
ANDROID OS
CSE120 (FA10)

Xiao Ma
(xiao@xiao-ma.com)

the definition of open: "mkdir android ; cd android ;
repo init -u git://android.git.kernel.org/platform/

manifest.git ; repo sync ; make"

WHY ANDROID?

What does it mean to researchers?

What does it mean to users?

OUTLINE

Android platform architecture

OS kernel, libraries and devices

Android programming model

Delvik Virtual Machine

Energy efficiency

How to write efficient code

FIRST THING FIRST

What is the difference between a mobile OS and a
desktop/server OS?

ARCHITECTURE

ANDROID

ANDROID

ANDROID

BASED ON LINUX

Android uses Linux 2.6 kernel as the hardware abstraction

What are the essences an OS should provide?

Memory management, process management, IPC

No virtual memory; specially implemented IPC

Drivers and architecture support

How to port Android to a new device?

Using Linux vs. Writing a new OS from scratch

Do all Linux kernel implementations work well on
mobile devices?

APPLICATION LIBRARY

GNU libs (glibc) is too big and complicated for mobile phones, so
Android implements its own special version of libc - Bionic libc:

Smaller size - 200K (glibc is more than 400K)

Strip out some complicated C++ features, the most significant
one - no C++ exception!

Very special and small pthread implementation, heavily based
on kernel futexes

Bionic libc does not fully support POSIX and is not compatible
with glibc

which means ...?

PROCESS MANAGEMENT

What’s the difference between mobile apps cycle and
desktop apps cycle?

Two key principles

Android usually do not kill an app, i.e. apps keep
running even after you switch to other apps

Android kills apps when the memory usage goes too
high, but it saves app state for quick restart later on

Do they make sense to mobile apps?

APPLICATION LIFE CYCLE

EXAMPLE
System

Home
Home

Home

At the “Home” screen

EXAMPLE
System

Home

Mail

Home

List

Home List

Start the “Mail” app and read the list

EXAMPLE
System

Home

Mail

Home

List Message

Home List Message

Click on one of the message and see its content

EXAMPLE
System

Home

Mail

Home

List Message

Browser
Browser

Home List Message Browser

Click a link in the message

EXAMPLE
System

Home
Home

Browser
Browser

Home List Message Browser

Now we have enough space to start the “Map” app

EXAMPLE
System

Home
Home

Browser
Browser

Home List Message Browser

Map
Map

Map

Start the “Map” app

EXAMPLE
System

Home
Home

Browser
Browser

Home List Message Browser

Map

Go back to the browser

EXAMPLE
System

Home
Home

Browser

Home List Message

Mail
List Message

The “Mail” app is resumed and shows the previous message

EXAMPLE
System

Home
Home

Browser

Home List

Mail
List

Go back to the mail list

EXAMPLE
System

Home
Home

Browser

Home

Mail

Go back to the “Home” screen

DEBATE

Swapping model
VS.

Android’s life-cycle model

DISK I/O

Flash Hard Disk Drive

Random access ~0.1ms 5-10ms

File fragment impact No Greatly impacted

Total power 1/2 to 1/3 of HDD up to 15+ watts

Reliability Reliable Less reliable due to
mechanical parts

Write longevity Limited number of
writes Less of a problem

Capacity <= 512GB 2-3TB

Price $1.5-2 / GB $0.1-0.2 / GB

LIMITED WRITES?

Flash drives have the well-known problem of limited
number of writes in the life time - 10,000~100,000
times. Solution?

What can applications do?

How about operating system?

Controllers?

Hardware?

MEMORY MANAGEMENT

Linux kernel does most of the job

Page-based memory management

Virtual address to physical address mapping

NO virtual memory

Why do we still need “virtual to physical” address mapping?

Why does Android not support virtual memory?

POWER MANAGEMENT

DALVIK VM

Why does Android let developers use Java?

DALVIK VM

A special Java virtual machine (VM) designed to run
with limited system resource

Memory efficiency

Register machine vs. Stack machine (modern JVM)

fewer instructions, faster execution

why does the number of instructions matter?

Running multiple VMs more efficiently

DEX FILE

Java class files are converted
into “.dex” files that Dalvik
executes

Java byte-code is converted
into Dalvik byte-code during
this process

MEMORY EFFICIENCY

Shared constant string pool

Share clean (even some dirty) memory between
processes as much as possible

“.dex” files are mapped as read-only by mmap()

Memory efficient JIT implementation

JIT itself is about 100K

Code cache and supporting data structure takes
another 100K for each application

SHARED STRING POOL
public interface Zapper {
 public String zap(String s, Object o);
}

public class Blort implements Zapper {
 public String zap(String s, Object o) {

 }
}

public class ZapUser {
 public void useZap(Zapper z) {
 z.zap(...);
 }
}

SHARED STRING POOL

SHARED MEMORY

PROGRAMMING MODEL

Each application is running in its own process

An application can have one or more components:

activities, services, broadcast receivers and content
providers

A task (an “application” from user’s point of view) consists of
several activities from one or multiple applications

An application keeps running until the system kills it
because of memory shortage

POWER SAVING

Picture is from Google I/O 09 talk - Coding for Life -- Battery Life, That Is

GZIP TEXT DATA

Use GZIP for text data whenever possible

Compressing is implemented by native code

CHECK NETWORK TYPE

Wifi and 3G are much more energy efficient, so wait
for Wifi or 3G when transferring big chunk of data

UPDATE BIN

Picture is from Google I/O 09 talk - Coding for Life -- Battery Life, That Is

Use setInexactRepeating() so the system can
bin your update together with others

WORK OFFLOADING

Naive offloading

Speech-to-text, OCR

More sophisticated offloading - fine-grained offloading

MAUI: Making Smartphones Last Longer with
Code Offload (MobiSys ’10)

Running two versions of the app on the mobile
device and a powerful server

Decide when/what to offload on the fly

EFFICIENT CODE

for (int i = initializer; i >= 0; i--)

int limit = calculate limit;
for (int i = 0; i < limit; i++)

Type[] array = get array;
for (Type obj : array)

for (int i = 0; i < array.length; i++)

for (int i = 0; i < this.var; i++)

Iterable<Type> list = get list;
for (Type obj : list)

EFFICIENT CODE

Try to rest for the most of the time

be nice to other processes

Avoid allocation

short-lived objects need to be garbaged collected

long-lived objects take precious memory

Make a method static if it does not access member variables

Avoid internal getter/setters

Use floating point numbers only when you have to

Prefer int over enum

Use static final for constants

