You should also read

• Action Bar API Guide
• Android Design Guide

Try it out
Get the sample
ImmersiveMode sample

Managing the System UI

572
Content from developer.android.com/training/system-ui/index.html through their Creative Commons Attribution 2.5 license

Learn how to hide the navigation bar, in addition to the status bar.
Using Immersive Full-Screen Mode

Learn how to create a fully immersive experience in your app.
Responding to UI Visibility Changes

Learn how to register a listener to get notified of system UI visibility changes so that you can
adjust your app's UI accordingly.

Dimming the System Bars

573
Content from developer.android.com/training/system-ui/dim.html through their Creative Commons Attribution 2.5 license

164. Dimming the System Bars
Content from developer.android.com/training/system-ui/dim.html through their Creative Commons Attribution 2.5 license

This lesson describes how to dim the system bars
(that is, the status and the navigation bars) on
Android 4.0 (API level 14) and higher. Android
does not provide a built-in way to dim the system
bars on earlier versions.
When you use this approach, the content doesn't
resize, but the icons in the system bars visually
recede. As soon as the user touches either the
status bar or the navigation bar area of the
screen, both bars become fully visible. The
advantage of this approach is that the bars are
still present but their details are obscured, thus
creating an immersive experience without
sacrificing easy access to the bars.

Dim the Status and Navigation
Bars
You can dim the status and notification bars on Android 4.0 and higher using the
SYSTEM_UI_FLAG_LOW_PROFILE flag, as follows:

// This example uses decor view, but you can use any visible view.
View decorView = getActivity().getWindow().getDecorView();
int uiOptions = View.SYSTEM_UI_FLAG_LOW_PROFILE;
decorView.setSystemUiVisibility(uiOptions);

As soon as the user touches the status or navigation bar, the flag is cleared, causing the bars to be
undimmed. Once the flag has been cleared, your app needs to reset it if you want to dim the bars again.
Figure 1 shows a gallery image in which the navigation bar is dimmed (note that the Gallery app
completely hides the status bar; it doesn't dim it). Notice that the navigation bar (right side of the image)
has faint white dots on it to represent the navigation controls:

Figure 1. Dimmed system bars.
Figure 2 shows the same gallery image, but with the system bars displayed:

This lesson teaches you to
• Dim the Status and Navigation Bars
• Reveal the Status and Navigation Bars
You should also read

• Action Bar API Guide
• Android Design Guide

Try it out
Get the sample
ImmersiveMode sample

Dimming the System Bars

574
Content from developer.android.com/training/system-ui/dim.html through their Creative Commons Attribution 2.5 license

Figure 2. Visible system bars.

Reveal the Status and Navigation Bars
If you want to programmatically clear flags set with setSystemUiVisibility(), you can do so as
follows:

View decorView = getActivity().getWindow().getDecorView();
// Calling setSystemUiVisibility() with a value of 0 clears
// all flags.
decorView.setSystemUiVisibility(0);

Hiding the Status Bar

575
Content from developer.android.com/training/system-ui/status.html through their Creative Commons Attribution 2.5 license

165. Hiding the Status Bar
Content from developer.android.com/training/system-ui/status.html through their Creative Commons Attribution 2.5 license

This lesson describes how to hide the status bar
on different versions of Android. Hiding the status
bar (and optionally, the navigation bar) lets the
content use more of the display space, thereby
providing a more immersive user experience.
Figure 1 shows an app with a visible status bar:

Figure 1. Visible status bar.
Figure 2 shows an app with a hidden status bar.
Note that the action bar is hidden too. You should
never show the action bar without the status bar.

Figure 2. Hidden status bar.

Hide the Status Bar on Android 4.0 and Lower
You can hide the status bar on Android 4.0 (API level 14) and lower by setting WindowManager flags. You
can do this programmatically or by setting an activity theme in your app's manifest file. Setting an activity
theme in your app's manifest file is the preferred approach if the status bar should always remain hidden in
your app (though strictly speaking, you could programmatically override the theme if you wanted to). For
example:

<application
 ...
 android:theme="@android:style/Theme.Holo.NoActionBar.Fullscreen" >
 ...
</application>

The advantages of using an activity theme are as follows:

• It's easier to maintain and less error-prone than setting a flag programmatically.
• It results in smoother UI transitions, because the system has the information it needs to render

your UI before instantiating your app's main activity.

This lesson teaches you to
• Hide the Status Bar on Android 4.0 and
Lower
• Hide the Status Bar on Android 4.1 and
Higher
• Hide the Status Bar on Android 4.4 and
Higher
• Make Content Appear Behind the Status
Bar
• Synchronize the Status Bar with Action Bar
Transition
You should also read

• Action Bar API Guide
• Android Design Guide

Try it out
Get the sample
ImmersiveMode sample

Hiding the Status Bar

576
Content from developer.android.com/training/system-ui/status.html through their Creative Commons Attribution 2.5 license

Alternatively, you can programmatically set WindowManager flags. This approach makes it easier to hide
and show the status bar as the user interacts with your app:

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // If the Android version is lower than Jellybean, use this call to hide
 // the status bar.
 if (Build.VERSION.SDK_INT < 16) {
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 }
 setContentView(R.layout.activity_main);
 }
 ...
}

When you set WindowManager flags (whether through an activity theme or programmatically), the flags
remain in effect unless your app clears them.
You can use FLAG_LAYOUT_IN_SCREEN to set your activity layout to use the same screen area that's
available when you've enabled FLAG_FULLSCREEN. This prevents your content from resizing when the
status bar hides and shows.

Hide the Status Bar on Android 4.1 and Higher
You can hide the status bar on Android 4.1 (API level 16) and higher by using
setSystemUiVisibility(). setSystemUiVisibility() sets UI flags at the individual view level;
these settings are aggregated to the window level. Using setSystemUiVisibility() to set UI flags
gives you more granular control over the system bars than using WindowManager flags. This snippet
hides the status bar:

View decorView = getWindow().getDecorView();
// Hide the status bar.
int uiOptions = View.SYSTEM_UI_FLAG_FULLSCREEN;
decorView.setSystemUiVisibility(uiOptions);
// Remember that you should never show the action bar if the
// status bar is hidden, so hide that too if necessary.
ActionBar actionBar = getActionBar();
actionBar.hide();

Note the following:

• Once UI flags have been cleared (for example, by navigating away from the activity), your app
needs to reset them if you want to hide the bars again. See Responding to UI Visibility Changes
for a discussion of how to listen for UI visibility changes so that your app can respond
accordingly.

• Where you set the UI flags makes a difference. If you hide the system bars in your activity's
onCreate() method and the user presses Home, the system bars will reappear. When the user
reopens the activity, onCreate() won't get called, so the system bars will remain visible. If you
want system UI changes to persist as the user navigates in and out of your activity, set UI flags in
onResume() or onWindowFocusChanged().

• The method setSystemUiVisibility() only has an effect if the view you call it from is
visible.

Hiding the Status Bar

577
Content from developer.android.com/training/system-ui/status.html through their Creative Commons Attribution 2.5 license

• Navigating away from the view causes flags set with setSystemUiVisibility() to be
cleared.

Make Content Appear Behind the Status Bar
On Android 4.1 and higher, you can set your application's content to appear behind the status bar, so that
the content doesn't resize as the status bar hides and shows. To do this, use
SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN. You may also need to use
SYSTEM_UI_FLAG_LAYOUT_STABLE to help your app maintain a stable layout.
When you use this approach, it becomes your responsibility to ensure that critical parts of your app's UI
(for example, the built-in controls in a Maps application) don't end up getting covered by system bars. This
could make your app unusable. In most cases you can handle this by adding the
android:fitsSystemWindows attribute to your XML layout file, set to true. This adjusts the padding
of the parent ViewGroup to leave space for the system windows. This is sufficient for most applications.
In some cases, however, you may need to modify the default padding to get the desired layout for your
app. To directly manipulate how your content lays out relative to the system bars (which occupy a space
known as the window's "content insets"), override fitSystemWindows(Rect insets). The
fitSystemWindows() method is called by the view hierarchy when the content insets for a window have
changed, to allow the window to adjust its content accordingly. By overriding this method you can handle
the insets (and hence your app's layout) however you want.

Synchronize the Status Bar with Action Bar Transition
On Android 4.1 and higher, to avoid resizing your layout when the action bar hides and shows, you can
enable overlay mode for the action bar. When in overlay mode, your activity layout uses all the space
available as if the action bar is not there and the system draws the action bar in front of your layout. This
obscures some of the layout at the top, but now when the action bar hides or appears, the system does
not need to resize your layout and the transition is seamless.
To enable overlay mode for the action bar, you need to create a custom theme that extends an existing
theme with an action bar and set the android:windowActionBarOverlay attribute to true. For more
discussion of this topic, see Overlaying the Action Bar in the Adding the Action Bar class.
Then use SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN, as described above, to set your activity layout to
use the same screen area that's available when you've enabled SYSTEM_UI_FLAG_FULLSCREEN. When
you want to hide the system UI, use SYSTEM_UI_FLAG_FULLSCREEN. This also hides the action bar
(because windowActionBarOverlay=”true”) and does so with a coordinated animation when both
hiding and showing the two.

Hiding the Navigation Bar

578
Content from developer.android.com/training/system-ui/navigation.html through their Creative Commons Attribution 2.5 license

166. Hiding the Navigation Bar
Content from developer.android.com/training/system-ui/navigation.html through their Creative Commons Attribution 2.5 license

This lesson describes how to hide the navigation
bar, which was introduced in Android 4.0 (API
level 14).
Even though this lesson focuses on hiding the
navigation bar, you should design your app to hide
the status bar at the same time, as described in
Hiding the Status Bar. Hiding the navigation and
status bars (while still keeping them readily
accessible) lets the content use the entire display
space, thereby providing a more immersive user
experience.

Figure 1. Navigation bar.

Hide the Navigation Bar on 4.0 and Higher
You can hide the navigation bar on Android 4.0 and higher using the
SYSTEM_UI_FLAG_HIDE_NAVIGATION flag. This snippet hides both the navigation bar and the status
bar:

View decorView = getWindow().getDecorView();
// Hide both the navigation bar and the status bar.
// SYSTEM_UI_FLAG_FULLSCREEN is only available on Android 4.1 and higher, but as
// a general rule, you should design your app to hide the status bar whenever you
// hide the navigation bar.
int uiOptions = View.SYSTEM_UI_FLAG_HIDE_NAVIGATION
 | View.SYSTEM_UI_FLAG_FULLSCREEN;
decorView.setSystemUiVisibility(uiOptions);

Note the following:

• With this approach, touching anywhere on the screen causes the navigation bar (and status bar)
to reappear and remain visible. The user interaction causes the flags to be be cleared.

• Once the flags have been cleared, your app needs to reset them if you want to hide the bars
again. See Responding to UI Visibility Changes for a discussion of how to listen for UI visibility
changes so that your app can respond accordingly.

• Where you set the UI flags makes a difference. If you hide the system bars in your activity's
onCreate() method and the user presses Home, the system bars will reappear. When the user
reopens the activity, onCreate() won't get called, so the system bars will remain visible. If you
want system UI changes to persist as the user navigates in and out of your activity, set UI flags in
onResume() or onWindowFocusChanged().

• The method setSystemUiVisibility() only has an effect if the view you call it from is
visible.

This lesson teaches you to
• Hide the Navigation Bar on 4.0 and Higher
• Make Content Appear Behind the
Navigation Bar
You should also read

• Action Bar API Guide
• Android Design Guide

Try it out
Get the sample
ImmersiveMode sample

Hiding the Navigation Bar

579
Content from developer.android.com/training/system-ui/navigation.html through their Creative Commons Attribution 2.5 license

• Navigating away from the view causes flags set with setSystemUiVisibility() to be
cleared.

Make Content Appear Behind the Navigation Bar
On Android 4.1 and higher, you can set your application's content to appear behind the navigation bar, so
that the content doesn't resize as the navigation bar hides and shows. To do this, use
SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION. You may also need to use
SYSTEM_UI_FLAG_LAYOUT_STABLE to help your app maintain a stable layout.
When you use this approach, it becomes your responsibility to ensure that critical parts of your app's UI
don't end up getting covered by system bars. For more discussion of this topic, see the Hiding the Status
Bar lesson.

Using Immersive Full-Screen Mode

580
Content from developer.android.com/training/system-ui/immersive.html through their Creative Commons Attribution 2.5 license

167. Using Immersive Full-Screen Mode
Content from developer.android.com/training/system-ui/immersive.html through their Creative Commons Attribution 2.5 license

Video
DevBytes: Android 4.4 Immersive Mode
Android 4.4 (API Level 19) introduces a new
SYSTEM_UI_FLAG_IMMERSIVE flag for
setSystemUiVisibility() that lets your app
go truly "full screen." This flag, when combined
with the SYSTEM_UI_FLAG_HIDE_NAVIGATION
and SYSTEM_UI_FLAG_FULLSCREEN flags, hides
the navigation and status bars and lets your app
capture all touch events on the screen.
When immersive full-screen mode is enabled,
your activity continues to receive all touch events.
The user can reveal the system bars with an
inward swipe along the region where the system
bars normally appear. This clears the
SYSTEM_UI_FLAG_HIDE_NAVIGATION flag (and
the SYSTEM_UI_FLAG_FULLSCREEN flag, if applied) so the system bars become visible. This also triggers
your View.OnSystemUiVisibilityChangeListener, if set. However, if you'd like the system bars to
automatically hide again after a few moments, you can instead use the
SYSTEM_UI_FLAG_IMMERSIVE_STICKY flag. Note that the "sticky" version of the flag doesn't trigger any
listeners, as system bars temporarily shown in this mode are in a transient state.
Figure 1 illustrates the different "immersive mode" states:

Figure 1. Immersive mode states.
In figure 1:
• Non-immersive mode—This is how the app appears before it enters immersive mode. It is also how
the app appears if you use the IMMERSIVE flag, and the user swipes to display the system bars, thereby
clearing the SYSTEM_UI_FLAG_HIDE_NAVIGATION and SYSTEM_UI_FLAG_FULLSCREEN flags. Once
these flags are cleared, the system bars reappear and remain visible.
• Note that it's best practice to keep all UI controls in sync with the system bars, to minimize the number
of states your screen can be in. This provides a more seamless user experience. So here all UI controls
are displayed along with the status bars. Once the app enters immersive mode, the UI controls are hidden
along with the system bars. To ensure that your UI visibility stays in sync with system bar visibility, make
sure to provide an appropriate View.OnSystemUiVisibilityChangeListener to watch for changes,
as described in Responding to UI Visibility Changes.

This lesson teaches you to
• Choose an Approach
• Use Non-Sticky Immersion
• Use Sticky Immersion
You should also read

• Action Bar API Guide
• Android Design Guide

Try it out
Get the sample
ImmersiveMode sample

Using Immersive Full-Screen Mode

581
Content from developer.android.com/training/system-ui/immersive.html through their Creative Commons Attribution 2.5 license

• Reminder bubble—The system displays a reminder bubble the first time users enter immersive mode
in your app. The reminder bubble reminds users how to display the system bars.
Note: If you want to force the reminder bubble to appear for testing purposes, you can do so by putting the
app in immersive mode, turning off the screen with the power button, and then turning the screen back on
again within 5 seconds.
• Immersive mode—This is the app in immersive mode, with the system bars and other UI controls
hidden. You can achieve this state with either IMMERSIVE or IMMERSIVE_STICKY.
• Sticky flag—This is the UI you see if you use the IMMERSIVE_STICKY flag, and the user swipes to
display the system bars. Semi-transparent bars temporarily appear and then hide again. The act of swiping
doesn't clear any flags, nor does it trigger your system UI visibility change listeners, because the transient
appearance of the system bars isn't considered a UI visibility change.
Note: Remember that the "immersive" flags only take effect if you use them in conjunction with
SYSTEM_UI_FLAG_HIDE_NAVIGATION, SYSTEM_UI_FLAG_FULLSCREEN, or both. You can just use one
or the other, but it's common to hide both the status and the navigation bar when you're implementing "full
immersion" mode.

Choose an Approach
The flags SYSTEM_UI_FLAG_IMMERSIVE and SYSTEM_UI_FLAG_IMMERSIVE_STICKY both provide an
immersive experience, but with the differences in behavior described above. Here are examples of when
you would use one flag vs. the other:

• If you're building a book reader, news reader, or a magazine, use the IMMERSIVE flag in
conjunction with SYSTEM_UI_FLAG_FULLSCREEN and SYSTEM_UI_FLAG_HIDE_NAVIGATION.
Because users may want to access the action bar and other UI controls somewhat frequently, but
not be bothered with any UI elements while flipping through content, IMMERSIVE is a good option
for this use case.

• If you're building a truly immersive app, where you expect users to interact near the edges of the
screen and you don't expect them to need frequent access to the system UI, use the
IMMERSIVE_STICKY flag in conjunction with SYSTEM_UI_FLAG_FULLSCREEN and
SYSTEM_UI_FLAG_HIDE_NAVIGATION. For example, this approach might be suitable for a
game or a drawing app.

• If you're building a video player or some other app that requires minimal user interaction, you can
probably get by with the lean back approach, available since Android 4.0 (API Level 14). For this
type of app, simply using SYSTEM_UI_FLAG_FULLSCREEN and
SYSTEM_UI_FLAG_HIDE_NAVIGATION should be sufficient. Don't use the "immersive" flags in
this case.

Use Non-Sticky Immersion
When you use the SYSTEM_UI_FLAG_IMMERSIVE flag, it hides the system bars based on what other UI
flags you have set (SYSTEM_UI_FLAG_HIDE_NAVIGATION, SYSTEM_UI_FLAG_FULLSCREEN, or both).
When the user swipes inward in a system bars region, the system bars reappear and remain visible.
It's good practice to include other system UI flags (such as
SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION and SYSTEM_UI_FLAG_LAYOUT_STABLE) to keep the
content from resizing when the system bars hide and show. You should also make sure that the action bar
and other UI controls are hidden at the same time. This snippet demonstrates how to hide and show the
status and navigation bars, without resizing the content:

Using Immersive Full-Screen Mode

582
Content from developer.android.com/training/system-ui/immersive.html through their Creative Commons Attribution 2.5 license

// This snippet hides the system bars.
private void hideSystemUI() {
 // Set the IMMERSIVE flag.
 // Set the content to appear under the system bars so that the content
 // doesn't resize when the system bars hide and show.
 mDecorView.setSystemUiVisibility(
 View.SYSTEM_UI_FLAG_LAYOUT_STABLE
 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION
 | View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN
 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION // hide nav bar
 | View.SYSTEM_UI_FLAG_FULLSCREEN // hide status bar
 | View.SYSTEM_UI_FLAG_IMMERSIVE);
}

// This snippet shows the system bars. It does this by removing all the flags
// except for the ones that make the content appear under the system bars.
private void showSystemUI() {
 mDecorView.setSystemUiVisibility(
 View.SYSTEM_UI_FLAG_LAYOUT_STABLE
 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION
 | View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN);
}

You may also want to implement the following in conjunction with the IMMERSIVE flag to provide a better
user experience:

• Register a listener so that your app can get notified of system UI visibility changes, as described
in Responding to UI Visibility Changes.

• Implement onWindowFocusChanged(). If you gain window focus, you may want to re-hide the
system bars. If you lose window focus, for example due to a dialog or pop up menu showing
above your app, you'll probably want to cancel any pending "hide" operations you previously
scheduled with Handler.postDelayed() or something similar.

• Implement a GestureDetector that detects onSingleTapUp(MotionEvent), to allow users
to manually toggle the visibility of the system bars by touching your content. Simple click listeners
aren't the best solution for this because they get triggered even if the user drags a finger across
the screen (assuming the click target takes up the whole screen).

For more discussion of these topics, watch the video DevBytes: Android 4.4 Immersive Mode.

Use Sticky Immersion
When you use the SYSTEM_UI_FLAG_IMMERSIVE_STICKY flag, an inward swipe in the system bars
areas causes the bars to temporarily appear in a semi-transparent state, but no flags are cleared, and your
system UI visibility change listeners are not triggered. The bars automatically hide again after a short
delay, or if the user interacts with the middle of the screen.
Figure 2 shows the semi-transparent system bars that briefly appear and then hide again when you use
the IMMERSIVE_STICKY flag.

Using Immersive Full-Screen Mode

583
Content from developer.android.com/training/system-ui/immersive.html through their Creative Commons Attribution 2.5 license

Figure 2. Auto-hiding system bars.
Below is a simple approach to using this flag. Any time the window receives focus, simply set the
IMMERSIVE_STICKY flag, along with the other flags discussed in Use IMMERSIVE. For example:

@Override
public void onWindowFocusChanged(boolean hasFocus) {
 super.onWindowFocusChanged(hasFocus);
 if (hasFocus) {
 decorView.setSystemUiVisibility(
 View.SYSTEM_UI_FLAG_LAYOUT_STABLE
 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION
 | View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN
 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION
 | View.SYSTEM_UI_FLAG_FULLSCREEN
 | View.SYSTEM_UI_FLAG_IMMERSIVE_STICKY);}
}

Note: If you like the auto-hiding behavior of IMMERSIVE_STICKY but need to show your own UI controls
as well, just use IMMERSIVE combined with Handler.postDelayed() or something similar to re-enter
immersive mode after a few seconds.

Responding to UI Visibility Changes

584
Content from developer.android.com/training/system-ui/visibility.html through their Creative Commons Attribution 2.5 license

168. Responding to UI Visibility Changes
Content from developer.android.com/training/system-ui/visibility.html through their Creative Commons Attribution 2.5 license

This lesson describes how to register a listener so
that your app can get notified of system UI
visibility changes. This is useful if you want to
synchronize other parts of your UI with the
hiding/showing of system bars.

Register a Listener
To get notified of system UI visibility changes,
register an
View.OnSystemUiVisibilityChangeListen
er to your view. This is typically the view you are
using to control the navigation visibility.
For example, you could add this code to your
activity's onCreate() method:

View decorView = getWindow().getDecorView();
decorView.setOnSystemUiVisibilityChangeListener
 (new View.OnSystemUiVisibilityChangeListener() {
 @Override
 public void onSystemUiVisibilityChange(int visibility) {
 // Note that system bars will only be "visible" if none of the
 // LOW_PROFILE, HIDE_NAVIGATION, or FULLSCREEN flags are set.
 if ((visibility & View.SYSTEM_UI_FLAG_FULLSCREEN) == 0) {
 // TODO: The system bars are visible. Make any desired
 // adjustments to your UI, such as showing the action bar or
 // other navigational controls.
 } else {
 // TODO: The system bars are NOT visible. Make any desired
 // adjustments to your UI, such as hiding the action bar or
 // other navigational controls.
 }
 }
});

It's generally good practice to keep your UI in sync with changes in system bar visibility. For example, you
could use this listener to hide and show the action bar in concert with the status bar hiding and showing.

This lesson teaches you to
• Register a Listener
You should also read

• Action Bar API Guide
• Android Design Guide

Try it out
Get the sample
ImmersiveMode sample

Best Practices for User Input

585
Content from developer.android.com/training/best-user-input.html through their Creative Commons Attribution 2.5 license

169. Best Practices for User Input
Content from developer.android.com/training/best-user-input.html through their Creative Commons Attribution 2.5 license
These classes cover various subjects of user input, such as touch screen gestures and text input through
on-screen input methods and hardware keyboards.

Using Touch Gestures

586
Content from developer.android.com/training/gestures/index.html through their Creative Commons Attribution 2.5 license

170. Using Touch Gestures
Content from developer.android.com/training/gestures/index.html through their Creative Commons Attribution 2.5 license

This class describes how to write apps that allow
users to interact with an app via touch gestures.
Android provides a variety of APIs to help you
create and detect gestures.
Although your app should not depend on touch
gestures for basic behaviors (since the gestures
may not be available to all users in all contexts),
adding touch-based interaction to your app can
greatly increase its usefulness and appeal.
To provide users with a consistent, intuitive
experience, your app should follow the accepted
Android conventions for touch gestures. The
Gestures design guide shows you how to use
common gestures in Android apps. Also see the
Design Guide for Touch Feedback.

Lessons
Detecting Common Gestures

Learn how to detect basic touch gestures such as scrolling, flinging, and double-tapping, using
GestureDetector.

Tracking Movement
Learn how to track movement.

Animating a Scroll Gesture
Learn how to use scrollers (Scroller or OverScroller) to produce a scrolling animation in
response to a touch event.

Handling Multi-Touch Gestures
Learn how to detect multi-pointer (finger) gestures.

Dragging and Scaling
Learn how to implement touch-based dragging and scaling.

Managing Touch Events in a ViewGroup
Learn how to manage touch events in a ViewGroup to ensure that touch events are correctly
dispatched to their target views.

Dependencies and prerequisites

• Android 1.6 (API Level 4) or higher

You should also read

• Input Events API Guide
• Sensors Overview
• Making the View Interactive
• Design Guide for Gestures
• Design Guide for Touch Feedback

Try it out
Download the sample
InteractiveChart.zip

Detecting Common Gestures

587
Content from developer.android.com/training/gestures/detector.html through their Creative Commons Attribution 2.5 license

171. Detecting Common Gestures
Content from developer.android.com/training/gestures/detector.html through their Creative Commons Attribution 2.5 license

A "touch gesture" occurs when a user places one
or more fingers on the touch screen, and your
application interprets that pattern of touches as a
particular gesture. There are correspondingly two
phases to gesture detection:
• Gathering data about touch events.
• Interpreting the data to see if it meets the
criteria for any of the gestures your app supports.
Support Library Classes
The examples in this lesson use the
GestureDetectorCompat and
MotionEventCompat classes. These classes
are in the Support Library. You should use
Support Library classes where possible to provide
compatibility with devices running Android 1.6 and
higher. Note that MotionEventCompat is not a
replacement for the MotionEvent class. Rather,
it provides static utility methods to which you pass your MotionEvent object in order to receive the
desired action associated with that event.

Gather Data
When a user places one or more fingers on the screen, this triggers the callback onTouchEvent() on the
View that received the touch events. For each sequence of touch events (position, pressure, size, addition
of another finger, etc.) that is ultimately identified as a gesture, onTouchEvent() is fired several times.
The gesture starts when the user first touches the screen, continues as the system tracks the position of
the user's finger(s), and ends by capturing the final event of the user's fingers leaving the screen.
Throughout this interaction, the MotionEvent delivered to onTouchEvent() provides the details of
every interaction. Your app can use the data provided by the MotionEvent to determine if a gesture it
cares about happened.

Capturing touch events for an Activity or View
To intercept touch events in an Activity or View, override the onTouchEvent() callback.
The following snippet uses getActionMasked() to extract the action the user performed from the event
parameter. This gives you the raw data you need to determine if a gesture you care about occurred:

This lesson teaches you to
• Gather Data
• Detect Gestures
You should also read

• Input Events API Guide
• Sensors Overview
• Making the View Interactive
• Design Guide for Gestures
• Design Guide for Touch Feedback

Try it out
Download the sample
InteractiveChart.zip

Detecting Common Gestures

588
Content from developer.android.com/training/gestures/detector.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends Activity {
...
// This example shows an Activity, but you would use the same approach if
// you were subclassing a View.
@Override
public boolean onTouchEvent(MotionEvent event){

 int action = MotionEventCompat.getActionMasked(event);

 switch(action) {
 case (MotionEvent.ACTION_DOWN) :
 Log.d(DEBUG_TAG,"Action was DOWN");
 return true;
 case (MotionEvent.ACTION_MOVE) :
 Log.d(DEBUG_TAG,"Action was MOVE");
 return true;
 case (MotionEvent.ACTION_UP) :
 Log.d(DEBUG_TAG,"Action was UP");
 return true;
 case (MotionEvent.ACTION_CANCEL) :
 Log.d(DEBUG_TAG,"Action was CANCEL");
 return true;
 case (MotionEvent.ACTION_OUTSIDE) :
 Log.d(DEBUG_TAG,"Movement occurred outside bounds " +
 "of current screen element");
 return true;
 default :
 return super.onTouchEvent(event);
 }
}

You can then do your own processing on these events to determine if a gesture occurred. This is the kind
of processing you would have to do for a custom gesture. However, if your app uses common gestures
such as double tap, long press, fling, and so on, you can take advantage of the GestureDetector class.
GestureDetector makes it easy for you to detect common gestures without processing the individual
touch events yourself. This is discussed below in Detect Gestures.

Capturing touch events for a single view
As an alternative to onTouchEvent(), you can attach an View.OnTouchListener object to any View
object using the setOnTouchListener() method. This makes it possible to to listen for touch events
without subclassing an existing View. For example:

View myView = findViewById(R.id.my_view);
myView.setOnTouchListener(new OnTouchListener() {
 public boolean onTouch(View v, MotionEvent event) {
 // ... Respond to touch events
 return true;
 }
});

Beware of creating a listener that returns false for the ACTION_DOWN event. If you do this, the listener
will not be called for the subsequent ACTION_MOVE and ACTION_UP string of events. This is because
ACTION_DOWN is the starting point for all touch events.
If you are creating a custom View, you can override onTouchEvent(), as described above.

Detect Gestures

Detecting Common Gestures

589
Content from developer.android.com/training/gestures/detector.html through their Creative Commons Attribution 2.5 license

Android provides the GestureDetector class for detecting common gestures. Some of the gestures it
supports include onDown(), onLongPress(), onFling(), and so on. You can use GestureDetector
in conjunction with the onTouchEvent() method described above.

Detecting All Supported Gestures
When you instantiate a GestureDetectorCompat object, one of the parameters it takes is a class that
implements the GestureDetector.OnGestureListener interface.
GestureDetector.OnGestureListener notifies users when a particular touch event has occurred. To
make it possible for your GestureDetector object to receive events, you override the View or Activity's
onTouchEvent() method, and pass along all observed events to the detector instance.
In the following snippet, a return value of true from the individual on<TouchEvent> methods indicates
that you have handled the touch event. A return value of false passes events down through the view
stack until the touch has been successfully handled.
Run the following snippet to get a feel for how actions are triggered when you interact with the touch
screen, and what the contents of the MotionEvent are for each touch event. You will realize how much
data is being generated for even simple interactions.

Detecting Common Gestures

590
Content from developer.android.com/training/gestures/detector.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends Activity implements
 GestureDetector.OnGestureListener,
 GestureDetector.OnDoubleTapListener{

 private static final String DEBUG_TAG = "Gestures";
 private GestureDetectorCompat mDetector;

 // Called when the activity is first created.
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 // Instantiate the gesture detector with the
 // application context and an implementation of
 // GestureDetector.OnGestureListener
 mDetector = new GestureDetectorCompat(this,this);
 // Set the gesture detector as the double tap
 // listener.
 mDetector.setOnDoubleTapListener(this);
 }

 @Override
 public boolean onTouchEvent(MotionEvent event){
 this.mDetector.onTouchEvent(event);
 // Be sure to call the superclass implementation
 return super.onTouchEvent(event);
 }

 @Override
 public boolean onDown(MotionEvent event) {
 Log.d(DEBUG_TAG,"onDown: " + event.toString());
 return true;
 }

 @Override
 public boolean onFling(MotionEvent event1, MotionEvent event2,
 float velocityX, float velocityY) {
 Log.d(DEBUG_TAG, "onFling: " + event1.toString()+event2.toString());
 return true;
 }

 @Override
 public void onLongPress(MotionEvent event) {
 Log.d(DEBUG_TAG, "onLongPress: " + event.toString());
 }

 @Override
 public boolean onScroll(MotionEvent e1, MotionEvent e2, float distanceX,
 float distanceY) {
 Log.d(DEBUG_TAG, "onScroll: " + e1.toString()+e2.toString());
 return true;
 }

 @Override
 public void onShowPress(MotionEvent event) {
 Log.d(DEBUG_TAG, "onShowPress: " + event.toString());
 }

 @Override
 public boolean onSingleTapUp(MotionEvent event) {

Detecting Common Gestures

591
Content from developer.android.com/training/gestures/detector.html through their Creative Commons Attribution 2.5 license

 Log.d(DEBUG_TAG, "onSingleTapUp: " + event.toString());
 return true;
 }

 @Override
 public boolean onDoubleTap(MotionEvent event) {
 Log.d(DEBUG_TAG, "onDoubleTap: " + event.toString());
 return true;
 }

 @Override
 public boolean onDoubleTapEvent(MotionEvent event) {
 Log.d(DEBUG_TAG, "onDoubleTapEvent: " + event.toString());
 return true;
 }

 @Override
 public boolean onSingleTapConfirmed(MotionEvent event) {
 Log.d(DEBUG_TAG, "onSingleTapConfirmed: " + event.toString());
 return true;
 }
}

Detecting a Subset of Supported Gestures
If you only want to process a few gestures, you can extend
GestureDetector.SimpleOnGestureListener instead of implementing the
GestureDetector.OnGestureListener interface.
GestureDetector.SimpleOnGestureListener provides an implementation for all of the
on<TouchEvent> methods by returning false for all of them. Thus you can override only the methods
you care about. For example, the snippet below creates a class that extends
GestureDetector.SimpleOnGestureListener and overrides onFling() and onDown().
Whether or not you use GestureDetector.OnGestureListener, it's best practice to implement an
onDown() method that returns true. This is because all gestures begin with an onDown() message. If
you return false from onDown(), as GestureDetector.SimpleOnGestureListener does by
default, the system assumes that you want to ignore the rest of the gesture, and the other methods of
GestureDetector.OnGestureListener never get called. This has the potential to cause unexpected
problems in your app. The only time you should return false from onDown() is if you truly want to ignore
an entire gesture.

Detecting Common Gestures

592
Content from developer.android.com/training/gestures/detector.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends Activity {

 private GestureDetectorCompat mDetector;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 mDetector = new GestureDetectorCompat(this, new MyGestureListener());
 }

 @Override
 public boolean onTouchEvent(MotionEvent event){
 this.mDetector.onTouchEvent(event);
 return super.onTouchEvent(event);
 }

 class MyGestureListener extends GestureDetector.SimpleOnGestureListener {
 private static final String DEBUG_TAG = "Gestures";

 @Override
 public boolean onDown(MotionEvent event) {
 Log.d(DEBUG_TAG,"onDown: " + event.toString());
 return true;
 }

 @Override
 public boolean onFling(MotionEvent event1, MotionEvent event2,
 float velocityX, float velocityY) {
 Log.d(DEBUG_TAG, "onFling: " + event1.toString()+event2.toString());
 return true;
 }
 }
}

Tracking Movement

593
Content from developer.android.com/training/gestures/movement.html through their Creative Commons Attribution 2.5 license

172. Tracking Movement
Content from developer.android.com/training/gestures/movement.html through their Creative Commons Attribution 2.5 license

This lesson describes how to track movement in
touch events.
A new onTouchEvent() is triggered with an
ACTION_MOVE event whenever the current touch
contact position, pressure, or size changes. As
described in Detecting Common Gestures, all of
these events are recorded in the MotionEvent
parameter of onTouchEvent().
Because finger-based touch isn't always the most
precise form of interaction, detecting touch events
is often based more on movement than on simple
contact. To help apps distinguish between
movement-based gestures (such as a swipe) and
non-movement gestures (such as a single tap),
Android includes the notion of "touch slop." Touch
slop refers to the distance in pixels a user's touch
can wander before the gesture is interpreted as a
movement-based gesture. For more discussion of this topic, see Managing Touch Events in a ViewGroup.
There are several different ways to track movement in a gesture, depending on the needs of your
application. For example:

• The starting and ending position of a pointer (for example, move an on-screen object from point A
to point B).

• The direction the pointer is traveling in, as determined by the x and y coordinates.
• History. You can find the size of a gesture's history by calling the MotionEvent method

getHistorySize(). You can then obtain the positions, sizes, time, and pressures of each of
the historical events by using the motion event's getHistorical<Value> methods. History is
useful when rendering a trail of the user's finger, such as for touch drawing. See the
MotionEvent reference for details.

• The velocity of the pointer as it moves across the touch screen.

Track Velocity
You could have a movement-based gesture that is simply based on the distance and/or direction the
pointer traveled. But velocity often is a determining factor in tracking a gesture's characteristics or even
deciding whether the gesture occurred. To make velocity calculation easier, Android provides the
VelocityTracker class and the VelocityTrackerCompat class in the Support Library.
VelocityTracker helps you track the velocity of touch events. This is useful for gestures in which
velocity is part of the criteria for the gesture, such as a fling.
Here is a simple example that illustrates the purpose of the methods in the VelocityTracker API:

This lesson teaches you to
• Track Velocity
You should also read

• Input Events API Guide
• Sensors Overview
• Making the View Interactive
• Design Guide for Gestures
• Design Guide for Touch Feedback

Try it out
Download the sample
InteractiveChart.zip

Tracking Movement

594
Content from developer.android.com/training/gestures/movement.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends Activity {
 private static final String DEBUG_TAG = "Velocity";
 ...
 private VelocityTracker mVelocityTracker = null;
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 int index = event.getActionIndex();
 int action = event.getActionMasked();
 int pointerId = event.getPointerId(index);

 switch(action) {
 case MotionEvent.ACTION_DOWN:
 if(mVelocityTracker == null) {
 // Retrieve a new VelocityTracker object to watch the velocity of a
motion.
 mVelocityTracker = VelocityTracker.obtain();
 }
 else {
 // Reset the velocity tracker back to its initial state.
 mVelocityTracker.clear();
 }
 // Add a user's movement to the tracker.
 mVelocityTracker.addMovement(event);
 break;
 case MotionEvent.ACTION_MOVE:
 mVelocityTracker.addMovement(event);
 // When you want to determine the velocity, call
 // computeCurrentVelocity(). Then call getXVelocity()
 // and getYVelocity() to retrieve the velocity for each pointer ID.
 mVelocityTracker.computeCurrentVelocity(1000);
 // Log velocity of pixels per second
 // Best practice to use VelocityTrackerCompat where possible.
 Log.d("", "X velocity: " +
 VelocityTrackerCompat.getXVelocity(mVelocityTracker,
 pointerId));
 Log.d("", "Y velocity: " +
 VelocityTrackerCompat.getYVelocity(mVelocityTracker,
 pointerId));
 break;
 case MotionEvent.ACTION_UP:
 case MotionEvent.ACTION_CANCEL:
 // Return a VelocityTracker object back to be re-used by others.
 mVelocityTracker.recycle();
 break;
 }
 return true;
 }
}

Note: Note that you should calculate velocity after an ACTION_MOVE event, not after ACTION_UP. After an
ACTION_UP, the X and Y velocities will be 0.

Animating a Scroll Gesture

595
Content from developer.android.com/training/gestures/scroll.html through their Creative Commons Attribution 2.5 license

173. Animating a Scroll Gesture
Content from developer.android.com/training/gestures/scroll.html through their Creative Commons Attribution 2.5 license

In Android, scrolling is typically achieved by using
the ScrollView class. Any standard layout that
might extend beyond the bounds of its container
should be nested in a ScrollView to provide a
scrollable view that's managed by the framework.
Implementing a custom scroller should only be
necessary for special scenarios. This lesson
describes such a scenario: displaying a scrolling
effect in response to touch gestures using
scrollers.
You can use scrollers (Scroller or
OverScroller) to collect the data you need to
produce a scrolling animation in response to a
touch event. They are similar, but OverScroller
includes methods for indicating to users that
they've reached the content edges after a pan or
fling gesture. The InteractiveChart sample
uses the EdgeEffect class (actually the
EdgeEffectCompat class) to display a "glow"
effect when users reach the content edges.
Note: We recommend that you use OverScroller rather than Scroller for scrolling animations.
OverScroller provides the best backward compatibility with older devices.
Also note that you generally only need to use scrollers when implementing scrolling yourself. ScrollView
and HorizontalScrollView do all of this for you if you nest your layout within them.
A scroller is used to animate scrolling over time, using platform-standard scrolling physics (friction,
velocity, etc.). The scroller itself doesn't actually draw anything. Scrollers track scroll offsets for you over
time, but they don't automatically apply those positions to your view. It's your responsibility to get and apply
new coordinates at a rate that will make the scrolling animation look smooth.

Understand Scrolling Terminology
"Scrolling" is a word that can take on different meanings in Android, depending on the context.
Scrolling is the general process of moving the viewport (that is, the 'window' of content you're looking at).
When scrolling is in both the x and y axes, it's called panning. The sample application provided with this
class, InteractiveChart, illustrates two different types of scrolling, dragging and flinging:

• Dragging is the type of scrolling that occurs when a user drags her finger across the touch
screen. Simple dragging is often implemented by overriding onScroll() in
GestureDetector.OnGestureListener. For more discussion of dragging, see Dragging and
Scaling.

• Flinging is the type of scrolling that occurs when a user drags and lifts her finger quickly. After
the user lifts her finger, you generally want to keep scrolling (moving the viewport), but decelerate
until the viewport stops moving. Flinging can be implemented by overriding onFling() in
GestureDetector.OnGestureListener, and by using a scroller object. This is the use case
that is the topic of this lesson.

This lesson teaches you to
• Understand Scrolling Terminology
• Implement Touch-Based Scrolling
You should also read

• Input Events API Guide
• Sensors Overview
• Making the View Interactive
• Design Guide for Gestures
• Design Guide for Touch Feedback

Try it out
Download the sample
InteractiveChart.zip

Animating a Scroll Gesture

596
Content from developer.android.com/training/gestures/scroll.html through their Creative Commons Attribution 2.5 license

It's common to use scroller objects in conjunction with a fling gesture, but they can be used in pretty much
any context where you want the UI to display scrolling in response to a touch event. For example, you
could override onTouchEvent() to process touch events directly, and produce a scrolling effect or a
"snapping to page" animation in response to those touch events.

Implement Touch-Based Scrolling
This section describes how to use a scroller. The snippet shown below comes from the
InteractiveChart sample provided with this class. It uses a GestureDetector, and overrides the
GestureDetector.SimpleOnGestureListener method onFling(). It uses OverScroller to
track the fling gesture. If the user reaches the content edges after the fling gesture, the app displays a
"glow" effect.
Note: The InteractiveChart sample app displays a chart that you can zoom, pan, scroll, and so on. In
the following snippet, mContentRect represents the rectangle coordinates within the view that the chart
will be drawn into. At any given time, a subset of the total chart domain and range are drawn into this
rectangular area. mCurrentViewport represents the portion of the chart that is currently visible in the
screen. Because pixel offsets are generally treated as integers, mContentRect is of the type Rect.
Because the graph domain and range are decimal/float values, mCurrentViewport is of the type RectF.
The first part of the snippet shows the implementation of onFling():

Animating a Scroll Gesture

597
Content from developer.android.com/training/gestures/scroll.html through their Creative Commons Attribution 2.5 license

// The current viewport. This rectangle represents the currently visible
// chart domain and range. The viewport is the part of the app that the
// user manipulates via touch gestures.
private RectF mCurrentViewport =
 new RectF(AXIS_X_MIN, AXIS_Y_MIN, AXIS_X_MAX, AXIS_Y_MAX);

// The current destination rectangle (in pixel coordinates) into which the
// chart data should be drawn.
private Rect mContentRect;

private OverScroller mScroller;
private RectF mScrollerStartViewport;
...
private final GestureDetector.SimpleOnGestureListener mGestureListener
 = new GestureDetector.SimpleOnGestureListener() {
 @Override
 public boolean onDown(MotionEvent e) {
 // Initiates the decay phase of any active edge effects.
 releaseEdgeEffects();
 mScrollerStartViewport.set(mCurrentViewport);
 // Aborts any active scroll animations and invalidates.
 mScroller.forceFinished(true);
 ViewCompat.postInvalidateOnAnimation(InteractiveLineGraphView.this);
 return true;
 }
 ...
 @Override
 public boolean onFling(MotionEvent e1, MotionEvent e2,
 float velocityX, float velocityY) {
 fling((int) -velocityX, (int) -velocityY);
 return true;
 }
};

private void fling(int velocityX, int velocityY) {
 // Initiates the decay phase of any active edge effects.
 releaseEdgeEffects();
 // Flings use math in pixels (as opposed to math based on the viewport).
 Point surfaceSize = computeScrollSurfaceSize();
 mScrollerStartViewport.set(mCurrentViewport);
 int startX = (int) (surfaceSize.x * (mScrollerStartViewport.left -
 AXIS_X_MIN) / (
 AXIS_X_MAX - AXIS_X_MIN));
 int startY = (int) (surfaceSize.y * (AXIS_Y_MAX -
 mScrollerStartViewport.bottom) / (
 AXIS_Y_MAX - AXIS_Y_MIN));
 // Before flinging, aborts the current animation.
 mScroller.forceFinished(true);
 // Begins the animation
 mScroller.fling(
 // Current scroll position
 startX,
 startY,
 velocityX,
 velocityY,
 /*
 * Minimum and maximum scroll positions. The minimum scroll
 * position is generally zero and the maximum scroll position
 * is generally the content size less the screen size. So if the
 * content width is 1000 pixels and the screen width is 200

Animating a Scroll Gesture

598
Content from developer.android.com/training/gestures/scroll.html through their Creative Commons Attribution 2.5 license

 * pixels, the maximum scroll offset should be 800 pixels.
 */
 0, surfaceSize.x - mContentRect.width(),
 0, surfaceSize.y - mContentRect.height(),
 // The edges of the content. This comes into play when using
 // the EdgeEffect class to draw "glow" overlays.
 mContentRect.width() / 2,
 mContentRect.height() / 2);
 // Invalidates to trigger computeScroll()
 ViewCompat.postInvalidateOnAnimation(this);
}

When onFling() calls postInvalidateOnAnimation(), it triggers computeScroll() to update the
values for x and y. This is typically be done when a view child is animating a scroll using a scroller object,
as in this example.
Most views pass the scroller object's x and y position directly to scrollTo(). The following
implementation of computeScroll() takes a different approach—it calls computeScrollOffset() to
get the current location of x and y. When the criteria for displaying an overscroll "glow" edge effect are met
(the display is zoomed in, x or y is out of bounds, and the app isn't already showing an overscroll), the
code sets up the overscroll glow effect and calls postInvalidateOnAnimation() to trigger an
invalidate on the view:

Animating a Scroll Gesture

599
Content from developer.android.com/training/gestures/scroll.html through their Creative Commons Attribution 2.5 license

// Edge effect / overscroll tracking objects.
private EdgeEffectCompat mEdgeEffectTop;
private EdgeEffectCompat mEdgeEffectBottom;
private EdgeEffectCompat mEdgeEffectLeft;
private EdgeEffectCompat mEdgeEffectRight;

private boolean mEdgeEffectTopActive;
private boolean mEdgeEffectBottomActive;
private boolean mEdgeEffectLeftActive;
private boolean mEdgeEffectRightActive;

@Override
public void computeScroll() {
 super.computeScroll();

 boolean needsInvalidate = false;

 // The scroller isn't finished, meaning a fling or programmatic pan
 // operation is currently active.
 if (mScroller.computeScrollOffset()) {
 Point surfaceSize = computeScrollSurfaceSize();
 int currX = mScroller.getCurrX();
 int currY = mScroller.getCurrY();

 boolean canScrollX = (mCurrentViewport.left > AXIS_X_MIN
 || mCurrentViewport.right < AXIS_X_MAX);
 boolean canScrollY = (mCurrentViewport.top > AXIS_Y_MIN
 || mCurrentViewport.bottom < AXIS_Y_MAX);

 /*
 * If you are zoomed in and currX or currY is
 * outside of bounds and you're not already
 * showing overscroll, then render the overscroll
 * glow edge effect.
 */
 if (canScrollX
 && currX < 0
 && mEdgeEffectLeft.isFinished()
 && !mEdgeEffectLeftActive) {
 mEdgeEffectLeft.onAbsorb((int)
 OverScrollerCompat.getCurrVelocity(mScroller));
 mEdgeEffectLeftActive = true;
 needsInvalidate = true;
 } else if (canScrollX
 && currX > (surfaceSize.x - mContentRect.width())
 && mEdgeEffectRight.isFinished()
 && !mEdgeEffectRightActive) {
 mEdgeEffectRight.onAbsorb((int)
 OverScrollerCompat.getCurrVelocity(mScroller));
 mEdgeEffectRightActive = true;
 needsInvalidate = true;
 }

 if (canScrollY
 && currY < 0
 && mEdgeEffectTop.isFinished()
 && !mEdgeEffectTopActive) {
 mEdgeEffectTop.onAbsorb((int)
 OverScrollerCompat.getCurrVelocity(mScroller));
 mEdgeEffectTopActive = true;

Animating a Scroll Gesture

600
Content from developer.android.com/training/gestures/scroll.html through their Creative Commons Attribution 2.5 license

 needsInvalidate = true;
 } else if (canScrollY
 && currY > (surfaceSize.y - mContentRect.height())
 && mEdgeEffectBottom.isFinished()
 && !mEdgeEffectBottomActive) {
 mEdgeEffectBottom.onAbsorb((int)
 OverScrollerCompat.getCurrVelocity(mScroller));
 mEdgeEffectBottomActive = true;
 needsInvalidate = true;
 }
 ...
 }

Here is the section of the code that performs the actual zoom:

// Custom object that is functionally similar to Scroller
Zoomer mZoomer;
private PointF mZoomFocalPoint = new PointF();
...

// If a zoom is in progress (either programmatically or via double
// touch), performs the zoom.
if (mZoomer.computeZoom()) {
 float newWidth = (1f - mZoomer.getCurrZoom()) *
 mScrollerStartViewport.width();
 float newHeight = (1f - mZoomer.getCurrZoom()) *
 mScrollerStartViewport.height();
 float pointWithinViewportX = (mZoomFocalPoint.x -
 mScrollerStartViewport.left)
 / mScrollerStartViewport.width();
 float pointWithinViewportY = (mZoomFocalPoint.y -
 mScrollerStartViewport.top)
 / mScrollerStartViewport.height();
 mCurrentViewport.set(
 mZoomFocalPoint.x - newWidth * pointWithinViewportX,
 mZoomFocalPoint.y - newHeight * pointWithinViewportY,
 mZoomFocalPoint.x + newWidth * (1 - pointWithinViewportX),
 mZoomFocalPoint.y + newHeight * (1 - pointWithinViewportY));
 constrainViewport();
 needsInvalidate = true;
}
if (needsInvalidate) {
 ViewCompat.postInvalidateOnAnimation(this);
}

This is the computeScrollSurfaceSize() method that's called in the above snippet. It computes the
current scrollable surface size, in pixels. For example, if the entire chart area is visible, this is simply the
current size of mContentRect. If the chart is zoomed in 200% in both directions, the returned size will be
twice as large horizontally and vertically.

private Point computeScrollSurfaceSize() {
 return new Point(
 (int) (mContentRect.width() * (AXIS_X_MAX - AXIS_X_MIN)
 / mCurrentViewport.width()),
 (int) (mContentRect.height() * (AXIS_Y_MAX - AXIS_Y_MIN)
 / mCurrentViewport.height()));
}

Animating a Scroll Gesture

601
Content from developer.android.com/training/gestures/scroll.html through their Creative Commons Attribution 2.5 license

For another example of scroller usage, see the source code for the ViewPager class. It scrolls in
response to flings, and uses scrolling to implement the "snapping to page" animation.

Handling Multi-Touch Gestures

602
Content from developer.android.com/training/gestures/multi.html through their Creative Commons Attribution 2.5 license

174. Handling Multi-Touch Gestures
Content from developer.android.com/training/gestures/multi.html through their Creative Commons Attribution 2.5 license

A multi-touch gesture is when multiple pointers
(fingers) touch the screen at the same time. This
lesson describes how to detect gestures that
involve multiple pointers.

Track Multiple Pointers
When multiple pointers touch the screen at the
same time, the system generates the following
touch events:

• ACTION_DOWN—For the first pointer that
touches the screen. This starts the
gesture. The pointer data for this pointer
is always at index 0 in the
MotionEvent.

• ACTION_POINTER_DOWN—For extra
pointers that enter the screen beyond the
first. The pointer data for this pointer is at
the index returned by getActionIndex().

• ACTION_MOVE—A change has happened during a press gesture.
• ACTION_POINTER_UP—Sent when a non-primary pointer goes up.
• ACTION_UP—Sent when the last pointer leaves the screen.

You keep track of individual pointers within a MotionEvent via each pointer's index and ID:

• Index: A MotionEvent effectively stores information about each pointer in an array. The index
of a pointer is its position within this array. Most of the MotionEvent methods you use to interact
with pointers take the pointer index as a parameter, not the pointer ID.

• ID: Each pointer also has an ID mapping that stays persistent across touch events to allow
tracking an individual pointer across the entire gesture.

The order in which individual pointers appear within a motion event is undefined. Thus the index of a
pointer can change from one event to the next, but the pointer ID of a pointer is guaranteed to remain
constant as long as the pointer remains active. Use the getPointerId() method to obtain a pointer's ID
to track the pointer across all subsequent motion events in a gesture. Then for successive motion events,
use the findPointerIndex() method to obtain the pointer index for a given pointer ID in that motion
event. For example:

This lesson teaches you to
• Track Multiple Pointers
• Get a MotionEvent's Action
You should also read

• Input Events API Guide
• Sensors Overview
• Making the View Interactive
• Design Guide for Gestures
• Design Guide for Touch Feedback

Try it out
Download the sample
InteractiveChart.zip

Handling Multi-Touch Gestures

603
Content from developer.android.com/training/gestures/multi.html through their Creative Commons Attribution 2.5 license

private int mActivePointerId;

public boolean onTouchEvent(MotionEvent event) {

 // Get the pointer ID
 mActivePointerId = event.getPointerId(0);

 // ... Many touch events later...

 // Use the pointer ID to find the index of the active pointer
 // and fetch its position
 int pointerIndex = event.findPointerIndex(mActivePointerId);
 // Get the pointer's current position
 float x = event.getX(pointerIndex);
 float y = event.getY(pointerIndex);
}

Get a MotionEvent's Action
You should always use the method getActionMasked() (or better yet, the compatability version
MotionEventCompat.getActionMasked()) to retrieve the action of a MotionEvent. Unlike the older
getAction() method, getActionMasked() is designed to work with multiple pointers. It returns the
masked action being performed, without including the pointer index bits. You can then use
getActionIndex() to return the index of the pointer associated with the action. This is illustrated in the
snippet below.
Note: This example uses the MotionEventCompat class. This class is in the Support Library. You
should use MotionEventCompat to provide the best support for a wide range of platforms. Note that
MotionEventCompat is not a replacement for the MotionEvent class. Rather, it provides static utility
methods to which you pass your MotionEvent object in order to receive the desired action associated
with that event.

Handling Multi-Touch Gestures

604
Content from developer.android.com/training/gestures/multi.html through their Creative Commons Attribution 2.5 license

int action = MotionEventCompat.getActionMasked(event);
// Get the index of the pointer associated with the action.
int index = MotionEventCompat.getActionIndex(event);
int xPos = -1;
int yPos = -1;

Log.d(DEBUG_TAG,"The action is " + actionToString(action));

if (event.getPointerCount() > 1) {
 Log.d(DEBUG_TAG,"Multitouch event");
 // The coordinates of the current screen contact, relative to
 // the responding View or Activity.
 xPos = (int)MotionEventCompat.getX(event, index);
 yPos = (int)MotionEventCompat.getY(event, index);

} else {
 // Single touch event
 Log.d(DEBUG_TAG,"Single touch event");
 xPos = (int)MotionEventCompat.getX(event, index);
 yPos = (int)MotionEventCompat.getY(event, index);
}
...

// Given an action int, returns a string description
public static String actionToString(int action) {
 switch (action) {

 case MotionEvent.ACTION_DOWN: return "Down";
 case MotionEvent.ACTION_MOVE: return "Move";
 case MotionEvent.ACTION_POINTER_DOWN: return "Pointer Down";
 case MotionEvent.ACTION_UP: return "Up";
 case MotionEvent.ACTION_POINTER_UP: return "Pointer Up";
 case MotionEvent.ACTION_OUTSIDE: return "Outside";
 case MotionEvent.ACTION_CANCEL: return "Cancel";
 }
 return "";
}

For more discussion of multi-touch and some examples, see the lesson Dragging and Scaling.

Dragging and Scaling

605
Content from developer.android.com/training/gestures/scale.html through their Creative Commons Attribution 2.5 license

175. Dragging and Scaling
Content from developer.android.com/training/gestures/scale.html through their Creative Commons Attribution 2.5 license

This lesson describes how to use touch gestures
to drag and scale on-screen objects, using
onTouchEvent() to intercept touch events.

Drag an Object
If you are targeting Android 3.0 or higher, you can
use the built-in drag-and-drop event listeners with
View.OnDragListener, as described in Drag
and Drop.
A common operation for a touch gesture is to use
it to drag an object across the screen. The
following snippet lets the user drag an on-screen
image. Note the following:

• In a drag (or scroll) operation, the app
has to keep track of the original pointer
(finger), even if additional fingers get
placed on the screen. For example,
imagine that while dragging the image
around, the user places a second finger on the touch screen and lifts the first finger. If your app is
just tracking individual pointers, it will regard the second pointer as the default and move the
image to that location.

• To prevent this from happening, your app needs to distinguish between the original pointer and
any follow-on pointers. To do this, it tracks the ACTION_POINTER_DOWN and
ACTION_POINTER_UP events described in Handling Multi-Touch Gestures.
ACTION_POINTER_DOWN and ACTION_POINTER_UP are passed to the onTouchEvent()
callback whenever a secondary pointer goes down or up.

• In the ACTION_POINTER_UP case, the example extracts this index and ensures that the active
pointer ID is not referring to a pointer that is no longer touching the screen. If it is, the app selects
a different pointer to be active and saves its current X and Y position. Since this saved position is
used in the ACTION_MOVE case to calculate the distance to move the onscreen object, the app
will always calculate the distance to move using data from the correct pointer.

The following snippet enables a user to drag an object around on the screen. It records the initial position
of the active pointer, calculates the distance the pointer traveled, and moves the object to the new position.
It correctly manages the possibility of additional pointers, as described above.
Notice that the snippet uses the getActionMasked() method. You should always use this method (or
better yet, the compatability version MotionEventCompat.getActionMasked()) to retrieve the action
of a MotionEvent. Unlike the older getAction() method, getActionMasked() is designed to work
with multiple pointers. It returns the masked action being performed, without including the pointer index
bits.

This lesson teaches you to
• Drag an Object
• Drag to Pan
• Use Touch to Perform Scaling
You should also read

• Input Events API Guide
• Sensors Overview
• Making the View Interactive
• Design Guide for Gestures
• Design Guide for Touch Feedback

Try it out
Download the sample
InteractiveChart.zip

Dragging and Scaling

606
Content from developer.android.com/training/gestures/scale.html through their Creative Commons Attribution 2.5 license

// The ‘active pointer’ is the one currently moving our object.
private int mActivePointerId = INVALID_POINTER_ID;

@Override
public boolean onTouchEvent(MotionEvent ev) {
 // Let the ScaleGestureDetector inspect all events.
 mScaleDetector.onTouchEvent(ev);

 final int action = MotionEventCompat.getActionMasked(ev);

 switch (action) {
 case MotionEvent.ACTION_DOWN: {
 final int pointerIndex = MotionEventCompat.getActionIndex(ev);
 final float x = MotionEventCompat.getX(ev, pointerIndex);
 final float y = MotionEventCompat.getY(ev, pointerIndex);

 // Remember where we started (for dragging)
 mLastTouchX = x;
 mLastTouchY = y;
 // Save the ID of this pointer (for dragging)
 mActivePointerId = MotionEventCompat.getPointerId(ev, 0);
 break;
 }

 case MotionEvent.ACTION_MOVE: {
 // Find the index of the active pointer and fetch its position
 final int pointerIndex =
 MotionEventCompat.findPointerIndex(ev, mActivePointerId);

 final float x = MotionEventCompat.getX(ev, pointerIndex);
 final float y = MotionEventCompat.getY(ev, pointerIndex);

 // Calculate the distance moved
 final float dx = x - mLastTouchX;
 final float dy = y - mLastTouchY;

 mPosX += dx;
 mPosY += dy;

 invalidate();

 // Remember this touch position for the next move event
 mLastTouchX = x;
 mLastTouchY = y;

 break;
 }

 case MotionEvent.ACTION_UP: {
 mActivePointerId = INVALID_POINTER_ID;
 break;
 }

 case MotionEvent.ACTION_CANCEL: {
 mActivePointerId = INVALID_POINTER_ID;
 break;
 }

 case MotionEvent.ACTION_POINTER_UP: {

Dragging and Scaling

607
Content from developer.android.com/training/gestures/scale.html through their Creative Commons Attribution 2.5 license

 final int pointerIndex = MotionEventCompat.getActionIndex(ev);
 final int pointerId = MotionEventCompat.getPointerId(ev, pointerIndex);

 if (pointerId == mActivePointerId) {
 // This was our active pointer going up. Choose a new
 // active pointer and adjust accordingly.
 final int newPointerIndex = pointerIndex == 0 ? 1 : 0;
 mLastTouchX = MotionEventCompat.getX(ev, newPointerIndex);
 mLastTouchY = MotionEventCompat.getY(ev, newPointerIndex);
 mActivePointerId = MotionEventCompat.getPointerId(ev, newPointerIndex);
 }
 break;
 }
 }
 return true;
}

Drag to Pan
The previous section showed an example of dragging an object around the screen. Another common
scenario is panning, which is when a user's dragging motion causes scrolling in both the x and y axes. The
above snippet directly intercepted the MotionEvent actions to implement dragging. The snippet in this
section takes advantage of the platform's built-in support for common gestures. It overrides onScroll()
in GestureDetector.SimpleOnGestureListener.
To provide a little more context, onScroll() is called when a user is dragging his finger to pan the
content. onScroll() is only called when a finger is down; as soon as the finger is lifted from the screen,
the gesture either ends, or a fling gesture is started (if the finger was moving with some speed just before it
was lifted). For more discussion of scrolling vs. flinging, see Animating a Scroll Gesture.
Here is the snippet for onScroll():

Dragging and Scaling

608
Content from developer.android.com/training/gestures/scale.html through their Creative Commons Attribution 2.5 license

// The current viewport. This rectangle represents the currently visible
// chart domain and range.
private RectF mCurrentViewport =
 new RectF(AXIS_X_MIN, AXIS_Y_MIN, AXIS_X_MAX, AXIS_Y_MAX);

// The current destination rectangle (in pixel coordinates) into which the
// chart data should be drawn.
private Rect mContentRect;

private final GestureDetector.SimpleOnGestureListener mGestureListener
 = new GestureDetector.SimpleOnGestureListener() {
...

@Override
public boolean onScroll(MotionEvent e1, MotionEvent e2,
 float distanceX, float distanceY) {
 // Scrolling uses math based on the viewport (as opposed to math using pixels).

 // Pixel offset is the offset in screen pixels, while viewport offset is the
 // offset within the current viewport.
 float viewportOffsetX = distanceX * mCurrentViewport.width()
 / mContentRect.width();
 float viewportOffsetY = -distanceY * mCurrentViewport.height()
 / mContentRect.height();
 ...
 // Updates the viewport, refreshes the display.
 setViewportBottomLeft(
 mCurrentViewport.left + viewportOffsetX,
 mCurrentViewport.bottom + viewportOffsetY);
 ...
 return true;
}

The implementation of onScroll() scrolls the viewport in response to the touch gesture:

/**
 * Sets the current viewport (defined by mCurrentViewport) to the given
 * X and Y positions. Note that the Y value represents the topmost pixel position,
 * and thus the bottom of the mCurrentViewport rectangle.
 */
private void setViewportBottomLeft(float x, float y) {
 /*
 * Constrains within the scroll range. The scroll range is simply the viewport
 * extremes (AXIS_X_MAX, etc.) minus the viewport size. For example, if the
 * extremes were 0 and 10, and the viewport size was 2, the scroll range would
 * be 0 to 8.
 */

 float curWidth = mCurrentViewport.width();
 float curHeight = mCurrentViewport.height();
 x = Math.max(AXIS_X_MIN, Math.min(x, AXIS_X_MAX - curWidth));
 y = Math.max(AXIS_Y_MIN + curHeight, Math.min(y, AXIS_Y_MAX));

 mCurrentViewport.set(x, y - curHeight, x + curWidth, y);

 // Invalidates the View to update the display.
 ViewCompat.postInvalidateOnAnimation(this);
}

Dragging and Scaling

609
Content from developer.android.com/training/gestures/scale.html through their Creative Commons Attribution 2.5 license

Use Touch to Perform Scaling
As discussed in Detecting Common Gestures, GestureDetector helps you detect common gestures
used by Android such as scrolling, flinging, and long press. For scaling, Android provides
ScaleGestureDetector. GestureDetector and ScaleGestureDetector can be used together
when you want a view to recognize additional gestures.
To report detected gesture events, gesture detectors use listener objects passed to their constructors.
ScaleGestureDetector uses ScaleGestureDetector.OnScaleGestureListener. Android
provides ScaleGestureDetector.SimpleOnScaleGestureListener as a helper class that you can
extend if you don’t care about all of the reported events.

Basic scaling example
Here is a snippet that illustrates the basic ingredients involved in scaling.

private ScaleGestureDetector mScaleDetector;
private float mScaleFactor = 1.f;

public MyCustomView(Context mContext){
 ...
 // View code goes here
 ...
 mScaleDetector = new ScaleGestureDetector(context, new ScaleListener());
}

@Override
public boolean onTouchEvent(MotionEvent ev) {
 // Let the ScaleGestureDetector inspect all events.
 mScaleDetector.onTouchEvent(ev);
 return true;
}

@Override
public void onDraw(Canvas canvas) {
 super.onDraw(canvas);

 canvas.save();
 canvas.scale(mScaleFactor, mScaleFactor);
 ...
 // onDraw() code goes here
 ...
 canvas.restore();
}

private class ScaleListener
 extends ScaleGestureDetector.SimpleOnScaleGestureListener {
 @Override
 public boolean onScale(ScaleGestureDetector detector) {
 mScaleFactor *= detector.getScaleFactor();

 // Don't let the object get too small or too large.
 mScaleFactor = Math.max(0.1f, Math.min(mScaleFactor, 5.0f));

 invalidate();
 return true;
 }
}

More complex scaling example

Dragging and Scaling

610
Content from developer.android.com/training/gestures/scale.html through their Creative Commons Attribution 2.5 license

Here is a more complex example from the InteractiveChart sample provided with this class. The
InteractiveChart sample supports both scrolling (panning) and scaling with multiple fingers, using the
ScaleGestureDetector "span" (getCurrentSpanX/Y) and "focus" (getFocusX/Y) features:

Dragging and Scaling

611
Content from developer.android.com/training/gestures/scale.html through their Creative Commons Attribution 2.5 license

@Override
private RectF mCurrentViewport =
 new RectF(AXIS_X_MIN, AXIS_Y_MIN, AXIS_X_MAX, AXIS_Y_MAX);
private Rect mContentRect;
private ScaleGestureDetector mScaleGestureDetector;
...
public boolean onTouchEvent(MotionEvent event) {
 boolean retVal = mScaleGestureDetector.onTouchEvent(event);
 retVal = mGestureDetector.onTouchEvent(event) || retVal;
 return retVal || super.onTouchEvent(event);
}

/**
 * The scale listener, used for handling multi-finger scale gestures.
 */
private final ScaleGestureDetector.OnScaleGestureListener mScaleGestureListener
 = new ScaleGestureDetector.SimpleOnScaleGestureListener() {
 /**
 * This is the active focal point in terms of the viewport. Could be a local
 * variable but kept here to minimize per-frame allocations.
 */
 private PointF viewportFocus = new PointF();
 private float lastSpanX;
 private float lastSpanY;

 // Detects that new pointers are going down.
 @Override
 public boolean onScaleBegin(ScaleGestureDetector scaleGestureDetector) {
 lastSpanX = ScaleGestureDetectorCompat.
 getCurrentSpanX(scaleGestureDetector);
 lastSpanY = ScaleGestureDetectorCompat.
 getCurrentSpanY(scaleGestureDetector);
 return true;
 }

 @Override
 public boolean onScale(ScaleGestureDetector scaleGestureDetector) {

 float spanX = ScaleGestureDetectorCompat.
 getCurrentSpanX(scaleGestureDetector);
 float spanY = ScaleGestureDetectorCompat.
 getCurrentSpanY(scaleGestureDetector);

 float newWidth = lastSpanX / spanX * mCurrentViewport.width();
 float newHeight = lastSpanY / spanY * mCurrentViewport.height();

 float focusX = scaleGestureDetector.getFocusX();
 float focusY = scaleGestureDetector.getFocusY();
 // Makes sure that the chart point is within the chart region.
 // See the sample for the implementation of hitTest().
 hitTest(scaleGestureDetector.getFocusX(),
 scaleGestureDetector.getFocusY(),
 viewportFocus);

 mCurrentViewport.set(
 viewportFocus.x
 - newWidth * (focusX - mContentRect.left)
 / mContentRect.width(),
 viewportFocus.y
 - newHeight * (mContentRect.bottom - focusY)

Dragging and Scaling

612
Content from developer.android.com/training/gestures/scale.html through their Creative Commons Attribution 2.5 license

 / mContentRect.height(),
 0,
 0);
 mCurrentViewport.right = mCurrentViewport.left + newWidth;
 mCurrentViewport.bottom = mCurrentViewport.top + newHeight;
 ...
 // Invalidates the View to update the display.
 ViewCompat.postInvalidateOnAnimation(InteractiveLineGraphView.this);

 lastSpanX = spanX;
 lastSpanY = spanY;
 return true;
 }
};

Managing Touch Events in a ViewGroup

613
Content from developer.android.com/training/gestures/viewgroup.html through their Creative Commons Attribution 2.5 license

176. Managing Touch Events in a ViewGroup
Content from developer.android.com/training/gestures/viewgroup.html through their Creative Commons Attribution 2.5 license

Handling touch events in a ViewGroup takes
special care, because it's common for a
ViewGroup to have children that are targets for
different touch events than the ViewGroup itself.
To make sure that each view correctly receives
the touch events intended for it, override the
onInterceptTouchEvent() method.

Intercept Touch Events in a
ViewGroup
The onInterceptTouchEvent() method is
called whenever a touch event is detected on the
surface of a ViewGroup, including on the surface
of its children. If onInterceptTouchEvent()
returns true, the MotionEvent is intercepted,
meaning it will be not be passed on to the child,
but rather to the onTouchEvent() method of the
parent.
The onInterceptTouchEvent() method gives
a parent the chance to see any touch event before its children do. If you return true from
onInterceptTouchEvent(), the child view that was previously handling touch events receives an
ACTION_CANCEL, and the events from that point forward are sent to the parent's onTouchEvent()
method for the usual handling. onInterceptTouchEvent() can also return false and simply spy on
events as they travel down the view hierarchy to their usual targets, which will handle the events with their
own onTouchEvent().
In the following snippet, the class MyViewGroup extends ViewGroup. MyViewGroup contains multiple
child views. If you drag your finger across a child view horizontally, the child view should no longer get
touch events, and MyViewGroup should handle touch events by scrolling its contents. However, if you
press buttons in the child view, or scroll the child view vertically, the parent shouldn't intercept those touch
events, because the child is the intended target. In those cases, onInterceptTouchEvent() should
return false, and MyViewGroup's onTouchEvent() won't be called.

This lesson teaches you to
• Intercept Touch Events in a ViewGroup
• Use ViewConfiguration Constants
• Extend a Child View's Touchable Area
You should also read

• Input Events API Guide
• Sensors Overview
• Making the View Interactive
• Design Guide for Gestures
• Design Guide for Touch Feedback

Try it out
Download the sample
InteractiveChart.zip

Managing Touch Events in a ViewGroup

614
Content from developer.android.com/training/gestures/viewgroup.html through their Creative Commons Attribution 2.5 license

public class MyViewGroup extends ViewGroup {

 private int mTouchSlop;

 ...

 ViewConfiguration vc = ViewConfiguration.get(view.getContext());
 mTouchSlop = vc.getScaledTouchSlop();

 ...

 @Override
 public boolean onInterceptTouchEvent(MotionEvent ev) {
 /*
 * This method JUST determines whether we want to intercept the motion.
 * If we return true, onTouchEvent will be called and we do the actual
 * scrolling there.
 */

 final int action = MotionEventCompat.getActionMasked(ev);

 // Always handle the case of the touch gesture being complete.
 if (action == MotionEvent.ACTION_CANCEL || action == MotionEvent.ACTION_UP) {
 // Release the scroll.
 mIsScrolling = false;
 return false; // Do not intercept touch event, let the child handle it
 }

 switch (action) {
 case MotionEvent.ACTION_MOVE: {
 if (mIsScrolling) {
 // We're currently scrolling, so yes, intercept the
 // touch event!
 return true;
 }

 // If the user has dragged her finger horizontally more than
 // the touch slop, start the scroll

 // left as an exercise for the reader
 final int xDiff = calculateDistanceX(ev);

 // Touch slop should be calculated using ViewConfiguration
 // constants.
 if (xDiff > mTouchSlop) {
 // Start scrolling!
 mIsScrolling = true;
 return true;
 }
 break;
 }
 ...
 }

 // In general, we don't want to intercept touch events. They should be
 // handled by the child view.
 return false;
 }

Managing Touch Events in a ViewGroup

615
Content from developer.android.com/training/gestures/viewgroup.html through their Creative Commons Attribution 2.5 license

 @Override
 public boolean onTouchEvent(MotionEvent ev) {
 // Here we actually handle the touch event (e.g. if the action is ACTION_MOVE,
 // scroll this container).
 // This method will only be called if the touch event was intercepted in
 // onInterceptTouchEvent
 ...
 }
}

Note that ViewGroup also provides a requestDisallowInterceptTouchEvent() method. The
ViewGroup calls this method when a child does not want the parent and its ancestors to intercept touch
events with onInterceptTouchEvent().

Use ViewConfiguration Constants
The above snippet uses the current ViewConfiguration to initialize a variable called mTouchSlop. You
can use the ViewConfiguration class to access common distances, speeds, and times used by the
Android system.
"Touch slop" refers to the distance in pixels a user's touch can wander before the gesture is interpreted as
scrolling. Touch slop is typically used to prevent accidental scrolling when the user is performing some
other touch operation, such as touching on-screen elements.
Two other commonly used ViewConfiguration methods are getScaledMinimumFlingVelocity()
and getScaledMaximumFlingVelocity(). These methods return the minimum and maximum velocity
(respectively) to initiate a fling, as measured in pixels per second. For example:

ViewConfiguration vc = ViewConfiguration.get(view.getContext());
private int mSlop = vc.getScaledTouchSlop();
private int mMinFlingVelocity = vc.getScaledMinimumFlingVelocity();
private int mMaxFlingVelocity = vc.getScaledMaximumFlingVelocity();

...

case MotionEvent.ACTION_MOVE: {
 ...
 float deltaX = motionEvent.getRawX() - mDownX;
 if (Math.abs(deltaX) > mSlop) {
 // A swipe occurred, do something
 }

...

case MotionEvent.ACTION_UP: {
 ...
 } if (mMinFlingVelocity <= velocityX && velocityX <= mMaxFlingVelocity
 && velocityY < velocityX) {
 // The criteria have been satisfied, do something
 }
}

Extend a Child View's Touchable Area
Android provides the TouchDelegate class to make it possible for a parent to extend the touchable area
of a child view beyond the child's bounds. This is useful when the child has to be small, but should have a
larger touch region. You can also use this approach to shrink the child's touch region if need be.

Managing Touch Events in a ViewGroup

616
Content from developer.android.com/training/gestures/viewgroup.html through their Creative Commons Attribution 2.5 license

In the following example, an ImageButton is the "delegate view" (that is, the child whose touch area the
parent will extend). Here is the layout file:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/parent_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity" >

 <ImageButton android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="@null"
 android:width="" height="" src="http://developer.android.com/@drawable/icon" />
</RelativeLayout>

The snippet below does the following:

• Gets the parent view and posts a Runnable on the UI thread. This ensures that the parent lays
out its children before calling the getHitRect() method. The getHitRect() method gets the
child's hit rectangle (touchable area) in the parent's coordinates.

• Finds the ImageButton child view and calls getHitRect() to get the bounds of the child's
touchable area.

• Extends the bounds of the ImageButton's hit rectangle.
• Instantiates a TouchDelegate, passing in the expanded hit rectangle and the ImageButton

child view as parameters.
• Sets the TouchDelegate on the parent view, such that touches within the touch delegate

bounds are routed to the child.

In its capacity as touch delegate for the ImageButton child view, the parent view will receive all touch
events. If the touch event occurred within the child's hit rectangle, the parent will pass the touch event to
the child for handling.

Managing Touch Events in a ViewGroup

617
Content from developer.android.com/training/gestures/viewgroup.html through their Creative Commons Attribution 2.5 license

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 // Get the parent view
 View parentView = findViewById(R.id.parent_layout);

 parentView.post(new Runnable() {
 // Post in the parent's message queue to make sure the parent
 // lays out its children before you call getHitRect()
 @Override
 public void run() {
 // The bounds for the delegate view (an ImageButton
 // in this example)
 Rect delegateArea = new Rect();
 ImageButton myButton = (ImageButton) findViewById(R.id.button);
 myButton.setEnabled(true);
 myButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Toast.makeText(MainActivity.this,
 "Touch occurred within ImageButton touch region.",
 Toast.LENGTH_SHORT).show();
 }
 });

 // The hit rectangle for the ImageButton
 myButton.getHitRect(delegateArea);

 // Extend the touch area of the ImageButton beyond its bounds
 // on the right and bottom.
 delegateArea.right += 100;
 delegateArea.bottom += 100;

 // Instantiate a TouchDelegate.
 // "delegateArea" is the bounds in local coordinates of
 // the containing view to be mapped to the delegate view.
 // "myButton" is the child view that should receive motion
 // events.
 TouchDelegate touchDelegate = new TouchDelegate(delegateArea,
 myButton);

 // Sets the TouchDelegate on the parent view, such that touches
 // within the touch delegate bounds are routed to the child.
 if (View.class.isInstance(myButton.getParent())) {
 ((View) myButton.getParent()).setTouchDelegate(touchDelegate);
 }
 }
 });
 }
}

Handling Keyboard Input

618
Content from developer.android.com/training/keyboard-input/index.html through their Creative Commons Attribution 2.5 license

177. Handling Keyboard Input
Content from developer.android.com/training/keyboard-input/index.html through their Creative Commons Attribution 2.5 license

The Android system shows an on-screen
keyboard—known as a soft input method—when
a text field in your UI receives focus. To provide
the best user experience, you can specify
characteristics about the type of input you expect
(such as whether it's a phone number or email
address) and how the input method should behave (such as whether it performs auto-correct for spelling
mistakes).
In addition to the on-screen input methods, Android also supports hardware keyboards, so it's important
that your app optimize its user experience for interaction that might occur through an attached keyboard.
These topics and more are discussed in the following lessons.

Lessons
Specifying the Input Method Type

Learn how to show certain soft input methods, such as those designed for phone numbers, web
addresses, or other formats. Also learn how to specify characteristics such as spelling suggestion
behavior and action buttons such as Done or Next.

Handling Input Method Visibility
Learn how to specify when to show the soft input method and how your layout should adjust to
the reduced screen space.

Supporting Keyboard Navigation
Learn how to verify that users can navigate your app using a keyboard and how to make any
necessary changes to the navigation order.

Handling Keyboard Actions
Learn how to respond directly to keyboard input for user actions.

Dependencies and prerequisites

• Android 1.6 (API Level 3) or higher

Specifying the Input Method Type

619
Content from developer.android.com/training/keyboard-input/style.html through their Creative Commons Attribution 2.5 license

178. Specifying the Input Method Type
Content from developer.android.com/training/keyboard-input/style.html through their Creative Commons Attribution 2.5 license

Every text field expects a certain type of text input,
such as an email address, phone number, or just
plain text. So it's important that you specify the
input type for each text field in your app so the
system displays the appropriate soft input method
(such as an on-screen keyboard).
Beyond the type of buttons available with an input
method, you should specify behaviors such as
whether the input method provides spelling
suggestions, capitalizes new sentences, and
replaces the carriage return button with an action
button such as a Done or Next. This lesson
shows how to specify these characteristics.

Specify the Keyboard Type
You should always declare the input method for your text fields by adding the android:inputType
attribute to the <EditText> element.

Figure 1. The phone input type.
For example, if you'd like an input method for entering a phone number, use the "phone" value:

<EditText
 android:id="@+id/phone"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:hint="@string/phone_hint"
 android:inputType="phone" />

Figure 2. The textPassword input type.
Or if the text field is for a password, use the "textPassword" value so the text field conceals the user's
input:

This lesson teaches you to
• Specify the Keyboard Type
• Enable Spelling Suggestions and Other
Behaviors
• Specify the Input Method Action
You should also read

• Text Fields

Specifying the Input Method Type

620
Content from developer.android.com/training/keyboard-input/style.html through their Creative Commons Attribution 2.5 license

<EditText
 android:id="@+id/password"
 android:hint="@string/password_hint"
 android:inputType="textPassword"
 ... />

There are several possible values documented with the android:inputType attribute and some of the
values can be combined to specify the input method appearance and additional behaviors.

Enable Spelling Suggestions and Other Behaviors

Figure 3. Adding textAutoCorrect provides auto-correction for misspellings.
The android:inputType attribute allows you to specify various behaviors for the input method. Most
importantly, if your text field is intended for basic text input (such as for a text message), you should enable
auto spelling correction with the "textAutoCorrect" value.
You can combine different behaviors and input method styles with the android:inputType attribute.
For example, here's how to create a text field that capitalizes the first word of a sentence and also auto-
corrects misspellings:

<EditText
 android:id="@+id/message"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:inputType=
 "textCapSentences|textAutoCorrect"
 ... />

Specify the Input Method Action
Most soft input methods provide a user action button in the bottom corner that's appropriate for the current
text field. By default, the system uses this button for either a Next or Done action unless your text field
allows multi-line text (such as with android:inputType="textMultiLine"), in which case the action
button is a carriage return. However, you can specify additional actions that might be more appropriate for
your text field, such as Send or Go.
To specify the keyboard action button, use the android:imeOptions attribute with an action value such
as "actionSend" or "actionSearch". For example:

Figure 4. The Send button appears when you declare android:imeOptions="actionSend".

Specifying the Input Method Type

621
Content from developer.android.com/training/keyboard-input/style.html through their Creative Commons Attribution 2.5 license

<EditText
 android:id="@+id/search"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:hint="@string/search_hint"
 android:inputType="text"
 android:imeOptions="actionSend" />

You can then listen for presses on the action button by defining a
TextView.OnEditorActionListener for the EditText element. In your listener, respond to the
appropriate IME action ID defined in the EditorInfo class, such as IME_ACTION_SEND. For example:

EditText editText = (EditText) findViewById(R.id.search);
editText.setOnEditorActionListener(new OnEditorActionListener() {
 @Override
 public boolean onEditorAction(TextView v, int actionId, KeyEvent event) {
 boolean handled = false;
 if (actionId == EditorInfo.IME_ACTION_SEND) {
 sendMessage();
 handled = true;
 }
 return handled;
 }
});

Handling Input Method Visibility

622
Content from developer.android.com/training/keyboard-input/visibility.html through their Creative Commons Attribution 2.5 license

179. Handling Input Method Visibility
Content from developer.android.com/training/keyboard-input/visibility.html through their Creative Commons Attribution 2.5 license

When input focus moves into or out of an editable
text field, Android shows or hides the input
method (such as the on-screen keyboard) as
appropriate. The system also makes decisions
about how your UI and the text field appear above
the input method. For example, when the vertical
space on the screen is constrained, the text field
might fill all space above the input method. For
most apps, these default behaviors are all that's needed.
In some cases, though, you might want to more directly control the visibility of the input method and
specify how you'd like your layout to appear when the input method is visible. This lesson explains how to
control and respond to the input method visibility.

Show the Input Method When the Activity Starts
Although Android gives focus to the first text field in your layout when the activity starts, it does not show
the input method. This behavior is appropriate because entering text might not be the primary task in the
activity. However, if entering text is indeed the primary task (such as in a login screen), then you probably
want the input method to appear by default.
To show the input method when your activity starts, add the android:windowSoftInputMode attribute
to the <activity> element with the "stateVisible" value. For example:

<application ... >
 <activity
 android:windowSoftInputMode="stateVisible" ... >
 ...
 </activity>
 ...
</application>

Note: If the user's device has an attached hardware keyboard, the soft input method does not appear.

Show the Input Method On Demand
If there is a method in your activity's lifecycle where you want to ensure that the input method is visible,
you can use the InputMethodManager to show it.
For example, the following method takes a View in which the user should type something, calls
requestFocus() to give it focus, then showSoftInput() to open the input method:

public void showSoftKeyboard(View view) {
 if (view.requestFocus()) {
 InputMethodManager imm = (InputMethodManager)
 getSystemService(Context.INPUT_METHOD_SERVICE);
 imm.showSoftInput(view, InputMethodManager.SHOW_IMPLICIT);
 }
}

Note: Once the input method is visible, you should not programmatically hide it. The system hides the
input method when the user finishes the task in the text field or the user can hide it with a system control
(such as with the Back button).

This lesson teaches you to
• Show the Input Method When the Activity
Starts
• Show the Input Method On Demand
• Specify How Your UI Should Respond

Handling Input Method Visibility

623
Content from developer.android.com/training/keyboard-input/visibility.html through their Creative Commons Attribution 2.5 license

Specify How Your UI Should Respond
When the input method appears on the screen, it reduces the amount of space available for your app's UI.
The system makes a decision as to how it should adjust the visible portion of your UI, but it might not get it
right. To ensure the best behavior for your app, you should specify how you'd like the system to display
your UI in the remaining space.
To declare your preferred treatment in an activity, use the android:windowSoftInputMode attribute in
your manifest's <activity> element with one of the "adjust" values.
For example, to ensure that the system resizes your layout to the available space—which ensures that all
of your layout content is accessible (even though it probably requires scrolling)—use "adjustResize":

<application ... >
 <activity
 android:windowSoftInputMode="adjustResize" ... >
 ...
 </activity>
 ...
</application>

You can combine the adjustment specification with the initial input method visibility specification from
above:

 <activity
 android:windowSoftInputMode="stateVisible|adjustResize" ... >
 ...
 </activity>

Specifying "adjustResize" is important if your UI includes controls that the user might need to access
immediately after or while performing text input. For example, if you use a relative layout to place a button
bar at the bottom of the screen, using "adjustResize" resizes the layout so the button bar appears
above the input method.

Supporting Keyboard Navigation

624
Content from developer.android.com/training/keyboard-input/navigation.html through their Creative Commons Attribution 2.5 license

180. Supporting Keyboard Navigation
Content from developer.android.com/training/keyboard-input/navigation.html through their Creative Commons Attribution 2.5 license

In addition to soft input methods (such as on-
screen keyboards), Android supports physical
keyboards attached to the device. A keyboard
offers not only a convenient mode for text input,
but also offers a way for users to navigate and
interact with your app. Although most hand-held
devices such as phones use touch as the primary
mode of interaction, tablets and similar devices
are growing in popularity and many users like to
attach keyboard accessories.
As more Android devices offer this kind of
experience, it's important that you optimize your app to support interaction through a keyboard. This lesson
describes how you can better support navigation with a keyboard.
Note: Supporting of directional navigation in your application is also important in ensuring that your
application is accessible to users who do not navigate using visual cues. Fully supporting directional
navigation in your application can also help you automate user interface testing with tools like uiautomator.

Test Your App
It's possible that users can already navigate your app using a keyboard, because the Android system
enables most of the necessary behaviors by default.
All interactive widgets provided by the Android framework (such as Button and EditText) are
focusable. This means users can navigate with control devices such as a D-pad or keyboard and each
widget glows or otherwise changes its appearance when it gains input focus.
To test your app:
• Install your app on a device that offers a hardware keyboard.
If you don't have a hardware device with a keyboard, connect a Bluetooth keyboard or a USB keyboard
(though not all devices support USB accessories).
You can also use the Android emulator:
• In the AVD Manager, either click New Device or select an existing profile and click Clone.
• In the window that appears, ensure that Keyboard and DPad are enabled.
• To test your app, use only the Tab key to navigate through your UI, ensuring that each UI control gets
focus as expected.
Look for any instances in which the focus moves in a way you don't expect.
• Start from the beginning of your app and instead use the direction controls (arrow keys on the keyboard)
to navigate your app.
From each focusable element in your UI, press Up, Down, Left, and Right.
Look for any instances in which the focus moves in a way you don't expect.
If you encounter any instances where navigating with the Tab key or direction controls does not do what
you expect, specify where the focus should go in your layout, as discussed in the following sections.

Handle Tab Navigation
When a user navigates your app using the keyboard Tab key, the system passes input focus between
elements based on the order in which they appear in the layout. If you use a relative layout, for example,

This lesson teaches you to
• Test Your App
• Handle Tab Navigation
• Handle Directional Navigation
You should also read

• Implementing Accessibility

Supporting Keyboard Navigation

625
Content from developer.android.com/training/keyboard-input/navigation.html through their Creative Commons Attribution 2.5 license

and the order of elements on the screen is different than the order in the file, then you might need to
manually specify the focus order.
For example, in the following layout, two buttons are aligned to the right side and a text field is aligned to
the left of the second button. In order to pass focus from the first button to the text field, then to the second
button, the layout needs to explicitly define the focus order for each of the focusable elements with the
android:nextFocusForward attribute:

<RelativeLayout ...>
 <Button
 android:id="@+id/button1"
 android:layout_alignParentTop="true"
 android:layout_alignParentRight="true"
 android:nextFocusForward="@+id/editText1"
 ... />
 <Button
 android:id="@+id/button2"
 android:layout_below="@id/button1"
 android:nextFocusForward="@+id/button1"
 ... />
 <EditText
 android:id="@id/editText1"
 android:layout_alignBottom="@+id/button2"
 android:layout_toLeftOf="@id/button2"
 android:nextFocusForward="@+id/button2"
 ... />
 ...
</RelativeLayout>

Now instead of sending focus from button1 to button2 then editText1, the focus appropriately
moves according to the appearance on the screen: from button1 to editText1 then button2.

Handle Directional Navigation
Users can also navigate your app using the arrow keys on a keyboard (the behavior is the same as when
navigating with a D-pad or trackball). The system provides a best-guess as to which view should be given
focus in a given direction based on the layout of the views on screen. Sometimes, however, the system
might guess wrong.
If the system does not pass focus to the appropriate view when navigating in a given direction, specify
which view should receive focus with the following attributes:

• android:nextFocusUp
• android:nextFocusDown
• android:nextFocusLeft
• android:nextFocusRight

Each attribute designates the next view to receive focus when the user navigates in that direction, as
specified by the view ID. For example:

Supporting Keyboard Navigation

626
Content from developer.android.com/training/keyboard-input/navigation.html through their Creative Commons Attribution 2.5 license

<Button
 android:id="@+id/button1"
 android:nextFocusRight="@+id/button2"
 android:nextFocusDown="@+id/editText1"
 ... />
<Button
 android:id="@id/button2"
 android:nextFocusLeft="@id/button1"
 android:nextFocusDown="@id/editText1"
 ... />
<EditText
 android:id="@id/editText1"
 android:nextFocusUp="@id/button1"
 ... />

Handling Keyboard Actions

627
Content from developer.android.com/training/keyboard-input/commands.html through their Creative Commons Attribution 2.5 license

181. Handling Keyboard Actions
Content from developer.android.com/training/keyboard-input/commands.html through their Creative Commons Attribution 2.5 license

When the user gives focus to an editable text view
such as an EditText element and the user has a
hardware keyboard attached, all input is handled
by the system. If, however, you'd like to intercept
or directly handle the keyboard input yourself, you
can do so by implementing callback methods from the KeyEvent.Callback interface, such as
onKeyDown() and onKeyMultiple().
Both the Activity and View class implement the KeyEvent.Callback interface, so you should
generally override the callback methods in your extension of these classes as appropriate.
Note: When handling keyboard events with the KeyEvent class and related APIs, you should expect that
such keyboard events come only from a hardware keyboard. You should never rely on receiving key
events for any key on a soft input method (an on-screen keyboard).

Handle Single Key Events
To handle an individual key press, implement onKeyDown() or onKeyUp() as appropriate. Usually, you
should use onKeyUp() if you want to be sure that you receive only one event. If the user presses and
holds the button, then onKeyDown() is called multiple times.
For example, this implementation responds to some keyboard keys to control a game:

@Override
public boolean onKeyUp(int keyCode, KeyEvent event) {
 switch (keyCode) {
 case KeyEvent.KEYCODE_D:
 moveShip(MOVE_LEFT);
 return true;
 case KeyEvent.KEYCODE_F:
 moveShip(MOVE_RIGHT);
 return true;
 case KeyEvent.KEYCODE_J:
 fireMachineGun();
 return true;
 case KeyEvent.KEYCODE_K:
 fireMissile();
 return true;
 default:
 return super.onKeyUp(keyCode, event);
 }
}

Handle Modifier Keys
To respond to modifier key events such as when a key is combined with Shift or Control, you can query the
KeyEvent that's passed to the callback method. Several methods provide information about modifier keys
such as getModifiers() and getMetaState(). However, the simplest solution is to check whether
the exact modifier key you care about is being pressed with methods such as isShiftPressed() and
isCtrlPressed().
For example, here's the onKeyDown() implementation again, with some extra handling for when the Shift
key is held down with one of the keys:

This lesson teaches you to
• Handle Single Key Events
• Handle Modifier Keys

Handling Keyboard Actions

628
Content from developer.android.com/training/keyboard-input/commands.html through their Creative Commons Attribution 2.5 license

@Override
public boolean onKeyUp(int keyCode, KeyEvent event) {
 switch (keyCode) {
 ...
 case KeyEvent.KEYCODE_J:
 if (event.isShiftPressed()) {
 fireLaser();
 } else {
 fireMachineGun();
 }
 return true;
 case KeyEvent.KEYCODE_K:
 if (event.isShiftPressed()) {
 fireSeekingMissle();
 } else {
 fireMissile();
 }
 return true;
 default:
 return super.onKeyUp(keyCode, event);
 }
}

Best Practices for Background Jobs

629
Content from developer.android.com/training/best-background.html through their Creative Commons Attribution 2.5 license

182. Best Practices for Background Jobs
Content from developer.android.com/training/best-background.html through their Creative Commons Attribution 2.5 license
These classes show you how to run jobs in the background to boost your application's performance and
minimize its drain on the battery.

Running in a Background Service

630
Content from developer.android.com/training/run-background-service/index.html through their Creative Commons Attribution 2.5 license

183. Running in a Background Service
Content from developer.android.com/training/run-background-service/index.html through their Creative Commons Attribution 2.5 license

Unless you specify otherwise, most of the
operations you do in an app run in the foreground
on a special thread called the UI thread. This can
cause problems, because long-running operations
will interfere with the responsiveness of your user
interface. This annoys your users, and can even
cause system errors. To avoid this, the Android
framework offers several classes that help you off-
load operations onto a separate thread running in
the background. The most useful of these is
IntentService.
This class describes how to implement an
IntentService, send it work requests, and
report its results to other components.

Lessons
Creating a Background Service

Learn how to create an IntentService.
Sending Work Requests to the Background Service

Learn how to send work requests to an IntentService.
Reporting Work Status

Learn how to use an Intent and a LocalBroadcastManager to communicate the status of a
work request from an IntentService to the Activity that sent the request.

Dependencies and prerequisites

• Android 1.6 (API Level 4) or higher

You should also read

• Extending the IntentService Class
• Intents and Intent Filters

Try it out
Download the sample
ThreadSample.zip

Creating a Background Service

631
Content from developer.android.com/training/run-background-service/create-service.html through their Creative Commons Attribution 2.5 license

184. Creating a Background Service
Content from developer.android.com/training/run-background-service/create-service.html through their Creative Commons Attribution 2.5 license

The IntentService class provides a
straightforward structure for running an operation
on a single background thread. This allows it to
handle long-running operations without affecting
your user interface's responsiveness. Also, an
IntentService isn't affected by most user
interface lifecycle events, so it continues to run in
circumstances that would shut down an
AsyncTask
An IntentService has a few limitations:

• It can't interact directly with your user
interface. To put its results in the UI, you
have to send them to an Activity.

• Work requests run sequentially. If an
operation is running in an IntentService, and you send it another request, the request waits
until the first operation is finished.

• An operation running on an IntentService can't be interrupted.

However, in most cases an IntentService is the preferred way to simple background operations.
This lesson shows you how to create your own subclass of IntentService. The lesson also shows you
how to create the required callback method onHandleIntent(). Finally, the lesson describes shows you
how to define the IntentService in your manifest file.

Create an IntentService
To create an IntentService component for your app, define a class that extends IntentService, and
within it, define a method that overrides onHandleIntent(). For example:

public class RSSPullService extends IntentService {
 @Override
 protected void onHandleIntent(Intent workIntent) {
 // Gets data from the incoming Intent
 String dataString = workIntent.getDataString();
 ...
 // Do work here, based on the contents of dataString
 ...
 }
}

Notice that the other callbacks of a regular Service component, such as onStartCommand() are
automatically invoked by IntentService. In an IntentService, you should avoid overriding these
callbacks.

Define the IntentService in the Manifest
An IntentService also needs an entry in your application manifest. Provide this entry as a <service>
element that's a child of the <application> element:

This lesson teaches you to
• Create an IntentService
• Define the IntentService in the Manifest
You should also read

• Extending the IntentService Class
• Intents and Intent Filters

Try it out
Download the sample
ThreadSample.zip

Creating a Background Service

632
Content from developer.android.com/training/run-background-service/create-service.html through their Creative Commons Attribution 2.5 license

 <application
 android:icon="@drawable/icon"
 android:label="@string/app_name">
 ...
 <!--
 Because android:exported is set to "false",
 the service is only available to this app.
 -->
 <service
 android:name=".RSSPullService"
 android:exported="false"/>
 ...
 <application/>

The attribute android:name specifies the class name of the IntentService.
Notice that the <service> element doesn't contain an intent filter. The Activity that sends work
requests to the service uses an explicit Intent, so no filter is needed. This also means that only
components in the same app or other applications with the same user ID can access the service.
Now that you have the basic IntentService class, you can send work requests to it with Intent
objects. The procedure for constructing these objects and sending them to your IntentService is
described in the next lesson.

Sending Work Requests to the Background Service

633
Content from developer.android.com/training/run-background-service/send-request.html through their Creative Commons Attribution 2.5 license

185. Sending Work Requests to the Background Service
Content from developer.android.com/training/run-background-service/send-request.html through their Creative Commons Attribution 2.5 license

The previous lesson showed you how to create an
IntentService class. This lesson shows you
how to trigger the IntentService to run an
operation by sending it an Intent. This Intent
can optionally contain data for the
IntentService to process. You can send an
Intent to an IntentService from any point in
an Activity or Fragment

Create and Send a Work Request
to an IntentService
To create a work request and send it to an
IntentService, create an explicit Intent, add
work request data to it, and send it to
IntentService by calling startService().
The next snippets demonstrate this:
• Create a new, explicit Intent for the IntentService called RSSPullService.

/*
 * Creates a new Intent to start the RSSPullService
 * IntentService. Passes a URI in the
 * Intent's "data" field.
 */
mServiceIntent = new Intent(getActivity(), RSSPullService.class);
mServiceIntent.setData(Uri.parse(dataUrl));

•
• Call startService()

// Starts the IntentService
getActivity().startService(mServiceIntent);

•
Notice that you can send the work request from anywhere in an Activity or Fragment. For example, if you
need to get user input first, you can send the request from a callback that responds to a button click or
similar gesture.
Once you call startService(), the IntentService does the work defined in its onHandleIntent()
method, and then stops itself.
The next step is to report the results of the work request back to the originating Activity or Fragment. The
next lesson shows you how to do this with a BroadcastReceiver.

This lesson teaches you to
• Create and Send a Work Request to an
IntentService
You should also read

• Intents and Intent Filters

Try it out
Download the sample
ThreadSample.zip

Reporting Work Status

634
Content from developer.android.com/training/run-background-service/report-status.html through their Creative Commons Attribution 2.5 license

186. Reporting Work Status
Content from developer.android.com/training/run-background-service/report-status.html through their Creative Commons Attribution 2.5 license

This lesson shows you how to report the status of
a work request run in a background service to the
component that sent the request. This allows you,
for example, to report the status of the request in
an Activity object's UI. The recommended way
to send and receive status is to use a
LocalBroadcastManager, which limits
broadcast Intent objects to components in your
own app.

Report Status From an
IntentService
To send the status of a work request in an
IntentService to other components, first
create an Intent that contains the status in its
extended data. As an option, you can add an
action and data URI to this Intent.
Next, send the Intent by calling
LocalBroadcastManager.sendBroadcast(). This sends the Intent to any component in your
application that has registered to receive it. To get an instance of LocalBroadcastManager, call
getInstance().
For example:

public final class Constants {
 ...
 // Defines a custom Intent action
 public static final String BROADCAST_ACTION =
 "com.example.android.threadsample.BROADCAST";
 ...
 // Defines the key for the status "extra" in an Intent
 public static final String EXTENDED_DATA_STATUS =
 "com.example.android.threadsample.STATUS";
 ...
}
public class RSSPullService extends IntentService {
...
 /*
 * Creates a new Intent containing a Uri object
 * BROADCAST_ACTION is a custom Intent action
 */
 Intent localIntent =
 new Intent(Constants.BROADCAST_ACTION)
 // Puts the status into the Intent
 .putExtra(Constants.EXTENDED_DATA_STATUS, status);
 // Broadcasts the Intent to receivers in this app.
 LocalBroadcastManager.getInstance(this).sendBroadcast(localIntent);
...
}

The next step is to handle the incoming broadcast Intent objects in the component that sent the original
work request.

This lesson teaches you to
• Report Status From an IntentService
• Receive Status Broadcasts from an
IntentService
You should also read

• Intents and Intent Filters
• The section Broadcast receivers in

the Application Components API
guide.

Try it out
Download the sample
ThreadSample.zip

Reporting Work Status

635
Content from developer.android.com/training/run-background-service/report-status.html through their Creative Commons Attribution 2.5 license

Receive Status Broadcasts from an IntentService
To receive broadcast Intent objects, use a subclass of BroadcastReceiver. In the subclass,
implement the BroadcastReceiver.onReceive() callback method, which
LocalBroadcastManager invokes when it receives an Intent. LocalBroadcastManager passes
the incoming Intent to BroadcastReceiver.onReceive().
For example:

// Broadcast receiver for receiving status updates from the IntentService
private class ResponseReceiver extends BroadcastReceiver
{
 // Prevents instantiation
 private DownloadStateReceiver() {
 }
 // Called when the BroadcastReceiver gets an Intent it's registered to receive
 @
 public void onReceive(Context context, Intent intent) {
...
 /*
 * Handle Intents here.
 */
...
 }
}

Once you've defined the BroadcastReceiver, you can define filters for it that match specific actions,
categories, and data. To do this, create an IntentFilter. This first snippet shows how to define the
filter:

// Class that displays photos
public class DisplayActivity extends FragmentActivity {
 ...
 public void onCreate(Bundle stateBundle) {
 ...
 super.onCreate(stateBundle);
 ...
 // The filter's action is BROADCAST_ACTION
 IntentFilter mStatusIntentFilter = new IntentFilter(
 Constants.BROADCAST_ACTION);

 // Adds a data filter for the HTTP scheme
 mStatusIntentFilter.addDataScheme("http");
 ...

To register the BroadcastReceiver and the IntentFilter with the system, get an instance of
LocalBroadcastManager and call its registerReceiver() method. This next snippet shows how to
register the BroadcastReceiver and its IntentFilter:

 // Instantiates a new DownloadStateReceiver
 DownloadStateReceiver mDownloadStateReceiver =
 new DownloadStateReceiver();
 // Registers the DownloadStateReceiver and its intent filters
 LocalBroadcastManager.getInstance(this).registerReceiver(
 mDownloadStateReceiver,
 mStatusIntentFilter);
 ...

Reporting Work Status

636
Content from developer.android.com/training/run-background-service/report-status.html through their Creative Commons Attribution 2.5 license

A single BroadcastReceiver can handle more than one type of broadcast Intent object, each with its
own action. This feature allows you to run different code for each action, without having to define a
separate BroadcastReceiver for each action. To define another IntentFilter for the same
BroadcastReceiver, create the IntentFilter and repeat the call to registerReceiver(). For
example:

 /*
 * Instantiates a new action filter.
 * No data filter is needed.
 */
 statusIntentFilter = new IntentFilter(Constants.ACTION_ZOOM_IMAGE);
 ...
 // Registers the receiver with the new filter
 LocalBroadcastManager.getInstance(getActivity()).registerReceiver(
 mDownloadStateReceiver,
 mIntentFilter);

Sending an broadcast Intent doesn't start or resume an Activity. The BroadcastReceiver for an
Activity receives and processes Intent objects even when your app is in the background, but doesn't
force your app to the foreground. If you want to notify the user about an event that happened in the
background while your app was not visible, use a Notification. Never start an Activity in response
to an incoming broadcast Intent.

Loading Data in the Background

637
Content from developer.android.com/training/load-data-background/index.html through their Creative Commons Attribution 2.5 license

187. Loading Data in the Background
Content from developer.android.com/training/load-data-background/index.html through their Creative Commons Attribution 2.5 license

Querying a ContentProvider for data you want
to display takes time. If you run the query directly
from an Activity, it may get blocked and cause
the system to issue an "Application Not
Responding" message. Even if it doesn't, users
will see an annoying delay in the UI. To avoid
these problems, you should initiate a query on a
separate thread, wait for it to finish, and then
display the results.
You can do this in a straightforward way by using
an object that runs a query asynchronously in the
background and reconnects to your Activity
when it's finished. This object is a
CursorLoader. Besides doing the initial
background query, a CursorLoader
automatically re-runs the query when data
associated with the query changes.
This class describes how to use a CursorLoader to run a background query. Examples in this class use
the v4 Support Library versions of classes, which support platforms starting with Android 1.6.

Lessons
Running a Query with a CursorLoader

Learn how to run a query in the background, using a CursorLoader.
Handling the Results

Learn how to handle the Cursor returned from the query, and how to remove references to the
current Cursor when the loader framework re-sets the CursorLoader.

Dependencies and prerequisites

• Android 1.6 or later

You should also read

• Loaders
• Using Databases
• Content Provider Basics

Try it out
Download the sample
ThreadSample.zip

Running a Query with a CursorLoader

638
Content from developer.android.com/training/load-data-background/setup-loader.html through their Creative Commons Attribution 2.5 license

188. Running a Query with a CursorLoader
Content from developer.android.com/training/load-data-background/setup-loader.html through their Creative Commons Attribution 2.5 license

A CursorLoader runs an asynchronous query in
the background against a ContentProvider,
and returns the results to the Activity or
FragmentActivity from which it was called.
This allows the Activity or
FragmentActivity to continue to interact with
the user while the query is ongoing.

Define an Activity That Uses
CursorLoader
To use a CursorLoader with an Activity or FragmentActivity, use the
LoaderCallbacks<Cursor> interface. A CursorLoader invokes callbacks defined in this interface to
communicate with the class; this lesson and the next one describe each callback in detail.
For example, this is how you should define a FragmentActivity that uses the support library version of
CursorLoader. By extending FragmentActivity, you get support for CursorLoader as well as
Fragment:

public class PhotoThumbnailFragment extends FragmentActivity implements
 LoaderManager.LoaderCallbacks<Cursor> {
...
}

Initialize the Query
To initialize a query, call LoaderManager.initLoader(). This initializes the background framework.
You can do this after the user has entered data that's used in the query, or, if you don't need any user
data, you can do it in onCreate() or onCreateView(). For example:

 // Identifies a particular Loader being used in this component
 private static final int URL_LOADER = 0;
 ...
 /* When the system is ready for the Fragment to appear, this displays
 * the Fragment's View
 */
 public View onCreateView(
 LayoutInflater inflater,
 ViewGroup viewGroup,
 Bundle bundle) {
 ...
 /*
 * Initializes the CursorLoader. The URL_LOADER value is eventually passed
 * to onCreateLoader().
 */
 getLoaderManager().initLoader(URL_LOADER, null, this);
 ...
 }

Note: The method getLoaderManager() is only available in the Fragment class. To get a
LoaderManager in a FragmentActivity, call getSupportLoaderManager().

Start the Query

This lesson teaches you to
• Define an Activity That Uses CursorLoader
• Initialize the Query
• Start the Query
Try it out
Download the sample
ThreadSample.zip

Running a Query with a CursorLoader

639
Content from developer.android.com/training/load-data-background/setup-loader.html through their Creative Commons Attribution 2.5 license

As soon as the background framework is initialized, it calls your implementation of onCreateLoader().
To start the query, return a CursorLoader from this method. You can instantiate an empty
CursorLoader and then use its methods to define your query, or you can instantiate the object and
define the query at the same time:

/*
* Callback that's invoked when the system has initialized the Loader and
* is ready to start the query. This usually happens when initLoader() is
* called. The loaderID argument contains the ID value passed to the
* initLoader() call.
*/
@Override
public Loader<Cursor> onCreateLoader(int loaderID, Bundle bundle)
{
 /*
 * Takes action based on the ID of the Loader that's being created
 */
 switch (loaderID) {
 case URL_LOADER:
 // Returns a new CursorLoader
 return new CursorLoader(
 getActivity(), // Parent activity context
 mDataUrl, // Table to query
 mProjection, // Projection to return
 null, // No selection clause
 null, // No selection arguments
 null // Default sort order
);
 default:
 // An invalid id was passed in
 return null;
 }
}

Once the background framework has the object, it starts the query in the background. When the query is
done, the background framework calls onLoadFinished(), which is described in the next lesson.

Handling the Results

640
Content from developer.android.com/training/load-data-background/handle-results.html through their Creative Commons Attribution 2.5 license

189. Handling the Results
Content from developer.android.com/training/load-data-background/handle-results.html through their Creative Commons Attribution 2.5 license

As shown in the previous lesson, you should
begin loading your data with a CursorLoader in
your implementation of onCreateLoader(). The
loader then provides the query results to your
Activity or FragmentActivity in your
implementation of
LoaderCallbacks.onLoadFinished(). One
of the incoming arguments to this method is a
Cursor containing the query results. You can use
this object to update your data display or do
further processing.
Besides onCreateLoader() and onLoadFinished(), you also have to implement
onLoaderReset(). This method is invoked when CursorLoader detects that data associated with the
Cursor has changed. When the data changes, the framework also re-runs the current query.

Handle Query Results
To display Cursor data returned by CursorLoader, use a View class that implements AdapterView
and provide the view with an adapter that implements CursorAdapter. The system then automatically
moves data from the Cursor to the view.
You can set up the linkage between the view and adapter before you have any data to display, and then
move a Cursor into the adapter in the onLoadFinished() method. As soon as you move the Cursor
into the adapter, the system automatically updates the view. This also happens if you change the contents
of the Cursor.
For example:

This lesson teaches you to
• Handle Query Results
• Delete Old Cursor References
Try it out
Download the sample
ThreadSample.zip

Handling the Results

641
Content from developer.android.com/training/load-data-background/handle-results.html through their Creative Commons Attribution 2.5 license

public String[] mFromColumns = {
 DataProviderContract.IMAGE_PICTURENAME_COLUMN
};
public int[] mToFields = {
 R.id.PictureName
};
// Gets a handle to a List View
ListView mListView = (ListView) findViewById(R.id.dataList);
/*
 * Defines a SimpleCursorAdapter for the ListView
 *
 */
SimpleCursorAdapter mAdapter =
 new SimpleCursorAdapter(
 this, // Current context
 R.layout.list_item, // Layout for a single row
 null, // No Cursor yet
 mFromColumns, // Cursor columns to use
 mToFields, // Layout fields to use
 0 // No flags
);
// Sets the adapter for the view
mListView.setAdapter(mAdapter);
...
/*
 * Defines the callback that CursorLoader calls
 * when it's finished its query
 */
@Override
public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 ...
 /*
 * Moves the query results into the adapter, causing the
 * ListView fronting this adapter to re-display
 */
 mAdapter.changeCursor(cursor);
}

Delete Old Cursor References
The CursorLoader is reset whenever its Cursor becomes invalid. This usually occurs because the data
associated with the Cursor has changed. Before re-running the query, the framework calls your
implementation of onLoaderReset(). In this callback, you should delete all references to the current
Cursor in order to prevent memory leaks. Once onLoaderReset() finishes, CursorLoader re-runs its
query.
For example:

Handling the Results

642
Content from developer.android.com/training/load-data-background/handle-results.html through their Creative Commons Attribution 2.5 license

/*
 * Invoked when the CursorLoader is being reset. For example, this is
 * called if the data in the provider changes and the Cursor becomes stale.
 */
@Override
public void onLoaderReset(Loader<Cursor> loader) {

 /*
 * Clears out the adapter's reference to the Cursor.
 * This prevents memory leaks.
 */
 mAdapter.changeCursor(null);
}

Managing Device Awake State

643
Content from developer.android.com/training/scheduling/index.html through their Creative Commons Attribution 2.5 license

190. Managing Device Awake State
Content from developer.android.com/training/scheduling/index.html through their Creative Commons Attribution 2.5 license

When an Android device is left idle, it will first dim,
then turn off the screen, and ultimately turn off the
CPU. This prevents the device's battery from
quickly getting drained. Yet there are times when
your application might require a different behavior:

• Apps such as games or movie apps may
need to keep the screen turned on.

• Other applications may not need the
screen to remain on, but they may
require the CPU to keep running until a critical operation finishes.

This class describes how to keep a device awake when necessary without draining its battery.

Lessons
Keeping the Device Awake

Learn how to keep the screen or CPU awake as needed, while minimizing the impact on battery
life.

Scheduling Repeating Alarms
Learn how to use repeating alarms to schedule operations that take place outside of the lifetime
of the application, even if the application is not running and/or the device is asleep.

Dependencies and prerequisites

• Android 1.6 (API Level 4) or higher

Try it out
Download the sample
Scheduler.zip

Keeping the Device Awake

644
Content from developer.android.com/training/scheduling/wakelock.html through their Creative Commons Attribution 2.5 license

191. Keeping the Device Awake
Content from developer.android.com/training/scheduling/wakelock.html through their Creative Commons Attribution 2.5 license

To avoid draining the battery, an Android device
that is left idle quickly falls asleep. However, there
are times when an application needs to wake up
the screen or the CPU and keep it awake to
complete some work.
The approach you take depends on the needs of
your app. However, a general rule of thumb is that
you should use the most lightweight approach
possible for your app, to minimize your app's
impact on system resources. The following sections describe how to handle the cases where the device's
default sleep behavior is incompatible with the requirements of your app.

Keep the Screen On
Certain apps need to keep the screen turned on, such as games or movie apps. The best way to do this is
to use the FLAG_KEEP_SCREEN_ON in your activity (and only in an activity, never in a service or other app
component). For example:

public class MainActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
 }

The advantage of this approach is that unlike wake locks (discussed in Keep the CPU On), it doesn't
require special permission, and the platform correctly manages the user moving between applications,
without your app needing to worry about releasing unused resources.
Another way to implement this is in your application's layout XML file, by using the
android:keepScreenOn attribute:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:keepScreenOn="true">
 ...
</RelativeLayout>

Using android:keepScreenOn="true" is equivalent to using FLAG_KEEP_SCREEN_ON. You can use
whichever approach is best for your app. The advantage of setting the flag programmatically in your
activity is that it gives you the option of programmatically clearing the flag later and thereby allowing the
screen to turn off.
Note: You don't need to clear the FLAG_KEEP_SCREEN_ON flag unless you no longer want the screen to
stay on in your running application (for example, if you want the screen to time out after a certain period of
inactivity). The window manager takes care of ensuring that the right things happen when the app goes
into the background or returns to the foreground. But if you want to explicitly clear the flag and thereby
allow the screen to turn off again, use clearFlags():
getWindow().clearFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON).

Keep the CPU On

This lesson teaches you to
• Keep the Screen On
• Keep the CPU On
Try it out
Download the sample
Scheduler.zip

Keeping the Device Awake

645
Content from developer.android.com/training/scheduling/wakelock.html through their Creative Commons Attribution 2.5 license

If you need to keep the CPU running in order to
complete some work before the device goes to
sleep, you can use a PowerManager system
service feature called wake locks. Wake locks
allow your application to control the power state of
the host device.
Creating and holding wake locks can have a
dramatic impact on the host device's battery life.
Thus you should use wake locks only when strictly
necessary and hold them for as short a time as
possible. For example, you should never need to
use a wake lock in an activity. As described
above, if you want to keep the screen on in your
activity, use FLAG_KEEP_SCREEN_ON.
One legitimate case for using a wake lock might
be a background service that needs to grab a wake lock to keep the CPU running to do work while the
screen is off. Again, though, this practice should be minimized because of its impact on battery life.
To use a wake lock, the first step is to add the WAKE_LOCK permission to your application's manifest file:

<uses-permission android:name="android.permission.WAKE_LOCK" />

If your app includes a broadcast receiver that uses a service to do some work, you can manage your wake
lock through a WakefulBroadcastReceiver, as described in Using a WakefulBroadcastReceiver. This
is the preferred approach. If your app doesn't follow that pattern, here is how you set a wake lock directly:

PowerManager powerManager = (PowerManager) getSystemService(POWER_SERVICE);
Wakelock wakeLock = powerManager.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,
 "MyWakelockTag");
wakeLock.acquire();

To release the wake lock, call wakelock.release(). This releases your claim to the CPU. It's important
to release a wake lock as soon as your app is finished using it to avoid draining the battery.

Using WakefulBroadcastReceiver
Using a broadcast receiver in conjunction with a service lets you manage the life cycle of a background
task.
A WakefulBroadcastReceiver is a special type of broadcast receiver that takes care of creating and
managing a PARTIAL_WAKE_LOCK for your app. A WakefulBroadcastReceiver passes off the work
to a Service (typically an IntentService), while ensuring that the device does not go back to sleep in
the transition. If you don't hold a wake lock while transitioning the work to a service, you are effectively
allowing the device to go back to sleep before the work completes. The net result is that the app might not
finish doing the work until some arbitrary point in the future, which is not what you want.
The first step in using a WakefulBroadcastReceiver is to add it to your manifest, as with any other
broadcast receiver:

<receiver android:name=".MyWakefulReceiver"></receiver>

The following code starts MyIntentService with the method startWakefulService(). This method
is comparable to startService(), except that the WakefulBroadcastReceiver is holding a wake

Alternatives to using wake locks

• If your app is performing long-
running HTTP downloads, consider
using DownloadManager.

• If your app is synchronizing data
from an external server, consider
creating a sync adapter.

• If your app relies on background
services, consider using repeating
alarms or Google Cloud Messaging
to trigger these services at specific
intervals.

Keeping the Device Awake

646
Content from developer.android.com/training/scheduling/wakelock.html through their Creative Commons Attribution 2.5 license

lock when the service starts. The intent that is passed with startWakefulService() holds an extra
identifying the wake lock:

public class MyWakefulReceiver extends WakefulBroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {

 // Start the service, keeping the device awake while the service is
 // launching. This is the Intent to deliver to the service.
 Intent service = new Intent(context, MyIntentService.class);
 startWakefulService(context, service);
 }
}

When the service is finished, it calls MyWakefulReceiver.completeWakefulIntent() to release the
wake lock. The completeWakefulIntent() method has as its parameter the same intent that was
passed in from the WakefulBroadcastReceiver:

public class MyIntentService extends IntentService {
 public static final int NOTIFICATION_ID = 1;
 private NotificationManager mNotificationManager;
 NotificationCompat.Builder builder;
 public MyIntentService() {
 super("MyIntentService");
 }
 @Override
 protected void onHandleIntent(Intent intent) {
 Bundle extras = intent.getExtras();
 // Do the work that requires your app to keep the CPU running.
 // ...
 // Release the wake lock provided by the WakefulBroadcastReceiver.
 MyWakefulReceiver.completeWakefulIntent(intent);
 }
}

Scheduling Repeating Alarms

647
Content from developer.android.com/training/scheduling/alarms.html through their Creative Commons Attribution 2.5 license

192. Scheduling Repeating Alarms
Content from developer.android.com/training/scheduling/alarms.html through their Creative Commons Attribution 2.5 license

Alarms (based on the AlarmManager class) give
you a way to perform time-based operations
outside the lifetime of your application. For
example, you could use an alarm to initiate a long-
running operation, such as starting a service once
a day to download a weather forecast.
Alarms have these characteristics:

• They let you fire Intents at set times
and/or intervals.

• You can use them in conjunction with broadcast receivers to start services and perform other
operations.

• They operate outside of your application, so you can use them to trigger events or actions even
when your app is not running, and even if the device itself is asleep.

• They help you to minimize your app's resource requirements. You can schedule operations
without relying on timers or continuously running background services.

Note: For timing operations that are guaranteed to occur during the lifetime of your application, instead
consider using the Handler class in conjunction with Timer and Thread. This approach gives Android
better control over system resources.

Set a Repeating Alarm
As described above, repeating alarms are a good choice for scheduling regular events or data lookups. A
repeating alarm has the following characteristics:

• A alarm type. For more discussion, see Choose an alarm type.
• A trigger time. If the trigger time you specify is in the past, the alarm triggers immediately.
• The alarm's interval. For example, once a day, every hour, every 5 seconds, and so on.
• A pending intent that fires when the alarm is triggered. When you set a second alarm that uses

the same pending intent, it replaces the original alarm.

Every choice you make in designing your repeating alarm can have consequences in how your app uses
(or abuses) system resources. Even a carefully managed alarm can have a major impact on battery life.
Follow these guidelines as you design your app:

• Keep your alarm frequency to a minimum.
• Don't wake up the device unnecessarily (this behavior is determined by the alarm type, as

described in Choose an alarm type).
• Don't make your alarm's trigger time any more precise than it has to be:

o Use setInexactRepeating() instead of setRepeating() whenever possible.
When you use setInexactRepeating(), Android synchronizes multiple inexact
repeating alarms and fires them at the same time. This reduces the drain on the battery.

o If your alarm's behavior is based on an interval (for example, your alarm fires once an
hour) rather than a precise trigger time (for example, your alarm fires at 7 a.m. sharp
and every 20 minutes after that), use an ELAPSED_REALTIME alarm type.

This lesson teaches you to
• Set a Repeating Alarm
• Cancel an Alarm
• Start an Alarm When the Device Boots
Try it out
Download the sample
Scheduler.zip

Scheduling Repeating Alarms

648
Content from developer.android.com/training/scheduling/alarms.html through their Creative Commons Attribution 2.5 license

Choose an alarm type
One of the first considerations in using a repeating alarm is what its type should be.
There are two general clock types for alarms: "elapsed real time" and "real time clock" (RTC). Elapsed real
time uses the "time since system boot" as a reference, and real time clock uses UTC (wall clock) time. This
means that elapsed real time is suited to setting an alarm based on the passage of time (for example, an
alarm that fires every 30 seconds) since it isn't affected by time zone/locale. The real time clock type is
better suited for alarms that are dependent on current locale.
Both types have a "wakeup" version, which says to wake up the device's CPU if the screen is off. This
ensures that the alarm will fire at the scheduled time. This is useful if your app has a time dependency—for
example, if it has a limited window to perform a particular operation. If you don't use the wakeup version of
your alarm type, then all the repeating alarms will fire when your device is next awake.
If you simply need your alarm to fire at a particular interval (for example, every half hour), use one of the
elapsed real time types. In general, this is the better choice.
If you need your alarm to fire at a particular time of day, then choose one of the clock-based real time clock
types. Note, however, that this approach can have some drawbacks—the app may not translate well to
other locales, and if the user changes the device's time setting, it could cause unexpected behavior in your
app.
Here is the list of types:

• ELAPSED_REALTIME—Fires the pending intent based on the amount of time since the device
was booted, but doesn't wake up the device. The elapsed time includes any time during which the
device was asleep.

• ELAPSED_REALTIME_WAKEUP—Wakes up the device and fires the pending intent after the
specified length of time has elapsed since device boot.

• RTC—Fires the pending intent at the specified time but does not wake up the device.
• RTC_WAKEUP—Wakes up the device to fire the pending intent at the specified time.

ELAPSED_REALTIME_WAKEUP examples
Here are some examples of using ELAPSED_REALTIME_WAKEUP.
Wake up the device to fire the alarm in 30 minutes, and every 30 minutes after that:

// Hopefully your alarm will have a lower frequency than this!
alarmMgr.setInexactRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 AlarmManager.INTERVAL_HALF_HOUR,
 AlarmManager.INTERVAL_HALF_HOUR, alarmIntent);

Wake up the device to fire a one-time (non-repeating) alarm in one minute:

private AlarmManager alarmMgr;
private PendingIntent alarmIntent;
...
alarmMgr = (AlarmManager)context.getSystemService(Context.ALARM_SERVICE);
Intent intent = new Intent(context, AlarmReceiver.class);
alarmIntent = PendingIntent.getBroadcast(context, 0, intent, 0);

alarmMgr.set(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime() +
 60 * 1000, alarmIntent);

RTC examples

Scheduling Repeating Alarms

649
Content from developer.android.com/training/scheduling/alarms.html through their Creative Commons Attribution 2.5 license

Here are some examples of using RTC_WAKEUP.
Wake up the device to fire the alarm at approximately 2:00 p.m., and repeat once a day at the same time:

// Set the alarm to start at approximately 2:00 p.m.
Calendar calendar = Calendar.getInstance();
calendar.setTimeInMillis(System.currentTimeMillis());
calendar.set(Calendar.HOUR_OF_DAY, 14);

// With setInexactRepeating(), you have to use one of the AlarmManager interval
// constants--in this case, AlarmManager.INTERVAL_DAY.
alarmMgr.setInexactRepeating(AlarmManager.RTC_WAKEUP, calendar.getTimeInMillis(),
 AlarmManager.INTERVAL_DAY, alarmIntent);

Wake up the device to fire the alarm at precisely 8:30 a.m., and every 20 minutes thereafter:

private AlarmManager alarmMgr;
private PendingIntent alarmIntent;
...
alarmMgr = (AlarmManager)context.getSystemService(Context.ALARM_SERVICE);
Intent intent = new Intent(context, AlarmReceiver.class);
alarmIntent = PendingIntent.getBroadcast(context, 0, intent, 0);

// Set the alarm to start at 8:30 a.m.
Calendar calendar = Calendar.getInstance();
calendar.setTimeInMillis(System.currentTimeMillis());
calendar.set(Calendar.HOUR_OF_DAY, 8);
calendar.set(Calendar.MINUTE, 30);

// setRepeating() lets you specify a precise custom interval--in this case,
// 20 minutes.
alarmMgr.setRepeating(AlarmManager.RTC_WAKEUP, calendar.getTimeInMillis(),
 1000 * 60 * 20, alarmIntent);

Decide how precise your alarm needs to be
As described above, choosing the alarm type is often the first step in creating an alarm. A further
distinction is how precise you need your alarm to be. For most apps, setInexactRepeating() is the
right choice. When you use this method, Android synchronizes multiple inexact repeating alarms and fires
them at the same time. This reduces the drain on the battery.
For the rare app that has rigid time requirements—for example, the alarm needs to fire precisely at 8:30
a.m., and every hour on the hour thereafter—use setRepeating(). But you should avoid using exact
alarms if possible.
With setInexactRepeating(), you can't specify a custom interval the way you can with
setRepeating(). You have to use one of the interval constants, such as
INTERVAL_FIFTEEN_MINUTES, INTERVAL_DAY, and so on. See AlarmManager for the complete list.

Cancel an Alarm
Depending on your app, you may want to include the ability to cancel the alarm. To cancel an alarm, call
cancel() on the Alarm Manager, passing in the PendingIntent you no longer want to fire. For
example:

Scheduling Repeating Alarms

650
Content from developer.android.com/training/scheduling/alarms.html through their Creative Commons Attribution 2.5 license

// If the alarm has been set, cancel it.
if (alarmMgr!= null) {
 alarmMgr.cancel(alarmIntent);
}

Start an Alarm When the Device Boots
By default, all alarms are canceled when a device shuts down. To prevent this from happening, you can
design your application to automatically restart a repeating alarm if the user reboots the device. This
ensures that the AlarmManager will continue doing its task without the user needing to manually restart
the alarm.
Here are the steps:
• Set the RECEIVE_BOOT_COMPLETED permission in your application's manifest. This allows your app to
receive the ACTION_BOOT_COMPLETED that is broadcast after the system finishes booting (this only works
if the app has already been launched by the user at least once):

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

•
• Implement a BroadcastReceiver to receive the broadcast:

public class SampleBootReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals("android.intent.action.BOOT_COMPLETED"))
{
 // Set the alarm here.
 }
 }
}

•
• Add the receiver to your app's manifest file with an intent filter that filters on the
ACTION_BOOT_COMPLETED action:

<receiver android:name=".SampleBootReceiver"
 android:enabled="false">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"></action>
 </intent-filter>
</receiver>

Notice that in the manifest, the boot receiver is set to android:enabled="false". This means that the
receiver will not be called unless the application explicitly enables it. This prevents the boot receiver from
being called unnecessarily. You can enable a receiver (for example, if the user sets an alarm) as follows:

ComponentName receiver = new ComponentName(context, SampleBootReceiver.class);
PackageManager pm = context.getPackageManager();

pm.setComponentEnabledSetting(receiver,

Scheduling Repeating Alarms

651
Content from developer.android.com/training/scheduling/alarms.html through their Creative Commons Attribution 2.5 license

 PackageManager.COMPONENT_ENABLED_STATE_ENABLED,
 PackageManager.DONT_KILL_APP);

Once you enable the receiver this way, it will stay enabled, even if the user reboots the device. In other
words, programmatically enabling the receiver overrides the manifest setting, even across reboots. The
receiver will stay enabled until your app disables it. You can disable a receiver (for example, if the user
cancels an alarm) as follows:

ComponentName receiver = new ComponentName(context, SampleBootReceiver.class);
PackageManager pm = context.getPackageManager();

pm.setComponentEnabledSetting(receiver,
 PackageManager.COMPONENT_ENABLED_STATE_DISABLED,
 PackageManager.DONT_KILL_APP);

•

Best Practices for Performance

652
Content from developer.android.com/training/best-performance.html through their Creative Commons Attribution 2.5 license

193. Best Practices for Performance
Content from developer.android.com/training/best-performance.html through their Creative Commons Attribution 2.5 license
These classes and articles help you build an app that's smooth, responsive, and uses as little battery as
possible.

Managing Your App's Memory

653
Content from developer.android.com/training/articles/memory.html through their Creative Commons Attribution 2.5 license

194. Managing Your App's Memory
Content from developer.android.com/training/articles/memory.html through their Creative Commons Attribution 2.5 license

Random-access memory (RAM) is a valuable
resource in any software development
environment, but it's even more valuable on a
mobile operating system where physical memory
is often constrained. Although Android's Dalvik
virtual machine performs routine garbage
collection, this doesn't allow you to ignore when
and where your app allocates and releases
memory.
In order for the garbage collector to reclaim
memory from your app, you need to avoid
introducing memory leaks (usually caused by
holding onto object references in global members)
and release any Reference objects at the
appropriate time (as defined by lifecycle callbacks
discussed further below). For most apps, the
Dalvik garbage collector takes care of the rest: the
system reclaims your memory allocations when
the corresponding objects leave the scope of your
app's active threads.
This document explains how Android manages
app processes and memory allocation, and how
you can proactively reduce memory usage while
developing for Android. For more information
about general practices to clean up your
resources when programming in Java, refer to
other books or online documentation about
managing resource references. If you’re looking
for information about how to analyze your app’s
memory once you’ve already built it, read
Investigating Your RAM Usage.

How Android Manages Memory
Android does not offer swap space for memory,
but it does use paging and memory-mapping
(mmapping) to manage memory. This means that
any memory you modify—whether by allocating
new objects or touching mmapped pages—
remains resident in RAM and cannot be paged
out. So the only way to completely release memory from your app is to release object references you may
be holding, making the memory available to the garbage collector. That is with one exception: any files
mmapped in without modification, such as code, can be paged out of RAM if the system wants to use that
memory elsewhere.

Sharing Memory
In order to fit everything it needs in RAM, Android tries to share RAM pages across processes. It can do so
in the following ways:

In this section
• How Android Manages Memory
• Sharing Memory
• Allocating and Reclaiming App Memory
• Restricting App Memory
• Switching Apps
• How Your App Should Manage Memory
• Use services sparingly
• Release memory when your user interface
becomes hidden
• Release memory as memory becomes tight
• Check how much memory you should use
• Avoid wasting memory with bitmaps
• Use optimized data containers
• Be aware of memory overhead
• Be careful with code abstractions
• Use nano protobufs for serialized data
• Avoid dependency injection frameworks
• Be careful about using external libraries
• Optimize overall performance
• Use ProGuard to strip out any unneeded
code
• Use zipalign on your final APK
• Analyze your RAM usage
• Use multiple processes
See Also

• Investigating Your RAM Usage

Managing Your App's Memory

654
Content from developer.android.com/training/articles/memory.html through their Creative Commons Attribution 2.5 license

• Each app process is forked from an existing process called Zygote. The Zygote process starts
when the system boots and loads common framework code and resources (such as activity
themes). To start a new app process, the system forks the Zygote process then loads and runs
the app's code in the new process. This allows most of the RAM pages allocated for framework
code and resources to be shared across all app processes.

• Most static data is mmapped into a process. This not only allows that same data to be shared
between processes but also allows it to be paged out when needed. Example static data include:
Dalvik code (by placing it in a pre-linked .odex file for direct mmapping), app resources (by
designing the resource table to be a structure that can be mmapped and by aligning the zip
entries of the APK), and traditional project elements like native code in .so files.

• In many places, Android shares the same dynamic RAM across processes using explicitly
allocated shared memory regions (either with ashmem or gralloc). For example, window surfaces
use shared memory between the app and screen compositor, and cursor buffers use shared
memory between the content provider and client.

Due to the extensive use of shared memory, determining how much memory your app is using requires
care. Techniques to properly determine your app's memory use are discussed in Investigating Your RAM
Usage.

Allocating and Reclaiming App Memory
Here are some facts about how Android allocates then reclaims memory from your app:

• The Dalvik heap for each process is constrained to a single virtual memory range. This defines
the logical heap size, which can grow as it needs to (but only up to a limit that the system defines
for each app).

• The logical size of the heap is not the same as the amount of physical memory used by the heap.
When inspecting your app's heap, Android computes a value called the Proportional Set Size
(PSS), which accounts for both dirty and clean pages that are shared with other processes—but
only in an amount that's proportional to how many apps share that RAM. This (PSS) total is what
the system considers to be your physical memory footprint. For more information about PSS, see
the Investigating Your RAM Usage guide.

• The Dalvik heap does not compact the logical size of the heap, meaning that Android does not
defragment the heap to close up space. Android can only shrink the logical heap size when there
is unused space at the end of the heap. But this doesn't mean the physical memory used by the
heap can't shrink. After garbage collection, Dalvik walks the heap and finds unused pages, then
returns those pages to the kernel using madvise. So, paired allocations and deallocations of large
chunks should result in reclaiming all (or nearly all) the physical memory used. However,
reclaiming memory from small allocations can be much less efficient because the page used for a
small allocation may still be shared with something else that has not yet been freed.

Restricting App Memory
To maintain a functional multi-tasking environment, Android sets a hard limit on the heap size for each
app. The exact heap size limit varies between devices based on how much RAM the device has available
overall. If your app has reached the heap capacity and tries to allocate more memory, it will receive an
OutOfMemoryError.
In some cases, you might want to query the system to determine exactly how much heap space you have
available on the current device—for example, to determine how much data is safe to keep in a cache. You
can query the system for this figure by calling getMemoryClass(). This returns an integer indicating the
number of megabytes available for your app's heap. This is discussed further below, under Check how
much memory you should use.

Managing Your App's Memory

655
Content from developer.android.com/training/articles/memory.html through their Creative Commons Attribution 2.5 license

Switching Apps
Instead of using swap space when the user switches between apps, Android keeps processes that are not
hosting a foreground ("user visible") app component in a least-recently used (LRU) cache. For example,
when the user first launches an app, a process is created for it, but when the user leaves the app, that
process does not quit. The system keeps the process cached, so if the user later returns to the app, the
process is reused for faster app switching.
If your app has a cached process and it retains memory that it currently does not need, then your app—
even while the user is not using it—is constraining the system's overall performance. So, as the system
runs low on memory, it may kill processes in the LRU cache beginning with the process least recently
used, but also giving some consideration toward which processes are most memory intensive. To keep
your process cached as long as possible, follow the advice in the following sections about when to release
your references.
More information about how processes are cached while not running in the foreground and how Android
decides which ones can be killed is available in the Processes and Threads guide.

How Your App Should Manage Memory
You should consider RAM constraints throughout all phases of development, including during app design
(before you begin development). There are many ways you can design and write code that lead to more
efficient results, through aggregation of the same techniques applied over and over.
You should apply the following techniques while designing and implementing your app to make it more
memory efficient.

Use services sparingly
If your app needs a service to perform work in the background, do not keep it running unless it's actively
performing a job. Also be careful to never leak your service by failing to stop it when its work is done.
When you start a service, the system prefers to always keep the process for that service running. This
makes the process very expensive because the RAM used by the service can’t be used by anything else
or paged out. This reduces the number of cached processes that the system can keep in the LRU cache,
making app switching less efficient. It can even lead to thrashing in the system when memory is tight and
the system can’t maintain enough processes to host all the services currently running.
The best way to limit the lifespan of your service is to use an IntentService, which finishes itself as
soon as it's done handling the intent that started it. For more information, read Running in a Background
Service .
Leaving a service running when it’s not needed is one of the worst memory-management mistakes an
Android app can make. So don’t be greedy by keeping a service for your app running. Not only will it
increase the risk of your app performing poorly due to RAM constraints, but users will discover such
misbehaving apps and uninstall them.

Release memory when your user interface becomes hidden
When the user navigates to a different app and your UI is no longer visible, you should release any
resources that are used by only your UI. Releasing UI resources at this time can significantly increase the
system's capacity for cached processes, which has a direct impact on the quality of the user experience.
To be notified when the user exits your UI, implement the onTrimMemory() callback in your Activity
classes. You should use this method to listen for the TRIM_MEMORY_UI_HIDDEN level, which indicates
your UI is now hidden from view and you should free resources that only your UI uses.
Notice that your app receives the onTrimMemory() callback with TRIM_MEMORY_UI_HIDDEN only when
all the UI components of your app process become hidden from the user. This is distinct from the
onStop() callback, which is called when an Activity instance becomes hidden, which occurs even
when the user moves to another activity in your app. So although you should implement onStop() to

Managing Your App's Memory

656
Content from developer.android.com/training/articles/memory.html through their Creative Commons Attribution 2.5 license

release activity resources such as a network connection or to unregister broadcast receivers, you usually
should not release your UI resources until you receive onTrimMemory(TRIM_MEMORY_UI_HIDDEN).
This ensures that if the user navigates back from another activity in your app, your UI resources are still
available to resume the activity quickly.

Release memory as memory becomes tight
During any stage of your app's lifecycle, the onTrimMemory() callback also tells you when the overall
device memory is getting low. You should respond by further releasing resources based on the following
memory levels delivered by onTrimMemory():

• TRIM_MEMORY_RUNNING_MODERATE

Your app is running and not considered killable, but the device is running low on memory and the
system is actively killing processes in the LRU cache.

• TRIM_MEMORY_RUNNING_LOW

Your app is running and not considered killable, but the device is running much lower on memory
so you should release unused resources to improve system performance (which directly impacts
your app's performance).

• TRIM_MEMORY_RUNNING_CRITICAL

Your app is still running, but the system has already killed most of the processes in the LRU
cache, so you should release all non-critical resources now. If the system cannot reclaim
sufficient amounts of RAM, it will clear all of the LRU cache and begin killing processes that the
system prefers to keep alive, such as those hosting a running service.

Also, when your app process is currently cached, you may receive one of the following levels from
onTrimMemory():

• TRIM_MEMORY_BACKGROUND

The system is running low on memory and your process is near the beginning of the LRU list.
Although your app process is not at a high risk of being killed, the system may already be killing
processes in the LRU cache. You should release resources that are easy to recover so your
process will remain in the list and resume quickly when the user returns to your app.

• TRIM_MEMORY_MODERATE

The system is running low on memory and your process is near the middle of the LRU list. If the
system becomes further constrained for memory, there's a chance your process will be killed.

• TRIM_MEMORY_COMPLETE

The system is running low on memory and your process is one of the first to be killed if the
system does not recover memory now. You should release everything that's not critical to
resuming your app state.

Managing Your App's Memory

657
Content from developer.android.com/training/articles/memory.html through their Creative Commons Attribution 2.5 license

Because the onTrimMemory() callback was added in API level 14, you can use the onLowMemory()
callback as a fallback for older versions, which is roughly equivalent to the TRIM_MEMORY_COMPLETE
event.
Note: When the system begins killing processes in the LRU cache, although it primarily works bottom-up,
it does give some consideration to which processes are consuming more memory and will thus provide the
system more memory gain if killed. So the less memory you consume while in the LRU list overall, the
better your chances are to remain in the list and be able to quickly resume.

Check how much memory you should use
As mentioned earlier, each Android-powered device has a different amount of RAM available to the system
and thus provides a different heap limit for each app. You can call getMemoryClass() to get an estimate
of your app's available heap in megabytes. If your app tries to allocate more memory than is available
here, it will receive an OutOfMemoryError.
In very special situations, you can request a larger heap size by setting the largeHeap attribute to "true"
in the manifest <application> tag. If you do so, you can call getLargeMemoryClass() to get an
estimate of the large heap size.
However, the ability to request a large heap is intended only for a small set of apps that can justify the
need to consume more RAM (such as a large photo editing app). Never request a large heap simply
because you've run out of memory and you need a quick fix—you should use it only when you know
exactly where all your memory is being allocated and why it must be retained. Yet, even when you're
confident your app can justify the large heap, you should avoid requesting it to whatever extent possible.
Using the extra memory will increasingly be to the detriment of the overall user experience because
garbage collection will take longer and system performance may be slower when task switching or
performing other common operations.
Additionally, the large heap size is not the same on all devices and, when running on devices that have
limited RAM, the large heap size may be exactly the same as the regular heap size. So even if you do
request the large heap size, you should call getMemoryClass() to check the regular heap size and
strive to always stay below that limit.

Avoid wasting memory with bitmaps
When you load a bitmap, keep it in RAM only at the resolution you need for the current device's screen,
scaling it down if the original bitmap is a higher resolution. Keep in mind that an increase in bitmap
resolution results in a corresponding (increase2) in memory needed, because both the X and Y dimensions
increase.
Note: On Android 2.3.x (API level 10) and below, bitmap objects always appear as the same size in your
app heap regardless of the image resolution (the actual pixel data is stored separately in native memory).
This makes it more difficult to debug the bitmap memory allocation because most heap analysis tools do
not see the native allocation. However, beginning in Android 3.0 (API level 11), the bitmap pixel data is
allocated in your app's Dalvik heap, improving garbage collection and debuggability. So if your app uses
bitmaps and you're having trouble discovering why your app is using some memory on an older device,
switch to a device running Android 3.0 or higher to debug it.
For more tips about working with bitmaps, read Managing Bitmap Memory.

Use optimized data containers
Take advantage of optimized containers in the Android framework, such as SparseArray,
SparseBooleanArray, and LongSparseArray. The generic HashMap implementation can be quite
memory inefficient because it needs a separate entry object for every mapping. Additionally, the
SparseArray classes are more efficient because they avoid the system's need to autobox the key and
sometimes value (which creates yet another object or two per entry). And don't be afraid of dropping down
to raw arrays when that makes sense.

Managing Your App's Memory

658
Content from developer.android.com/training/articles/memory.html through their Creative Commons Attribution 2.5 license

Be aware of memory overhead
Be knowledgeable about the cost and overhead of the language and libraries you are using, and keep this
information in mind when you design your app, from start to finish. Often, things on the surface that look
innocuous may in fact have a large amount of overhead. Examples include:

• Enums often require more than twice as much memory as static constants. You should strictly
avoid using enums on Android.

• Every class in Java (including anonymous inner classes) uses about 500 bytes of code.
• Every class instance has 12-16 bytes of RAM overhead.
• Putting a single entry into a HashMap requires the allocation of an additional entry object that

takes 32 bytes (see the previous section about optimized data containers).

A few bytes here and there quickly add up—app designs that are class- or object-heavy will suffer from
this overhead. That can leave you in the difficult position of looking at a heap analysis and realizing your
problem is a lot of small objects using up your RAM.

Be careful with code abstractions
Often, developers use abstractions simply as a "good programming practice," because abstractions can
improve code flexibility and maintenance. However, abstractions come at a significant cost: generally they
require a fair amount more code that needs to be executed, requiring more time and more RAM for that
code to be mapped into memory. So if your abstractions aren't supplying a significant benefit, you should
avoid them.

Use nano protobufs for serialized data
Protocol buffers are a language-neutral, platform-neutral, extensible mechanism designed by Google for
serializing structured data—think XML, but smaller, faster, and simpler. If you decide to use protobufs for
your data, you should always use nano protobufs in your client-side code. Regular protobufs generate
extremely verbose code, which will cause many kinds of problems in your app: increased RAM use,
significant APK size increase, slower execution, and quickly hitting the DEX symbol limit.
For more information, see the "Nano version" section in the protobuf readme.

Avoid dependency injection frameworks
Using a dependency injection framework such as Guice or RoboGuice may be attractive because they can
simplify the code you write and provide an adaptive environment that's useful for testing and other
configuration changes. However, these frameworks tend to perform a lot of process initialization by
scanning your code for annotations, which can require significant amounts of your code to be mapped into
RAM even though you don't need it. These mapped pages are allocated into clean memory so Android can
drop them, but that won't happen until the pages have been left in memory for a long period of time.

Be careful about using external libraries
External library code is often not written for mobile environments and can be inefficient when used for work
on a mobile client. At the very least, when you decide to use an external library, you should assume you
are taking on a significant porting and maintenance burden to optimize the library for mobile. Plan for that
work up-front and analyze the library in terms of code size and RAM footprint before deciding to use it at
all.
Even libraries supposedly designed for use on Android are potentially dangerous because each library
may do things differently. For example, one library may use nano protobufs while another uses micro
protobufs. Now you have two different protobuf implementations in your app. This can and will also happen
with different implementations of logging, analytics, image loading frameworks, caching, and all kinds of
other things you don't expect. ProGuard won't save you here because these will all be lower-level

Managing Your App's Memory

659
Content from developer.android.com/training/articles/memory.html through their Creative Commons Attribution 2.5 license

dependencies that are required by the features for which you want the library. This becomes especially
problematic when you use an Activity subclass from a library (which will tend to have wide swaths of
dependencies), when libraries use reflection (which is common and means you need to spend a lot of time
manually tweaking ProGuard to get it to work), and so on.
Also be careful not to fall into the trap of using a shared library for one or two features out of dozens of
other things it does; you don't want to pull in a large amount of code and overhead that you don't even use.
At the end of the day, if there isn't an existing implementation that is a strong match for what you need to
do, it may be best if you create your own implementation.

Optimize overall performance
A variety of information about optimizing your app's overall performance is available in other documents
listed in Best Practices for Performance. Many of these documents include optimizations tips for CPU
performance, but many of these tips also help optimize your app's memory use, such as by reducing the
number of layout objects required by your UI.
You should also read about optimizing your UI with the layout debugging tools and take advantage of the
optimization suggestions provided by the lint tool.

Use ProGuard to strip out any unneeded code
The ProGuard tool shrinks, optimizes, and obfuscates your code by removing unused code and renaming
classes, fields, and methods with semantically obscure names. Using ProGuard can make your code more
compact, requiring fewer RAM pages to be mapped.

Use zipalign on your final APK
If you do any post-processing of an APK generated by a build system (including signing it with your final
production certificate), then you must run zipalign on it to have it re-aligned. Failing to do so can cause
your app to require significantly more RAM, because things like resources can no longer be mmapped
from the APK.
Note: Google Play Store does not accept APK files that are not zipaligned.

Analyze your RAM usage
Once you achieve a relatively stable build, begin analyzing how much RAM your app is using throughout
all stages of its lifecycle. For information about how to analyze your app, read Investigating Your RAM
Usage.

Use multiple processes
If it's appropriate for your app, an advanced technique that may help you manage your app's memory is
dividing components of your app into multiple processes. This technique must always be used carefully
and most apps should not run multiple processes, as it can easily increase—rather than decrease—
your RAM footprint if done incorrectly. It is primarily useful to apps that may run significant work in the
background as well as the foreground and can manage those operations separately.
An example of when multiple processes may be appropriate is when building a music player that plays
music from a service for long period of time. If the entire app runs in one process, then many of the
allocations performed for its activity UI must be kept around as long as it is playing music, even if the user
is currently in another app and the service is controlling the playback. An app like this may be split into two
process: one for its UI, and the other for the work that continues running in the background service.
You can specify a separate process for each app component by declaring the android:process
attribute for each component in the manifest file. For example, you can specify that your service should run
in a process separate from your app's main process by declaring a new process named "background" (but
you can name the process anything you like):

Managing Your App's Memory

660
Content from developer.android.com/training/articles/memory.html through their Creative Commons Attribution 2.5 license

<service android:name=".PlaybackService"
 android:process=":background" />

Your process name should begin with a colon (':') to ensure that the process remains private to your app.
Before you decide to create a new process, you need to understand the memory implications. To illustrate
the consequences of each process, consider that an empty process doing basically nothing has an extra
memory footprint of about 1.4MB, as shown by the memory information dump below.

adb shell dumpsys meminfo com.example.android.apis:empty

** MEMINFO in pid 10172 [com.example.android.apis:empty] **
 Pss Pss Shared Private Shared Private Heap Heap Heap
 Total Clean Dirty Dirty Clean Clean Size Alloc Free
 ------ ------ ------ ------ ------ ------ ------ ------ ------
 Native Heap 0 0 0 0 0 0 1864 1800 63
 Dalvik Heap 764 0 5228 316 0 0 5584 5499 85
 Dalvik Other 619 0 3784 448 0 0
 Stack 28 0 8 28 0 0
 Other dev 4 0 12 0 0 4
 .so mmap 287 0 2840 212 972 0
 .apk mmap 54 0 0 0 136 0
 .dex mmap 250 148 0 0 3704 148
 Other mmap 8 0 8 8 20 0
 Unknown 403 0 600 380 0 0
 TOTAL 2417 148 12480 1392 4832 152 7448 7299 148

Note: More information about how to read this output is provided in Investigating Your RAM Usage. The
key data here is the Private Dirty and Private Clean memory, which shows that this process is using
almost 1.4MB of non-pageable RAM (distributed across the Dalvik heap, native allocations, book-keeping,
and library-loading), and another 150K of RAM for code that has been mapped in to execute.
This memory footprint for an empty process is fairly significant and it can quickly grow as you start doing
work in that process. For example, here is the memory use of a process that is created only to show an
activity with some text in it:

** MEMINFO in pid 10226 [com.example.android.helloactivity] **
 Pss Pss Shared Private Shared Private Heap Heap Heap
 Total Clean Dirty Dirty Clean Clean Size Alloc Free
 ------ ------ ------ ------ ------ ------ ------ ------ ------
 Native Heap 0 0 0 0 0 0 3000 2951 48
 Dalvik Heap 1074 0 4928 776 0 0 5744 5658 86
 Dalvik Other 802 0 3612 664 0 0
 Stack 28 0 8 28 0 0
 Ashmem 6 0 16 0 0 0
 Other dev 108 0 24 104 0 4
 .so mmap 2166 0 2824 1828 3756 0
 .apk mmap 48 0 0 0 632 0
 .ttf mmap 3 0 0 0 24 0
 .dex mmap 292 4 0 0 5672 4
 Other mmap 10 0 8 8 68 0
 Unknown 632 0 412 624 0 0
 TOTAL 5169 4 11832 4032 10152 8 8744 8609 134

The process has now almost tripled in size, to 4MB, simply by showing some text in the UI. This leads to
an important conclusion: If you are going to split your app into multiple processes, only one process should
be responsible for UI. Other processes should avoid any UI, as this will quickly increase the RAM required

Managing Your App's Memory

661
Content from developer.android.com/training/articles/memory.html through their Creative Commons Attribution 2.5 license

by the process (especially once you start loading bitmap assets and other resources). It may then be hard
or impossible to reduce the memory usage once the UI is drawn.
Additionally, when running more than one process, it's more important than ever that you keep your code
as lean as possible, because any unnecessary RAM overhead for common implementations are now
replicated in each process. For example, if you are using enums (though you should not use enums), all of
the RAM needed to create and initialize those constants is duplicated in each process, and any
abstractions you have with adapters and temporaries or other overhead will likewise be replicated.
Another concern with multiple processes is the dependencies that exist between them. For example, if
your app has a content provider that you have running in the default process which also hosts your UI,
then code in a background process that uses that content provider will also require that your UI process
remain in RAM. If your goal is to have a background process that can run independently of a heavy-weight
UI process, it can't have dependencies on content providers or services that execute in the UI process.

Performance Tips

662
Content from developer.android.com/training/articles/perf-tips.html through their Creative Commons Attribution 2.5 license

195. Performance Tips
Content from developer.android.com/training/articles/perf-tips.html through their Creative Commons Attribution 2.5 license

This document primarily covers micro-
optimizations that can improve overall app
performance when combined, but it's unlikely that
these changes will result in dramatic performance
effects. Choosing the right algorithms and data
structures should always be your priority, but is
outside the scope of this document. You should
use the tips in this document as general coding
practices that you can incorporate into your habits
for general code efficiency.
There are two basic rules for writing efficient code:

• Don't do work that you don't need to do.
• Don't allocate memory if you can avoid it.

One of the trickiest problems you'll face when
micro-optimizing an Android app is that your app
is certain to be running on multiple types of
hardware. Different versions of the VM running on
different processors running at different speeds. It's not even generally the case that you can simply say
"device X is a factor F faster/slower than device Y", and scale your results from one device to others. In
particular, measurement on the emulator tells you very little about performance on any device. There are
also huge differences between devices with and without a JIT: the best code for a device with a JIT is not
always the best code for a device without.
To ensure your app performs well across a wide variety of devices, ensure your code is efficient at all
levels and agressively optimize your performance.

Avoid Creating Unnecessary Objects
Object creation is never free. A generational garbage collector with per-thread allocation pools for
temporary objects can make allocation cheaper, but allocating memory is always more expensive than not
allocating memory.
As you allocate more objects in your app, you will force a periodic garbage collection, creating little
"hiccups" in the user experience. The concurrent garbage collector introduced in Android 2.3 helps, but
unnecessary work should always be avoided.
Thus, you should avoid creating object instances you don't need to. Some examples of things that can
help:

• If you have a method returning a string, and you know that its result will always be appended to a
StringBuffer anyway, change your signature and implementation so that the function does the
append directly, instead of creating a short-lived temporary object.

• When extracting strings from a set of input data, try to return a substring of the original data,
instead of creating a copy. You will create a new String object, but it will share the char[] with
the data. (The trade-off being that if you're only using a small part of the original input, you'll be
keeping it all around in memory anyway if you go this route.)

In this section
• Avoid Creating Unnecessary Objects
• Prefer Static Over Virtual
• Use Static Final For Constants
• Avoid Internal Getters/Setters
• Use Enhanced For Loop Syntax
• Consider Package Instead of Private
Access with Private Inner Classes
• Avoid Using Floating-Point
• Know and Use the Libraries
• Use Native Methods Carefully
• Know And Use The Libraries
• Use Native Methods Judiciously
• Closing Notes

Performance Tips

663
Content from developer.android.com/training/articles/perf-tips.html through their Creative Commons Attribution 2.5 license

A somewhat more radical idea is to slice up multidimensional arrays into parallel single one-dimension
arrays:

• An array of ints is a much better than an array of Integer objects, but this also generalizes to
the fact that two parallel arrays of ints are also a lot more efficient than an array of (int,int)
objects. The same goes for any combination of primitive types.

• If you need to implement a container that stores tuples of (Foo,Bar) objects, try to remember
that two parallel Foo[] and Bar[] arrays are generally much better than a single array of
custom (Foo,Bar) objects. (The exception to this, of course, is when you're designing an API
for other code to access. In those cases, it's usually better to make a small compromise to the
speed in order to achieve a good API design. But in your own internal code, you should try and be
as efficient as possible.)

Generally speaking, avoid creating short-term temporary objects if you can. Fewer objects created mean
less-frequent garbage collection, which has a direct impact on user experience.

Prefer Static Over Virtual
If you don't need to access an object's fields, make your method static. Invocations will be about 15%-20%
faster. It's also good practice, because you can tell from the method signature that calling the method can't
alter the object's state.

Use Static Final For Constants
Consider the following declaration at the top of a class:

static int intVal = 42;
static String strVal = "Hello, world!";

The compiler generates a class initializer method, called <clinit>, that is executed when the class is
first used. The method stores the value 42 into intVal, and extracts a reference from the classfile string
constant table for strVal. When these values are referenced later on, they are accessed with field
lookups.
We can improve matters with the "final" keyword:

static final int intVal = 42;
static final String strVal = "Hello, world!";

The class no longer requires a <clinit> method, because the constants go into static field initializers in
the dex file. Code that refers to intVal will use the integer value 42 directly, and accesses to strVal will
use a relatively inexpensive "string constant" instruction instead of a field lookup.
Note: This optimization applies only to primitive types and String constants, not arbitrary reference
types. Still, it's good practice to declare constants static final whenever possible.

Avoid Internal Getters/Setters
In native languages like C++ it's common practice to use getters (i = getCount()) instead of accessing
the field directly (i = mCount). This is an excellent habit for C++ and is often practiced in other object
oriented languages like C# and Java, because the compiler can usually inline the access, and if you need
to restrict or debug field access you can add the code at any time.
However, this is a bad idea on Android. Virtual method calls are expensive, much more so than instance
field lookups. It's reasonable to follow common object-oriented programming practices and have getters
and setters in the public interface, but within a class you should always access fields directly.

Performance Tips

664
Content from developer.android.com/training/articles/perf-tips.html through their Creative Commons Attribution 2.5 license

Without a JIT, direct field access is about 3x faster than invoking a trivial getter. With the JIT (where direct
field access is as cheap as accessing a local), direct field access is about 7x faster than invoking a trivial
getter.
Note that if you're using ProGuard, you can have the best of both worlds because ProGuard can inline
accessors for you.

Use Enhanced For Loop Syntax
The enhanced for loop (also sometimes known as "for-each" loop) can be used for collections that
implement the Iterable interface and for arrays. With collections, an iterator is allocated to make
interface calls to hasNext() and next(). With an ArrayList, a hand-written counted loop is about 3x
faster (with or without JIT), but for other collections the enhanced for loop syntax will be exactly equivalent
to explicit iterator usage.
There are several alternatives for iterating through an array:

static class Foo {
 int mSplat;
}

Foo[] mArray = ...

public void zero() {
 int sum = 0;
 for (int i = 0; i < mArray.length; ++i) {
 sum += mArray[i].mSplat;
 }
}

public void one() {
 int sum = 0;
 Foo[] localArray = mArray;
 int len = localArray.length;

 for (int i = 0; i < len; ++i) {
 sum += localArray[i].mSplat;
 }
}

public void two() {
 int sum = 0;
 for (Foo a : mArray) {
 sum += a.mSplat;
 }
}

zero() is slowest, because the JIT can't yet optimize away the cost of getting the array length once for
every iteration through the loop.
one() is faster. It pulls everything out into local variables, avoiding the lookups. Only the array length
offers a performance benefit.
two() is fastest for devices without a JIT, and indistinguishable from one() for devices with a JIT. It uses
the enhanced for loop syntax introduced in version 1.5 of the Java programming language.
So, you should use the enhanced for loop by default, but consider a hand-written counted loop for
performance-critical ArrayList iteration.
Tip: Also see Josh Bloch's Effective Java, item 46.

Performance Tips

665
Content from developer.android.com/training/articles/perf-tips.html through their Creative Commons Attribution 2.5 license

Consider Package Instead of Private Access with Private Inner Classes
Consider the following class definition:

public class Foo {
 private class Inner {
 void stuff() {
 Foo.this.doStuff(Foo.this.mValue);
 }
 }

 private int mValue;

 public void run() {
 Inner in = new Inner();
 mValue = 27;
 in.stuff();
 }

 private void doStuff(int value) {
 System.out.println("Value is " + value);
 }
}

What's important here is that we define a private inner class (Foo$Inner) that directly accesses a private
method and a private instance field in the outer class. This is legal, and the code prints "Value is 27" as
expected.
The problem is that the VM considers direct access to Foo's private members from Foo$Inner to be
illegal because Foo and Foo$Inner are different classes, even though the Java language allows an inner
class to access an outer class' private members. To bridge the gap, the compiler generates a couple of
synthetic methods:

/*package*/ static int Foo.access$100(Foo foo) {
 return foo.mValue;
}
/*package*/ static void Foo.access$200(Foo foo, int value) {
 foo.doStuff(value);
}

The inner class code calls these static methods whenever it needs to access the mValue field or invoke
the doStuff() method in the outer class. What this means is that the code above really boils down to a
case where you're accessing member fields through accessor methods. Earlier we talked about how
accessors are slower than direct field accesses, so this is an example of a certain language idiom resulting
in an "invisible" performance hit.
If you're using code like this in a performance hotspot, you can avoid the overhead by declaring fields and
methods accessed by inner classes to have package access, rather than private access. Unfortunately this
means the fields can be accessed directly by other classes in the same package, so you shouldn't use this
in public API.

Avoid Using Floating-Point
As a rule of thumb, floating-point is about 2x slower than integer on Android-powered devices.
In speed terms, there's no difference between float and double on the more modern hardware. Space-
wise, double is 2x larger. As with desktop machines, assuming space isn't an issue, you should prefer
double to float.

Performance Tips

666
Content from developer.android.com/training/articles/perf-tips.html through their Creative Commons Attribution 2.5 license

Also, even for integers, some processors have hardware multiply but lack hardware divide. In such cases,
integer division and modulus operations are performed in software—something to think about if you're
designing a hash table or doing lots of math.

Know and Use the Libraries
In addition to all the usual reasons to prefer library code over rolling your own, bear in mind that the system
is at liberty to replace calls to library methods with hand-coded assembler, which may be better than the
best code the JIT can produce for the equivalent Java. The typical example here is String.indexOf()
and related APIs, which Dalvik replaces with an inlined intrinsic. Similarly, the System.arraycopy()
method is about 9x faster than a hand-coded loop on a Nexus One with the JIT.
Tip: Also see Josh Bloch's Effective Java, item 47.

Use Native Methods Carefully
Developing your app with native code using the Android NDK isn't necessarily more efficient than
programming with the Java language. For one thing, there's a cost associated with the Java-native
transition, and the JIT can't optimize across these boundaries. If you're allocating native resources
(memory on the native heap, file descriptors, or whatever), it can be significantly more difficult to arrange
timely collection of these resources. You also need to compile your code for each architecture you wish to
run on (rather than rely on it having a JIT). You may even have to compile multiple versions for what you
consider the same architecture: native code compiled for the ARM processor in the G1 can't take full
advantage of the ARM in the Nexus One, and code compiled for the ARM in the Nexus One won't run on
the ARM in the G1.
Native code is primarily useful when you have an existing native codebase that you want to port to
Android, not for "speeding up" parts of your Android app written with the Java language.
If you do need to use native code, you should read our JNI Tips.
Tip: Also see Josh Bloch's Effective Java, item 54.

Performance Myths
On devices without a JIT, it is true that invoking methods via a variable with an exact type rather than an
interface is slightly more efficient. (So, for example, it was cheaper to invoke methods on a HashMap map
than a Map map, even though in both cases the map was a HashMap.) It was not the case that this was 2x
slower; the actual difference was more like 6% slower. Furthermore, the JIT makes the two effectively
indistinguishable.
On devices without a JIT, caching field accesses is about 20% faster than repeatedly accesssing the field.
With a JIT, field access costs about the same as local access, so this isn't a worthwhile optimization
unless you feel it makes your code easier to read. (This is true of final, static, and static final fields too.)

Always Measure
Before you start optimizing, make sure you have a problem that you need to solve. Make sure you can
accurately measure your existing performance, or you won't be able to measure the benefit of the
alternatives you try.
Every claim made in this document is backed up by a benchmark. The source to these benchmarks can be
found in the code.google.com "dalvik" project.
The benchmarks are built with the Caliper microbenchmarking framework for Java. Microbenchmarks are
hard to get right, so Caliper goes out of its way to do the hard work for you, and even detect some cases
where you're not measuring what you think you're measuring (because, say, the VM has managed to
optimize all your code away). We highly recommend you use Caliper to run your own microbenchmarks.
You may also find Traceview useful for profiling, but it's important to realize that it currently disables the
JIT, which may cause it to misattribute time to code that the JIT may be able to win back. It's especially

Performance Tips

667
Content from developer.android.com/training/articles/perf-tips.html through their Creative Commons Attribution 2.5 license

important after making changes suggested by Traceview data to ensure that the resulting code actually
runs faster when run without Traceview.
For more help profiling and debugging your apps, see the following documents:

• Profiling with Traceview and dmtracedump
• Analysing Display and Performance with Systrace

Improving Layout Performance

668
Content from developer.android.com/training/improving-layouts/index.html through their Creative Commons Attribution 2.5 license

196. Improving Layout Performance
Content from developer.android.com/training/improving-layouts/index.html through their Creative Commons Attribution 2.5 license

Video
DevBytes: Optimising Layouts with Hierarchy
Viewer
Layouts are a key part of Android applications that
directly affect the user experience. If implemented
poorly, your layout can lead to a memory hungry
application with slow UIs. The Android SDK
includes tools to help you identify problems in your
layout performance, which when combined the
lessons here, you will be able to implement
smooth scrolling interfaces with a minimum memory footprint.

Lessons
Optimizing Layout Hierarchies

In the same way a complex web page can slow down load time, your layout hierarchy if too
complex can also cause performance problems. This lesson shows how you can use SDK tools
to inspect your layout and discover performance bottlenecks.

Re-using Layouts with <include/>
If your application UI repeats certain layout constructs in multiple places, this lesson shows you
how to create efficient, re-usable layout constructs, then include them in the appropriate UI
layouts.

Loading Views On Demand
Beyond simply including one layout component within another layout, you might want to make the
included layout visible only when it's needed, sometime after the activity is running. This lesson
shows how you can improve your layout's initialization performance by loading portions of your
layout on demand.

Making ListView Scrolling Smooth
If you've built an instance of ListView that contains complex or data-heavy content in each list
item, the scroll performance of the list might suffer. This lesson provides some tips about how you
can make your scrolling performance more smooth.

Dependencies and prerequisites

• Android 1.5 (API Level 3) or higher

You should also read

• XML Layouts

Optimizing Layout Hierarchies

669
Content from developer.android.com/training/improving-layouts/optimizing-layout.html through their Creative Commons Attribution 2.5 license

197. Optimizing Layout Hierarchies
Content from developer.android.com/training/improving-layouts/optimizing-layout.html through their Creative Commons Attribution 2.5 license

It is a common misconception that using the basic
layout structures leads to the most efficient
layouts. However, each widget and layout you add
to your application requires initialization, layout,
and drawing. For example, using nested instances
of LinearLayout can lead to an excessively
deep view hierarchy. Furthermore, nesting several
instances of LinearLayout that use the
layout_weight parameter can be especially
expensive as each child needs to be measured
twice. This is particularly important when the
layout is inflated repeatedly, such as when used in
a ListView or GridView.
In this lesson you'll learn to use Hierarchy Viewer and Layoutopt to examine and optimize your layout.

Inspect Your Layout
The Android SDK tools include a tool called Hierarchy Viewer that allows you to analyze your layout while
your application is running. Using this tool helps you discover bottlenecks in the layout performance.
Hierarchy Viewer works by allowing you to select running processes on a connected device or emulator,
then display the layout tree. The traffic lights on each block represent its Measure, Layout and Draw
performance, helping you identify potential issues.
For example, figure 1 shows a layout that's used as an item in a ListView. This layout shows a small
bitmap image on the left and two stacked items of text on the right. It is especially important that layouts
that will be inflated multiple times—such as this one—are optimized as the performance benefits will be
multiplied.

Figure 1. Conceptual layout for an item in a ListView.
The hierarchyviewer tool is available in <sdk>/tools/. When opened, the Hierarchy Viewer shows
a list of available devices and its running components. Click Load View Hierarchy to view the layout
hierarchy of the selected component. For example, figure 2 shows the layout for the list item illustrated by
figure 1.

Figure 2. Layout hierarchy for the layout in figure 1, using nested instances of LinearLayout.

This lesson teaches you to
• Inspect Your Layout
• Revise Your Layout
• Use Lint
You should also read

• XML Layouts
• Layout Resource

Optimizing Layout Hierarchies

670
Content from developer.android.com/training/improving-layouts/optimizing-layout.html through their Creative Commons Attribution 2.5 license

Figure 3. Clicking a hierarchy node shows its performance times.
In figure 2, you can see there is a 3-level hierarchy with some problems laying out the text items. Clicking
on the items shows the time taken for each stage of the process (figure 3). It becomes clear which items
are taking the longest to measure, layout, and render, and where you should spend time optimizing.
The timings for rendering a complete list item using this layout are:

• Measure: 0.977ms
• Layout: 0.167ms
• Draw: 2.717ms

Revise Your Layout
Because the layout performance above slows down due to a nested LinearLayout, the performance
might improve by flattening the layout—make the layout shallow and wide, rather than narrow and deep. A
RelativeLayout as the root node allows for such layouts. So, when this design is converted to use
RelativeLayout, you can see that the layout becomes a 2-level hierarchy. Inspection of the new layout
looks like this:

Figure 4. Layout hierarchy for the layout in figure 1, using RelativeLayout.
Now rendering a list item takes:

• Measure: 0.598ms
• Layout: 0.110ms
• Draw: 2.146ms

Might seem like a small improvement, but this time is multiplied several times because this layout is used
for every item in a list.
Most of this time difference is due to the use of layout_weight in the LinearLayout design, which can
slow down the speed of measurement. It is just one example of how each layout has appropriate uses and
you should carefully consider whether using layout weight is necessary.

Optimizing Layout Hierarchies

671
Content from developer.android.com/training/improving-layouts/optimizing-layout.html through their Creative Commons Attribution 2.5 license

Use Lint
It is always good practice to run the Lint tool on your layout files to search for possible view hierarchy
optimizations. Lint has replaced the Layoutopt tool and has much greater functionality. Some examples of
Lint rules are:

• Use compound drawables - A LinearLayout which contains an ImageView and a TextView
can be more efficiently handled as a compound drawable.

• Merge root frame - If a FrameLayout is the root of a layout and does not provide background or
padding etc, it can be replaced with a merge tag which is slightly more efficient.

• Useless leaf - A layout that has no children or no background can often be removed (since it is
invisible) for a flatter and more efficient layout hierarchy.

• Useless parent - A layout with children that has no siblings, is not a ScrollView or a root layout,
and does not have a background, can be removed and have its children moved directly into the
parent for a flatter and more efficient layout hierarchy.

• Deep layouts - Layouts with too much nesting are bad for performance. Consider using flatter
layouts such as RelativeLayout or GridLayout to improve performance. The default
maximum depth is 10.

Another benefit of Lint is that it is integrated into the Android Development Tools for Eclipse (ADT 16+).
Lint automatically runs whenever you export an APK, edit and save an XML file or use the Layout Editor.
To manually force Lint to run press the Lint button in the Eclipse toolbar.

When used inside Eclipse, Lint has the ability to automatically fix some issues, provide suggestions for
others and jump directly to the offending code for review. If you don’t use Eclipse for your development,
Lint can also be run from the command line. More information about Lint is available at tools.android.com.

Re-using Layouts with <include/>

672
Content from developer.android.com/training/improving-layouts/reusing-layouts.html through their Creative Commons Attribution 2.5 license

198. Re-using Layouts with <include/>
Content from developer.android.com/training/improving-layouts/reusing-layouts.html through their Creative Commons Attribution 2.5 license

Although Android offers a variety of widgets to
provide small and re-usable interactive elements,
you might also need to re-use larger components
that require a special layout. To efficiently re-use
complete layouts, you can use the <include/>
and <merge/> tags to embed another layout
inside the current layout.
Reusing layouts is particularly powerful as it
allows you create reusable complex layouts. For
example, a yes/no button panel, or custom
progress bar with description text. It also means
that any elements of your application that are common across multiple layouts can be extracted, managed
separately, then included in each layout. So while you can create individual UI components by writing a
custom View, you can do it even more easily by re-using a layout file.

Create a Re-usable Layout
If you already know the layout that you want to re-use, create a new XML file and define the layout. For
example, here's a layout from the G-Kenya codelab that defines a title bar to be included in each activity
(titlebar.xml):

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width=”match_parent”
 android:layout_height="wrap_content"
 android:background="@color/titlebar_bg">

 <ImageView android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:width="" height=""
src="http://developer.android.com/@drawable/gafricalogo" />
</FrameLayout>

The root View should be exactly how you'd like it to appear in each layout to which you add this layout.

Use the <include> Tag
Inside the layout to which you want to add the re-usable component, add the <include/> tag. For
example, here's a layout from the G-Kenya codelab that includes the title bar from above:
Here's the layout file:

This lesson teaches you to
• Create a Re-usable Layout
• Use the <include> Tag
• Use the <merge> Tag
You should also read

• Layout Resources

Re-using Layouts with <include/>

673
Content from developer.android.com/training/improving-layouts/reusing-layouts.html through their Creative Commons Attribution 2.5 license

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:background="@color/app_bg"
 android:gravity="center_horizontal">

 <include layout="@layout/titlebar"/>

 <TextView android:layout_width=”match_parent”
 android:layout_height="wrap_content"
 android:text="@string/hello"
 android:padding="10dp" />

 ...

</LinearLayout>

You can also override all the layout parameters (any android:layout_* attributes) of the included
layout's root view by specifying them in the <include/> tag. For example:

<include android:id=”@+id/news_title”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 layout=”@layout/title”/>

However, if you want to override layout attributes using the <include> tag, you must override both
android:layout_height and android:layout_width in order for other layout attributes to take
effect.

Use the <merge> Tag
The <merge /> tag helps eliminate redundant view groups in your view hierarchy when including one
layout within another. For example, if your main layout is a vertical LinearLayout in which two
consecutive views can be re-used in multiple layouts, then the re-usable layout in which you place the two
views requires its own root view. However, using another LinearLayout as the root for the re-usable
layout would result in a vertical LinearLayout inside a vertical LinearLayout. The nested
LinearLayout serves no real purpose other than to slow down your UI performance.
To avoid including such a redundant view group, you can instead use the <merge> element as the root
view for the re-usable layout. For example:

<merge xmlns:android="http://schemas.android.com/apk/res/android">

 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/add"/>

 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/delete"/>

</merge>

Now, when you include this layout in another layout (using the <include/> tag), the system ignores the
<merge> element and places the two buttons directly in the layout, in place of the <include/> tag.

Loading Views On Demand

674
Content from developer.android.com/training/improving-layouts/loading-ondemand.html through their Creative Commons Attribution 2.5 license

199. Loading Views On Demand
Content from developer.android.com/training/improving-layouts/loading-ondemand.html through their Creative Commons Attribution 2.5 license

Sometimes your layout might require complex
views that are rarely used. Whether they are item
details, progress indicators, or undo messages,
you can reduce memory usage and speed up
rendering by loading the views only when they are
needed.

Define a ViewStub
ViewStub is a lightweight view with no dimension
and doesn’t draw anything or participate in the
layout. As such, it's cheap to inflate and cheap to leave in a view hierarchy. Each ViewStub simply needs
to include the android:layout attribute to specify the layout to inflate.
The following ViewStub is for a translucent progress bar overlay. It should be visible only when new items
are being imported into the application.

<ViewStub
 android:id="@+id/stub_import"
 android:inflatedId="@+id/panel_import"
 android:layout="@layout/progress_overlay"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom" />

Load the ViewStub Layout
When you want to load the layout specified by the ViewStub, either set it visible by calling
setVisibility(View.VISIBLE) or call inflate().

((ViewStub) findViewById(R.id.stub_import)).setVisibility(View.VISIBLE);
// or
View importPanel = ((ViewStub) findViewById(R.id.stub_import)).inflate();

Note: The inflate() method returns the inflated View once complete. so you don't need to call
findViewById() if you need to interact with the layout.
Once visible/inflated, the ViewStub element is no longer part of the view hierarchy. It is replaced by the
inflated layout and the ID for the root view of that layout is the one specified by the
android:inflatedId attribute of the ViewStub. (The ID android:id specified for the ViewStub is
valid only until the ViewStub layout is visible/inflated.)
Note: One drawback of ViewStub is that it doesn’t currently support the <merge/> tag in the layouts to
be inflated.

This lesson teaches you to
• Define a ViewStub
• Load the ViewStub Layout
You should also read

• Optimize with stubs (blog post)

Making ListView Scrolling Smooth

675
Content from developer.android.com/training/improving-layouts/smooth-scrolling.html through their Creative Commons Attribution 2.5 license

200. Making ListView Scrolling Smooth
Content from developer.android.com/training/improving-layouts/smooth-scrolling.html through their Creative Commons Attribution 2.5 license

The key to a smoothly scrolling ListView is to
keep the application’s main thread (the UI thread)
free from heavy processing. Ensure you do any
disk access, network access, or SQL access in a
separate thread. To test the status of your app,
you can enable StrictMode.

Use a Background Thread
Using a background thread ("worker thread")
removes strain from the main thread so it can
focus on drawing the UI. In many cases, using
AsyncTask provides a simple way to perform your work outside the main thread. AsyncTask
automatically queues up all the execute() requests and performs them serially. This behavior is global to
a particular process and means you don’t need to worry about creating your own thread pool.
In the sample code below, an AsyncTask is used to load images in a background thread, then apply them
to the UI once finished. It also shows a progress spinner in place of the images while they are loading.

// Using an AsyncTask to load the slow images in a background thread
new AsyncTask<ViewHolder, Void, Bitmap>() {
 private ViewHolder v;

 @Override
 protected Bitmap doInBackground(ViewHolder... params) {
 v = params[0];
 return mFakeImageLoader.getImage();
 }

 @Override
 protected void onPostExecute(Bitmap result) {
 super.onPostExecute(result);
 if (v.position == position) {
 // If this item hasn't been recycled already, hide the
 // progress and set and show the image
 v.progress.setVisibility(View.GONE);
 v.icon.setVisibility(View.VISIBLE);
 v.icon.setImageBitmap(result);
 }
 }
}.execute(holder);

Beginning with Android 3.0 (API level 11), an extra feature is available in AsyncTask so you can enable it
to run across multiple processor cores. Instead of calling execute() you can specify
executeOnExecutor() and multiple requests can be executed at the same time depending on the
number of cores available.

Hold View Objects in a View Holder
Your code might call findViewById() frequently during the scrolling of ListView, which can slow down
performance. Even when the Adapter returns an inflated view for recycling, you still need to look up the
elements and update them. A way around repeated use of findViewById() is to use the "view holder"
design pattern.

This lesson teaches you to
• Use a Background Thread
• Hold View Objects in a View Holder
You should also read

• Why is my list black? An Android
optimization

Making ListView Scrolling Smooth

676
Content from developer.android.com/training/improving-layouts/smooth-scrolling.html through their Creative Commons Attribution 2.5 license

A ViewHolder object stores each of the component views inside the tag field of the Layout, so you can
immediately access them without the need to look them up repeatedly. First, you need to create a class to
hold your exact set of views. For example:

static class ViewHolder {
 TextView text;
 TextView timestamp;
 ImageView icon;
 ProgressBar progress;
 int position;
}

Then populate the ViewHolder and store it inside the layout.

ViewHolder holder = new ViewHolder();
holder.icon = (ImageView) convertView.findViewById(R.id.listitem_image);
holder.text = (TextView) convertView.findViewById(R.id.listitem_text);
holder.timestamp = (TextView) convertView.findViewById(R.id.listitem_timestamp);
holder.progress = (ProgressBar) convertView.findViewById(R.id.progress_spinner);
convertView.setTag(holder);

Now you can easily access each view without the need for the look-up, saving valuable processor cycles.

Optimizing Battery Life

677
Content from developer.android.com/training/monitoring-device-state/index.html through their Creative Commons Attribution 2.5 license

201. Optimizing Battery Life
Content from developer.android.com/training/monitoring-device-state/index.html through their Creative Commons Attribution 2.5 license

For your app to be a good citizen, it should seek
to limit its impact on the battery life of its host
device. After this class you will be able to build
apps that monitor modify their functionality and
behavior based on the state of the host device.
By taking steps such as disabling background
service updates when you lose connectivity, or
reducing the rate of such updates when the
battery level is low, you can ensure that the
impact of your app on battery life is minimized,
without compromising the user experience.

Lessons
Monitoring the Battery Level and Charging State

Learn how to alter your app's update rate by determining, and monitoring, the current battery level
and changes in charging state.

Determining and Monitoring the Docking State and Type
Optimal refresh rates can vary based on how the host device is being used. Learn how to
determine, and monitor, the docking state and type of dock being used to affect your app's
behavior.

Determining and Monitoring the Connectivity Status
Without Internet connectivity you can't update your app from an online source. Learn how to
check the connectivity status to alter your background update rate. You'll also learn to check for
Wi-Fi or mobile connectivity before beginning high-bandwidth operations.

Manipulating Broadcast Receivers On Demand
Broadcast receivers that you've declared in the manifest can be toggled at runtime to disable
those that aren't necessary due to the current device state. Learn to improve efficiency by
toggling and cascading state change receivers and delay actions until the device is in a specific
state.

Dependencies and prerequisites

• Android 2.0 (API level 5) or higher
• Experience with Intents and Intent

Filters

You should also read

• Services

Monitoring the Battery Level and Charging State

678
Content from developer.android.com/training/monitoring-device-state/battery-monitoring.html through their Creative Commons Attribution 2.5 license

202. Monitoring the Battery Level and Charging State
Content from developer.android.com/training/monitoring-device-state/battery-monitoring.html through their Creative Commons Attribution 2.5 license

When you're altering the frequency of your
background updates to reduce the effect of those
updates on battery life, checking the current
battery level and charging state is a good place to
start.
The battery-life impact of performing application
updates depends on the battery level and
charging state of the device. The impact of
performing updates while the device is charging
over AC is negligible, so in most cases you can
maximize your refresh rate whenever the device is
connected to a wall charger. Conversely, if the
device is discharging, reducing your update rate
helps prolong the battery life.
Similarly, you can check the battery charge level, potentially reducing the frequency of—or even
stopping—your updates when the battery charge is nearly exhausted.

Determine the Current Charging State
Start by determining the current charge status. The BatteryManager broadcasts all battery and charging
details in a sticky Intent that includes the charging status.
Because it's a sticky intent, you don't need to register a BroadcastReceiver—by simply calling
registerReceiver passing in null as the receiver as shown in the next snippet, the current battery
status intent is returned. You could pass in an actual BroadcastReceiver object here, but we'll be
handling updates in a later section so it's not necessary.

IntentFilter ifilter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);
Intent batteryStatus = context.registerReceiver(null, ifilter);

You can extract both the current charging status and, if the device is being charged, whether it's charging
via USB or AC charger:

// Are we charging / charged?
int status = batteryStatus.getIntExtra(BatteryManager.EXTRA_STATUS, -1);
boolean isCharging = status == BatteryManager.BATTERY_STATUS_CHARGING ||
 status == BatteryManager.BATTERY_STATUS_FULL;

// How are we charging?
int chargePlug = batteryStatus.getIntExtra(BatteryManager.EXTRA_PLUGGED, -1);
boolean usbCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_USB;
boolean acCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_AC;

Typically you should maximize the rate of your background updates in the case where the device is
connected to an AC charger, reduce the rate if the charge is over USB, and lower it further if the battery is
discharging.

Monitor Changes in Charging State
The charging status can change as easily as a device can be plugged in, so it's important to monitor the
charging state for changes and alter your refresh rate accordingly.

This lesson teaches you to
• Determine the Current Charging State
• Monitor Changes in Charging State
• Determine the Current Battery Level
• Monitor Significant Changes in Battery
Level
You should also read

• Intents and Intent Filters

Monitoring the Battery Level and Charging State

679
Content from developer.android.com/training/monitoring-device-state/battery-monitoring.html through their Creative Commons Attribution 2.5 license

The BatteryManager broadcasts an action whenever the device is connected or disconnected from
power. It's important to to receive these events even while your app isn't running—particularly as these
events should impact how often you start your app in order to initiate a background update—so you should
register a BroadcastReceiver in your manifest to listen for both events by defining the
ACTION_POWER_CONNECTED and ACTION_POWER_DISCONNECTED within an intent filter.

<receiver android:name=".PowerConnectionReceiver">
 <intent-filter>
 <action android:name="android.intent.action.ACTION_POWER_CONNECTED"/>
 <action android:name="android.intent.action.ACTION_POWER_DISCONNECTED"/>
 </intent-filter>
</receiver>

Within the associated BroadcastReceiver implementation, you can extract the current charging state
and method as described in the previous step.

public class PowerConnectionReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 int status = intent.getIntExtra(BatteryManager.EXTRA_STATUS, -1);
 boolean isCharging = status == BatteryManager.BATTERY_STATUS_CHARGING ||
 status == BatteryManager.BATTERY_STATUS_FULL;

 int chargePlug = intent.getIntExtra(BatteryManager.EXTRA_PLUGGED, -1);
 boolean usbCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_USB;
 boolean acCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_AC;
 }
}

Determine the Current Battery Level
In some cases it's also useful to determine the current battery level. You may choose to reduce the rate of
your background updates if the battery charge is below a certain level.
You can find the current battery charge by extracting the current battery level and scale from the battery
status intent as shown here:

int level = batteryStatus.getIntExtra(BatteryManager.EXTRA_LEVEL, -1);
int scale = batteryStatus.getIntExtra(BatteryManager.EXTRA_SCALE, -1);

float batteryPct = level / (float)scale;

Monitor Significant Changes in Battery Level
You can't easily continually monitor the battery state, but you don't need to.
Generally speaking, the impact of constantly monitoring the battery level has a greater impact on the
battery than your app's normal behavior, so it's good practice to only monitor significant changes in battery
level—specifically when the device enters or exits a low battery state.
The manifest snippet below is extracted from the intent filter element within a broadcast receiver. The
receiver is triggered whenever the device battery becomes low or exits the low condition by listening for
ACTION_BATTERY_LOW and ACTION_BATTERY_OKAY.

Monitoring the Battery Level and Charging State

680
Content from developer.android.com/training/monitoring-device-state/battery-monitoring.html through their Creative Commons Attribution 2.5 license

<receiver android:name=".BatteryLevelReceiver">
<intent-filter>
 <action android:name="android.intent.action.ACTION_BATTERY_LOW"/>
 <action android:name="android.intent.action.ACTION_BATTERY_OKAY"/>
 </intent-filter>
</receiver>

It is generally good practice to disable all your background updates when the battery is critically low. It
doesn't matter how fresh your data is if the phone turns itself off before you can make use of it.
In many cases, the act of charging a device is coincident with putting it into a dock. The next lesson shows
you how to determine the current dock state and monitor for changes in device docking.

Determining and Monitoring the Docking State and Type

681
Content from developer.android.com/training/monitoring-device-state/docking-monitoring.html through their Creative Commons Attribution 2.5 license

203. Determining and Monitoring the Docking State and Type
Content from developer.android.com/training/monitoring-device-state/docking-monitoring.html through their Creative Commons Attribution 2.5 license

Android devices can be docked into several
different kinds of docks. These include car or
home docks and digital versus analog docks. The
dock-state is typically closely linked to the
charging state as many docks provide power to
docked devices.
How the dock-state of the phone affects your
update rate depends on your app. You may
choose to increase the update frequency of a
sports center app when it's in the desktop dock, or
disable your updates completely if the device is
car docked. Conversely, you may choose to
maximize your updates while car docked if your background service is updating traffic conditions.
The dock state is also broadcast as a sticky Intent, allowing you to query if the device is docked or not,
and if so, in which kind of dock.

Determine the Current Docking State
The dock-state details are included as an extra in a sticky broadcast of the ACTION_DOCK_EVENT action.
Because it's sticky, you don't need to register a BroadcastReceiver. You can simply call
registerReceiver() passing in null as the broadcast receiver as shown in the next snippet.

IntentFilter ifilter = new IntentFilter(Intent.ACTION_DOCK_EVENT);
Intent dockStatus = context.registerReceiver(null, ifilter);

You can extract the current docking status from the EXTRA_DOCK_STATE extra:

int dockState = battery.getIntExtra(EXTRA_DOCK_STATE, -1);
boolean isDocked = dockState != Intent.EXTRA_DOCK_STATE_UNDOCKED;

Determine the Current Dock Type
If a device is docked, it can be docked in any one of four different type of dock:

• Car
• Desk
• Low-End (Analog) Desk
• High-End (Digital) Desk

Note that the latter two options were only introduced to Android in API level 11, so it's good practice to
check for all three where you are only interested in the type of dock rather than it being digital or analog
specifically:

boolean isCar = dockState == EXTRA_DOCK_STATE_CAR;
boolean isDesk = dockState == EXTRA_DOCK_STATE_DESK ||
 dockState == EXTRA_DOCK_STATE_LE_DESK ||
 dockState == EXTRA_DOCK_STATE_HE_DESK;

This lesson teaches you to
• Determine the Current Docking State
• Determine the Current Dock Type
• Monitor for Changes in the Dock State or
Type
You should also read

• Intents and Intent Filters

Determining and Monitoring the Docking State and Type

682
Content from developer.android.com/training/monitoring-device-state/docking-monitoring.html through their Creative Commons Attribution 2.5 license

Monitor for Changes in the Dock State or Type
Whenever the device is docked or undocked, the ACTION_DOCK_EVENT action is broadcast. To monitor
changes in the device's dock-state, simply register a broadcast receiver in your application manifest as
shown in the snippet below:

<action android:name="android.intent.action.ACTION_DOCK_EVENT"/>

You can extract the dock type and state within the receiver implementation using the same techniques
described in the previous step.

Determining and Monitoring the Connectivity Status

683
Content from developer.android.com/training/monitoring-device-state/connectivity-monitoring.html through their Creative Commons Attribution 2.5

license

204. Determining and Monitoring the Connectivity Status
Content from developer.android.com/training/monitoring-device-state/connectivity-monitoring.html through their Creative Commons Attribution 2.5 license

Some of the most common uses for repeating
alarms and background services is to schedule
regular updates of application data from Internet
resources, cache data, or execute long running
downloads. But if you aren't connected to the
Internet, or the connection is too slow to complete
your download, why both waking the device to
schedule the update at all?
You can use the ConnectivityManager to
check that you're actually connected to the
Internet, and if so, what type of connection is in
place.

Determine if You Have an Internet
Connection
There's no need to schedule an update based on an Internet resource if you aren't connected to the
Internet. The following snippet shows how to use the ConnectivityManager to query the active network
and determine if it has Internet connectivity.

ConnectivityManager cm =
 (ConnectivityManager)context.getSystemService(Context.CONNECTIVITY_SERVICE);

NetworkInfo activeNetwork = cm.getActiveNetworkInfo();
boolean isConnected = activeNetwork != null &&
 activeNetwork.isConnectedOrConnecting();

Determine the Type of your Internet Connection
It's also possible to determine the type of Internet connection currently available.
Device connectivity can be provided by mobile data, WiMAX, Wi-Fi, and ethernet connections. By querying
the type of the active network, as shown below, you can alter your refresh rate based on the bandwidth
available.

boolean isWiFi = activeNetwork.getType() == ConnectivityManager.TYPE_WIFI;

Mobile data costs tend to be significantly higher than Wi-Fi, so in most cases, your app's update rate
should be lower when on mobile connections. Similarly, downloads of significant size should be suspended
until you have a Wi-Fi connection.
Having disabled your updates, it's important that you listen for changes in connectivity in order to resume
them once an Internet connection has been established.

Monitor for Changes in Connectivity
The ConnectivityManager broadcasts the CONNECTIVITY_ACTION
("android.net.conn.CONNECTIVITY_CHANGE") action whenever the connectivity details have
changed. You can register a broadcast receiver in your manifest to listen for these changes and resume
(or suspend) your background updates accordingly.

This lesson teaches you to
• Determine if you Have an Internet
Connection
• Determine the Type of your Internet
Connection
• Monitor for Changes in Connectivity
You should also read

• Intents and Intent Filters

Determining and Monitoring the Connectivity Status

684
Content from developer.android.com/training/monitoring-device-state/connectivity-monitoring.html through their Creative Commons Attribution 2.5

license

<action android:name="android.net.conn.CONNECTIVITY_CHANGE"/>

Changes to a device's connectivity can be very frequent—this broadcast is triggered every time you move
between mobile data and Wi-Fi. As a result, it's good practice to monitor this broadcast only when you've
previously suspended updates or downloads in order to resume them. It's generally sufficient to simply
check for Internet connectivity before beginning an update and, should there be none, suspend further
updates until connectivity is restored.
This technique requires toggling broadcast receivers you've declard in the manifest, which is described in
the next lesson.

Manipulating Broadcast Receivers On Demand

685
Content from developer.android.com/training/monitoring-device-state/manifest-receivers.html through their Creative Commons Attribution 2.5 license

205. Manipulating Broadcast Receivers On Demand
Content from developer.android.com/training/monitoring-device-state/manifest-receivers.html through their Creative Commons Attribution 2.5 license

The simplest way to monitor device state changes
is to create a BroadcastReceiver for each
state you're monitoring and register each of them
in your application manifest. Then within each of
these receivers you simply reschedule your
recurring alarms based on the current device
state.
A side-effect of this approach is that your app will
wake the device each time any of these receivers
is triggered—potentially much more frequently
than required.
A better approach is to disable or enable the broadcast receivers at runtime. That way you can use the
receivers you declared in the manifest as passive alarms that are triggered by system events only when
necessary.

Toggle and Cascade State Change Receivers to Improve Efficiency
Use can use the PackageManager to toggle the enabled state on any component defined in the manifest,
including whichever broadcast receivers you wish to enable or disable as shown in the snippet below:

ComponentName receiver = new ComponentName(context, myReceiver.class);

PackageManager pm = context.getPackageManager();

pm.setComponentEnabledSetting(receiver,
 PackageManager.COMPONENT_ENABLED_STATE_ENABLED,
 PackageManager.DONT_KILL_APP)

Using this technique, if you determine that connectivity has been lost, you can disable all of your receivers
except the connectivity-change receiver. Conversely, once you are connected you can stop listening for
connectivity changes and simply check to see if you're online immediately before performing an update
and rescheduling a recurring update alarm.
You can use the same technique to delay a download that requires higher bandwidth to complete. Simply
enable a broadcast receiver that listens for connectivity changes and initiates the download only after you
are connected to Wi-Fi.

This lesson teaches you to
• Toggle and Cascade State Change
Receivers to Improve Efficiency
You should also read

• Intents and Intent Filters

Sending Operations to Multiple Threads

686
Content from developer.android.com/training/multiple-threads/index.html through their Creative Commons Attribution 2.5 license

206. Sending Operations to Multiple Threads
Content from developer.android.com/training/multiple-threads/index.html through their Creative Commons Attribution 2.5 license

The speed and efficiency of a long-running, data-
intensive operation often improves when you split
it into smaller operations running on multiple
threads. On a device that has a CPU with multiple
processors (cores), the system can run the
threads in parallel, rather than making each sub-
operation wait for a chance to run. For example,
decoding multiple image files in order to display
them on a thumbnail screen runs substantially
faster when you do each decode on a separate
thread.
This class shows you how to set up and use
multiple threads in an Android app, using a thread
pool object. You'll also learn how to define code to
run on a thread and how to communicate between
one of these threads and the UI thread.

Lessons
Specifying the Code to Run on a Thread

Learn how to write code to run on a separate Thread, by defining a class that implements the
Runnable interface.

Creating a Manager for Multiple Threads
Learn how to create an object that manages a pool of Thread objects and a queue of Runnable
objects. This object is called a ThreadPoolExecutor.

Running Code on a Thread Pool Thread
Learn how to run a Runnable on a thread from the thread pool.

Communicating with the UI Thread
Learn how to communicate from a thread in the thread pool to the UI thread.

Dependencies and prerequisites

• Android 3.0 (API Level 11) or higher
• Loading Data in the Background

training class
• Running in a Background Service

training class

You should also read

• Processes and Threads

Try it out
Download the sample
ThreadSample.zip

Specifying the Code to Run on a Thread

687
Content from developer.android.com/training/multiple-threads/define-runnable.html through their Creative Commons Attribution 2.5 license

207. Specifying the Code to Run on a Thread
Content from developer.android.com/training/multiple-threads/define-runnable.html through their Creative Commons Attribution 2.5 license

This lesson shows you how to implement a
Runnable class, which runs the code in its
Runnable.run() method on a separate thread.
You can also pass a Runnable to another object
that can then attach it to a thread and run it. One
or more Runnable objects that perform a
particular operation are sometimes called a task.
Thread and Runnable are basic classes that, on
their own, have only limited power. Instead,
they're the basis of powerful Android classes such
as HandlerThread, AsyncTask, and
IntentService. Thread and Runnable are
also the basis of the class
ThreadPoolExecutor. This class automatically
manages threads and task queues, and can even run multiple threads in parallel.

Define a Class that Implements Runnable
Implementing a class that implements Runnable is straightforward. For example:

public class PhotoDecodeRunnable implements Runnable {
 ...
 @Override
 public void run() {
 /*
 * Code you want to run on the thread goes here
 */
 ...
 }
 ...
}

Implement the run() Method
In the class, the Runnable.run() method contains the code that's executed. Usually, anything is
allowable in a Runnable. Remember, though, that the Runnable won't be running on the UI thread, so it
can't directly modify UI objects such as View objects. To communicate with the UI thread, you have to use
the techniques described in the lesson Communicate with the UI Thread.
At the beginning of the run() method, set the thread to use background priority by calling
Process.setThreadPriority() with THREAD_PRIORITY_BACKGROUND. This approach reduces
resource competition between the Runnable object's thread and the UI thread.
You should also store a reference to the Runnable object's Thread in the Runnable itself, by calling
Thread.currentThread().
The following snippet shows how to set up the run() method:

This lesson teaches you to
• Define a Class that Implements Runnable
• Implement the run() Method
You should also read

• Processes and Threads

Try it out
Download the sample
ThreadSample.zip

Specifying the Code to Run on a Thread

688
Content from developer.android.com/training/multiple-threads/define-runnable.html through their Creative Commons Attribution 2.5 license

class PhotoDecodeRunnable implements Runnable {
...
 /*
 * Defines the code to run for this task.
 */
 @Override
 public void run() {
 // Moves the current Thread into the background
 android.os.Process.setThreadPriority(android.os.Process.THREAD_PRIORITY_BACKGROUND);
 ...
 /*
 * Stores the current Thread in the PhotoTask instance,
 * so that the instance
 * can interrupt the Thread.
 */
 mPhotoTask.setImageDecodeThread(Thread.currentThread());
 ...
 }
...
}

Creating a Manager for Multiple Threads

689
Content from developer.android.com/training/multiple-threads/create-threadpool.html through their Creative Commons Attribution 2.5 license

208. Creating a Manager for Multiple Threads
Content from developer.android.com/training/multiple-threads/create-threadpool.html through their Creative Commons Attribution 2.5 license

The previous lesson showed how to define a task
that executes on a separate thread. If you only
want to run the task once, this may be all you
need. If you want to run a task repeatedly on
different sets of data, but you only need one
execution running at a time, an IntentService
suits your needs. To automatically run tasks as
resources become available, or to allow multiple
tasks to run at the same time (or both), you need
to provide a managed collection of threads. To do
this, use an instance of ThreadPoolExecutor,
which runs a task from a queue when a thread in
its pool becomes free. To run a task, all you have
to do is add it to the queue.
A thread pool can run multiple parallel instances
of a task, so you should ensure that your code is
thread-safe. Enclose variables that can be accessed by more than one thread in a synchronized block.
This approach will prevent one thread from reading the variable while another is writing to it. Typically, this
situation arises with static variables, but it also occurs in any object that is only instantiated once. To learn
more about this, read the Processes and Threads API guide.

Define the Thread Pool Class
Instantiate ThreadPoolExecutor in its own class. Within this class, do the following:
Use static variables for thread pools

You may only want a single instance of a thread pool for your app, in order to have a single
control point for restricted CPU or network resources. If you have different Runnable types, you
may want to have a thread pool for each one, but each of these can be a single instance. For
example, you can add this as part of your global field declarations:

public class PhotoManager {
 ...
 static {
 ...
 // Creates a single static instance of PhotoManager
 sInstance = new PhotoManager();
 }
 ...

Use a private constructor

Making the constructor private ensures that it is a singleton, which means that you don't have to
enclose accesses to the class in a synchronized block:

This lesson teaches you to
• Define the Thread Pool Class
• Determine the Thread Pool Parameters
• Create a Pool of Threads
You should also read

• Processes and Threads

Try it out
Download the sample
ThreadSample.zip

Creating a Manager for Multiple Threads

690
Content from developer.android.com/training/multiple-threads/create-threadpool.html through their Creative Commons Attribution 2.5 license

public class PhotoManager {
 ...
 /**
 * Constructs the work queues and thread pools used to download
 * and decode images. Because the constructor is marked private,
 * it's unavailable to other classes, even in the same package.
 */
 private PhotoManager() {
 ...
 }

Start your tasks by calling methods in the thread pool class.

Define a method in the thread pool class that adds a task to a thread pool's queue. For example:

public class PhotoManager {
 ...
 // Called by the PhotoView to get a photo
 static public PhotoTask startDownload(
 PhotoView imageView,
 boolean cacheFlag) {
 ...
 // Adds a download task to the thread pool for execution
 sInstance.
 mDownloadThreadPool.
 execute(downloadTask.getHTTPDownloadRunnable());
 ...
 }

Instantiate a Handler in the constructor and attach it to your app's UI thread.

A Handler allows your app to safely call the methods of UI objects such as View objects. Most
UI objects may only be safely altered from the UI thread. This approach is described in more
detail in the lesson Communicate with the UI Thread. For example:

 private PhotoManager() {
 ...
 // Defines a Handler object that's attached to the UI thread
 mHandler = new Handler(Looper.getMainLooper()) {
 /*
 * handleMessage() defines the operations to perform when
 * the Handler receives a new Message to process.
 */
 @Override
 public void handleMessage(Message inputMessage) {
 ...
 }
 ...
 }
 }

Determine the Thread Pool Parameters
Once you have the overall class structure, you can start defining the thread pool. To instantiate a
ThreadPoolExecutor object, you need the following values:
Initial pool size and maximum pool size

Creating a Manager for Multiple Threads

691
Content from developer.android.com/training/multiple-threads/create-threadpool.html through their Creative Commons Attribution 2.5 license

The initial number of threads to allocate to the pool, and the maximum allowable number. The
number of threads you can have in a thread pool depends primarily on the number of cores
available for your device. This number is available from the system environment:

public class PhotoManager {
...
 /*
 * Gets the number of available cores
 * (not always the same as the maximum number of cores)
 */
 private static int NUMBER_OF_CORES =
 Runtime.getRuntime().availableProcessors();
}

This number may not reflect the number of physical cores in the device; some devices have CPUs that
deactivate one or more cores depending on the system load. For these devices,
availableProcessors() returns the number of active cores, which may be less than the total number
of cores.
Keep alive time and time unit

The duration that a thread will remain idle before it shuts down. The duration is interpreted by the
time unit value, one of the constants defined in TimeUnit.

A queue of tasks
The incoming queue from which ThreadPoolExecutor takes Runnable objects. To start code
on a thread, a thread pool manager takes a Runnable object from a first-in, first-out queue and
attaches it to the thread. You provide this queue object when you create the thread pool, using
any queue class that implements the BlockingQueue interface. To match the requirements of
your app, you can choose from the available queue implementations; to learn more about them,
see the class overview for ThreadPoolExecutor. This example uses the
LinkedBlockingQueue class:

public class PhotoManager {
 ...
 private PhotoManager() {
 ...
 // A queue of Runnables
 private final BlockingQueue<Runnable> mDecodeWorkQueue;
 ...
 // Instantiates the queue of Runnables as a LinkedBlockingQueue
 mDecodeWorkQueue = new LinkedBlockingQueue<Runnable>();
 ...
 }
 ...
}

Create a Pool of Threads
To create a pool of threads, instantiate a thread pool manager by calling ThreadPoolExecutor(). This
creates and manages a constrained group of threads. Because the initial pool size and the maximum pool
size are the same, ThreadPoolExecutor creates all of the thread objects when it is instantiated. For
example:

Creating a Manager for Multiple Threads

692
Content from developer.android.com/training/multiple-threads/create-threadpool.html through their Creative Commons Attribution 2.5 license

 private PhotoManager() {
 ...
 // Sets the amount of time an idle thread waits before terminating
 private static final int KEEP_ALIVE_TIME = 1;
 // Sets the Time Unit to seconds
 private static final TimeUnit KEEP_ALIVE_TIME_UNIT = TimeUnit.SECONDS;
 // Creates a thread pool manager
 mDecodeThreadPool = new ThreadPoolExecutor(
 NUMBER_OF_CORES, // Initial pool size
 NUMBER_OF_CORES, // Max pool size
 KEEP_ALIVE_TIME,
 KEEP_ALIVE_TIME_UNIT,
 mDecodeWorkQueue);
 }

Running Code on a Thread Pool Thread

693
Content from developer.android.com/training/multiple-threads/run-code.html through their Creative Commons Attribution 2.5 license

209. Running Code on a Thread Pool Thread
Content from developer.android.com/training/multiple-threads/run-code.html through their Creative Commons Attribution 2.5 license

The previous lesson showed you how to define a
class that manages thread pools and the tasks
that run on them. This lesson shows you how to
run a task on a thread pool. To do this, you add
the task to the pool's work queue. When a thread
becomes available, the ThreadPoolExecutor
takes a task from the queue and runs it on the
thread.
This lesson also shows you how to stop a task
that's running. You might want to do this if a task
starts, but then discovers that its work isn't
necessary. Rather than wasting processor time,
you can cancel the thread the task is running on.
For example, if you are downloading images from
the network and using a cache, you probably want
to stop a task if it detects that an image is already present in the cache. Depending on how you write your
app, you may not be able to detect this before you start the download.

Run a Task on a Thread in the Thread Pool
To start a task object on a thread in a particular thread pool, pass the Runnable to
ThreadPoolExecutor.execute(). This call adds the task to the thread pool's work queue. When an
idle thread becomes available, the manager takes the task that has been waiting the longest and runs it on
the thread:

public class PhotoManager {
 public void handleState(PhotoTask photoTask, int state) {
 switch (state) {
 // The task finished downloading the image
 case DOWNLOAD_COMPLETE:
 // Decodes the image
 mDecodeThreadPool.execute(
 photoTask.getPhotoDecodeRunnable());
 ...
 }
 ...
 }
 ...
}

When ThreadPoolExecutor starts a Runnable on a thread, it automatically calls the object's run()
method.

Interrupt Running Code
To stop a task, you need to interrupt the task's thread. To prepare to do this, you need to store a handle to
the task's thread when you create the task. For example:

This lesson teaches you to
• Run a Runnable on a Thread in the Thread
Pool
• Interrupt Running Code
You should also read

• Processes and Threads

Try it out
Download the sample
ThreadSample.zip

Running Code on a Thread Pool Thread

694
Content from developer.android.com/training/multiple-threads/run-code.html through their Creative Commons Attribution 2.5 license

class PhotoDecodeRunnable implements Runnable {
 // Defines the code to run for this task
 public void run() {
 /*
 * Stores the current Thread in the
 * object that contains PhotoDecodeRunnable
 */
 mPhotoTask.setImageDecodeThread(Thread.currentThread());
 ...
 }
 ...
}

To interrupt a thread, call Thread.interrupt(). Notice that Thread objects are controlled by the
system, which can modify them outside of your app's process. For this reason, you need to lock access on
a thread before you interrupt it, by placing the access in a synchronized block. For example:

public class PhotoManager {
 public static void cancelAll() {
 /*
 * Creates an array of Runnables that's the same size as the
 * thread pool work queue
 */
 Runnable[] runnableArray = new Runnable[mDecodeWorkQueue.size()];
 // Populates the array with the Runnables in the queue
 mDecodeWorkQueue.toArray(runnableArray);
 // Stores the array length in order to iterate over the array
 int len = runnableArray.length;
 /*
 * Iterates over the array of Runnables and interrupts each one's Thread.
 */
 synchronized (sInstance) {
 // Iterates over the array of tasks
 for (int runnableIndex = 0; runnableIndex < len; runnableIndex++) {
 // Gets the current thread
 Thread thread = runnableArray[taskArrayIndex].mThread;
 // if the Thread exists, post an interrupt to it
 if (null != thread) {
 thread.interrupt();
 }
 }
 }
 }
 ...
}

In most cases, Thread.interrupt() stops the thread immediately. However, it only stops threads that
are waiting, and will not interrupt CPU or network-intensive tasks. To avoid slowing down or locking up the
system, you should test for any pending interrupt requests before attempting an operation :

Running Code on a Thread Pool Thread

695
Content from developer.android.com/training/multiple-threads/run-code.html through their Creative Commons Attribution 2.5 license

/*
 * Before continuing, checks to see that the Thread hasn't
 * been interrupted
 */
if (Thread.interrupted()) {
 return;
}
...
// Decodes a byte array into a Bitmap (CPU-intensive)
BitmapFactory.decodeByteArray(
 imageBuffer, 0, imageBuffer.length, bitmapOptions);
...

Communicating with the UI Thread

696
Content from developer.android.com/training/multiple-threads/communicate-ui.html through their Creative Commons Attribution 2.5 license

210. Communicating with the UI Thread
Content from developer.android.com/training/multiple-threads/communicate-ui.html through their Creative Commons Attribution 2.5 license

In the previous lesson you learned how to start a
task on a thread managed by
ThreadPoolExecutor. This final lesson shows
you how to send data from the task to objects
running on the user interface (UI) thread. This
feature allows your tasks to do background work
and then move the results to UI elements such as
bitmaps.
Every app has its own special thread that runs UI
objects such as View objects; this thread is called
the UI thread. Only objects running on the UI
thread have access to other objects on that
thread. Because tasks that you run on a thread
from a thread pool aren't running on your UI
thread, they don't have access to UI objects. To move data from a background thread to the UI thread, use
a Handler that's running on the UI thread.

Define a Handler on the UI Thread
Handler is part of the Android system's framework for managing threads. A Handler object receives
messages and runs code to handle the messages. Normally, you create a Handler for a new thread, but
you can also create a Handler that's connected to an existing thread. When you connect a Handler to
your UI thread, the code that handles messages runs on the UI thread.
Instantiate the Handler object in the constructor for the class that creates your thread pools, and store the
object in a global variable. Connect it to the UI thread by instantiating it with the Handler(Looper)
constructor. This constructor uses a Looper object, which is another part of the Android system's thread
management framework. When you instantiate a Handler based on a particular Looper instance, the
Handler runs on the same thread as the Looper. For example:

private PhotoManager() {
...
 // Defines a Handler object that's attached to the UI thread
 mHandler = new Handler(Looper.getMainLooper()) {
 ...

Inside the Handler, override the handleMessage() method. The Android system invokes this method
when it receives a new message for a thread it's managing; all of the Handler objects for a particular
thread receive the same message. For example:

This lesson teaches you to
• Define a Handler on the UI Thread
• Move Data from a Task to the UI Thread
You should also read

• Processes and Threads

Try it out
Download the sample
ThreadSample.zip

Communicating with the UI Thread

697
Content from developer.android.com/training/multiple-threads/communicate-ui.html through their Creative Commons Attribution 2.5 license

 /*
 * handleMessage() defines the operations to perform when
 * the Handler receives a new Message to process.
 */
 @Override
 public void handleMessage(Message inputMessage) {
 // Gets the image task from the incoming Message object.
 PhotoTask photoTask = (PhotoTask) inputMessage.obj;
 ...
 }
 ...
 }
}
The next section shows how to tell the Handler to move data.

Move Data from a Task to the UI Thread
To move data from a task object running on a background thread to an object on the UI thread, start by
storing references to the data and the UI object in the task object. Next, pass the task object and a status
code to the object that instantiated the Handler. In this object, send a Message containing the status and
the task object to the Handler. Because Handler is running on the UI thread, it can move the data to the
UI object.

Store data in the task object
For example, here's a Runnable, running on a background thread, that decodes a Bitmap and stores it in
its parent object PhotoTask. The Runnable also stores the status code DECODE_STATE_COMPLETED.

Communicating with the UI Thread

698
Content from developer.android.com/training/multiple-threads/communicate-ui.html through their Creative Commons Attribution 2.5 license

// A class that decodes photo files into Bitmaps
class PhotoDecodeRunnable implements Runnable {
 ...
 PhotoDecodeRunnable(PhotoTask downloadTask) {
 mPhotoTask = downloadTask;
 }
 ...
 // Gets the downloaded byte array
 byte[] imageBuffer = mPhotoTask.getByteBuffer();
 ...
 // Runs the code for this task
 public void run() {
 ...
 // Tries to decode the image buffer
 returnBitmap = BitmapFactory.decodeByteArray(
 imageBuffer,
 0,
 imageBuffer.length,
 bitmapOptions
);
 ...
 // Sets the ImageView Bitmap
 mPhotoTask.setImage(returnBitmap);
 // Reports a status of "completed"
 mPhotoTask.handleDecodeState(DECODE_STATE_COMPLETED);
 ...
 }
 ...
}
...

PhotoTask also contains a handle to the ImageView that displays the Bitmap. Even though references
to the Bitmap and ImageView are in the same object, you can't assign the Bitmap to the ImageView,
because you're not currently running on the UI thread.
Instead, the next step is to send this status to the PhotoTask object.

Send status up the object hierarchy
PhotoTask is the next higher object in the hierarchy. It maintains references to the decoded data and the
View object that will show the data. It receives a status code from PhotoDecodeRunnable and passes it
along to the object that maintains thread pools and instantiates Handler:

Communicating with the UI Thread

699
Content from developer.android.com/training/multiple-threads/communicate-ui.html through their Creative Commons Attribution 2.5 license

public class PhotoTask {
 ...
 // Gets a handle to the object that creates the thread pools
 sPhotoManager = PhotoManager.getInstance();
 ...
 public void handleDecodeState(int state) {
 int outState;
 // Converts the decode state to the overall state.
 switch(state) {
 case PhotoDecodeRunnable.DECODE_STATE_COMPLETED:
 outState = PhotoManager.TASK_COMPLETE;
 break;
 ...
 }
 ...
 // Calls the generalized state method
 handleState(outState);
 }
 ...
 // Passes the state to PhotoManager
 void handleState(int state) {
 /*
 * Passes a handle to this task and the
 * current state to the class that created
 * the thread pools
 */
 sPhotoManager.handleState(this, state);
 }
 ...
}

Move data to the UI
From the PhotoTask object, the PhotoManager object receives a status code and a handle to the
PhotoTask object. Because the status is TASK_COMPLETE, creates a Message containing the state and
task object and sends it to the Handler:

public class PhotoManager {
 ...
 // Handle status messages from tasks
 public void handleState(PhotoTask photoTask, int state) {
 switch (state) {
 ...
 // The task finished downloading and decoding the image
 case TASK_COMPLETE:
 /*
 * Creates a message for the Handler
 * with the state and the task object
 */
 Message completeMessage =
 mHandler.obtainMessage(state, photoTask);
 completeMessage.sendToTarget();
 break;
 ...
 }
 ...
 }

Communicating with the UI Thread

700
Content from developer.android.com/training/multiple-threads/communicate-ui.html through their Creative Commons Attribution 2.5 license

Finally, Handler.handleMessage() checks the status code for each incoming Message. If the status
code is TASK_COMPLETE, then the task is finished, and the PhotoTask object in the Message contains
both a Bitmap and an ImageView. Because Handler.handleMessage() is running on the UI thread,
it can safely move the Bitmap to the ImageView:

 private PhotoManager() {
 ...
 mHandler = new Handler(Looper.getMainLooper()) {
 @Override
 public void handleMessage(Message inputMessage) {
 // Gets the task from the incoming Message object.
 PhotoTask photoTask = (PhotoTask) inputMessage.obj;
 // Gets the ImageView for this task
 PhotoView localView = photoTask.getPhotoView();
 ...
 switch (inputMessage.what) {
 ...
 // The decoding is done
 case TASK_COMPLETE:
 /*
 * Moves the Bitmap from the task
 * to the View
 */
 localView.setImageBitmap(photoTask.getImage());
 break;
 ...
 default:
 /*
 * Pass along other messages from the UI
 */
 super.handleMessage(inputMessage);
 }
 ...
 }
 ...
 }
 ...
 }
...
}

Keeping Your App Responsive

701
Content from developer.android.com/training/articles/perf-anr.html through their Creative Commons Attribution 2.5 license

211. Keeping Your App Responsive
Content from developer.android.com/training/articles/perf-anr.html through their Creative Commons Attribution 2.5 license

Figure 1. An ANR dialog displayed to the user.
It's possible to write code that wins every performance test in the world, but still feels sluggish, hang or
freeze for significant periods, or take too long to process input. The worst thing that can happen to your
app's responsiveness is an "Application Not Responding" (ANR) dialog.
In Android, the system guards against applications that are insufficiently responsive for a period of time by
displaying a dialog that says your app has stopped responding, such as the dialog in Figure 1. At this
point, your app has been unresponsive for a considerable period of time so the system offers the user an
option to quit the app. It's critical to design responsiveness into your application so the system never
displays an ANR dialog to the user.
This document describes how the Android system determines whether an application is not responding
and provides guidelines for ensuring that your application stays responsive.

What Triggers ANR?
Generally, the system displays an ANR if an application cannot respond to user input. For example, if an
application blocks on some I/O operation (frequently a network access) on the UI thread so the system
can't process incoming user input events. Or perhaps the app spends too much time building an elaborate
in-memory structure or computing the next move in a game on the UI thread. It's always important to make
sure these computations are efficient, but even the most efficient code still takes time to run.
In any situation in which your app performs a potentially lengthy operation, you should not perform the
work on the UI thread, but instead create a worker thread and do most of the work there. This keeps the
UI thread (which drives the user interface event loop) running and prevents the system from concluding
that your code has frozen. Because such threading usually is accomplished at the class level, you can
think of responsiveness as a class problem. (Compare this with basic code performance, which is a
method-level concern.)
In Android, application responsiveness is monitored by the Activity Manager and Window Manager system
services. Android will display the ANR dialog for a particular application when it detects one of the
following conditions:

• No response to an input event (such as key press or screen touch events) within 5 seconds.
• A BroadcastReceiver hasn't finished executing within 10 seconds.

How to Avoid ANRs
Android applications normally run entirely on a single thread by default the "UI thread" or "main thread").
This means anything your application is doing in the UI thread that takes a long time to complete can
trigger the ANR dialog because your application is not giving itself a chance to handle the input event or
intent broadcasts.
Therefore, any method that runs in the UI thread should do as little work as possible on that thread. In
particular, activities should do as little as possible to set up in key life-cycle methods such as onCreate()
and onResume(). Potentially long running operations such as network or database operations, or

In this section
• What Triggers ANR?
• How to Avoid ANRs
• Reinforcing Responsiveness

Keeping Your App Responsive

702
Content from developer.android.com/training/articles/perf-anr.html through their Creative Commons Attribution 2.5 license

computationally expensive calculations such as resizing bitmaps should be done in a worker thread (or in
the case of databases operations, via an asynchronous request).
The most effecive way to create a worker thread for longer operations is with the AsyncTask class.
Simply extend AsyncTask and implement the doInBackground() method to perform the work. To post
progress changes to the user, you can call publishProgress(), which invokes the
onProgressUpdate() callback method. From your implementation of onProgressUpdate() (which
runs on the UI thread), you can notify the user. For example:

private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {
 // Do the long-running work in here
 protected Long doInBackground(URL... urls) {
 int count = urls.length;
 long totalSize = 0;
 for (int i = 0; i < count; i++) {
 totalSize += Downloader.downloadFile(urls[i]);
 publishProgress((int) ((i / (float) count) * 100));
 // Escape early if cancel() is called
 if (isCancelled()) break;
 }
 return totalSize;
 }

 // This is called each time you call publishProgress()
 protected void onProgressUpdate(Integer... progress) {
 setProgressPercent(progress[0]);
 }

 // This is called when doInBackground() is finished
 protected void onPostExecute(Long result) {
 showNotification("Downloaded " + result + " bytes");
 }
}

To execute this worker thread, simply create an instance and call execute():

new DownloadFilesTask().execute(url1, url2, url3);

Although it's more complicated than AsyncTask, you might want to instead create your own Thread or
HandlerThread class. If you do, you should set the thread priority to "background" priority by calling
Process.setThreadPriority() and passing THREAD_PRIORITY_BACKGROUND. If you don't set the
thread to a lower priority this way, then the thread could still slow down your app because it operates at the
same priority as the UI thread by default.
If you implement Thread or HandlerThread, be sure that your UI thread does not block while waiting for
the worker thread to complete—do not call Thread.wait() or Thread.sleep(). Instead of blocking
while waiting for a worker thread to complete, your main thread should provide a Handler for the other
threads to post back to upon completion. Designing your application in this way will allow your app's UI
thread to remain responsive to input and thus avoid ANR dialogs caused by the 5 second input event
timeout.
The specific constraint on BroadcastReceiver execution time emphasizes what broadcast receivers
are meant to do: small, discrete amounts of work in the background such as saving a setting or registering
a Notification. So as with other methods called in the UI thread, applications should avoid potentially
long-running operations or calculations in a broadcast receiver. But instead of doing intensive tasks via
worker threads, your application should start an IntentService if a potentially long running action needs
to be taken in response to an intent broadcast.

Keeping Your App Responsive

703
Content from developer.android.com/training/articles/perf-anr.html through their Creative Commons Attribution 2.5 license

Tip: You can use StrictMode to help find potentially long running operations such as network or
database operations that you might accidentally be doing your main thread.

Reinforce Responsiveness
Generally, 100 to 200ms is the threshold beyond which users will perceive slowness in an application. As
such, here are some additional tips beyond what you should do to avoid ANR and make your application
seem responsive to users:

• If your application is doing work in the background in response to user input, show that progress
is being made (such as with a ProgressBar in your UI).

• For games specifically, do calculations for moves in a worker thread.
• If your application has a time-consuming initial setup phase, consider showing a splash screen or

rendering the main view as quickly as possible, indicate that loading is in progress and fill the
information asynchronously. In either case, you should indicate somehow that progress is being
made, lest the user perceive that the application is frozen.

• Use performance tools such as Systrace and Traceview to determine bottlenecks in your app's
responsiveness.

JNI Tips

704
Content from developer.android.com/training/articles/perf-jni.html through their Creative Commons Attribution 2.5 license

212. JNI Tips
Content from developer.android.com/training/articles/perf-jni.html through their Creative Commons Attribution 2.5 license

JNI is the Java Native Interface. It defines a way
for managed code (written in the Java
programming language) to interact with native
code (written in C/C++). It's vendor-neutral, has
support for loading code from dynamic shared
libraries, and while cumbersome at times is
reasonably efficient.
If you're not already familiar with it, read through
the Java Native Interface Specification to get a
sense for how JNI works and what features are
available. Some aspects of the interface aren't
immediately obvious on first reading, so you may
find the next few sections handy.

JavaVM and JNIEnv
JNI defines two key data structures, "JavaVM"
and "JNIEnv". Both of these are essentially
pointers to pointers to function tables. (In the C++
version, they're classes with a pointer to a function
table and a member function for each JNI function
that indirects through the table.) The JavaVM
provides the "invocation interface" functions,
which allow you to create and destroy a JavaVM.
In theory you can have multiple JavaVMs per
process, but Android only allows one.
The JNIEnv provides most of the JNI functions.
Your native functions all receive a JNIEnv as the first argument.
The JNIEnv is used for thread-local storage. For this reason, you cannot share a JNIEnv between
threads. If a piece of code has no other way to get its JNIEnv, you should share the JavaVM, and use
GetEnv to discover the thread's JNIEnv. (Assuming it has one; see AttachCurrentThread below.)
The C declarations of JNIEnv and JavaVM are different from the C++ declarations. The "jni.h" include
file provides different typedefs depending on whether it's included into C or C++. For this reason it's a bad
idea to include JNIEnv arguments in header files included by both languages. (Put another way: if your
header file requires #ifdef __cplusplus, you may have to do some extra work if anything in that
header refers to JNIEnv.)

Threads
All threads are Linux threads, scheduled by the kernel. They're usually started from managed code (using
Thread.start), but they can also be created elsewhere and then attached to the JavaVM. For example,
a thread started with pthread_create can be attached with the JNI AttachCurrentThread or
AttachCurrentThreadAsDaemon functions. Until a thread is attached, it has no JNIEnv, and cannot
make JNI calls.
Attaching a natively-created thread causes a java.lang.Thread object to be constructed and added to
the "main" ThreadGroup, making it visible to the debugger. Calling AttachCurrentThread on an
already-attached thread is a no-op.
Android does not suspend threads executing native code. If garbage collection is in progress, or the
debugger has issued a suspend request, Android will pause the thread the next time it makes a JNI call.

In this section
• JavaVM and JNIEnv
• Threads
• jclass, jmethodID, and jfieldID
• Local and Global References
• UTF-8 and UTF-16 Strings
• Primitive Arrays
• Region Calls
• Exceptions
• Extended Checking
• Native Libraries
• 64-bit Considerations
• Unsupported Features/Backwards
Compatibility
• FAQ: Why do I get
UnsatisfiedLinkError
• FAQ: Why didn't FindClass find my
class?
• FAQ: How do I share raw data with native
code?

JNI Tips

705
Content from developer.android.com/training/articles/perf-jni.html through their Creative Commons Attribution 2.5 license

Threads attached through JNI must call DetachCurrentThread before they exit. If coding this directly
is awkward, in Android 2.0 (Eclair) and higher you can use pthread_key_create to define a destructor
function that will be called before the thread exits, and call DetachCurrentThread from there. (Use that
key with pthread_setspecific to store the JNIEnv in thread-local-storage; that way it'll be passed into
your destructor as the argument.)

jclass, jmethodID, and jfieldID
If you want to access an object's field from native code, you would do the following:

• Get the class object reference for the class with FindClass
• Get the field ID for the field with GetFieldID
• Get the contents of the field with something appropriate, such as GetIntField

Similarly, to call a method, you'd first get a class object reference and then a method ID. The IDs are often
just pointers to internal runtime data structures. Looking them up may require several string comparisons,
but once you have them the actual call to get the field or invoke the method is very quick.
If performance is important, it's useful to look the values up once and cache the results in your native code.
Because there is a limit of one JavaVM per process, it's reasonable to store this data in a static local
structure.
The class references, field IDs, and method IDs are guaranteed valid until the class is unloaded. Classes
are only unloaded if all classes associated with a ClassLoader can be garbage collected, which is rare but
will not be impossible in Android. Note however that the jclass is a class reference and must be
protected with a call to NewGlobalRef (see the next section).
If you would like to cache the IDs when a class is loaded, and automatically re-cache them if the class is
ever unloaded and reloaded, the correct way to initialize the IDs is to add a piece of code that looks like
this to the appropriate class:

 /*
 * We use a class initializer to allow the native code to cache some
 * field offsets. This native function looks up and caches interesting
 * class/field/method IDs. Throws on failure.
 */
 private static native void nativeInit();

 static {
 nativeInit();
 }

Create a nativeClassInit method in your C/C++ code that performs the ID lookups. The code will be
executed once, when the class is initialized. If the class is ever unloaded and then reloaded, it will be
executed again.

Local and Global References
Every argument passed to a native method, and almost every object returned by a JNI function is a "local
reference". This means that it's valid for the duration of the current native method in the current thread.
Even if the object itself continues to live on after the native method returns, the reference is not
valid.
This applies to all sub-classes of jobject, including jclass, jstring, and jarray. (The runtime will
warn you about most reference mis-uses when extended JNI checks are enabled.)
The only way to get non-local references is via the functions NewGlobalRef and NewWeakGlobalRef.

JNI Tips

706
Content from developer.android.com/training/articles/perf-jni.html through their Creative Commons Attribution 2.5 license

If you want to hold on to a reference for a longer period, you must use a "global" reference. The
NewGlobalRef function takes the local reference as an argument and returns a global one. The global
reference is guaranteed to be valid until you call DeleteGlobalRef.
This pattern is commonly used when caching a jclass returned from FindClass, e.g.:

jclass localClass = env->FindClass("MyClass");
jclass globalClass = reinterpret_cast<jclass>(env->NewGlobalRef(localClass));

All JNI methods accept both local and global references as arguments. It's possible for references to the
same object to have different values. For example, the return values from consecutive calls to
NewGlobalRef on the same object may be different. To see if two references refer to the same
object, you must use the IsSameObject function. Never compare references with == in native code.
One consequence of this is that you must not assume object references are constant or unique in
native code. The 32-bit value representing an object may be different from one invocation of a method to
the next, and it's possible that two different objects could have the same 32-bit value on consecutive calls.
Do not use jobject values as keys.
Programmers are required to "not excessively allocate" local references. In practical terms this means that
if you're creating large numbers of local references, perhaps while running through an array of objects, you
should free them manually with DeleteLocalRef instead of letting JNI do it for you. The implementation
is only required to reserve slots for 16 local references, so if you need more than that you should either
delete as you go or use EnsureLocalCapacity/PushLocalFrame to reserve more.
Note that jfieldIDs and jmethodIDs are opaque types, not object references, and should not be
passed to NewGlobalRef. The raw data pointers returned by functions like GetStringUTFChars and
GetByteArrayElements are also not objects. (They may be passed between threads, and are valid
until the matching Release call.)
One unusual case deserves separate mention. If you attach a native thread with
AttachCurrentThread, the code you are running will never automatically free local references until the
thread detaches. Any local references you create will have to be deleted manually. In general, any native
code that creates local references in a loop probably needs to do some manual deletion.

UTF-8 and UTF-16 Strings
The Java programming language uses UTF-16. For convenience, JNI provides methods that work with
Modified UTF-8 as well. The modified encoding is useful for C code because it encodes \u0000 as 0xc0
0x80 instead of 0x00. The nice thing about this is that you can count on having C-style zero-terminated
strings, suitable for use with standard libc string functions. The down side is that you cannot pass arbitrary
UTF-8 data to JNI and expect it to work correctly.
If possible, it's usually faster to operate with UTF-16 strings. Android currently does not require a copy in
GetStringChars, whereas GetStringUTFChars requires an allocation and a conversion to UTF-8.
Note that UTF-16 strings are not zero-terminated, and \u0000 is allowed, so you need to hang on to the
string length as well as the jchar pointer.
Don't forget to Release the strings you Get. The string functions return jchar* or jbyte*, which are
C-style pointers to primitive data rather than local references. They are guaranteed valid until Release is
called, which means they are not released when the native method returns.
Data passed to NewStringUTF must be in Modified UTF-8 format. A common mistake is reading
character data from a file or network stream and handing it to NewStringUTF without filtering it. Unless
you know the data is 7-bit ASCII, you need to strip out high-ASCII characters or convert them to proper
Modified UTF-8 form. If you don't, the UTF-16 conversion will likely not be what you expect. The extended
JNI checks will scan strings and warn you about invalid data, but they won't catch everything.

Primitive Arrays

JNI Tips

707
Content from developer.android.com/training/articles/perf-jni.html through their Creative Commons Attribution 2.5 license

JNI provides functions for accessing the contents of array objects. While arrays of objects must be
accessed one entry at a time, arrays of primitives can be read and written directly as if they were declared
in C.
To make the interface as efficient as possible without constraining the VM implementation, the
Get<PrimitiveType>ArrayElements family of calls allows the runtime to either return a pointer to the
actual elements, or allocate some memory and make a copy. Either way, the raw pointer returned is
guaranteed to be valid until the corresponding Release call is issued (which implies that, if the data
wasn't copied, the array object will be pinned down and can't be relocated as part of compacting the heap).
You must Release every array you Get. Also, if the Get call fails, you must ensure that your code
doesn't try to Release a NULL pointer later.
You can determine whether or not the data was copied by passing in a non-NULL pointer for the isCopy
argument. This is rarely useful.
The Release call takes a mode argument that can have one of three values. The actions performed by
the runtime depend upon whether it returned a pointer to the actual data or a copy of it:

• 0
o Actual: the array object is un-pinned.
o Copy: data is copied back. The buffer with the copy is freed.

• JNI_COMMIT
o Actual: does nothing.
o Copy: data is copied back. The buffer with the copy is not freed.

• JNI_ABORT
o Actual: the array object is un-pinned. Earlier writes are not aborted.
o Copy: the buffer with the copy is freed; any changes to it are lost.

One reason for checking the isCopy flag is to know if you need to call Release with JNI_COMMIT after
making changes to an array — if you're alternating between making changes and executing code that uses
the contents of the array, you may be able to skip the no-op commit. Another possible reason for checking
the flag is for efficient handling of JNI_ABORT. For example, you might want to get an array, modify it in
place, pass pieces to other functions, and then discard the changes. If you know that JNI is making a new
copy for you, there's no need to create another "editable" copy. If JNI is passing you the original, then you
do need to make your own copy.
It is a common mistake (repeated in example code) to assume that you can skip the Release call if
*isCopy is false. This is not the case. If no copy buffer was allocated, then the original memory must be
pinned down and can't be moved by the garbage collector.
Also note that the JNI_COMMIT flag does not release the array, and you will need to call Release again
with a different flag eventually.

Region Calls
There is an alternative to calls like Get<Type>ArrayElements and GetStringChars that may be very
helpful when all you want to do is copy data in or out. Consider the following:

 jbyte* data = env->GetByteArrayElements(array, NULL);
 if (data != NULL) {
 memcpy(buffer, data, len);
 env->ReleaseByteArrayElements(array, data, JNI_ABORT);
 }

This grabs the array, copies the first len byte elements out of it, and then releases the array. Depending
upon the implementation, the Get call will either pin or copy the array contents. The code copies the data

JNI Tips

708
Content from developer.android.com/training/articles/perf-jni.html through their Creative Commons Attribution 2.5 license

(for perhaps a second time), then calls Release; in this case JNI_ABORT ensures there's no chance of a
third copy.
One can accomplish the same thing more simply:

 env->GetByteArrayRegion(array, 0, len, buffer);

This has several advantages:

• Requires one JNI call instead of 2, reducing overhead.
• Doesn't require pinning or extra data copies.
• Reduces the risk of programmer error — no risk of forgetting to call Release after something

fails.

Similarly, you can use the Set<Type>ArrayRegion call to copy data into an array, and
GetStringRegion or GetStringUTFRegion to copy characters out of a String.

Exceptions
You must not call most JNI functions while an exception is pending. Your code is expected to notice
the exception (via the function's return value, ExceptionCheck, or ExceptionOccurred) and return, or
clear the exception and handle it.
The only JNI functions that you are allowed to call while an exception is pending are:

• DeleteGlobalRef
• DeleteLocalRef
• DeleteWeakGlobalRef
• ExceptionCheck
• ExceptionClear
• ExceptionDescribe
• ExceptionOccurred
• MonitorExit
• PopLocalFrame
• PushLocalFrame
• Release<PrimitiveType>ArrayElements
• ReleasePrimitiveArrayCritical
• ReleaseStringChars
• ReleaseStringCritical
• ReleaseStringUTFChars

Many JNI calls can throw an exception, but often provide a simpler way of checking for failure. For
example, if NewString returns a non-NULL value, you don't need to check for an exception. However, if
you call a method (using a function like CallObjectMethod), you must always check for an exception,
because the return value is not going to be valid if an exception was thrown.
Note that exceptions thrown by interpreted code do not unwind native stack frames, and Android does not
yet support C++ exceptions. The JNI Throw and ThrowNew instructions just set an exception pointer in
the current thread. Upon returning to managed from native code, the exception will be noted and handled
appropriately.
Native code can "catch" an exception by calling ExceptionCheck or ExceptionOccurred, and clear it
with ExceptionClear. As usual, discarding exceptions without handling them can lead to problems.

JNI Tips

709
Content from developer.android.com/training/articles/perf-jni.html through their Creative Commons Attribution 2.5 license

There are no built-in functions for manipulating the Throwable object itself, so if you want to (say) get the
exception string you will need to find the Throwable class, look up the method ID for getMessage
"()Ljava/lang/String;", invoke it, and if the result is non-NULL use GetStringUTFChars to get
something you can hand to printf(3) or equivalent.

Extended Checking
JNI does very little error checking. Errors usually result in a crash. Android also offers a mode called
CheckJNI, where the JavaVM and JNIEnv function table pointers are switched to tables of functions that
perform an extended series of checks before calling the standard implementation.
The additional checks include:

• Arrays: attempting to allocate a negative-sized array.
• Bad pointers: passing a bad jarray/jclass/jobject/jstring to a JNI call, or passing a NULL pointer to

a JNI call with a non-nullable argument.
• Class names: passing anything but the “java/lang/String” style of class name to a JNI call.
• Critical calls: making a JNI call between a “critical” get and its corresponding release.
• Direct ByteBuffers: passing bad arguments to NewDirectByteBuffer.
• Exceptions: making a JNI call while there’s an exception pending.
• JNIEnv*s: using a JNIEnv* from the wrong thread.
• jfieldIDs: using a NULL jfieldID, or using a jfieldID to set a field to a value of the wrong type (trying

to assign a StringBuilder to a String field, say), or using a jfieldID for a static field to set an
instance field or vice versa, or using a jfieldID from one class with instances of another class.

• jmethodIDs: using the wrong kind of jmethodID when making a Call*Method JNI call: incorrect
return type, static/non-static mismatch, wrong type for ‘this’ (for non-static calls) or wrong class
(for static calls).

• References: using DeleteGlobalRef/DeleteLocalRef on the wrong kind of reference.
• Release modes: passing a bad release mode to a release call (something other than 0,

JNI_ABORT, or JNI_COMMIT).
• Type safety: returning an incompatible type from your native method (returning a StringBuilder

from a method declared to return a String, say).
• UTF-8: passing an invalid Modified UTF-8 byte sequence to a JNI call.

(Accessibility of methods and fields is still not checked: access restrictions don't apply to native code.)
There are several ways to enable CheckJNI.
If you’re using the emulator, CheckJNI is on by default.
If you have a rooted device, you can use the following sequence of commands to restart the runtime with
CheckJNI enabled:

adb shell stop
adb shell setprop dalvik.vm.checkjni true
adb shell start

In either of these cases, you’ll see something like this in your logcat output when the runtime starts:

D AndroidRuntime: CheckJNI is ON

If you have a regular device, you can use the following command:

JNI Tips

710
Content from developer.android.com/training/articles/perf-jni.html through their Creative Commons Attribution 2.5 license

adb shell setprop debug.checkjni 1

This won’t affect already-running apps, but any app launched from that point on will have CheckJNI
enabled. (Change the property to any other value or simply rebooting will disable CheckJNI again.) In this
case, you’ll see something like this in your logcat output the next time an app starts:

D Late-enabling CheckJNI

Native Libraries
You can load native code from shared libraries with the standard System.loadLibrary call. The
preferred way to get at your native code is:

• Call System.loadLibrary from a static class initializer. (See the earlier example, where one is
used to call nativeClassInit.) The argument is the "undecorated" library name, so to load
"libfubar.so" you would pass in "fubar".

• Provide a native function: jint JNI_OnLoad(JavaVM* vm, void* reserved)
• In JNI_OnLoad, register all of your native methods. You should declare the methods "static" so

the names don't take up space in the symbol table on the device.

The JNI_OnLoad function should look something like this if written in C++:

jint JNI_OnLoad(JavaVM* vm, void* reserved)
{
 JNIEnv* env;
 if (vm->GetEnv(reinterpret_cast<void**>(&env), JNI_VERSION_1_6) != JNI_OK) {
 return -1;
 }

 // Get jclass with env->FindClass.
 // Register methods with env->RegisterNatives.

 return JNI_VERSION_1_6;
}

You can also call System.load with the full path name of the shared library. For Android apps, you may
find it useful to get the full path to the application's private data storage area from the context object.
This is the recommended approach, but not the only approach. Explicit registration is not required, nor is it
necessary that you provide a JNI_OnLoad function. You can instead use "discovery" of native methods
that are named in a specific way (see the JNI spec for details), though this is less desirable because if a
method signature is wrong you won't know about it until the first time the method is actually used.
One other note about JNI_OnLoad: any FindClass calls you make from there will happen in the context
of the class loader that was used to load the shared library. Normally FindClass uses the loader
associated with the method at the top of the interpreted stack, or if there isn't one (because the thread was
just attached) it uses the "system" class loader. This makes JNI_OnLoad a convenient place to look up
and cache class object references.

64-bit Considerations
Android is currently expected to run on 32-bit platforms. In theory it could be built for a 64-bit system, but
that is not a goal at this time. For the most part this isn't something that you will need to worry about when
interacting with native code, but it becomes significant if you plan to store pointers to native structures in

JNI Tips

711
Content from developer.android.com/training/articles/perf-jni.html through their Creative Commons Attribution 2.5 license

integer fields in an object. To support architectures that use 64-bit pointers, you need to stash your
native pointers in a long field rather than an int.

Unsupported Features/Backwards Compatibility
All JNI 1.6 features are supported, with the following exception:

• DefineClass is not implemented. Android does not use Java bytecodes or class files, so
passing in binary class data doesn't work.

For backward compatibility with older Android releases, you may need to be aware of:

• Dynamic lookup of native functions

Until Android 2.0 (Eclair), the '$' character was not properly converted to "_00024" during
searches for method names. Working around this requires using explicit registration or moving
the native methods out of inner classes.

• Detaching threads

Until Android 2.0 (Eclair), it was not possible to use a pthread_key_create destructor function
to avoid the "thread must be detached before exit" check. (The runtime also uses a pthread key
destructor function, so it'd be a race to see which gets called first.)

• Weak global references

Until Android 2.2 (Froyo), weak global references were not implemented. Older versions will
vigorously reject attempts to use them. You can use the Android platform version constants to
test for support.
Until Android 4.0 (Ice Cream Sandwich), weak global references could only be passed to
NewLocalRef, NewGlobalRef, and DeleteWeakGlobalRef. (The spec strongly encourages
programmers to create hard references to weak globals before doing anything with them, so this
should not be at all limiting.)
From Android 4.0 (Ice Cream Sandwich) on, weak global references can be used like any other
JNI references.

• Local references

Until Android 4.0 (Ice Cream Sandwich), local references were actually direct pointers. Ice Cream
Sandwich added the indirection necessary to support better garbage collectors, but this means
that lots of JNI bugs are undetectable on older releases. See JNI Local Reference Changes in
ICS for more details.

• Determining reference type with GetObjectRefType

Until Android 4.0 (Ice Cream Sandwich), as a consequence of the use of direct pointers (see
above), it was impossible to implement GetObjectRefType correctly. Instead we used a
heuristic that looked through the weak globals table, the arguments, the locals table, and the
globals table in that order. The first time it found your direct pointer, it would report that your

JNI Tips

712
Content from developer.android.com/training/articles/perf-jni.html through their Creative Commons Attribution 2.5 license

reference was of the type it happened to be examining. This meant, for example, that if you called
GetObjectRefType on a global jclass that happened to be the same as the jclass passed as an
implicit argument to your static native method, you'd get JNILocalRefType rather than
JNIGlobalRefType.

FAQ: Why do I get UnsatisfiedLinkError?
When working on native code it's not uncommon to see a failure like this:

java.lang.UnsatisfiedLinkError: Library foo not found

In some cases it means what it says — the library wasn't found. In other cases the library exists but
couldn't be opened by dlopen(3), and the details of the failure can be found in the exception's detail
message.
Common reasons why you might encounter "library not found" exceptions:

• The library doesn't exist or isn't accessible to the app. Use adb shell ls -l <path> to
check its presence and permissions.

• The library wasn't built with the NDK. This can result in dependencies on functions or libraries that
don't exist on the device.

Another class of UnsatisfiedLinkError failures looks like:

java.lang.UnsatisfiedLinkError: myfunc
 at Foo.myfunc(Native Method)
 at Foo.main(Foo.java:10)

In logcat, you'll see:

W/dalvikvm(880): No implementation found for native LFoo;.myfunc ()V

This means that the runtime tried to find a matching method but was unsuccessful. Some common
reasons for this are:

• The library isn't getting loaded. Check the logcat output for messages about library loading.
• The method isn't being found due to a name or signature mismatch. This is commonly caused by:

o For lazy method lookup, failing to declare C++ functions with extern "C" and
appropriate visibility (JNIEXPORT). Note that prior to Ice Cream Sandwich, the
JNIEXPORT macro was incorrect, so using a new GCC with an old jni.h won't work.
You can use arm-eabi-nm to see the symbols as they appear in the library; if they look
mangled (something like _Z15Java_Foo_myfuncP7_JNIEnvP7_jclass rather than
Java_Foo_myfunc), or if the symbol type is a lowercase 't' rather than an uppercase
'T', then you need to adjust the declaration.

o For explicit registration, minor errors when entering the method signature. Make sure
that what you're passing to the registration call matches the signature in the log file.
Remember that 'B' is byte and 'Z' is boolean. Class name components in signatures
start with 'L', end with ';', use '/' to separate package/class names, and use '$' to
separate inner-class names (Ljava/util/Map$Entry;, say).

Using javah to automatically generate JNI headers may help avoid some problems.

FAQ: Why didn't FindClass find my class?

JNI Tips

713
Content from developer.android.com/training/articles/perf-jni.html through their Creative Commons Attribution 2.5 license

Make sure that the class name string has the correct format. JNI class names start with the package name
and are separated with slashes, such as java/lang/String. If you're looking up an array class, you
need to start with the appropriate number of square brackets and must also wrap the class with 'L' and ';',
so a one-dimensional array of String would be [Ljava/lang/String;.
If the class name looks right, you could be running into a class loader issue. FindClass wants to start the
class search in the class loader associated with your code. It examines the call stack, which will look
something like:

 Foo.myfunc(Native Method)
 Foo.main(Foo.java:10)
 dalvik.system.NativeStart.main(Native Method)

The topmost method is Foo.myfunc. FindClass finds the ClassLoader object associated with the Foo
class and uses that.
This usually does what you want. You can get into trouble if you create a thread yourself (perhaps by
calling pthread_create and then attaching it with AttachCurrentThread). Now the stack trace looks
like this:

 dalvik.system.NativeStart.run(Native Method)

The topmost method is NativeStart.run, which isn't part of your application. If you call FindClass
from this thread, the JavaVM will start in the "system" class loader instead of the one associated with your
application, so attempts to find app-specific classes will fail.
There are a few ways to work around this:

• Do your FindClass lookups once, in JNI_OnLoad, and cache the class references for later use.
Any FindClass calls made as part of executing JNI_OnLoad will use the class loader
associated with the function that called System.loadLibrary (this is a special rule, provided to
make library initialization more convenient). If your app code is loading the library, FindClass
will use the correct class loader.

• Pass an instance of the class into the functions that need it, by declaring your native method to
take a Class argument and then passing Foo.class in.

• Cache a reference to the ClassLoader object somewhere handy, and issue loadClass calls
directly. This requires some effort.

FAQ: How do I share raw data with native code?
You may find yourself in a situation where you need to access a large buffer of raw data from both
managed and native code. Common examples include manipulation of bitmaps or sound samples. There
are two basic approaches.
You can store the data in a byte[]. This allows very fast access from managed code. On the native side,
however, you're not guaranteed to be able to access the data without having to copy it. In some
implementations, GetByteArrayElements and GetPrimitiveArrayCritical will return actual
pointers to the raw data in the managed heap, but in others it will allocate a buffer on the native heap and
copy the data over.
The alternative is to store the data in a direct byte buffer. These can be created with
java.nio.ByteBuffer.allocateDirect, or the JNI NewDirectByteBuffer function. Unlike
regular byte buffers, the storage is not allocated on the managed heap, and can always be accessed
directly from native code (get the address with GetDirectBufferAddress). Depending on how direct
byte buffer access is implemented, accessing the data from managed code can be very slow.

JNI Tips

714
Content from developer.android.com/training/articles/perf-jni.html through their Creative Commons Attribution 2.5 license

The choice of which to use depends on two factors:
• Will most of the data accesses happen from code written in Java or in C/C++?
• If the data is eventually being passed to a system API, what form must it be in? (For example, if the data
is eventually passed to a function that takes a byte[], doing processing in a direct ByteBuffer might be
unwise.)
If there's no clear winner, use a direct byte buffer. Support for them is built directly into JNI, and
performance should improve in future releases.

SMP Primer for Android

715
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

213. SMP Primer for Android
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

Android 3.0 and later platform versions are
optimized to support multiprocessor architectures.
This document introduces issues that can arise
when writing code for symmetric multiprocessor
systems in C, C++, and the Java programming
language (hereafter referred to simply as “Java”
for the sake of brevity). It's intended as a primer
for Android app developers, not as a complete
discussion on the subject. The focus is on the
ARM CPU architecture.
If you’re in a hurry, you can skip the Theory
section and go directly to Practice for best
practices, but this is not recommended.

Introduction
SMP is an acronym for “Symmetric Multi-
Processor”. It describes a design in which two or
more identical CPU cores share access to main
memory. Until a few years ago, all Android
devices were UP (Uni-Processor).
Most — if not all — Android devices do have
multiple CPUs, but generally one of them is used
to run applications while others manage various
bits of device hardware (for example, the radio).
The CPUs may have different architectures, and
the programs running on them can’t use main
memory to communicate with each other.
Most Android devices sold today are built around
SMP designs, making things a bit more
complicated for software developers. The sorts of
race conditions you might encounter in a multi-
threaded program are much worse on SMP when
two or more of your threads are running
simultaneously on different cores. What’s more,
SMP on ARM is more challenging to work with
than SMP on x86. Code that has been thoroughly
tested on x86 may break badly on ARM.
The rest of this document will explain why, and tell
you what you need to do to ensure that your code
behaves correctly.

Theory
This is a high-speed, glossy overview of a
complex subject. Some areas will be incomplete,
but none of it should be misleading or wrong.
See Further reading at the end of the document for pointers to more thorough treatments of the subject.

In this section
• Theory
• Memory consistency models
• Processor consistency
• CPU cache behavior
• Observability
• ARM’s weak ordering
• Data memory barriers
• Store/store and load/load
• Load/store and store/load
• Barrier instructions
• Address dependencies and causal
consistency
• Memory barrier summary
• Atomic operations
• Atomic essentials
• Atomic + barrier pairing
• Acquire and release
• Practice
• What not to do in C
• C/C++ and “volatile”
• Examples
• What not to do in Java
• “synchronized” and “volatile”
• Examples
• What to do
• General advice
• Synchronization primitive guarantees
• Upcoming changes to C/C++
• Closing Notes
• Appendix
• SMP failure example
• Implementing synchronization stores
• Further reading

SMP Primer for Android

716
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

Memory consistency models
Memory consistency models, or often just “memory models”, describe the guarantees the hardware
architecture makes about memory accesses. For example, if you write a value to address A, and then write
a value to address B, the model might guarantee that every CPU core sees those writes happen in that
order.
The model most programmers are accustomed to is sequential consistency, which is described like this
(Adve & Gharachorloo):

• All memory operations appear to execute one at a time
• All operations on a single processor appear to execute in the order described by that processor's

program.

If you look at a bit of code and see that it does some reads and writes from memory, on a sequentially-
consistent CPU architecture you know that the code will do those reads and writes in the expected order.
It’s possible that the CPU is actually reordering instructions and delaying reads and writes, but there is no
way for code running on the device to tell that the CPU is doing anything other than execute instructions in
a straightforward manner. (We’re ignoring memory-mapped device driver I/O for the moment.)
To illustrate these points it’s useful to consider small snippets of code, commonly referred to as litmus
tests. These are assumed to execute in program order, that is, the order in which the instructions appear
here is the order in which the CPU will execute them. We don’t want to consider instruction reordering
performed by compilers just yet.
Here’s a simple example, with code running on two threads:

Thread 1 Thread 2

A = 3
B = 5

reg0 = B
reg1 = A

In this and all future litmus examples, memory locations are represented by capital letters (A, B, C) and
CPU registers start with “reg”. All memory is initially zero. Instructions are executed from top to bottom.
Here, thread 1 stores the value 3 at location A, and then the value 5 at location B. Thread 2 loads the
value from location B into reg0, and then loads the value from location A into reg1. (Note that we’re writing
in one order and reading in another.)
Thread 1 and thread 2 are assumed to execute on different CPU cores. You should always make this
assumption when thinking about multi-threaded code.
Sequential consistency guarantees that, after both threads have finished executing, the registers will be in
one of the following states:

Registers States

reg0=5, reg1=3 possible (thread 1 ran first)

reg0=0, reg1=0 possible (thread 2 ran first)

reg0=0, reg1=3 possible (concurrent execution)

SMP Primer for Android

717
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

reg0=5, reg1=0 never

To get into a situation where we see B=5 before we see the store to A, either the reads or the writes would
have to happen out of order. On a sequentially-consistent machine, that can’t happen.
Most uni-processors, including x86 and ARM, are sequentially consistent. Most SMP systems, including
x86 and ARM, are not.
Processor consistency
x86 SMP provides processor consistency, which is slightly weaker than sequential. While the architecture
guarantees that loads are not reordered with respect to other loads, and stores are not reordered with
respect to other stores, it does not guarantee that a store followed by a load will be observed in the
expected order.
Consider the following example, which is a piece of Dekker’s Algorithm for mutual exclusion:

Thread 1 Thread 2

A = true
reg1 = B
if (reg1 == false)
 critical-stuff

B = true
reg2 = A
if (reg2 == false)
 critical-stuff

The idea is that thread 1 uses A to indicate that it’s busy, and thread 2 uses B. Thread 1 sets A and then
checks to see if B is set; if not, it can safely assume that it has exclusive access to the critical section.
Thread 2 does something similar. (If a thread discovers that both A and B are set, a turn-taking algorithm
is used to ensure fairness.)
On a sequentially-consistent machine, this works correctly. On x86 and ARM SMP, the store to A and the
load from B in thread 1 can be “observed” in a different order by thread 2. If that happened, we could
actually appear to execute this sequence (where blank lines have been inserted to highlight the apparent
order of operations):

Thread 1 Thread 2

reg1 = B

A = true
if (reg1 == false)
 critical-stuff

B = true
reg2 = A

if (reg2 == false)
 critical-stuff

This results in both reg1 and reg2 set to “false”, allowing the threads to execute code in the critical section
simultaneously. To understand how this can happen, it’s useful to know a little about CPU caches.
CPU cache behavior
This is a substantial topic in and of itself. An extremely brief overview follows. (The motivation for this
material is to provide some basis for understanding why SMP systems behave as they do.)
Modern CPUs have one or more caches between the processor and main memory. These are labeled L1,
L2, and so on, with the higher numbers being successively “farther” from the CPU. Cache memory adds
size and cost to the hardware, and increases power consumption, so the ARM CPUs used in Android
devices typically have small L1 caches and little or no L2/L3.

SMP Primer for Android

718
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

Loading or storing a value into the L1 cache is very fast. Doing the same to main memory can be 10-100x
slower. The CPU will therefore try to operate out of the cache as much as possible. The write policy of a
cache determines when data written to it is forwarded to main memory. A write-through cache will initiate a
write to memory immediately, while a write-back cache will wait until it runs out of space and has to evict
some entries. In either case, the CPU will continue executing instructions past the one that did the store,
possibly executing dozens of them before the write is visible in main memory. (While the write-through
cache has a policy of immediately forwarding the data to main memory, it only initiates the write. It does
not have to wait for it to finish.)
The cache behavior becomes relevant to this discussion when each CPU core has its own private cache.
In a simple model, the caches have no way to interact with each other directly. The values held by core
#1’s cache are not shared with or visible to core #2’s cache except as loads or stores from main memory.
The long latencies on memory accesses would make inter-thread interactions sluggish, so it’s useful to
define a way for the caches to share data. This sharing is called cache coherency, and the coherency
rules are defined by the CPU architecture’s cache consistency model.
With that in mind, let’s return to the Dekker example. When core 1 executes “A = 1”, the value gets stored
in core 1’s cache. When core 2 executes “if (A == 0)”, it might read from main memory or it might read from
core 2’s cache; either way it won’t see the store performed by core 1. (“A” could be in core 2’s cache
because of a previous load from “A”.)
For the memory consistency model to be sequentially consistent, core 1 would have to wait for all other
cores to be aware of “A = 1” before it could execute “if (B == 0)” (either through strict cache coherency
rules, or by disabling the caches entirely so everything operates out of main memory). This would impose
a performance penalty on every store operation. Relaxing the rules for the ordering of stores followed by
loads improves performance but imposes a burden on software developers.
The other guarantees made by the processor consistency model are less expensive to make. For
example, to ensure that memory writes are not observed out of order, it just needs to ensure that the
stores are published to other cores in the same order that they were issued. It doesn’t need to wait for
store #1 to finish being published before it can start on store #2, it just needs to ensure that it doesn’t
finish publishing #2 before it finishes publishing #1. This avoids a performance bubble.
Relaxing the guarantees even further can provide additional opportunities for CPU optimization, but
creates more opportunities for code to behave in ways the programmer didn’t expect.
One additional note: CPU caches don’t operate on individual bytes. Data is read or written as cache lines;
for many ARM CPUs these are 32 bytes. If you read data from a location in main memory, you will also be
reading some adjacent values. Writing data will cause the cache line to be read from memory and
updated. As a result, you can cause a value to be loaded into cache as a side-effect of reading or writing
something nearby, adding to the general aura of mystery.
Observability
Before going further, it’s useful to define in a more rigorous fashion what is meant by “observing” a load or
store. Suppose core 1 executes “A = 1”. The store is initiated when the CPU executes the instruction. At
some point later, possibly through cache coherence activity, the store is observed by core 2. In a write-
through cache it doesn’t really complete until the store arrives in main memory, but the memory
consistency model doesn’t dictate when something completes, just when it can be observed.
(In a kernel device driver that accesses memory-mapped I/O locations, it may be very important to know
when things actually complete. We’re not going to go into that here.)
Observability may be defined as follows:

• "A write to a location in memory is said to be observed by an observer Pn when a subsequent
read of the location by Pn would return the value written by the write."

SMP Primer for Android

719
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

• "A read of a location in memory is said to be observed by an observer Pm when a subsequent
write to the location by Pm would have no effect on the value returned by the read." (Reasoning
about the ARM weakly consistent memory model)

A less formal way to describe it (where “you” and “I” are CPU cores) would be:

• I have observed your write when I can read what you wrote
• I have observed your read when I can no longer affect the value you read

The notion of observing a write is intuitive; observing a read is a bit less so (don’t worry, it grows on you).
With this in mind, we’re ready to talk about ARM.
ARM's weak ordering
ARM SMP provides weak memory consistency guarantees. It does not guarantee that loads or stores are
ordered with respect to each other.

Thread 1 Thread 2

A = 41
B = 1 // “A is ready”

loop_until (B == 1)
reg = A

Recall that all addresses are initially zero. The “loop_until” instruction reads B repeatedly, looping until we
read 1 from B. The idea here is that thread 2 is waiting for thread 1 to update A. Thread 1 sets A, and then
sets B to 1 to indicate data availability.
On x86 SMP, this is guaranteed to work. Thread 2 will observe the stores made by thread 1 in program
order, and thread 1 will observe thread 2’s loads in program order.
On ARM SMP, the loads and stores can be observed in any order. It is possible, after all the code has
executed, for reg to hold 0. It’s also possible for it to hold 41. Unless you explicitly define the ordering, you
don’t know how this will come out.
(For those with experience on other systems, ARM’s memory model is equivalent to PowerPC in most
respects.)

Data memory barriers
Memory barriers provide a way for your code to tell the CPU that memory access ordering matters.
ARM/x86 uniprocessors offer sequential consistency, and thus have no need for them. (The barrier
instructions can be executed but aren’t useful; in at least one case they’re hideously expensive, motivating
separate builds for SMP targets.)
There are four basic situations to consider:
• store followed by another store
• load followed by another load
• load followed by store
• store followed by load
Store/store and load/load
Recall our earlier example:

SMP Primer for Android

720
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

Thread 1 Thread 2

A = 41
B = 1 // “A is ready”

loop_until (B == 1)
reg = A

Thread 1 needs to ensure that the store to A happens before the store to B. This is a “store/store”
situation. Similarly, thread 2 needs to ensure that the load of B happens before the load of A; this is a
load/load situation. As mentioned earlier, the loads and stores can be observed in any order.
Going back to the cache discussion, assume A and B are on separate cache lines, with minimal cache
coherency. If the store to A stays local but the store to B is published, core 2 will see B=1 but won’t see the
update to A. On the other side, assume we read A earlier, or it lives on the same cache line as something
else we recently read. Core 2 spins until it sees the update to B, then loads A from its local cache, where
the value is still zero.
We can fix it like this:

Thread 1 Thread 2

A = 41
store/store barrier
B = 1 // “A is ready”

loop_until (B == 1)
load/load barrier
reg = A

The store/store barrier guarantees that all observers will observe the write to A before they observe the
write to B. It makes no guarantees about the ordering of loads in thread 1, but we don’t have any of those,
so that’s okay. The load/load barrier in thread 2 makes a similar guarantee for the loads there.
Since the store/store barrier guarantees that thread 2 observes the stores in program order, why do we
need the load/load barrier in thread 2? Because we also need to guarantee that thread 1 observes the
loads in program order.
The store/store barrier could work by flushing all dirty entries out of the local cache, ensuring that other
cores see them before they see any future stores. The load/load barrier could purge the local cache
completely and wait for any “in-flight” loads to finish, ensuring that future loads are observed after previous
loads. What the CPU actually does doesn’t matter, so long as the appropriate guarantees are kept. If we
use a barrier in core 1 but not in core 2, core 2 could still be reading A from its local cache.
Because the architectures have different memory models, these barriers are required on ARM SMP but
not x86 SMP.
Load/store and store/load
The Dekker’s Algorithm fragment shown earlier illustrated the need for a store/load barrier. Here’s an
example where a load/store barrier is required:

Thread 1 Thread 2

reg = A
B = 1 // “I have latched A”

loop_until (B == 1)
A = 41 // update A

Thread 2 could observe thread 1’s store of B=1 before it observe’s thread 1’s load from A, and as a result
store A=41 before thread 1 has a chance to read A. Inserting a load/store barrier in each thread solves the
problem:

SMP Primer for Android

721
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

Thread 1 Thread 2

reg = A
load/store barrier
B = 1 // “I have latched A”

loop_until (B == 1)
load/store barrier
A = 41 // update A

A store to local cache may be observed before a load from main memory, because accesses to main
memory are so much slower. In this case, assume core 1’s cache has the cache line for B but not A. The
load from A is initiated, and while that’s in progress execution continues. The store to B happens in local
cache, and by some means becomes available to core 2 while the load from A is still in progress. Thread 2
is able to exit the loop before it has observed thread 1’s load from A.
A thornier question is: do we need a barrier in thread 2? If the CPU doesn’t perform speculative writes, and
doesn’t execute instructions out of order, can thread 2 store to A before thread 1’s read if thread 1
guarantees the load/store ordering? (Answer: no.) What if there’s a third core watching A and B? (Answer:
now you need one, or you could observe B==0 / A==41 on the third core.) It’s safest to insert barriers in
both places and not worry about the details.
As mentioned earlier, store/load barriers are the only kind required on x86 SMP.
Barrier instructions
Different CPUs provide different flavors of barrier instruction. For example:

• Sparc V8 has a “membar” instruction that takes a 4-element bit vector. The four categories of
barrier can be specified individually.

• Alpha provides “rmb” (load/load), “wmb” (store/store), and “mb” (full). (Trivia: the linux kernel
provides three memory barrier functions with these names and behaviors.)

• x86 has a variety of options; “mfence” (introduced with SSE2) provides a full barrier.
• ARMv7 has “dmb st” (store/store) and “dmb sy” (full).

“Full barrier” means all four categories are included.
It is important to recognize that the only thing guaranteed by barrier instructions is ordering. Do not treat
them as cache coherency “sync points” or synchronous “flush” instructions. The ARM “dmb” instruction
has no direct effect on other cores. This is important to understand when trying to figure out where barrier
instructions need to be issued.
Address dependencies and causal consistency
(This is a slightly more advanced topic and can be skipped.)
The ARM CPU provides one special case where a load/load barrier can be avoided. Consider the following
example from earlier, modified slightly:

Thread 1 Thread 2

[A+8] = 41
store/store barrier
B = 1 // “A is ready”

loop:
 reg0 = B
 if (reg0 == 0) goto loop
reg1 = 8
reg2 = [A + reg1]

SMP Primer for Android

722
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

This introduces a new notation. If “A” refers to a memory address, “A+n” refers to a memory address offset
by 8 bytes from A. If A is the base address of an object or array, [A+8] could be a field in the object or an
element in the array.
The “loop_until” seen in previous examples has been expanded to show the load of B into reg0. reg1 is
assigned the numeric value 8, and reg2 is loaded from the address [A+reg1] (the same location that thread
1 is accessing).
This will not behave correctly because the load from B could be observed after the load from [A+reg1]. We
can fix this with a load/load barrier after the loop, but on ARM we can also just do this:

Thread 1 Thread 2

[A+8] = 41
store/store barrier
B = 1 // “A is ready”

loop:
 reg0 = B
 if (reg0 == 0) goto loop
reg1 = 8 + (reg0 & 0)
reg2 = [A + reg1]

What we’ve done here is change the assignment of reg1 from a constant (8) to a value that depends on
what we loaded from B. In this case, we do a bitwise AND of the value with 0, which yields zero, which
means reg1 still has the value 8. However, the ARM CPU believes that the load from [A+reg1] depends
upon the load from B, and will ensure that the two are observed in program order.
This is called an address dependency. Address dependencies exist when the value returned by a load is
used to compute the address of a subsequent load or store. It can let you avoid the need for an explicit
barrier in certain situations.
ARM does not provide control dependency guarantees. To illustrate this it’s necessary to dip into ARM
code for a moment: (Barrier Litmus Tests and Cookbook).

LDR r1, [r0]
CMP r1, #55
LDRNE r2, [r3]

The loads from r0 and r3 may be observed out of order, even though the load from r3 will not execute at all
if [r0] doesn’t hold 55. Inserting AND r1, r1, #0 and replacing the last instruction with LDRNE r2, [r3, r1]
would ensure proper ordering without an explicit barrier. (This is a prime example of why you can’t think
about consistency issues in terms of instruction execution. Always think in terms of memory accesses.)
While we’re hip-deep, it’s worth noting that ARM does not provide causal consistency:

Thread 1 Thread 2 Thread 3

A = 1 loop_until (A == 1)
B = 1

loop:
 reg0 = B
 if (reg0 == 0) goto loop
reg1 = reg0 & 0
reg2 = [A+reg1]

Here, thread 1 sets A, signaling thread 2. Thread 2 sees that and sets B to signal thread 3. Thread 3 sees
it and loads from A, using an address dependency to ensure that the load of B and the load of A are
observed in program order.

SMP Primer for Android

723
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

It’s possible for reg2 to hold zero at the end of this. The fact that a store in thread 1 causes something to
happen in thread 2 which causes something to happen in thread 3 does not mean that thread 3 will
observe the stores in that order. (Inserting a load/store barrier in thread 2 fixes this.)
Memory barrier summary
Barriers come in different flavors for different situations. While there can be performance advantages to
using exactly the right barrier type, there are code maintenance risks in doing so — unless the person
updating the code fully understands it, they might introduce the wrong type of operation and cause a
mysterious breakage. Because of this, and because ARM doesn’t provide a wide variety of barrier choices,
many atomic primitives use full barrier instructions when a barrier is required.
The key thing to remember about barriers is that they define ordering. Don’t think of them as a “flush” call
that causes a series of actions to happen. Instead, think of them as a dividing line in time for operations on
the current CPU core.

Atomic operations
Atomic operations guarantee that an operation that requires a series of steps always behaves as if it were
a single operation. For example, consider a non-atomic increment (“++A”) executed on the same variable
by two threads simultaneously:

Thread 1 Thread 2

reg = A
reg = reg + 1
A = reg

reg = A
reg = reg + 1
A = reg

If the threads execute concurrently from top to bottom, both threads will load 0 from A, increment it to 1,
and store it back, leaving a final result of 1. If we used an atomic increment operation, you would be
guaranteed that the final result will be 2.
Atomic essentials
The most fundamental operations — loading and storing 32-bit values — are inherently atomic on ARM so
long as the data is aligned on a 32-bit boundary. For example:

Thread 1 Thread 2

reg = 0x00000000
A = reg

reg = 0xffffffff
A = reg

The CPU guarantees that A will hold 0x00000000 or 0xffffffff. It will never hold 0x0000ffff or any other
partial “mix” of bytes.
The atomicity guarantee is lost if the data isn’t aligned. Misaligned data could straddle a cache line, so
other cores could see the halves update independently. Consequently, the ARMv7 documentation
declares that it provides “single-copy atomicity” for all byte accesses, halfword accesses to halfword-
aligned locations, and word accesses to word-aligned locations. Doubleword (64-bit) accesses are not
atomic, unless the location is doubleword-aligned and special load/store instructions are used. This
behavior is important to understand when multiple threads are performing unsynchronized updates to
packed structures or arrays of primitive types.
There is no need for 32-bit “atomic read” or “atomic write” functions on ARM or x86. Where one is provided
for completeness, it just does a trivial load or store.

SMP Primer for Android

724
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

Operations that perform more complex actions on data in memory are collectively known as read-modify-
write (RMW) instructions, because they load data, modify it in some way, and write it back. CPUs vary
widely in how these are implemented. ARM uses a technique called “Load Linked / Store Conditional”, or
LL/SC.
A linked or locked load reads the data from memory as usual, but also establishes a reservation, tagging
the physical memory address. The reservation is cleared when another core tries to write to that address.
To perform an LL/SC, the data is read with a reservation, modified, and then a conditional store instruction
is used to try to write the data back. If the reservation is still in place, the store succeeds; if not, the store
will fail. Atomic functions based on LL/SC usually loop, retrying the entire read-modify-write sequence until
it completes without interruption.
It’s worth noting that the read-modify-write operations would not work correctly if they operated on stale
data. If two cores perform an atomic increment on the same address, and one of them is not able to see
what the other did because each core is reading and writing from local cache, the operation won’t actually
be atomic. The CPU’s cache coherency rules ensure that the atomic RMW operations remain atomic in an
SMP environment.
This should not be construed to mean that atomic RMW operations use a memory barrier. On ARM,
atomics have no memory barrier semantics. While a series of atomic RMW operations on a single address
will be observed in program order by other cores, there are no guarantees when it comes to the ordering of
atomic and non-atomic operations.
It often makes sense to pair barriers and atomic operations together. The next section describes this in
more detail.
Atomic + barrier pairing
As usual, it’s useful to illuminate the discussion with an example. We’re going to consider a basic mutual-
exclusion primitive called a spin lock. The idea is that a memory address (which we’ll call “lock”) initially
holds zero. When a thread wants to execute code in the critical section, it sets the lock to 1, executes the
critical code, and then changes it back to zero when done. If another thread has already set the lock to 1,
we sit and spin until the lock changes back to zero.
To make this work we use an atomic RMW primitive called compare-and-swap. The function takes three
arguments: the memory address, the expected current value, and the new value. If the value currently in
memory matches what we expect, it is replaced with the new value, and the old value is returned. If the
current value is not what we expect, we don’t change anything. A minor variation on this is called compare-
and-set; instead of returning the old value it returns a boolean indicating whether the swap succeeded. For
our needs either will work, but compare-and-set is slightly simpler for examples, so we use it and just refer
to it as “CAS”.
The acquisition of the spin lock is written like this (using a C-like language):

do {
 success = atomic_cas(&lock, 0, 1)
} while (!success)

full_memory_barrier()

critical-section

If no thread holds the lock, the lock value will be 0, and the CAS operation will set it to 1 to indicate that we
now have it. If another thread has it, the lock value will be 1, and the CAS operation will fail because the
expected current value does not match the actual current value. We loop and retry. (Note this loop is on
top of whatever loop the LL/SC code might be doing inside the atomic_cas function.)
On SMP, a spin lock is a useful way to guard a small critical section. If we know that another thread is
going to execute a handful of instructions and then release the lock, we can just burn a few cycles while

SMP Primer for Android

725
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

we wait our turn. However, if the other thread happens to be executing on the same core, we’re just
wasting time because the other thread can’t make progress until the OS schedules it again (either by
migrating it to a different core or by preempting us). A proper spin lock implementation would optimistically
spin a few times and then fall back on an OS primitive (such as a Linux futex) that allows the current
thread to sleep while waiting for the other thread to finish up. On a uniprocessor you never want to spin at
all. For the sake of brevity we’re ignoring all this.
The memory barrier is necessary to ensure that other threads observe the acquisition of the lock before
they observe any loads or stores in the critical section. Without that barrier, the memory accesses could be
observed while the lock is not held.
The full_memory_barrier call here actually does two independent operations. First, it issues the
CPU’s full barrier instruction. Second, it tells the compiler that it is not allowed to reorder code around the
barrier. That way, we know that the atomic_cas call will be executed before anything in the critical
section. Without this compiler reorder barrier, the compiler has a great deal of freedom in how it generates
code, and the order of instructions in the compiled code might be much different from the order in the
source code.
Of course, we also want to make sure that none of the memory accesses performed in the critical section
are observed after the lock is released. The full version of the simple spin lock is:

do {
 success = atomic_cas(&lock, 0, 1) // acquire
} while (!success)
full_memory_barrier()

critical-section

full_memory_barrier()
atomic_store(&lock, 0) // release

We perform our second CPU/compiler memory barrier immediately before we release the lock, so that
loads and stores in the critical section are observed before the release of the lock.
As mentioned earlier, the atomic_store operation is a simple assignment on ARM and x86. Unlike the
atomic RMW operations, we don’t guarantee that other threads will see this value immediately. This isn’t a
problem, though, because we only need to keep the other threads out. The other threads will stay out until
they observe the store of 0. If it takes a little while for them to observe it, the other threads will spin a little
longer, but we will still execute code correctly.
It’s convenient to combine the atomic operation and the barrier call into a single function. It also provides
other advantages, which will become clear shortly.
Acquire and release
When acquiring the spinlock, we issue the atomic CAS and then the barrier. When releasing the spinlock,
we issue the barrier and then the atomic store. This inspires a particular naming convention: operations
followed by a barrier are “acquiring” operations, while operations preceded by a barrier are “releasing”
operations. (It would be wise to install the spin lock example firmly in mind, as the names are not otherwise
intuitive.)
Rewriting the spin lock example with this in mind:

SMP Primer for Android

726
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

do {
 success = atomic_acquire_cas(&lock, 0, 1)
} while (!success)

critical-section

atomic_release_store(&lock, 0)

This is a little more succinct and easier to read, but the real motivation for doing this lies in a couple of
optimizations we can now perform.
First, consider atomic_release_store. We need to ensure that the store of zero to the lock word is
observed after any loads or stores in the critical section above it. In other words, we need a load/store and
store/store barrier. In an earlier section we learned that these aren’t necessary on x86 SMP -- only
store/load barriers are required. The implementation of atomic_release_store on x86 is therefore just
a compiler reorder barrier followed by a simple store. No CPU barrier is required.
The second optimization mostly applies to the compiler (although some CPUs, such as the Itanium, can
take advantage of it as well). The basic principle is that code can move across acquire and release
barriers, but only in one direction.
Suppose we have a mix of locally-visible and globally-visible memory accesses, with some miscellaneous
computation as well:

local1 = arg1 / 41
local2 = threadStruct->field2
threadStruct->field3 = local2

do {
 success = atomic_acquire_cas(&lock, 0, 1)
} while (!success)

local5 = globalStruct->field5
globalStruct->field6 = local5

atomic_release_store(&lock, 0)

Here we see two completely independent sets of operations. The first set operates on a thread-local data
structure, so we’re not concerned about clashes with other threads. The second set operates on a global
data structure, which must be protected with a lock.
A full compiler reorder barrier in the atomic ops will ensure that the program order matches the source
code order at the lock boundaries. However, allowing the compiler to interleave instructions can improve
performance. Loads from memory can be slow, but the CPU can continue to execute instructions that don’t
require the result of that load while waiting for it to complete. The code might execute more quickly if it
were written like this instead:

SMP Primer for Android

727
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

do {
 success = atomic_acquire_cas(&lock, 0, 1)
} while (!success)

local2 = threadStruct->field2
local5 = globalStruct->field5
local1 = arg1 / 41
threadStruct->field3 = local2
globalStruct->field6 = local5

atomic_release_store(&lock, 0)

We issue both loads, do some unrelated computation, and then execute the instructions that make use of
the loads. If the integer division takes less time than one of the loads, we essentially get it for free, since it
happens during a period where the CPU would have stalled waiting for a load to complete.
Note that all of the operations are now happening inside the critical section. Since none of the
“threadStruct” operations are visible outside the current thread, nothing else can see them until we’re
finished here, so it doesn’t matter exactly when they happen.
In general, it is always safe to move operations into a critical section, but never safe to move operations
out of a critical section. Put another way, you can migrate code “downward” across an acquire barrier, and
“upward” across a release barrier. If the atomic ops used a full barrier, this sort of migration would not be
possible.
Returning to an earlier point, we can state that on x86 all loads are acquiring loads, and all stores are
releasing stores. As a result:

• Loads may not be reordered with respect to each other. You can’t take a load and move it
“upward” across another load’s acquire barrier.

• Stores may not be reordered with respect to each other, because you can’t move a store
“downward” across another store’s release barrier.

• A load followed by a store can’t be reordered, because neither instruction will tolerate it.
• A store followed by a load can be reordered, because each instruction can move across the other

in that direction.

Hence, you only need store/load barriers on x86 SMP.
Labeling atomic operations with “acquire” or “release” describes not only whether the barrier is executed
before or after the atomic operation, but also how the compiler is allowed to reorder code.

Practice
Debugging memory consistency problems can be very difficult. If a missing memory barrier causes some
code to read stale data, you may not be able to figure out why by examining memory dumps with a
debugger. By the time you can issue a debugger query, the CPU cores will have all observed the full set of
accesses, and the contents of memory and the CPU registers will appear to be in an “impossible” state.

What not to do in C
Here we present some examples of incorrect code, along with simple ways to fix them. Before we do that,
we need to discuss the use of a basic language feature.
C/C++ and "volatile"
When writing single-threaded code, declaring a variable “volatile” can be very useful. The compiler will not
omit or reorder accesses to volatile locations. Combine that with the sequential consistency provided by

SMP Primer for Android

728
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

the hardware, and you’re guaranteed that the loads and stores will appear to happen in the expected
order.
However, accesses to volatile storage may be reordered with non-volatile accesses, so you have to be
careful in multi-threaded uniprocessor environments (explicit compiler reorder barriers may be required).
There are no atomicity guarantees, and no memory barrier provisions, so “volatile” doesn’t help you at all
in multi-threaded SMP environments. The C and C++ language standards are being updated to address
this with built-in atomic operations.
If you think you need to declare something “volatile”, that is a strong indicator that you should be using one
of the atomic operations instead.
Examples
In most cases you’d be better off with a synchronization primitive (like a pthread mutex) rather than an
atomic operation, but we will employ the latter to illustrate how they would be used in a practical situation.
For the sake of brevity we’re ignoring the effects of compiler optimizations here — some of this code is
broken even on uniprocessors — so for all of these examples you must assume that the compiler
generates straightforward code (for example, compiled with gcc -O0). The fixes presented here do solve
both compiler-reordering and memory-access-ordering issues, but we’re only going to discuss the latter.

MyThing* gGlobalThing = NULL;

void initGlobalThing() // runs in thread 1
{
 MyStruct* thing = malloc(sizeof(*thing));
 memset(thing, 0, sizeof(*thing));
 thing->x = 5;
 thing->y = 10;
 /* initialization complete, publish */
 gGlobalThing = thing;
}

void useGlobalThing() // runs in thread 2
{
 if (gGlobalThing != NULL) {
 int i = gGlobalThing->x; // could be 5, 0, or uninitialized data
 ...
 }
}

The idea here is that we allocate a structure, initialize its fields, and at the very end we “publish” it by
storing it in a global variable. At that point, any other thread can see it, but that’s fine since it’s fully
initialized, right? At least, it would be on x86 SMP or a uniprocessor (again, making the erroneous
assumption that the compiler outputs code exactly as we have it in the source).
Without a memory barrier, the store to gGlobalThing could be observed before the fields are initialized
on ARM. Another thread reading from thing->x could see 5, 0, or even uninitialized data.
This can be fixed by changing the last assignment to:

 atomic_release_store(&gGlobalThing, thing);

That ensures that all other threads will observe the writes in the proper order, but what about reads? In this
case we should be okay on ARM, because the address dependency rules will ensure that any loads from
an offset of gGlobalThing are observed after the load of gGlobalThing. However, it’s unwise to rely
on architectural details, since it means your code will be very subtly unportable. The complete fix also
requires a barrier after the load:

SMP Primer for Android

729
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

 MyThing* thing = atomic_acquire_load(&gGlobalThing);
 int i = thing->x;

Now we know the ordering will be correct. This may seem like an awkward way to write code, and it is, but
that’s the price you pay for accessing data structures from multiple threads without using locks. Besides,
address dependencies won’t always save us:

MyThing gGlobalThing;

void initGlobalThing() // runs in thread 1
{
 gGlobalThing.x = 5;
 gGlobalThing.y = 10;
 /* initialization complete */
 gGlobalThing.initialized = true;
}

void useGlobalThing() // runs in thread 2
{
 if (gGlobalThing.initialized) {
 int i = gGlobalThing.x; // could be 5 or 0
 }
}

Because there is no relationship between the initialized field and the others, the reads and writes can
be observed out of order. (Note global data is initialized to zero by the OS, so it shouldn’t be possible to
read “random” uninitialized data.)
We need to replace the store with:

 atomic_release_store(&gGlobalThing.initialized, true);

and replace the load with:

 int initialized = atomic_acquire_load(&gGlobalThing.initialized);

Another example of the same problem occurs when implementing reference-counted data structures. The
reference count itself will be consistent so long as atomic increment and decrement operations are used,
but you can still run into trouble at the edges, for example:

void RefCounted::release()
{
 int oldCount = atomic_dec(&mRefCount);
 if (oldCount == 1) { // was decremented to zero
 recycleStorage();
 }
}

void useSharedThing(RefCountedThing sharedThing)
{
 int localVar = sharedThing->x;
 sharedThing->release();
 sharedThing = NULL; // can’t use this pointer any more
 doStuff(localVar); // value of localVar might be wrong
}

SMP Primer for Android

730
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

The release() call decrements the reference count using a barrier-free atomic decrement operation.
Because this is an atomic RMW operation, we know that it will work correctly. If the reference count goes
to zero, we recycle the storage.
The useSharedThing() function extracts what it needs from sharedThing and then releases its copy.
However, because we didn’t use a memory barrier, and atomic and non-atomic operations can be
reordered, it’s possible for other threads to observe the read of sharedThing->x after they observe the
recycle operation. It’s therefore possible for localVar to hold a value from "recycled" memory, for
example a new object created in the same location by another thread after release() is called.
This can be fixed by replacing the call to atomic_dec() with atomic_release_dec(). The barrier
ensures that the reads from sharedThing are observed before we recycle the object.
In most cases the above won’t actually fail, because the “recycle” function is likely guarded by functions
that themselves employ barriers (libc heap free()/delete(), or an object pool guarded by a mutex). If
the recycle function used a lock-free algorithm implemented without barriers, however, the above code
could fail on ARM SMP.

What not to do in Java
We haven’t discussed some relevant Java language features, so we’ll take a quick look at those first.
Java's "synchronized" and "volatile" keywords
The “synchronized” keyword provides the Java language’s in-built locking mechanism. Every object has an
associated “monitor” that can be used to provide mutually exclusive access.
The implementation of the “synchronized” block has the same basic structure as the spin lock example: it
begins with an acquiring CAS, and ends with a releasing store. This means that compilers and code
optimizers are free to migrate code into a “synchronized” block. One practical consequence: you must not
conclude that code inside a synchronized block happens after the stuff above it or before the stuff below it
in a function. Going further, if a method has two synchronized blocks that lock the same object, and there
are no operations in the intervening code that are observable by another thread, the compiler may perform
“lock coarsening” and combine them into a single block.
The other relevant keyword is “volatile”. As defined in the specification for Java 1.4 and earlier, a volatile
declaration was about as weak as its C counterpart. The spec for Java 1.5 was updated to provide
stronger guarantees, almost to the level of monitor synchronization.
The effects of volatile accesses can be illustrated with an example. If thread 1 writes to a volatile field, and
thread 2 subsequently reads from that same field, then thread 2 is guaranteed to see that write and all
writes previously made by thread 1. More generally, the writes made by any thread up to the point where it
writes the field will be visible to thead 2 when it does the read. In effect, writing to a volatile is like a monitor
release, and reading from a volatile is like a monitor acquire.
Non-volatile accesses may be reorded with respect to volatile accesses in the usual ways, for example the
compiler could move a non-volatile load or store “above” a volatile store, but couldn’t move it “below”.
Volatile accesses may not be reordered with respect to each other. The VM takes care of issuing the
appropriate memory barriers.
It should be mentioned that, while loads and stores of object references and most primitive types are
atomic, long and double fields are not accessed atomically unless they are marked as volatile. Multi-
threaded updates to non-volatile 64-bit fields are problematic even on uniprocessors.
Examples
Here’s a simple, incorrect implementation of a monotonic counter: (Java theory and practice: Managing
volatility).

SMP Primer for Android

731
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

class Counter {
 private int mValue;

 public int get() {
 return mValue;
 }
 public void incr() {
 mValue++;
 }
}

Assume get() and incr() are called from multiple threads, and we want to be sure that every thread
sees the current count when get() is called. The most glaring problem is that mValue++ is actually three
operations:
• reg = mValue
• reg = reg + 1
• mValue = reg
If two threads execute in incr() simultaneously, one of the updates could be lost. To make the increment
atomic, we need to declare incr() “synchronized”. With this change, the code will run correctly in multi-
threaded uniprocessor environments.
It’s still broken on SMP, however. Different threads might see different results from get(), because we’re
reading the value with an ordinary load. We can correct the problem by declaring get() to be
synchronized. With this change, the code is obviously correct.
Unfortunately, we’ve introduced the possibility of lock contention, which could hamper performance.
Instead of declaring get() to be synchronized, we could declare mValue with “volatile”. (Note incr()
must still use synchronize.) Now we know that the volatile write to mValue will be visible to any
subsequent volatile read of mValue. incr() will be slightly slower, but get() will be faster, so even in
the absence of contention this is a win if reads outnumber writes. (See also AtomicInteger.)
Here’s another example, similar in form to the earlier C examples:

class MyGoodies {
 public int x, y;
}
class MyClass {
 static MyGoodies sGoodies;

 void initGoodies() { // runs in thread 1
 MyGoodies goods = new MyGoodies();
 goods.x = 5;
 goods.y = 10;
 sGoodies = goods;
 }

 void useGoodies() { // runs in thread 2
 if (sGoodies != null) {
 int i = sGoodies.x; // could be 5 or 0

 }
 }
}

This has the same problem as the C code, namely that the assignment sGoodies = goods might be
observed before the initialization of the fields in goods. If you declare sGoodies with the volatile keyword,

SMP Primer for Android

732
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

you can think about the loads as if they were atomic_acquire_load() calls, and the stores as if they
were atomic_release_store() calls.
(Note that only the sGoodies reference itself is volatile. The accesses to the fields inside it are not. The
statement z = sGoodies.x will perform a volatile load of MyClass.sGoodies followed by a non-
volatile load of sGoodies.x. If you make a local reference MyGoodies localGoods = sGoodies, z
= localGoods.x will not perform any volatile loads.)
A more common idiom in Java programming is the infamous “double-checked locking”:

class MyClass {
 private Helper helper = null;

 public Helper getHelper() {
 if (helper == null) {
 synchronized (this) {
 if (helper == null) {
 helper = new Helper();
 }
 }
 }
 return helper;
 }
}

The idea is that we want to have a single instance of a Helper object associated with an instance of
MyClass. We must only create it once, so we create and return it through a dedicated getHelper()
function. To avoid a race in which two threads create the instance, we need to synchronize the object
creation. However, we don’t want to pay the overhead for the “synchronized” block on every call, so we
only do that part if helper is currently null.
This doesn’t work correctly on uniprocessor systems, unless you’re using a traditional Java source
compiler and an interpreter-only VM. Once you add fancy code optimizers and JIT compilers it breaks
down. See the “‘Double Checked Locking is Broken’ Declaration” link in the appendix for more details, or
Item 71 (“Use lazy initialization judiciously”) in Josh Bloch’s Effective Java, 2nd Edition..
Running this on an SMP system introduces an additional way to fail. Consider the same code rewritten
slightly, as if it were compiled into a C-like language (I’ve added a couple of integer fields to represent
Helper’s constructor activity):

if (helper == null) {
 // acquire monitor using spinlock
 while (atomic_acquire_cas(&this.lock, 0, 1) != success)
 ;
 if (helper == null) {
 newHelper = malloc(sizeof(Helper));
 newHelper->x = 5;
 newHelper->y = 10;
 helper = newHelper;
 }
 atomic_release_store(&this.lock, 0);
}

Now the problem should be obvious: the store to helper is happening before the memory barrier, which
means another thread could observe the non-null value of helper before the stores to the x/y fields.
You could try to ensure that the store to helper happens after the atomic_release_store() on
this.lock by rearranging the code, but that won’t help, because it’s okay to migrate code upward — the
compiler could move the assignment back above the atomic_release_store() to its original position.

SMP Primer for Android

733
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

There are two ways to fix this:
• Do the simple thing and delete the outer check. This ensures that we never examine the value of
helper outside a synchronized block.
• Declare helper volatile. With this one small change, the code in Example J-3 will work correctly on
Java 1.5 and later. (You may want to take a minute to convince yourself that this is true.)
This next example illustrates two important issues when using volatile:

class MyClass {
 int data1, data2;
 volatile int vol1, vol2;

 void setValues() { // runs in thread 1
 data1 = 1;
 vol1 = 2;
 data2 = 3;
 }

 void useValues1() { // runs in thread 2
 if (vol1 == 2) {
 int l1 = data1; // okay
 int l2 = data2; // wrong
 }
 }
 void useValues2() { // runs in thread 2
 int dummy = vol2;
 int l1 = data1; // wrong
 int l2 = data2; // wrong
 }

Looking at useValues1(), if thread 2 hasn’t yet observed the update to vol1, then it can’t know if data1
or data2 has been set yet. Once it sees the update to vol1, it knows that the change to data1 is also
visible, because that was made before vol1 was changed. However, it can’t make any assumptions about
data2, because that store was performed after the volatile store.
The code in useValues2() uses a second volatile field, vol2, in an attempt to force the VM to generate
a memory barrier. This doesn’t generally work. To establish a proper “happens-before” relationship, both
threads need to be interacting with the same volatile field. You’d have to know that vol2 was set after
data1/data2 in thread 1. (The fact that this doesn’t work is probably obvious from looking at the code;
the caution here is against trying to cleverly “cause” a memory barrier instead of creating an ordered series
of accesses.)

What to do
General advice
In C/C++, use the pthread operations, like mutexes and semaphores. These include the proper memory
barriers, providing correct and efficient behavior on all Android platform versions. Be sure to use them
correctly, for example be wary of signaling a condition variable without holding the corresponding mutex.
It's best to avoid using atomic functions directly. Locking and unlocking a pthread mutex require a single
atomic operation each if there’s no contention, so you’re not going to save much by replacing mutex calls
with atomic ops. If you need a lock-free design, you must fully understand the concepts in this entire
document before you begin (or, better yet, find an existing code library that is known to be correct on SMP
ARM).
Be extremely circumspect with "volatile” in C/C++. It often indicates a concurrency problem waiting to
happen.

SMP Primer for Android

734
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

In Java, the best answer is usually to use an appropriate utility class from the java.util.concurrent
package. The code is well written and well tested on SMP.
Perhaps the safest thing you can do is make your class immutable. Objects from classes like String and
Integer hold data that cannot be changed once the class is created, avoiding all synchronization issues.
The book Effective Java, 2nd Ed. has specific instructions in “Item 15: Minimize Mutability”. Note in
particular the importance of declaring fields “final" (Bloch).
If neither of these options is viable, the Java “synchronized” statement should be used to guard any field
that can be accessed by more than one thread. If mutexes won’t work for your situation, you should
declare shared fields “volatile”, but you must take great care to understand the interactions between
threads. The volatile declaration won’t save you from common concurrent programming mistakes, but it will
help you avoid the mysterious failures associated with optimizing compilers and SMP mishaps.
The Java Memory Model guarantees that assignments to final fields are visible to all threads once the
constructor has finished — this is what ensures proper synchronization of fields in immutable classes. This
guarantee does not hold if a partially-constructed object is allowed to become visible to other threads. It is
necessary to follow safe construction practices.(Safe Construction Techniques in Java).
Synchronization primitive guarantees
The pthread library and VM make a couple of useful guarantees: all accesses previously performed by a
thread that creates a new thread are observable by that new thread as soon as it starts, and all accesses
performed by a thread that is exiting are observable when a join() on that thread returns. This means
you don’t need any additional synchronization when preparing data for a new thread or examining the
results of a joined thread.
Whether or not these guarantees apply to interactions with pooled threads depends on the thread pool
implementation.
In C/C++, the pthread library guarantees that any accesses made by a thread before it unlocks a mutex
will be observable by another thread after it locks that same mutex. It also guarantees that any accesses
made before calling signal() or broadcast() on a condition variable will be observable by the woken
thread.
Java language threads and monitors make similar guarantees for the comparable operations.
Upcoming changes to C/C++
The C and C++ language standards are evolving to include a sophisticated collection of atomic operations.
A full matrix of calls for common data types is defined, with selectable memory barrier semantics (choose
from relaxed, consume, acquire, release, acq_rel, seq_cst).
See the Further Reading section for pointers to the specifications.

Closing Notes
While this document does more than merely scratch the surface, it doesn’t manage more than a shallow
gouge. This is a very broad and deep topic. Some areas for further exploration:

• Learn the definitions of happens-before, synchronizes-with, and other essential concepts from the
Java Memory Model. (It’s hard to understand what “volatile” really means without getting into
this.)

• Explore what compilers are and aren’t allowed to do when reordering code. (The JSR-133 spec
has some great examples of legal transformations that lead to unexpected results.)

• Find out how to write immutable classes in Java and C++. (There’s more to it than just “don’t
change anything after construction”.)

SMP Primer for Android

735
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

• Internalize the recommendations in the Concurrency section of Effective Java, 2nd Edition. (For
example, you should avoid calling methods that are meant to be overridden while inside a
synchronized block.)

• Understand what sorts of barriers you can use on x86 and ARM. (And other CPUs for that matter,
for example Itanium’s acquire/release instruction modifiers.)

• Read through the java.util.concurrent and java.util.concurrent.atomic APIs to
see what's available. Consider using concurrency annotations like @ThreadSafe and
@GuardedBy (from net.jcip.annotations).

The Further Reading section in the appendix has links to documents and web sites that will better
illuminate these topics.

Appendix
SMP failure example
This document describes a lot of “weird” things that can, in theory, happen. If you’re not convinced that
these issues are real, a practical example may be useful.
Bill Pugh’s Java memory model web site has a few test programs on it. One interesting test is
ReadAfterWrite.java, which does the following:

Thread 1 Thread 2

for (int i = 0; i < ITERATIONS;
i++) {
 a = i;
 BB[i] = b;
}

for (int i = 0; i < ITERATIONS;
i++) {
 b = i;
 AA[i] = a;
}

Where a and b are declared as volatile int fields, and AA and BB are ordinary integer arrays.
This is trying to determine if the VM ensures that, after a value is written to a volatile, the next read from
that volatile sees the new value. The test code executes these loops a million or so times, and then runs
through afterward and searches the results for inconsistencies.
At the end of execution,AA and BB will be full of gradually-increasing integers. The threads will not run
side-by-side in a predictable way, but we can assert a relationship between the array contents. For
example, consider this execution fragment:

Thread 1 Thread 2

(initially a == 1534)
a = 1535
BB[1535] = 165
a = 1536
BB[1536] = 165

a = 1537
BB[1537] = 167

(initially b == 165)

b = 166
AA[166] = 1536
b = 167
AA[167] = 1536

SMP Primer for Android

736
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

(This is written as if the threads were taking turns executing so that it’s more obvious when results from
one thread should be visible to the other, but in practice that won’t be the case.)
Look at the assignment of AA[166] in thread 2. We are capturing the fact that, at the point where thread 2
was on iteration 166, it can see that thread 1 was on iteration 1536. If we look one step in the future, at
thread 1’s iteration 1537, we expect to see that thread 1 saw that thread 2 was at iteration 166 (or later).
BB[1537] holds 167, so it appears things are working.
Now suppose we fail to observe a volatile write to b:

Thread 1 Thread 2

(initially a == 1534)
a = 1535
BB[1535] = 165
a = 1536
BB[1536] = 165

a = 1537
BB[1537] = 165 // stale b

(initially b == 165)

b = 166
AA[166] = 1536
b = 167
AA[167] = 1536

Now, BB[1537] holds 165, a smaller value than we expected, so we know we have a problem. Put
succinctly, for i=166, BB[AA[i]+1] < i. (This also catches failures by thread 2 to observe writes to a, for
example if we miss an update and assign AA[166] = 1535, we will get BB[AA[166]+1] == 165.)
If you run the test program under Dalvik (Android 3.0 “Honeycomb” or later) on an SMP ARM device, it will
never fail. If you remove the word “volatile” from the declarations of a and b, it will consistently fail. The
program is testing to see if the VM is providing sequentially consistent ordering for accesses to a and b, so
you will only see correct behavior when the variables are volatile. (It will also succeed if you run the code
on a uniprocessor device, or run it while something else is using enough CPU that the kernel doesn’t
schedule the test threads on separate cores.)
If you run the modified test a few times you will note that it doesn’t fail in the same place every time. The
test fails consistently because it performs the operations a million times, and it only needs to see out-of-
order accesses once. In practice, failures will be infrequent and difficult to locate. This test program could
very well succeed on a broken VM if things just happen to work out.

Implementing synchronization stores
(This isn’t something most programmers will find themselves implementing, but the discussion is
illuminating.)
Consider once again volatile accesses in Java. Earlier we made reference to their similarities with
acquiring loads and releasing stores, which works as a starting point but doesn’t tell the full story.
We start with a fragment of Dekker’s algorithm. Initially both flag1 and flag2 are false:

Thread 1 Thread 2

flag1 = true
if (flag2 == false)
 critical-stuff

flag2 = true
if (flag1 == false)
 critical-stuff

SMP Primer for Android

737
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

flag1 and flag2 are declared as volatile boolean fields. The rules for acquiring loads and releasing
stores would allow the accesses in each thread to be reordered, breaking the algorithm. Fortunately, the
JMM has a few things to say here. Informally:

• A write to a volatile field happens-before every subsequent read of that same field. (For this
example, it means that if one thread updates a flag, and later on the other thread reads that flag,
the reader is guaranteed to see the write.)

• Every execution has a total order over all volatile field accesses. The order is consistent with
program order.

Taken together, these rules say that the volatile accesses in our example must be observable in program
order by all threads. Thus, we will never see these threads executing the “critical-stuff” simultaneously.
Another way to think about this is in terms of data races. A data race occurs if two accesses to the same
memory location by different threads are not ordered, at least one of them stores to the memory location,
and at least one of them is not a synchronization action (Boehm and McKenney). The memory model
declares that a program free of data races must behave as if executed by a sequentially-consistent
machine. Because both flag1 and flag2 are volatile, and volatile accesses are considered
synchronization actions, there are no data races and this code must execute in a sequentially consistent
manner.
As we saw in an earlier section, we need to insert a store/load barrier between the two operations. The
code executed in the VM for a volatile access will look something like this:

volatile load volatile store

reg = A
load/load + load/store barrier

store/store barrier
A = reg
store/load barrier

The volatile load is just an acquiring load. The volatile store is similar to a releasing store, but we’ve
omitted load/store from the pre-store barrier, and added a store/load barrier afterward.
What we’re really trying to guarantee, though, is that (using thread 1 as an example) the write to flag1 is
observed before the read of flag2. We could issue the store/load barrier before the volatile load instead
and get the same result, but because loads tend to outnumber stores it’s best to associate it with the store.
On some architectures, it’s possible to implement volatile stores with an atomic operation and skip the
explicit store/load barrier. On x86, for example, atomics provide a full barrier. The ARM LL/SC operations
don’t include a barrier, so for ARM we must use explicit barriers.
(Much of this is due to Doug Lea and his “JSR-133 Cookbook for Compiler Writers” page.)

Further reading
Web pages and documents that provide greater depth or breadth. The more generally useful articles are
nearer the top of the list.
Shared Memory Consistency Models: A Tutorial

Written in 1995 by Adve & Gharachorloo, this is a good place to start if you want to dive more
deeply into memory consistency models.
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-7.pdf

Memory Barriers
Nice little article summarizing the issues.
http://en.wikipedia.org/wiki/Memory_barrier

SMP Primer for Android

738
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

Threads Basics
An introduction to multi-threaded programming in C++ and Java, by Hans Boehm. Excellent
discussion of data races and basic synchronization methods.
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/threadsintro.html

Java Concurrency In Practice
Published in 2006, this book covers a wide range of topics in great detail. Highly recommended
for anyone writing multi-threaded code in Java.
http://www.javaconcurrencyinpractice.com

JSR-133 (Java Memory Model) FAQ
A gentle introduction to the Java memory model, including an explanation of synchronization,
volatile variables, and construction of final fields.
http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html

Overview of package java.util.concurrent
The documentation for the java.util.concurrent package. Near the bottom of the page is a
section entitled “Memory Consistency Properties” that explains the guarantees made by the
various classes.
java.util.concurrent Package Summary

Java Theory and Practice: Safe Construction Techniques in Java
This article examines in detail the perils of references escaping during object construction, and
provides guidelines for thread-safe constructors.
http://www.ibm.com/developerworks/java/library/j-jtp0618.html

Java Theory and Practice: Managing Volatility
A nice article describing what you can and can’t accomplish with volatile fields in Java.
http://www.ibm.com/developerworks/java/library/j-jtp06197.html

The “Double-Checked Locking is Broken” Declaration
Bill Pugh’s detailed explanation of the various ways in which double-checked locking is broken.
Includes C/C++ and Java.
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

[ARM] Barrier Litmus Tests and Cookbook
A discussion of ARM SMP issues, illuminated with short snippets of ARM code. If you found the
examples in this document too un-specific, or want to read the formal description of the DMB
instruction, read this. Also describes the instructions used for memory barriers on executable
code (possibly useful if you’re generating code on the fly).
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookb
ook_A08.pdf

Linux Kernel Memory Barriers
Documentation for Linux kernel memory barriers. Includes some useful examples and ASCII art.
http://www.kernel.org/doc/Documentation/memory-barriers.txt

ISO/IEC JTC1 SC22 WG21 (C++ standards) 14882 (C++ programming language), chapter 29 (“Atomic
operations library”)

Draft standard for C++ atomic operation features.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3090.pdf
(intro: http://www.hpl.hp.com/techreports/2008/HPL-2008-56.pdf)

ISO/IEC JTC1 SC22 WG14 (C standards) 9899 (C programming language) chapter 7.16 (“Atomics
<stdatomic.h>”)

SMP Primer for Android

739
Content from developer.android.com/training/articles/smp.html through their Creative Commons Attribution 2.5 license

Draft standard for ISO/IEC 9899-201x C atomic operation features. (See also n1484 for errata.)
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1425.pdf

Dekker’s algorithm
The “first known correct solution to the mutual exclusion problem in concurrent programming”.
The wikipedia article has the full algorithm, with a discussion about how it would need to be
updated to work with modern optimizing compilers and SMP hardware.
http://en.wikipedia.org/wiki/Dekker's_algorithm

Comments on ARM vs. Alpha and address dependencies
An e-mail on the arm-kernel mailing list from Catalin Marinas. Includes a nice summary of
address and control dependencies.
http://linux.derkeiler.com/Mailing-Lists/Kernel/2009-05/msg11811.html

What Every Programmer Should Know About Memory
A very long and detailed article about different types of memory, particularly CPU caches, by
Ulrich Drepper.
http://www.akkadia.org/drepper/cpumemory.pdf

Reasoning about the ARM weakly consistent memory model
This paper was written by Chong & Ishtiaq of ARM, Ltd. It attempts to describe the ARM SMP
memory model in a rigorous but accessible fashion. The definition of “observability” used here
comes from this paper.
http://portal.acm.org/ft_gateway.cfm?id=1353528&type=pdf&coll=&dl=&CFID=96099715&CFTOK
EN=57505711

The JSR-133 Cookbook for Compiler Writers
Doug Lea wrote this as a companion to the JSR-133 (Java Memory Model) documentation. It
goes much deeper into the details than most people will need to worry about, but it provides good
fodder for contemplation.
http://g.oswego.edu/dl/jmm/cookbook.html

The Semantics of Power and ARM Multiprocessor Machine Code
If you prefer your explanations in rigorous mathematical form, this is a fine place to go next.
http://www.cl.cam.ac.uk/~pes20/weakmemory/draft-ppc-arm.pdf

Best Practices for Security & Privacy

740
Content from developer.android.com/training/best-security.html through their Creative Commons Attribution 2.5 license

214. Best Practices for Security & Privacy
Content from developer.android.com/training/best-security.html through their Creative Commons Attribution 2.5 license
These classes and articles provide information about how to keep your app's data secure.

Security Tips

741
Content from developer.android.com/training/articles/security-tips.html through their Creative Commons Attribution 2.5 license

215. Security Tips
Content from developer.android.com/training/articles/security-tips.html through their Creative Commons Attribution 2.5 license

Android has security features built into the
operating system that significantly reduce the
frequency and impact of application security
issues. The system is designed so you can
typically build your apps with default system and
file permissions and avoid difficult decisions about
security.
Some of the core security features that help you
build secure apps include:

• The Android Application Sandbox, which
isolates your app data and code
execution from other apps.

• An application framework with robust
implementations of common security
functionality such as cryptography,
permissions, and secure IPC.

• Technologies like ASLR, NX, ProPolice,
safe_iop, OpenBSD dlmalloc, OpenBSD
calloc, and Linux mmap_min_addr to
mitigate risks associated with common
memory management errors.

• An encrypted filesystem that can be
enabled to protect data on lost or stolen devices.

• User-granted permissions to restrict access to system features and user data.
• Application-defined permissions to control application data on a per-app basis.

Nevertheless, it is important that you be familiar with the Android security best practices in this document.
Following these practices as general coding habits will reduce the likelihood of inadvertently introducing
security issues that adversely affect your users.

Storing Data
The most common security concern for an application on Android is whether the data that you save on the
device is accessible to other apps. There are three fundamental ways to save data on the device:

Using internal storage
By default, files that you create on internal storage are accessible only to your app. This protection is
implemented by Android and is sufficient for most applications.
You should generally avoid using the MODE_WORLD_WRITEABLE or MODE_WORLD_READABLE modes for
IPC files because they do not provide the ability to limit data access to particular applications, nor do they
provide any control on data format. If you want to share your data with other app processes, you might
instead consider using a content provider, which offers read and write permissions to other apps and can
make dynamic permission grants on a case-by-case basis.
To provide additional protection for sensitive data, you might choose to encrypt local files using a key that
is not directly accessible to the application. For example, a key can be placed in a KeyStore and
protected with a user password that is not stored on the device. While this does not protect data from a

In this section
• Storing Data
• Using Permissions
• Using Networking
• Performing Input Validation
• Handling User Data
• Using WebView
• Using Cryptography
• Using Interprocess Communication
• Dynamically Loading Code
• Security in a Virtual Machine
• Security in Native Code
See also

• Android Security Overview
• Permissions

Security Tips

742
Content from developer.android.com/training/articles/security-tips.html through their Creative Commons Attribution 2.5 license

root compromise that can monitor the user inputting the password, it can provide protection for a lost
device without file system encryption.

Using external storage
Files created on external storage, such as SD Cards, are globally readable and writable. Because external
storage can be removed by the user and also modified by any application, you should not store sensitive
information using external storage.
As with data from any untrusted source, you should perform input validation when handling data from
external storage. We strongly recommend that you not store executables or class files on external storage
prior to dynamic loading. If your app does retrieve executable files from external storage, the files should
be signed and cryptographically verified prior to dynamic loading.

Using content providers
Content providers offer a structured storage mechanism that can be limited to your own application or
exported to allow access by other applications. If you do not intend to provide other applications with
access to your ContentProvider, mark them as android:exported=false in the application
manifest. Otherwise, set the android:exported attribute "true" to allow other apps to access the
stored data.
When creating a ContentProvider that will be exported for use by other applications, you can specify a
single permission for reading and writing, or distinct permissions for reading and writing within the
manifest. We recommend that you limit your permissions to those required to accomplish the task at hand.
Keep in mind that it’s usually easier to add permissions later to expose new functionality than it is to take
them away and break existing users.
If you are using a content provider for sharing data between only your own apps, it is preferable to use the
android:protectionLevel attribute set to "signature" protection. Signature permissions do not
require user confirmation, so they provide a better user experience and more controlled access to the
content provider data when the apps accessing the data are signed with the same key.
Content providers can also provide more granular access by declaring the
android:grantUriPermissions attribute and using the FLAG_GRANT_READ_URI_PERMISSION and
FLAG_GRANT_WRITE_URI_PERMISSION flags in the Intent object that activates the component. The
scope of these permissions can be further limited by the <grant-uri-permission element>.
When accessing a content provider, use parameterized query methods such as query(), update(), and
delete() to avoid potential SQL injection from untrusted sources. Note that using parameterized
methods is not sufficient if the selection argument is built by concatenating user data prior to submitting
it to the method.
Do not have a false sense of security about the write permission. Consider that the write permission allows
SQL statements which make it possible for some data to be confirmed using creative WHERE clauses and
parsing the results. For example, an attacker might probe for presence of a specific phone number in a
call-log by modifying a row only if that phone number already exists. If the content provider data has
predictable structure, the write permission may be equivalent to providing both reading and writing.

Using Permissions
Because Android sandboxes applications from each other, applications must explicitly share resources
and data. They do this by declaring the permissions they need for additional capabilities not provided by
the basic sandbox, including access to device features such as the camera.

Requesting Permissions
We recommend minimizing the number of permissions that your app requests Not having access to
sensitive permissions reduces the risk of inadvertently misusing those permissions, can improve user

Security Tips

743
Content from developer.android.com/training/articles/security-tips.html through their Creative Commons Attribution 2.5 license

adoption, and makes your app less for attackers. Generally, if a permission is not required for your app to
function, do not request it.
If it's possible to design your application in a way that does not require any permissions, that is preferable.
For example, rather than requesting access to device information to create a unique identifier, create a
GUID for your application (see the section about Handling User Data). Or, rather than using external
storage (which requires permission), store data on the internal storage.
In addition to requesting permissions, your application can use the <permissions> to protect IPC that is
security sensitive and will be exposed to other applications, such as a ContentProvider. In general, we
recommend using access controls other than user confirmed permissions where possible because
permissions can be confusing for users. For example, consider using the signature protection level on
permissions for IPC communication between applications provided by a single developer.
Do not leak permission-protected data. This occurs when your app exposes data over IPC that is only
available because it has a specific permission, but does not require that permission of any clients of it’s
IPC interface. More details on the potential impacts, and frequency of this type of problem is provided in
this research paper published at USENIX: http://www.cs.be rkeley.edu/~afelt/felt_usenixsec2011.pdf

Creating Permissions
Generally, you should strive to define as few permissions as possible while satisfying your security
requirements. Creating a new permission is relatively uncommon for most applications, because the
system-defined permissions cover many situations. Where appropriate, perform access checks using
existing permissions.
If you must create a new permission, consider whether you can accomplish your task with a "signature"
protection level. Signature permissions are transparent to the user and only allow access by applications
signed by the same developer as application performing the permission check.
If you create a permission with the "dangerous" protection level, there are a number of complexities that
you need to consider:

• The permission must have a string that concisely expresses to a user the security decision they
will be required to make.

• The permission string must be localized to many different languages.
• Users may choose not to install an application because a permission is confusing or perceived as

risky.
• Applications may request the permission when the creator of the permission has not been

installed.

Each of these poses a significant non-technical challenge for you as the developer while also confusing
your users, which is why we discourage the use of the "dangerous" permission level.

Using Networking
Network transactions are inherently risky for security, because it involves transmitting data that is
potentially private to the user. People are increasingly aware of the privacy concerns of a mobile device,
especially when the device performs network transactions, so it's very important that your app implement
all best practices toward keeping the user's data secure at all times.

Using IP Networking
Networking on Android is not significantly different from other Linux environments. The key consideration is
making sure that appropriate protocols are used for sensitive data, such as HttpsURLConnection for
secure web traffic. We prefer use of HTTPS over HTTP anywhere that HTTPS is supported on the server,
because mobile devices frequently connect on networks that are not secured, such as public Wi-Fi
hotspots.

Security Tips

744
Content from developer.android.com/training/articles/security-tips.html through their Creative Commons Attribution 2.5 license

Authenticated, encrypted socket-level communication can be easily implemented using the SSLSocket
class. Given the frequency with which Android devices connect to unsecured wireless networks using Wi-
Fi, the use of secure networking is strongly encouraged for all applications that communicate over the
network.
We have seen some applications use localhost network ports for handling sensitive IPC. We discourage
this approach since these interfaces are accessible by other applications on the device. Instead, you
should use an Android IPC mechanism where authentication is possible such as with a Service. (Even
worse than using loopback is to bind to INADDR_ANY since then your application may receive requests
from anywhere.)
Also, one common issue that warrants repeating is to make sure that you do not trust data downloaded
from HTTP or other insecure protocols. This includes validation of input in WebView and any responses to
intents issued against HTTP.

Using Telephony Networking
The SMS protocol was primarily designed for user-to-user communication and is not well-suited for apps
that want to transfer data. Due to the limitations of SMS, we strongly recommend the use of Google Cloud
Messaging (GCM) and IP networking for sending data messages from a web server to your app on a user
device.
Beware that SMS is neither encrypted nor strongly authenticated on either the network or the device. In
particular, any SMS receiver should expect that a malicious user may have sent the SMS to your
application—Do not rely on unauthenticated SMS data to perform sensitive commands. Also, you should
be aware that SMS may be subject to spoofing and/or interception on the network. On the Android-
powered device itself, SMS messages are transmitted as broadcast intents, so they may be read or
captured by other applications that have the READ_SMS permission.

Performing Input Validation
Insufficient input validation is one of the most common security problems affecting applications, regardless
of what platform they run on. Android does have platform-level countermeasures that reduce the exposure
of applications to input validation issues and you should use those features where possible. Also note that
selection of type-safe languages tends to reduce the likelihood of input validation issues.
If you are using native code, then any data read from files, received over the network, or received from an
IPC has the potential to introduce a security issue. The most common problems are buffer overflows, use
after free, and off-by-one errors. Android provides a number of technologies like ASLR and DEP that
reduce the exploitability of these errors, but they do not solve the underlying problem. You can prevent
these vulneratbilities by careful handling pointers and managing buffers.
Dynamic, string based languages such as JavaScript and SQL are also subject to input validation
problems due to escape characters and script injection.
If you are using data within queries that are submitted to an SQL database or a content provider, SQL
injection may be an issue. The best defense is to use parameterized queries, as is discussed in the above
section about content providers. Limiting permissions to read-only or write-only can also reduce the
potential for harm related to SQL injection.
If you cannot use the security features above, we strongly recommend the use of well-structured data
formats and verifying that the data conforms to the expected format. While blacklisting of characters or
character-replacement can be an effective strategy, these techniques are error-prone in practice and
should be avoided when possible.

Handling User Data
In general, the best approach for user data security is to minimize the use of APIs that access sensitive or
personal user data. If you have access to user data and can avoid storing or transmitting the information,
do not store or transmit the data. Finally, consider if there is a way that your application logic can be

Security Tips

745
Content from developer.android.com/training/articles/security-tips.html through their Creative Commons Attribution 2.5 license

implemented using a hash or non-reversible form of the data. For example, your application might use the
hash of an an email address as a primary key, to avoid transmitting or storing the email address. This
reduces the chances of inadvertently exposing data, and it also reduces the chance of attackers
attempting to exploit your application.
If your application accesses personal information such as passwords or usernames, keep in mind that
some jurisdictions may require you to provide a privacy policy explaining your use and storage of that data.
So following the security best practice of minimizing access to user data may also simplify compliance.
You should also consider whether your application might be inadvertently exposing personal information to
other parties such as third-party components for advertising or third-party services used by your
application. If you don't know why a component or service requires a personal information, don’t provide it.
In general, reducing the access to personal information by your application will reduce the potential for
problems in this area.
If access to sensitive data is required, evaluate whether that information must be transmitted to a server, or
whether the operation can be performed on the client. Consider running any code using sensitive data on
the client to avoid transmitting user data.
Also, make sure that you do not inadvertently expose user data to other application on the device through
overly permissive IPC, world writable files, or network sockets. This is a special case of leaking
permission-protected data, discussed in the Requesting Permissions section.
If a GUID is required, create a large, unique number and store it. Do not use phone identifiers such as the
phone number or IMEI which may be associated with personal information. This topic is discussed in more
detail in the Android Developer Blog.
Be careful when writing to on-device logs. In Android, logs are a shared resource, and are available to an
application with the READ_LOGS permission. Even though the phone log data is temporary and erased on
reboot, inappropriate logging of user information could inadvertently leak user data to other applications.

Using WebView
Because WebView consumes web content that can include HTML and JavaScript, improper use can
introduce common web security issues such as cross-site-scripting (JavaScript injection). Android includes
a number of mechanisms to reduce the scope of these potential issues by limiting the capability of
WebView to the minimum functionality required by your application.
If your application does not directly use JavaScript within a WebView, do not call
setJavaScriptEnabled(). Some sample code uses this method, which you might repurpose in
production application, so remove that method call if it's not required. By default, WebView does not
execute JavaScript so cross-site-scripting is not possible.
Use addJavaScriptInterface() with particular care because it allows JavaScript to invoke operations
that are normally reserved for Android applications. If you use it, expose addJavaScriptInterface()
only to web pages from which all input is trustworthy. If untrusted input is allowed, untrusted JavaScript
may be able to invoke Android methods within your app. In general, we recommend exposing
addJavaScriptInterface() only to JavaScript that is contained within your application APK.
If your application accesses sensitive data with a WebView, you may want to use the clearCache()
method to delete any files stored locally. Server-side headers like no-cache can also be used to indicate
that an application should not cache particular content.

Handling Credentials
In general, we recommend minimizing the frequency of asking for user credentials—to make phishing
attacks more conspicuous, and less likely to be successful. Instead use an authorization token and refresh
it.

Security Tips

746
Content from developer.android.com/training/articles/security-tips.html through their Creative Commons Attribution 2.5 license

Where possible, username and password should not be stored on the device. Instead, perform initial
authentication using the username and password supplied by the user, and then use a short-lived, service-
specific authorization token.
Services that will be accessible to multiple applications should be accessed using AccountManager. If
possible, use the AccountManager class to invoke a cloud-based service and do not store passwords on
the device.
After using AccountManager to retrieve an Account, CREATOR before passing in any credentials, so
that you do not inadvertently pass credentials to the wrong application.
If credentials are to be used only by applications that you create, then you can verify the application which
accesses the AccountManager using checkSignature(). Alternatively, if only one application will use
the credential, you might use a KeyStore for storage.

Using Cryptography
In addition to providing data isolation, supporting full-filesystem encryption, and providing secure
communications channels, Android provides a wide array of algorithms for protecting data using
cryptography.
In general, try to use the highest level of pre-existing framework implementation that can support your use
case. If you need to securely retrieve a file from a known location, a simple HTTPS URI may be adequate
and requires no knowledge of cryptography. If you need a secure tunnel, consider using
HttpsURLConnection or SSLSocket, rather than writing your own protocol.
If you do find yourself needing to implement your own protocol, we strongly recommend that you not
implement your own cryptographic algorithms. Use existing cryptographic algorithms such as those in the
implementation of AES or RSA provided in the Cipher class.
Use a secure random number generator, SecureRandom, to initialize any cryptographic keys,
KeyGenerator. Use of a key that is not generated with a secure random number generator significantly
weakens the strength of the algorithm, and may allow offline attacks.
If you need to store a key for repeated use, use a mechanism like KeyStore that provides a mechanism
for long term storage and retrieval of cryptographic keys.

Using Interprocess Communication
Some apps attempt to implement IPC using traditional Linux techniques such as network sockets and
shared files. We strongly encourage you to instead use Android system functionality for IPC such as
Intent, Binder or Messenger with a Service, and BroadcastReceiver. The Android IPC
mechanisms allow you to verify the identity of the application connecting to your IPC and set security
policy for each IPC mechanism.
Many of the security elements are shared across IPC mechanisms. If your IPC mechanism is not intended
for use by other applications, set the android:exported attribute to "false" in the component's
manifest element, such as for the <service> element. This is useful for applications that consist of
multiple processes within the same UID, or if you decide late in development that you do not actually want
to expose functionality as IPC but you don’t want to rewrite the code.
If your IPC is intended to be accessible to other applications, you can apply a security policy by using the
<permission> element. If IPC is between your own separate apps that are signed with the same key, it
is preferable to use "signature" level permission in the android:protectionLevel.

Using intents
Intents are the preferred mechanism for asynchronous IPC in Android. Depending on your application
requirements, you might use sendBroadcast(), sendOrderedBroadcast(), or an explicit intent to a
specific application component.

Security Tips

747
Content from developer.android.com/training/articles/security-tips.html through their Creative Commons Attribution 2.5 license

Note that ordered broadcasts can be “consumed” by a recipient, so they may not be delivered to all
applications. If you are sending an intent that must be delivered to a specific receiver, then you must use
an explicit intent that declares the receiver by nameintent.
Senders of an intent can verify that the recipient has a permission specifying a non-Null permission with
the method call. Only applications with that permission will receive the intent. If data within a broadcast
intent may be sensitive, you should consider applying a permission to make sure that malicious
applications cannot register to receive those messages without appropriate permissions. In those
circumstances, you may also consider invoking the receiver directly, rather than raising a broadcast.
Note: Intent filters should not be considered a security feature—components can be invoked with explicit
intents and may not have data that would conform to the intent filter. You should perform input validation
within your intent receiver to confirm that it is properly formatted for the invoked receiver, service, or
activity.

Using services
A Service is often used to supply functionality for other applications to use. Each service class must have
a corresponding declaration in its manifest file.
By default, services are not exported and cannot be invoked by any other application. However, if you add
any intent filters to the service declaration, then it is exported by default. It's best if you explicitly declare
the android:exported attribute to be sure it behaves as you'd like. Services can also be protected
using the android:permission attribute. By doing so, other applications will need to declare a
corresponding <uses-permission> element in their own manifest to be able to start, stop, or bind to the
service.
A service can protect individual IPC calls into it with permissions, by calling
checkCallingPermission() before executing the implementation of that call. We generally
recommend using the declarative permissions in the manifest, since those are less prone to oversight.

Using binder and messenger interfaces
Using Binder or Messenger is the preferred mechanism for RPC-style IPC in Android. They provide a
well-defined interface that enables mutual authentication of the endpoints, if required.
We strongly encourage designing interfaces in a manner that does not require interface specific
permission checks. Binder and Messenger objects are not declared within the application manifest, and
therefore you cannot apply declarative permissions directly to them. They generally inherit permissions
declared in the application manifest for the Service or Activity within which they are implemented. If
you are creating an interface that requires authentication and/or access controls, those controls must be
explicitly added as code in the Binder or Messenger interface.
If providing an interface that does require access controls, use checkCallingPermission() to verify
whether the caller has a required permission. This is especially important before accessing a service on
behalf of the caller, as the identify of your application is passed to other interfaces. If invoking an interface
provided by a Service, the bindService() invocation may fail if you do not have permission to access
the given service. If calling an interface provided locally by your own application, it may be useful to use
the clearCallingIdentity() to satisfy internal security checks.
For more information about performing IPC with a service, see Bound Services.

Using broadcast receivers
A BroadcastReceiver handles asynchronous requests initiated by an Intent.
By default, receivers are exported and can be invoked by any other application. If your
BroadcastReceiver is intended for use by other applications, you may want to apply security
permissions to receivers using the <receiver> element within the application manifest. This will prevent
applications without appropriate permissions from sending an intent to the BroadcastReceiver.

Security Tips

748
Content from developer.android.com/training/articles/security-tips.html through their Creative Commons Attribution 2.5 license

Dynamically Loading Code
We strongly discourage loading code from outside of your application APK. Doing so significantly
increases the likelihood of application compromise due to code injection or code tampering. It also adds
complexity around version management and application testing. Finally, it can make it impossible to verify
the behavior of an application, so it may be prohibited in some environments.
If your application does dynamically load code, the most important thing to keep in mind about dynamically
loaded code is that it runs with the same security permissions as the application APK. The user made a
decision to install your application based on your identity, and they are expecting that you provide any
code run within the application, including code that is dynamically loaded.
The major security risk associated with dynamically loading code is that the code needs to come from a
verifiable source. If the modules are included directly within your APK, then they cannot be modified by
other applications. This is true whether the code is a native library or a class being loaded using
DexClassLoader. We have seen many instances of applications attempting to load code from insecure
locations, such as downloaded from the network over unencrypted protocols or from world writable
locations such as external storage. These locations could allow someone on the network to modify the
content in transit, or another application on a users device to modify the content on the device,
respectively.

Security in a Virtual Machine
Dalvik is Android's runtime virtual machine (VM). Dalvik was built specifically for Android, but many of the
concerns regarding secure code in other virtual machines also apply to Android. In general, you shouldn't
concern yourself with security issues relating to the virtual machine. Your application runs in a secure
sandbox environment, so other processes on the system cannnot access your code or private data.
If you're interested in diving deeper on the subject of virtual machine security, we recommend that you
familiarize yourself with some existing literature on the subject. Two of the more popular resources are:

• http://www.securingjava.com/toc.html
• https://www.owasp.org/index.php/Java_Security_Resources

This document is focused on the areas which are Android specific or different from other VM
environments. For developers experienced with VM programming in other environments, there are two
broad issues that may be different about writing apps for Android:

• Some virtual machines, such as the JVM or .net runtime, act as a security boundary, isolating
code from the underlying operating system capabilities. On Android, the Dalvik VM is not a
security boundary—the application sandbox is implemented at the OS level, so Dalvik can
interoperate with native code in the same application without any security constraints.

• Given the limited storage on mobile devices, it’s common for developers to want to build modular
applications and use dynamic class loading. When doing this, consider both the source where
you retrieve your application logic and where you store it locally. Do not use dynamic class
loading from sources that are not verified, such as unsecured network sources or external
storage, because that code might be modified to include malicious behavior.

Security in Native Code
In general, we encourage developers to use the Android SDK for application development, rather than
using native code with the Android NDK. Applications built with native code are more complex, less
portable, and more like to include common memory corruption errors such as buffer overflows.

Security Tips

749
Content from developer.android.com/training/articles/security-tips.html through their Creative Commons Attribution 2.5 license

Android is built using the Linux kernel and being familiar with Linux development security best practices is
especially useful if you are going to use native code. Linux security practices are beyond the scope of this
document, but one of the most popular resources is “Secure Programming for Linux and Unix HOWTO”,
available at http://www.dwheeler.com/secure-programs.
An important difference between Android and most Linux environments is the Application Sandbox. On
Android, all applications run in the Application Sandbox, including those written with native code. At the
most basic level, a good way to think about it for developers familiar with Linux is to know that every
application is given a unique UID with very limited permissions. This is discussed in more detail in the
Android Security Overview and you should be familiar with application permissions even if you are using
native code.

Security with HTTPS and SSL

750
Content from developer.android.com/training/articles/security-ssl.html through their Creative Commons Attribution 2.5 license

216. Security with HTTPS and SSL
Content from developer.android.com/training/articles/security-ssl.html through their Creative Commons Attribution 2.5 license

The Secure Sockets Layer (SSL)—now technically
known as Transport Layer Security (TLS)—is a
common building block for encrypted
communications between clients and servers. It's
possible that an application might use SSL
incorrectly such that malicious entities may be
able to intercept an app's data over the network.
To help you ensure that this does not happen to
your app, this article highlights the common
pitfalls when using secure network protocols and
addresses some larger concerns about using
Public-Key Infrastructure (PKI).

Concepts
In a typical SSL usage scenario, a server is
configured with a certificate containing a public
key as well as a matching private key. As part of
the handshake between an SSL client and server,
the server proves it has the private key by signing
its certificate with public-key cryptography.
However, anyone can generate their own
certificate and private key, so a simple handshake
doesn't prove anything about the server other than
that the server knows the private key that matches
the public key of the certificate. One way to solve
this problem is to have the client have a set of one or more certificates it trusts. If the certificate is not in the
set, the server is not to be trusted.
There are several downsides to this simple approach. Servers should be able to upgrade to stronger keys
over time ("key rotation"), which replaces the public key in the certificate with a new one. Unfortunately,
now the client app has to be updated due to what is essentially a server configuration change. This is
especially problematic if the server is not under the app developer's control, for example if it is a third party
web service. This approach also has issues if the app has to talk to arbitrary servers such as a web
browser or email app.
In order to address these downsides, servers are typically configured with certificates from well known
issuers called Certificate Authorities (CAs). The host platform generally contains a list of well known CAs
that it trusts. As of Android 4.2 (Jelly Bean), Android currently contains over 100 CAs that are updated in
each release. Similar to a server, a CA has a certificate and a private key. When issuing a certificate for a
server, the CA signs the server certificate using its private key. The client can then verify that the server
has a certificate issued by a CA known to the platform.
However, while solving some problems, using CAs introduces another. Because the CA issues certificates
for many servers, you still need some way to make sure you are talking to the server you want. To address
this, the certificate issued by the CA identifies the server either with a specific name such as gmail.com or
a wildcarded set of hosts such as *.google.com.
The following example will make these concepts a little more concrete. In the snippet below from a
command line, the openssl tool's s_client command looks at Wikipedia's server certificate information.
It specifies port 443 because that is the default for HTTPS. The command sends the output of openssl
s_client to openssl x509, which formats information about certificates according to the X.509

In this section
• Concepts
• An HTTP Example
• Common Problems Verifying Server
Certificates
• Unknown certificate authority
• Self-signed server certificate
• Missing intermediate certificate authority
• Common Problems with Hostname
Verification
• Warnings About Using SSLSocket Directly
• Blacklisting
• Pinning
• Client Certificates
See also

• Android Security Overview
• Permissions

Security with HTTPS and SSL

751
Content from developer.android.com/training/articles/security-ssl.html through their Creative Commons Attribution 2.5 license

standard. Specifically, the command asks for the subject, which contains the server name information, and
the issuer, which identifies the CA.

$ openssl s_client -connect wikipedia.org:443 | openssl x509 -noout -subject -issuer
subject=
/serialNumber=sOrr2rKpMVP70Z6E9BT5reY008SJEdYv/C=US/O=*.wikipedia.org/OU=GT03314600/OU=See
www.rapidssl.com/resources/cps (c)11/OU=Domain Control Validated -
RapidSSL(R)/CN=*.wikipedia.org
issuer= /C=US/O=GeoTrust, Inc./CN=RapidSSL CA

You can see that the certificate was issued for servers matching *.wikipedia.org by the RapidSSL CA.

An HTTPS Example
Assuming you have a web server with a certificate issued by a well known CA, you can make a secure
request with code as simple this:

URL url = new URL("https://wikipedia.org");
URLConnection urlConnection = url.openConnection();
InputStream in = urlConnection.getInputStream();
copyInputStreamToOutputStream(in, System.out);

Yes, it really can be that simple. If you want to tailor the HTTP request, you can cast to an
HttpURLConnection. The Android documentation for HttpURLConnection has further examples
about how to deal with request and response headers, posting content, managing cookies, using proxies,
caching responses, and so on. But in terms of the details for verifying certificates and hostnames, the
Android framework takes care of it for you through these APIs. This is where you want to be if at all
possible. That said, below are some other considerations.

Common Problems Verifying Server Certificates
Suppose instead of receiving the content from getInputStream(), it throws an exception:

javax.net.ssl.SSLHandshakeException: java.security.cert.CertPathValidatorException: Trust
anchor for certification path not found.
 at
org.apache.harmony.xnet.provider.jsse.OpenSSLSocketImpl.startHandshake(OpenSSLSocketImpl.java:
374)
 at libcore.net.http.HttpConnection.setupSecureSocket(HttpConnection.java:209)
 at
libcore.net.http.HttpsURLConnectionImpl$HttpsEngine.makeSslConnection(HttpsURLConnectionImpl.j
ava:478)
 at
libcore.net.http.HttpsURLConnectionImpl$HttpsEngine.connect(HttpsURLConnectionImpl.java:433)
 at libcore.net.http.HttpEngine.sendSocketRequest(HttpEngine.java:290)
 at libcore.net.http.HttpEngine.sendRequest(HttpEngine.java:240)
 at libcore.net.http.HttpURLConnectionImpl.getResponse(HttpURLConnectionImpl.java:282)
 at
libcore.net.http.HttpURLConnectionImpl.getInputStream(HttpURLConnectionImpl.java:177)
 at
libcore.net.http.HttpsURLConnectionImpl.getInputStream(HttpsURLConnectionImpl.java:271)

This can happen for several reasons, including:
• The CA that issued the server certificate was unknown
• The server certificate wasn't signed by a CA, but was self signed
• The server configuration is missing an intermediate CA

Security with HTTPS and SSL

752
Content from developer.android.com/training/articles/security-ssl.html through their Creative Commons Attribution 2.5 license

The following sections discuss how to address these problems while keeping your connection to the server
secure.

Unknown certificate authority
In this case, the SSLHandshakeException occurs because you have a CA that isn't trusted by the
system. It could be because you have a certificate from a new CA that isn't yet trusted by Android or your
app is running on an older version without the CA. More often a CA is unknown because it isn't a public
CA, but a private one issued by an organization such as a government, corporation, or education institution
for their own use.
Fortunately, you can teach HttpsURLConnection to trust a specific set of CAs. The procedure can be a
little convoluted, so below is an example that takes a specific CA from an InputStream, uses it to create
a KeyStore, which is then used to create and initialize a TrustManager. A TrustManager is what the
system uses to validate certificates from the server and—by creating one from a KeyStore with one or
more CAs—those will be the only CAs trusted by that TrustManager.
Given the new TrustManager, the example initializes a new SSLContext which provides an
SSLSocketFactory you can use to override the default SSLSocketFactory from
HttpsURLConnection. This way the connection will use your CAs for certificate validation.
Here is the example in full using an organizational CA from the University of Washington:

// Load CAs from an InputStream
// (could be from a resource or ByteArrayInputStream or ...)
CertificateFactory cf = CertificateFactory.getInstance("X.509");
// From https://www.washington.edu/itconnect/security/ca/load-der.crt
InputStream caInput = new BufferedInputStream(new FileInputStream("load-der.crt"));
Certificate ca;
try {
 ca = cf.generateCertificate(caInput);
 System.out.println("ca=" + ((X509Certificate) ca).getSubjectDN());
} finally {
 caInput.close();
}

// Create a KeyStore containing our trusted CAs
String keyStoreType = KeyStore.getDefaultType();
KeyStore keyStore = KeyStore.getInstance(keyStoreType);
keyStore.load(null, null);
keyStore.setCertificateEntry("ca", ca);

// Create a TrustManager that trusts the CAs in our KeyStore
String tmfAlgorithm = TrustManagerFactory.getDefaultAlgorithm();
TrustManagerFactory tmf = TrustManagerFactory.getInstance(tmfAlgorithm);
tmf.init(keyStore);

// Create an SSLContext that uses our TrustManager
SSLContext context = SSLContext.getInstance("TLS");
context.init(null, tmf.getTrustManagers(), null);

// Tell the URLConnection to use a SocketFactory from our SSLContext
URL url = new URL("https://certs.cac.washington.edu/CAtest/");
HttpsURLConnection urlConnection =
 (HttpsURLConnection)url.openConnection();
urlConnection.setSSLSocketFactory(context.getSocketFactory());
InputStream in = urlConnection.getInputStream();
copyInputStreamToOutputStream(in, System.out);

Security with HTTPS and SSL

753
Content from developer.android.com/training/articles/security-ssl.html through their Creative Commons Attribution 2.5 license

With a custom TrustManager that knows about your CAs, the system is able to validate that your server
certificate come from a trusted issuer.
Caution: Many web sites describe a poor alternative solution which is to install a TrustManager that
does nothing. If you do this you might as well not be encrypting your communication, because anyone can
attack your users at a public Wi-Fi hotspot by using DNS tricks to send your users' traffic through a proxy
of their own that pretends to be your server. The attacker can then record passwords and other personal
data. This works because the attacker can generate a certificate and—without a TrustManager that
actually validates that the certificate comes from a trusted source—your app could be talking to anyone.
So don't do this, not even temporarily. You can always make your app trust the issuer of the server's
certificate, so just do it.

Self-signed server certificate
The second case of SSLHandshakeException is due to a self-signed certificate, which means the
server is behaving as its own CA. This is similar to an unknown certificate authority, so you can use the
same approach from the previous section.
You can create your own TrustManager, this time trusting the server certificate directly. This has all of
the downsides discussed earlier of tying your app directly to a certificate, but can be done securely.
However, you should be careful to make sure your self-signed certificate has a reasonably strong key. As
of 2012, a 2048-bit RSA signature with an exponent of 65537 expiring yearly is acceptable. When rotating
keys, you should check for recommendations from an authority (such as NIST) about what is acceptable.

Missing intermediate certificate authority
The third case of SSLHandshakeException occurs due to a missing intermediate CA. Most public CAs
don't sign server certificates directly. Instead, they use their main CA certificate, referred to as the root CA,
to sign intermediate CAs. They do this so the root CA can be stored offline to reduce risk of compromise.
However, operating systems like Android typically trust only root CAs directly, which leaves a short gap of
trust between the server certificate—signed by the intermediate CA—and the certificate verifier, which
knows the root CA. To solve this, the server doesn't send the client only it's certificate during the SSL
handshake, but a chain of certificates from the server CA through any intermediates necessary to reach a
trusted root CA.
To see what this looks like in practice, here's the mail.google.com certificate chain as viewed by the
openssl s_client command:

$ openssl s_client -connect mail.google.com:443

Certificate chain
 0 s:/C=US/ST=California/L=Mountain View/O=Google Inc/CN=mail.google.com
 i:/C=ZA/O=Thawte Consulting (Pty) Ltd./CN=Thawte SGC CA
 1 s:/C=ZA/O=Thawte Consulting (Pty) Ltd./CN=Thawte SGC CA
 i:/C=US/O=VeriSign, Inc./OU=Class 3 Public Primary Certification Authority

This shows that the server sends a certificate for mail.google.com issued by the Thawte SGC CA, which is
an intermediate CA, and a second certificate for the Thawte SGC CA issued by a Verisign CA, which is the
primary CA that's trusted by Android.
However, it is not uncommon to configure a server to not include the necessary intermediate CA. For
example, here is a server that can cause an error in Android browsers and exceptions in Android apps:

Security with HTTPS and SSL

754
Content from developer.android.com/training/articles/security-ssl.html through their Creative Commons Attribution 2.5 license

$ openssl s_client -connect egov.uscis.gov:443

Certificate chain
 0 s:/C=US/ST=District Of Columbia/L=Washington/O=U.S. Department of Homeland
Security/OU=United States Citizenship and Immigration Services/OU=Terms of use at
www.verisign.com/rpa (c)05/CN=egov.uscis.gov
 i:/C=US/O=VeriSign, Inc./OU=VeriSign Trust Network/OU=Terms of use at
https://www.verisign.com/rpa (c)10/CN=VeriSign Class 3 International Server CA - G3

What is interesting to note here is that visiting this server in most desktop browsers does not cause an
error like a completely unknown CA or self-signed server certificate would cause. This is because most
desktop browsers cache trusted intermediate CAs over time. Once a browser has visited and learned
about an intermediate CA from one site, it won't need to have the intermediate CA included in the
certificate chain the next time.
Some sites do this intentionally for secondary web servers used to serve resources. For example, they
might have their main HTML page served by a server with a full certificate chain, but have servers for
resources such as images, CSS, or JavaScript not include the CA, presumably to save bandwidth.
Unfortunately, sometimes these servers might be providing a web service you are trying to call from your
Android app, which is not as forgiving.
There are two approaches to solve this issue:

• Configure the server to include the intermediate CA in the server chain. Most CAs provide
documentation on how to do this for all common web servers. This is the only approach if you
need the site to work with default Android browsers at least through Android 4.2.

• Or, treat the intermediate CA like any other unknown CA, and create a TrustManager to trust it
directly, as done in the previous two sections.

Common Problems with Hostname Verification
As mentioned at the beginning of this article, there are two key parts to verifying an SSL connection. The
first is to verify the certificate is from a trusted source, which was the focus of the previous section. The
focus of this section is the second part: making sure the server you are talking to presents the right
certificate. When it doesn't, you'll typically see an error like this:

java.io.IOException: Hostname 'example.com' was not verified
 at libcore.net.http.HttpConnection.verifySecureSocketHostname(HttpConnection.java:223)
 at
libcore.net.http.HttpsURLConnectionImpl$HttpsEngine.connect(HttpsURLConnectionImpl.java:446)
 at libcore.net.http.HttpEngine.sendSocketRequest(HttpEngine.java:290)
 at libcore.net.http.HttpEngine.sendRequest(HttpEngine.java:240)
 at libcore.net.http.HttpURLConnectionImpl.getResponse(HttpURLConnectionImpl.java:282)
 at
libcore.net.http.HttpURLConnectionImpl.getInputStream(HttpURLConnectionImpl.java:177)
 at
libcore.net.http.HttpsURLConnectionImpl.getInputStream(HttpsURLConnectionImpl.java:271)

One reason this can happen is due to a server configuration error. The server is configured with a
certificate that does not have a subject or subject alternative name fields that match the server you are
trying to reach. It is possible to have one certificate be used with many different servers. For example,
looking at the google.com certificate with openssl s_client -connect google.com:443 |
openssl x509 -text you can see that a subject that supports *.google.com but also subject alternative

Security with HTTPS and SSL

755
Content from developer.android.com/training/articles/security-ssl.html through their Creative Commons Attribution 2.5 license

names for *.youtube.com, *.android.com, and others. The error occurs only when the server name you are
connecting to isn't listed by the certificate as acceptable.
Unfortunately this can happen for another reason as well: virtual hosting. When sharing a server for more
than one hostname with HTTP, the web server can tell from the HTTP/1.1 request which target hostname
the client is looking for. Unfortunately this is complicated with HTTPS, because the server has to know
which certificate to return before it sees the HTTP request. To address this problem, newer versions of
SSL, specifically TLSv.1.0 and later, support Server Name Indication (SNI), which allows the SSL client to
specify the intended hostname to the server so the proper certificate can be returned.
Fortunately, HttpsURLConnection supports SNI since Android 2.3. Unfortunately, Apache HTTP Client
does not, which is one of the many reasons we discourage its use. One workaround if you need to support
Android 2.2 (and older) or Apache HTTP Client is to set up an alternative virtual host on a unique port so
that it's unambiguous which server certificate to return.
The more drastic alternative is to replace HostnameVerifier with one that uses not the hostname of
your virtual host, but the one returned by the server by default.
Caution: Replacing HostnameVerifier can be very dangerous if the other virtual host is not under
your control, because a man-in-the-middle attack could direct traffic to another server without your
knowledge.
If you are still sure you want to override hostname verification, here is an example that replaces the verifier
for a single URLConnection with one that still verifies that the hostname is at least on expected by the
app:

// Create an HostnameVerifier that hardwires the expected hostname.
// Note that is different than the URL's hostname:
// example.com versus example.org
HostnameVerifier hostnameVerifier = new HostnameVerifier() {
 @Override
 public boolean verify(String hostname, SSLSession session) {
 HostnameVerifier hv =
 HttpsURLConnection.getDefaultHostnameVerifier();
 return hv.verify("example.com", session);
 }
};

// Tell the URLConnection to use our HostnameVerifier
URL url = new URL("https://example.org/");
HttpsURLConnection urlConnection =
 (HttpsURLConnection)url.openConnection();
urlConnection.setHostnameVerifier(hostnameVerifier);
InputStream in = urlConnection.getInputStream();
copyInputStreamToOutputStream(in, System.out);

But remember, if you find yourself replacing hostname verification, especially due to virtual hosting, it's still
very dangerous if the other virtual host is not under your control and you should find an alternative
hosting arrangement that avoids this issue.

Warnings About Using SSLSocket Directly
So far, the examples have focused on HTTPS using HttpsURLConnection. Sometimes apps need to
use SSL separate from HTTP. For example, an email app might use SSL variants of SMTP, POP3, or
IMAP. In those cases, the app would want to use SSLSocket directly, much the same way that
HttpsURLConnection does internally.
The techniques described so far to deal with certificate verification issues also apply to SSLSocket. In
fact, when using a custom TrustManager, what is passed to HttpsURLConnection is an

Security with HTTPS and SSL

756
Content from developer.android.com/training/articles/security-ssl.html through their Creative Commons Attribution 2.5 license

SSLSocketFactory. So if you need to use a custom TrustManager with an SSLSocket, follow the
same steps and use that SSLSocketFactory to create your SSLSocket.
Caution: SSLSocket does not perform hostname verification. It is up the your app to do its own
hostname verification, preferably by calling getDefaultHostnameVerifier() with the expected
hostname. Further beware that HostnameVerifier.verify() doesn't throw an exception on error but
instead returns a boolean result that you must explicitly check.
Here is an example showing how you can do this. It shows that when connecting to gmail.com port 443
without SNI support, you'll receive a certificate for mail.google.com. This is expected in this case, so check
to make sure that the certificate is indeed for mail.google.com:

// Open SSLSocket directly to gmail.com
SocketFactory sf = SSLSocketFactory.getDefault();
SSLSocket socket = (SSLSocket) sf.createSocket("gmail.com", 443);
HostnameVerifier hv = HttpsURLConnection.getDefaultHostnameVerifier();
SSLSession s = socket.getSession();

// Verify that the certicate hostname is for mail.google.com
// This is due to lack of SNI support in the current SSLSocket.
if (!hv.verify("mail.google.com", s)) {
 throw new SSLHandshakeException("Expected mail.google.com, "
 "found " + s.getPeerPrincipal());
}

// At this point SSLSocket performed certificate verificaiton and
// we have performed hostname verification, so it is safe to proceed.

// ... use socket ...
socket.close();

Blacklisting
SSL relies heavily on CAs to issue certificates to only the properly verified owners of servers and domains.
In rare cases, CAs are either tricked or, in the case of Comodo or DigiNotar, breached, resulting in the
certificates for a hostname to be issued to someone other than the owner of the server or domain.
In order to mitigate this risk, Android has the ability to blacklist certain certificates or even whole CAs.
While this list was historically built into the operating system, starting in Android 4.2 this list can be
remotely updated to deal with future compromises.

Pinning
An app can further protect itself from fraudulently issued certificates by a technique known as pinning. This
is basically using the example provided in the unknown CA case above to restrict an app's trusted CAs to
a small set known to be used by the app's servers. This prevents the compromise of one of the other 100+
CAs in the system from resulting in a breach of the apps secure channel.

Client Certificates
This article has focused on the user of SSL to secure communications with servers. SSL also supports the
notion of client certificates that allow the server to validate the identity of a client. While beyond the scope
of this article, the techniques involved are similar to specifying a custom TrustManager. See the
discussion about creating a custom KeyManager in the documentation for HttpsURLConnection.

Developing for Enterprise

757
Content from developer.android.com/training/enterprise/index.html through their Creative Commons Attribution 2.5 license

217. Developing for Enterprise
Content from developer.android.com/training/enterprise/index.html through their Creative Commons Attribution 2.5 license

In this class, you'll learn APIs and techniques you
can use when developing applications for the
enterprise.

Lessons
Enhancing Security with Device Management
Policies

In this lesson, you will learn how to
create a security-aware application that
manages access to its content by
enforcing device management policies

Dependencies and prerequisites

• Android 2.2 (API Level 8) or higher

You should also read

• Device Administration

Try it out
Download the sample
DeviceManagement.zip

Enhancing Security with Device Management Policies

758
Content from developer.android.com/training/enterprise/device-management-policy.html through their Creative Commons Attribution 2.5 license

218. Enhancing Security with Device Management Policies
Content from developer.android.com/training/enterprise/device-management-policy.html through their Creative Commons Attribution 2.5 license

Since Android 2.2 (API level 8), the Android
platform offers system-level device management
capabilities through the Device Administration
APIs.
In this lesson, you will learn how to create a
security-aware application that manages access
to its content by enforcing device management
policies. Specifically, the application can be
configured such that it ensures a screen-lock
password of sufficient strength is set up before
displaying restricted content to the user.

Define and Declare Your Policy
First, you need to define the kinds of policy to
support at the functional level. Policies may cover
screen-lock password strength, expiration timeout,
encryption, etc.
You must declare the selected policy set, which will be enforced by the application, in the
res/xml/device_admin.xml file. The Android manifest should also reference the declared policy set.
Each declared policy corresponds to some number of related device policy methods in
DevicePolicyManager (defining minimum password length and minimum number of uppercase
characters are two examples). If an application attempts to invoke methods whose corresponding policy is
not declared in the XML, this will result in a SecurityException at runtime. Other permissions, such as
force-lock, are available if the application intends to manage other kinds of policy. As you'll see later,
as part of the device administrator activation process, the list of declared policies will be presented to the
user on a system screen.
The following snippet declares the limit password policy in res/xml/device_admin.xml:

<device-admin xmlns:android="http://schemas.android.com/apk/res/android">
 <uses-policies>
 <limit-password />
 </uses-policies>
</device-admin>

Policy declaration XML referenced in Android manifest:

<receiver android:name=".Policy$PolicyAdmin"
 android:permission="android.permission.BIND_DEVICE_ADMIN">
 <meta-data android:name="android.app.device_admin"
 android:resource="@xml/device_admin" />
 <intent-filter>
 <action android:name="android.app.action.DEVICE_ADMIN_ENABLED" />
 </intent-filter>
</receiver>

Create a Device Administration Receiver
Create a Device Administration broadcast receiver, which gets notified of events related to the policies
you’ve declared to support. An application can selectively override callback methods.

This lesson teaches you to
• Define and Declare Your Policy
• Create a Device Administration Receiver
• Activate the Device Administrator
• Implement the Device Policy Controller
You should also read

• Device Administration

Try it out
Download the sample
DeviceManagement.zip

Enhancing Security with Device Management Policies

759
Content from developer.android.com/training/enterprise/device-management-policy.html through their Creative Commons Attribution 2.5 license

In the sample application, Device Admin, when the device administrator is deactivated by the user, the
configured policy is erased from the shared preference. You should consider implementing business logic
that is relevant to your use case. For example, the application might take some actions to mitigate security
risk by implementing some combination of deleting sensitive data on the device, disabling remote
synchronization, alerting an administrator, etc.
For the broadcast receiver to work, be sure to register it in the Android manifest as illustrated in the above
snippet.

public static class PolicyAdmin extends DeviceAdminReceiver {

 @Override
 public void onDisabled(Context context, Intent intent) {
 // Called when the app is about to be deactivated as a device administrator.
 // Deletes previously stored password policy.
 super.onDisabled(context, intent);
 SharedPreferences prefs = context.getSharedPreferences(APP_PREF,
Activity.MODE_PRIVATE);
 prefs.edit().clear().commit();
 }
}

Activate the Device Administrator
Before enforcing any policies, the user needs to manually activate the application as a device
administrator. The snippet below illustrates how to trigger the settings activity in which the user can
activate your application. It is good practice to include the explanatory text to highlight to users why the
application is requesting to be a device administrator, by specifying the EXTRA_ADD_EXPLANATION extra
in the intent.

Figure 1. The user activation screen in which you can provide a description of your device policies.

Enhancing Security with Device Management Policies

760
Content from developer.android.com/training/enterprise/device-management-policy.html through their Creative Commons Attribution 2.5 license

if (!mPolicy.isAdminActive()) {

 Intent activateDeviceAdminIntent =
 new Intent(DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN);

 activateDeviceAdminIntent.putExtra(
 DevicePolicyManager.EXTRA_DEVICE_ADMIN,
 mPolicy.getPolicyAdmin());

 // It is good practice to include the optional explanation text to
 // explain to user why the application is requesting to be a device
 // administrator. The system will display this message on the activation
 // screen.
 activateDeviceAdminIntent.putExtra(
 DevicePolicyManager.EXTRA_ADD_EXPLANATION,
 getResources().getString(R.string.device_admin_activation_message));

 startActivityForResult(activateDeviceAdminIntent,
 REQ_ACTIVATE_DEVICE_ADMIN);
}

If the user chooses "Activate," the application becomes a device administrator and can begin configuring
and enforcing the policy.
The application also needs to be prepared to handle set back situations where the user abandons the
activation process by hitting the Cancel button, the Back key, or the Home key. Therefore, onResume() in
the Policy Set Up Activity needs to have logic to reevaluate the condition and present the Device
Administrator Activation option to the user if needed.

Implement the Device Policy Controller
After the device administrator is activated successfully, the application then configures Device Policy
Manager with the requested policy. Keep in mind that new policies are being added to Android with each
release. It is appropriate to perform version checks in your application if using new policies while
supporting older versions of the platform. For example, the Password Minimum Upper Case policy is only
available with API level 11 (Honeycomb) and above. The following code demonstrates how you can check
the version at runtime.

DevicePolicyManager mDPM = (DevicePolicyManager)
 context.getSystemService(Context.DEVICE_POLICY_SERVICE);
ComponentName mPolicyAdmin = new ComponentName(context, PolicyAdmin.class);
...
mDPM.setPasswordQuality(mPolicyAdmin, PASSWORD_QUALITY_VALUES[mPasswordQuality]);
mDPM.setPasswordMinimumLength(mPolicyAdmin, mPasswordLength);
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 mDPM.setPasswordMinimumUpperCase(mPolicyAdmin, mPasswordMinUpperCase);
}

At this point, the application is able to enforce the policy. While the application has no access to the actual
screen-lock password used, through the Device Policy Manager API it can determine whether the existing
password satisfies the required policy. If it turns out that the existing screen-lock password is not sufficient,
the device administration API does not automatically take corrective action. It is the application’s
responsibility to explicitly launch the system password-change screen in the Settings app. For example:

Enhancing Security with Device Management Policies

761
Content from developer.android.com/training/enterprise/device-management-policy.html through their Creative Commons Attribution 2.5 license

if (!mDPM.isActivePasswordSufficient()) {
 ...
 // Triggers password change screen in Settings.
 Intent intent =
 new Intent(DevicePolicyManager.ACTION_SET_NEW_PASSWORD);
 startActivity(intent);
}

Normally, the user can select from one of the available lock mechanisms, such as None, Pattern, PIN
(numeric), or Password (alphanumeric). When a password policy is configured, those password types that
are weaker than those defined in the policy are disabled. For example, if the “Numeric” password quality is
configured, the user can select either PIN (numeric) or Password (alphanumeric) password only.
Once the device is properly secured by setting up a proper screen-lock password, the application allows
access to the secured content.

if (!mDPM.isAdminActive(..)) {
 // Activates device administrator.
 ...
} else if (!mDPM.isActivePasswordSufficient()) {
 // Launches password set-up screen in Settings.
 ...
} else {
 // Grants access to secure content.
 ...
 startActivity(new Intent(context, SecureActivity.class));
}

Best Practices for Testing

762
Content from developer.android.com/training/testing.html through their Creative Commons Attribution 2.5 license

219. Best Practices for Testing
Content from developer.android.com/training/testing.html through their Creative Commons Attribution 2.5 license
These classes and articles provide information about how to test your Android application.

Testing Your Android Activity

763
Content from developer.android.com/training/activity-testing/index.html through their Creative Commons Attribution 2.5 license

220. Testing Your Android Activity
Content from developer.android.com/training/activity-testing/index.html through their Creative Commons Attribution 2.5 license

You should be writing and running tests as part of
your Android application development cycle. Well-
written tests can help you to catch bugs early in
development and give you confidence in your
code.
A test case defines a set of objects and methods
to run multiple tests independently from each
other. Test cases can be organized into test suites
and run programmatically, in a repeatable
manner, with a test runner provided by a testing
framework.
The lessons in this class teaches you how to use the Android's custom testing framework that is based on
the popular JUnit framework. You can write test cases to verify specific behavior in your application, and
check for consistency across different Android devices. Your test cases also serve as a form of internal
code documentation by describing the expected behavior of app components.

Lessons
Setting Up Your Test Environment

Learn how to create your test project.
Creating and Running a Test Case

Learn how to write test cases to verify the expected properties of your Activity, and run the
test cases with the Instrumentation test runner provided by the Android framework.

Testing UI Components
Learn how to test the behavior of specific UI components in your Activity.

Creating Unit Tests
Learn how to how to perform unit testing to verify the behavior of an Activity in isolation.

Creating Functional Tests
Learn how to perform functional testing to verify the interaction of multiple Activities.

Dependencies and prerequisites

• Android 2.2 (API Level 8) or higher.

You Should Also Read

• Testing (Developer's Guide)

Setting Up Your Test Environment

764
Content from developer.android.com/training/activity-testing/preparing-activity-testing.html through their Creative Commons Attribution 2.5 license

221. Setting Up Your Test Environment
Content from developer.android.com/training/activity-testing/preparing-activity-testing.html through their Creative Commons Attribution 2.5 license

Before you start writing and running your tests,
you should set up your test development
environment. This lesson teaches you how to set
up the Eclipse IDE to build and run tests, and how
to build and run tests with the Gradle framework
by using the command line interface.
Note: To help you get started, the lessons are
based on Eclipse with the ADT plugin. However,
for your own test development, you are free to use
the IDE of your choice or the command-line.

Set Up Eclipse for Testing
Eclipse with the Android Developer Tools (ADT)
plugin provides an integrated development
environment for you to create, build, and run
Android application test cases from a graphical
user interface (GUI). A convenient feature that
Eclipse provides is the ability to auto-generate a new test project that corresponds with your Android
application project.
To set up your test environment in Eclipse:
• Download and install the Eclipse ADT plugin, if you haven’t installed it yet.
• Import or create the Android application project that you want to test against.
• Generate a test project that corresponds to the application project under test. To generate a test project
for the app project that you imported:
• In the Package Explorer, right-click on your app project, then select Android Tools > New Test
Project.
• In the New Android Test Project wizard, set the property values for your test project then click Finish.
You should now be able to create, build, and run test cases from your Eclipse environment. To learn how
to perform these tasks in Eclipse, proceed to Creating and Running a Test Case.

Set Up the Command Line Interface for Testing
If you are using Gradle version 1.6 or higher as your build environment, you can build and run your
Android application tests from the command line by using the Gradle Wrapper. Make sure that in your
gradle.build file, the minSdkVersion attribute in the defaultConfig section is set to 8 or higher. You
can refer to the sample gradle.build file that is included in the download bundle for this training class.
To run your tests with the Gradle Wrapper:
• Connect a physical Android device to your machine or launch the Android Emulator.
• Run the following command from your project directory:

./gradlew build connectedCheck

•
To learn more about using Gradle for Android testing, see the Gradle Plugin User Guide.

This lesson teaches you to
• Set Up Eclipse for Testing
• Set Up the Command Line Interface for
Testing
You should also read

• Getting the SDK Bundle
• Testing from Eclipse with ADT
• Testing from Other IDEs

Try it out
Download the demo
AndroidTestingFun.zip

Setting Up Your Test Environment

765
Content from developer.android.com/training/activity-testing/preparing-activity-testing.html through their Creative Commons Attribution 2.5 license

To learn more about using command line tools other than Gradle for test development, see Testing from
Other IDEs.

Creating and Running a Test Case

766
Content from developer.android.com/training/activity-testing/activity-basic-testing.html through their Creative Commons Attribution 2.5 license

222. Creating and Running a Test Case
Content from developer.android.com/training/activity-testing/activity-basic-testing.html through their Creative Commons Attribution 2.5 license

In order to verify that there are no regressions in
the layout design and functional behavior in your
application, it's important to create a test for each
Activity in your application. For each test, you
need to create the individual parts of a test case,
including the test fixture, preconditions test
method, and Activity test methods. You can
then run your test to get a test report. If any test
method fails, this might indicate a potential defect
in your code.
Note: In the Test-Driven Development (TDD)
approach, instead of writing most or all of your
app code up-front and then running tests later in
the development cycle, you would progressively
write just enough production code to satisfy your test dependencies, update your test cases to reflect new
functional requirements, and iterate repeatedly this way.

Create a Test Case
Activity tests are written in a structured way. Make sure to put your tests in a separate package, distinct
from the code under test.
By convention, your test package name should follow the same name as the application package, suffixed
with ".tests". In the test package you created, add the Java class for your test case. By convention, your
test case name should also follow the same name as the Java or Android class that you want to test, but
suffixed with “Test”.
To create a new test case in Eclipse:
• In the Package Explorer, right-click on the /src directory for your test project and select New >
Package.
• Set the Name field to <your_app_package_name>.tests (for example,
com.example.android.testingfun.tests) and click Finish.
• Right-click on the test package you created, and select New > Class.
• Set the Name field to <your_app_activity_name>Test (for example,
MyFirstTestActivityTest) and click Finish.

Set Up Your Test Fixture
A test fixture consists of objects that must be initialized for running one or more tests. To set up the test
fixture, you can override the setUp() and tearDown() methods in your test. The test runner
automatically runs setUp() before running any other test methods, and tearDown() at the end of each
test method execution. You can use these methods to keep the code for test initialization and clean up
separate from the tests methods.
To set up your test fixture in Eclipse:
• In the Package Explorer, double-click on the test case that you created earlier to bring up the Eclipse
Java editor, then modify your test case class to extend one of the sub-classes of ActivityTestCase.
For example:

public class MyFirstTestActivityTest

This lesson teaches you to
• Create a Test Case for Activity Testing
• Set Up Your Test Fixture
• Add Test Preconditions
• Add Test Methods to Verify Your Activity
• Build and Run Your Test
You should also read

• Testing Fundamentals

Creating and Running a Test Case

767
Content from developer.android.com/training/activity-testing/activity-basic-testing.html through their Creative Commons Attribution 2.5 license

 extends ActivityInstrumentationTestCase2<MyFirstTestActivity> {

•
• Next, add the constructor and setUp() methods to your test case, and add variable declarations for the
Activity that you want to test.
For example:

public class MyFirstTestActivityTest
 extends ActivityInstrumentationTestCase2<MyFirstTestActivity> {

 private MyFirstTestActivity mFirstTestActivity;
 private TextView mFirstTestText;

 public MyFirstTestActivityTest() {
 super(MyFirstTestActivity.class);
 }

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 mFirstTestActivity = getActivity();
 mFirstTestText =
 (TextView) mFirstTestActivity
 .findViewById(R.id.my_first_test_text_view);
 }
}

The constructor is invoked by the test runner to instantiate the test class, while the setUp() method is
invoked by the test runner before it runs any tests in the test class.
Typically, in the setUp() method, you should:

• Invoke the superclass constructor for setUp(), which is required by JUnit.
• Initialize your test fixture state by:

o Defining the instance variables that store the state of the fixture.
o Creating and storing a reference to an instance of the Activity under test.
o Obtaining a reference to any UI components in the Activity that you want to test.

You can use the getActivity() method to get a reference to the Activity under test.

Add Test Preconditions
As a sanity check, it is good practice to verify that the test fixture has been set up correctly, and the objects
that you want to test have been correctly instantiated or initialized. That way, you won’t have to see tests
failing because something was wrong with the setup of your test fixture. By convention, the method for
verifying your test fixture is called testPreconditions().
For example, you might want to add a testPreconditons() method like this to your test case:

public void testPreconditions() {
 assertNotNull(“mFirstTestActivity is null”, mFirstTestActivity);
 assertNotNull(“mFirstTestText is null”, mFirstTestText);
}

Creating and Running a Test Case

768
Content from developer.android.com/training/activity-testing/activity-basic-testing.html through their Creative Commons Attribution 2.5 license

The assertion methods are from the JUnit Assert class. Generally, you can use assertions to verify if a
specific condition that you want to test is true.

• If the condition is false, the assertion method throws an AssertionFailedError exception,
which is then typically reported by the test runner. You can provide a string in the first argument of
your assertion method to give some contextual details if the assertion fails.

• If the condition is true, the test passes.

In both cases, the test runner proceeds to run the other test methods in the test case.

Add Test Methods to Verify Your Activity
Next, add one or more test methods to verify the layout and functional behavior of your Activity.
For example, if your Activity includes a TextView, you can add a test method like this to check that it
has the correct label text:

public void testMyFirstTestTextView_labelText() {
 final String expected =
 mFirstTestActivity.getString(R.string.my_first_test);
 final String actual = mFirstTestText.getText().toString();
 assertEquals(expected, actual);
}

The testMyFirstTestTextView_labelText() method simply checks that the default text of the
TextView that is set by the layout is the same as the expected text defined in the strings.xml
resource.
Note: When naming test methods, you can use an underscore to separate what is being tested from the
specific case being tested. This style makes it easier to see exactly what cases are being tested.
When doing this type of string value comparison, it’s good practice to read the expected string from your
resources, instead of hardcoding the string in your comparison code. This prevents your test from easily
breaking whenever the string definitions are modified in the resource file.
To perform the comparison, pass both the expected and actual strings as arguments to the
assertEquals() method. If the values are not the same, the assertion will throw an
AssertionFailedError exception.
If you added a testPreconditions() method, put your test methods after the
testPreconditions() definition in your Java class.
For a complete test case example, take a look at MyFirstTestActivityTest.java in the sample app.

Build and Run Your Test
You can build and run your test easily from the Package Explorer in Eclipse.
To build and run your test:
• Connect an Android device to your machine. On the device or emulator, open the Settings menu, select
Developer options and make sure that USB debugging is enabled.
• In the Project Explorer, right-click on the test class that you created earlier and select Run As >
Android Junit Test.
• In the Android Device Chooser dialog, select the device that you just connected, then click OK.
• In the JUnit view, verify that the test passes with no errors or failures.
For example, if the test case passes with no errors, the result should look like this:

Creating and Running a Test Case

769
Content from developer.android.com/training/activity-testing/activity-basic-testing.html through their Creative Commons Attribution 2.5 license

Figure 1. Result of a test with no errors.

Testing UI Components

770
Content from developer.android.com/training/activity-testing/activity-ui-testing.html through their Creative Commons Attribution 2.5 license

223. Testing UI Components
Content from developer.android.com/training/activity-testing/activity-ui-testing.html through their Creative Commons Attribution 2.5 license

Typically, your Activity includes user interface
components (such as buttons, editable text fields,
checkboxes, and pickers) to allow users to interact
with your Android application. This lesson shows
how you can test an Activity with a simple
push-button UI. You can use the same general
steps to test other, more sophisticated types of UI
components.
Note: The type of UI testing in this lesson is called
white-box testing because you have the source
code for the application that you want to test. The
Android Instrumentation framework is suitable for
creating white-box tests for UI components within
an application. An alternative type of UI testing is
black-box testing, where you may not have access
to the application source. This type of testing is
useful when you want to test how your app interacts with other apps or with the system. Black-box testing
is not covered in this training. To learn more about how to perform black-box testing on your Android apps,
see the UI Testing guide.
For a complete test case example, take a look at ClickFunActivityTest.java in the sample app.

Create a Test Case for UI Testing with Instrumentation
When testing an Activity that has a user interface (UI), the Activity under test runs in the UI thread.
However, the test application itself runs in a separate thread in the same process as the application under
test. This means that your test app can reference objects from the UI thread, but if it attempts to change
properties on those objects or send events to the UI thread, you will usually get a
WrongThreadException error.
To safely inject Intent objects into your Activity or run test methods on the UI thread, you can extend
your test class to use ActivityInstrumentationTestCase2. To learn more about how to run test
methods on the UI thread, see Testing on the UI thread.

Set Up Your Test Fixture
When setting up the test fixture for UI testing, you should specify the touch mode in your setUp()
method. Setting the touch mode to true prevents the UI control from taking focus when you click it
programmatically in the test method later (for example, a button UI will just fire its on-click listener). Make
sure that you call setActivityInitialTouchMode() before calling getActivity().
For example:

This lesson teaches you to
• Create a Test Case for UI Testing with
Instrumentation
• Add Test Methods to Verify UI Behavior
• Verify Button Layout Parameters
• Verify TextView Layout Parameters
• Verify Button Behavior
• Apply Test Annotations
Try it out
Download the demo
AndroidTestingFun.zip

Testing UI Components

771
Content from developer.android.com/training/activity-testing/activity-ui-testing.html through their Creative Commons Attribution 2.5 license

public class ClickFunActivityTest
 extends ActivityInstrumentationTestCase2 {
 ...
 @Override
 protected void setUp() throws Exception {
 super.setUp();

 setActivityInitialTouchMode(true);

 mClickFunActivity = getActivity();
 mClickMeButton = (Button)
 mClickFunActivity
 .findViewById(R.id.launch_next_activity_button);
 mInfoTextView = (TextView)
 mClickFunActivity.findViewById(R.id.info_text_view);
 }
}

Add Test Methods to Validate UI Behavior
Your UI testing goals might include:

• Verifying that a button is displayed with the correct layout when the Activity is launched.
• Verifying that a TextView is initially hidden.
• Verifying that a TextView displays the expected string when a button is pushed.

The following section demonstrates how you can implement test methods to perform these verifications.

Verify Button Layout Parameters
You might add a test method like this to verify that a button is displayed correctly in your Activity:

@MediumTest
public void testClickMeButton_layout() {
 final View decorView = mClickFunActivity.getWindow().getDecorView();

 ViewAsserts.assertOnScreen(decorView, mClickMeButton);

 final ViewGroup.LayoutParams layoutParams =
 mClickMeButton.getLayoutParams();
 assertNotNull(layoutParams);
 assertEquals(layoutParams.width, WindowManager.LayoutParams.MATCH_PARENT);
 assertEquals(layoutParams.height, WindowManager.LayoutParams.WRAP_CONTENT);
}

In the assertOnScreen() method call, you should pass in the root view and the view that you are
expecting to be present on the screen. If the expected view is not found in the root view, the assertion
method throws an AssertionFailedError exception, otherwise the test passes.
You can also verify that the layout of a Button is correct by getting a reference to its
ViewGroup.LayoutParams object, then call assertion methods to verify that the Button object's width
and height attributes match the expected values.
The @MediumTest annotation specifies how the test is categorized, relative to its absolute execution time.
To learn more about using test size annotations, see Apply Test Annotations.

Verify TextView Layout Parameters

Testing UI Components

772
Content from developer.android.com/training/activity-testing/activity-ui-testing.html through their Creative Commons Attribution 2.5 license

You might add a test method like this to verify that a TextView initially appears hidden in your Activity:

@MediumTest
public void testInfoTextView_layout() {
 final View decorView = mClickFunActivity.getWindow().getDecorView();
 ViewAsserts.assertOnScreen(decorView, mInfoTextView);
 assertTrue(View.GONE == mInfoTextView.getVisibility());
}

You can call getDecorView() to get a reference to the decor view for the Activity. The decor view is
the top-level ViewGroup (FrameLayout) view in the layout hierarchy.

Verify Button Behavior
You can use a test method like this to verify that a TextView becomes visible when a Button is pushed:

@MediumTest
public void testClickMeButton_clickButtonAndExpectInfoText() {
 String expectedInfoText = mClickFunActivity.getString(R.string.info_text);
 TouchUtils.clickView(this, mClickMeButton);
 assertTrue(View.VISIBLE == mInfoTextView.getVisibility());
 assertEquals(expectedInfoText, mInfoTextView.getText());
}

To programmatically click a Button in your test, call clickView(). You must pass in a reference to the
test case that is being run and a reference to the Button to manipulate.
Note: The TouchUtils helper class provides convenience methods for simulating touch interactions with
your application. You can use these methods to simulate clicking, tapping, and dragging of Views or the
application screen.
Caution: The TouchUtils methods are designed to send events to the UI thread safely from the test
thread. You should not run TouchUtils directly in the UI thread or any test method annotated with
@UIThread. Doing so might raise the WrongThreadException.

Apply Test Annotations
The following annotations can be applied to indicate the size of a test method:
@SmallTest

Marks a test that should run as part of the small tests.
@MediumTest

Marks a test that should run as part of the medium tests.
@LargeTest

Marks a test that should run as part of the large tests.
Typically, a short running test that take only a few milliseconds should be marked as a @SmallTest.
Longer running tests (100 milliseconds or more) are usually marked as @MediumTests or @LargeTests,
depending on whether the test accesses resources on the local system only or remote resources over a
network. For guidance on using test size annotations, see this Android Tools Protip.
You can mark up your test methods with other test annotations to control how the tests are organized and
run. For more information on other annotations, see the Annotation class reference.

Creating Unit Tests

773
Content from developer.android.com/training/activity-testing/activity-unit-testing.html through their Creative Commons Attribution 2.5 license

224. Creating Unit Tests
Content from developer.android.com/training/activity-testing/activity-unit-testing.html through their Creative Commons Attribution 2.5 license

An Activity unit test is an excellent way to
quickly verify the state of an Activity and its
interactions with other components in isolation
(that is, disconnected from the rest of the system).
A unit test generally tests the smallest possible
unit of code (which could be a method, class, or
component), without dependencies on system or
network resources. For example, you can write a
unit test to check that an Activity has the
correct layout or that it triggers an Intent object
correctly.
Unit tests are generally not suitable for testing complex UI interaction events with the system. Instead, you
should use the ActivityInstrumentationTestCase2 class, as described in Testing UI Components.
This lesson shows how you can write a unit test to verify that an Intent is triggered to launch another
Activity. Since the test runs in an isolated environment, the Intent is not actually sent to the Android
system, but you can inspect that the Intent object's payload data is accurate.
For a complete test case example, take a look at LaunchActivityTest.java in the sample app.
Note: To test against system or external dependencies, you can use mock objects from a mocking
framework and inject them into your unit tests. To learn more about the mocking framework provided by
Android, see Mock Object Classes.

Create a Test Case for Activity Unit Testing
The ActivityUnitTestCase class provides support for isolated testing of a single Activity. To
create a unit test for your Activity, your test class should extend ActivityUnitTestCase.
The Activity in an ActivityUnitTestCase is not automatically started by Android Instrumentation.
To start the Activity in isolation, you need to explicitly call the startActivity() method, and pass in
the Intent to launch your target Activity.
For example:

public class LaunchActivityTest
 extends ActivityUnitTestCase<LaunchActivity> {
 ...

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 mLaunchIntent = new Intent(getInstrumentation()
 .getTargetContext(), LaunchActivity.class);
 startActivity(mLaunchIntent, null, null);
 final Button launchNextButton =
 (Button) getActivity()
 .findViewById(R.id.launch_next_activity_button);
 }
}

Validate Launch of Another Activity
Your unit testing goals might include:

This lesson teaches you to
• Create a Test Case for Activity Unit Testing
• Validate Launch of Another Activity
Try it out
Download the demo
AndroidTestingFun.zip

Creating Unit Tests

774
Content from developer.android.com/training/activity-testing/activity-unit-testing.html through their Creative Commons Attribution 2.5 license

• Verifying that LaunchActivity fires an Intent when a button is pushed clicked.
• Verifying that the launched Intent contains the correct payload data.

To verify if an Intent was triggered following the Button click, you can use the
getStartedActivityIntent() method. By using assertion methods, you can verify that the returned
Intent is not null, and that it contains the expected string value to launch the next Activity. If both
assertions evaluate to true, you've successfully verified that the Intent was correctly sent by your
Activity.
You might implement your test method like this:

@MediumTest
public void testNextActivityWasLaunchedWithIntent() {
 startActivity(mLaunchIntent, null, null);
 final Button launchNextButton =
 (Button) getActivity()
 .findViewById(R.id.launch_next_activity_button);
 launchNextButton.performClick();

 final Intent launchIntent = getStartedActivityIntent();
 assertNotNull("Intent was null", launchIntent);
 assertTrue(isFinishCalled());

 final String payload =
 launchIntent.getStringExtra(NextActivity.EXTRAS_PAYLOAD_KEY);
 assertEquals("Payload is empty", LaunchActivity.STRING_PAYLOAD, payload);
}

Because LaunchActivity runs in isolation, you cannot use the TouchUtils library to manipulate UI
controls. To directly click a Button, you can call the performClick() method instead.

Creating Functional Tests

775
Content from developer.android.com/training/activity-testing/activity-functional-testing.html through their Creative Commons Attribution 2.5 license

225. Creating Functional Tests
Content from developer.android.com/training/activity-testing/activity-functional-testing.html through their Creative Commons Attribution 2.5 license

Functional testing involves verifying that individual
application components work together as
expected by the user. For example, you can
create a functional test to verify that an Activity
correctly launches a target Activity when the
user performs a UI interaction.
To create a functional test for your Activity,
your test class should extend
ActivityInstrumentationTestCase2.
Unlike ActivityUnitTestCase, tests in
ActivityInstrumentationTestCase2 can
communicate with the Android system and send
keyboard input and click events to the UI.
For a complete test case example, take a look at SenderActivityTest.java in the sample app.

Add Test Method to Validate Functional Behavior
Your functional testing goals might include:

• Verifying that a target Activity is started when a UI control is pushed in the sender Activity.
• Verifying that the target Activity displays the correct data based on the user's input in the

sender Activity.

You might implement your test method like this:

@MediumTest
public void testSendMessageToReceiverActivity() {
 final Button sendToReceiverButton = (Button)
 mSenderActivity.findViewById(R.id.send_message_button);

 final EditText senderMessageEditText = (EditText)
 mSenderActivity.findViewById(R.id.message_input_edit_text);

 // Set up an ActivityMonitor
 ...

 // Send string input value
 ...

 // Validate that ReceiverActivity is started
 ...

 // Validate that ReceiverActivity has the correct data
 ...

 // Remove the ActivityMonitor
 ...
}

The test waits for an Activity that matches this monitor, otherwise returns null after a timeout elapses. If
ReceiverActivity was started, the ActivityMonitor that you set up earlier receives a hit. You can

This lesson teaches you to
• Add Test Method to Validate Functional
Behavior
• Set Up an ActivityMonitor
• Send Keyboard Input Using Instrumentation
Try it out
Download the demo
AndroidTestingFun.zip

Creating Functional Tests

776
Content from developer.android.com/training/activity-testing/activity-functional-testing.html through their Creative Commons Attribution 2.5 license

use the assertion methods to verify that the ReceiverActivity is indeed started, and that the hit count
on the ActivityMonitor incremented as expected.

Set up an ActivityMonitor
To monitor a single Activity in your application, you can register an ActivityMonitor. The
ActivityMonitor is notified by the system whenever an Activity that matches your criteria is started.
If a match is found, the monitor’s hit count is updated.
Generally, to use an ActivityMonitor, you should:
• Retrieve the Instrumentation instance for your test case by using the getInstrumentation()
method.
• Add an instance of Instrumentation.ActivityMonitor to the current instrumentation using one of
the Instrumentation addMonitor() methods. The match criteria can be specified as an
IntentFilter or a class name string.
• Wait for the Activity to start.
• Verify that the monitor hits were incremented.
• Remove the monitor.
For example:

// Set up an ActivityMonitor
ActivityMonitor receiverActivityMonitor =
 getInstrumentation().addMonitor(ReceiverActivity.class.getName(),
 null, false);

// Validate that ReceiverActivity is started
TouchUtils.clickView(this, sendToReceiverButton);
ReceiverActivity receiverActivity = (ReceiverActivity)
 receiverActivityMonitor.waitForActivityWithTimeout(TIMEOUT_IN_MS);
assertNotNull("ReceiverActivity is null", receiverActivity);
assertEquals("Monitor for ReceiverActivity has not been called",
 1, receiverActivityMonitor.getHits());
assertEquals("Activity is of wrong type",
 ReceiverActivity.class, receiverActivity.getClass());

// Remove the ActivityMonitor
getInstrumentation().removeMonitor(receiverActivityMonitor);

Send Keyboard Input Using Instrumentation
If your Activity has an EditText field, you might want to test that users can enter values into the
EditText object.
Generally, to send a string input value to an EditText object in
ActivityInstrumentationTestCase2, you should:
• Use the runOnMainSync() method to run the requestFocus() call synchronously in a loop. This
way, the UI thread is blocked until focus is received.
• Call waitForIdleSync() method to wait for the main thread to become idle (that is, have no more
events to process).
• Send a text string to the EditText by calling sendStringSync() and pass your input string as the
parameter.
For example:

Creating Functional Tests

777
Content from developer.android.com/training/activity-testing/activity-functional-testing.html through their Creative Commons Attribution 2.5 license

// Send string input value
getInstrumentation().runOnMainSync(new Runnable() {
 @Override
 public void run() {
 senderMessageEditText.requestFocus();
 }
});
getInstrumentation().waitForIdleSync();
getInstrumentation().sendStringSync("Hello Android!");
getInstrumentation().waitForIdleSync();

Using Google Play to Distribute & Monetize

778
Content from developer.android.com/training/distribute.html through their Creative Commons Attribution 2.5 license

226. Using Google Play to Distribute & Monetize
Content from developer.android.com/training/distribute.html through their Creative Commons Attribution 2.5 license
These classes focus on the business aspects of your app strategy, including techniques for distributing
your app on Google Play and techniques for building revenue.

Selling In-app Products

779
Content from developer.android.com/training/in-app-billing/index.html through their Creative Commons Attribution 2.5 license

227. Selling In-app Products
Content from developer.android.com/training/in-app-billing/index.html through their Creative Commons Attribution 2.5 license

In this class, you'll learn how to perform common
In-app Billing operations from Android
applications.
In-app billing is a service hosted on Google Play
that lets you charge for digital content or for
upgrades in your app. The In-app Billing API
makes it easy for you to integrate In-app Billing
into your applications. You can request product
details from Google Play, issue orders for in-app
products, and quickly retrieve ownership
information based on users' purchase history. You can also query the Google Play service for details about
in-app products, such as local pricing and availability. Google Play provides a checkout interface that
makes user interactions with the In-app Billing service seamless, and provides a more intuitive experience
to your users.
This class describes how to get started with the Version 3 API. To learn how to use the version 2 API, see
Implementing In-App Billing (V2).

Lessons
Preparing Your In-app Billing Application

In this lesson, you will learn how to prepare your application to use the In-app Billing API and
communicate with Google Play. You will also learn how to establish a connection to communicate
with Google Play and verify that the In-app Billing API version that you are using is supported.

Establishing In-app Billing Products for Sale
In this lesson, you will learn how to specify the In-app Billing products for your app in Google Play
and query the product details.

Purchase In-app Billing Products
In this lesson, you will learn how to purchase In-app Billing products, track consumption of
purchased items, and query for details of purchased items.

Testing Your In-app Billing Application
In this lesson, you will learn how to test your application to ensure that In-app Billing is functioning
correctly.

Dependencies and prerequisites

• Android 2.2 or higher

You Should Also Read

• In-app Billing Overview

Preparing Your In-app Billing Application

780
Content from developer.android.com/training/in-app-billing/preparing-iab-app.html through their Creative Commons Attribution 2.5 license

228. Preparing Your In-app Billing Application
Content from developer.android.com/training/in-app-billing/preparing-iab-app.html through their Creative Commons Attribution 2.5 license

Before you can start using the In-app Billing
service, you'll need to add the library that contains
the In-app Billing Version 3 API to your Android
project. You also need to setting the permissions
for your application to communicate with Google
Play. In addition, you'll need to establish a
connection between your application and Google
Play. You should also verify that the In-app Billing
API version that you are using in your application
is supported by Google Play.

Download the Sample Application
In this training class, you will use a reference
implementation for the In-app Billing Version 3 API
called the TrivialDrive sample application. The sample includes convenience classes to quickly set up
the In-app Billing service, marshal and unmarshal data types, and handle In-app Billing requests from the
main thread of your application.
To download the sample application:
• Open the Android SDK Manager.
• In the SDK Manager, expand the Extras section.
• Select Google Play Billing Library.
• Click Install packages to complete the download.
The sample files will be installed to <sdk>/extras/google/play_billing/.

Add Your Application to the Developer Console
The Google Play Developer Console is where you publish your In-app Billing application and manage the
various digital goods that are available for purchase from your application. When you create a new
application entry in the Developer Console, it automatically generates a public license key for your
application. You will need this key to establish a trusted connection from your application to the Google
Play servers. You only need to generate this key once per application, and don’t need to repeat these
steps when you update the APK file for your application.
To add your application to the Developer Console:
• Go to the Google Play Developer Console site and log in. You will need to register for a new developer
account, if you have not registered previously. To sell in-app items, you also need to have a Google Wallet
merchant account.
• Click on Try the new design to access the preview version of the Developer Console, if you are not
already logged on to that version.
• In the All Applications tab, add a new application entry.
• Click Add new application.
• Enter a name for your new In-app Billing application.
• Click Prepare Store Listing.
• In the Services & APIs tab, find and make a note of the public license key that Google Play generated
for your application. This is a Base64 string that you will need to include in your application code later.

This lesson teaches you to
• Download the Sample App
• Add Your App to the Developer Console
• Add the In-app Billing Library
• Set the Billing Permission
• Initiate a Connection with Google Play
You should also read

• In-app Billing Overview

Preparing Your In-app Billing Application

781
Content from developer.android.com/training/in-app-billing/preparing-iab-app.html through their Creative Commons Attribution 2.5 license

Your application should now appear in the list of applications in Developer Console.

Add the In-app Billing Library
To use the In-app Billing Version 3 features, you must add the IInAppBillingService.aidl file to
your Android project. This Android Interface Definition Language (AIDL) file defines the interface to the
Google Play service.
You can find the IInAppBillingService.aidl file in the provided sample app. Depending on whether
you are creating a new application or modifying an existing application, follow the instructions below to add
the In-app Billing Library to your project.

New Project
To add the In-app Billing Version 3 library to your new In-app Billing project:
• Copy the TrivialDrive sample files into your Android project.
• Modify the package name in the files you copied to use the package name for your project. In Eclipse,
you can use this shortcut: right-click the package name, then select Refactor > Rename.
• Open the AndroidManifest.xml file and update the package attribute value to use the package
name for your project.
• Fix import statements as needed so that your project compiles correctly. In Eclipse, you can use this
shortcut: press Ctrl+Shift+O in each file showing errors.
• Modify the sample to create your own application. Remember to copy the Base64 public license key for
your application from the Developer Console over to your MainActivity.java.

Existing Project
To add the In-app Billing Version 3 library to your existing In-app Billing project:
• Copy the IInAppBillingService.aidl file to your Android project.

• If you are using Eclipse: Import the IInAppBillingService.aidl file into your /src
directory.

• If you are developing in a non-Eclipse environment: Create the following directory
/src/com/android/vending/billing and copy the IInAppBillingService.aidl file
into this directory.

• Build your application. You should see a generated file named IInAppBillingService.java in the
/gen directory of your project.
• Add the helper classes from the /util directory of the TrivialDrive sample to your project.
Remember to change the package name declarations in those files accordingly so that your project
compiles correctly.
Your project should now contain the In-app Billing Version 3 library.

Set the Billing Permission
Your app needs to have permission to communicate request and response messages to the Google Play’s
billing service. To give your app the necessary permission, add this line in your AndroidManifest.xml
manifest file:

<uses-permission android:name="com.android.vending.BILLING" />

Initiate a Connection with Google Play

Preparing Your In-app Billing Application

782
Content from developer.android.com/training/in-app-billing/preparing-iab-app.html through their Creative Commons Attribution 2.5 license

You must bind your Activity to Google Play’s In-app Billing service to send In-app Billing requests to
Google Play from your application. The convenience classes provided in the sample handles the binding to
the In-app Billing service, so you don’t have to manage the network connection directly.
To set up synchronous communication with Google Play, create an IabHelper instance in your activity's
onCreate method. In the constructor, pass in the Context for the activity, along with a string containing
the public license key that was generated earlier by the Google Play Developer Console.
Security Recommendation: It is highly recommended that you do not hard-code the exact public license
key string value as provided by Google Play. Instead, you can construct the whole public license key string
at runtime from substrings, or retrieve it from an encrypted store, before passing it to the constructor. This
approach makes it more difficult for malicious third-parties to modify the public license key string in your
APK file.

IabHelper mHelper;

@Override
public void onCreate(Bundle savedInstanceState) {
 // ...
 String base64EncodedPublicKey;

 // compute your public key and store it in base64EncodedPublicKey
 mHelper = new IabHelper(this, base64EncodedPublicKey);
}

Next, perform the service binding by calling the startSetup method on the IabHelper instance that
you created. Pass the method an OnIabSetupFinishedListener instance, which is called once the
IabHelper completes the asynchronous setup operation. As part of the setup process, the IabHelper
also checks if the In-app Billing Version 3 API is supported by Google Play. If the API version is not
supported, or if an error occured while establishing the service binding, the listener is notified and passed
an IabResult object with the error message.

mHelper.startSetup(new IabHelper.OnIabSetupFinishedListener() {
 public void onIabSetupFinished(IabResult result) {
 if (!result.isSuccess()) {
 // Oh noes, there was a problem.
 Log.d(TAG, "Problem setting up In-app Billing: " + result);
 }
 // Hooray, IAB is fully set up!
 }
});

If the setup completed successfully, you can now use the mHelper reference to communicate with the
Google Play service. When your application is launched, it is a good practice to query Google Play to find
out what in-app items are owned by a user. This is covered further in the Query Purchased Items section.
Important: Remember to unbind from the In-app Billing service when you are done with your activity. If
you don’t unbind, the open service connection could cause your device’s performance to degrade. To
unbind and free your system resources, call the IabHelper's dispose method when your Activity
gets destroyed.

@Override
public void onDestroy() {
 super.onDestroy();
 if (mHelper != null) mHelper.dispose();
 mHelper = null;
}

Preparing Your In-app Billing Application

783
Content from developer.android.com/training/in-app-billing/preparing-iab-app.html through their Creative Commons Attribution 2.5 license

Establishing In-app Billing Products for Sale

784
Content from developer.android.com/training/in-app-billing/list-iab-products.html through their Creative Commons Attribution 2.5 license

229. Establishing In-app Billing Products for Sale
Content from developer.android.com/training/in-app-billing/list-iab-products.html through their Creative Commons Attribution 2.5 license

Before publishing your In-app Billing application,
you'll need to define the product list of digital
goods available for purchase in the Google Play
Developer Console.

Specify In-app Products in Google
Play
From the Developer Console, you can define
product information for in-app products and
associate the product list with your application.
To add new in-app products to your product list:
• Build a signed APK file for your In-app Billing application. To learn how to build and sign your APK, see
Building Your Application for Release. Make sure that you are using your final (not debug) certificate and
private key to sign your application.
• In the Developer Console, open the application entry that you created earlier.
• Click on the APK tab then click on Upload new APK. Upload the signed APK file to the Developer
Console. Don’t publish the app yet!
• Navigate to the uploaded app listing, and click on In-app Products.
• Click on the option to add a new product, then complete the form to specify the product information such
as the item’s unique product ID (also called its SKU), description, price, and country availability. Note down
the product ID since you might need this information to query purchase details in your application later.
Important: The In-app Billing Version 3 service only supports managed in-app products, so make sure
that you specify that the purchase type is 'Managed' when you add new items to your product list in the
Developer Console.
• Once you have completed the form, activate the product so that your application can purchase it.
Warning: It may take up to 2-3 hours after uploading the APK for Google Play to recognize your updated
APK version. If you try to test your application before your uploaded APK is recognized by Google Play,
your application will receive a ‘purchase cancelled’ response with an error message “This version of the
application is not enabled for In-app Billing.”

Query Items Available for Purchase
You can query Google Play to programmatically retrieve details of the in-app products that are associated
with your application (such as the product’s price, title, description, and type). This is useful, for example,
when you want to display a listing of unowned items that are still available for purchase to users.
Note: When making the query, you will need to specify the product IDs for the products explicitly. You can
manually find the product IDs from the Developer Console by opening the In-app Products tab for your
application. The product IDs are listed under the column labeled Name/ID.
To retrieve the product details, call queryInventoryAsync(boolean, List,
QueryInventoryFinishedListener) on your IabHelper instance.

• The first input argument indicates whether product details should be retrieved (should be set to
true).

• The List argument consists of one or more product IDs (also called SKUs) for the products that
you want to query.

This lesson teaches you to
• Specify In-app Products in Google Play
• Query In-app Product Details
You should also read

• In-app Billing Overview

Establishing In-app Billing Products for Sale

785
Content from developer.android.com/training/in-app-billing/list-iab-products.html through their Creative Commons Attribution 2.5 license

• Finally, the QueryInventoryFinishedListener argument specifies a listener is notified
when the query operation has completed and handles the query response.

If you use the convenience classes provided in the sample, the classes will handle background thread
management for In-app Billing requests, so you can safely make queries from the main thread of your
application.
The following code shows how you can retrieve the details for two products with IDs SKU_APPLE and
SKU_BANANA that you previously defined in the Developer Console.

List additionalSkuList = new List();
additionalSkuList.add(SKU_APPLE);
additionalSkuList.add(SKU_BANANA);
mHelper.queryInventoryAsync(true, additionalSkuList,
 mQueryFinishedListener);

If the query is successful, the query results are stored in an Inventory object that is passed back to the
listener.
The following code shows how you can retrieve the item prices from the result set.

IabHelper.QueryInventoryFinishedListener
 mQueryFinishedListener = new IabHelper.QueryInventoryFinishedListener() {
 public void onQueryInventoryFinished(IabResult result, Inventory inventory)
 {
 if (result.isFailure()) {
 // handle error
 return;
 }

 String applePrice =
 inventory.getSkuDetails(SKU_APPLE).getPrice();
 String bananaPrice =
 inventory.getSkuDetails(SKU_BANANA).getPrice();

 // update the UI
 }
}

Purchasing In-app Billing Products

786
Content from developer.android.com/training/in-app-billing/purchase-iab-products.html through their Creative Commons Attribution 2.5 license

230. Purchasing In-app Billing Products
Content from developer.android.com/training/in-app-billing/purchase-iab-products.html through their Creative Commons Attribution 2.5 license

Once your application is connected to Google
Play, you can initiate purchase requests for in-app
products. Google Play provides a checkout
interface for users to enter their payment method,
so your application does not need to handle
payment transactions directly.
When an item is purchased, Google Play
recognizes that the user has ownership of that
item and prevents the user from purchasing
another item with the same product ID until it is
consumed. You can control how the item is
consumed in your application, and notify Google Play to make the item available for purchase again.
You can also query Google Play to quickly retrieve the list of purchases that were made by the user. This
is useful, for example, when you want to restore the user's purchases when your user launches your app.

Purchase an Item
To start a purchase request from your app, call launchPurchaseFlow(Activity, String, int,
OnIabPurchaseFinishedListener, String) on your IabHelper instance. You must make this
call from the main thread of your Activity. Here’s an explaination of the launchPurchaseFlow
method parameters:

• The first argument is the calling Activity.
• The second argument is the product ID (also called its SKU) of the item to purchase. Make sure

that you are providing the ID and not the product name. You must have previously defined and
activated the item in the Developer Console, otherwise it won’t be recognized.

• The third argument is a request code value. This value can be any positive integer. Google Play
reurns this request code to the calling Activity’s onActivityResult along with the purchase
response.

• The fourth argument is a listener that is notified when the purchase operation has completed and
handles the purchase response from Google Play.

• The fifth argument contains a ‘developer payload’ string that you can use to send supplemental
information about an order (it can be an empty string). Typically, this is used to pass in a string
token that uniquely identifies this purchase request. If you specify a string value, Google Play
returns this string along with the purchase response. Subsequently, when you make queries
about this purchase, Google Play returns this string together with the purchase details.

Security Recommendation: It’s good practice to pass in a string that helps your application to
identify the user who made the purchase, so that you can later verify that this is a legitimate
purchase by that user. For consumable items, you can use a randomly generated string, but for
non-consumable items you should use a string that uniquely identifies the user.

The following example shows how you can make a purchase request for a product with ID SKU_GAS, using
an arbitrary value of 10001 for the request code, and an encoded developer payload string.

mHelper.launchPurchaseFlow(this, SKU_GAS, 10001,
 mPurchaseFinishedListener, "bGoa+V7g/yqDXvKRqq+JTFn4uQZbPiQJo4pf9RzJ");

This lesson teaches you to
• Purchase an Item
• Query Purchased Items
• Consume a Purchase
You should also read

• In-app Billing Overview

Purchasing In-app Billing Products

787
Content from developer.android.com/training/in-app-billing/purchase-iab-products.html through their Creative Commons Attribution 2.5 license

If the purchase order is successful, the response data from Google Play is stored in an Purchase object
that is passed back to the listener.
The following example shows how you can handle the purchase response in the listener, depending on
whether the purchase order was completed successfully, and whether the user purchased gas or a
premium upgrade. In this example, gas is an in-app product that can be purchased multiple times, so you
should consume the purchase to allow the user to buy it again. To learn how to consume purchases, see
the Consuming Products section. The premium upgrade is a one-time purchase so you don’t need to
consume it. It is good practice to update the UI immediately so that your users can see their newly
purchased items.

IabHelper.OnIabPurchaseFinishedListener mPurchaseFinishedListener
 = new IabHelper.OnIabPurchaseFinishedListener() {
 public void onIabPurchaseFinished(IabResult result, Purchase purchase)
 {
 if (result.isFailure()) {
 Log.d(TAG, "Error purchasing: " + result);
 return;
 }
 else if (purchase.getSku().equals(SKU_GAS)) {
 // consume the gas and update the UI
 }
 else if (purchase.getSku().equals(SKU_PREMIUM)) {
 // give user access to premium content and update the UI
 }
 }
};

Security Recommendation: When you receive the purchase response from Google Play, make sure to
check the returned data signature, the orderId, and the developerPayload string in the Purchase
object to make sure that you are getting the expected values. You should verify that the orderId is a
unique value that you have not previously processed, and the developerPayload string matches the
token that you sent previously with the purchase request. As a further security precaution, you should
perform the verification on your own secure server.

Query Purchased Items
Upon a successful purchase, the user’s purchase data is cached locally by Google Play’s In-app Billing
service. It is good practice to frequently query the In-app Billing service for the user’s purchases, for
example whenever the app starts up or resumes, so that the user’s current in-app product ownership
information is always reflected in your app.
To retrieve the user’s purchases from your app, call
queryInventoryAsync(QueryInventoryFinishedListener) on your IabHelper instance. The
QueryInventoryFinishedListener argument specifies a listener that is notified when the query
operation has completed and handles the query response. It is safe to make this call fom your main
thread.

mHelper.queryInventoryAsync(mGotInventoryListener);

If the query is successful, the query results are stored in an Inventory object that is passed back to the
listener. The In-app Billing service returns only the purchases made by the user account that is currently
logged in to the device.

Purchasing In-app Billing Products

788
Content from developer.android.com/training/in-app-billing/purchase-iab-products.html through their Creative Commons Attribution 2.5 license

IabHelper.QueryInventoryFinishedListener mGotInventoryListener
 = new IabHelper.QueryInventoryFinishedListener() {
 public void onQueryInventoryFinished(IabResult result,
 Inventory inventory) {

 if (result.isFailure()) {
 // handle error here
 }
 else {
 // does the user have the premium upgrade?
 mIsPremium = inventory.hasPurchase(SKU_PREMIUM);
 // update UI accordingly
 }
 }
};

Consume a Purchase
You can use the In-app Billing Version 3 API to track the ownership of purchased items in Google Play.
Once an item is purchased, it is considered to be "owned" and cannot be purchased again from Google
Play while in that state. You must send a consumption request for the item before Google Play makes it
available for purchase again. All managed in-app products are consumable. How you use the consumption
mechanism in your app is up to you. Typically, you would implement consumption for products with
temporary benefits that users may want to purchase multiple times (for example, in-game currency or
replenishable game tokens). You would typically not want to implement consumption for products that are
purchased once and provide a permanent effect (for example, a premium upgrade).
It's your responsibility to control and track how the in-app product is provisioned to the user. For example,
if the user purchased in-game currency, you should update the player's inventory with the amount of
currency purchased.
Security Recommendation: You must send a consumption request before provisioning the benefit of the
consumable in-app purchase to the user. Make sure that you have received a successful consumption
response from Google Play before you provision the item.
To record a purchase consumption, call consumeAsync(Purchase,
OnConsumeFinishedListener) on your IabHelper instance. The first argument that the method
takes is the Purchase object representing the item to consume. The second argument is a
OnConsumeFinishedListener that is notified when the consumption operation has completed and
handles the consumption response from Google Play. It is safe to make this call fom your main thread.
In this example, you want to consume the gas item that the user has previously purchased in your app.

mHelper.consumeAsync(inventory.getPurchase(SKU_GAS),
 mConsumeFinishedListener);

The following example shows how to implement the OnConsumeFinishedListener.

Purchasing In-app Billing Products

789
Content from developer.android.com/training/in-app-billing/purchase-iab-products.html through their Creative Commons Attribution 2.5 license

IabHelper.OnConsumeFinishedListener mConsumeFinishedListener =
 new IabHelper.OnConsumeFinishedListener() {
 public void onConsumeFinished(Purchase purchase, IabResult result) {
 if (result.isSuccess()) {
 // provision the in-app purchase to the user
 // (for example, credit 50 gold coins to player's character)
 }
 else {
 // handle error
 }
 }
};

Check for Consumable Items on Startup
It’s important to check for consumable items when the user starts up your application. Typically, you would
first query the In-app Billing service for the items purchased by the user (via queryInventoryAsync),
then get the consumable Purchase objects from the Inventory. If your application detects that are any
consumable items that are owned by the user, you should send a consumption request to Google Play
immediately and provision the item to the user. See the TrivialDrive sample for an example of how to
implement this checking at startup.

Testing Your In-app Billing Application

790
Content from developer.android.com/training/in-app-billing/test-iab-app.html through their Creative Commons Attribution 2.5 license

231. Testing Your In-app Billing Application
Content from developer.android.com/training/in-app-billing/test-iab-app.html through their Creative Commons Attribution 2.5 license

To ensure that In-app Billing is functioning
correctly in your application, you should test the
test the application before you publish it on
Google Play. Early testing also helps to ensure
that the user flow for purchasing in-app items is
not confusing or slow, and that users can see their
newly purchased items in a timely way.

Test with Static Responses
Test your In-app Billing application with static
responses by using Google Play’s reserved product IDs.By using reserved product IDs instead of actual
product IDs, you can test the purchase flow without specifying an actual payment method or transferring
money. To learn more about the reserved product IDs, see Testing In-app Billing.

Test with Your Own Product IDs
Because Google Play does not allow you to use your developer account to directly purchase in-app
products that you have created yourself, you'll need to create test acccounts under your developer account
profile. To create a test account, simply enter a valid Google email address. Users with these test
accounts will then be able to make in-app-billing purchases from uploaded, unpublished applications that
you manage.
To test your In-app Billing Version 3 application using your own product IDs:
• In the Developer Console, add one or more tester accounts to the developer account that you are using
to publish your application.
• Login to the Developer Console with your developer account.
• Click Settings > Account details, then in the License Testing section, add the Google email
addresses for your tester accounts.
• Build a signed APK file for your In-app Billing application. To learn how to build and sign your APK, see
Building Your Application for Release. Make sure that you are using your final (not debug) certificate and
private key to sign your application.
• Make sure that you have uploaded the signed APK for your application to the Developer Console, and
associated one or more in-app products with your application. You don't need to publish the application on
Google Play to test it.
Warning: It may take up to 2-3 hours after uploading the APK for Google Play to recognize your updated
APK version. If you try to test your application before your uploaded APK is recognized by Google Play,
your application will receive a ‘purchase cancelled’ response with an error message “This version of the
application is not enabled for In-app Billing.”
• Install the APK file to your physical test device by using the adb tool. To learn how to install the
application, see Running on a Device. Make sure that:

• Your test device is running on Android SDK Version 2.2 (API level 8) or higher, and is installed
with Google Play client Version 3.9.16 or higher.

• The android:versionCode and android:versionName attributes values in the
AndroidManifest.xml of the application that you are installing matches the values of your
APK in the Developer Console.

This lesson teaches you to
• Test with Static Responses
• Test with Your Own Product IDs
You should also read

• In-app Billing Overview

Testing Your In-app Billing Application

791
Content from developer.android.com/training/in-app-billing/test-iab-app.html through their Creative Commons Attribution 2.5 license

• Your application is signed with the same certificate that you used for the APK that you uploaded
to the Developer Console, before installing it on your device.

• Login to the test device by using a tester account. Test your In-app Billing application by purchasing a
few items, and fix any issues that you encounter. Remember to refund the purchases if you don’t want
your testers to be actually charged!

Maintaining Multiple APKs

792
Content from developer.android.com/training/multiple-apks/index.html through their Creative Commons Attribution 2.5 license

232. Maintaining Multiple APKs
Content from developer.android.com/training/multiple-apks/index.html through their Creative Commons Attribution 2.5 license

Multiple APK support is a feature of Google Play
that allows you to publish multiple APKs under the
same application listing. Each APK is a complete
instance of your application, optimized to target
specific device configurations. Each APK can
target a specific set of GL textures, API levels,
screen sizes, or some combination thereof.
This class shows you how to write your multiple
APK application using any one of these
configuration variables. Each lesson covers
basics about how to organize your codebase and
target the right devices, as well as the smart way
to avoid pitfalls such as unnecessary redundancy across your codebase, and making mistakes in your
manifest that could render an APK invisible to all devices on Google Play. By going through any of these
lessons, you'll know how to develop multiple APKs the smart way, make sure they're targeting the devices
you want them to, and know how to catch mistakes before your app goes live.

Lessons
Creating Multiple APKs for Different API Levels

Learn how to target different versions of the Android platform using multiple APKs. Also learn how
to organize your codebase, what to do with your manifest, and how to investigate your APK
configuration using the aapt tool before pushing live.

Creating Multiple APKs for Different Screen Sizes
Learn how to target Android devices by screen size using multiple APKs. Also learn how to
organize your codebase, what to do with your manifest, and how to investigate your APK
configuration using the aapt tool before pushing live.

Creating Multiple APKs for Different GL Textures
Learn how to target Android devices based on their support for GL texture. Also learn how to
organize your codebase, what to do with your manifest, and how to investigate your APK
configuration using the aapt tool before pushing live.

Creating Multiple APKs with 2+ Dimensions
Learn how to target different Android devices based on more than one configuration variable
(screen size, API version, GL texture). Examples in the lesson target using a combination of API
level and screen size. Also learn how to organize your codebase, what to do with your manifest,
and how to investigate your APK configuration using the aapt tool before pushing live.

Dependencies and prerequisites

• Android 1.0 and higher
• You must have an Google Play

publisher account

You should also read

• Multiple APK Support

Creating Multiple APKs for Different API Levels

793
Content from developer.android.com/training/multiple-apks/api.html through their Creative Commons Attribution 2.5 license

233. Creating Multiple APKs for Different API Levels
Content from developer.android.com/training/multiple-apks/api.html through their Creative Commons Attribution 2.5 license

When developing your Android application to take
advantage of multiple APKs on Google Play, it’s
important to adopt some good practices from the
get-go, and prevent unnecessary headaches
further into the development process. This lesson
shows you how to create multiple APKs of your
app, each covering a slightly different range of API
levels. You will also gain some tools necessary to
make maintaining a multiple APK codebase as
painless as possible.

Confirm You Need Multiple APKs
When trying to create an application that works
across multiple generations of the Android
platform, naturally you want your application to
take advantage of new features on new devices,
without sacrificing backwards compatibility. It may
seem at the outset as though multiple APK
support is the best solution, but this often isn’t the
case. The Using Single APK Instead section of the multiple APK developer guide includes some useful
information on how to accomplish this with a single APK, including use of our support library. You can also
learn how to write code that runs only at certain API levels in a single APK, without resorting to
computationally expensive techniques like reflection from this article.
If you can manage it, confining your application to a single APK has several advantages, including:

• Publishing and testing are easier
• There’s only one codebase to maintain
• Your application can adapt to device configuration changes
• App restore across devices just works
• You don’t have to worry about market preference, behavior from "upgrades" from one APK to the

next, or which APK goes with which class of devices

The rest of this lesson assumes that you’ve researched the topic, studiously absorbed the material in the
resources linked, and determined that multiple APKs are the right path for your application.

Chart Your Requirements
Start off by creating a simple chart to quickly determine how many APKs you need, and what API range
each APK covers. For handy reference, the Platform Versions page of the Android Developer website
provides data about the relative number of active devices running a given version of the Android platform.
Also, although it sounds easy at first, keeping track of which set of API levels each APK is going to target
gets difficult rather quickly, especially if there’s going to be some overlap (there often is). Fortunately, it’s
easy to chart out your requirements quickly, easily, and have an easy reference for later.
In order to create your multiple APK chart, start out with a row of cells representing the various API levels
of the Android platform. Throw an extra cell at the end to represent future versions of Android.

This lesson teaches you to
• Confirm You Need Multiple APKs
• Chart Your Requirements
• Put All Common Code and Resources in a
Library Project
• Create New APK Projects
• Adjust the Manifests
• Go Over Pre-launch Checklist
You should also read

• Multiple APK Support
• How to have your (Cup)cake and eat

it too

Creating Multiple APKs for Different API Levels

794
Content from developer.android.com/training/multiple-apks/api.html through their Creative Commons Attribution 2.5 license

3 4 5 6 7 8 9 10 11 12 13 +

Now just color in the chart such that each color represents an APK. Here’s one example of how you might
apply each APK to a certain range of API levels.

3 4 5 6 7 8 9 10 11 12 13 +

Once you’ve created this chart, distribute it to your team. Team communication on your project just got
immediately simpler, since instead of asking "How’s the APK for API levels 3 to 6, er, you know, the
Android 1.x one. How’s that coming along?" You can simply say "How’s the Blue APK coming along?"

Put All Common Code and Resources in a Library Project
Whether you’re modifying an existing Android application or starting one from scratch, this is the first thing
that you should do to the codebase, and by the far the most important. Everything that goes into the library
project only needs to be updated once (think language-localized strings, color themes, bugs fixed in
shared code), which improves your development time and reduces the likelihood of mistakes that could
have been easily avoided.
Note: While the implementation details of how to create and include library projects are beyond the scope
of this lesson, you can get up to speed quickly on their creation at the following links:

• Setting up a library project (Eclipse)
• Setting up a library project (Command line)

If you’re converting an existing application to use multiple APK support, scour your codebase for every
localized string file, list of values, theme colors, menu icons and layout that isn’t going to change across
APKs, and put it all in the library project. Code that isn’t going to change much should also go in the library
project. You’ll likely find yourself extending these classes to add a method or two from APK to APK.
If, on the other hand, you’re creating the application from scratch, try as much as possible to write code in
the library project first, then only move it down to an individual APK if necessary. This is much easier to
manage in the long run than adding it to one, then another, then another, then months later trying to figure
out whether this blob can be moved up to the library section without screwing anything up.

Create New APK Projects
There should be a separate Android project for each APK you’re going to release. For easy organization,
place the library project and all related APK projects under the same parent folder. Also remember that
each APK needs to have the same package name, although they don’t necessarily need to share the
package name with the library. If you were to have 3 APKs following the scheme described earlier, your
root directory might look like this:

alexlucas:~/code/multi-apks-root$ ls
foo-blue
foo-green
foo-lib
foo-red

Once the projects are created, add the library project as a reference to each APK project. If possible,
define your starting Activity in the library project, and extend that Activity in your APK project. Having a

Creating Multiple APKs for Different API Levels

795
Content from developer.android.com/training/multiple-apks/api.html through their Creative Commons Attribution 2.5 license

starting activity defined in the library project gives you a chance to put all your application initialization in
one place, so that each individual APK doesn’t have to re-implement "universal" tasks like initializing
Analytics, running licensing checks, and any other initialization procedures that don’t change much from
APK to APK.

Adjust the Manifests
When a user downloads an application which uses multiple APKs through Google Play, the correct APK to
use is chosen using two simple rules:

• The manifest has to show that particular APK is eligible
• Of the eligible APKs, highest version number wins

By way of example, let’s take the set of multiple APKs described earlier, and assume that we haven’t set a
max API level for any of the APKs. Taken individually, the possible range of each APK would look like this:

3 4 5 6 7 8 9 10 11 12 13 +

3 4 5 6 7 8 9 10 11 12 13 +

3 4 5 6 7 8 9 10 11 12 13 +

Because it is required that an APK with a higher minSdkVersion also have a higher version code, we know
that in terms of versionCode values, red ≥ green ≥ blue. Therefore we can effectively collapse the chart to
look like this:

3 4 5 6 7 8 9 10 11 12 13 +

Now, let’s further assume that the Red APK has some requirement on it that the other two don’t. Filters on
Google Play page of the Android Developer guide has a whole list of possible culprits. For the sake of
example, let’s assume that red requires a front-facing camera. In fact, the entire point of the red APK is to
combine the front-facing camera with sweet new functionality that was added in API 11. But, it turns out,
not all devices that support API 11 even HAVE front-facing cameras! The horror!
Fortunately, if a user is browsing Google Play from one such device, Google Play will look at the manifest,
see that Red lists the front-facing camera as a requirement, and quietly ignore it, having determined that
Red and that device are not a match made in digital heaven. It will then see that Green is not only forward-
compatible with devices with API 11 (since no maxSdkVersion was defined), but also doesn’t care whether
or not there’s a front-facing camera! The app can still be downloaded from Google Play by the user,
because despite the whole front-camera mishap, there was still an APK that supported that particular API
level.
In order to keep all your APKs on separate "tracks", it’s important to have a good version code scheme.
The recommended one can be found on the Version Codes area of our developer guide. Since the
example set of APKs is only dealing with one of 3 possible dimensions, it would be sufficient to separate

Creating Multiple APKs for Different API Levels

796
Content from developer.android.com/training/multiple-apks/api.html through their Creative Commons Attribution 2.5 license

each APK by 1000, set the first couple digits to the minSdkVersion for that particular APK, and increment
from there. This might look like:
Blue: 03001, 03002, 03003, 03004...
Green: 07001, 07002, 07003, 07004...
Red:11001, 11002, 11003, 11004...
Putting this all together, your Android Manifests would likely look something like the following:
Blue:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="03001" android:versionName="1.0" package="com.example.foo">
 <uses-sdk android:minSdkVersion="3" />
 ...

Green:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="07001" android:versionName="1.0" package="com.example.foo">
 <uses-sdk android:minSdkVersion="7" />
 ...

Red:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="11001" android:versionName="1.0" package="com.example.foo">
 <uses-sdk android:minSdkVersion="11" />
 ...

Go Over Pre-launch Checklist
Before uploading to Google Play, double-check the following items. Remember that these are specifically
relevant to multiple APKs, and in no way represent a complete checklist for all applications being uploaded
to Google Play.

• All APKs must have the same package name
• All APKs must be signed with the same certificate
• If the APKs overlap in platform version, the one with the higher minSdkVersion must have a

higher version code
• Double check your manifest filters for conflicting information (an APK that only supports cupcake

on XLARGE screens isn’t going to be seen by anybody)
• Each APK's manifest must be unique across at least one of supported screen, openGL texture, or

platform version
• Try to test each APK on at least one device. Barring that, you have one of the most customizable

device emulators in the business sitting on your development machine. Go nuts!

It’s also worth inspecting the compiled APK before pushing to market, to make sure there aren’t any
surprises that could hide your application on Google Play. This is actually quite simple using the "aapt"
tool. Aapt (the Android Asset Packaging Tool) is part of the build process for creating and packaging your
Android applications, and is also a very handy tool for inspecting them.

Creating Multiple APKs for Different API Levels

797
Content from developer.android.com/training/multiple-apks/api.html through their Creative Commons Attribution 2.5 license

>aapt dump badging
package: name='com.example.hello' versionCode='1' versionName='1.0'
sdkVersion:'11'
uses-permission:'android.permission.SEND_SMS'
application-label:'Hello'
application-icon-120:'res/drawable-ldpi/icon.png'
application-icon-160:'res/drawable-mdpi/icon.png'
application-icon-240:'res/drawable-hdpi/icon.png'
application: label='Hello' icon='res/drawable-mdpi/icon.png'
launchable-activity: name='com.example.hello.HelloActivity' label='Hello' icon=''
uses-feature:'android.hardware.telephony'
uses-feature:'android.hardware.touchscreen'
main
supports-screens: 'small' 'normal' 'large' 'xlarge'
supports-any-density: 'true'
locales: '--_--'
densities: '120' '160' '240'

When you examine aapt output, be sure to check that you don’t have conflicting values for supports-
screens and compatible-screens, and that you don’t have unintended "uses-feature" values that were
added as a result of permissions you set in the manifest. In the example above, the APK won’t be visible to
very many devices.
Why? By adding the required permission SEND_SMS, the feature requirement of
android.hardware.telephony was implicitly added. Since API 11 is Honeycomb (the version of Android
optimized specifically for tablets), and no Honeycomb devices have telephony hardware in them, Google
Play will filter out this APK in all cases, until future devices come along which are higher in API level AND
possess telephony hardware.
Fortunately this is easily fixed by adding the following to your manifest:

<uses-feature android:name="android.hardware.telephony" android:required="false" />

The android.hardware.touchscreen requirement is also implicitly added. If you want your APK to be
visible on TVs which are non-touchscreen devices you should add the following to your manifest:

<uses-feature android:name="android.hardware.touchscreen" android:required="false" />

Once you’ve completed the pre-launch checklist, upload your APKs to Google Play. It may take a bit for
the application to show up when browsing Google Play, but when it does, perform one last check.
Download the application onto any test devices you may have, to make sure that the APKs are targeting
the intended devices. Congratulations, you’re done!

Creating Multiple APKs for Different Screen Sizes

798
Content from developer.android.com/training/multiple-apks/screensize.html through their Creative Commons Attribution 2.5 license

234. Creating Multiple APKs for Different Screen Sizes
Content from developer.android.com/training/multiple-apks/screensize.html through their Creative Commons Attribution 2.5 license

When developing your Android application to take
advantage of multiple APKs on Google Play, it’s
important to adopt some good practices from the
get-go, and prevent unnecessary headaches
further into the development process. This lesson
shows you how to create multiple APKs of your
app, each covering a different class of screen
size. You will also gain some tools necessary to
make maintaining a multiple APK codebase as
painless as possible.

Confirm You Need Multiple APKs
When trying to create an application that works
across multiple sizes of Android devices, naturally
you want your application to take advantage of all
the available space on larger devices, without
sacrificing compatibility or usability on the smaller
screens. It may seem at the outset as though
multiple APK support is the best solution, but this often isn’t the case. The Using Single APK Instead
section of the multiple APK developer guide includes some useful information on how to accomplish this
with a single APK, including use of our support library. You should also read the guide to supporting
multiple screens, and there’s even a support library you can download using the Android SDK, which lets
you use fragments on pre-Honeycomb devices (making multiple-screen support in a single APK much
easier).
If you can manage it, confining your application to a single APK has several advantages, including:

• Publishing and testing are easier
• There’s only one codebase to maintain
• Your application can adapt to device configuration changes
• App restore across devices just works
• You don’t have to worry about market preference, behavior from "upgrades" from one APK to the

next, or which APK goes with which class of devices

The rest of this lesson assumes that you’ve researched the topic, studiously absorbed the material in the
resources linked, and determined that multiple APKs are the right path for your application.

Chart Your Requirements
Start off by creating a simple chart to quickly determine how many APKs you need, and what screen
size(s) each APK covers. Fortunately, it’s easy to chart out your requirements quickly and easily, and have
a reference for later. Start out with a row of cells representing the various screen sizes available on the
Android platform.

small normal large xlarge

This lesson teaches you to
• Confirm You Need Multiple APKs
• Chart Your Requirements
• Put All Common Code and Resources in a
Library Project.
• Create New APK Projects
• Adjust the Manifests
• Go Over Pre-launch Checklist
You should also read

• Multiple APK Support
• Supporting Multiple Screens

Creating Multiple APKs for Different Screen Sizes

799
Content from developer.android.com/training/multiple-apks/screensize.html through their Creative Commons Attribution 2.5 license

Now just color in the chart such that each color represents an APK. Here’s one example of how you might
apply each APK to a certain range of screen sizes.

small normal large xlarge

Depending on your needs, you could also have two APKs, "small and everything else" or "xlarge and
everything else". Coloring in the chart also makes intra-team communication easier—You can now simply
refer to each APK as "blue", "green", or "red", no matter how many different screen types it covers.

Put All Common Code and Resources in a Library Project.
Whether you’re modifying an existing Android application or starting one from scratch, this is the first thing
that you should do to the codebase, and by the far the most important. Everything that goes into the library
project only needs to be updated once (think language-localized strings, color themes, bugs fixed in
shared code), which improves your development time and reduces the likelihood of mistakes that could
have been easily avoided.
Note: While the implementation details of how to create and include library projects are beyond the scope
of this lesson, you can get up to speed quickly on their creation at the following links:

• Setting up a library project (Eclipse)
• Setting up a library project (Command line)

If you’re converting an existing application to use multiple APK support, scour your codebase for every
localized string file, list of values, theme colors, menu icons and layout that isn’t going to change across
APKs, and put it all in the library project. Code that isn’t going to change much should also go in the library
project. You’ll likely find yourself extending these classes to add a method or two from APK to APK.
If, on the other hand, you’re creating the application from scratch, try as much as possible to write code in
the library project first, then only move it down to an individual APK if necessary. This is much easier to
manage in the long run than adding it to one, then another, then another, then months later trying to figure
out whether this blob can be moved up to the library section without screwing anything up.

Create New APK Projects
There should be a separate Android project for each APK you’re going to release. For easy organization,
place the library project and all related APK projects under the same parent folder. Also remember that
each APK needs to have the same package name, although they don’t necessarily need to share the
package name with the library. If you were to have 3 APKs following the scheme described earlier, your
root directory might look like this:

alexlucas:~/code/multi-apks-root$ ls
foo-blue
foo-green
foo-lib
foo-red

Once the projects are created, add the library project as a reference to each APK project. If possible,
define your starting Activity in the library project, and extend that Activity in your APK project. Having a
starting activity defined in the library project gives you a chance to put all your application initialization in
one place, so that each individual APK doesn’t have to re-implement "universal" tasks like initializing
Analytics, running licensing checks, and any other initialization procedures that don’t change much from
APK to APK.

Creating Multiple APKs for Different Screen Sizes

800
Content from developer.android.com/training/multiple-apks/screensize.html through their Creative Commons Attribution 2.5 license

Adjust the Manifests
When a user downloads an application which uses multiple APKs through Google Play, the correct APK to
use is chosen using two simple rules:

• The manifest has to show that particular APK is eligible
• Of the eligible APKs, highest version number wins

By way of example, let’s take the set of multiple APKs described earlier, and assume that each APK has
been set to support all screen sizes larger than its "target" screen size. Taken individually, the possible
range of each APK would look like this:

small normal large xlarge

small normal large xlarge

small normal large xlarge

However, by using the "highest version number wins" rule, if we set the versionCode attribute in each APK
such that red ≥ green ≥ blue, the chart effectively collapses down to this:

small normal large xlarge

Now, let’s further assume that the Red APK has some requirement on it that the other two don’t. The
Filters on Google Play page of the Android Developer guide has a whole list of possible culprits. For the
sake of example, let’s assume that red requires a front-facing camera. In fact, the entire point of the red
APK is to use the extra available screen space to do entertaining things with that front-facing camera. But,
it turns out, not all xlarge devices even HAVE front-facing cameras! The horror!
Fortunately, if a user is browsing Google Play from one such device, Google Play will look at the manifest,
see that Red lists the front-facing camera as a requirement, and quietly ignore it, having determined that
Red and that device are not a match made in digital heaven. It will then see that Green is not only
compatible with xlarge devices, but also doesn’t care whether or not there’s a front-facing camera! The app
can still be downloaded from Google Play by the user, because despite the whole front-camera mishap,
there was still an APK that supported that particular screen size.
In order to keep all your APKs on separate "tracks", it’s important to have a good version code scheme.
The recommended one can be found on the Version Codes area of our developer guide. Since the
example set of APKs is only dealing with one of 3 possible dimensions, it would be sufficient to separate
each APK by 1000 and increment from there. This might look like:
Blue: 1001, 1002, 1003, 1004...
Green: 2001, 2002, 2003, 2004...
Red:3001, 3002, 3003, 3004...
Putting this all together, your Android Manifests would likely look something like the following:

Creating Multiple APKs for Different Screen Sizes

801
Content from developer.android.com/training/multiple-apks/screensize.html through their Creative Commons Attribution 2.5 license

Blue:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1001" android:versionName="1.0" package="com.example.foo">
 <supports-screens android:smallScreens="true"
 android:normalScreens="true"
 android:largeScreens="true"
 android:xlargeScreens="true" />
 ...

Green:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="2001" android:versionName="1.0" package="com.example.foo">
 <supports-screens android:smallScreens="false"
 android:normalScreens="false"
 android:largeScreens="true"
 android:xlargeScreens="true" />
 ...

Red:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="3001" android:versionName="1.0" package="com.example.foo">
 <supports-screens android:smallScreens="false"
 android:normalScreens="false"
 android:largeScreens="false"
 android:xlargeScreens="true" />
 ...

Note that technically, multiple APK’s will work with either the supports-screens tag, or the compatible-
screens tag. Supports-screens is generally preferred, and it’s generally a really bad idea to use both tags
in the same manifest. It makes things needlessly complicated, and increases the opportunity for errors.
Also note that instead of taking advantage of the default values (small and normal are always true by
default), the manifests explicitly set the value for each screen size. This can save you headaches down the
line. For instance, a manifest with a target SDK of < 9 will have xlarge automatically set to false, since that
size didn’t exist yet. So be explicit!

Go Over Pre-launch Checklist
Before uploading to Google Play, double-check the following items. Remember that these are specifically
relevant to multiple APKs, and in no way represent a complete checklist for all applications being uploaded
to Google Play.

• All APKs must have the same package name
• All APKs must be signed with the same certificate
• Every screen size you want your APK to support, set to true in the manifest. Every screen size

you want it to avoid, set to false
• Double check your manifest filters for conflicting information (an APK that only supports cupcake

on XLARGE screens isn’t going to be seen by anybody)
• Each APK's manifest must be unique across at least one of supported screen, openGL texture, or

platform version
• Try to test each APK on at least one device. Barring that, you have one of the most customizable

device emulators in the business sitting on your development machine. Go nuts!

Creating Multiple APKs for Different Screen Sizes

802
Content from developer.android.com/training/multiple-apks/screensize.html through their Creative Commons Attribution 2.5 license

It’s also worth inspecting the compiled APK before pushing to market, to make sure there aren’t any
surprises that could hide your application on Google Play. This is actually quite simple using the "aapt"
tool. Aapt (the Android Asset Packaging Tool) is part of the build process for creating and packaging your
Android applications, and is also a very handy tool for inspecting them.

>aapt dump badging
package: name='com.example.hello' versionCode='1' versionName='1.0'
sdkVersion:'11'
uses-permission:'android.permission.SEND_SMS'
application-label:'Hello'
application-icon-120:'res/drawable-ldpi/icon.png'
application-icon-160:'res/drawable-mdpi/icon.png'
application-icon-240:'res/drawable-hdpi/icon.png'
application: label='Hello' icon='res/drawable-mdpi/icon.png'
launchable-activity: name='com.example.hello.HelloActivity' label='Hello' icon=''
uses-feature:'android.hardware.telephony'
uses-feature:'android.hardware.touchscreen'
main
supports-screens: 'xlarge'
supports-any-density: 'true'
locales: '--_--'
densities: '120' '160' '240'

When you examine aapt output, be sure to check that you don’t have conflicting values for supports-
screens and compatible-screens, and that you don’t have unintended "uses-feature" values that were
added as a result of permissions you set in the manifest. In the example above, the APK will be invisible to
most, if not all devices.
Why? By adding the required permission SEND_SMS, the feature requirement of
android.hardware.telephony was implicitly added. Since most (if not all) xlarge devices are tablets without
telephony hardware in them, Google Play will filter out this APK in these cases, until future devices come
along which are both large enough to report as xlarge screen size, and possess telephony hardware.
Fortunately this is easily fixed by adding the following to your manifest:

<uses-feature android:name="android.hardware.telephony" android:required="false" />

The android.hardware.touchscreen requirement is also implicitly added. If you want your APK to be
visible on TVs which are non-touchscreen devices you should add the following to your manifest:

<uses-feature android:name="android.hardware.touchscreen" android:required="false" />

Once you’ve completed the pre-launch checklist, upload your APKs to Google Play. It may take a bit for
the application to show up when browsing Google Play, but when it does, perform one last check.
Download the application onto any test devices you may have to make sure that the APKs are targeting
the intended devices. Congratulations, you’re done!

Creating Multiple APKs for Different GL Textures

803
Content from developer.android.com/training/multiple-apks/texture.html through their Creative Commons Attribution 2.5 license

235. Creating Multiple APKs for Different GL Textures
Content from developer.android.com/training/multiple-apks/texture.html through their Creative Commons Attribution 2.5 license

When developing your Android application to take
advantage of multiple APKs on Google Play, it’s
important to adopt some good practices from the
get-go, and prevent unnecessary headaches
further into the development process. This lesson
shows you how to create multiple APKs of your
app, each supporting a different subset of
OpenGL texture formats. You will also gain some
tools necessary to make maintaining a multiple
APK codebase as painless as possible.

Confirm You Need Multiple APKs
When trying to create an application that works
across all available Android-powered devices,
naturally you want your application look its best on
each individual device, regardless of the fact they
don’t all support the same set of GL textures. It may seem at the outset as though multiple APK support is
the best solution, but this often isn’t the case. The Using Single APK Instead section of the multiple APK
developer guide includes some useful information on how to accomplish this with a single APK, including
how to detect supported texture formats at runtime. Depending on your situation, it might be easier to
bundle all formats with your application, and simply pick which one to use at runtime.
If you can manage it, confining your application to a single APK has several advantages, including:

• Publishing and Testing are easier
• There’s only one codebase to maintain
• Your application can adapt to device configuration changes
• App restore across devices just works
• You don’t have to worry about market preference, behavior from "upgrades" from one APK to the

next, or which APK goes with which class of devices

The rest of this lesson assumes that you’ve researched the topic, studiously absorbed the material in the
resources linked, and determined that multiple APKs are the right path for your application.

Chart Your Requirements
The Android Developer Guide provides a handy reference of some of common supported textures on the
supports-gl-texture page. This page also contains some hints as to which phones (or families of phones)
support particular texture formats. Note that it’s generally a good idea for one of your APKs to support
ETC1, as that texture format is supported by all Android-powered devices that support the OpenGL ES 2.0
spec.
Since most Android-powered devices support more than one texture format, you need to establish an
order of preference. Create a chart including all the formats that your application is going to support. The
left-most cell is going to be the lowest priority (It will probably be ETC1, a really solid default in terms of
performance and compatibility). Then color in the chart such that each cell represents an APK.

This lesson teaches you to
• Confirm You Need Multiple APKs
• Chart Your Requirements
• Put All Common Code and Resources in a
Library Project
• Create New APK Projects
• Adjust the Manifests
• Go Over Pre-launch Checklist
You should also read

• Multiple APK Support

Creating Multiple APKs for Different GL Textures

804
Content from developer.android.com/training/multiple-apks/texture.html through their Creative Commons Attribution 2.5 license

ETC1 ATI PowerVR

Coloring in the chart does more than just make this guide less monochromatic - It also has a way of
making intra-team communication easier- You can now simply refer to each APK as "blue", "green", or
"red", instead of "The one that supports ETC1 texture formats", etc.

Put All Common Code and Resources in a Library Project
Whether you’re modifying an existing Android application or starting one from scratch, this is the first thing
that you should do to the codebase, and by the far the most important. Everything that goes into the library
project only needs to be updated once (think language-localized strings, color themes, bugs fixed in
shared code), which improves your development time and reduces the likelihood of mistakes that could
have been easily avoided.
Note: While the implementation details of how to create and include library projects are beyond the scope
of this lesson, you can get up to speed quickly on their creation at the following links:

• Setting up a library project (Eclipse)
• Setting up a library project (Command line)

If you’re converting an existing application to use multiple APK support, scour your codebase for every
localized string file, list of values, theme colors, menu icons and layout that isn’t going to change across
APKs, and put it all in the library project. Code that isn’t going to change much should also go in the library
project. You’ll likely find yourself extending these classes to add a method or two from APK to APK.
If, on the other hand, you’re creating the application from scratch, try as much as possible to write code in
the library project first, then only move it down to an individual APK if necessary. This is much easier to
manage in the long run than adding it to one, then another, then another, then months later trying to figure
out whether this blob can be moved up to the library section without screwing anything up.

Create New APK Projects
There should be a separate Android project for each APK you’re going to release. For easy organization,
place the library project and all related APK projects under the same parent folder. Also remember that
each APK needs to have the same package name, although they don’t necessarily need to share the
package name with the library. If you were to have 3 APKs following the scheme described earlier, your
root directory might look like this:

alexlucas:~/code/multi-apks-root$ ls
foo-blue
foo-green
foo-lib
foo-red

Once the projects are created, add the library project as a reference to each APK project. If possible,
define your starting Activity in the library project, and extend that Activity in your APK project. Having a
starting activity defined in the library project gives you a chance to put all your application initialization in
one place, so that each individual APK doesn’t have to re-implement "universal" tasks like initializing
Analytics, running licensing checks, and any other initialization procedures that don’t change much from
APK to APK.

Adjust the Manifests

Creating Multiple APKs for Different GL Textures

805
Content from developer.android.com/training/multiple-apks/texture.html through their Creative Commons Attribution 2.5 license

When a user downloads an application which uses multiple APKs through Google Play, the correct APK to
use is chosen using some simple rules:

• The manifest has to show that particular APK is eligible
• Of the eligible APKs, highest version number wins
• If any of the texture formats listed in your APK are supported by the device on market, that device

is considered eligible

With regards to GL Textures, that last rule is important. It means that you should, for instance, be very
careful about using different GL formats in the same application. If you were to use PowerVR 99% of the
time, but use ETC1 for, say, your splash screen... Then your manifest would necessarily indicate support
for both formats. A device that only supported ETC1 would be deemed compatible, your app would
download, and the user would see some thrilling crash messages. The common case is going to be that if
you’re using multiple APKs specifically to target different devices based on GL texture support, it’s going to
be one texture format per APK.
This actually makes texture support a little bit different than the other two multiple APK dimensions, API
level and screen size. Any given device only has one API level, and one screen size, and it’s up to the
APK to support a range of them. With textures, the APK will generally support one texture, and the device
will support many. There will often be overlap in terms of one device supporting many APKs, but the
solution is the same: Version codes.
By way of example, take a few devices, and see how many of the APKs defined earlier fit each device.

FooPhone Nexus S Evo

ETC1 ETC1 ETC1

 PowerVR ATI TC

Assuming that PowerVR and ATI formats are both preferred over ETC1 when available, than according to
the "highest version number wins" rule, if we set the versionCode attribute in each APK such that red ≥
green ≥ blue, then both Red and Green will always be chosen over Blue on devices which support them,
and should a device ever come along which supports both Red and Green, red will be chosen.
In order to keep all your APKs on separate "tracks," it’s important to have a good version code scheme.
The recommended one can be found on the Version Codes area of our developer guide. Since the
example set of APKs is only dealing with one of 3 possible dimensions, it would be sufficient to separate
each APK by 1000 and increment from there. This might look like:
Blue: 1001, 1002, 1003, 1004...
Green: 2001, 2002, 2003, 2004...
Red:3001, 3002, 3003, 3004...
Putting this all together, your Android Manifests would likely look something like the following:
Blue:

Creating Multiple APKs for Different GL Textures

806
Content from developer.android.com/training/multiple-apks/texture.html through their Creative Commons Attribution 2.5 license

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1001" android:versionName="1.0" package="com.example.foo">
 <supports-gl-texture android:name="GL_OES_compressed_ETC1_RGB8_texture" />
 ...

Green:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="2001" android:versionName="1.0" package="com.example.foo">
 <supports-gl-texture android:name="GL_AMD_compressed_ATC_texture" />
 ...

Red:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="3001" android:versionName="1.0" package="com.example.foo">
 <supports-gl-texture android:name="GL_IMG_texture_compression_pvrtc" />
 ...

Go Over Pre-launch Checklist
Before uploading to Google Play, double-check the following items. Remember that these are specifically
relevant to multiple APKs, and in no way represent a complete checklist for all applications being uploaded
to Google Play.

• All APKs must have the same package name
• All APKs must be signed with the same certificate
• Double check your manifest filters for conflicting information (an APK that only supports cupcake

on XLARGE screens isn’t going to be seen by anybody)
• Each APK's manifest must be unique across at least one of supported screen, OpenGL texture,

or platform version
• Try to test each APK on at least one device. Barring that, you have one of the most customizable

device emulators in the business sitting on your development machine. Go nuts!

It’s also worth inspecting the compiled APK before pushing to market, to make sure there aren’t any
surprises that could hide your application on Google Play. This is actually quite simple using the "aapt"
tool. Aapt (the Android Asset Packaging Tool) is part of the build process for creating and packaging your
Android applications, and is also a very handy tool for inspecting them.

Creating Multiple APKs for Different GL Textures

807
Content from developer.android.com/training/multiple-apks/texture.html through their Creative Commons Attribution 2.5 license

>aapt dump badging
package: name='com.example.hello' versionCode='1' versionName='1.0'
sdkVersion:'11'
uses-permission:'android.permission.SEND_SMS'
application-label:'Hello'
application-icon-120:'res/drawable-ldpi/icon.png'
application-icon-160:'res/drawable-mdpi/icon.png'
application-icon-240:'res/drawable-hdpi/icon.png'
application: label='Hello' icon='res/drawable-mdpi/icon.png'
launchable-activity: name='com.example.hello.HelloActivity' label='Hello' icon=''
uses-feature:'android.hardware.telephony'
uses-feature:'android.hardware.touchscreen'
main
supports-screens: 'xlarge'
supports-any-density: 'true'
locales: '--_--'
densities: '120' '160' '240'

When you examine aapt output, be sure to check that you don’t have conflicting values for supports-
screens and compatible-screens, and that you don’t have unintended "uses-feature" values that were
added as a result of permissions you set in the manifest. In the example above, the APK will be invisible to
most, if not all devices.
Why? By adding the required permission SEND_SMS, the feature requirement of
android.hardware.telephony was implicitly added. Since most (if not all) xlarge devices are tablets without
telephony hardware in them, Google Play will filter out this APK in these cases, until future devices come
along which are both large enough to report as xlarge screen size, and possess telephony hardware.
Fortunately this is easily fixed by adding the following to your manifest:

<uses-feature android:name="android.hardware.telephony" android:required="false" />

The android.hardware.touchscreen requirement is also implicitly added. If you want your APK to be
visible on TVs which are non-touchscreen devices you should add the following to your manifest:

<uses-feature android:name="android.hardware.touchscreen" android:required="false" />

Once you’ve completed the pre-launch checklist, upload your APKs to Google Play. It may take a bit for
the application to show up when browsing Google Play, but when it does, perform one last check.
Download the application onto any test devices you may have to make sure that the APKs are targeting
the intended devices. Congratulations, you’re done!

Creating Multiple APKs with 2+ Dimensions

808
Content from developer.android.com/training/multiple-apks/multiple.html through their Creative Commons Attribution 2.5 license

236. Creating Multiple APKs with 2+ Dimensions
Content from developer.android.com/training/multiple-apks/multiple.html through their Creative Commons Attribution 2.5 license

When developing your Android application to take
advantage of multiple APKs on Google Play, it’s
important to adopt some good practices from the
get-go, and prevent unnecessary headaches
further into the development process. This lesson
shows you how to create multiple APKs of your
app, each covering a different class of screen
size. You will also gain some tools necessary to
make maintaining a multiple APK codebase as
painless as possible.

Confirm You Need Multiple APKs
When trying to create an application that works
across the huge range of available Android
devices, naturally you want your application look
its best on each individual device. You want to
take advantage of the space of large screens but still work on small ones, to use new Android API features
or visual textures available on cutting edge devices but not abandon older ones. It may seem at the outset
as though multiple APK support is the best solution, but this often isn’t the case. The Using Single APK
Instead section of the multiple APK guide includes some useful information on how to accomplish all of this
with a single APK, including use of our support library, and links to resources throughout the Android
Developer guide.
If you can manage it, confining your application to a single APK has several advantages, including:

• Publishing and Testing are easier
• There’s only one codebase to maintain
• Your application can adapt to device configuration changes
• App restore across devices just works
• You don’t have to worry about market preference, behavior from "upgrades" from one APK to the

next, or which APK goes with which class of devices

The rest of this lesson assumes that you’ve researched the topic, studiously absorbed the material in the
resources linked, and determined that multiple APKs are the right path for your application.

Chart Your Requirements
Start off by creating a simple chart to quickly determine how many APKs you need, and what screen
size(s) each APK covers. Fortunately, it’s easy to chart out your requirements quickly, easily, and have an
easy reference for later. Let’s say you want to split your APKs across two dimensions, API and screen
size. Create a table with a row and column for each possible pair of values, and color in some "blobs",
each color representing one APK.

 3 4 5 6 7 8 9 10 11 12 +

This lesson teaches you to
• Confirm You Need Multiple APKs
• Chart Your Requirements
• Put All Common Code and Resources in a
Library Project.
• Create New APK Projects
• Adjust the Manifests
• Go Over Pre-launch Checklist
You should also read

• Multiple APK Support

Creating Multiple APKs with 2+ Dimensions

809
Content from developer.android.com/training/multiple-apks/multiple.html through their Creative Commons Attribution 2.5 license

small

normal

large

xlarge

Above is an example with four APKs. Blue is for all small/normal screen devices, Green is for large screen
devices, and Red is for xlarge screen devices, all with an API range of 3-10. Purple is a special case, as
it’s for all screen sizes, but only for API 11 and up. More importantly, just by glancing at this chart, you
immediately know which APK covers any given API/screen-size combo. To boot, you also have swanky
codenames for each one, since "Have we tested red on the ?" is a lot easier to ask your cubie than "Have
we tested the 3-to-10 xlarge APK against the Xoom?" Print this chart out and hand it to every person
working on your codebase. Life just got a lot easier.

Put All Common Code and Resources in a Library Project.
Whether you’re modifying an existing Android application or starting one from scratch, this is the first thing
that you should do to the codebase, and by the far the most important. Everything that goes into the library
project only needs to be updated once (think language-localized strings, color themes, bugs fixed in
shared code), which improves your development time and reduces the likelihood of mistakes that could
have been easily avoided.
Note: While the implementation details of how to create and include library projects are beyond the scope
of this lesson, you can get up to speed quickly on their creation at the following links:

• Setting up a library project (Eclipse)
• Setting up a library project (Command line)

If you’re converting an existing application to use multiple APK support, scour your codebase for every
localized string file, list of values, theme colors, menu icons and layout that isn’t going to change across
APKs, and put it all in the library project. Code that isn’t going to change much should also go in the library
project. You’ll likely find yourself extending these classes to add a method or two from APK to APK.
If, on the other hand, you’re creating the application from scratch, try as much as possible to write code in
the library project first, then only move it down to an individual APK if necessary. This is much easier to
manage in the long run than adding it to one, then another, then another, then months later trying to figure
out whether this blob can be moved up to the library section without screwing anything up.

Create New APK Projects
There should be a separate Android project for each APK you’re going to release. For easy organization,
place the library project and all related APK projects under the same parent folder. Also remember that

Creating Multiple APKs with 2+ Dimensions

810
Content from developer.android.com/training/multiple-apks/multiple.html through their Creative Commons Attribution 2.5 license

each APK needs to have the same package name, although they don’t necessarily need to share the
package name with the library. If you were to have 3 APKs following the scheme described earlier, your
root directory might look like this:

alexlucas:~/code/multi-apks-root$ ls
foo-blue
foo-green
foo-lib
foo-purple
foo-red

Once the projects are created, add the library project as a reference to each APK project. If possible,
define your starting Activity in the library project, and extend that Activity in your APK project. Having a
starting activity defined in the library project gives you a chance to put all your application initialization in
one place, so that each individual APK doesn’t have to re-implement "universal" tasks like initializing
Analytics, running licensing checks, and any other initialization procedures that don’t change much from
APK to APK.

Adjust the Manifests
When a user downloads an application which uses multiple APKs through Google Play, the correct APK to
use is chosen using two simple rules:

• The manifest has to show that particular APK is eligible
• Of the eligible APKs, highest version number wins.

By way of example, let’s take the set of multiple APKs described earlier, and assume that each APK has
been set to support all screen sizes larger than its "target" screen size. Let’s look at the sample chart from
earlier:

 3 4 5 6 7 8 9 10 11 12 +

small

normal

large

xlarge

Since it’s okay for coverage to overlap, we can describe the area covered by each APK like so:

Creating Multiple APKs with 2+ Dimensions

811
Content from developer.android.com/training/multiple-apks/multiple.html through their Creative Commons Attribution 2.5 license

• Blue covers all screens, minSDK 3.
• Green covers Large screens and higher, minSDK 3.
• Red covers XLarge screens (generally tablets), minSDK of 9.
• Purple covers all screens, minSDK of 11.

Note that there’s a lot of overlap in those rules. For instance, an XLarge device with API 11 can
conceivably run any one of the 4 APKs specified. However, by using the "highest version number wins"
rule, we can set an order of preference as follows:
Purple ≥ Red ≥ Green ≥ Blue
Why allow all the overlap? Let’s pretend that the Purple APK has some requirement on it that the other two
don’t. The Filters on Google Play page of the Android Developer guide has a whole list of possible culprits.
For the sake of example, let’s assume that Purple requires a front-facing camera. In fact, the entire point of
Purple is to use entertaining things with the front-facing camera! But, it turns out, not all API 11+ devices
even HAVE front-facing cameras! The horror!
Fortunately, if a user is browsing Google Play from one such device, Google Play will look at the manifest,
see that Purple lists the front-facing camera as a requirement, and quietly ignore it, having determined that
Purple and that device are not a match made in digital heaven. It will then see that Red is not only
compatible with xlarge devices, but also doesn’t care whether or not there’s a front-facing camera! The app
can still be downloaded from Google Play by the user, because despite the whole front-camera mishap,
there was still an APK that supported that particular API level.
In order to keep all your APKs on separate "tracks", it’s important to have a good version code scheme.
The recommended one can be found on the Version Codes area of our developer guide. It’s worth reading
the whole section, but the basic gist is for this set of APKs, we’d use two digits to represent the minSDK,
two to represent the min/max screen size, and 3 to represent the build number. That way, when the device
upgraded to a new version of Android, (say, from 10 to 11), any APKs that are now eligible and preferred
over the currently installed one would be seen by the device as an "upgrade". The version number
scheme, when applied to the example set of APKs, might look like:
Blue: 0304001, 0304002, 0304003...
Green: 0334001, 0334002, 0334003
Red: 0344001, 0344002, 0344003...
Purple: 1104001, 1104002, 1104003...
Putting this all together, your Android Manifests would likely look something like the following:
Blue:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="0304001" android:versionName="1.0" package="com.example.foo">
 <uses-sdk android:minSdkVersion="3" />
 <supports-screens android:smallScreens="true"
 android:normalScreens="true"
 android:largeScreens="true"
 android:xlargeScreens="true" />
 ...

Green:

Creating Multiple APKs with 2+ Dimensions

812
Content from developer.android.com/training/multiple-apks/multiple.html through their Creative Commons Attribution 2.5 license

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="0334001" android:versionName="1.0" package="com.example.foo">
 <uses-sdk android:minSdkVersion="3" />
 <supports-screens android:smallScreens="false"
 android:normalScreens="false"
 android:largeScreens="true"
 android:xlargeScreens="true" />
 ...

Red:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="0344001" android:versionName="1.0" package="com.example.foo">
 <uses-sdk android:minSdkVersion="3" />
 <supports-screens android:smallScreens="false"
 android:normalScreens="false"
 android:largeScreens="false"
 android:xlargeScreens="true" />
 ...

Purple:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1104001" android:versionName="1.0" package="com.example.foo">
 <uses-sdk android:minSdkVersion="11" />
 <supports-screens android:smallScreens="true"
 android:normalScreens="true"
 android:largeScreens="true"
 android:xlargeScreens="true" />
 ...

Note that technically, multiple APK’s will work with either the supports-screens tag, or the compatible-
screens tag. Supports-screens is generally preferred, and it’s generally a really bad idea to use both- It
makes things needlessly complicated, and increases the opportunity for errors. Also note that instead of
taking advantage of the default values (small and normal are always true by default), the manifests
explicitly set the value for each screen size. This can save you headaches down the line - By way of
example, a manifest with a target SDK of < 9 will have xlarge automatically set to false, since that size
didn’t exist yet. So be explicit!

Go Over Pre-launch Checklist
Before uploading to Google Play, double-check the following items. Remember that these are specifically
relevant to multiple APKs, and in no way represent a complete checklist for all applications being uploaded
to Google Play.

• All APKs must have the same package name.
• All APKs must be signed with the same certificate.
• If the APKs overlap in platform version, the one with the higher minSdkVersion must have a

higher version code.
• Every screen size you want your APK to support, set to true in the manifest. Every screen size

you want it to avoid, set to false.
• Double check your manifest filters for conflicting information (an APK that only supports cupcake

on XLARGE screens isn’t going to be seen by anybody)
• Each APK's manifest must be unique across at least one of supported screen, OpenGL texture,

or platform version.

Creating Multiple APKs with 2+ Dimensions

813
Content from developer.android.com/training/multiple-apks/multiple.html through their Creative Commons Attribution 2.5 license

• Try to test each APK on at least one device. Barring that, you have one of the most customizable
device emulators in the business sitting on your development machine. Go nuts!

It’s also worth inspecting the compiled APK before pushing to market, to make sure there aren’t any
surprises that could hide your application on Google Play. This is actually quite simple using the "aapt"
tool. Aapt (the Android Asset Packaging Tool) is part of the build process for creating and packaging your
Android applications, and is also a very handy tool for inspecting them.

>aapt dump badging
package: name='com.example.hello' versionCode='1' versionName='1.0'
sdkVersion:'11'
uses-permission:'android.permission.SEND_SMS'
application-label:'Hello'
application-icon-120:'res/drawable-ldpi/icon.png'
application-icon-160:'res/drawable-mdpi/icon.png'
application-icon-240:'res/drawable-hdpi/icon.png'
application: label='Hello' icon='res/drawable-mdpi/icon.png'
launchable-activity: name='com.example.hello.HelloActivity' label='Hello' icon=''
uses-feature:'android.hardware.telephony'
uses-feature:'android.hardware.touchscreen'
main
supports-screens: 'xlarge'
supports-any-density: 'true'
locales: '--_--'
densities: '120' '160' '240'

When you examine aapt output, be sure to check that you don’t have conflicting values for supports-
screens and compatible-screens, and that you don’t have unintended "uses-feature" values that were
added as a result of permissions you set in the manifest. In the example above, the APK will be invisible to
most, if not all devices.
Why? By adding the required permission SEND_SMS, the feature requirement of
android.hardware.telephony was implicitly added. Since most (if not all) xlarge devices are tablets without
telephony hardware in them, Google Play will filter out this APK in these cases, until future devices come
along which are both large enough to report as xlarge screen size, and possess telephony hardware.
Fortunately this is easily fixed by adding the following to your manifest:

<uses-feature android:name="android.hardware.telephony" android:required="false" />

The android.hardware.touchscreen requirement is also implicitly added. If you want your APK to be
visible on TVs which are non-touchscreen devices you should add the following to your manifest:

<uses-feature android:name="android.hardware.touchscreen" android:required="false" />

Once you’ve completed the pre-launch checklist, upload your APKs to Google Play. It may take a bit for
the application to show up when browsing Google Play, but when it does, perform one last check.
Download the application onto any test devices you may have to make sure that the APKs are targeting
the intended devices. Congratulations, you’re done!

Monetizing Your App

814
Content from developer.android.com/training/monetization/index.html through their Creative Commons Attribution 2.5 license

237. Monetizing Your App
Content from developer.android.com/training/monetization/index.html through their Creative Commons Attribution 2.5 license

Apart from offering paid apps, there are a number
of other ways to monetize your mobile
applications. In this class, we are going to
examine a number of typical methods (more
lessons are to come) and their associated
technical best practices. Obviously, each
application is different and you should experiment
with different combinations of these and other
monetization methods to determine what works
best for you.

Lessons
Advertising without Compromising User Experience

In this lesson, you will learn how to monetize your application with mobile advertisements.

Dependencies and prerequisites

• Android 1.0 or higher
• Experience with XML layouts

Try it out
Download the sample app
MobileAds.zip

Advertising without Compromising User Experience

815
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

238. Advertising without Compromising User Experience
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

Advertising is one of the means to monetize
(make money with) mobile applications. In this
lesson, you are going to learn how to incorporate
banner ads in your Android application.
While this lesson and the sample application use
AdMob to serve ads, the Android platform doesn’t
impose any restrictions on the choice of mobile
advertising network. To the extent possible, this
lesson generically highlights concepts that are
similar across advertising networks.
For example, each advertising network may have
some network-specific configuration settings such
as geo-targeting and ad-text font size, which may
be configurable on some networks but not on
others. This lesson does not touch not these
topics in depth and you should consult
documentation provided by the network you
choose.

Obtain a Publisher Account and
Ad SDK
In order to integrate advertisements in your application, you first must become a publisher by registering a
publishing account with the mobile advertising network. Typically, an identifier is provisioned for each
application serving advertisements. This is how the advertising network correlates advertisements served
in applications. In the case of AdMob, the identifier is known as the Publisher ID. You should consult your
advertising networks for details.
Mobile advertising networks typically distribute a specific Android SDK, which consists of code that takes
care of communication, ad refresh, look-and-feel customization, and so on.
Most advertising networks distribute their SDK as a JAR file. Setting up ad network JAR file in your
Android project is no different from integrating any third-party JAR files. First, copy the JAR files to the
libs/ directory of your project. If you’re using Eclipse as IDE, be sure to add the JAR file to the Build
Path. It can be done through Properties > Java Build Path > Libraries > Add JARs.

This lesson teaches you to
• Obtain a Publisher Account and Ad SDK
• Declare Proper Permissions
• Set Up Ad Placement
• Initialize the Ad
• Enable Test Mode
• Implement Ad Event Listeners
You should also read

• AdMob SDK

Try it out
Download the sample app
MobileAds.zip

Advertising without Compromising User Experience

816
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

Figure 1. Eclipse build path settings.

Declare Proper Permissions
Because the mobile ads are fetched over the network, mobile advertising SDKs usually require the
declaration of related permissions in the Android manifest. Other kinds of permissions may also be
required.
For example, here's how you can request the INTERNET permission:

</manifest>
 <uses-permission android:name="android.permission.INTERNET" />
 ...
 <application>...</application>
</manifest>

Set Up Ad Placement

Figure 2. Screenshot of the ad layout in the Mobile Ads sample.
Banner ads typically are implemented as a custom WebView (a view for viewing web pages). Ads also
come in different dimensions and shapes. Once you’ve decided to put an ad on a particular screen, you
can add it in your activity's XML layout. The XML snippet below illustrates a banner ad displayed on top of
a screen.

Advertising without Compromising User Experience

817
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/ad_catalog_layout"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <com.google.ads.AdView
 xmlns:googleads="http://schemas.android.com/apk/lib/com.google.ads"
 android:id="@+id/ad"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 googleads:adSize="BANNER"
 googleads:adUnitId="@string/admob_id" />
 <TextView android:id="@+id/title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/banner_top" />
 <TextView android:id="@+id/status"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

You should consider using alternative ad sizes based on various configurations such as screen size or
screen orientation. This can easily be addressed by providing alternative resources. For instance, the
above sample layout might placed under the res/layout/ directory as the default layout. If larger ad
sizes are available, you can consider using them for "large" (and above) screens. For example, the
following snippet comes from a layout file in the res/layout-large/ directory, which renders a larger
ad for "large" screen sizes.

...
<com.google.ads.AdView
 xmlns:googleads="http://schemas.android.com/apk/lib/com.google.ads"
 android:id="@+id/ad"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 googleads:adSize="IAB_LEADERBOARD"
 googleads:adUnitId="@string/admob_id" />
...

Notice that the custom view name and it’s configuration attributes are network-specific. Ad networks might
support configurations with XML layout attributes (as shown above), runtime APIs, or both. In the sample
application, Mobile Ads, the AdView ad size (googleads:adSize) and publisher ID
(googleads:adUnitId) are set up in the XML layout.
When deciding where to place ads within your application, you should carefully consider user-experience.
For example, you don’t want to fill the screen with multiple ads that will quite likely annoy your users. In
fact, this practice is banned by some ad networks. Also, avoid placing ads too closely to UI controls to
avoid inadvertent clicks.
Figures 3 and 4 illustrate what not to do.

Advertising without Compromising User Experience

818
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

Figure 3. Avoid putting UI inputs too closely to an ad banner to prevent inadvertent ad clicks.

Figure 4. Don't overlay ad banner on useful content.

Initialize the Ad
After setting up the ad in the XML layout, you can further customize the ad in Activity.onCreate() or
Fragment.onCreateView() based on how your application is architected. Depending on the ad
network, possible configuration parameters are: ad size, font color, keyword, demographics, location
targeting, and so on.
It is important to respect user privacy if certain parameters, such as demographics or location, are passed
to ad networks for targeting purposes. Let your users know and give them a chance to opt out of these
features.
In the below code snippet, keyword targeting is used. After the keywords are set, the application calls
loadAd() to begin serving ads.

Advertising without Compromising User Experience

819
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
 View v = inflater.inflate(R.layout.main, container, false);
 mAdStatus = (TextView) v.findViewById(R.id.status);
 mAdView = (AdView) v.findViewById(R.id.ad);
 mAdView.setAdListener(new MyAdListener());

 AdRequest adRequest = new AdRequest();
 adRequest.addKeyword("sporting goods");
 mAdView.loadAd(adRequest);
 return v;
}

Enable Test Mode
Some ad networks provide a test mode. This is useful during development and testing in which ad
impressions and clicks are not counted.
Important: Be sure to turn off test mode before publishing your application.

Implement Ad Event Listeners
Where available, you should consider implementing ad event listeners, which provide callbacks on various
ad-serving events associated with the ad view. Depending on the ad network, the listener might provide
notifications on events such as before the ad is loaded, after the ad is loaded, whether the ad fails to load,
or other events. You can choose to react to these events based on your specific situation. For example, if
the ad fails to load, you can display a custom banner within the application or create a layout such that the
rest of content fills up the screen.
For example, here are some event callbacks available from AdMob's AdListener interface:

private class MyAdListener implements AdListener {
 ...

 @Override
 public void onFailedToReceiveAd(Ad ad, ErrorCode errorCode) {
 mAdStatus.setText(R.string.error_receive_ad);
 }

 @Override
 public void onReceiveAd(Ad ad) {
 mAdStatus.setText("");
 }
}

Creative Commons License

820
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

239. Creative Commons License

Creative Commons License
Creative Commons

Attribution 2.5
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF
THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION
PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.
License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL"
OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK
OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.
BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF
THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.
1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in
unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled
into a collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as defined below) for the
purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation,
musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation,
or any other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a Collective Work will not
be considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the Work is a musical composition or
sound recording, the synchronization of the Work in timed-relation with a moving image ("synching") will be considered a Derivative Work
for the purpose of this License.

c. "Licensor" means the individual or entity that offers the Work under the terms of this License.

d. "Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this
License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite
a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other
limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-
exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated
in the Collective Works;

b. to create and reproduce Derivative Works;

c. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio
transmission the Work including as incorporated in Collective Works;

d. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio
transmission Derivative Works.

e. For the avoidance of doubt, where the work is a musical composition:
i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect, whether
individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital
performance (e.g. webcast) of the Work.

Creative Commons License

821
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether individually
or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the Work ("cover
version") and distribute, subject to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the equivalent in
other jurisdictions).

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor
waives the exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the public
digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright Act
(or the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right
to make such modifications as are technically necessary to exercise the rights in other media and formats. All rights not expressly granted
by Licensor are hereby reserved.
4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this
License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of the Work
You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms on the Work that
alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder. You may not sublicense the Work. You
must keep intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute, publicly display, publicly
perform, or publicly digitally perform the Work with any technological measures that control access or use of the Work in a manner
inconsistent with the terms of this License Agreement. The above applies to the Work as incorporated in a Collective Work, but this does
not require the Collective Work apart from the Work itself to be made subject to the terms of this License. If You create a Collective Work,
upon notice from any Licensor You must, to the extent practicable, remove from the Collective Work any credit as required by clause 4(b),
as requested. If You create a Derivative Work, upon notice from any Licensor You must, to the extent practicable, remove from the
Derivative Work any credit as required by clause 4(b), as requested.

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or any Derivative Works or Collective
Works, You must keep intact all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the
name of the Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another
party or parties (e.g. a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service or by other
reasonable means, the name of such party or parties; the title of the Work if supplied; to the extent reasonably practicable, the Uniform
Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice
or licensing information for the Work; and in the case of a Derivative Work, a credit identifying the use of the Work in the Derivative Work
(e.g., "French translation of the Work by Original Author," or "Screenplay based on original Work by Original Author"). Such credit may be
implemented in any reasonable manner; provided, however, that in the case of a Derivative Work or Collective Work, at a minimum such
credit will appear where any other comparable authorship credit appears and in a manner at least as prominent as such other comparable
authorship credit.

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES
NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR
OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this
License. Individuals or entities who have received Derivative Works or Collective Works from You under this License, however, will not
have their licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7,
and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in
the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing
the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been,
or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

Creative Commons License

822
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the recipient a
license to the Work on the same terms and conditions as the license granted to You under this License.

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the recipient a license to the original
Work on the same terms and conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability
of the remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed
to the minimum extent necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall
be in writing and signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This License may not be modified without the mutual written agreement of
the Licensor and You.

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with the Work. Creative Commons will
not be liable to You or any party on any legal theory for any damages whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and obligations of Licensor.
Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL, neither party will use the trademark
"Creative Commons" or any related trademark or logo of Creative Commons without the prior written consent of Creative Commons. Any
permitted use will be in compliance with Creative Commons' then-current trademark usage guidelines, as may be published on its website
or otherwise made available upon request from time to time.
Creative Commons may be contacted at http://creativecommons.org/.

Creative Commons Attribution 3.0 Unported

 CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF
THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION
PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.
License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL"
OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK
OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF
THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE
RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be recast, transformed, or adapted including in any form
recognizably derived from the original, except that a work that constitutes a Collection will not be considered an Adaptation for the
purpose of this License. For the avoidance of doubt, where the Work is a musical work, performance or phonogram, the synchronization
of the Work in timed-relation with a moving image ("synching") will be considered an Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in which the Work is included in its entirety in unmodified form along with
one or more other contributions, each constituting separate and independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and copies of the Work or Adaptation, as appropriate, through sale or
other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of this License.

Creative Commons License

823
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity or entities who created the Work or
if no individual or entity can be identified, the publisher; and in addition (i) in the case of a performance the actors, singers, musicians,
dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or expressions
of folklore; (ii) in the case of a phonogram the producer being the person or legal entity who first fixes the sounds of a performance or
other sounds; and, (iii) in the case of broadcasts, the organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography; a work of drawing, painting, architecture, sculpture, engraving
or lithography; a photographic work to which are assimilated works expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work relative to geography, topography, architecture or science; a performance;
a broadcast; a phonogram; a compilation of data to the extent it is protected as a copyrightable work; or a work performed by a variety or
circus performer to the extent it is not otherwise considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a previous
violation.

h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the public those public recitations, by any
means or process, including by wire or wireless means or public digital performances; to make available to the public Works in such a
way that members of the public may access these Works from a place and at a place individually chosen by them; to perform the Work to
the public by any means or process and the communication to the public of the performances of the Work, including by public digital
performance; to broadcast and rebroadcast the Work by any means including signs, sounds or images.

i. "Reproduce" means to make copies of the Work by any means including without limitation by sound or visual recordings and the
right of fixation and reproducing fixations of the Work, including storage of a protected performance or phonogram in digital form or other
electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-
exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work as incorporated in the
Collections;

b. to create and Reproduce Adaptations provided that any such Adaptation, including any translation in any medium, takes reasonable
steps to clearly label, demarcate or otherwise identify that changes were made to the original Work. For example, a translation could be
marked "The original work was translated from English to Spanish," or a modification could indicate "The original work has been
modified.";

c. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptations.

e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any
statutory or compulsory licensing scheme cannot be waived, the Licensor reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any
statutory or compulsory licensing scheme can be waived, the Licensor waives the exclusive right to collect such royalties for any exercise
by You of the rights granted under this License; and,

iii. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether individually or, in the event that
the Licensor is a member of a collecting society that administers voluntary licensing schemes, via that society, from any exercise by You
of the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right
to make such modifications as are technically necessary to exercise the rights in other media and formats. Subject to Section 8(f), all
rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

Creative Commons License

824
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must include a copy of, or the Uniform
Resource Identifier (URI) for, this License with every copy of the Work You Distribute or Publicly Perform. You may not offer or impose
any terms on the Work that restrict the terms of this License or the ability of the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly Perform
the Work, You may not impose any effective technological measures on the Work that restrict the ability of a recipient of the Work from
You to exercise the rights granted to that recipient under the terms of the License. This Section 4(a) applies to the Work as incorporated
in a Collection, but this does not require the Collection apart from the Work itself to be made subject to the terms of this License. If You
create a Collection, upon notice from any Licensor You must, to the extent practicable, remove from the Collection any credit as required
by Section 4(b), as requested. If You create an Adaptation, upon notice from any Licensor You must, to the extent practicable, remove
from the Adaptation any credit as required by Section 4(b), as requested.

b. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless a request has been made
pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing:
(i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor designate
another party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution ("Attribution Parties") in Licensor's copyright
notice, terms of service or by other reasonable means, the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to
the copyright notice or licensing information for the Work; and (iv) , consistent with Section 3(b), in the case of an Adaptation, a credit
identifying the use of the Work in the Adaptation (e.g., "French translation of the Work by Original Author," or "Screenplay based on
original Work by Original Author"). The credit required by this Section 4 (b) may be implemented in any reasonable manner; provided,
however, that in the case of a Adaptation or Collection, at a minimum such credit will appear, if a credit for all contributing authors of the
Adaptation or Collection appears, then as part of these credits and in a manner at least as prominent as the credits for the other
contributing authors. For the avoidance of doubt, You may only use the credit required by this Section for the purpose of attribution in the
manner set out above and, by exercising Your rights under this License, You may not implicitly or explicitly assert or imply any connection
with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the
Work, without the separate, express prior written permission of the Original Author, Licensor and/or Attribution Parties.

c. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law, if You Reproduce,
Distribute or Publicly Perform the Work either by itself or as part of any Adaptations or Collections, You must not distort, mutilate, modify
or take other derogatory action in relation to the Work which would be prejudicial to the Original Author's honor or reputation. Licensor
agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right granted in Section 3(b) of this License (the right to make
Adaptations) would be deemed to be a distortion, mutilation, modification or other derogatory action prejudicial to the Original Author's
honor and reputation, the Licensor will waive or not assert, as appropriate, this Section, to the fullest extent permitted by the applicable
national law, to enable You to reasonably exercise Your right under Section 3(b) of this License (right to make Adaptations) but not
otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND
MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY
OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A
PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE
PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Adaptations or Collections from You under this License, however, will not have their licenses
terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the
Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing the
Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or
is required to be, granted under the terms of this License), and this License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the recipient a license to the Work on the
same terms and conditions as the license granted to You under this License.

Apache License, Version 2.0

825
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a license to the original Work on the same
terms and conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the
remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to the
minimum extent necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This License may not be modified without the mutual written agreement of
the Licensor and You.

f. The rights granted under, and the subject matter referenced, in this License were drafted utilizing the terminology of the Berne
Convention for the Protection of Literary and Artistic Works (as amended on September 28, 1979), the Rome Convention of 1961, the
WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright Convention (as
revised on July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction in which the License terms are sought to
be enforced according to the corresponding provisions of the implementation of those treaty provisions in the applicable national law. If
the standard suite of rights granted under applicable copyright law includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with the Work. Creative Commons will
not be liable to You or any party on any legal theory for any damages whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in compliance with Creative Commons' then-current trademark usage
guidelines, as may be published on its website or otherwise made available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

240. Apache License, Version 2.0

Apache License  Version 2.0, January 2004   http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control
with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management
of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation
source, and configuration files.

Apache License, Version 2.0

826
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to
compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the
purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that
Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an
individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication
on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for
the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in
writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use,
offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which
such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit)
alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent
licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

f. You must give any other recipients of the Work or Derivative Works a copy of this License; and
g. You must cause any modified files to carry prominent notices stating that You changed the files; and
h. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution
notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and
i. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a
readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the
Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the
Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the
NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.   You may add
Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use,
reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and
distribution of the Work otherwise complies with the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding
the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor
regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the
NOTICE file.

Apache License, Version 2.0

827
Content from developer.android.com/training/monetization/ads-and-ux.html through their Creative Commons Attribution 2.5 license

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor
provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless
required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for
damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License
or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such
damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and
charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other
Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims
asserted against, such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

