N° d'ordre : 2329

THESE

Présentée

Pour l'obtention du titre de

DOCTEUR DE L'INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE

Ecole doctorale : biologie, santé, biotechnologies Spécialité : biosciences végétales

Par

Marion ALIGNAN

PHOMA DU TOURNESOL : DETERMINISME DE LA TOLERANCE DE L'HOTE A LA MALADIE

Soutenue le 17 mars 2006, devant le jury composé de :

Grégory DECHAMP-GUILLAUME	Professeur, ENSAT, Toulouse	Président
Emile BENIZRI	Professeur, ENSAIA, Nancy	Rapporteur
Said MOUZEYAR	Maître de conférences, UBP, Clermont-Fd	Rapporteur
Nathalie SEJALON-DELMAS	Maître de conférences, UPS, Toulouse	Examinateur
Gérard BARRAULT	Professeur émérite, ENSAT, Toulouse	Directeur

A mes frères, Jérôme et Olivier, à mes parents, à ma famille, avec toute mon affection.

REMERCIEMENTS

Je souhaite tout d'abord exprimer ma reconnaissance aux membres du jury, Madame Nathalie Séjalon-Delmas, Messieurs Said Mouzeyar et Emile Benizri, qui m'ont fait l'honneur de juger ce travail.

Cette thèse a été réalisée au laboratoire de Biotechnologies et Amélioration des plantes de L'ENSAT, dirigé par Gilbert Alibert puis par Michel Petitprez. Je souhaite les remercier ici pour l'accueil qu'ils m'ont réservé au sein du laboratoire.

Je tiens plus particulièrement à exprimer ma reconnaissance à Gérard Barrault, mon directeur de thèse, qui a su guider mes réflexions scientifiques au long de ces années. Merci pour votre soutien et pour toutes ces discussions très enrichissantes, tant sur le plan humain que scientifique. Vous m'avez beaucoup appris.

Merci à Grégory Dechamp-Guillaume pour les conseils prodigués au cours de cet apprentissage, et pour avoir accepté de présider le jury de soutenance.

Je tiens à témoigner toute ma reconnaissance à Laurent Gentzbittel, actuel directeur du laboratoire, qui m'a accordé sa confiance pour le projet « puce à ADN », et à Tarek Hewezi qui a réalisé ce projet avec moi. Je garderai un bon souvenir de notre collaboration.

Je tiens à remercier également Ahmed Lebrihi et Hend Bejaoui pour leur aide précieuse lors du dosage de la scopolétine, ainsi que les membres du laboratoire de chimie de l'Université Paul Sabatier qui ont réalisé la synthèse d'ayapine.

Merci aussi à Alain Jauneau et Yves Martinez pour l'aide qu'ils m'ont apportée sur toute la partie « microscopie ».

Merci à Cécile Tonon-Donnadieu pour sa grande disponibilité, sa gentillesse et son efficacité. J'espère, Cécile, que tu auras maintenant tout le bonheur que tu mérites.

Je souhaite également remercier Marie-Françoise Jardinaud pour ses encouragements, et pour toutes les discussions que nous avons pu avoir au cours des innombrables pauses « café-cigarette(s) ».

Je remercie également Cathy, Bénédicte, Théo, Jordy et Marie, les stagiaires de l'équipe, pour leur agréable compagnie et pour l'aide apportée au cours des manips.

Je ne peux pas non plus oublier Christian Brière, pour sa disponibilité et sa gentillesse, Sylvie Devèze, Catherine Giovannini, Marie-José Tavella, Annie Gentzbittel, Philippe Anson et Patrick Bermudes pour leur aide technique, et sans qui ce travail de thèse aurait été plus difficilement réalisable.

J'adresse mes plus sincères remerciements à mes compagnons de thèse et amis, qui ont été là dans les moments les plus joyeux comme les plus difficiles. Merci à vous Boris, Patoch, François, Carine, et les autres, je vous souhaite à tous un avenir brillant, vous l'avez bien mérité. Merci Jane pour avoir su parfois freiner mon emportement face à certaines injustices, merci pour ton soutien, tes conseils avisés et ton amitié. Merci Céline pour ta présence dans les moments difficiles et ton écoute. Ghias, Taissir, j'espère vous revoir un jour en Syrie, ou ailleurs...

Merci à toi, Marc, qui m'a encouragée et qui a du supporter le stress des dernières répétitions.

Je tiens enfin à remercier mes frères et mes parents qui ont toujours été à mes côtés. Qu'ils sachent combien je les aime. Olivier, je suis sûre que tu aurais été fier de moi.

A tous un grand merci...

RESUME

La maladie des taches noires du tournesol, dont l'agent responsable est le champignon *Phoma macdonaldii*, n'a jusqu'alors été que très peu étudiée. En France, si son apparition remonte au début des années 1980, elle provoque aujourd'hui des dégâts de plus en plus inquiétants. Elle a été classée, en 2004, deuxième maladie plus importante après le Mildiou, par les acteurs de la filière tournesol. Aucun génotype de tournesol n'a pu à ce jour être répertorié comme résistant à la maladie ; nous ne disposons que de génotypes tolérants. Nos travaux, qui se sont orientés selon trois axes, ont permis de mettre en évidence différents points :

- Une étude histologique a révélé que le premier frein à la pénétration du champignon dans les cellules de l'hôte semble être des ornementations cuticulaires particulières plus prononcées chez le génotype tolérant par rapport au génotype sensible. Une cinétique de l'infection a également été réalisée.
- L'étude des phytoalexines du tournesol, la scopolétine et l'ayapine, a permis de mettre en évidence que ces dérivés coumariniques ont un effet inhibiteur important sur la germination du champignon, et que l'ayapine est également capable d'inhiber la croissance de *Phoma macdonaldii*. De plus, le dosage de la scopolétine *in planta*, à différents temps après contamination par le *Phoma*, a prouvé que la molécule présentait un niveau de synthèse et d'accumulation jusqu'à deux fois plus élevé chez le génotype tolérant étudié par rapport au génotype sensible.
- Enfin, grâce à la **mise au point d'une puce à ADN** composée de 1000 unigènes, dont **plus de 100 gènes impliqués dans la résistance des plantes aux maladies**, nous avons pu mettre en exergue l'expression différentielle de certains gènes entre un génotype tolérant et génotype sensible, en réponse à l'infection. Ces gènes pourraient être **impliqués dans la tolérance du tournesol à** *Phoma macdonaldii*.

Les différents résultats obtenus nous laissent envisager une amélioration du tournesol afin d'augmenter son niveau de résistance aux maladies.

ABSTRACT

Few investigations have been undertaken on the mechanisms subtending the tolerance of sunflower to black stem disease. Caused by the necrotrophic fungus *Phoma macdonaldii*, the disease occurs in France from the 1980's. Today it is responsible of yield losses with increased seriousness. In 2004, it was the second more important disease on sunflower, after mildew. So far, no resistant genotype has been identified. Tolerant genotypes exist and their tolerance was shown to be highly variable. Our investigations, developped according to three main axes, have allowed to shed light on differents points :

- an **ultrastructural investigation** revealed that the **first limitation** to the fungus penetration in the host cells seems to be **particular cuticular ornamentations** more pronounced in tolerant genotype compared to the susceptible one. A kinetic of infection was also realised.
- The study of sunflower phytoalexins, scopoletin and ayapin, allowed us to show that these coumarinic derivatives have a strong inhibitor effect on the fungus germination. Ayapin was also able to inhibit *Phoma macdonaldii* growth. Quantification of scopoletin in planta, at different time after contamination by *Phoma*, proved that this compound showed a level of synthesis and accumulation twice more important in tolerant genotype compared to the susceptible one.
- Finally, with the construction of a 1000 element cDNA microarray, on which were included more than 100 cDNA implicated in biotic stress responses, we revelead differential expression of some genes between partially resistant and susceptible genotypes. These genes could be implicated in sunflower tolerance to *Phoma macdonaldii*.

The different results obtained will hopefully allow sunflower inprovement in order to increase its resistance to this disease.

LISTE DES ABREVIATIONS

ADN	Acide désoxyribonucléique	RT-PCR	Reverse Transcription PCR
ADNc	ADN complémentaire	SA	Salicylic Acid
ARN	Acide ribonucléique	SDS	Sodium Dodecyl Sulfate
ARNm	ARN messager	SOD	Superoxyde dismutase
CDPK	Calcium-Dependant Protein Kinase	SSC	Standard Sodium Citrate
DAB	3,3-diaminobenzidine	UHQ	Ultra Haute Qualité
°C	Degré Celsius	μm	micromètre
DNase	Désoxyribonucléase	VMT	Virus de la mosaïque du tabac
EDTA	Acide Ethylène Diamine Tetra Acétique		
Eth	Ethylène		
f. sp.	formae specialis		
HR	Hypersensitive Reaction		
JA	Jasmonic Acid		
kb	kilo paire de bases		
kDa	kilo Dalton		
МАРК	Mitogen-Activated Protein Kinase		
МАРКК	MAPKK Kinase		
МАРККК	MAPKK Kinase		
M.E.B.	Microscopie Electronique à Balayage		
NO	Nitric Oxyde		
pb	paire de bases		
PCR	Polymerase Chain Reaction		
PR	Pathogenesis Related		
QTL	Quantitative Trait Locus		
RNAse	Ribonucléase		
ROS	Reactive Oxygen Species		

TABLE DES MATIERES

ABSTRACT	1
INTRODUCTION	3
PROLEGOMENES	9
I - LA RELATION NON-HOTE	9
I - I - Les différents facteurs contribuant à la relation non-hôte	. 10
I - 1 - 1 Les mécanismes de défense passifs ou préformés	. 10
I – 1 - 2 Les mécanismes de défense inductibles	. 11
I – 1 - 3 Le signal de défense des plantes	. 13
I - 1 - 4 Gènes de résistance à large spectre impliqués dans la résistance non-hôte	. 14
La résistance non-hôte de type I	. 15
La résistance non-hôte de type II	. 15
II - LA RELATION HOTE	. 16
II – 1 La relation incompatible : cas de la résistance gène pour gène	. 16
II – 1 – 1 Résistance dominante gène pour gène, avec mise en place de réaction	
hypersensible	. 16
II - 1 - 2 Résistance dominante gène pour gène, sans mise en place de réaction	
hypersensible	. 17
II - 1 - 3 Résistance récessive gène pour gène	. 18
Résistance non-hôte et gène pour gène : quelles similitudes ?	. 19
II – 2 - La relation compatible : cas de la tolérance	. 20
III – LES REACTIONS DE DEFENSE DES PLANTES	. 21
III – 1 Perception du signal éliciteur	. 22
III – 2 Transduction du signal	. 23
III - 2 - 1 La modification des flux ioniques	. 23
III $-2 - 2$ La production de formes actives d'oxygène (FAO)	. 23
III - 2 - 3 La production d'oxyde nitrique (NO)	. 25
III - 2 - 4 La phosphorylation des protéines	. 26
III – 3 La réponse des plantes	. 28
III – 3 – 1 Les métabolites secondaires	. 28
III – 3 – 2 Le renforcement des parois	. 29
III – 3 – 3 Les protéines de défense	. 29
III - 3 - 4 L'acide jasmonique	. 31
III – 3 – 5 L'acide salicylique	. 32
III $-3 - 6$ L'éthylène	. 32
IV – LE TOURNESOL	. 34
V – LES PRINCIPALES MALADIES DU TOURNESOL	. 37
V – 1 Le mildiou	. 38
V-2 Le phomopsis	. 38
V – 3 Le sclérotinia	. 39
V – 4 Phoma macdonaldii, le Phoma du tournesol	. 40
V – 4 - 1 Biologie du champignon	. 40
V – 4 - 2 Caractéristiques phénotypiques, variabilité phénotypique et moléculaire	. 42
V – 4 - 2 – 1 Caractéristiques phénotypiques	. 42

V – 4 - 2 – 2 Variabilité phénotypique et moléculaire	43
V – 4 - 3 Les symptômes	44
V – 4 - 3 – 1 Symptômes sur collet	44
V – 4 - 3 – 2 Symptômes sur tige	45
V - 4 - 3 - 3 Symptômes sur feuille	45
V = 4 = 3 = 4 Symptômes sur capitule	
V = 4 - 5 - 4 Symptomes sur capitule	+0
V = 4 - 4 - 1 I a lutte prophylactique	+ /
V = 4 T La lutte propriyacique missennée	+ /
v = 4 - 4 - 2 La futte chimique faisorniee	47
V = 4 - 4 - 3 La lutte genetique	48
V – 4 - 4 – 4 Perspectives de lutte	49
MATERIELS ET METHODES	53
I – MATERIEL VEGETAL	53
I – 1 – Présentation du matériel végétal	53
I-2 – Obtention des plants	53
II – MATERIEL FONGIQUE	54
II - 1 - Isolement des souches de Phoma macdonaldii	54
II - 2 - Conservation des souches	54
II - 3 - Repiquage du champignon	55
II - 4 - Obtention d'une souche monopycniospore	55
II - 5 - Choix de la souche de Phoma macdonaldu	33
III – METHODE DE CONTAMINATION	30
III – I – Freparation de l'inocutain	50
III = 3 - Notation des symptômes	
FTUDE HISTOLOGIOUE	61
	C 1
I – BUTS DE L'ETUDE	61
II – 1 ECHNIQUES CYTOLOGIQUES	62
II - I - Prelevements et fixation.	02
H = 2 - Desnyaration H = 3 - Ftapes propres à la microscopie photonique	63
II = 4 = Ftapes propres à la microscopie électronique à balayage	05
II = 5 - Etapes propres à la microscopie électronique à transmission	
III – RESULTATS	65
III – 1 – Anatomie du pétiole sain de tournesol (Helianthus annuus)	65
	65
III - I - I - Observation en coupe	
III - 1 - 1 - Observation en coupeIII - 1 - 2 - Observation en surface	66
III - 1 - I - Observation en coupe $III - 1 - 2 - Observation en surface$ $III - 2 - Observations en condition d'infection$	66 68
III - 1 - 1 - Observation en coupe $III - 1 - 2 - Observation en surface$ $III - 2 - Observations en condition d'infection$ $III - 2 - 1 - Aspect morphologique de Phoma macdonaldii à la surface de l'hôte$	66 68 68
III - 1 - I - Observation en coupeIII - 1 - 2 - Observation en surfaceIII - 2 - Observations en condition d'infectionIII - 2 - 1 - Aspect morphologique de Phoma macdonaldii à la surface de l'hôteIII - 2 - 2 - Modifications anatomiques de l'hôte durant la contamination	66 68 68 71
 III – 1 – 1 – Observation en coupe III – 1 – 2 – Observation en surface III – 2 – Observations en condition d'infection III – 2 – 1 – Aspect morphologique de Phoma macdonaldii à la surface de l'hôte III – 2 – 2 – Modifications anatomiques de l'hôte durant la contamination IV – CONCLUSIONS ET DISCUSSION 	66 68 68 71 75
III - 1 - 1 - Observation en coupe $III - 1 - 2 - Observation en surface$ $III - 2 - Observations en condition d'infection$ $III - 2 - 1 - Aspect morphologique de Phoma macdonaldii à la surface de l'hôte III - 2 - 2 - Modifications anatomiques de l'hôte durant la contamination IV - CONCLUSIONS ET DISCUSSION ETUDE DES PHYTOALEXINES$	66 68 68 71 75 83
 III – 1 – 1 – Observation en coupe III – 1 – 2 – Observation en surface <i>III – 2 – Observations en condition d'infection</i> III – 2 – 1 – Aspect morphologique de <i>Phoma macdonaldii</i> à la surface de l'hôte III – 2 – 2 – Modifications anatomiques de l'hôte durant la contamination IV – CONCLUSIONS ET DISCUSSION ETUDE DES PHYTOALEXINES I – INTRODUCTION 	66 68 71 75 83 83
III - I - I - Observation en coupe. $III - 1 - 2 - Observation en surface$ $III - 2 - Observations en condition d'infection$ $III - 2 - 1 - Aspect morphologique de Phoma macdonaldii à la surface de l'hôte III - 2 - 2 - Modifications anatomiques de l'hôte durant la contamination IV - CONCLUSIONS ET DISCUSSION ETUDE DES PHYTOALEXINES I - INTRODUCTION II - BUT DE L'ETUDE$	66 68 71 75 83 83 86
 III – 1 – 1 – Observation en coupe III – 1 – 2 – Observation en surface <i>III – 2 – Observations en condition d'infection</i> III – 2 – 1 – Aspect morphologique de <i>Phoma macdonaldii</i> à la surface de l'hôte III – 2 – 2 – Modifications anatomiques de l'hôte durant la contamination IV – CONCLUSIONS ET DISCUSSION ETUDE DES PHYTOALEXINES I – INTRODUCTION II – BUT DE L'ETUDE III – MATERIELS ET METHODES	66 68 71 75 83 83 86 86

III - 2 - Etude de l'influence de la scopolétine et de l'ayapine sur la germination et	la
croissance de Phoma macdonaldii	86
III – 2 – 1 Réalisation des bioessais	86
$III - 2 - 2 Mesure de la CI50 \dots$	87
III - 3 - Dosage de la scopolétine in planta après contamination par Phoma	
macdonaldii	89
IV – RESULTATS	90
IV - 1 - Etude de l'inhibition de germination de P. macdonaldii	90
IV - 2 - Etude de l'inhibition de croissance de P. macdonaldii	91
IV – 3 – Dosage de la scopolétine in planta après infection avec P. macdonaldii V – Conclusions Et Discussion	95 96
ETUDE DE L'INTERACTION TOURNESOL / PHOMA MACDONALDII PAR	
L'APPROCHE DES PUCES A ADN	103
I – CHOIX DU TYPE DE PUCE A UTILISER	105
I - I - Les macroarrays ou filtres à haute densité	105
$I-2-Les\ microarrays$	106
I – 3 – les puces à oligonucléotides ou oligochips	106
II – MATERIEL VEGETAL	108
III – L'EXPERIMENTATION	108
III – 1 – Etude préliminaire	108
III - 1 - 1 - Matériels et méthodes	109
$III - 1 - 2 - Résultats \dots$	109
III – 2 – la construction du microarray	111
III – 3 – L'hybridation du microarray	112
III – 4 – L'analyse statistique des microarrays	112
III – 5 – Validation expérimentale des gènes différentiels	116
IV – RESULTATS	117
CONCLUSION GENERALE ET PERSPECTIVES	159
Améliorer la résistance du tournesol aux maladies.	163
Place de la tolérance dans la protection des plantes	165
Etude d'une interaction hôte-parasite : quelles priorités ?	166
REFERENCES BIBLIOGRAPHIOUES	171
ANNEXES	209
A NINEVE 1	200
	209
Activités antimicrobiennes des protéines et peptides de défense des plantes in vitro	209
Activités connues et postulées liées aux mécanismes de toxicité des protéines et pep anti-microbiens de plantes	tides 220
ANNEXE 2	223
Stades repères du tournesol (Prolea, 2002)	223
ANNEXE 3	225
Données numériques relatives aux essais réalisées avec la scopolétine	225
Données graphiques relatives aux essais réalisées avec la scopolétine	226
Données graphiques relatives aux essais réalisées avec la scopolétine	227
Données numériques relatives aux essais réalisées avec l'ayapine.	228

Effet de l'ayapine sur la germination de Phoma macdonaldii	
Données graphiques relatives aux essais réalisées avec l'ayapine	229
Effet de l'ayapine sur la germination de Phoma macdonaldii	
Données graphiques relatives aux essais réalisées avec l'ayapine	
Données numériques relatives aux essais réalisées avec l'ayapine	
Effet de l'ayapine sur la croissance de Phoma macdonaldii	
Données graphiques relatives aux essais réalisées avec l'ayapine	
Effet de l'ayapine sur la croissance de Phoma macdonaldii	
Transformation des pourcentages d'inhibition en probits	
Transformation des concentrations en logarithme décimal	
ANNEXE 4	
ANNEXE 4 Extraction d'ARNs totaux, d'après Verwoerd et al. (1989)	
ANNEXE 4 Extraction d'ARNs totaux, d'après Verwoerd et al. (1989) R.T. PCR	
ANNEXE 4 Extraction d'ARNs totaux, d'après Verwoerd et al. (1989) R.T. PCR Boiling - PCR	
ANNEXE 4 Extraction d'ARNs totaux, d'après Verwoerd et al. (1989) R.T. PCR Boiling - PCR Synthèse d'ADNc radio marqué pour hybridation sur puce	
ANNEXE 4 Extraction d'ARNs totaux, d'après Verwoerd et al. (1989) R.T. PCR Boiling - PCR Synthèse d'ADNc radio marqué pour hybridation sur puce Dépôt et traitement des microarrays	237 237 238 242 243 243
ANNEXE 4 Extraction d'ARNs totaux, d'après Verwoerd et al. (1989) R.T. PCR Boiling - PCR Synthèse d'ADNc radio marqué pour hybridation sur puce Dépôt et traitement des microarrays Synthèse d'ADNc pour Q-PCR	237 238 238 242 243 244 244 245
ANNEXE 4 Extraction d'ARNs totaux, d'après Verwoerd et al. (1989) R.T. PCR Boiling - PCR Synthèse d'ADNc radio marqué pour hybridation sur puce Dépôt et traitement des microarrays Synthèse d'ADNc pour Q-PCR ANNEXE 5	237 238 242 243 244 244 245 247

INTRODUCTION

INTRODUCTION

Si l'on s'en tient à la définition du dictionnaire, la tolérance est l'aptitude de l'organisme à supporter, sans symptômes morbides, l'action d'un médicament, d'un agent chimique ou physique déterminé (Rey-Debove *et al.*, 1974). La tolérance des plantes aux maladies a été reportée, pour la première fois il y a plus d'un siècle, par Cobb (1894). Plus tard, Dropkin (1955) écrira que les plantes tolérantes supportent la croissance et la reproduction de l'agent pathogène tout en continuant à bien croître elles-mêmes. Caldwell *et al.* (1958) iront plus loin en établissant que la tolérance permet à une plante sensible d'endurer une attaque sévère de parasite sans essuyer d'importantes pertes de rendement et de qualité des semences. Cependant, depuis ces premières observations, peu de progrès ont été faits dans la quantification et l'identification des caractères qui la sous-tendent.

Nous avons affaire ici à une réaction dite compatible, avec installation de la maladie et mise en place de systèmes de défense pouvant être variables d'une interaction hôte-pathogène à une autre. Pour exemples, un niveau constitutif d'enzymes hydrolytiques (chitinases et β -1,3-glucanases) serait impliqué dans la tolérance de la tomate au champignon *Alternaria solani* (Lawrence *et al.*, 2000), et de certaines solanacées à *Phytophthora infestans* (Vleeshouwers *et al.*, 2000a); la tolérance de certains cultivars de vigne au champignon ascomycète *Eutypa lata* serait attribuable à leur capacité à réduire l'eutypine, toxine produite par l'agent pathogène, en eutypinol, alcool non toxique (Afifi *et al.*, 2004).

Si la tolérance est une résistance partielle, il n'en reste pas moins qu'elle présente un grand intérêt agronomique par rapport à la résistance verticale. En effet, en dépit de sa haute héritabilité, la résistance qualitative est facilement contournable du fait de l'instabilité que lui confère son caractère mono- ou oligogénique.

La maladie des taches noires du tournesol, dont l'agent causal est le champignon *Phoma macdonaldii*, devient de plus en plus préoccupante, notamment en

3

France. Elle entraîne une diminution de la qualité des huiles, une diminution du poids de mille grains et des pertes de rendement de l'ordre de 10 à 30%, voire 70% lorsque l'agent pathogène est à l'origine d'une sénescence prématurée de la plante. Elle vient d'être reconnue deuxième maladie plus importante en France par les acteurs de la filière tournesol. Nous ne disposons à ce jour que de génotypes tolérant la maladie, aucun génotype résistant n'ayant été répertorié.

L'héritabilité et le caractère polygénique de la tolérance du tournesol au *Phoma* ont été démontrés (Roustaee *et al.* 2000a), mais aucune étude n'avait jusqu'alors été engagée sur les mécanismes qui la sous-tendent. Dans le cas de ce pathosystème, la compréhension de ces mécanismes permettrait pourtant la sélection de génotypes hautement tolérants à la maladie.

Pour palier cela, nous avons envisagé deux types d'approches : une approche avec *a priori* et une approche sans *a priori*.

L'approche avec a priori s'est orientée selon deux axes :

- l'étude histologique de deux génotypes, l'un sensible et l'autre tolérant à *P.macdonaldii*, avant et après infection par le champignon.
- l'étude de phytoalexines du tournesol, dans le but de savoir si ces composés coumariniques sont capables d'inhiber *Phoma macdonaldii*, et auquel cas, s'ils peuvent jouer un rôle dans le déterminisme de la tolérance du tournesol à la maladie des taches noires.

Nous avons mené l'approche sans *a priori* par l'utilisation des puces à ADN, afin de mettre à jour les gènes différentiellement exprimés entre une lignée sensible et une lignée tolérante de tournesol après contamination par *Phoma macdonaldii*.

Ce manuscrit est composé comme suit : avant d'aborder les résultats expérimentaux inhérents à nos travaux, nous tendrons à décrire, dans un premier chapitre consacré aux prolégomènes, les différents mécanismes de résistance des plantes aux agents pathogènes ; nous présenterons également les deux acteurs de la

4

maladie des taches noires : l'hôte, le tournesol, puis l'agent pathogène responsable, *Phoma macdonaldii*. Enfin, dans un dernier chapitre, nous discuterons les résultats immanents à ces différentes études et tenterons d'établir un modèle permettant d'expliquer, en partie, la tolérance du tournesol à *Phoma macdonaldii*.

PROLEGOMENES

PROLEGOMENES

Mille huit cent soixante-seize, le Français Millardet préconise la réalisation d'hybrides entre vignes américaines et vignes européennes afin d'obtenir des variétés résistantes à un ravageur nouvellement introduit en Europe : le Phylloxera. Il écrit : « la propriété de résistance au Phylloxera est strictement héréditaire ». L'intérêt agronomique de la résistance des plantes à leurs agresseurs vient d'être reconnu. D'approches empiriques en démonstrations scientifiques, la notion de spécialisation d'un agent pathogène vis-à-vis d'un hôte va apparaître. Nous savons aujourd'hui qu'il existe différentes formes de résistance qu'il nous a paru intéressant de décrire : nous exposerons ainsi les mécanismes de défense mis en place par la plante dans la relation non-hôte, la relation gène pour gène, et enfin dans la résistance quantitative ou tolérance.

I - La relation non-hôte

La plupart des espèces végétales sont non-hôtes de la plupart des microorganismes, ces derniers se trouvant alors qualifiés d'agents pathogènes non-hôtes. La résistance non-hôte est la forme de résistance des végétaux aux microorganismes potentiellement pathogènes la plus effective et la plus durable. Elle représente un intérêt majeur dans le sens ou les sélectionneurs pourraient la transférer, à l'aide des technologies modernes, d'une culture à une autre, ou d'une espèce sauvage à une culture. Cependant, en dépit des progrès qui ont été faits dans la compréhension des interactions plantes-microorganismes, le mystère par lequel un agent pathogène peut être virulent sur une espèce végétale et inoffensif sur les autres reste à ce jour entier. Kirankumar Mysore et Choong-Min Ryu, (2004), Thordal-Christensen (2003) et Holub et Cooper (2004) sont les auteurs d'articles de synthèse nous ayant permis de dresser un tableau assez exhaustif de ce type de relation.

I – 1 – Les différents facteurs contribuant à la relation non-hôte

Nous savons que la relation non-hôte peut procéder de différents facteurs chimiques, enzymatiques ou structuraux, inhérents au végétal considéré. Quels sontils ? Les composantes cellulaires de la plante, connues à ce jour, qui peuvent contribuer à la résistance non-hôte, peuvent être regroupées en quatre catégories : les mécanismes de défense passifs ou préformés, les mécanismes de défense inductibles, le signal de défense des plantes, les gènes à large spectre impliqués dans la résistance non-hôte.

I – 1 – 1 Les mécanismes de défense passifs ou préformés

L'agent pathogène a besoin de signaux émis par la plante afin d'induire une différenciation cellulaire et d'exprimer l'essentiel de ses gènes de pathogénicité. Citons l'exemple des champignons responsables de la rouille (genre Uromyces) pour lesquels la différenciation hyphale est induite par la topographie de surface de la plante (Hoch et al., 1987), ou encore celui, plus récent, de Blumeria graminis f. sp. hordei (Bgh), agent de l'oïdium de l'orge, qui suggère que la composition de la cire de surface du végétal est importante dans l'activation du développement d'un appressorium différencié (Tsuba et al., 2002). De la même façon, le cytosquelette de la plante assure une barrière physique contre la plupart des agents pathogènes. Les microfilaments d'actine jouent un rôle dans la défense de la plante contre les agents pathogènes (Kobayashi, et al., 1992) et leur disruption mène à la perte de la résistance non-hôte contre de nombreux champignons non-hôtes. Il a été démontré que le traitement de plantes non-hôtes par des cytochalasines, inhibiteurs spécifiques de la polymérisation de l'actine, permettait à de nombreux champignons non-hôtes (Erysiphe pisi, Erysiphe graminis f. sp. hordei, Erysiphe graminis f. sp. tritici, Colletotrichum graminicola, Corynespora melonis, Mycosphaerela pinodes, ...) de pénétrer les cellules de ces plantes (Kobayashi, et al., 1997). Ces données prouvent bien que le cytosquelette joue un rôle important durant la résistance non-hôte aux maladies.

Les plantes produisent par ailleurs pléthore de métabolites secondaires, nombre desquels peuvent jouer un rôle de composés antimicrobiens durant la défense contre les microorganismes. Nous citerons les saponines qui sont des triterpénoides glycosylés, des stéroïdes ou des alcaloïdes stéroïdiens possédant une activité antifongique (Osbourn, 1996). Les saponines sont produites de façon constitutive par de nombreuses plantes et peuvent également être induites suite à une infection par un agent pathogène. Gaeumannomyces graminis var. tritici est un agent pathogène racinaire du blé incapable d'infecter l'avoine. Cette dernière produit l'avenacine, une classe de saponine triterpène. Les mutants saponine-déficients d'une espèce d'avoine diploïde, Avena strigosa, manquent ou synthétisent seulement quelques traces d'avenacine racinaire et sont compromis dans la résistance contre les agents pathogènes fongiques non-hôtes G. graminis var. tritici et Fusarium culmorum; cependant, ces mêmes mutants ne montrent aucune altération dans la synthèse de saponines foliaires et de leur résistance non-hôte contre le champignon pathogène des feuilles Stagonospora nodorum, non-pathogène de l'avoine (Papadopoulou et al., 1999). L'étendue du rôle des saponines dans la résistance non-hôte reste donc à ce jour mal établie.

I – 1 - 2 Les mécanismes de défense inductibles

Après les mécanismes de défense passifs ou préformés, les agents pathogènes doivent faire face à un deuxième obstacle : les mécanismes de défense inductibles qui comptent les phytoalexines ou encore la formation de papilles. Des « éliciteurs généraux » peuvent être relâchés durant les attaques à la fois d'agents pathogènes hôtes et d'agents pathogènes non-hôtes. Les barrières activées par la plante en réponse à ces éliciteurs contribuent à la résistance envers ces deux types d'agents microbiens. Ces éliciteurs peuvent être la flagelline, protéine du flagelle bactérien, qui va activer les défenses à travers un chemin impliquant un récepteur kinase leucine-rich-repeat (LRR) et une cascade « mitogen-activated-protein » (MAP) kinase (Asai *et al.*, 2002), ou encore des oligomères de chitine ou de glucanes contenus dans la paroi de certains champignons. Ces composés vont typiquement activer la production de protéines antimicrobiennes et de phytoalexines dans les tissus de la plante. Ces molécules élicitrices générales sont souvent indispensables aux agents pathogènes, et les plantes vont les utiliser durant la reconnaissance de la même façon que les animaux vont reconnaître les profils moléculaires associés aux agents pathogènes, souvent appelés PAMPs pour « Pathogen-Associated Molecular Patterns » (Parker, 2003). L'utilisation d'éliciteurs généraux, associée à l'implication de récepteurs kinase LRR et à une cascade MAP kinase, rapproche ce mécanisme de défense du système « d'immunité innée » des animaux, suggérant un système commun plus ancien pour combattre les agents microbiens (Asai *et al.*, 2002, Gomez-Gomez et Boller, 2002).

Un exemple de barrière potentiellement activée par des éliciteurs généraux est la formation de papilles. Cette fortification locale de la paroi cellulaire est formée à la face supérieure, au site de pénétration du champignon. Citons le cas d'une résistance inhabituelle basée sur la formation de papilles, qui donne une résistance totale : la résistance mlo de l'orge au champignon pathogène *Blumeria graminis* f. sp. *hordei* (*Bgh*). *MLO* régule négativement la formation de papilles, et des mutations de ce gène engendrent la résistance (Freialdenhoven *et al.*, 1996). Dans la résistance nonhôte, chez le type sauvage d'*Arabidopsis*, environ 80% des conidies de l'agent pathogène non-hôte *Bgh* sont stoppées par la formation de papilles (Thordal-Christensen, 2003). L'équipe de Thordal-Christensen a en outre démontré que des mutations dans les gènes *PENETRATION 1 (PEN1)* et *PEN2* réduisaient la capacité des plantes à stopper les conidies de *Bgh* et ce de 20% par rapport au type sauvage.

Les phytoalexines, enfin, sont des métabolites secondaires, de faible poids moléculaire, qui peuvent être synthétisées lors d'une interaction non-hôte. De nombreux mutants phytoalexines-déficients (*pad*) ont été identifiés chez *Arabidopsis*. Alors que des plantes sauvages d'*Arabidopsis* sont résistantes à *Alternaria brassicicola*

12

et produisent une réponse hypersensible typique après inoculation par ce champignon, le mutant *pad3-1* est compromis dans sa résistance non-hôte contre *A*. *brassicicola* (Kirankumar *et al.*, 2004). *PAD3* est requis pour la biosynthèse de camalexine (une phytoalexine) chez *Arabidopsis* et code pour une monooxygénase cytochrome P450 putative. Nous ne savons pas à ce jour si les mutants *pad3* sont également compromis dans la résistance contre d'autres agents non-pathogènes d'*Arabidopsis*.

I – 1 - 3 Le signal de défense des plantes

Une autre barrière que les agents pathogènes devront franchir afin d'infecter la plante est celle des molécules signal activant l'induction de défenses des plantes. Parmi celles impliquées dans la résistance non-hôte, nous trouvons l'éthylène, l'acide salicylique ainsi que les protéines HSPs (Heat-Shock Proteins).

La perception de l'éthylène est souvent requise pour la résistance basale contre les agents pathogènes et peut également induire la résistance aux maladies chez les plantes. Il a été démontré qu'un tabac insensible à l'éthylène perdait sa résistance non-hôte contre certains champignons du sol pathogènes (Knoester *et al.*, 1998). De même, des plants de tabac transgéniques exprimant le gène ETR1-1 d'*Arabidopsis* (causant la perte de perception de l'éthylène) sont incapables d'induire les gènes des protéines liées à la pathogenèse (pathogenesis-related proteins ou protéines P. R.) après infection par le virus de la mosaïque du tabac (TMV), et développent des nécroses spontanées de la tige durant leur croissance dans le sol. Ces nécroses de la tige sont attribuées à des infections fongiques par *Pythium sylvaticum, Pythium splendens*, d'autres *Pythium spp*. non caractérisés, *Rhizopus spp*. et *Chalara elegans* (Knoester *et al.*, 1998). Aucun de ces champignons du sol n'infecte le tabac de type sauvage, laissant penser que le tabac est non-hôte pour ces champignons et que le signal éthylène pourrait jouer un rôle dans la résistance non-hôte aux maladies. Le mutant *etr1-1 d'Arabidopsis* n'a cependant pas été reporté comme ayant perdu sa résistance non-hôte aux agents pathogènes, suggérant donc que la perception à l'éthylène comme condition requise dans la résistance non-hôte pourrait être plante spécifique.

L'implication de l'acide salicylique dans la résistance non-hôte a également été démontrée : les mutants *sid2* d'*Arabidopsis*, déficients en une enzyme qui synthétise l'acide salicylique, supportent la croissance d'*Uromyces vignae*, alors que cette plante est habituellement non-hôte pour ce champignon (Mellersh D.G. et Heath M.C., 2003).

Les HSPs (Heat-Shock Proteins), enfin, protéines hautement conservées, sont induites durant différentes formes de stress environnementaux. Kanzaki *et al.* ont démontré que l'extinction des gènes *HSP70* et *HSP90* chez *Nicotiana benthamiana* compromet individuellement la résistance non-hôte, en permettant la multiplication et la croissance de l'agent pathogène non-hôte *P. cichorii*, comparé aux plantes sauvages (Kanzaki *et al.*, 2003). Le rôle des HSPs dans la résistance non-hôte mérite donc d'être davantage étudié.

I – 1 - 4 Gènes de résistance à large spectre impliqués dans la résistance non-hôte

Plusieurs gènes requis pour la résistance non-hôte ont à ce jour été caractérisés. Il s'agit par exemple de *NHO1*, *EDS1* ou encore *PEN1*. *NHO1*, codant pour une glycérol kinase, est requis pour la résistance non-hôte à certains agents pathogènes seulement, tels que *Botrytis cinerea* et *Pseudomonas syringae*. *EDS1* (Enhanced Disease Susceptibility) encode une nouvelle protéine présentant des homologies avec les lipases d'Eucaryotes. Cette protéine est importante pour la défense médiée par un gène R dans les interactions entre *Arabidopsis thaliana* et plusieurs agents pathogènes. Chez les mutants d'*Arabidopsis thaliana eds1*, la perte de résistance non-hôte aux agents pathogènes *Peronospora parasitica* et *Albugo candida* est partielle, ce qui suggère que d'autres facteurs de la plante sont nécessaires pour la résistance non-hôte à ces deux champignons.

14

Il existe deux types de résistance non-hôte : la résistance non-hôte de type I et celle de type II, que nous pouvons définir comme suit :

La résistance non-hôte de type I

Le type I de résistance non-hôte ne produit pas de symptôme visible (nécrose). La plante reconnaît des éliciteurs généraux de l'agent pathogène de façon non spécifique, ou encore des molécules de surface de l'agent pathogène (PAMPs). Elle se défend alors en épaississant et lignifiant ses parois cellulaires, en produisant des saponines et des phytoalexines, en accumulant des composés phénoliques ou encore en induisant des gènes de protéines PR. L'agent pathogène, n'étant pas capable de franchir ces obstacles, ne pourra ni se multiplier, ni pénétrer dans la plante.

La résistance non-hôte de type II

Le type II de résistance non-hôte est toujours associé à la formation rapide d'une nécrose localisée. L'agent pathogène est ici capable de passer outre les barrières préformées de la plante, ainsi que les défenses induites par les éliciteurs généraux. En revanche, il ne pourra surmonter les mécanismes de défense, mis en place par la plante après reconnaissance d'éliciteurs spécifiques, qui mèneront à la HR. De tels éliciteurs sont appelés protéines d'avirulence (Avr). Pour exemple, la protéine extracellulaire INF1, produite par différents isolats de *Phytophthora infestans*, est requise pour la mise en place d'une HR sur des plantes non-hôtes telle que *Nicotiana benthamiana*.

Le type de résistance non-hôte est dépendant à la fois de l'espèce de la plante et de celle de l'agent pathogène, de telle sorte qu'une plante présentant une résistance de type I à un agent pathogène donné, peut présenter une résistance de type II à un autre agent pathogène (Peart *et al.*, 2002). De même, un agent pathogène peut engendrer une résistance non-hôte de type I et de type II sur différentes espèces végétales (Lu *et al.,* 2001).

II - La relation hôte

II – 1 La relation incompatible : cas de la résistance gène pour gène

II -1 - 1 Résistance dominante gène pour gène, avec mise en place de réaction hypersensible

C'est Flor, dans les années 1940 qui met à jour le système gène pour gène : « à chaque gène qui conditionne la résistance de la plante hôte, correspond chez le parasite un gène qui conditionne la virulence » donc le caractère de l'agent pathogène. Cet énoncé sera maintes fois controversé, mais nous savons aujourd'hui que cette résistance gène pour gène est une forme de résistance spécifique qui a lieu lorsque le produit d'un gène de résistance (*R*) de la plante hôte reconnaît le produit d'un gène d'avirulence (Avr) de l'agent pathogène correspondant. Nous sommes dans le cas d'une réaction dite incompatible qui va se traduire, dans la plupart des cas, par l'apparition d'une nécrose limitée au point d'infection et la mise en place de toute une batterie de défenses par la plante. C'est la réponse hypersensible (H.R.), grâce à laquelle l'agent pathogène va être stoppé dans sa course contre le végétal. Cette forme de résistance, dite qualitative, est également qualifiée de résistance verticale ; elle est mono- ou oligogénique, et on l'oppose volontiers à la résistance horizontale, ou tolérance, de nature polygénique. Les termes « vertical » et « horizontal », définis par Vanderplank (1968), ont pour origine l'allure des graphiques obtenus quand l'on confronte diverses variétés de pomme de terre à une collection de pathotypes de Mildiou (fig.1).

Figure 1 : Niveaux de résistance horizontale et verticale de deux variétés de plante face à 4 races d'un agent pathogène. Les plantes possèdent un certain niveau de résistance effectif vis à vis des agents pathogènes. Si ce niveau de résistance reste le même pour une variété confrontée à différentes races d'un agent pathogène, et qu'il varie d'une variété à une autre, on parle de résistance horizontale. Dans le cas de la résistance verticale, une variété peut être résistante à quelques races d'un agent pathogène et sensible à d'autres races de ce même agent pathogène. S : sensibilité, R : résistance.

Depuis Flor, dans les années 40, jusqu'au début de ce millénaire, les découvertes sur la résistance des plantes aux maladies ont beaucoup progressé. Nous savons maintenant que la résistance gène pour gène peut être dominante ou récessive, avec, ou non, mise en place de H.R.

II -1 - 2 Résistance dominante gène pour gène, sans mise en place de réaction hypersensible

A ce jour, seuls quelques cas de résistance gène pour gène non médiée par une H.R. ont été rapportés. Pour exemple, des plantes d'*Arabidopsis thaliana* mutées au locus DND1 présentent les réponses de défense caractéristiques de la résistance contre une souche avirulente de *Pseudomonas syringae* pv *glycinea* (comme l'expression des gènes de protéines P.R et une restriction sévère de la croissance de l'agent pathogène), sans pourtant présenter de mort cellulaire de type H.R. Ces mutants exhibent un niveau constitutif d'acide salicylique (Yu *et al*, 1998).

II – 1 – 3 Résistance récessive gène pour gène

Plusieurs résistances à des agents pathogènes incluant champignons, bactéries et virus, sont conférées par des gènes récessifs. La mutation récessive *mlo* chez le blé confère une résistance élevée à de nombreux isolats du champignon Erysiphe graminis f. sp. hordei. Le gène MLO code pour une nouvelle classe de protéines membranaires ancrées dans la membrane par sept domaines transmembranaires (Büschges, et al., 1997 ; Devoto et al., 1999). MLO serait un régulateur négatif des réponses de défense et/ou de mort cellulaire. Un allèle nul *Mlo* engendrerait une résistance en permettant la mise en place anormale de réponses de défense à la fois spontanément et durant une infection par un agent pathogène. Chez Arabidopsis, le mutant récessif edr1 présente un niveau élevé de résistance à certains agents pathogènes fongiques et bactériens (Frye et Innes, 1998). Le gène EDR1 code pour une protéine MAPKKK (mitogen-activated protein kinase kinase kinase) qui pourrait également fonctionner comme un régulateur négatif de résistance aux maladies (Frye et al., 2001). Ces deux exemples illustrent les mutations récessives qui peuvent affecter le contrôle des réponses de défense et/ou la mort cellulaire. D'autres mutants comme les mutants *pmr d'Arabidopsis thaliana*, ne supportent pas la croissance d'*Erysiphe cichoracearum*, un champignon phytopathogène. Ces mutants sont probablement altérés dans des gènes requis pour la reproduction et la croissance des agents pathogènes. Dans ce cas, la résistance n'est pas causée par une activation constitutive des voies de défense connues (Vogel et Somerville, 2000).

Résistance non-hôte et gène pour gène : quelles similitudes ?

Plusieurs réponses de défenses induites durant la résistance de type non-hôte sont similaires à celles induites durant la résistance gène pour gène. Par exemple, la H.R. est associée à ces deux types de résistance lors de l'interaction avec le champignon phytopathogène P. infestans (Vleeshouwers et al., 2000b). D'autre part, les espèces réactives d'oxygène (R.O.S.) sont produites à la fois durant la résistance gène pour gène et la résistance non-hôte, avec parfois un délai d'accumulation et des concentrations différents (Able et al., 2003). De même, La lignification des cellules épidermiques de l'hôte, qui a pour but de stopper la pénétration de l'agent pathogène, est un phénomène retrouvé dans des tissus non-hôtes et lors d'une réaction incompatible (Moerschbacher et al., 1990). De plus, contre certains agents pathogènes, la voie du signal de transduction de la résistance non-hôte serait similaire à celle de la résistance hôte. Pour preuve, Peart et al. ont récemment démontré que l'extinction du gène codant pour la protéine SGT1 (ubiquitin ligaseassociated protein) affecte ces deux formes de résistance (Peart et al., 2002). De la même façon, certains mutants tels que eds1 ou nho1 sont compromis dans la résistance non-hôte et la résistance gène pour gène, suggérant que ces deux types de résistance empruntent une voie commune (Lu et al., 2001; Parker et al., 1996 ; Aarts et al., 1998). Cependant, il reste évident que des différences subsistent entre ces deux types de résistance. La résistance non-hôte médiée par les gènes PEN1 et ROR1 dans la défense contre B. graminis f.sp. hordei n'est pas indispensable pour l'immunité racespécifique médiée par les gènes R . Si les voies de défense impliquées dans la résistance non-hôte et la résistance gène pour gène paraissent donc être différentes, il semble exister entre elles des interférences, les deux voies pourraient même converger à un temps plus tardif (Kirankumar et al., 2004).

II – 2 - La relation compatible : cas de la tolérance

Au contraire de la résistance qui exprime l'exclusion partielle ou totale d'un agent pathogène, la tolérance caractérise une variété dont les cultures assurent, en conditions normales, une production acceptable alors qu'elles sont infectées ou malades. La tolérance peut se quantifier sur le plan des symptômes (tolérance vis-àvis du parasite), ou des dégâts subis par les cultures soumises à cet agent (tolérance vis-à-vis de la maladie) (Lepoivre, 2003).

La tolérance vis-à-vis d'un parasite peut se définir comme suit : une plante est tolérante à un parasite si malgré la présence et la multiplication de ce parasite, et en dépit de l'accumulation des éventuelles toxines et métabolites produits par l'agent pathogène, elle peut se développer sans présenter de symptômes importants de la maladie. Elle peut être évaluée par le rapport entre l'intensité des symptômes observés et la quantité de parasite présent dans les tissus de l'hôte. Comme il a été cité en introduction, différents mécanismes de défense des plantes peuvent être impliqués dans la tolérance à des champignons pathogènes : un niveau constitutif d'enzymes hydrolytiques (chitinases et β -1,3-glucanases) serait impliqué dans la tolérance de la tomate au champignon *Alternaria solani* (Lawrence *et al.*, 2000), et de certaines solanacées à *Phytophthora infestans* (Vleeshouwers *et al.*, 2000a); la tolérance de certains cultivars de vigne au champignon ascomycète *Eutypa lata* serait attribuable à leur capacité à réduire l'eutypine, toxine produite par l'agent pathogène, en eutypinol, alcool non toxique (Afifi, 2004).

La tolérance à une maladie se réfère à la capacité relative d'une plante à tolérer tous les symptômes primaires et secondaires résultants d'une invasion par un agent pathogène, sans essuyer de pertes importantes de croissance et de rendement (Clarke, 1986).

Comme il est précisé par Lepoivre (Lepoivre, 2003), les phénomènes de compensation peuvent être responsables de la tolérance à la maladie. Par exemple, chez certains cultivars dont les sommets sont soumis à des attaques d'agents

20

pathogènes, l'abscission de feuilles peut induire une production accrue de feuillage. Chez l'orge attaqué par l'oïdium, les zones non atteintes de la plante photosynthétisent davantage que les parties comparables d'une plante saine. De même, des variétés tolérantes à l'agent du piétin échaudage auraient un enracinement plus développé ou une capacité accrue de percement de nouvelles racines, comparé à une plante saine.

Enfin, la tolérance totale d'une plante à une infection par un parasite, sera déterminée d'une part par sa tolérance au parasite, et d'autre part par sa tolérance à la maladie provoquée par l'agent pathogène considéré. Elle peut être mesurée par le rapport entre l'accumulation de biomasse du parasite et la performance globale de la plante en terme de rendement et de croissance (Clarke, 1986).

III – Les réactions de défense des plantes

Que l'on évoque les interactions de type incompatible ou compatible, les réactions de défense des plantes se déroulent selon le même schéma. Les réponses de défense, race-specifique (résistance gène pour gène) et basale, sont similaires dans les évènements du signal de transduction, et mettent en place les mêmes types de molécules effecteur : les évènements induits sont les influx d'ions, l'alcalinisation des espaces extracellulaires, l'accumulation des formes actives de l'oxygène (FAO) et d'oxyde nitrique (NO), et la re-programmation transcriptionnelle. Cette dernière inclue la synthèse d'intermédiaires du signal de défense, comme l'acide salicylique (SA), l'acide jasmonique (JA) et l'éthylène (ET), la mort cellulaire programmée dans le cas de la réaction hypersensible, la synthèse de composés anti-microbiens comme les phytoalexines, la modification des parois cellulaires et l'activation des gènes de défense codant pour des protéines anti-microbiennes (Veronese *et al.*, 2003). Cependant, des évènements de reconnaissance individuelle dictent des voies de signalisation spécifiques, utilisant un ensemble distinct des messagers secondaires et activant une portion caractéristique de la machinerie complexe des défenses de la
plante (Feys et Parker, 2000). Le type d'interaction considéré, mènera ainsi à un type de résistance ou à la maladie du végétal (Zhou *et al.*, 1997 ; Maleck *et al.*, 2000). Nous comprenons bien ici que les réponses de défense de la plante puissent donc être fonction du mode de vie de l'agent pathogène considéré dans l'interaction. Ainsi, une plante ne mettra pas en oeuvre les mêmes voies de défense si elle est confrontée à un agent pathogène biotrophe ou à un agent pathogène nécrotrophe. De plus, un facteur, pourtant primordial à notre sens, qui n'est souvent pas pris en compte dans les défenses de la plante, est la multiplicité d'éliciteurs et de suppresseurs que les agents pathogènes mettent au contact des cellules végétales, ou secrètent. Il serait illusoire de penser que toutes ces molécules ne conduiraient qu'à un seul type de mécanisme de défense. Nous reviendrons sur ce point dans la partie consacrée à la discussion générale.

III – 1 Perception du signal éliciteur

L'étape qui va initier la mise en place de réactions de défenses par la plante, est la reconnaissance de l'agent pathogène grâce à la perception de molécules appelées éliciteurs. Dans le cas de la réaction incompatible (mise en place d'une résistance gène pour gène), les éliciteurs sont dits race-spécifiques. La reconnaissance, de façon directe ou indirecte, du produit d'un gène de résistance chez la plante, avec le produit d'un gène d'avirulence chez l'agent pathogène, conduira à la mise en place de la résistance. Nous ne développerons pas ici les modèles utilisés pour interpréter cette reconnaissance gène pour gène, ce type de résistance n'étant pas le sujet de nos travaux.

Dans le cas de la réaction dite compatible (sensibilité ou tolérance de la plante), les éliciteurs sont généraux. Ils se distinguent des éliciteurs race-spécifiques en induisant des réactions de défense quel que soit le cultivar considéré. Ils peuvent être de nature saccharidique : ce sont les glucanes, les oligomères de chitine ou le chitosane d'origine parasitaire, et les oligosaccharines végétales libérées par les enzymes du

22

parasite. Ce peuvent également être des protéines, des glycoprotéines ou des lipides. Nous pouvons citer comme exemples d'éliciteurs généraux, la flagelline des bactéries, ou encore Pep-13. La flagelline est le constituant majeur du flagelle bactérien ; elle induit les réponses associées aux défense des plantes chez de nombreux végétaux (Felix *et al.*, 1999). Pep-13 est un fragment peptidique interne à une protéine pariétale de *Phytophthora sojae* (oomycète pathogène du soja). Il est retrouvé chez d'autres *Phytophthora* (incluant *P. infestans*), et restreint au genre *Phytophthora*.

III – 2 Transduction du signal

Le signal de transduction fait le lien entre la reconnaissance de l'agent pathogène et les réponses de défense par le biais de messagers secondaires.

III – 2 – 1 La modification des flux ioniques

Les réactions les plus précoces de la cellule, en réponse à des éliciteurs, sont des modifications de la perméabilité membranaire qui vont engendrer une perte d'électrolytes dans la cellule (efflux d'ions K⁺ et CL⁻, influx d'ions H⁺ et Ca²⁺). Ces flux d'ions sont non seulement nécessaires, mais aussi suffisants pour induire le choc respiratoire, la production de phytoalexines et l'activation des gènes de défense (Jabs *et al.*, 1997).

III – 2 – 2 La production de formes actives d'oxygène (FAO)

Les FAO et NO sont des messagers secondaires essentiels, tant pour l'activation de gènes liés à la défense que pour la mise en place de la mort cellulaire programmée.

Le contact entre le récepteur de la plante hôte et l'éliciteur d'un microorganisme phytopathogène va engendrer une exaltation de la consommation d'oxygène et une production importante de FAO. Cette première étape est appelée

23

« choc respiratoire » ou « burst oxydatif » en Anglais. Lors de la réaction hypersensible, ce choc se produit dans les minutes qui suivent la libération d'éliciteurs de l'agent pathogène au contact du végétal. La réduction d'O2 en molécule d'eau peut se réaliser en quatre étapes générant des formes d'O2 très réactives, de plus en plus réduites. La première réduction conduit à la formation de l'anion superoxyde (O2°). Plusieurs enzymes peuvent produire cet anion, notamment une NAD(P)H-oxydase de la membrane végétale et une peroxydase pariétale pHdépendante (Bolwell, 1999). La deuxième réduction conduit à la production d'eau oxygénée (H2O2) par dismutation spontanée de l'eau ou après catalyse par la superoxyde dismutase (SOD). Les glucose-oxydases, des amine-oxydases ou encore des NAD(P)H-oxydases, peuvent réduire directement O2 en H2O2. Les troisièmes et quatrièmes réductions seront à l'origine de la formation d'un radical hydroxyle (OH°) et d'eau. Le peroxyde d'hydrogène est également généré dans les chloroplastes, les mitochondries ou encore les peroxysomes (Neill et al., 2002) (figure 2). De nombreux rôles possibles pour les FAO ont été proposés. Leur implication dans l'oxydation et l'insolubilisation des protéines de l'hôte est indéniable, résultant par exemple en l'enchevêtrement de glycoprotéines O-glycosylées, en particulier celles contenant de l'hydroxyproline (Bolwell et Wojtaszek, 1997). Ce phénomène va contribuer à renforcer la paroi de l'hôte, des liaisons covalentes assurant la réticulation de ces protéines. Ce processus fait partie intégrante de la formation de papilles, autrement appelées appositions. Les FAO interviennent aussi dans la formation de lignine (Sticher et al., 1997). Agissant de concours avec l'oxyde nitrique, elles seraient également impliquées dans la mort cellulaire programmée : c'est la balance entre la production de H₂O₂ et NO qui entraînerait la mort cellulaire lors de la réponse hypersensible (Delledonne, 2001).

Figure 2 : Modèle de production des formes réactives d'oxygène et de leurs effets sur les réactions de défense de la plante (d'après Lepoivre, 2003).

D'autres travaux ont pu mettre en évidence le rôle du peroxyde d'hydrogène dans l'activation des cascades de MAP (Mitogen Activated Protein) kinases (Laloi *et al.,* 2004). Enfin, l'activation transcriptionnelle de gènes par H₂O₂ tels que la glutathione-S-transférase ou encore la phénylalanine ammonia-lyase (enzyme clé de la voie de biosynthèse des phénylpropanoïdes) est également bien documentée (Lamb et Dixon, 1997).

III – 2 – 3 La production d'oxyde nitrique (NO)

Chez les plantes, l'oxyde nitrique prend sa source à partir d'arginine ou de nitrite. Durant la H.R., une forte production de NO va engendrer l'induction des gènes de défense comme *PAL* et *PR1* (Pathogenesis-Related), et participer à la mise en place de la mort cellulaire avec H₂O₂. Par ailleurs, une relation évidente entre NO et l'acide salicylique (SA) a été mise en évidence. Le traitement de plants de tabac avec la molécule NO induit une production substantielle de SA endogène, requise pour l'expression des gènes *PR1*(Durner *et al.*, 1998). Pour conforter cette hypothèse, des travaux ont pu mettre en évidence qu'en présence d'inhibiteurs de NO, la résistance systémique acquise (SAR pour Systemic Acquired Resistance), induite par SA, était atténuée (Song et Goodman, 2001). Chandok *et al.* (2003) ont pu mettre mis en évidence le rôle de NO dans la résistance de la tomate à *Pseudomonas syringae*, par la suppression d'une oxyde nitrique synthase inductible par les agents pathogènes. Le tableau 1 offre un résumé des classes de gènes régulées par NO chez les plantes.

III – 2 – 4 La phosphorylation des protéines

La phosphorylation, modification covalente et réversible la mieux connue chez les protéines, peut modifier l'activité biologique d'une protéine, sa localisation et sa durée de vie (Xing et al., 2002). Les cascades de phosphorylation font intervenir des MAPK (Mitogen Activated Protein Kinase) et des CDPK (Calcium-Dependant Protein Kinase). Une évidence de l'implication de ces kinases dans la transduction du signal en réponse à un stress biotique provient du fait que lorsque des cellules végétales sont traitées avec un inhibiteur général de sérine/thréonine kinases (comme le K-252a ou la staurosporine), tous les évènements rapides de signalisation liés à la défense sont abolis. Un tel traitement entraîne ainsi des modifications de certains événements impliqués dans la défense comme l'alcalinisation extracellulaire (Felix et al., 1991; Mathieu et al., 1996), le burst oxydatif induit par des oligogalacturonates (Chandra et Low, 1995; Mathieu et al., 1996), la transcription de gènes de défense (Suzuki et Shinshi, 1995), ou encore la biosynthèse d'éthylène (Felix et al, 1991). Quelquefois cependant, ce peut être la déphosphorylation qui est à l'origine des évènements précoces liés à l'élicitation. Pour preuve, le modèle Cladosporium fulvum/tomate pour lequel l'ajout d'acide okaïdique, un inhibiteur de phosphatase, inhibe la production de FAO ainsi que l'activité H⁺-ATPasique, alors que la

Gènes régulés par NO	^a Effet sur l'expression	Source de NO
Enzymes impliquées dans la synthèse de JA	+	NO gazeux
	-	Donneurs de NO, gazeux
Gènes répondant à JA	+ ^b	NO
Enzymes impliquées dans la	+	Donneur de NO
synthese a eurylene	+	Cryptogéine
Protéines impliquées dans la signalisation de l'éthylène	+	Donneur de NO
Gènes de protéines PR	+	Donneurs de NO
	+	Tobacco Mosaic Virus (TMV)
Enzymes de la voie des	+	Donneurs de NO
phénylpropanoïdes	+	Pseudomonas syringae
Protéines anti-oxydantes et	+	Donneurs de NO
autres protéines de protection	+	Cryptogéine
Protéines de signalisation	+ ou -	Donneur de NO
Protéines impliquées dans la photosynthèse	+	Donneur de NO
Protéines impliquées dans le trafic cellulaire	+	Donneur de NO
Protéines putatives de mort cellulaire	+	Donneur de NO
Protéines du métabolisme de base	+ ou -	Donneurs de NO
Protéines répondant à l'auxine	+	Donneur de NO
Ferritine	+	Donneur de NO
Gènes de fonction inconnue	+	Donneurs de NO

Tableau 1 : classes de gènes régulés par NO chez les plantes (d'après Wendehenne et al., 2004.)

^a +, régulation positive par NO ; -, régulation négative par NO. ^b seulement chez les plantes transgéniques NahG d'*Arabidopsis* déficientes en SA.

staurosporine est sans effet (Vera Estrella et al., 1994a, Vera Estrella et al., 1994b).

III – 3 La réponse des plantes

Les modifications métaboliques, qui participent à la lutte contre l'infection, consistent en la stimulation de certaines voies métaboliques secondaires, au renforcement de la paroi pecto-cellulosique et en la production de toute une gamme de protéines de défense.

III – 3 – 1 Les métabolites secondaires

Les plantes élaborent un grand nombre de produits naturels, dont certains ont évolué afin de conférer des avantages sélectifs contre les attaques microbiennes. Ces produits, de faible masse moléculaire, sont également connus sous le nom de métabolites secondaires. On les distingue des composants du métabolisme primaire, du fait qu'ils ne sont généralement pas essentiels pour les processus métaboliques de base de la plante. La plupart sont dérivés des voies des phenylpropanoïdes, des isoprénoïdes, des alcaloïdes ou des acides gras. Les plantes d'une même famille utilisent généralement des structures chimiques similaires pour la défense (par exemple, les isoflavonoïdes chez les légumineuses ou les sesquiterpènes chez les solanacées). Quelques espèces produisent une large gamme de composés antimicrobiens. Le cacao, par exemple, quand il est infecté par le champignon vasculaire *Verticillium dahliae,* accumule l'acide arjunolique (un triterpène pentacyclique), deux acétophénones hydroxylées, et de façon plus inhabituelle, le soufre élémentaire, le seul agent anti-microbien inorganique connu chez les plantes. La plupart des produits anti-microbiens des plantes ont un large spectre d'activité, et la spécificité est souvent déterminée par le fait ou non, que l'agent pathogène possède la machinerie enzymatique pour détoxifier un produit de l'hôte particulier (Dixon, 2001). Des mutants de l'agent pathogène fongique des racines de l'avoine, Gauemannomyces graminis, ayant perdu l'enzyme avenacinase, ne sont plus capables de détoxifier l'avenacine, une saponine triterpène. Ils ont perdu leur pathogénicité

sur l'avoine, mais sont toujours pathogènes du blé, qui ne produit pas de saponines (Bowyer *et al.*, 1995). De la même façon, la disruption du gène *MAK1* chez l'agent pathogène fongique *Nectria haematococca*, mène à une incapacité à détoxifier la phytoalexine maackiain, et réduit la virulence de l'agent pathogène sur le pois chiche (Enkerli *et al.*, 1998).

III – 3 – 2 Le renforcement des parois

Dans les mécanismes de défense que la plante met en place lorsqu'elle est confrontée aux facteurs de pathogénicité des parasites, nous trouvons les barrières qui agissent comme des barrières physiques, ralentissant le structurales, développement de l'agent pathogène. Les appositions sont l'une des modifications anatomiques les plus courantes chez les plantes mises en présence d'un champignon. Elles consistent en la formation de dépôts entre la paroi et la membrane de la cellule de l'hôte au contact du parasite. Ces appositions peuvent se limiter à l'interface avec le coin de pénétration de l'hyphe (papilles, constituées principalement de callose, de polyphénols, de protéines, de matières pectiques, de suber, de silice, de calcium et/ou de lignine), ou constituer une encapsulation complète des structures interfaciales (suçoirs des champignons biotrophes). Dans les protéines de parois, nous trouvons des protéines riches en glycine (GRP, Glycin Rich Protein), en proline (PRP, Prolin Rich Protein) ou en hydroxyproline (HRGP, hydroxyprolin Rich GlycoProtein). Ces protéines sont des constituants normaux des parois primaires végétales. Cependant, sous l'effet de H₂O₂ produit lors du choc respiratoire et de peroxydases également induites lors de l'infection, ces protéines sont oxydées et insolubilisées, ce qui contribue à renforcer la paroi (Lepoivre, 2003).

III – 3 – 3 Les protéines de défense

L'arsenal défensif des plantes comprend de nombreux peptides et protéines de défense. Les protéines P.R (Pathogenesis related) ont été caractérisées pour la première fois chez le tabac réagissant de façon hypersensible à l'infection par le V.M.T. (virus de la mosaïque du tabac), (Gianinazzi et al., 1970; Van Loon et Van Kammen, 1970). Elles ont des propriétés physico-chimiques communes qui leur sont spécifiques : elles sont très stables en milieu acide et résistent à l'action des protéases produites par la plante elle-même ou par les micro-organismes pathogènes. Ces deux propriétés leur confèrent une grande stabilité dans les environnements défavorables où elles s'accumulent, notamment dans la vacuole, et dans les espaces intercellulaires occupés par les agents pathogènes. Bien qu'elles soient produites abondamment, l'identification de leur activité biologique a été difficile. Il a été montré que certaines ont une activité enzymatique identique à celle de la ß-1,3-glucanase ou de la chitinase (Kauffmann, 1987), enzymes qui dégradent, parfois en synergie, la paroi des champignons et des bactéries. Depuis, l'activité biologique d'autres protéines P.R. a été élucidée. Certaines inhibent des protéases ou des polygalacturonases microbiennes, importantes pour le pouvoir pathogène des micro-organismes : les protéines P.R. désarment ainsi leur agresseur. Aujourd'hui, on a établi que les protéines P.R. sont présentes dans toutes les plantes et ont toutes d'intenses activités antifongiques et antibactériennes (d'après Kauffmann, 2000). Jung et al. ont caractérisé des protéines P.R. du tournesol induites par l'acide acétylsalicylique (tableau 2) (Jung et al., 1993). Veronese et al. (2003) ont établi un classement des protéines et peptides anti-microbiens sur la base de leur séquence, de leur structure et de leur fonction relative (Tableau 1, en annexe 1). Ces données révèlent que nombre de ces peptides et protéines sont effectives contre seulement certains agents pathogènes et totalement inefficaces contre les autres, in vitro. La cible de ces protéines est donnée par les mêmes auteurs (Tableau 2, en annexe 1).

Type de protéine P.R.	Nombre d'isoformes	Poids moléculaire	Points isoélectriques	Localisation
Туре 1 Туре 2	1	17 kD	Acide	Extracellulaire
(ß-1,3- glucanases)	3	Autour de 40 kD	Un basique, un neutre et un acide	Extracellulaire
Type 3 (Chitinases)	2	29 kD et 37 kD	Acide 2 acides, 2	Extracellulaire
Type 5	5	Autour de 20 kD	neutres et 1 basique	Extracellulaire

Tableau 2 : classification et caractéristiques générales des protéines P.R. du tournesol

III – 3 – 4 L'acide jasmonique

L'acide jasmonique et son dérivé volatile le méthyljasmonate (MeJa), communément appelés les jasmonates, sont des hormones de stress de la plante qui agissent comme régulateurs des réponses de défense. Le rôle des jasmonates (JAs) dans les défenses des plantes a été proposé par Farmer et Ryan (1992) qui faisaient un lien de cause à effet entre une blessure (comme celles causées par les insectes herbivores), la formation de JAs, et l'induction de gènes codant pour des inhibiteurs de protéases. Ils ont émis l'hypothèse qu'une blessure pouvait provoquer la libération d'acide linolénique, le précurseur présumé des JAs, à partir des lipides membranaires. De nouvelles évidences oeuvrent pour le fait que la voie des jasmonates est en fait plus complexe : les intermédiaires dans la voie de biosynthèse de l'acide jasmonique (JA) ont des activités biologiques distinctes, l'ubiquitine ligase E3 régule la plupart des réponses de JA chez *Arabidopsis*, et la voie de JA interagit avec d'autres voies du signal de défense.

III – 3 – 5 L'acide salicylique

L'implication de l'acide salicylique (SA) comme molécule signal dans les défenses locales et la résistance systémique acquise (SAR) a été largement étudié. Une augmentation du niveau de SA endogène et de ses conjugués, dans des plantes inoculées avec un agent pathogène, coïncide avec des niveaux d'expression élevés des gènes codant pour des protéines PR et une activation de la résistance à la maladie. En prévenant la synthèse de SA, par sa dégradation en catéchol dans des plantes transgéniques exprimant le gène bactérien de la salicylate hydroxylase (*NahG*), ou en bloquant la synthèse de SA, on parvient à bloquer les réponses de défense des plantes dépendantes de la voie de SA. Le gène d'*Arabidopsis thaliana NPR1 (NON-EXPRESSOR OF PR1)*, également appelé *NIM1 (NON-INDUCIBLE IMMUNITY1*), est un composant important de la voie de SA. Les plantes mutantes *npr1* et *nim1* sont insensibles à SA, et cela compromet leur résistance aux maladies (Shah, 2003). Il existe également chez *Arabidopsis* des mécanismes de résistance médiés par SA, mais indépendants de NPR1 (Dong, 2001).

III – 3 – 6 L'éthylène

L'éthylène (ET) est une hormone qui régule de nombreux processus chez les plantes ; elle semble jouer un rôle important dans les mécanismes de défense (Wang *et al.*, 2002). Cependant, selon le type d'agent pathogène et l'espèce de plante considérés, le rôle de l'éthylène peut être complètement différent. Des plantes affectées dans la biosynthèse de cette hormone peuvent montrer une sensibilité accrue ou, au contraire, une résistance plus élevée aux agents pathogènes. Pour exemples, des mutants de soja possédant une sensibilité réduite à ET exhibent mois de symptômes chlorotiques lorsqu'ils sont au contact des souches virulentes de *Pseudomonas syringae pv glycinea* et *Phytophthora sojae*, alors qu'à l'opposé des souches virulentes des champignons *Septoria glycines* et *Rhizoctonia solani* provoquent des symptômes plus sévères (Hoffman *et al.*, 1999). Chez *Arabidopsis*, le mutant *ein2*

(*ethylene insensitive2*) développe des symptômes minimes, résultant d'une tolérance accrue à la maladie, lorsqu'il est infecté par les souches virulentes de *P. syringae* pv *tomato* ou *Xanthomonas campestris* pv *campestris* (Bent *et al.*, 1992). Cependant, ce même mutant *ein2* possède une sensibilité accrue au champignon nécrotrophe *Botrytis cinerea* (Thomma *et al.*, 1999). Sur la base de ces observations, il semblerait que l'éthylène inhibe le développement des symptômes en réponse à un agent pathogène nécrotrophe, et accentue la mort cellulaire causée par d'autres types de micro-organismes infectieux (Wang *et al.*, 2002).

Si les voies JA, SA et ET semblent avoir chacune un rôle particulier à jouer dans les réactions de défense des plantes, l'existence d'interactions entre ces mêmes voies n'est maintenant plus à démontrer. JA et ET agiraient de concours pour médier les réponses de défense contre l'attaque d'agent pathogènes, en partie par l'induction de gènes de défense tel que *PLANT DEFENSIN1.2 (PDF1.2)*. Une étude de Lorenzo *et al.* (2003), définit ERF1 (ETHYLENE RESPONSIVE FACTOR1) comme un composant commun aux deux voies JA et SA. L'expression de *ERF1* est induite par les deux hormones, et la sur-expression de *ERF1* restaure les réponses de défense observées chez les mutants insensibles à JA. De nombreux articles de synthèse relatent ces faits (Thomma *et al.*, 2001; Kunkel et Brooks, 2002).

IV – Le tournesol

Le tournesol doit son nom à son héliotropisme spectaculaire, l'ensemble de la partie aérienne de cette plante se déplaçant afin de rester face au soleil du matin au soir; au moment de la floraison, ce mouvement s'arrête cependant, le capitule demeurant alors face au soleil levant.

Le tournesol est une des rares espèces dont la culture a commencé en Amérique du Nord. Les Russes ont ensuite permis son essor en tant que plante de grande culture. Aujourd'hui, c'est l'une des cultures oléagineuses les plus importantes dans le monde, avec le coton, le colza, le soja et l'arachide (Figure 2). Le tournesol peut même être considéré comme la première plante annuelle cultivée spécifiquement pour son huile.

Figure 2: Répartition de la production mondiale des graines oléagineuses en 2002/2003 (a), production mondiale d'huile et graisses végétales en 2002 (b) et répartition de la production mondiale de tourteaux en 2002 (c).

Les principaux pays producteurs sont actuellement l'ex-URSS (4 millions d'hectares), l'Argentine (2,3 millions d'hectares) et la CEE (2,5 millions d'hectares) (Source : INRA). En France, en 2004, la surface atteignait presque 600 000 hectares (Figure 3) et reste constante au 1^{er} mai 2005. Elle gagnerait 5 %, mais resterait inférieure à la moyenne quinquennale (2000- 2005 : 672 000 Ha). La hausse serait de 7 % en Midi-Pyrénées, 5 % dans le Centre et 3 % en Poitou-Charentes (Source Agreste).

Figure 3 : Tournesol alimentaire : carte de répartition des surfaces en 2004 (source SCEES et ONIOL)

Le rendement moyen mondial est de quelque 13 quintaux à l'hectare. C'est en France, où sont produits entre 20 et 25 quintaux à l'hectare, qu'il est de loin le plus élevé. La France, où le tournesol est devenu en quelques années l'une des principales cultures industrielles, est ainsi l'un des premiers producteurs mondiaux avec un score de plus de trois millions de tonnes de graines consommables chaque année. Le tournesol est un plante très appréciée des agriculteurs, sa culture - de printemps – étant moins exigeante en eau que celle du maïs. Son attractivité tient également à une conjoncture économique favorable (coûts de production peu élevés, subventions), bien qu'incertaine, en raison d'une intensification difficile à valoriser et de faiblesses génétiques vis-à-vis des attaques parasitaires. Par ailleurs, les diverses utilisations agro-alimentaires du tournesol n'ont pas manqué de retenir l'attention des industriels. L'huile contenue dans les graines, à hauteur de 45% en moyenne, est aujourd'hui consommée dans de nombreux pays, pour son aptitude culinaire et ses qualités organoleptiques et diététiques. Les tourteaux, produit secondaire de la pression des graines lors de l'extraction de l'huile, contiennent jusqu'à 35% de protéines, ce qui fait d'eux un bon aliment de base pour les animaux d'élevage polygastriques. Quant aux graines, les plus grosses, à faible teneur en huile (autour de 20%), sont particulièrement prisées par l'homme, notamment en Espagne. Autre point important, l'huile de tournesol peut être utilisée directement comme biocarburant dans les moteurs diesel, ou après estérification en ester méthylique. Ces derniers temps, l'augmentation du prix du pétrole a conduit à s'interroger sur l'utilisation des huiles végétales comme substitut aux carburants fossiles. L'huile de tournesol est une bon candidate, et ce pour plusieurs points : son indice de cétane (qui mesure l'aptitude à l'auto inflammation) est très faible (30 contre 48-50 pour le gazole), ainsi que son risque d'inflammation, avec un point de fusion à 316°C; sa miscibilité est excellente avec le gazole, et à tout moment il reste possible de s'approvisionner en gazole ; son stockage est très facile ; il s'agit d'un corps stable très peu dangereux et peu polluant, son indice d'évaporation est extrêmement faible comparé à l'essence et même au gazole. D'un point de vue économique, la quantité d'énergie utilisée pour tous les travaux agricoles nécessaires à la culture du tournesol (labourage, récolte, transport, etc...) et l'énergie indirecte destinée à la fabrication des engrais, pesticides, insecticides et l'énergie nécessaire à la trituration, etc... est inférieure à la valeur énergétique de la production de tournesol (en y incluant les sous-produits comme les tourteaux): la culture extensive du tournesol permet d'obtenir 6,4 fois l'énergie initiale contre seulement 2,4 pour l'EMC (ester méthylique de colza). Ainsi, il apparaît que l'utilisation de l'huile de tournesol comme biocarburant présente incontestablement de nombreux avantages (http://valenergol. free.fr/presse/Conference-Presse-Bercy.htm).

Enfin, les qualités des variétés hybrides étant bien supérieures à celles des variétés classiques, c'est un marché très prolifique qui s'est ouvert aux semenciers avec le développement du tournesol. L'agriculteur, ne pouvant pas produire les semences de type hybrides dans son champ par simple multiplication, est en effet obligé de les acheter aux producteurs spécialisés pour pouvoir semer. Il existe ainsi aujourd'hui en France une vingtaine de firmes privées sélectionnant le tournesol (Source : INRA).

Les stades repères de la culture du tournesol sont donnés en annexe 2.

V – Les principales maladies du tournesol

Avec le développement de la culture du tournesol, plusieurs maladies ont émergé, provoquant des dommages plus ou moins importants. Ainsi, dans les années 1960, la pourriture grise du capitule (*Botrytis cinerea*), puis le Mildiou (*Plasmopara halstedii*) ont causé des dégâts considérables. D'autres champignons devenaient préoccupants de par leur extension progressive (*Sclerotinia sclerotiorum* et *Macrophomina phaseoli* Maulb.) alors que d'autres étaient sans conséquences notables (*Puccinia helianthi* et *Alternaria helianthi*). Ces vingt-cinq dernières années, Phomopsis (*Phomopsis helianthi*) et Phoma (*Phoma macdonaldii*) sont sur le devant de la scène. Si le phomopsis, après une attaque catastrophique en 1992 dans le sud-ouest français, est maintenant mieux maîtrisé, le phoma poursuit sa progression de façon inquiétante. Présent dans tous les grands bassins de production, ses attaques se sont agravées depuis son apparition, et sa contribution déterminante au phénomène « pieds secs » en est une claire illustration (Jouffret et Penaud, 2005). Le tournesol est enfin sensible à d'autres champignons tels que *Verticillium dahliae* Kleb., *Albugo tragopogonis, Rhizopus, Erysiphe*, à des bactéries comme *Erwinia* ou *Pseudomonas* et à des plantes parasites comme l'illustre l'orobanche, responsable de dégâts importants en Europe de l'Est et en Espagne.

V – 1 Le mildiou

L'agent responsable du Mildiou est l'oomycète Plasmopara halstedii, dont il existe actuellement au moins 13 races physiologiques. Ces races sont caractérisées en fonction de la réponse à l'infection de différentes lignées de tournesol appelées hôtes différentiels, ces lignées étant résistantes à une ou plusieurs races de Mildiou, et sensibles à d'autres. Nous sommes ici en présence d'une résistance verticale de type monogénique, avec un gène de résistance dominant. Il existe plusieurs gènes de résistance au champignon chez le tournesol. Appelés Pl, ils sont organisés en clusters. Radwan (2004) a récemment proposé un modèle dans lequel la réaction hypersensible et la SAR agiraient de concert pour conduire à la résistance à ce parasite. Le Mildiou est présent dans le monde partout où le tournesol est cultivé . En France, en raison d'un printemps pluvieux en 2004, des attaques ponctuellement fortes de la maladie ont pu être observées, associées à l'apparition de 5 nouvelles races. L'intégration de plusieurs gènes de résistance s'avère ainsi nécessaire dans la sélection de nouveaux génotypes. Cette stratégie permet d'augmenter la durée d'utilisation de chaque gène avec une pression de sélection sur la population de l'agent pathogène la plus faible possible.

V-2 Le phomopsis

Le phomopsis (agent responsable: *Phomopsis helianthi*) est un champignon phytopathogène capable d'entraîner d'importantes pertes de rendement sur tournesol. La résistance au phomopsis est une résistance partielle, mettant en jeu plusieurs gènes de façon additive (Vranceanu *et al.*, 1993). Viguié *et al.* (1999) ont confirmé le caractère quantitatif de la résistance avec des effets additifs dominants, et ont également mis en évidence l'existence d'une interaction entre les souches de phomopsis et les génotypes de tournesol, sans qu'il y ait pour autant d'inversion du

38

classement des hybrides. Au cours de ces vingt dernières années, la création de variétés à bon ou très bon niveau de tolérance a permis une avancée spectaculaire en matière de lutte contre le phomopsis. Dès l'arrivée de la maladie en France, dans les années quatre-vingts, les semenciers n'ont pas hésité à utiliser le matériel génétique en provenance de l'Europe de l'Est (Bulgarie, Roumanie, Hongrie, ex Yougoslavie et surtout Serbie), qui présentait une bonne tolérance à l'agent pathogène. Cependant, ce matériel a dû être fortement amélioré du fait de ses faibles niveaux de productivité et de sa faible richesse en huile. L'INRA, qui a cherché à introduire des caractères favorables d'espèces sauvages d'*Helianthus* dans le tournesol, a également permis l'obtention de pools génétiques intéressants mis à la disposition des agriculteurs.

V – 3 Le sclérotinia

En France, le tournesol est très sensible à la pourriture blanche ou sclérotiniose, dont l'agent pathogène est *Sclerotinia sclerotiorum* (Lib.) de Bary. Ce champignon est très polyphage et nécrotrophe. La résistance du tournesol à *S. sclerotiorum* est un caractère quantitatif et polygénique; elle n'est donc pas spécifique de la race de l'agent pathogène, ni totale. Par ailleurs, la réaction de la plante hôte varie selon l'organe infecté (Thuault et Tourvieille, 1988). Aucune corrélation n'a été détectée entre les réponses des génotypes aux attaques sur racine et sur collet par le mycélium, sur tige, sur bourgeon terminal et sur capitule par les ascospores ; il est nécessaire d'évaluer la résistance aux différentes formes d'attaques (Tourvieille et Vear, 1990). Les effets additifs sont prédominants pour la résistance aux infections sur feuille et sur capitule (Castano *et al.*, 1992 ; Vear et Tourvieille, 1988). Les résistances des différents organes à *S.sclerotiorum* sont moyennement à fortement héritables, puisque l'héritabilité au sens strict de la résistance des feuilles et du collet est de 0.6 et celle du capitule de 0.8 (Castano *et al.*, 1992 ; Mestries *et al.*, 1998).

39

V – 4 Phoma macdonaldii, le Phoma du tournesol

La maladie des taches noires du tournesol, dont l'agent causal est le champignon *Phoma macdonaldii*, devient de plus en plus préoccupante, notamment en France. Elle entraîne une diminution de la qualité des huiles, une diminution du poids de mille grains et des pertes de rendement de l'ordre de 10 à 30%, voire 70% lorsque l'agent pathogène est à l'origine d'une sénescence prématurée de la plante. Elle vient d'être reconnue deuxième maladie plus importante en France par les acteurs de la filière tournesol (communication personnelle).

V – 4 - 1 Biologie du champignon

C'est en 1964 que Mac Donald (Mac Donald, 1964) au Canada et Frezzi (Frezzi, 1964) en Argentine ont désigné le champignon responsable des taches noires du tournesol sous le nom de *Phoma oleracera* var. *Helianthi-tuberosi*. Plus tard, en 1970, Boerema (Boerema, 1970), en se fondant sur des critères de forme et de comportement en culture, a conclu qu'il s'agissait plutôt d'une nouvelle espèce de champignon, qu'il a décrit sous le nom de *Phoma macdonaldii* Boerema.

Ce champignon se présente sous deux formes :

- Une forme sexuée ou parfaite : Leptosphaeria lindquistii Frezzi ;
- Une forme asexuée ou imparfaite : Phoma macdonaldii Boerema.

	Forme sexuée = téléomorphe	Forme asexuée = anamorphe	
	Leptosphaeria lindquistii Frezzi	Phoma macdonaldii Boerema	
Embranchement	Eumycètes	Deutéromycètes	
Sous-embranchement	Pyrénomycètes	Coelomycètes	
Ordre	Pléosporales	Sphaeropsidales	
Famille	Pléosporacées	Hyalosporées	

Les organes de reproduction asexuée sont des pycnides de couleur brun foncé à noir. Elles contiennent des pycniospores unicellulaires, ovoïdes, plus ou moins allongées, et pourvues d'un seul noyau ainsi que de deux globules lipidiques. Ces dernières, présentes pendant toute l'année, sont responsables des contaminations primaires et secondaires. Les pycnides, variables en taille et en nombre selon les souches, libèrent un cirrhe épais de couleur gris blanc à rose contenant les pycniospores. Celles-ci sont libérées par la dissolution du cirrhe sous l'action de l'eau. La germination optimale des pycniospores s'effectue, *in vitro*, à une concentration de 10⁶ spores par millilitre, une température comprise entre 15 et 30°C selon l'isolat, un pH de 6 et une humidité relative de 95 à 100% ; elle est photo-indépendante (Roustaee *et al.*, 2000c).

Les organes de la reproduction sexuée, sont des périthèces de forme globulaire à col très court, de couleur foncée. Ils renferment des asques en forme de massue, ainsi que des filaments stériles, les paraphyses. Les asques contiennent huit ascospores, peu ou pas colorées, pluricellulaires (deux à quatre cellules), responsables uniquement des contaminations primaires. En effet, la forme sexuée apparaît au mois de mars sur les cannes des tournesols ayant passé l'hiver en champ. Les périthèces ont une forme globulaire à col court et sont de couleur foncée (Penaud et Péres, 1994). Le cycle biologique du champignon est donné figure 4.

Figure 4 : Cycle biologique de Phoma macdonaldii

V – 4 - 2 Caractéristiques phénotypiques, variabilité phénotypique et moléculaire

V – 4 - 2 – 1 Caractéristiques phénotypiques

Phoma macdonaldii présente une variabilité phénotypique importante, tant au niveau de la croissance radiale ou de la morphologie des colonies, que du mycélium (Roustaee *et al.*, 2000b). Une telle variabilité a été observée chez d'autres espèces de Phoma (*Phoma lingam* : Hassan et al., 1991 ; *Phoma exigua* : Decognet, 1994 ; *Phoma medicaginis* : Angevain, 1984).

Le phoma se développe sur des milieux aussi divers que celui de Fries, Malt Agar, Potato Dextrose Agar (PDA), ou Czapek-Dox. Sur milieu PDA, le mycélium présente une couleur gris-olive caractéristique d'après la nomenclature de Rayner (1970). Certaines souches libèrent des anthraquinones dans le milieu de culture après la lyse du mycélium. Selon les souches, on note la présence de zones concentriques, dues au photopériodisme, au niveau desquelles se différencient les pycnides (Figure 5).

Figure 5 : croissance de la souche MP6 sur milieu PDA.

La croissance des souches est optimale pour des températures de l'ordre de 20 à 30°C, avec un pH compris entre 4 et 5. La croissance est inhibée par des températures extrêmes telles que 5 ou 35 °C. En milieu agité, le mycélium se développe sous une forme très caractéristique, les « pellets » ou pelotes de mycélium.

In vitro, la germination optimale des pycniospores s'effectue dans les conditions suivantes : une concentration de 10⁶ spores par millilitre, une température comprise entre 15 et 30°C selon l'isolat, un pH de 6 et une humidité relative de 95 à 100%. La germination des pycniospores est photo-indépendante (Roustaee, 2000c).

V – 4 - 2 – 2 Variabilité phénotypique et moléculaire

Larfeil a pu mettre en évidence une importante variabilité phénotypique de *P.macdonaldii* au niveau de la croissance, de la pycnidiogenèse, de l'agressivité, de la morphologie culturale et de la pigmentation. La croissance du champignon est majoritairement photostimulée. Elle est optimale pour des températures de 25 ou 30°C selon les souches. La croissance à 25°C, à la lumière, est corrélée négativement avec l'agressivité. Par ailleurs, les souches issues de symptômes sur tige sont globalement plus agressives, sur tige, que celles provenant de symptômes sur collet. Le caractère agressif des isolats peut également être relié à une origine géographique : le Sud-Ouest, ainsi qu'à une pigmentation non caractéristique de la

culture. D'autre part, le Phoma présente un fort polymorphisme génétique. Cependant, aucune corrélation n'a pu être mise en évidence entre les caractéristiques phénotypiques et moléculaires des souches (Larfeil, 2003).

V – 4 - 3 Les symptômes

Au champ, le tournesol est sensible à la maladie depuis le stade cotylédonaire jusqu'à la floraison, avec une sensibilité légèrement moins forte aux stades précoces. Tous les organes de la plante peuvent être attaqués : racines, collet, tige, feuille et capitule. Une corrélation positive a été mise en évidence par Abou Al Fadil entre les réponses des génotypes aux attaques sur tige et sur collet , mais reste cependant à confirmer (communication personnelle).

V – 4 - 3 – 1 Symptômes sur collet

Sur le collet, des macules noires peuvent apparaître très tôt suite à des contaminations très précoces indépendantes du stade de la plante (figure 6). Ces symptômes entraînent parfois la formation de crevasses profondes. Sur les variétés sensibles, les nécroses sont allongées, crevassées, encerclant la tige et entraînent une sénescence prématurée de la plante. Abou Al Fadil a mis en évidence que des contaminations racinaires pourraient être à l'origine des symptômes sur collet (communication personnelle).

Figure 6 : symptômes de la maladie du Phoma sur collet

V – 4 - 3 – 2 Symptômes sur tige

Ils sont caractérisés par des taches noires sur le nœud foliaire (figure 7). Sur les variétés très sensibles, les nécroses au niveau de nœuds très proches deviennent encerclantes et coalescentes, allant jusqu'au noircissement total de la tige, d'où le nom de « black stem » donné à la maladie. Larfeil a pu observer que certaines nécroses très profondes pouvaient atteindre la moelle, et ainsi entraîner la cassure de la tige (Larfeil, 2003).

Les symptômes sur tiges sont fréquents, et ce quel que soit le stade auquel il y a eu contamination. Leur délai d'apparition est d'autant plus rapide que la contamination est intervenue à des stades âgés. L'ensemble des symptômes sur tige et collet, favorisant le dessèchement de la plante, se traduit par une perte de rendement.

Figure 7 : symptômes de la maladie du Phoma sur tige

V – 4 - 3 – 3 Symptômes sur feuille

La contamination s'effectue de façon privilégiée au point d'insertion du pétiole sur la tige, en forme d'auget, propice à la rétention d'eau, et ainsi à la germination des spores et à la pénétration du champignon. L'infection peut également se produire le long du pétiole, sur la rainure centrale. Les symptômes sur pétioles se caractérisent par des taches brunes à noires, qui progressent vers la tige et le limbe. Sur le limbe, les nécroses, d'abord superficielles, se propagent le long des nervures principales, formant ainsi un symptôme dit « en patte d'oie », caractéristique de la maladie (Figure 8). De petites lésions linéaires et noires peuvent également se propager le long des nervures principales et plus particulièrement le long de la nervure centrale. Des nécroses noires, de petite taille, peuvent aussi apparaître sur le limbe. L'évolution de ces symptômes, associés ou non, entraîne un dessèchement prématuré des feuilles par rupture de l'alimentation au niveau du pétiole. Le délai d'apparition des symptômes est de sept à dix jours après contamination par le champignon, et tous les stades de la feuille sont réceptifs aux contaminations, avec une évolution d'autant plus rapide que les feuilles sont âgées (Penaud et Peres, 1994).

Figure 8 : symptôme de la maladie du Phoma sur limbe foliaire, dit « en patte d'oie ».

V – 4 - 3 – 4 Symptômes sur capitule

En période d'humidité intense, après la formation du capitule, des symptômes de coloration noire peuvent apparaître : sur les bractées, au point d'insertion de la tige, et sur le capitule (figure 9). Ces nécroses peuvent alors progresser rapidement, entraînant le dessèchement prématuré du capitule lorsqu'elles encerclent la crosse de la tige. Les semences pourront à leur tour être contaminées, permettant ainsi au champignon de se conserver sous forme de mycélium et /ou de pycnides.

Figure 9 : symptômes de la maladie du Phoma sur capitule

V – 4 - 4 Les méthodes de lutte

V-4-4-1 La lutte prophylactique

Une fumure équilibrée (éviter l'excès d'azote) est conseillée. Un broyage des cannes contaminées et leur enfouissement dans le sol par le labour, permettant la dégradation du support trophique du Phoma, sont par ailleurs recommandés. Une rotation sur plusieurs années contribue à rompre le cycle de l'agent pathogène. Selon la durée de la rotation et les possibilités, on alternera les techniques culturales simplifiées (TCS) et labour de manière à ne pas remonter les résidus quant le tournesol revient dans la rotation.

V – 4 – 4 – 2 La lutte chimique raisonnée

La protection chimique devra être raisonnée en fonction du risque phomopsis, auquel sera donnée la priorité, et du risque phoma, et sera positionnée au plus tard au stade limite de passage du tracteur (LPT). On utilisera de préférence, en cas de risque simultané phomopsis et phoma, un fongicide polyvalent, actif sur les deux parasites, comme le Corvet-Flo (fenpropimorphe, mancozèbe et carbendazime). Et dans le cas d'un risque avéré Phoma on fera un traitement spécifique au stade B10 accompagné d'un traitement commun Phoma-Phomopsis au stade LPT. Les fongicides Corvet-Flo et Dithane DG (mancozèbe), agissant en synergie, se révèlent également être performants (Proléa, 2000). Les applications peuvent se faire au stade B10 pour Dithane DG et pour Eria (difénoconazole + carbendazime), et au stade LPT pour Dithane, Eria, et Corvet Flo. Deux stratégies se révèlent être efficaces :

- stratégie 1 : traitement au stade LPT qui sera rentable en cas de forte pression avec
l'application de Corvet Flo (2.5l/ha) et éventuellement rentable avec un mélange
Corvet Flo (2.5l/ha) + Dithane DG (1kg/ha).

- stratégie 2 : traitements au stade B10 avec Dithane DG (2.5kg/ha), puis Corvet Flo ou Dithane DG ou un mélange des deux, la meilleur rentabilité étant atteinte avec le mélange en cas de forte pression, et le double traitement Dithane DG augmentant fortement le risque Phomopsis.

En cas de faible pression, seul un double traitement Dithane DG sera éventuellement rentable.

V – 4 – 4 – 3 La lutte génétique

La méthode la plus efficace, la moins polluante et la moins coûteuse à long terme contre la maladie des taches noires, consisterait à cultiver des hybrides de tournesol résistants. Mais seules des variétés tolérantes existent pour le moment. Et l'on ne connaît pas de résistance complète, mais seulement des résistances partielles, à caractère polygénique (Robinson, 1976). Des études génétiques ont permis la cartographie de 11 QTL (Quantitative trait loci) associés à la résistance au Phoma : 7 d'entre eux expliquent 92% de la variabilité phénotypique du caractère de résistance (travaux réalisés sur des populations issues du croisement entre les lignées PAC2 et Rha 266) (Rachid Al Chaarani *et al.*, 2002) ; les 4 autres QTL identifiés par Bert *et al.* (2004), à partir de travaux réalisés sur des populations issues du croisement entre les lignées PAZ2 et FU, expliquent jusqu'à 38% de la variabilité phénotypique pour le caractère considéré.

V – 4 - 4 – 4 Perspectives de lutte

Des études menées au laboratoire ont monté l'efficacité de différents éliciteurs (acide salicylique, laminarine, tréhalose, carhagénane) sur le développement de la maladie, *via* l'induction des défenses naturelles du tournesol (Alignan, 2001). Avec la mise sur le marché de spécialités telle que IODUS 40, à base de laminarine, appliquée pour lutter contre la septoriose et l'oïdium du blé tendre, et l'ouverture d'une nouvelle classe de produits phytopharmaceutiques, les « stimulateurs de défenses », l'utilisation de molécules naturelles se précise et présage une éventuelle application dans la protection du tournesol contre le phoma et les autres maladies fongiques.

MATERIELS ET METHODES

MATERIELS ET METHODES

Dans ce chapitre vont vous être présentés les matériels et méthodes communs aux différentes parties de notre étude, à savoir le mode de culture du tournesol, la culture et la conservation de la souche de *Phoma macdonaldii* utilisée, ainsi que la méthode de contamination artificielle élaborée au laboratoire.

I – Matériel végétal

I – 1 – Présentation du matériel végétal

Pour l'étude histologique et l'étude des phytoalexines, nous avons travaillé avec deux variétés de tournesol de vigueur comparable, mais de sensibilités opposées à *Phoma macdonaldii*. Il s'agit des hybrides simples Héliasol (Semences de France, mi-précoce), très sensible au Phoma, et Mélody (NK, mi-tardive), très tolérante au Phoma. Pour l'étude génétique, nous avons utilisé deux lignées homozygotes fournies par l'INRA de Clermont-Ferrand : la lignée C106 (très sensible au Phoma) et la lignée C146 (très tolérante au Phoma). Ces deux lignées ont été développées par SSD (Single Seed Descent), à partir d'un croisement entre PAC-2 et RHA-266.

I – 2 – Obtention des plants

Les semences de tournesol sont désinfectées à l'hypochlorite de sodium à 6 degrés chlorométriques durant 5 minutes, avant d'être rincées trois fois successivement à l'eau distillée stérile. Les graines peuvent alors être semées, à deux centimètres de profondeur, dans des bacs en plastique contenant du terreau (Hawita Flor, Alemagne), en serre. L'arrosage est réalisé avec de l'eau uniquement.

Lorsque les plantules ont atteint le stade de la deuxième paire de feuilles (stade B3-B4), elles sont transférées en chambre climatique (température de 17±1°C la

53

nuit, et 24±1°C le jour, héméropériode de 14 heures, 75 à 85% d'humidité relative, avec une intensité lumineuse de 200 μ E m⁻² s⁻¹ fournie par des lampes fluorescentes Philips) deux jours avant d'être contaminées.

II – Matériel fongique

II – 1 – Isolement des souches de Phoma macdonaldii

Les souches de champignon utilisées au laboratoire sont issues de fragments de cannes de tournesol d'origines diverses, portant des symptômes caractéristiques de la maladie. Ces fragments sont désinfectés par immersion dans une solution d'hypochlorite de sodium à 6 degrés chlorométriques pendant 5 minutes, puis rincées 3 fois avec de l'eau distillée stérile. Ils sont ensuite déposés en conditions stériles sur un milieu PDA (Potato Dextrose Agar) (DIFCO) en boîte de Petri. Les boîtes sont placées dans un incubateur à $25 \pm 1^{\circ}$ C avec une héméropériode de 12 h et une intensité lumineuse de 37 µE m⁻² s⁻¹. Après 2 à 3 jours dans ces conditions, le mycélium commence à se développer et la sporulation est induite, permettant l'identification du champignon *Phoma macdonaldii*.

II – 2 – Conservation des souches

Un disque mycélien provenant d'une culture pure de champignon est déposé sur un milieu PDA. De part et d'autre, on place des fragments de cannes sains désinfectés et autoclavés 20 min à 120° C. Après 15 jours d'incubation, (25 ± 1° C avec une héméropériode de 12 h et une intensité lumineuse de 37 µE m⁻² s⁻¹), le mycélium colonise le milieu et différencie des pycnides sur les fragments de cannes. Ces derniers sont alors placés dans des tubes à hémolyse stériles contenant du CaCl₂, qui permet de garder un environnement sec. Les tubes sont fermés avec du coton, parafilmés, puis conservés au réfrigérateur à 4°C. Le champignon se conserve ainsi durant plusieurs années en gardant ses propriétés morpho-physiologiques. Cette méthode avait été appliquée avec succès pour la conservation de *Dreschlera teres* (Barrault, 1989).

II – 3 – Repiquage du champignon

Des disques mycéliens provenant d'une culture de Phoma sur milieu PDA, ou encore des fragments de canne colonisés par le champignon sont déposés stérilement sur milieu PDA, en boîtes de Petri. Les boîtes sont mises à incuber pendant 10 jours à 25° C sous un régime photopériodique de 12 heures et une intensité lumineuse de 37 μ E m⁻² s⁻¹.

II – 4 – Obtention d'une souche monopycniospore

A partir de chaque culture pure provenant d'un symptôme, et après photoinduction de la conidiogenése (héméropériode de 12h, 25°C, intensité lumineuse de 37 μ E m⁻² s⁻¹), une suspension conidienne mère dans de l'eau distillée stérile est réalisée. Avec chaque suspension conidienne mère, par dilutions successives, une suspension conidienne contenant environ 10⁴ conidies par mL est établie ; cette concentration permet, à l'aide d'une pipette Pasteur, de déposer sur une lamelle stérile 4 à 5 microgouttes ne refermant qu'un nombre très réduit de conidies, à défaut d'une seule. L'observation du nombre de conidies présentes dans une microgouttes se fait au microscope, le dessèchement des microgouttes étant évité par l'usage d'un chambre humide de Van Tieghem préalablement stérilisée. Après avoir repéré la ou les microgouttes ne renfermant qu'une seule conidie, ces dernières sont captées individuellement par capillarité à l'aide d'un triangle de papier filtre stérilisé. Ce fragment de papier filtre ainsi chargé d'une conidie est déposé à la surface du substrat nutritif (PDA), en conditions aseptiques, et mis à incuber 25°C sous un régime photopériodique de 12 heures et une intensité lumineuse de 37 μ E m⁻²s⁻¹.

II – 5 – Choix de la souche de Phoma macdonaldii

Parmi les 70 souches disponibles au laboratoire, notre choix s'est porté sur la souche monopycniospore agressive MP6 qui produit rapidement un inoculum suffisamment abondant. La souche polyspore, dont tient son origine MP6, provient de la Haute Garonne et a été isolée en 1996.

III – Méthode de contamination

III – 1 – Préparation de l'inoculum

La solution utilisée est de l'eau distillée stérile contenant 0.5% de jus d'orange (favorisant la germination) et 0.25% de gélatine (augmentant l'adhérence). Après stérilisation 20 min à 120° C, le pH est ajusté à 6, pH optimum de développement du champignon. Trois millilitres de cette solution sont déposés à la surface de la culture de *Phoma macdonaldii* âgée de dix jours. Par agitation mécanique, on obtient une suspension de pycniospores qui est ajustée à la concentration finale de 10⁶ pycniospores par mL, par comptage à la cellule de Malassez. Vingt-quatre heures après la préparation de l'inoculum, la germination des pycniospores est contrôlée au microscope.

III – 2 – Inoculation sur pétiole de cotylédon

La technique d'inoculation est réalisée selon un protocole mis au point au laboratoire (Roustae *et al.*, 2000c). Vingt microlitres de suspension de pycniospores sont déposés à l'insertion des pétioles de cotylédons sur la tige. La suspension étant extemporanée, nous sommes assurés qu'aucune spore n'a germé avant le début de l'expérimentation. Les plantes sont ensuite placées en atmosphère saturée en humidité pendant 48 heures, afin de garantir une contamination optimale.

III – 3 – Notation des symptômes

La lecture des symptômes s'effectue 7 jours après contamination, grâce à une échelle de notation élaborée au laboratoire. Cette échelle est basée sur le pourcentage de surface nécrosée du pétiole de cotylédon ; les notes s'étendent de 0 (pas de nécrose) à 9 (pétiole totalement nécrosé) (Tableau 3 et figure 10).

Figure 10 : échelle de notation basée sur le pourcentage de pétiole de cotylédon nécrosé après infection par *P. macdonaldii*.

Tableau 3 : échelle de notation basée sur le pourcentage de pétiole de cotylédon nécrosé après infection par *P. macdonaldii*.

Notes	Pourcentage de pétiole nécrosé
0	0
1	0-5
2	5-10
3	10-20
4	20-30
5	30-40
6	40-60
7	60-80
8	80-100
9	100
ETUDE HISTOLOGIQUE

ETUDE HISTOLOGIQUE

I – Buts de l'étude

A notre connaissance, peu de travaux font part des différences observées entre des génotypes de sensibilités opposées à Phoma macdonaldii, avant ou pendant la pénétration par le champignon. Roustaee et al. (2000b) ont procédé à des observations ultrastructurales d'un génotype sensible de tournesol, après contamination artificielle par des pycniospores de P. macdonaldii. Ces auteurs ont pu mettre en évidence que le champignon traverse la cuticule de l'hôte soit de façon directe, soit par le biais des ouvertures stomatiques. En surface de l'organe contaminé, la spore et le tube germinatif sont recouverts d'une enveloppe mucilagineuse de nature polysaccharidique, d'apparence cotonneuse et d'épaisseur variable. Au moment de la pénétration, la cuticule de l'hôte est perforée mécaniquement; elle prend un aspect légèrement déprimé, et aucune altération enzymatique ne semble être observée. Le champignon ne forme pas d'appressorium à la surface des tissus de l'hôte, mais développe un coin d'infection. Dès que la cuticule est franchie, le champignon colonise rapidement les parois de l'hôte. Dans un premier temps, le plasmalemme des cellules de l'hôte apparaît plaqué contre la paroi. Cependant, dès que l'agent pathogène passe au travers de la membrane plasmique pour gagner le cytoplasme, le plasmalemme est désorganisé, et la perte rapide de l'intégrité cellulaire qui s'en suit favorise la colonisation des tissus par le champignon. Larfeil a mis en évidence qu'il n'existe pas de corrélation entre la vitesse de germination du champignon et l'agressivité des souches d'une part, et entre la vitesse de germination et la sensibilité de l'hôte d'autre part. Elle a par ailleurs pu observer que la progression du champignon semble être différente selon la sensibilité du génotype, puisqu'elle a retrouvé le champignon 48 heures après la contamination dans les vaisseaux conducteurs chez une variété sensible, alors qu'au même temps il se cantonne dans la

zone corticale chez le génotype tolérant. Elle a enfin mis en exergue que la durée d'incubation de *P. macdonaldii* est allongée de 25% chez la variété tolérante étudiée (Larfeil, 2003).

Dans cette étude, après avoir indiqué les techniques utilisées, nous nous proposons de décrire l'anatomie du pétiole de cotylédon de tournesol sain, puis contaminé par *Phoma macdonaldii*, et ce chez deux génotypes, l'un sensible, l'autre tolérant au champignon. Nous espérons ainsi mettre en évidence une différence morphologique qui puisse expliquer en partie, la tolérance du tournesol à la maladie. Ensuite, nous nous attacherons à décrire les aspects morphologiques de *P. macdonaldii* en surface de chacun des deux génotypes, puis nous décrirons les observations effectuées durant la pénétration du champignon dans les tissus de l'hôte.

Ces études ont été réalisées grâce à trois techniques de microscopie, avec le soutien technique et scientifique d'Alain Jauneau et Yves Martinez (IFR 40) : la microscopie photonique, la microscopie électronique à balayage et la microscopie électronique à transmission.

II – Techniques cytologiques

Trois étapes sont communes aux différentes techniques de microscopie ; il s'agit du prélèvement, de la fixation et de la déshydratation des échantillons.

II – 1 – Prélèvements et fixation

Les prélèvements de pétioles de cotylédons ont été effectués sur des tissus sains, ou à différents temps après contamination par le champignon, selon le but de l'étude. Dans tous les cas, les objets ont immédiatement été immergés dans un tampon de fixation.

La fixation est une opération destinée à rendre les cellules résistantes à l'autolyse, immuables, en conservant de façon permanente les tissus dans un état

aussi proche que possible de l'état vivant. Après fixation, les tissus doivent également pouvoir résister à la déshydratation et l'inclusion ultérieures.

Nous avons choisi comme fixateur le glutaraldéhyde, qui a toujours donné de très bons résultats. Ce fixateur est souvent recommandé pour ses intéressantes qualités de non coagulation, qui préservent finement les structures cellulaires.

Les échantillons ont ainsi été fixés dans un tampon cacodylate (0.05M, pH 7.2) à 2.5% de glutaraldéhyde (Oxford, Agar, UK), durant 1 heure, à température ambiante. Ils ont ensuite été rincés, trois fois 15 minutes successivement, dans du tampon cacodylate à 0.1M.

II – 2 – Déshydratation

Les échantillons vont être inclus dans de la résine. Ils doivent donc subir une déshydratation, la résine n'étant pas soluble dans l'eau. La déshydratation est réalisée par le passage des échantillons dans des solutions d'alcool éthylique de degré croissant (éthanol à 20, 40, 60, 80% 2 x 15 min, et ethanol absolu 2x 30 min). La déshydratation doit être lente pour éviter la contraction du contenu cellulaire, mais pas trop longue l'éthanol étant un solvant d'extraction des lipides.

II – 3 – Etapes propres à la microscopie photonique

Les échantillons sont inclus dans de la résine. L'infiltration par la résine se fait progressivement : un premier bain de 30 minutes dans un mélange résine époxy Spurr (Oxford, Agar, UK)/ éthanol absolu (2V/1V), puis 6 bains successifs de 15 minutes dans du Spurr pur. L'inclusion définitive se fait dans un dernier bain de Spurr, à 60°C durant 24 heures. Les résines époxy sont composées d'une résine, d'un durcisseur qui retient entre elles les unités monomères, d'un accélérateur de polymérisation, et dans notre cas d'un plastifiant qui permet une meilleure facilité de coupe.

Des sections transversales sont réalisées (1µm d'épaisseur), puis les coupes sont

colorées dans une solution de bleu de toluidine à 0.5% (p/v), dans 2.5% de carbonate de sodium, à un pH de 11.

Les observations sont faites grâce à un microscope inversé (DMIRBE, Leica) et les images acquises grâce à une caméra CCD (Color CooledView, Photonic Science, UK).

II – 4 – Etapes propres à la microscopie électronique à balayage

Après le dernier bain d'éthanol absolu, les objets sont déshydratés au point critique avec du CO₂ comme fluide de transition. Les échantillons sont placées sur des plots et métallisés avec un mélange or-palladium (e = 200 nm, métalliseur JEOL JFC 1100). Ils sont ensuite observés avec un microscope électronique à balayage Hitachi C450 à 15 kV. Les microphotographies sont réalisées sur film Illford 125 ISO.

II – 5 – Etapes propres à la microscopie électronique à transmission

Après inclusion des échantillons dans la résine comme décrit précédemment, des coupes ultrafines sont réalisées (90 nm d'épaisseur), et collectées sur des grilles en or. Elles sont alors soumises à une réaction à l'acide périodique, au thiocarbohydrazide et au protéinate d'argent (PATAg) : les sections sont mises à flotter sur une solution aqueuse d'acide périodique à 0.1% (p/v) pendant 30 minutes à température ambiante (le but étant ici d'oxyder les polysaccharides), puis rincées deux fois 15 minutes à l'eau distillée. Elles sont ensuite traitées, toute une nuit à 4°C, avec une solution aqueuse d'acide acétique à 20% contenant 0.2% de thiocarbohydrazide, puis rincées dans des solutions de degré décroissant d'acide acétique, et enfin dans de l'eau. Elles sont alors mises à nouveau à flotter sur une solution aqueuse d'argent à 1% (p/v) à l'obscurité durant 30 minutes, lavées à l'eau puis séchées à l'air. Ces derniers traitements vont permettre de révéler les fonctions aldéhydiques libérées. Le nitrate d'argent permet de renforcer le contraste de l'échantillon ; ses atomes de numéro atomique élevé ont en effet un plus grand pouvoir de dispersion des électrons que les atomes tissulaires. L'observation des échantillons est réalisée grâce à un microscope électronique à transmission (Hitachi, H-600, Japan), à 75 KV. Les photographies sont obtenues sur film Kodak-Electron (Kodak, France).

III – Résultats

III – 1 – Anatomie du pétiole sain de tournesol (Helianthus annuus) III – 1 – 1 – Observation en coupe

Le pétiole de cotylédon d'*Hélianthus annuus* est déprimé sur sa face supérieure. Sa structure présente un plan de symétrie perpendiculaire aux faces du pétiole. Il contient un grand faisceau conducteur central en forme de croissant, et huit petits faisceaux situés de part et d'autre du grand faisceau. L'important xylème du premier se situe du coté adaxial, tandis que le phloème est limité par des faisceaux de fibres. Sur la couche épidermique simple, c'est à dire constituée d'une seule assise cellulaire, l'on peut observer une cuticule et des stomates. On peut enfin apercevoir un anneau hypodermique de collenchyme, le reste du tissu étant de nature parenchymateuse (figure 11).

Figure 11 : anatomie du pétiole de cotylédon de tournesol ; échelle = 1,5 mm.

III – 1 – 2 – Observation en surface

La surface du pétiole est couverte par une couche de cutine, la cuticule. La cuticule couvre étroitement l'épiderme, en suivant le contour de toutes les cellules. Ces dernières sont de forme allongée et sont imbriquées entre elles. Elles ne sont pas lisses, mais présentent au contraire une surface irrégulière (figure 12 (a) et (b)).

Figure 12 : surface de pétioles de cotylédons des génotypes sensible (a) et tolérant (b). Microscopie électronique à balayage, échelle = $50 \mu m$.

Nous n'avons pu observer que quelques stomates en surface des pétioles, et ce pour les deux génotypes observés. Ces stomates ne variaient ni en forme, ni en taille. A des grossissements plus forts (figures 13 (a) et (b)), l'irrégularité de la surface cellulaire est encore plus frappante. Les cellules exhibent des crénelures, reliées entre elles par des ponts (figure 14 (a) et (b)). Ces ornementations cuticulaires semblent plus prononcées chez le génotype tolérant. Nous n'avons observé la présence de cires sur aucun des deux génotypes.

Figure 13 : surface de pétioles de cotylédons des génotypes sensible (a) et tolérant (b). Microscopie électronique à balayage, échelle = 5 μ m.

Figure 14 : surface de pétioles de cotylédons des génotypes sensible (a) et tolérant (b). Les crénelures sont signifiées par des flèches pleines, les ponts reliant ces crénelures par des flèches en pointillés. Microscopie électronique à balayage ; échelle = $0.5 \mu m$.

Enfin, l'épaisseur de la cuticule, de l'ordre du dixième de micron, est la même quel que soit le génotype considéré, sensible ou tolérant (figure 15).

Figure 15 : cuticule (flèche) et paroi (P) des génotypes sensible (a) et tolérant (b). Microscopie électronique à transmission, échelle = $0.5 \mu m$.

III – 2 – Observations en condition d'infection III – 2 – 1 – Aspect morphologique de Phoma macdonaldii à la surface de l'hôte

Vingt-quatre heures après contamination artificielle des pétioles de tournesol par *P. macdonaldii*, la plupart des spores, d'un diamètre de $4 \pm 0.5\mu$ m, a germé à la surface de l'hôte. La germination s'accompagne de la formation d'un filament constitué d'une cellule de $6 \pm 2\mu$ m de long, et d'un diamètre a peu près égal à la moitié de celui de la spore, suivie du tube germinatif. Les conidies sont étroitement appliquées contre la cuticule du végétal, un matériel d'adhérence permettant leur fixation (figure 16).

Figure 16 : spore de *Phoma macdonaldii* à la surface de l'hôte. V : vacuole ; N : noyau ; P : paroi de l'hôte. La présence d'une substance mucilagineuse entourant la spore est indiquée par une flèche. Echelle = 0.5 μm.

Les filaments germinatifs courent à la surface des cellules épidermiques, en ne suivant pas toujours le contour irrégulier de ces dernières (figure 17).

Figure 17 : spores germées de *Phoma macdonaldii* surface de pétioles de cotylédons des génotypes sensible (a) et tolérant (b), 24 h après contamination. M. E. B ; échelle = 50 μm.

La germination du champignon est généralement unipolaire quel que soit le génotype considéré (figure 18 (a) et figure 19), et très occasionnellement bipolaire (figure 18 (b)).

(a)

(b)

Figure 18 : spores germées de *Phoma macdonaldii* à la surface de pétioles de cotylédons du génotype tolérant, 24 h après contamination. (a) germination unipolaire ; (b) germination bipolaire. Microscopie électronique à balayage ; échelle = 0.5 μm.

Figure 19 : spores germées de *Phoma macdonaldii* à la surface de pétioles de cotylédons du génotype sensible, 24 h après contamination. Microscopie électronique à balayage ; échelle = 5 μm.

Nous n'avons jamais pu observer de différenciation d'appressorium. Ces observations sont les mêmes quel que soit le génotype étudié. Par ailleurs, les spores n'ont pas d'orientation particulière à la surface du végétal, et leur densité à la surface des deux génotypes semble être la même. Les variances des mesures réalisées sur les longueurs des tubes germinatifs des deux variétés sont homogènes (test de Fisher, seuil : $\alpha = 0.05$), et les moyennes des longueurs des tubes germinatifs sont statistiquement équivalentes (test paramétrique de comparaison des moyennes : test de Student, seuil : $\alpha = 0.05$) entre le génotype sensible et le génotype tolérant, elles sont égales à 22 µm. Enfin, le pourcentage de germination à la surface de chacun des deux génotypes est identique, il est de quasiment 100% sur tous les échantillons observés.

Nous n'observons aucune pénétration du champignon dans les tissus de l'hôte.

Quarante-huit heures après contamination, les premiers symptômes macroscopiques sont visibles sur le génotype sensible Héliasol, prenant la forme d'une légère nécrose au point de contamination. Sur le génotype tolérant Mélody, nous n'observons aucun symptôme. En surface des deux génotypes, un réseau mycélien intense s'est développé. Enfin, si nous n'observons pas de pénétration du champignon chez le génotype tolérant, nous devinons la présence d'hyphes sous cuticulaires chez le génotype sensible.

III – 2 – 2 – Modifications anatomiques de l'hôte durant la contamination

Dès **vingt-quatre heures** après contamination par le champignon, les cellules de l'épiderme du génotype sensible sont complètement plasmolysées (collapsus), et les cellules parenchymateuse prennent une forme aplatie. Une accumulation de composés fortement chromophiles pour le bleu de toluidine, apparaît dans les cellules épidermiques (figure 20 (b)). Nous observons le champignon pénétrant la paroi de l'hôte (figure 21). A l'opposé, les cellules du génotype tolérant sont intègres malgré la présence du champignon sur la cuticule (figure 22), les chloroplastes restent bien plaqués contre la paroi cellulaire, noyaux et nucléoles sont intacts. Nous n'observons aucune pénétration du champignon. Chez ce même génotype, il faut attendre **quarante-huit heures** après contamination pour observer l'agent pathogène pénétrer la cuticule (figure 23). Au même moment, les cellules épidermiques sont quasiment intactes, un léger tassement des cellules parenchymateuses apparaît ; quelques cellules sont plasmolysées.

Figure 20 : coupes de pétioles de tournesol de la variété sensible. (a) : tissu sain, (b) : tissu observé 24h après contamination par le champignon. Le collapsus est indiqué par une flèche. Microscopie photonique, échelle = 7,5 μ m.

Figure 21 : *P.macdonaldii* pénétrant la paroi du génotype sensible (flèche), 24h après contamination ; échelle = 5 μ m.

Figure 22 : coupe de pétiole de tournesol du génotype tolérant, 24h après contamination par le champignon ; le champignon (flèche) reste localisé au niveau de la cuticule ; les cellules épidermiques de l'hôte sont intactes (E : cellule épidermique). Echelle = 7,5 μm.

Figure 23 : coupe de pétiole de tournesol du génotype tolérant, 48h après contamination par le champignon (indiqué par la flèche). Echelle = 7,5 μm.

Quatre-vingt-seize heures après contamination, les cellules du génotype sensible sont complètement affaissées, nous observons une déstructuration complète

des tissus autour des points d'infection et à distance, ainsi qu'une coloration bleue des vaisseaux du xylème. Seulement quelques cellules du génotype tolérant sont plasmolysées, parfois loin de l'épiderme (figure 24).

(a)

(b)

Figure 24 : coupes de pétiole de tournesol des génotypes sensible (a) et tolérant (b), 96h après contamination par le champignon (échelle = 7,5 μ m).

Cent quarante-quatre heures après contamination, les cellules épidermiques du génotype tolérant sont complètement affaissées et les cellules plus internes sont plasmolysées (figure 25 (a)). Le mycélium fongique est visible à l'intérieur des tissus de l'hôte. Les noyaux sont polylobés et les chloroplastes sont gorgés d'amidon (figure 25 (b)). Ces deux derniers phénomènes n'ont pas été observés chez le génotype sensible. Enfin, quel que soit le génotype, nous n'avons jamais observé de division cellulaire autour des points d'infection.

Figure 25 : coupes de pétiole de tournesol du génotype tolérant, 144h après contamination par le champignon . (a) les cellules épidermiques sont complètement affaissées ; (b) noyau polylobé et chloroplaste rempli de grains d'amidons (flèche) (échelle = 7,5 μm).

IV – Conclusions et discussion

Plusieurs points ressortent de cette étude :

- les cellules de l'épiderme des pétioles de cotylédons présentent des ornementations cuticulaires. Celles-ci, étant plus prononcées chez le génotype tolérant, pourraient freiner la pénétration du champignon.
- Nous notons une **absence de cires** à la surface des pétioles, et ce, quel que soit le génotype considéré. Cependant, **il faut considérer le traitement subi** par les pétioles pour l'observation en microscopie à balayage, qui a très bien pu éliminer toutes traces de cires. Une méthode de fixation par le froid (cryofixation) aurait peut-être été plus appropriée à cette étude.

Alternativement, nous aurions pu traiter les pétioles du génotype tolérant au chloroforme afin d'ôter les éventuelles cires présentes à la surface de la cuticule, et procéder à des observations sur la pénétration du champignon en conditions « cuticules traitées » et « cuticules non traitées ». La cuticule peut jouer un rôle important dans la défense contre les agents pathogènes, en tant que barrière préformée. Ainsi, Yang *et al.* (1992) ont démontré que la cuticule avait une place importante dans la résistance de la moutarde (*Sinapis alba* L.) et des plantes âgées de colza (*Brassica napus*) à l'infection par *Rhizoctonia solani*.

- L'épaisseur de cuticule ne semble pas être un frein à la pénétration du champignon, puisqu'elle est quasiment la même entre le génotype sensible et le génotype tolérant ; cependant, nous ne savons rien sur la composition exacte de cette cuticule : peut-être diffère-t-elle entre les deux génotypes considérés ?
- A la surface des cellules, le champignon germe avec des longueurs moyennes de tubes germinatifs non significativement différentes, voire quasi identiques, quel que soit le génotype considéré. Il ne semble donc y avoir aucune corrélation entre la longueur du tube germinatif et la sensibilité du génotype. Ceci confirme les résultats de Larfeil (2003). Chez *Phoma clematidina,* des différences au niveau à la fois de la longueur et du nombre de tubes germinatifs, avaient été observées en fonction de la sensibilité du génotype (Van de Graaf *et al.,* 2002).
- Nous n'avons pas observé de thygmotropisme. Ce phénomène est observé chez certains champignons pathogènes des plantes tels que *Puccinia hordei* et *P. tritici*, agents responsables de la rouille. Les tubes germinatifs de ces deux micro-organismes exhibent une croissance directionnelle marquée, plus ou moins perpendiculaire aux jonctions des cellules épidermiques. De courts branchements latéraux, de longueur variable, sont habituellement formés sur les jonctions cellulaires (Read *et al.*, 1992).

- Un matériel d'adhésion permet dans les deux cas considérés, la fixation des spores à la surface de l'hôte. Cette gaine mucilagineuse avait déjà été décrite par Roustaee *et al.* (2000b) pour ce même couple hôte-parasite. Le mucilage est généralement composé de polyssacharides et parfois d'enzymes. Il permet de protéger la spore de la dessiccation et favorise l'adhésion au végétal. Pascholati et al. (1993), ont démontré que cette matrice protégeait Colletotrichum graminicola des métabolites toxiques et exsudats synthétisés par la plante en réponse à l'infection. Ce mucilage est retrouvé chez d'autres champignons phytopathogènes. Chez *Phoma lingam* (Abadie et Boudart, 1982), Aschochyta rabiei (Hohl et al., 1990), et Aschochyta fabae (Maurin et al., 1993), il ne présente aucune activité enzymatique. A l'opposé, chez Colletotrichum graminicola (Pascholati et al., 1993) et Erysiphe graminis f. sp. hordei (Pascholati et al.,1992), la matrice mucilagineuse produit des enzymes impliquées dans la dégradation des parois, généralement des cutinases. Deising et al. (1992) ont également mis en exergue le fait qu'une association cutinases et estérases pourrait permettre à l'agent pathogène de mieux adhérer à l'hôte, ce qui donnerait à ces enzymes un rôle nouveau dans le processus d'infection fongique. Les observations de Roustaee semblaient révéler que chez Phoma macdonaldii, ce mucilage ne présente aucune activité enzymatique (Roustaee et al., 2000b); il serait cependant judicieux d'effectuer des dosages biochimiques afin de confirmer ces constatations.
- Nous n'observons **pas de formation d'appressorium**, ce qui confirme les résultats de Roustaee (2000b) et de Larfeil (2003). Cette structure d'infection spécialisée est indispensable à la pénétration de tissus sains par certains champignons, comme *Sclerotinia sclerotiorum* (Lumsden et Dow, 1973 ; Tariq et Jeffries, 1984). Cependant, la complexité d'une telle structure varie considérablement et pourrait dépendre de la nature de la surface attaquée. De simples appressoria, consistant en un renflement de la pointe de l'hyphe, ont

été observés sur des feuilles de laitues ou de haricots (Phaseolus vulgaris) après contamination par Sclerotinia sclerotiorum, alors que sur d'autres tissus comme les feuilles et les épicotyles de Phaseolus coccineus ou Chrysanthemum spp., le même champignon développe des appressoria plus complexes, résultant en une composition de plusieurs hyphes dont les sommets sont orientés de façon quasi-perpendiculaire à la surface de l'hôte (Tariq et Jeffries, 1984). Des variations dans la formation de l'appressorium ont également été observés chez un autre champignon nécrotrophe, Botrytis cinerea (Garcia – Arenal et Sagasta, 1980). Il a été suggéré que la complexité appressoriale de Botrytis cinerea puisse être directement liée au statut nutritionnel de l'inoculum (Garcia – Arenal et Sagasta, 1980). Nous avons réalisé les contaminations par P. macdonaldii sur pétioles de cotylédons, donc sur des tissus jeunes. L'éventualité que ce champignon puisse former des appressoria sur des tissus plus âgés n'est donc pas à rejeter. L'inoculum utilisé (composé d'eau, de jus d'orange et de gélatine), pourrait également être à l'origine de cette absence de formation de structure spécialisée, compte tenu des données bibliographiques.

- La densité des spores semble équivalente, il n'y aurait donc pas de rétention plus importante des spores en surface du génotype sensible. Cette éventualité avait été proposée par Debaeke et Pérès (2003), qui suggéraient un effet possible de l'architecture du pétiole sur la rétention d'eau et donc sur l'infection par *Phoma macdonaldii*.
- Par ailleurs, il apparaît cependant nettement que **les deux génotypes** de tournesol, **sensible et tolérant**, **réagissent de façon différente à la contamination par** *Phoma macdonaldii*. Dès 24 heures après contamination artificielle, **le champignon a pénétré les tissus de l'hôte sensible**, alors **qu'il faut attendre 48 heures** pour observer le même phénomène chez le **génotype tolérant**. Par ailleurs, **chez le génotype sensible**, la **pénétration** de l'agent pathogène **engendre immédiatement une plasmolyse** des cellules

épidermiques, et un affaissement des cellules sous-jacentes, alors qu'il faut attendre 144 heures après contamination pour observer un phénomène aussi prononcé aux points d'infection chez le génotype tolérant. Phoma macdonaldii est un champignon nécrotrophe, qui émet des toxines à distance afin de déstructurer les cellules et de se nourrir dans les tissus morts. Sugarawara et Strobel (1986) ont isolé du zinniol de filtrats de culture du champignon. Cette phytotoxine (C₁₅H₂₂O₄) est produite par d'autres champignons. Elle induit des symptômes identiques à ceux causés par Alternaria zinniae (White et Starrat, 1967) comme des nécroses sur les tiges, un brunissement des nervures foliaires ainsi qu'une chlorose entourant les tissus infectés. C'est une toxine non spécifique qui peut induire des symptômes sur cotonnier, tomate, melon, blé, gombo et zinnia (Cotty et al., 1983). Barrash et al. (1981) ont suggéré que cette absence de spécificité du zinniol ferait que la molécule puisse intervenir dans le développement des symptômes comme un déterminant secondaire du pouvoir pathogène. Du fait du délai d'apparition des symptômes et de leur étendue moindre, nous pourrions envisager que le génotype tolérant utilisé pour cette étude **pourrait inhiber la synthèse de zinniol** ou d'autres toxines produites par *P. macdonaldii*. Ce procédé est utilisé par certaines plantes résistantes. Il a également été démontré que certains génotypes sont plus sensibles que d'autres à l'action d'une toxine fongique. L'helminthosporoside, produite par Helminthosporium sacchari, est un modèle très étudié : elle a été utilisée avec succès pour opérer la sélection de clones de cannes à sucre résistants à *H. sacchari*. Une pulvérisation sur le feuillage permet de distinguer les hybrides sensibles au champignon, qui meurent en deux à trois jours, alors que les hybrides résistants survivent. L'helminthosporoside modifie la perméabilité de la membrane des plantes sensibles en agissant au niveau de la potassium-magnésium ATPase, dont l'activité est stimulée chez les plantes sensibles. Une autre hypothèse serait que le génotype sensible exprime un gène de sensibilité à la maladie. Cochliobolus victoriae qui est un champignon nécrotrophe, produit une toxine hôte sélective, la victorine. La victorine affecte seulement quelques cultivars d'avoine qui possèdent le gène Vb dominant. Les lignées LOV1 d'*Arabidopsis* (pour Locus Orchestrating Victorin effects) sensibles à la victorine, sont sensibles à l'infection par *C. victoriae*, alors que les lignées Col-4, insensibles à la victorine, ne le sont pas. Ce gène LOV apparaît comme étant un gène dominant de sensibilité à la maladie (Lorang *et al.*, 2004).

Chez le génotype tolérant, nous observons des modifications caryologiques, ainsi que des modifications au niveau des chloroplastes : les noyaux prennent une forme polylobée et les chloroplastes se gorgent d'amidon. Le phénomène observé chez les chloroplastes avait déjà été observé par Barrault et al. (1982), lors de l'étude de l'interaction Helminthosporium teres / Hordeum vulgare. Ces auteurs suggèrent que se phénomène pourrait être inhérent à une baisse d'activité des β-amylases, comme l'avaient suggéré Tanaka et Akai (1960) chez le riz, d'une réduction de la teneur en esters phosphoriques participant à la mobilisation de l'amidon (Michalikova, 1974), ou d'une modification de la perméabilité membranaire affectant le transport de différents métabolites. Seule une étude complémentaire menée sur un plan biochimique nous permettrait de mieux comprendre cette observation. Les modifications caryologiques ont souvent été décrites dans le cas de maladies parasitaires ou lors de troubles métaboliques. Elles sont interprétées comme la manifestation de la défense des cellules par une augmentation de la protéogenèse. Chez l'hôte sensible, la déstructuration cellulaire est tellement rapide que ces modifications n'auraient pas le temps de se mettre en place.

ETUDE DES PHYTOALEXINES

ETUDE DES PHYTOALEXINES

I – Introduction

Les produits naturels actifs dans la défense des plantes peuvent être classés en trois grands groupes : les phytoalexines, les phytoanticipines et les molécules signal. De nombreuses molécules issues de la voie des phénylpropanoïdes exhibent une activité antimicrobienne à large spectre. De tels composés peuvent être classés en phytoanticipines, préformées, ou phytoalexines, induites (Van Etten et al., 1994). C'est Müller et Borger en 1940 qui, les premiers, émirent l'hypothèse de l'existence des phytoalexines. Plus de quarante ans plus tard, Paxton définira ces molécules comme des composés antimicrobiens, de faible poids moléculaire, synthétisés de novo après une infection ou en réponse à un stress abiotique (Paxton, 1981). Cette définition courante des phytoalexines n'inclue aucun critère permettant de placer ces molécules comme véritables acteurs de la défense plutôt que comme simple réponse à une infection. Cependant, plusieurs preuves de leur rôle dans la défense existent. En 1981, Keen a mis en évidence l'implication des phytoalexines dans la résistance aux maladies (Keen, 1981). La preuve en est : la localisation et la synchronisation de l'accumulation des phytoalexines dans les tissus infectés est liée au développement du pathogène ; il existe une forte corrélation positive entre la production rapide de phytoalexines et les interactions incompatibles plantes / pathogènes de type gène pour gène ; l'association entre l'accumulation rapide de phytoalexines et les gènes de résistance conditionnent la restriction rapide du développement de l'agent pathogène ; l'utilisation d'inhibiteurs métaboliques qui bloquent la production de phytoalexines augmente la sensibilité des plantes aux maladies ; il existe une relation positive entre la virulence des pathogènes et leur tolérance aux phytoalexines et enfin, la stimulation de la production de phytoalexines avant une inoculation augmente la résistance des tissus de la plante. Hammerschmidt a rédigé une revue

Figure 26 : proposition pour la voie de biosynthèse des coumarines chez le tournesol (d'après Pratz-Perez *et al.*, 2000). E1 : phénylananine ammonia-lyase ; E2 : Cinnamate 4-hydroxylase ; E3 : 4-Coumarate 3-hydroxylase ; E4 : O-méthyl transférase ; E5 : Cinnamate 2-hydroxylase ; E6 : Glycosyl transférase.

intéressante sur les preuves récentes et plus anciennes, ainsi que sur les approches utilisées dans l'établissement du rôle des phytoalexines dans la défense des plantes (Hammerschmidt, 1999). Par ailleurs, plusieurs auteurs ont pu mettre en évidence l'importance des phytoalexines dans la réponse des plantes aux champignons pathogènes. Ainsi, il a pu être démontré que l'introduction du resvératrol, phytoalexine stilbène de la vigne, dans le tabac et la luzerne, par l'expression constitutive du gène de la stilbène synthase, résulte en une réduction évidente des symptômes suite à l'infection du tabac par *Botrytis cinerea* (Hain *et al.*, 1993), ou de la luzerne par *Phoma medicaginis* (Hipskind et Paiva, 2000). Autre exemple, l'expression constitutive de l'isoflavone O-methyltransferase (IOMT) dans la luzerne transgénique a pour conséquence une production plus rapide et plus importante de la phytoalexine medicarpine suite à la contamination par *Phoma medicaginis*, résultant en une diminution des symptômes (He et Dixon, 2000).

Les phytoalexines du tournesol

Les coumarines sont des composés phénoliques végétaux, portant un groupement benzopirone dans leur structure, et dont dérivent les phytoalexines du tournesol, scopolétine et ayapine. Les coumarines peuvent être synthétisées *de novo*, à partir de la phénylalanine, ou à partir de composés phénoliques préformés tel que, dans le cas du tournesol, l'acide chlorogénique (figure 26). La voie exacte de coumarinisation à partir d'acides cinnamiques spécifiques (coumarate, caféate ou férulate) est quasi inconnue, bien que la cinnamate-2-hydroxylase ait été proposée comme une étape enzymatique clé. Chez le tournesol, l'accumulation et la synthèse de coumarines dépendent du stade de développement de la plante, devenant plus élevées dans les plantes âgées mâtures que dans les plus jeunes en croissance active. Les coumarines sont synthétisées dans la partie aérienne de la plante (feuilles), d'où elles peuvent être redirigées vers les racines. Leur localisation peut être intracellulaire (c'est le cas de la scopoline), intra-pariétale (comme la scopoline après une réaction catalysée par la scopolétine peroxydase) ; elles peuvent également être

excrétées : c'est le cas de l'ayapine.

II – But de l'étude

Le but de la présente étude est de savoir si la scopolétine et l'ayapine peuvent avoir un effet inhibiteur sur la germination et la croissance de *Phoma macdonaldii*, et si alors elles sont produites de façon plus précoce et en quantité plus importante chez un génotype tolérant par rapport à un génotype sensible, ce qui sous-tendrait ainsi leur rôle dans la tolérance du tournesol à la maladie des taches noires. Plusieurs raisons ont motivé le choix de cette étude : ces hydroxycoumarines sont induites chez le tournesol en réponse à des champignons pathogènes et non pathogènes (Tal et Robeson, 1986b), et leur accumulation dans les tissus de la plante peut être associée au phénomène de résistance quantitative (Garcia *et al.*, 1995). De plus, il existe des différences dans la capacité de synthèse des coumarines entre des variétés de tournesol données (Prats-Perez *et al.*, 2000).

III – Matériels et méthodes

III – 1 – Choix de la souche de Phoma macdonaldii

Pour cette étude, nous avons utilisé la souche monopycniospore agressive MP6.

III – 2 – Etude de l'influence de la scopolétine et de l'ayapine sur la germination et la croissance de Phoma macdonaldii

III – 2 – 1 Réalisation des bioessais

L'ayapine (synthétisée à partir d'esculétine selon une procédure décrite par Tal et Robeson (1986b)) et la scopolétine (SIGMA), sont dissoutes dans le diméthyl sulfoxyde (DMSO). Elles sont alors incorporées dans une solution ajustée à pH 6, préparée avec de l'eau UHQ stérile contenant 0.5% de jus d'orange, 0.5% de gélatine et 10⁶ spores/mL, pour donner des concentrations finales de 0 à 1 mM et une concentration finale en DMSO de 2%. Dix microlitres de chacune de ces solutions sont déposés sur des lamelles de verre. Chaque lamelle est alors renversée sur une cellule de Van Tieghem contenant 50 μ L d'eau stérile afin de conserver une humidité saturante ; cellule et lame de verre sont colmatées par un corps gras (figure 27). Enfin, les cellules sont incubées à 25°C, à l'obscurité. Les observations sont réalisées 16 heures après la mise en incubation pour l'étude sur l'inhibition de la germination. Les cellules sont alors incubées à la lumière, sous une intensité lumineuse de 37 μ E m⁻² s⁻¹, toujours à 25°C, puis observées 8 heures après, soit 24 heures après la mise en incubation, pour l'étude sur l'inhibition de la mise en incubation, pour l'étude sur l'inhibition de la croissance.

Parallèlement, les mêmes types d'essais sont réalisés avec les acides chlorogénique et caféique (SIGMA), composés phénoliques synthétisés par la plante. Dans ces deux derniers cas, le méthanol a simplement été substitué au DMSO. Tous les essais sont répétés trois fois. Le pH des solutions est vérifié après incorporation des composés phénoliques.

Figure 27 : montage d'une lamelle de verre sur cellule de Van Tieghem

III – 2 – 2 Mesure de la CI50

Afin de déterminer les concentrations en scopolétine et ayapine nécessaires pour inhiber 50% de la germination ou de la croissance de la souche de *P. macdonaldii* considérée, nous avons utilisé la méthode des probits. Nous avons commencé par calculer un facteur de germination (nombre de spores germées / nombre total de spores), pour chaque concentration en une molécule donnée, en considérant une

spore germée si la longueur de son tube germinatif est égale à la longueur de la spore. Puis ce facteur de germination a été multiplié par la longueur moyenne du tube germinatif en condition témoin, ou à une concentration donnée. Enfin, soit I ce dernier résultat, nous avons pu calculer le pourcentage d'inhibition de la germination ou de la croissance de la façon suivante :

% d'inhibition = ((I témoin – I essai à une concentration donnée) / I témoin) x 100.

La longueur moyenne du tube germinatif a été calculée à partir d'observations réalisées sur 30 spores.

Une fois les différents pourcentages d'inhibition obtenus, ils sont transformés en probits (cf. tableau 13, annexe 3). La régression du logarithme décimal de la concentration en scopolétine ou en ayapine en fonction des probits du pourcentage d'inhibition nous permet de déterminer la concentration inhibant 50% de la germination des spores (CI50) : elle est calculée à partir de l'équation de la droite de régression pour une valeur de probit égale à 5.

Pour l'étude de l'inhibition de la croissance de Phoma macdonaldii par la scopolétine, quatre autres méthodes ont été testées afin de trouver celle qui convenait le mieux.

Méthode des antibiogrammes

Des pastilles de papier filtre imbibées de solution de scopolétine, à différentes concentrations, sont déposées en boîtes de Petri sur du Potato Dextrose Agar (PDA) contenant des spores germées du champignon. Les boîtes sont incubées à la lumière, à 25°C, sous une intensité lumineuse de 37 μ E m⁻² s⁻¹. Des observations sont réalisées toutes les deux heures durant 8 heures, puis 48 heures plus tard.

Méthode des plaques ELISA

Cette méthode consiste à ensemencer le champignon à une concentration finale de 10⁶ spores par mL, dans du Potato Dextrose Broth contenant différentes concentrations de scopolétine, en plaques ELISA. Les plaques sont incubées à la lumière, à 25°C, sous une intensité lumineuse de 37 μ E m⁻² s⁻¹. Les densités optiques sont alors mesurées au cours du temps, à une longueur d'onde de 550 nm.

Méthode de la comparaison des poids secs

Le champignon est ensemencé à une concentration finale de 10⁶ spores par mL, dans 20 mL de Potato Dextrose Broth contenant différentes concentrations de scopolétine, en Erlenmeyer de 250 mL. Les Erlenmeyer sont incubés à la lumière, à 25°C, sous une intensité lumineuse de 37 μ E m⁻² s⁻¹. Vingt-quatre heures ou 48 heures après, le mycélium est filtré, séché et pesé, puis sa masse est comparée à celle du mycélium témoin.

Méthode des disques de mycélium

Des pastilles de mycélium sont déposées en boîtes de Petri sur différents milieux PDA contenant des doses croissantes de scopolétine. Les boîtes sont incubées à la lumière, à 25°C, sous une intensité lumineuse de 37 μ E m⁻² s⁻¹. Toutes les vingtquatre heures, durant quatre jours, les essais sont numérisés puis la croissance du champignon est mesurée par analyse d'image à l'aide du logiciel Image Pro Plus.

III – 3 – Dosage de la scopolétine in planta après contamination par Phoma macdonaldii

Les plantules des génotypes sensible (Héliasol) et tolérant (Mélody) sont contaminés par *P. macdonaldii* comme décrit précédemment. Les pétioles de cotylédons (40 pétioles par condition, c'est à dire témoin ou contaminé) sont prélevés 24, 48, 72, 96 et 144 heures après contamination, pesés, congelés dans l'azote liquide, puis conservés à – 80° C. La scopolétine est extraite des tissus selon une procédure

basée sur la méthode décrite par Gutierrez *et al.*, (1994) : le matériel végétal est homogénéisé dans un mortier avec 10 v/p de Me₂CO pré-refroidi à –20°C, et une pincée de sable de Fontainebleau. Après filtration et récupération du filtrat, le résidu est à nouveau extrait avec un volume similaire de Me₂CO, puis un volume de Me₂CO-MeOH (1 : 1). Les trois extraits sont rassemblés en un seul. Après concentration sous vide et filtration sur un filtre de 20 µm, l'extrait final est analysé par HPLC. Pour le dosage en HPLC, les échantillons sont élués à 0.8 mL min⁻¹ avec un gradient linéaire de 0 à 75% d'acétonitrile dans 0.2% d'acide acétique pendant 20 min, sur une colonne analytique 150 x 4.6 mm Uptisphere 5 µ C18 ODB, avec une pré-colonne de 10 x 4 mm. La scopolétine est détectée par fluorimétrie et quantifiée par comparaison de l'aire des pics avec la courbe standard.

IV – Résultats

IV – 1 – Etude de l'inhibition de germination de P. macdonaldii

La transformation des pourcentages d'inhibition des spores de la souche MP6 de *P. macdonaldii* après 18h (essais sur la germination) et 24 heures (essais sur la croissance), et la régression de ces données en fonction du logarithme de la concentration en scopolétine ou ayapine, nous a permis d'obtenir les équations suivantes :

- inhibition de la germination par la scopolétine :

$$y = 1.4491 x + 6.3081 (R^2 = 0.9379)$$

- inhibition de la germination par l'ayapine :

$$y = 3.0891 x + 7.5057 (R^2 = 0.9598)$$

Les graphiques obtenus sont donnés figure 28. Chaque essai a été répété trois

fois dans le temps. Les résultats obtenus pour les répétitions sont regroupés tableau 3. L'intégralité des données numériques et graphiques est donnée en annexe 3.

Les CI50 moyennes déterminées à partir de ces équations sont de **0.13 mmole.l**⁻¹ pour la scopolétine et **0.15 mmole.l**⁻¹ pour l'ayapine sur la **souche MP6**.

Aucune inhibition de la germination du champignon n'a pu être observée avec les acides caféique et chlorogénique.

IV – 2 – Etude de l'inhibition de croissance de P. macdonaldii

A 24 heures, temps auquel les observations étaient réalisées, la longueur des tubes germinatifs du champignon, sur les différents essais réalisés avec la scopolétine, était supérieure à celle mesurée pour les témoins. **Nous n'avons donc pu évaluer la CI50 de la scopolétine sur la croissance** du champignon par la méthode des cellules de Van Tieghem. Les quatres autres méthodes testées pour étudier l'inhibition de croissance du champignon par la scopolétine se sont également révélées infructueuses. Pour la méthode des antibiogrammes, aucune inhibition de croissance n'a pu être observée. La méthode des plaques ELISA, qui avait été utilisée par Urdangarin (Urdangarin *et al.*, 1999) sur *Sclerotinia sclerotiorum*, n'a pu être applicable au *Phoma* : le champignon forme en effet très rapidement des pelotes en milieu liquide, rendant impossible une mesure de la densité optique. Enfin, les méthodes de comparaison des poids secs et des disques de mycélium n'ont donné que des résultats peu reproductibles.

Figure 28 : graphique obtenu pour le premier essai réalisé avec la scopolétine sur la germination de *Phoma macdonaldii*. (a) L'équation de la droite de régression : y = 1.4491 x + 6.3081 nous permet de calculer la CI50. Pour une valeur de probit = 5 on a log C = - 0,90. La CI50 est donc égale à 10^ - 0,90 = 0,13 mM. (b) L'équation de la droite de régression : y = 3.0891 x + 7.5057 nous permet de calculer la CI50. Pour une valeur de probit = 5 on a log C = - 0,81. La CI50 est donc égale à 10^ - 0,81 = 0,15 mM.

 Tableau 3: Transformation des pourcentages d'inhibition de la germination, en fonction des concentrations en scopolétine et ayapine, en probits après 18 heures d'incubation.

		Inhibition de la germination %						Probit (Y)					
Concentration	Log	Scopolétine			Ayapine			Scopolétine			Ayapine		
mmol.l ⁻¹	(C)	E1	E2	E3	E1	E2	E3	E1	E2	E3	E1	E2	E3
0,1	-1	41.3	42.9	24.6	22.9	26.0	26.2	4.8	4.8	4.3	4.3	4.4	4.4
0,15	0.82	56.0	53.7	66.4	47.6	53.5	50.9	5.2	5.1	5.4	5.0	5.1	5.0
0,2	0.70	65.6	nd	nd	72.3	75.9	71.8	5.4	nd	nd	5.6	5.7	5.6
0,3	0.52	72.4	73.6	76.5	83.6	85.7	82.5	5.6	5.6	5.7	6.0	6.1	5.9
0,4	0.40	74.1	93.7	84.1	nd	90.9	90.4	5.6	6.6	6.0	nd	6.3	6.3
0,5	0.30	nd	nd	nd	92.4	96.0	95.7	nd	nd	nd	6.4	6.8	6.7

E : Essai ; C : concentration.

Pour l'ayapine, les résultats de nos observations nous ont permis d'obtenir l'équation suivante :

- inhibition de la croissance par l'ayapine :

$$y = 2.4663 x + 5.8459 (R^2 = 0.9617)$$

Le graphique obtenu est donné figure 29.

La CI50 déterminée à partir de cette équation est de **0.44 mmole.l**⁻¹ pour l'ayapine sur la **souche MP6.**

Aucune inhibition de croissance du champignon n'a été observée pour les essais menés avec les acides chlorogénique et caféique.

Les résultats obtenus pour les répétitions sont regroupés tableau 4. L'intégralité des données numériques et graphiques est donnée en annexe 3.

Figure 29 : graphique obtenu pour le premier essai réalisé avec l'ayapine sur la germination de *Phoma macdonaldii*. L'équation de la droite de régression : y = 2.4663 x + 5.8459 nous permet de calculer la CI50. Pour une valeur de probit = 5 on a log C = - 0,81. La CI50 est donc égale à 10[^] - 0,81 = 0,15 mM.

 Tableau 4 : Transformation des pourcentages d'inhibition de la germination, en fonction des concentrations en ayapine, en probits après 18 heures d'incubation.

Concentration	Log	Inhibition de la croissance %			Probit (Y)		
mmol.l ⁻¹	(C)	E1	E2	E3	E1	E2	E3
0,1	-1	2.5	6.4	14.3	3.1	3.5	3.9
0,15	0.82	16.1	11.7	20.3	4.0	3.8	4.2
0,2	0.70	11.5	17.0	27.7	3.8	4.1	4.4
0,3	0.52	25.5	28.3	34.6	4.3	4.4	4.6
0,4	0.40	34.7	41.0	42.7	4.6	4.8	4.8
0,5	0.30	79.5	61.8	57.5	5.8	5.3	5.2

E : Essai ; C : concentration.

IV – 3 – Dosage de la scopolétine in planta après infection avec P. macdonaldii

Dans les conditions décrites, le **temps de rétention de la scopolétine** est de **12.3 minutes**. Que ce soit pour le génotype tolérant (Mélody) ou le génotype sensible (Héliasol), la concentration en scopolétine s'accroît régulièrement dans les tissus infectés par *P. macdonaldii* jusqu'à 96h, temps auquel elle atteint son niveau maximum. Dès 72h cependant, dans les pétioles de cotylédons du **génotype tolérant**, la **concentration de scopolétine** est jusqu'à **deux fois plus élevée** que celle mesurée chez le génotype sensible (Figure 30).

Figure 30 : Accumulation de scopolétine dans les pétioles de cotylédon de deux génotypes de tournesol, l'un sensible (Héliasol), l'autre tolérant (Mélody) à *Phoma macdonaldii*, après inoculation avec le champignon.

V – Conclusions et discussion

Les essais réalisés nous ont permis de mettre en exergue plusieurs points :

- la scopolétine et l'ayapine, deux phytoalexines du tournesol, ont un effet inhibiteur sur la germination de *P. macdonaldii*. Nous avons pu déterminer la concentration inhibant 50% de la germination des spores (CI 50) : elle est de 0.15 mmole.l⁻¹ pour l'ayapine et de 0.13 mmole.l⁻¹ pour la scopolétine sur la souche MP6.
- l'ayapine inhibe la croissance de *P. macdonaldii*, avec une CI50 observée de 0.44 mmole.l⁻¹; nous n'avons pu observer d'effet inhibiteur de la scopolétine sur la croissance du champignon après 24h d'incubation.
- les essais réalisés avec les acides chlorogénique et caféique n'ont produit aucun effet sur la germination et la croissance du champignon, laissant penser que l'effet inhibiteur est bien spécifique à la scopolétine et à l'ayapine et n'est pas attribuable aux composés phénoliques en général.
- Enfin, un bioessai nous a permis de suivre la synthèse et l'accumulation de la scopolétine *in planta*, et ce, chez deux génotypes de tournesol de sensibilités opposées à *P. macdonaldii*. Les dosages nous ont permis de démontrer que la quantité de scopolétine est jusqu'à deux fois plus élevée chez le génotype tolérant par rapport au génotype sensible, et ce dès 72 heures.

Cette étude démontre donc que la scopolétine et l'ayapine produisent le même effet inhibiteur sur la germination de *Phoma macdonaldii*, les CI50 obtenues étant très proches. Cependant, un essai préliminaire réalisé au laboratoire avait permis d'obtenir une CI50 de 0.61 mmole.l⁻¹ sur la souche T32A142, souche polyspore agressive prélevée dans le département du Gers, alors qu'elle n'est que de 0,13 mmole.l⁻¹ sur la souche MP6. L'effet obtenu pour la scopolétine peut donc varier d'une souche de *Phoma* à une autre. Ces concentrations demeurent très faibles, et laissent penser que la synthèse de ces phytoalexines pourraient jouer un rôle dans la résistance partielle du tournesol à *Phoma macdonaldii*.

L'effet inhibiteur sur la croissance du champignon n'a pu être obtenu que pour l'ayapine ; pour la scopolétine, il semblerait en effet que la molécule stimule la croissance du champignon. Le champignon pourrait donc dégrader la scopolétine comme l'ont décrit Tal et Robeson (Tal et Robeson, 1986b) et utiliser les produits de dégradation. Ces auteurs proposent en effet que les champignons pathogènes du tournesol auraient pu, durant l'évolution, mettre au point des enzymes capables de dégrader efficacement de tels métabolites.

Pour l'ayapine, au contraire de la scopolétine, la CI50 calculée par Urdangarin pour *Sclerotinia sclerotiorum* a été extrapolée à 0,16 mmole.l⁻¹, ce qui est inférieur à celle que nous avons obtenue pour *P. macdonaldii*. Si le *Phoma* semble donc demeurer moins sensible à l'ayapine que S. *Sclerotiorum*, il n'en reste pas moins que cette molécule reste active sur la croissance du champignon. Il reste à noter que les concentrations de dérivés coumariniques inhibant la germination et la croissance de *P. macdonaldii* décrites ici, sont tout à fait en accord avec des données rapportant des activités antifongiques de l'ordre de 0,1 à 1 mM pour d'autres champignons comme *Helminthosporium carbonum* ou encore *Alternaria helianthi* (Tal et Robeson, 1986a)

En dernier point, **les dosages** *in vivo* **ont permis de démontrer que la quantité de scopolétine est jusqu'à deux fois plus élevée chez le génotype tolérant** par rapport au génotype sensible, et ce **dès 72 heures après contamination** par le champignon. Il est de ce fait envisageable que **la synthèse et l'accumulation de scopolétine** soient **impliquées dans la tolérance du tournesol au** *Phoma*.

Un moyen de vérifier l'implication de l'ayapine et la scopolétine dans la tolérance du tournesol au Phoma serait la sélection de variants naturels de *Phoma macdonaldii* tolérants aux phytoalexines, ou encore l'utilisation de souches résistantes aux phytoalexines produites par mutagenèse, qui pourraient nous permettre d'établir une relation entre la toxicité des composés coumariniques sur le pathogène *in vitro*, le niveau de phytoalexines *in planta*, et la contribution des phytoalexines dans la défense du tournesol contre le Phoma.

Par ailleurs, dans les deux génotypes, nous notons une **nette diminution de la quantité de scopolétine accumulée** dans les tissus infectés, à partir de 96 h après inoculation. Deux hypothèses peuvent permettre d'expliquer ce phénomène : la **dégradation de la scopolétine par le champignon, ou** encore la **biosynthèse d'ayapine à partir de scopolétine**. Les structures de la scopolétine et de l'ayapine suggère que la première molécule puisse être un précurseur immédiat de la seconde, ce qui a été confirmé par Tal et Robeson grâce à un marquage de la scopolétine au C¹⁴ (Tal et Robeson, 1986a). Il serait donc intéressant, pour confirmer ou infirmer la dernière hypothèse, d'établir une cinétique d'accumulation de l'ayapine dans les tissus infectés par *P. macdonaldii*.

Nombre d'études ont permis de mettre en évidence l'implication des phytoalexines dans la résistance des végétaux face aux agents pathogènes. L'un des derniers exemples cité dans la littérature est celui du concombre chez lequel il a été observé une perte de la résistance induite contre le champignon phytopathogène *Podosphaera xanthii* (responsable de l'oïdium du concombre) par disruption de la voie menant à la synthèse de phytoalexines (Fofana *et al.,* 2005). Mais plus intéressant encore est le rôle que pourraient jouer les phytoalexines dans la résistance des plantes contre les agents pathogènes nécrotrophes. Si nous nous référons à la littérature, il apparaît en effet que les différentes voies de défense des plantes, telles que la voie de l'acide salicylique, celle du jasmonate ou encore de l'éthylène, diffèrent dans leur efficacité à contrôler des groupes distincts d'agents pathogènes. Ainsi, d'une façon générale, il semble que les réponses de défense des plantes aux agents pathogènes biotrophes, tels que Erysiphe orontii, Peronospora parasitica ou encore Pseudomonas syringae, soient dépendantes de la voie de l'acide salicylique (Cao et al., 1994 et 1997 ; Delaney et al., 1994 ; Reuber et al., 1998). Et si les réponses de défense dépendantes de l'acide jasmonique sont efficaces contre les agents pathogènes nécrotrophes comme Botrytis cinerea, Erwinia carotovora ou Pythium spp. (Norman-Setterblad et al., 2000; Staswick et al., 1998; Thomma et al., 1998; Vijayan et al., 1998), il apparaît que le rôle des phytoalexines est primordial dans certaines interactions hôte-parasite nécrotrophe. Pour exemple, il a été mis en évidence que la synthèse de camalexine est requise pour la résistance totale aux champignons nécrotrophes Alternaria brassicicola (Thomma et al., 1999) et Plectosphaerella cucumerina (Thomma, résultats non publiés). Enfin, Bohman et al. (2004), ont pu mettre en évidence que la résistance d'Arabidopsis thaliana contre le champignon Leptosphaeria maculans (forme sexuée de *Phoma lingam*), est indépendante des voies de l'acide salicylique, de l'acide jasmonique et de l'éthylène, et requiert la synthèse de camalexine.

Ces dernières remarques, couplées aux résultats que nous avons obtenus, nous laissent penser que **les dérivés coumariniques étudiés pourraient être impliquées dans la résistance multigénique du tournesol à** *Phoma macdonaldii*. Ceci devrait ainsi **encourager à des études plus poussées en vue de leur intégration dans des programmes de sélection** : ils pourraient en effet être utilisés comme marqueurs moléculaires, dans le but d'obtenir des variétés plus résistantes, étant donné que leur synthèse et accumulation semblent être plus importantes chez un génotype tolérant que chez un génotype sensible. Il peut être également envisageable de les inclure dans des **programmes de transformation génétique**, en surexprimant, de façon contrôlée, les gènes impliqués dans leur biosynthèse. Sachant enfin que **ces coumarines peuvent être induites en réponse à des molécules telles que des sucres** (Gutierrez-Mellado *et al.,* 1996), une alternative pourrait être une **lutte contre le** *Phoma*, ou d'autres agents pathogènes du tournesol, **à l'aide d'éliciteurs** exogènes « écologiquement corrects ».

ETUDE DE L'INTERACTION TOURNESOL / PHOMA MACDONALDII PAR L'APPROCHE DES PUCES A ADN

Figure 31 : Représentation schématique de la construction et de l'utilisation des microarrays.

ETUDE DE L'INTERACTION TOURNESOL / PHOMA MACDONALDII PAR L'APPROCHE DES PUCES A ADN

Dans le cadre de nos travaux, nous avons réalisé une étude génétique de l'interaction tournesol / *Phoma macdonaldii*, par l'approche des puces à ADN.

A l'heure actuelle, la technologie des puces à ADN (ou microarrays) connaît un essor exceptionnel et suscite un formidable intérêt dans la communauté scientifique. Il est aujourd'hui possible, grâce à cette méthodologie, de mesurer simultanément le niveau d'expression de plusieurs milliers de gènes, voire d'un génome entier, dans des conditions différentes, qu'elles soient physiologiques ou pathologiques. Son utilité est scientifiquement incontestable : en permettant d'accélérer les essais, les puces à ADN permettent aux chercheurs d'interpréter les formidables quantités de données inhérentes aux projets de séquençage des génomes.

Le principe de l'analyse microarray est le suivant : les ARNs totaux sont extraits des différents échantillons dont on veut comparer l'expression. Les ARNs messagers sont ensuite transformés en ADNc par transcription inverse. Lors de cette étape, les ADNcs sont marqués. Ils seront ensuite hybridés à des molécules d'ADN, correspondant à différents gènes, fixées au préalable sur une matrice solide. L'ADN fixé sur le support solide étant en excès, et l'hybridation s'arrêtant pendant la phase linéaire, le niveau de signal mesuré à la suite de l'hybridation traduira l'abondance d'une séquence donnée parmi la population d'ARNs de départ. Nous appellerons cible les molécules d'ADN présentes sur la puce et sonde les molécules d'ADN marquées en solution (Figure 31).

Afin de déchiffrer la logique de la régulation des gènes, il faut contrôler le niveau d'expression de tous ces gènes simultanément, avec une bonne sensibilité.

Figure 32 : principales approches des puces à ADN utilisées pour les mesures d'expression génique. Les puces à ADN sont produites de deux façons : par dépôt de produits de PCR de clones d'ADNc sur membrane en nylon (A, B, C) ou sur lame de verre (D), ou par synthèse in situ d'oligonucléotides sur support en silicium (E). Les images obtenues après hybridation avec différentes sondes complexes sont montrées. (A) Macroarray nylon (densité de quelques centaines de cibles au cm2) hybridé avec une sonde marquée par radioactivité et acquisition de l'image dans un radioimageur de résolution de 100 à 200 µm. (B) et (C) Microarrays nylon (densité de quelques milliers de cibles au cm2) hybridés avec une sonde marquée par radioactivité (B) et acquisition de l'image dans un radio-imageur à haute résolution (25 µm) ou hybridés avec deux sondes marquées par colorimétrie (C) et acquisition de l'image dans un scanner d'ordinateur à haute résolution. Les images d'hybridation sont agrandies en leur centre. (D) Microarray sur verre (densité de plusieurs milliers de cibles au cm2) hybridé avec deux sondes marquées par fluorescence et acquisition de l'image dans un scanner laser muni d'optiques confocales. Le double marquage permet une visualisation de l'expression génique différentielle entre les deux sondes en superposant les images acquises à chaque longueur d'onde des deux fluorophores. (E) Oligochip sur silicium, type Affymetrix (densité de plusieurs milliers de cibles au cm2) hybridé avec une sonde marquée par fluorescence et acquisition de l'image dans un système identique aux microarrays sur verre. Ici, chaque gène est représenté par un jeu de 20 ou 25 oligonucléotides 25-mers dérivés de sa séquence et directement synthétisés in situ. Chaque oligonucléotide est associé à un témoin présentant une différence de séquence en son centre et permettant l'évaluation du bruit de fond (voir l'agrandissement au centre de l'image). Le niveau d'expression du gène est mesuré par la moyenne des différences des signaux des oligonucléotides spécifiques et témoins (d'après Bertucci et al., 2001).

L'information issue de l'analyse microarray permet de décrire les gènes différentiellement exprimés entre deux conditions données, et ainsi de mieux caractériser leur fonction. Des gènes exprimés de façon spécifique dans chaque condition pourront être mis en évidence : ce sont des gènes marqueurs. Le cas de gènes co-exprimés dans une même condition peut également se présenter, il permettra de mettre en évidence des co-régulations et des interactions.

Le choix d'un certains nombres de paramètres est nécessaire afin de pouvoir mettre en place la construction et l'analyse d'un macroarray, et ce, dans le but de répondre à la question biologique posée. La détermination du type de puce à utiliser, du matériel végétal ainsi que le plan d'expérience sont autant de choix primordiaux.

I – Choix du type de puce à utiliser

Le terme « puces à ADN » est un terme générique. Il existe actuellement trois principaux types de puces à ADN : les macroarrays, les microarrays et les « puces à oligos ». Ils se distinguent par la densité des spots, le mode de fabrication, la nature des molécules fixées, ainsi que par les méthodes d'hybridation. Pour les macro et microarrays, le dépôt des molécules d'ADN se fait directement sur le support, alors que pour les puces à oligonucléotides, des sondes oligonucléotidiques sont synthétisées *in situ* sur une surface solide (figure 32).

I – 1 – Les macroarrays ou filtres à haute densité

Les dépôts (cibles) sont des produits PCR, ou encore des clones bactériens renfermant les séquences d'intérêt, fixés à haute densité sur une membrane de nylon (8 x 12 cm). Le marquage est le plus souvent radioactif et le criblage est réalisé en excès de sonde, on obtient ainsi une mesure de l'abondance relative de chacun des ARNm présent dans l'échantillon de départ. On parle de macroarrays jusqu'à une densité d'environ 50 fragments ADN déposé par cm². Les fragments d 'ADN (produits de PCR double brin) sont déposés sur une membrane de nylon.

I-2-Les microarrays

Ils permettent la miniaturisation des dépôts d'ADN, ce qui permet de fixer plusieurs milliers de cibles sur des surfaces égales ou inférieures à celle d'une lame de microscope standard. Elles sont déposées à une densité allant jusqu'à 1 000 cibles/cm² par un robot sur des lames de verre au préalablement traitées chimiquement, ou sur membrane de nylon, soit jusqu'à 12000 cibles/lame. L'augmentation de la densité s'accompagne d'une diminution de la taille des spots, qui passe de 0.5 mm à 100 µm. Les cibles sont généralement des ADN double brin de longueur de 200 à 2000 bp amplifiés par la technique de PCR mais récemment, des oligonucléotides longs (50-70 mers) ont également été greffés sur la puce après leur synthèse. Les sondes utilisées sont réalisées par transcription inverse, à partir d'ARN total ou messager, en utilisant 2 fluorochromes différents (Cy3 et Cy5) ce qui permet d'hybrider simultanément 2 sondes sur une même cible, pour les dépôts sur lame de verre. Cette double hybridation est nécessaire, les lames de verre étant à usage unique. Les microarrays sur membrane de nylon sont hybridés avec des sondes marquées radioactivement. Dans ce cas, une même puce peut être hybridée plusieurs fois. L'analyse des microarrays sur lame de verre se fait par comparaison du tissu d'intérêt avec un témoin, alors que pour les microarrays sur nylon différentes conditions peuvent être comparées directement.

I – 3 – les puces à oligonucléotides ou oligochips

Ici, la cible est constituée par des oligonucléotides courts (20-80 mers), choisis dans des régions spécifiques de chaque gène. La densité autorisée par ce type de puce est bien supérieure, puisqu'on peut synthétiser jusqu'à 300 000 oligonucléotides représentant 30 000 gènes sur une puce d'une surface d'environ 1 cm2. Les dépôts sont de taille réduite (20 µm). Cette approche est encore plus intéressante dans le sens où les clones d'ADN ne sont pas nécessaires à la construction de la puce. On hybride une seule sonde par puce et l'intensité de fluorescence mesurée par un scanner permet une mesure de l'abondance relative de chacun des ARNm présent

dans l'échantillon biologique étudié. Ce type de puce n'est évidemment utilisable que dans le cas où des programmes de séquençage ont produit un nombre assez important de données pour l'espèce étudiée. Les puces à oligonucléotides ont largement été utilisées dans l'étude d'*Arabidopsis thaliana* (Rashotte *et al.,* 2003 ; Wang *et al.,* 2005) et commencent à être utilisées pour d'autres espèces. L'inconvénient majeur de cette puce reste son coût élevé.

Tableau 5 : principales caractéristiques des différentes approches des puces à ADN (d'après Bertucci *et al.,* 2001).

Caractéristiques	Microarray	Microarray	Microarray	Puce à
	nylon	nylon	verre	oligonucléotides
Cibles	Clones ADN	Clones ADN	Clones ADN	Oligonucléotides
	(produits PCR)	(produits PCR)	(produits PCR)	synthétisés <i>in</i>
				situ
Densité	1000 / cm ²	1000 / cm ²	1000 / cm ²	300 000 / cm ²
Quantité				
d'ARN	Nanogrammes	Microgrammes	Microgrammes	Microgrammes
messagers				
Marquage	Radioactivité	Colorimétrie	Fluorescence	Fluorescence
Echantillons	Unique	Multiple	Multiple	Unique
simultanés				
Aquisition	Radio-imager	Scanner	Scanner laser	Scanner laser
image		d'ordinateur	confocal	confocal
Réutilisation	Multiple	Unique	Unique	Unique
Coût	Faible	Faible	Moyen	Elevé

Au su de ces informations, les microarrays sur membrane de nylon paraissaient être la méthode la mieux adaptée à notre étude. Leur capacité était largement suffisante, et la possibilité de pouvoir hybrider à plusieurs reprises les rendaient plus attractifs que ceux sur lame de verre. Nous avons choisi de les hybrider avec des sondes marquées radioactivement, une analyse réalisée par Bertucci ayant révélé que les microarrays de nylon hybridés avec des sondes marquées radioactivement permettaient d'utiliser une faible quantité d'ARN (Bertucci *et al.,* 1999).

II – Matériel végétal

Nous avons opté pour le choix de deux lignées génétiquement proches, l'une sensible à *Phoma macdonaldii* (C106), l'autre partiellement résistante à l'agent pathogène (C146). Ces lignées fournies par F. Vear (INRA de Clermont Ferrand, France), ont été développées par Single Seed Descent (SSD), à partir d'un croisement entre PAC-2 and RHA-266. Elles ont été testées pour leur sensibilité au Phoma grâce au test de contamination mis au point par Roustaee *et al.* (Roustaee *et al.*, 2000c).

III – L'expérimentation

III – 1 – Etude préliminaire

Il convenait, avant de débuter l'analyse par microarray, de choisir deux temps auxquels nous allions effectuer les prèlèvements végétaux. Nous avons ainsi envisagé en premier lieu une approche de type avec a priori : des **expériences de RT-PCR** ont été menées sur une lignée de tournesol tolérante au Phoma, dans le but d'**établir une cinétique d'expression de gènes de défense après contamination** par l'agent pathogène. Les gènes sélectionnés pour cette expérimentation, au nombre de six, sont classiquement impliqués dans les voies de défense des plantes. Il s'agit de la phénylalanine ammonia lyase (PAL), enzyme clé dans la voie de biosynthèse des phénylpropanoïdes (Lawton *et al.*, 1980), d'une chitinase et d'une glucanase, enzymes lytiques (Sahai et Manocha, 1993), d'une lipoxygénase, enzyme fortement stimulée dans les plantes infectées par les micro-organismes et les virus, de l'isochorismate synthase, impliquée dans la synthèse de l'acide salicylique (Wildermuth *et al.*, 2001), et de l'aminocyclopropane carboxylase synthase (ACC synthase), enzyme liée à la synthèse d'éthylène. Une protéine ribosomiale a été utilisée comme standard.

III – 1 – 1 – Matériels et méthodes

Les RT-PCR ont été effectuées sur la lignée tolérante afin d'établir une cinétique d'expression de gènes de défense. Pour ce faire, les pétioles de cotylédons ont été collectés 0, 3, 6, 12, 24, 48 et 72h après contamination par le parasite, et l'ARN total extrait selon la méthode de Verwoerd (Verwoerd *et al.*, 1989).

Chaque lot d'ARN a subi un traitement DNase (1µg), puis la synthèse du premier brin d'ADNc a été initiée avec une amorce oligo (dT)15 (Promega), en utilisant la M-MLW reverse transcriptase (Promega). La PCR a été réalisée dans les conditions standard (1 µL d'ADNc, 5 µL de tampon 10 X pour Taq polymérase, 2.5 µL de MgCl2 50 mM, 5 µL de chaque dNTP à 2 mM, 2µL de chaque couple d'amorces oligonucléotidiques à 10 µM, et 2.5 µL de Taq polymérase (Qiagen), dans un volume total de 50 µL) avec les amorces spécifiques de gènes suivantes : lipoxygenase, isochorismate synthase, ACC synthase, chitinase 4, phenylalanine ammonia lyase, glucanase et une protéine ribosomiale comme standard interne (des détails sont donnés en annexe 4). La réaction PCR a été réalisée selon le protocole suivant : 5 min de dénaturation à 95°C, suivie de 25, 30, 35 et 40 cycles de dénaturation à 95°C pendant 1 min, annealing à 58°C pendant 1 min, extension à 72°C pendant 2 min, et étape finale d'extension à 72°C pendant 15 min. Les fragments d'ADN amplifiés par PCR ont alors migré dans un gel d'agarose à 2% puis ont pu être visualisés grâce à une coloration au bromure d'éthidium (BET).

III – 1 – 2 – Résultats

Les résultats de RT-PCR nous ont permis d'étudier le profil d'expression des 6 gènes sélectionnés en réponse à l'infection par *P. macdonaldii*. Trois gènes s'expriment de façon constitutive dès avant l'inoculation, c'est le cas du gène de la lipoxygénase, de la PAL et de la β -1,3-glucanase. Cependant, si l'expression du gène LOX étudié reste très faible durant tout le temps de l'infection, sans différence significative entre témoins et inoculés, nous avons noté une plus forte accumulation des transcrits du

gène de β-1,3-glucanase, malgré une différence peu significative entre les traitements. Pour le gène de la PAL, nous mettons en évidence une accumulation des transcrits jusqu'à 6 heures, puis une diminution progressive jusqu'à 72 heures chez les plantes inoculées par comparaison avec les témoins. L'expression des trois autres gènes étudiés est induite par le traitement ou l'infection. Si le gène de l'isochorismate synthase est exprimé durant tout le temps de l'expérimentation, sans différence significative entre témoins et inoculés, nous avons induction du gène de l'ACC synthase jusqu'à 48 heures après contamination, suivie d'une diminution de l'expression à 72 heures. Pour ce même gène, nous notons cependant une expression plus importante durant la première période de l'infection, c'est à dire de 3 heures à 6 heures. Le gène de la chitinase, enfin, présente un profil biphasique. Nous avons en effet une expression précoce de ce gène dès 6 heures après contamination par l'agent pathogène, puis une induction plus tardive à 24 heures (figure 33). Les résultats observés nous ont permis de choisir deux temps, 6 heures et 48 heures, auxquels l'expression de ces gènes étudiés était globalement la plus forte.

Figure 33 : accumulation des transcripts d'une phénylalanine ammonia-lyase (PAL) et d'une chitinase (CH4) chez une lignée de tournesol (C146) en réponse à l'inoculation par *Phoma macdonaldii* ; t : témoin, c : contaminé, H.P.I. : heures après inoculation.

III – 2 – la construction du microarray

Afin de caractériser le transcriptome des plantes sensibles et partiellement résistantes à *Phoma macdonaldii*, 6 heures et 48 heures après infection par l'agent pathogène, nous avons utilisé différentes banques du Génoplant, construites à partir de différents tissus et organes de tournesol. Pour chaque contig à disposition, nous avons choisi l'EST la plus longue représentant la partie 3' du gène. Nous avons utilisé un total de 911 clones représentant des séquences très similaires à des gènes connus d'*Arabidopsis thaliana*, liés aux voies métaboliques primaires, au signal de transduction, ainsi que tous les ADNc liés à la défense des plantes aux champignons phytopathogènes et disponibles chez le tournesol. Chacune des séquences a été spottée deux fois, grâce à huit aiguilles, dans deux champs. Chaque aiguille a déposé 144 séquences par carré (pattern de 12 x 12), avec un espacement de 0.5 μ m entre chaque dépôt (figure 34). Le projet a été réalisé à l'IFR 40 du pôle de biotechnologie végétale d'Auzeville, sur la plate-forme génomique, grâce aux conseils de Cécile Thonon-Donnadieu.

Figure 34 : puce à ADN réalisée et détail d'un champ

III – 3 – L'hybridation du microarray

L'hybridation du microarray a été réalisée avec des ADNc issus de pétioles de cotylédons des lignées sensibles et partiellement tolérantes à *Phoma macdonaldii*. Le matériel végétal a été récolté 6h et 48h après contamination, ou après inoculation avec la solution de contamination sans spores pour les témoins. Pour chaque condition, nous avons effectué deux extractions d'ARN indépendantes, correspondant à deux réplications biologiques. Huit microarrays ont été hybridés chacun deux fois. Nous avons donc réalisé un total de 16 hybridations (figure 35).

	Témoin	Contaminé	
	6h 48h	6h 48h	
Lignée tolérante	Rep.bio.1 Rep.bio.1 Rep.bio.2 Rep.bio.2	Rep.bio.1 Rep.bio.1 Rep.bio.2 Rep.bio.2	
Lignée sensible	Rep.bio.1 Rep.bio.1 Rep.bio.2 Rep.bio.2	Rep.bio.1 Rep.bio.1 Rep.bio.2 Rep.bio.2	
5 1	6 hybridations		

Figure 35 : détail du plan expérimental utilisé pour les hybridations des microarrays. Rep. Bio : réplicat biologique.

III – 4 – L'analyse statistique des microarrays

Afin d'analyser les microarrays, trois étapes successives sont indispensables :

 une analyse de la qualité des microarrays, qui va permettre de vérifier que les microarrays produits présentent une qualité suffisante pour permettre l'analyse des transcriptome dans les conditions étudiées. Pour notre étude, nous avons dans un premier temps comparé les signaux obtenus pour l'hybridation des spots 1 et 2. Sur les 16 graphiques en log10 correspondant aux 16 membranes (figure 36), nous avons une très faible dispersion des points, donc une très bonne corrélation entre l'hybridation des deux spots. Ceci se traduit par un R² supérieur à 0.96 dans tous les cas et montre la très bonne reproductibilité de nos hybridations. Dans un second temps, nous avons comparé les signaux obtenus à partir des répétitions biologiques. Ici également, l'analyse montre une corrélation très élevée entre les résultats (figure 37). Nous pouvons donc conclure à une qualité élevée des hybridations et des quantifications effectuées.

2. Une normalisation des données qui consiste à éliminer la part de variation du signal résultant de l'expérimentation et qui ne traduit pas un changement du niveau d'expression des gènes. Cette étape permet par la suite de pouvoir comparer le niveau d'expression des gènes sous différentes conditions. Nous devons ainsi tenir compte des différentes de variabilité sources externes au microarray (échantillonnage des tissus, temps écoulé entre deux prélèvements, étapes conduisant à la production des sondes, différentes manipulateur, traitement), ou internes au microarray (voisinage des spots, d'où l'utilité du double dépôt, différences dans les quantités de produits PCR déposées attribuables aux propriétés des aiguilles du robot, ...).

Il existe trois procédures de normalisation. La première consiste à utiliser des gènes de type « housekeeping » dont l'expression est constante dans les différentes conditions étudiées. La comparaison des signaux obtenus pour ces gènes entre les différentes hybridations permet de corriger les différences induites lors de l'expérimentation. Cette approche ne peut être utilisée que lorsqu'un grand nombre de gènes présentant un niveau d'expression moyen à élevé constant parmi un grand éventail de conditions expérimentales ont été identifiés. La seconde consiste à utiliser des témoins externes (spikes), c'est à dire des gènes provenants d'autres organismes, dont les ADNc sont ajoutés à la sonde complexe à différentes concentrations. L'inconvénient de cette méthode est qu'il est très difficile d'ajuster précisément la concentration d'ADNc, et qu'une infime variation dans cette quantité est à l'origine d'erreurs systématiques. La dernière méthode, que nous avons utilisée, consiste à tenir compte de tous les gènes de la puce, en partant du principe que deux réplications biologiques doivent être les mêmes. Ce type de normalisation a été réalisée par une analyse de variance (ANOVA), qui nous a permis d'éliminer l'ensemble des différents effets, comme illustré en figure 38.

3. l'identification de gènes différentiellement exprimés. Pour ce faire, nous avons réalisé une analyse de variance. Contrairement à d'autres approches qui se contentent de déclarer un gène différentiellement exprimé si son expression moyenne change de plus d'un certain facteur entre deux conditions données, l'analyse de variance nous a permis de choisir les gènes différentiels selon la signification de la différence mesurée et non la différence de signal obtenu.

Le détail des analyses statistiques réalisées sera décrit dans la publication ci-après.

Les protocoles détaillés relatifs à cette expérimentation sont donnés en annexe 4, la liste des clones d'ADNc sélectionnés pour la puce à ADN en annexe 5.

Figure 36 : représentations graphiques en log10 montrant la corrélation entre les deux spots de chaque clone pour les différentes hybridations réalisées.

Figure 37 : représentations graphiques en log10 montrant la corrélation entre les deux spots (R²> 0.96) correspondant à deux répétitions biologiques.

experiments

Figure 38 : graphique en boîte à moustaches représentant la réparttion des signaux avant normalisation (haut) et après (bas) normalisation.

III – 5 – Validation expérimentale des gènes différentiels

Nous avons choisi la PCR quantitative, méthode rapide, spécifique et très sensible, pour valider les résultats obtenus sur microarray. La méthode est basée sur la détection de fluorescence émise par le produit PCR nouvellement formé, la mesure se faisant en même temps que la réaction a lieu. Nous avons utilisé un produit intercalant qui ne devient fluorescent que s'il se lie à l'ADN, le SYBR green. Pour analyser les résultats de la PCR quantitative, nous avons opté pour une méthode qui consiste à quantifier le changement du niveau du gène d'intérêt par rapport à une référence. Cette quantification du changement relatif de l'expression des gènes est basée sur la méthode du 2 - $\Delta\Delta$ CT décrite par Livak et Schmittgen (2001). Il s'agit de fixer un seuil Ct (threshold Cycle) correspondant au nombre de cycles pour lequel le signal d'amplification est au dessus du bruit de fond, mais la courbe d'amplification restant en phase exponentielle. La comparaison du Ct du gène par rapport au Ct d'un gène témoin (nous avons utilisé EF1 α , facteur d'élongation de la traduction)

permet de connaître le niveau d'expression du gène dans les différentes conditions testées.

Le tableau 6 donne les primers désignés pour l'amplification par PCR quantitative.

Tableau 6 : amorces oligonucléotidiques utilisées pour l'amplification des ADNc par PCR quantitative.

Putative function	Accession	Forward primer 5'-3'	Reverse primer 5'-3'	
	number			
Protein phosphatase 2A	AJ539881	GGIGACATICACGGGCAGIT	GGCACTICCCGCCIATACG	
AP2 domain transcription	CX946549	CAAGAACTCGGCCAATTCGT	AGGAGTAGCAAGGCACCATCA	
factor				
HD-Zip transcription	CX946945	GCAGCACATCGAGGACATCA	GGATCGCACCTCGTGGTTT	
factor				
Protein phosphatase-	AJ412383	AGCTTGGTGTTGGTGGTGTTATT	AAGGAAGTGGGAACCAAAGTTTC	
related				
Choline-phosphate	CD847070	CGAACGAGCGAAGAAATCGT	TCATCGTTGCAGCATCCAA	
cytidylyltransferase				
Pyruvate dehydrogenase	CD852550	GGGATTGTTGGAGCTCAGGTT	CCGATACTTCTGCGCAAAGG	
E1 component alpha				
subunit				
Thaumatin-like protein,	CX944894	TTAAGCGCGAATTCAGCTAAAGT	GGAATGCTCGAATGTCAAGGTT	
putative				
Phenylalanine ammonia-	CD849150	ACCTTCTCGCCGGTCAAGTA	ACCCGTTGTATCGGTTTGTGA	
lyase 2 (PAL2), EC:4.3.1.5				
Esterase/lipase/thioesterase	CD855909	CCACCGTGATCTAGTGATTGCA	GGGTTCTCGAGTTCCATTGGA	
family protein, EC:3.1.1.3				
WRKY family transcription	AJ412452	TTGGATTGAAGATGTCATCTGTGA	CCCTATTCAATTCTTCCACCAAA	
factor				
MYB-related transcription	CD848175	CCGCCACACGCATTCTCT	CGAGCGCAGCAGCATCTA	
factor				
MYB family transcription	CD850032	CCTCCCTGGCACATGAAGTT	CAAGCCGCTCCACTTCAAAG	
factor				
EF1alpha	AY094064	CCAAATCAATGAGCCCAAGAG	CATCCTGAAGTGGGAGACGAA	

IV – Résultats

L'étude du déterminisme de la tolérance du tournesol à *Phoma macdonaldii* a fait l'objet d'un article publié dans la revue *New Phytologist* (Volume 170, Issue 3, Page 523-536, May 2006), présenté ci- après. Les différents gènes déposés sur la puce à ADN sont donnés en annexe X.

A cDNA microarray approach to decipher sunflower (*Helianthus annuus*) responses to the necrotrophic fungus *Phoma macdonaldii*.

Marion Alignan^{1,†}, Tarek Hewezi^{1,2,†}, Michel Petitprez¹, Grégory Dechamp-Guillaume¹ and Laurent Gentzbittel^{1,*}

¹Laboratoire de Biotechnologies et Amélioration des Plantes (BAP), INP-ENSAT, Pôle de Biotechnologies Végétales, IFR 40, 18 Chemin de Borde Rouge, BP 32 607, Auzeville, 31326 Castanet Tolosan, France.

²Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt.

⁺ The two first authors participated equally to this work.

* Author for correspondence: Laurent Gentzbittel

Laboratoire de Biotechnologies et Amélioration des Plantes (BAP), INP-ENSAT, Pôle de Biotechnologies Végétales, IFR 40, 18 Chemin de Borde Rouge, BP 32 607, Auzeville, 31326 Castanet Tolosan, France.

Tel : +33 562 19 35 96 Fax : +33 562 19 35 89 E-mail : gentz@ensat.fr

Summary

- To identify genes involved in partial resistance of sunflower to the necrotrophic fungus *Phoma macdonaldii*, we developed a 1000 element cDNA microarray, containing carefully chosen genes putatively involved in primary metabolic pathways, signal transduction and biotic stress responses.
- A two-pass general linear model was used to normalize the data and then to detect differentially expressed genes. This method allowed us to identify 38 differentially expressed genes between genotypes, treatments and time, mainly belonging to plant defense, signalling and amino acid metabolism.
- Based on a set of highly significant, differentially expressed genes, we propose a model in which negative regulation of a dual-specificity MAPK phosphatase could be implicated in sunflower defense mechanisms to the pathogen. The resulting activation of MAP kinase cascade could, subsequently, trigger defense responses (thaumatin biosynthesis, phenylalanine ammonia lyase activation), under the control of transcription factors belonging to MYB and WRKY. Concurrently, the activation of PP2A, implicated in cell death inhibition, could limit pathogen development.
- The results reported here provide a valuable first step towards the understanding and analysis of *Phoma macdonaldii* sunflower interaction.

Key words: cDNA microarray, *Helianthus annuus* L., necrotrophic fungus, partial resistance, *Phoma macdonaldii*, plant defense.

Introduction

Many advances in plant-microbe interactions have been achieved in the past decade including cloning and characterization of plant resistance genes (for review, see Martin et al., 2003) and identification of components involved in the regulation of defense response (Feys and Parker, 2000; Glazebrook, 2001). Upon pathogen attack, plants develop a set of defense mechanisms: expression of defense-related proteins like pathogenesis-related (P.R.) proteins, thionins, or plant defensins, synthesis of antibiotics like phytoalexins, reinforcement of cell wall, or production of rapid active oxygen species (Dangl and Jones 2001; May et al. 1996). Biochemical and molecular evidence suggests that defense responses do not result from a linear signal transduction cascade, but rather from complex interactions between multiple signalling pathways acting in parallel (Kunkel and Brooks, 2002). As a consequence, signalling pathways leading to active defense in the host could be different depending on lifestyle of pathogens. A model, which classifies pathogens into necrotrophs and biotrophs, proposes that a lifestyle of a pathogen might be a predictor of whether the pathogen will be affected by the jasmonate response or not (Mc Dowell and Dangl, 2000). Thus, it has been demonstrated that the salicylic acid dependent pathway is required for defense against Peronospora parasitica and Erysiphe orontii, two biotrophic fungi. On the other hand, a jasmonate/ethylene-dependent pathway has been shown to be effective against Botrytis cinerea, via functional ethylene insensitive 2 (EIN2) gene (Thomma et al., 1999a), whereas a JA-dependent but ethylene-independent pathway, in parallel with a pathway leading to camalexin production, provides resistance against Alternaria brassicicola. Botrytis cinerea and Alternaria brassicicola are necrotrophic fungal pathogens (for review, see Thomma et al., 2001). Little is known about genes implicated in sunflower (Helianthus annuus) resistance to diseases. Mazeyrat et al. have investigated the resistance of sunflower to the biotrophic oomycete Plasmopara halstedii, causal agent of downy mildew of sunflower. They have showed that transcript levels of PAL, chitinase and ubiquitin were rapidly and strongly increased after infection of sunflower in incompatible interactions, but not in compatible ones, suggesting that regulation of these mRNAs is an important component of resistance mechanisms in sunflower (Mazeyrat *et al.*, 1999).

Phoma macdonaldii (Boerema, 1970), teleomorph *Leptosphaeria lindquistii* (Frezzi, 1968) is responsible for the black stem disease of sunflower. This disease is characterized by the formation of black spots on the stem, around the petiole insertion point. At the bases of stems, coalescing spots develop into a wide black sleeve (Pérès and Lefol, 1996). It is the second most important sunflower disease in France after downy mildew. To date, sunflower genotypes with contrasted levels of resistance to this disease have been identified, but no fully resistant genotypes are described. The inheritance of sunflower partial resistance to *Phoma macdonaldii* was reported to be quantitative under additive and dominant effects (Roustaee *et al.*, 2000). In two independent studies, a significant number of QTLs for *Phoma macdonaldii* resistance have been identified (Bert *et al.*, 2004; Rachid Al-Chaarani *et al.*, 2002), confirming the polygenic nature of this partial resistance of sunflower to this necrotrophic fungus.

Although analysis of gene expression throught microarray approach has already provided significant insight into signalling processes involved in defense responses in model plants, (Dowd *et al.*, 2004; Maleck *et al.*, 2000; Scheideler *et al.*, 2002; Schenk *et al.*, 2000), there are still few reports describing the global changes in transcription activities in response to pathogen infection in cultivated crops. In most cases, these studies deal with monogenic resistance. Surprisingly, no microarray analysis concerning quantitative resistance has been published to date. In this context, studying metabolic pathways, signal transduction and defense mechanisms involved in partial resistance could be fruitful, not only to better recognize the pattern of gene expression during resistance response, but also to understand the mechanism by which the plant overcome the pathogen. Analysis of expression profiles of genes involved in metabolic pathways will, for example, facilitate identification of metabolic changes in response to pathogen infection. This could contribute to the development of new strategies in order to control disease infections in agronomy.

In this study, we developed and used a 1000 element cDNA nylon microarray. Taking into account that using thematic arrays limits the scope of genes that can be detected, we have carefully chosen for this array a set of representative genes putatively involved in primary metabolic pathways, signal transduction and response to biotic stress, identified on the basis of their homology to *Arabidopsis thaliana* genes. We employed this thematic array to investigate transcriptional changes that occur during the activation of multigenic resistance in partially resistant and susceptible sunflower lines inoculated with *Phoma macdonaldii*, at two time points. In addition to well known defense-related genes, we identified a number of genes involved in primary metabolic and signalling pathways, with putative roles in *Phoma macdonaldii* partial resistance. These results provide insight into key regulators and cellular processes involved in sunflower resistance to black stem disease, and would significantly contribute in the clarification of the mechanisms developed by the plant against this pathogen.

Materials and Methods

Plant materials and experimental design

Phoma macdonaldii partially resistant (C146) and susceptible (C106) lines of sunflower were selected and used in this investigation. These lines, provided by F. Vear (INRA of Clermont Ferrand, France), have been developed by Single Seed Descent (SSD) from a cross between PAC-2 and RHA-266. Seeds were sown in plastic containers filled with horticulture substrate (Hawita Flor, Germany) and transferred to growth chamber in a 14 h photoperiodism and $24\pm1^{\circ}$ C / $17\pm1^{\circ}$ C light / dark temperature with a light intensity of 200μ E.m–2.s-1 provided by daylight fluorescent Philips tubes and under 75-85% relative humidity. MP6, an aggressive monopycniospore isolate of *P. macdonaldii*, was used (Roustaee *et al.*, 2000). MP6 isolate was grown on Potato

Dextrose Agar medium at 25±1°C in 12h photoperiodism (37 µE.m-2.s-1). After a tendays incubation period, pycniospore suspension was obtained by addition of sterile water at the surface of the culture and mechanical mixing. Twenty microliters of spore suspension containing 10⁶ pycniospores/mL in water, 0.5% orange juice and 0.25% gelatine were deposed at the intersection of cotyledon petiole and hypocotyl of two-leaf-stage sunflower seedlings. During the first 48 h following contamination, the containers in which plants were grown were covered with a transparent top to maintain nearly saturated humidity, favorable for pathogen development. For control treatments, 20 μ L of the same solution without spores were used. The plants were grown in parallel under the same conditions and petiole samples were collected at the same time as for the treated plants. Inoculated plants of both C106 and C146 lines were grown during one week in the same conditions as described above, in order to control efficiency of contamination. Then, cotyledon petioles of the seedlings were scored according to the percentage of petiole area exhibiting disease symptoms (necrosis). A rating scale from 1 to 9, based on the percentage of necrosed area, was used (Roustaee et al., 2000).

Microarrays preparation

We constructed a thematic sunflower cDNA microarray containing 911 cDNA clones, representing high sequence similarity with known or predicted Arabidopsis genes related to primary metabolic and signal transduction pathways. We thoroughly add to this array all the putative defense-related cDNAs (116) available for sunflower. The full list of the selected clones, as well as their potential functions, is found in the supplementary data. The sunflower Expressed Sequences Tag (EST) clones were selected from different cDNA libraries (Ben *et al.*, 2005; Tamborindeguy *et al.*, 2004) based on sequence homology to already known or predicted genes involved in main primary metabolic pathways, signal transduction and defense responses in Arabidopsis thaliana using BLASTN and BLASTX programs. Sequences with significant similarities (E value < 1.0 e-10 or BLAST score >100) were selected. The

selected cDNA clones were collected from different cDNA libraries and incubated into 96-well microplates, (Greiner bio-one) containing 200 µL of culture medium (LB) with 100 mg/L ampicillin at 37°C or 31°C and 200 rpm in a shaking incubator. Five microliters of bacterium suspension were transferred into thermowell 96-well plates (Costar) containing 95 µL of MilliQ water. The plates were then heated to 95°C for 10 min in a laboratory oven, followed by centrifugation at 1200 g for 3 min to remove the cellular debris. Eight microliters of the supernatant were used to amplify the cDNA insert using primer pairs specific for the vector ends. For amplification of pSport1, pCR4 and pGMT universal M13 5' clones in the forward GTTTTCCCAGTCACGACGTTG 3' M13 5' and reverse TGAGCGGATAACAATTTCACACAG 3' were used. However, for inserts in 5' Triplex2, the forward and oligonucleotides were reverse TCCGAGATCTGCACGAGC 3′ and 5' TAATACGACTCACTATAGGG 3' respectively. The PCR reaction was performed in 100 µL containing 10 µL 10X buffer, 2.5 mM MgCl2, 200 µM dNTP and 0.2 µM of each primer and 3 Units of Taq DNA polymerase (Qiagene, France). DNA samples were denaturated at 95°C for 2 min followed by 40 cycles of amplification at 95°C for 30 sec, 52°C for 30 sec and 72°C for 2 min followed by a final extension step at 72°C for 7 min. The size and quality of PCR products were tested by agarose gel electrophoresis. PCR samples showing double bands were removed or replaced by another cDNA clone. The PCR solutions were then concentrated by evaporation using a speed vacuum at 70°C for 1 h 30 and the products were then suspended in 40 µL of water to obtain a DNA concentration around 300-500 ng/µL. Finally, the concentrated PCR products were arrayed onto Hybond N+ Amersham nylon membrane, using the MicroGrid II (Biorobotics LTD, Cambridge, U.K.) with 8 microarraying pins. A 12X12 gridding pattern and a distance of 0.5 mm between spots were used. To increase the reliability of signal, each PCR sample was arrayed twice in unadjusted spot to yield 2304 data points including positive and negative controls. After spotting, the nylon membranes were placed facing up onto Whatman paper moistened with denaturation solution (1.5 M NaCL and 0.5 M NaOH) followed by neutralization solution (1.5M NaCL and 1 M Tris HCL, pH 7.4) for 20 min each. The treated membranes were then dried at 80°C for 2 h and UV crosslinked with a UV Stratalinker 1800.

Samples collection, RNA isolation and probes preparation

Cotyledon petioles were collected, from treated as well as control plants, at 6 h and 48 h after contamination and used to extract total RNA as described by Verwoerd et al. (1989). For the two independent biological repeats, cotyledon petioles collected from at least 15 plants were pooled on one sample prior to probe preparation. Singlestranded probes were synthesized from DNase-treated RNA using Advantage RTfor-PCR Kit (BD Biosciences). The reaction mixture containing 10 µg of total RNA and 40 pMol oligo (dT18) was heated at 70°C for 2 min. Then, 8 µL of 5X reaction buffer, 2 µL of dNTP mix (0.625 mM each of dATP, dTTP, GTP and 0.625 µM dCTP), 4 μ L of [α -33P] dCTP (40 μ Ci), 1 μ L (1 Unit) of RNase inhibitor and 2 μ L (400 Units) of MMLV reverse transcriptase were added. The reaction was incubated at 42°C for 1h. An additional 200 Units of MMLV reverse transcriptase was added and the mixture was incubated for another 60 min at 42°C followed by heating at 94 °C for 5 min to stop the synthesis reaction and to destroy any DNAse activity. To remove unincorporated labelled nucleotides, the radiolabelling reaction was purified by passing the reaction mixture through Probe Quant G-50 Micro Columns (Amersham). The purified radiolabelled cDNA was then used for hybridization. Hybridization was performed at 65°C for 24 h in a buffer containing 0.5% SDS, 5X SSC, 0.1% each of Ficoll 400, Polyvinylpyrrolidone and Albumine Bovine Fraction and 100 µg/ml of Salmon sperm DNA (Sigma). Membranes were washed twice with buffer containing 0.1% SSC and 0.1% SDS at 65°C for 15 min each. The membranes were then exposed to Fuji film imaging plate as a radioactive energy sensor. The radioactive intensity of the spots was captured using Bio-Imaging Analyzer BAS-5000 (Fujifilm) with density gradation of 16 bit/pixel at a resolution of 25 μ m/pixel. Signal quantification was performed using ArrayGauge V.1.3 (Fujifilm) and the numeric values were used for statistical analysis.

For microarray hybridization, 16 different radiolabelled probes corresponding to two lines (partially resistant and susceptible), two treatments (inoculation and control), two time-points (6 h and 48 h after inoculation, time-points based on unpublished RT-PCR experiments) and two independent biological repeats for each combination, were synthesized and used to hybridize with the nylon filters.

Oligonucleotides hybridization

In order to estimate the quantity of each cDNA clone spotted onto nylon membrane, filters were hybridized with a mix of M13 and Triplex reverse primers. Five hundred ng of each primers were end-labelled with 3 μ L of [γ -33P] dATP (30 μ Ci), using 200 Units of polynucleotide kinase (Invitrogen). The reaction was incubated at 37°C for 20 min followed by heating at 65°C for 20 min. Purification of the radiolabelling reaction was performed as described before. Hybridization was achieved overnight at 42°C in the same buffer as described above. Filters were washed in 2XSSC containing 0.1% SDS at room temperature for 10 min followed by 5 min at 42°C. Scanning and quantification of signal intensities were as described above.

Data normalization and ANOVA analysis

To correct for unequal cDNA loading across the array, for each experiment, the absolute raw hybridization signal for each spot was divided by the corresponding value obtained through the hybridization with the non-specific oligos. This scaled value was considered as the crude expression level of a spot. We used analysis of variance (ANOVA) models, to both estimate relative gene expression and to account for other sources of variation in microarray data (Wolfinger *et al.* 2001; Kerr *et al.* 2000). A two-pass general linear model as described by Wolfinger *et al.* (2001) was used to normalize the data and then to detect differentially expressed genes. After background correction, we subjected the log10-transformed scores for all spot

measures (y_{xijklm} being the measured intensity for gene x subject to treatment i, at time j in the genotype k for the spot m on array l) to a normalization model four-way ANOVA, of the based on а form $y_{xijklm} = \mu + Tr_i + Tm_j + Gn_k + Tr_i Tm_j + Tr_i Gn_k + Tm_j Gn_k + Tr_i Tm_j Gn_k + S_l T_i Tm_j Gn_k + \varepsilon_{xijklm}$ where Tr_i is the treatment effect (infected, non-infected ie i=1; 2), Tm_j is the time effect (6-hours, 48-hours ie j=1, 2), Gn_k is the genotype effect (susceptible, partially-resistant ie k=1; 2), S_l is the membrane effect within combination of the factors and ε_{xijklm} is the stochastic errors. The residuals from this model can be regarded as a crude indicator of relative expression level and are referred to as 'normalized expression levels'. We retained as 'above background genes' the genes for which the normalized expression levels of the two spots on a given slide are above the maximum of the empirical distribution of normalized expression levels for gene-specific models the control spots. The were of the form $r_{xiiklm} = G_x + G_x Tr_i + G_x Tm_i + G_x Gn_K + G_x Tr_i Tm_i + G_x Tr_i Gn_K + G_x Tm_i Gn_K + \varepsilon_{xiiklm}$ where r_{xijklm} is the normalized expression levels of gene x . The $G_x Tr_i$, $G_x Tm_j$ and $G_x Gn_K$ effects quantify the overall variability of a gene as a function of the treatment, the time or the genotype respectively. The effects of particular interest are the $G_x Tr_i Tm_j$ and $G_x Tr_i Gn_K$ interactions, measuring the effect of a gene as a function of the time and the treatment, and the effect of a gene as a function of the treatment and the genotype, respectively. A test for heterogeneous variances for the normalized expression levels among tissues was done using the Levene test, for each gene-model. The Bonferroni method was used to conservatively control the Type I statistical error rate due to multiple testings. 'Volcano plots' of significance against magnitude of effects were drawn for each main effect, whereas interaction plots were drawn for the genes with significant interaction effects. Computations were done on a PC running GNU/Linux (Suse 9.0) and R 1.9.0 statistical system.

Real-Time RT-PCR

The expression levels of 6 differentially expressed ESTs were tested by real time RT-PCR to confirm the results obtained from microarray experiments. Moreover, the expression behaviours of 11 cDNA clones were also tested by real-time RT-PCR at differents time points after inoculation, in the partial resistant line. First strand cDNA was reverse transcribed from 5 µg of DNase-treated RNA as described before. Gene specific primers were designed using the Primer Express software, version 2.0 (Applied Biosystems, Courtaboeuf, France). The reaction was performed in 20 µl containing 10 µl 2X Syper Green Mastermix (Applied Biosystems), 300 nM of each primer and 1 µl of 5 fold-diluted RT products. The PCR reactions were run in ABI PRISM 7900HT Sequence Detection System (Applied Biosystems) using the following program: 50°C for 2 min, 95°C for 10 min and 40 cycles of 95°C for 15 s and 60°C for 1 min. Following PCR amplification, the reactions were subjected to temperature ramp to create the dissociation curve, measured as changes in fluorescence measurements as a function of temperature, by which the non-specific products can be detected. The dissociation program was 95°C for 15 sec, 60°C for 15 sec followed by 20 min of slow ramp from 60°C to 95°C. Three replicates of each reaction were performed and elongation factor 1 α (EF1 α), as putative constitutively expressed gene, was used as internal control for normalization. Quantifying the relative changes in gene expression was performed using 2-MACT method as described by Livak & Schmittgen (2001).

Finally, the construction of our cDNA microarray, hybridization protocol, statistical analysis and results validation meet the MIAME criteria described by Brazma *et al.* (2001).

Results

Evaluation of lines

The line C146 was noted 2 (\pm 1.8), corresponding to a very localized necrosis; this necrosis doesn't correspond to an Hypersensitive Response as it spreads slightly with time. In contrast, for the line C106 noted 7.4 (\pm 1.5), the necrotic area spreads over 65 to 80% of petiole surface (Fig. 1).

Genotype effect

At a *p*-value cut off of 10⁻³, and after excluding the ESTs that showed significant interaction effects, we identified 11 cDNA clones showing significant genotype-specific variation in expression levels across all treatments. Results are given in Table 1 and presented as 'volcano plots' (Jin *et al.*, 2001) (Fig. 2a). The low number of ESTs (11) that showed statistically significant changes in the levels of mRNA accumulation among partially resistant and susceptible lines reflects the fact that these lines are derived from the same parents and have close genetic backgrounds. Interestingly, seven of these differentially expressed genes were found to be induced in the C146 partially resistant line, whereas the other four cDNA clones displayed preferential expression patterns in the C106 susceptible line (Table 1). The significantly differentially induced genes in the partially resistant line are likely to be related to disease resistance.

Time effect

After keeping out 6 cDNA clones showing significant interaction effects, 24 ESTs showing significant differences of expression among the time points at a *p*-value less than 10⁻³ have been identified. The majority of these clones (18) are up-regulated at 48 h after inoculation when compared with the 6 h time-point. The low number of induced genes at the 6 h time point may reflect the delayed response of plant genes after *Phoma* inoculation. The complete list of genes showing significant time-point main effects, as well as their putative functions, is provided in Table 1. Many of the
differentially expressed genes encode enzymes involved in primary metabolic pathways (14 ESTs). Interestingly, all clones classified as defence-related genes were found to be induced later, 48h after inoculation.

Treatment effect

After excluding 4 ESTs showing significant interaction effects, only 7 cDNA clones have been identified as showing treatment-specific expression patterns across all experiments (Fig. 2b). Five of these genes are induced in the inoculated plants (located at the upper right square of the Fig. 2b) while 2 clones were found to be repressed (located at the upper left square and above the first horizontal line of significance magnitude). These regulated genes are distributed throughout different functional categories and have p- value less than 10⁻³ and are summarized in Table 1. It is important to mention that two out of the five clones which were found to be upregulated in inoculated plants are potentially involved in amino acid metabolism. These cDNA clones are thought to be involved in the biosynthesis of glutamate, arginine and proline (CD855351, EC:1.4.1.3), tyrosine and phenylalanine (CD849150, EC:4.3.1.5). These results indicate that the metabolism of these amino acids as well as gluconeogenesis (glyceraldehyde 3-phosphate dehydrogenase, CD852523, EC:1.2.1.12) might be associated with plant responses to *Phoma* infection.

A search for genes showing significant main effects, together with treatment and time factors, reveals 4 clones encoding glutamate dehydrogenase 1 (CD855351, EC:1.4.1.3), phenylalanine ammonia-lyase 2 (CD849150, EC:4.3.1.5), thaumatin-like protein (CX944894) and MYB-related transcription factor (CD848175). The expression of these genes, induced 48 h post inoculation and showing approximately the same expression profiles across all experiments (Fig. 3.), suggests co-regulation mechanisms. More interestingly, two clones which encode the afore-mentioned MYB-related transcription factor and an esterase/lipase/thioesterase protein have also

significant genotype effects. These results indicate that these two last clones could modulate directly sunflower response to *Phoma* infection.

Genotype response to infection reveals genes associated to the susceptibility

Only one clone, encoding tyrosine/serine/threonine protein phosphatase (AJ412383), was found to show significant genotype x treatment interactions as deduced from the ANOVA table. This clone exhibited different patterns of gene expression in the two lines under control and infected conditions. mRNA accumulation was abundant in partially resistant line under control treatment compared to susceptible line. However, after contamination, the expression level was largely down-regulated in the partially resistant line and up-regulated in the susceptible one (Fig. 4). These results suggest that this gene could function as a negative regulator of defense signalling pathways, and could be considered as a susceptibility-associated factor.

Time course of defense reaction

ANOVA analysis identified 6 ESTs showing significant interaction between treatment and time-point. Of these, three clones putatively encode transcription factors belonging to WRKY (AJ412452), AP2 (CX946549) and HD-Zip (CX946945) super families. Two clones are involved in glycerolipid and amino acids metabolism. One cDNA clone also exhibited significant interaction between treatment and times. In the absence of infection, these clones exhibited the same expression profiles whatever the time (Fig. 5). This observation, which indicates that these genes are not stress-related, shows that the major components of interaction effects can be attributed to inoculation treatment. With the exception of the choline-phosphate cytidylyltransferase (CD847070, EC 2.7.7.15), five ESTs exhibited high levels of transcript accumulation in infected tissues at 48 h when compared with the expression levels at 6 h post inoculation (Fig. 5). These results indicate that these genes are acting later during the infection, and suggest functional coordination between these regulators to control the expression of defense-related genes.

Verification of differentially expressed genes

To confirm microarray results, 6 clones were randomly selected from different expression profiles and functional categories, and subjected to real-time RT-PCR analysis. These genes were differencially expressed in microarray experiments. Expression levels of clones corresponding to AP2 transcription factor (CX946549), choline-phosphate cytidylyltransferase (CD847070, EC 2.7.7.15) and pyruvate dehydrogenase E1 component alpha subunit (CD852550, EC:1.2.4.1) were significant in the treatment x time interaction ; thaumatin-like protein (CX944894) and phenylalanine ammonia-lyase 2 (CD849150, EC:4.3.1.5) were significant in the main treatment effects and time effects; and MYB-related transcription factor (CD848175) was significant in the main genotype, treatment and time effects. The expression level of these genes was tested in all conditions using the same RNA samples that were used for microarray hybridization. It was normalized using EF1 α as an internal control, and the fold-change values, representing changes of mRNA abundance in inoculated samples vs. control, were calculated using $2^{-\Delta\Delta CT}$ method. As shown in Table 2, the results obtained from quantitative RT-PCR were in good accordance with those obtained by microarray analysis. In all cases, genes that showed high expression level in microarray experiments showed high expression level in quantitative RT-PCR analysis. Moreover, in order to follow the expression profile of some differentially expressed genes according to the microarray experiment results, we have chosen to establish a kinetic accumulation of partial resistant line transcripts. Those transcripts included the six clones described above, and five additional clones selected for their potential role in defence. The time course was defined in order to get results complementary (expression levels at 3, 24 and 72 hours) to those obtained with the microarray experiment (6 and 48 hours), and also included these two later time points for comparisons. The data were collected on independent biological repeats, as were those used for the microarray analyses. The expression levels were estimated as described above. All gene transcripts (AJ539881, CX946549, CX946945, AJ412383, CD847070, CX944894, CD849150, CD855909, AJ412452, CD848175, CD850032) follow the same patterns. These transcripts' expression levels increased between 3 and 6 hours post inoculation, followed by a temporary decrease between 6 and 24h, and finally increased again between 24 and 72 h after contamination (Fig. 6).

Discussion

The aim of this work was to have a first glance of sunflower responses to the necrotrophic fungus *Phoma macdonaldii*, using a microarray approach. According to a contamination test previously described (Roustaee *et al.*, 2000), we have chosen two lines of sunflower, a partially resistant (C146) and a susceptible one (C106). We have constructed a thematic sunflower cDNA microarray containing 911 clones representing high sequence similarity with known or predicted *Arabidopsis* genes related to primary metabolic pathways and signal transduction, and all the putative defense-related cDNAs (116) available for sunflower (Fig. 7).

For most global gene expression studies, the identification of genes whose expression is altered under given conditions is based on fold-change criteria. The major drawbacks of fold-change based microarray analysis are that experimental variations for all genes are considered to be equivalent and there is no quantitative estimate of false positive or false negative rates. In contrast, the analysis of variance method which takes into account all sources of variability affecting gene expression values, permits ranking of differentially expressed genes according to their significance threshold using *p*-value scores. Moreover, using ANOVA, which is based on well developed statistical theories, changes in gene expression as small as 1.2-fold can be detected as highly significant (Jin *et al.*, 2001). As presented in Fig. 2, volcano plot representation shows that many clones may have a low variation and may be highly significant (points closed to dotted line and located above the significance threshold line), whereas some genes which tend to have a higher variation in the gene expression values among the treatments can be not significant (point at the end right of the graph but too far from the line of significance scale). ANOVA method allowed us to identify differentially expressed genes between genotypes, treatments and time, as well as the interactions between these factors. From our point of view, the most interesting genes that can be retained from this analysis are those showing significant effects of both genotype and infection. Genes that show only genotype effect could be due to the genetic background whereas genes exhibiting only the treatment effect reflect the overall plant response to infection. It is therefore conceivable that genes showing significant effects of both genotype and treatment might play a role in the mediation of defense mechanisms rather than simply respond to pathogen. In this context, a MYB-related transcription factor and one esterase/lipase/thioesterase protein have been identified, with opposite expression patterns. The transcript level of the lipase was found to be largely decreased after fungal inoculation. Lipases are hydrolytic enzymes which break down triacylglycerol into fatty acids and glycerol. The Arabidopsis EDS1 and PAD4 encoding lipase-like proteins were found to be required for expression of multiple defense response and basal plant disease resistance (Falk et al., 1999, Feys et al., 2001; Jirage et al., 1999). In contrast to the expression profile of sunflower-like lipase, the transcripts of EDS1 and PAD4 were found to accumulate after pathogen infection or treatment with SA (Falk et al., 1999; Jirage et al., 1999). These observations, which clearly monitor the relationship between glycerolipid metabolism and defense response, suggest that sunflower-like lipase might play a role in plant responses to *Phoma* infection, possibly as an element of the susceptibility pathway, different from those described in Arabidopsis.

In contrast, the clone encoding a putative *MYB* transcription factor was found to be up-regulated after inoculation. The *MYB* family is one of the largest families of transcriptional factors characterized in plants. Functional analysis of plant MYB transcription factors indicates that they regulate numerous processes, such as disease resistance (Lee *et al.*, 2001; Vailleau *et al.*, 2002; Yang and Klessig, 1996), and regulation of phenylpropanoid metabolism (Jin *et al.*, 2001; Martin and Paz-Ares, 1997). Phenylpropanoid is one of the main secondary metabolites, involving modification of components derived from phenylalanine (Martin and Paz-Ares,

134

1997). A cDNA clone encoding PAL2 (EC: 4.1.3.5), a key enzyme involved in phenylpropanoid pathway, was among the genes whose expression was induced after fungal treatment as revealed by our microarray analysis. These results provide an indirect potential link between activation of a MYB transcription factor and defense response generated by PAL2 as a defense-related gene. They are in accordance with the work of Sugimoto *et al.* (2000), who found that Nt*MYB2*, a tobacco *MYB*-related transcription factor activated expression of PAL2 promoter in tobacco protoplasts. Also, it was found that overexpression of Nt*MYB2* cDNA in transgenic tobacco plants induced expression of the PAL gene. This finding, together with our results, supports the hypothesis that *MYB transcription factors* positively regulate plant defense response directly or indirectly *via* activation of secondary metabolism. Interestingly, the camalexin phytoalexin, an end product of phenylpropanoid pathway, was found to be involved in resistance of *Arabidopsis thaliana* against the fungus *Phoma lingam*.

A number of regulatory proteins and transcription factors are known to play important roles in disease signalling by controlling the transcriptional activity of defense-associated genes. Three putative transcription factors that belong to the WRKY, AP2 and homeobox-leucine zipper families were induced 48 h after infection. These transcription factors have been suggested to be involved in defense responses (Chen *et al.*, 2002; Maleck *et al.*, 2000; Marathe *et al.*, 2004; Schenk *et al.*, 2000). *Arabidopsis* plants expressing AtWRKY18 showed elevated levels of resistance against a bacterial pathogen (Chen and Chen, 2002). These authors have also demonstrated that the WRKY18 transcription factor enhances the induction of PR5 (Chen and Chen, 2002), a thaumatin-like pathogenesis-related protein with antifungal activities (Anand *et al.*, 2004).

Surprisingly, we didn't observe changes in the expression level of the 15 genes implicated in SA, JA or ethylene pathway (Table 3) in response of sunflower to *P. macdonaldii*. Nevertheless, this does not imply that this response is independent of SA, JA and ethylene signalling. The complexity of plant defense against necrotrophic

135

pathogens is further enhanced by the fact that resistance against most necrotrophic fungal pathogens does not follow a gene for gene-type interaction, but rather is a multigenic resistance. Mc Dowell and Dangl (2000), propose that a lifestyle of a pathogen might be a predictor of whether the pathogen will be affected by the jasmonate response or not. Their hypothesis is based on the fact that the salicylate response, frequently implicated in plant defense mechanisms, is associated with the hypersensitive response (H.R.), a form of programmed cell death. If H.R. restricts the growth of biotrophs, it can fail to restrict necrotrophic pathogens.

It is well known that phosphorylation and dephosphorylation of proteins regulated by the opposing activities of protein kinases and phosphatases control many cellular processes (Smith and Walker, 1996). An increasing number of protein phosphatases have been reported to be involved in defense mechanisms. Forty-eight hours after inoculation, an increased level of transcripts encoding serine/threonine protein phosphatase 2A (PP2A) was observed. The same protein phosphatase 2A can perform different functions when associated with different regulatory subunits. Thus, PP2A plays numerous functions ranging from metabolism, to cell cycle control, and telomerase activity. It was demonstrated that PP2A activation inhibits localized cell death (He et al., 2004). In our interaction, control of cell death could be an important factor for limiting the propagation of the necrotrophic fungus Phoma macdonaldii. At least one clone, putatively encoding tyrosine/serine/threonine protein phosphatase, also named dual-specificity phosphatase (dsPTPs), exhibited different patterns of gene expression under control and treatment conditions depending on the genotype. After inoculation, its expression level was largely down-regulated in the partially resistant line and up-regulated in the susceptible one. Dual-specificity protein tyrosin phosphatases are able to dephosphorylate both phosphotyrosine and phosphoserine/threonine residues. These dual-specificity phosphatases (dsPTPs) have been shown to regulate MAPK activity (for review, see Keyse, 2000). Among these MAPK regulated by dsPTPs, AtMPK4 (Gupta et al., 1998) and AtMPK6 (Ulm et al., 2002) play a role in plant defense responses. AtMPK6 appears to be implicated in the activation of both local disease resistance, regulated by specific R genes, and basal resistance (Menke *et al.*, 2004). Moreover, number of different pathogenic stimuli activate AtMPK6 (Nhüse *et al.*, 2000), and SIPK in tobacco (orthologous to MPK6 *Arabidopsis*). Therefore, defense mechanisms in sunflower against *P. macdonaldii* could be mediated, in part, *via* down-regulation of this dsPTP, resulting in the activation of MAP kinase cascade. This could trigger defense response under the control of different transcription factors belonging to MYB, WRKY, AP2 and homeobox-leucine zipper protein families. Further detailed analysis to identify the target protein of dsPTP could be of great interest to decipher the mechanism by which this gene controls defense responses in sunflower against *Phoma* infection.

A time course accumulation of selected transcripts allowed us to validate, on a third biological repeat, the microarray results. The biphasic expression profile obtained, typically observed in plant responses to pathogen infection, could correspond to the recognition of a specific fungal elicitor by the plant (3 h) and a delayed response (48 h – 72 h) to pathogen infection. As the expression profile of the 11 cDNA clones was similar, co-regulation events can be suggested.

Unravelling mechanisms of sunflower partial resistance to *Phoma macdonaldii* remains an ambitious endeavour. Nevertheless, by using a cDNA microarray approach, we report here, for the first time, the identification of several genes of sunflower which are regulated in response to this necrotrophic fungus. We propose a model in which negative regulation of a dual-specificity MAPK phosphatase could be implicated in sunflower defense mechanisms to *Phoma macdonaldii*. The resulting activation of MAP kinase cascade could trigger defense responses (thaumatin biosynthesis, PAL activation), under the control of transcription factors belonging to MYB and WRKY. Concurrently, the activation of PP2A, implicated in cell death inhibition, could limit pathogen development. Such a model will be a valuable first step towards understanding and analysis of *Phoma macdonaldii* – sunflower interaction. It would be now interesting to link differentially expressed genes identified by microarray, to the QTLs identified for *Phoma macdonaldii* partial resistance.

Acknoledgements

The authors wish to thank Cécilia Tamborindeguy, Cécile Ben and Nathalie Ladouce for cDNA librairies construction, Tom Maier (Department of Plant Pathology, Iowa State University, USA) and Dominique Roby for critical reading of the manuscript. This work was supported by grants from the Toulouse Genomics Center (French Network of Genomics Centers) and Genoplant project (GOP – HG01).

References

Anand A, Lei Z, Sumner LW, Mysore KS, Arakane Y, Bockus WW, Muthukrishnan S. 2004. Apoplastic extracts from a transgenic wheat line exhibiting lesion-mimic phenotype have multiple pathogenesis-related proteins that are antifungal. *Molecular Plant-Microbe Interactions* **17:** 1306-17.

Ben C, Hewezi T, Jardinaud MF, Bena F, Ladouce N, Moretti S, Tamborindeguy C, Liboz T, Petitprez M, Gentzbittel L. 2005. Comparative analysis of early embryonic sunflower cDNA libraries. *Plant Molecular Biology* **57**: 255-270.

Bert PF, Dechamp-Guillaume G, Serre F, Jouan I, Tourvieille de Labrouhe D, Nicolas P, Vear F. 2004. Comparative genetic analysis of quantitative traits in sunflower (*Helianthus annuus* L.). Characterisation of QTL involved in resistance to *Sclerotinia sclerotiorum* and *Phoma macdonaldii*. *Theoretical and Applied Genetics* **109**: 865-875.

Boerema GH. 1970. Additional notes on Phoma herbarum. Persoonia 6: 15-48.

Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-

Kremer S, Stewart J, Taylor R, Vilo J, Vingron M. 2001. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. *Nature Genetics*. 29: 365-371.

Chen C, Chen Z. 2002. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced *Arabidopsis* transcription factor. *Plant Physiology* **129**: 706-16.

Chen W, Provart N, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA. 2002. Expression profile matrix of *Arabidopsis* transcription factor genes implies their putative functions in response to environmental stresses. *Plant Cell* **14**: 559–574.

Dangl JL, Jones JD. 2001. Plant pathogens and integrated defense responses to infection. *Nature* **411:** 826-833.

Dowd C, Wilson IW, Mc Fadden H. 2004. Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with *Fusarium oxysporum* f. sp. *vasinfectum*). *Molecular Plant Microbe Interactions* **17:** 654-667.

Falk A, Feys B, Frost LN, Jones JDG, Daniels MJ, Parker JE. 1999. *EDS1*, an essential component of *R* gene-mediated disease resistance in *Arabidopsis* has homology to eukaryotic lipases. *Proceedings of the National Academy of Science of USA* **96:** 3292–3297.

Feys BJ, Parker JE. 2000. Interplay of signalling pathways in plant disease resistance. *Trends in Genetics* **10:** 449-55.

Feys BJ, Moisan LJ, Newman MA, Parker JE. 2001. Direct interaction between the *Arabidopsis* disease resistance signalling proteins, EDS1 and PAD4. *EMBO Journal* **20**: 5400–5411.

Frezzi MJ. 1968. *Leptosphaeria lindquistii* n. sp., forma sexual de *Phoma oleracea* var. *helianthi-tuberosi* Sacc., hongo causal de la "mancha negra del tallo" del girasol (*Helianthus annuus* L.), en Argentina. *Patologia Vegetal* **5:** 73-80.

Frye BJ,Tang D, Innes R. 2001. Negative regulation of defense responses in plants by a conserved MAPKK kinase. *Proceedings of the National Academy of Science of USA* **98**: 373-378.

Glazebrook J. 2001. Genes controlling expression of defense responses in *Arabodopsis*-2001 status. *Current Opinion in Plant Biology* **4**: 301-308.

Gupta R, Huang Y, Kieber J, Luan S. 1998. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from *Arabidopsis. Plant Journal* **16:** 581-589.

He X, Anderson JC, del Pozo O, Gu YQ, Tang X, Martin GB. 2004. Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death. *Plant Journal* 38: 563-77.

Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C. 2000. Transcriptional repression by AtMYB4 controls production of UVprotecting sunscreens in *Arabidopsis*. *EMBO Journal* **19**: 6150-6161.

Jin W, Riley RM, Wolfinger RD, White KP, Passador-Gurgel G, Gibson G. 2001. The contribution of sex, genotype and age to transcriptional variance in *Drosophila melanogaster*. *Nature Genetics* **29**: 389-395. Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J. 1999. *Arabidopsis thaliana* PAD4 encodes a lipase-like gene that is important for salicylic acid signalling. *Proceedings of the National Academy of Science of USA* 96: 13583–13588.

Kerr MK, Martin M, Churchill GA. 2000. Analysis of variance for gene expression microarray data. *Journal of Computational Biology* 7: 819-37.

Keyse SM. 2000. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. *Current Opinion in Cell Biology* **129:** 186-192.

Kunkel BN, Brooks DM. 2002. Cross talk between signalling pathways in pathogen defense. *Current Opinion in Plant Biology* **5:** 325-331.

Lee MW, Qi M, Yang YO. 2001. A novel jasmonic acid-inducible rice MYB gene associates with fungal infection and host cell death. *Molecular Plant Microbe Interactions* 14: 527-535.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using realtime quantitative PCR and the $2^{-\Delta\Delta C_{T}}$ method. *Methods* **25:** 402-408.

Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA. 2000. The transcriptome of *Arabidopsis thaliana* during systemic acquired resistance. *Nature Genetics* 26: 403–410.

Marathe R, Guan Z, Anandalakshmi R, Zhao H, Dinesh-Kumar SP. 2004. Study of *Arabidopsis thaliana* resistance to cucumber mosaic virus using whole genome microarray. *Plant Molecular Biology* 55: 501-520.

Martin C, Paz-Ares J. 1997. MYB transcription factors in plants. Trends Genet. 13: 67–73.

Martin GB, Bogdanove AJ, Sessa G. 2003. Understanding the functions of plant disease resistance proteins. *Annual Review of Plant Biology* **54**: 23-61.

May MJ, Hammond-Kosack KE, Jones J. 1996. Involvement of reactive oxygen species, glutathione metabolism, and lipid peroxidation in the Cf-gene-dependent defense response of tomato cotyledons induced by race-specific elicitors of *Cladosporium fulvum. Plant Physiology* **110:** 1367-1379.

Mazeyrat F, Mouzeyar S, Courbou I, Badaoui S, Roeckel-Drevet P, Tourvielle de Labrouhe D, Ledoigt G. 1999. Accumulation of defense related transcripts in sunflower hypocotyls (*Helianthus annuus* L.) infected with *Plasmopara halstedii*. *European Journal of Plant Patholology* **105**: 333-340.

Menke FLH, van Pelt JA, Pieterse Corné MJ, Klessig DF. 2004. Silencing of the mitogen-activated kinase MPK6 compromises disease resistance in *Arabidopsis*. *Plant Cell* **16**: 897-907.

Mc Dowell JM, Dangl JL. 2000. Signal transduction in the plant immune response. *Trends in Biochemical Sciences* **25:** 79-82.

Nhüse TS, Peck SC, Hirt H, Boller T. 2000. Microbial elicitors induce activation and dual phosphorylation of the *Arabidopsis thaliana* MAPK 6. *Journal of Biological Chemistry* 275: 7521-7526.

Peres A, Lefol C. 1996. *Phoma macdonaldii* Boerema: éléments de biologie et mise au point d'une méthode de contamination artificielle en conditions controlées.

Proceedings of the Fourteenth International Sunflower Conference. Beijing, China 2: 687-693.

Rachid Al-Chaarani G, Roustaee A, Gentzbittel L, Mokrani L, Barrault G, Dechamp-Guillaume G, Sarrafi A. 2002. A QTL analysis of sunflower partial resistance to downy mildew (*Plasmopara halstedii*) and black stem (*Phoma macdonaldii*) by use of recombinant inbred lines (RILs). *Theoretical and Applied Genetics* **104**: 490-496.

Roustaee A, Barrault G, Dechamp-Guillaume G, Lesigne P, Sarrafi A. 2000. Inheritance of partial resistance to black stem (*Phoma macdonaldii* Boerema L.) in sunflower. *Plant Pathology* **49:** 396-401.

Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD. 2002. Monitoring the switch from housekeeping to pathogen defense metabolism in *Arabidopsis thaliana* using cDNA arrays. *Journal of Biological Chemistry* 277: 10555-10561.

Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. 2000. Coordinated plant defense responses in *Arabidopsis* revealed by microarray analysis. *Proceedings of the National Academy of Science of USA* 97: 11655-60.

Smith DR, Walker JC. 1996. Plant protein phosphatases. *Annual Review of Plant Physiology and Plant Molecular Biology* **47**: 101-125.

Sugimoto K, Takeda S, Hirochika H. 2000. MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retrotransposon Tto1 and defense-related genes. *Plant Cell* **12:** 2511-2527.

Tamborindeguy C, Ben C, Liboz T, Gentzbittel L. 2004. Sequence evaluation of four specific cDNA libraries for developmental genomics of sunflower. *Molecular Genetics and Genomics* **271:** 367-75.

Thomma BPHJ, Eggermont K, Tierens KFM-J, Broekaert WF. 1999a. Requirement of functional EIN2 (ethylene insensitive 2) gene for efficient resistance of *Arabidopsis thaliana* to infection by *Botrytis cinerea*. *Plant Physiology* **121**: 1093-1101.

Thomma BPHJ, Nelissen I, Eggermont K, Broekaert WF. 1999b. Deficiency in phytoalexin production causes enhanced susceptibility of *Arabidopsis thaliana* to the fungus *Alternaria brassicicola*. *Plant Journal* **19:** 163-71.

Thomma BPHJ, Penninckx IA, Broekaert WF, Cammue BP. 2001. The complexity of disease signalling in *Arabidopsis. Current Opinion in Immunology* **13:** 63-68.

Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X, Shinozaki K, Paszkowski J. 2002. Distinct regulation of salinity and genotoxic stress responses by *Arabidopsis* MAP kinase phosphatase 1. *EMBO Journal* **21**: 6483-93.

Vailleau F, Daniel X, Tronchet M, Montillet JL, Triantaphylides C, Roby D. 2002. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. *Proceedings of the National Academy of Science of USA* **99:** 10179–10184.

Verwoerd TC, Dekker BM, Hoekema A. 1989. A small-scale procedure for the rapid isolation of plant RNAs. *Nucleic Acids Research* **17:** 2362.

Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushe, P, Afshari C, Paules RS. 2001. Assessing gene significance from cDNA microarray expression data *via* mixed models. *Journal of Computational Biology* **8**: 625-37.

Yang YO, Klessig DF. 1996. Isolation and characterization of a tobacco mosaic virusinducible **MYB** oncogene homolog from tobacco. *Proceedings of the National Academy of Science of USA* **93:** 14972-14977.

Table 1 Differentially expressed genes.

_

Thirty-nine cDNA clones showed significant variation in expression levels in the conditions tested. Putative functions are based on sequence homology to already known or predicted genes in *Arabidopsis thaliana* functional category based on Kyoto Encyclopedia of Genes and Genomes database. The normalised expression levels, as computed from the normalisation model, are logarithmic values of the expression values. The fold change between two conditions is thus computed as $10 \log(x1)-\log(x2)$ where x1 and x2 are the expression values in condition 1 and 2, respectively.

			Main effects		Interaction effects		
Sequence name	Putative function	Functionnal category	Fold change	Fold change	Fold change	Fold	Fold
			Partially Resistant	infected vs.	48 h <i>vs</i> . 6 h	change	change
			vs. Susceptible	control		Genotype /	Treatment /
						Treatment	Time
CD847018	Glutamate decarboxylase 1EC:4.1.1.15	Amino acid metabolism	1.79		-1.31		
CX944830	Pyruvate dehydrogenase EC:1.2.4.1	Amino acid metabolism	1.79				
CD855351	Glutamate dehydrogenase 1 (GDH1), EC:1.4.1.3	Amino acid metabolism		1.56	2.82		
CD851608	Glutamine synthetase (GS1), EC:6.3.1.2	Amino acid metabolism			1.89		
CD846465	Glutamate:glyoxylate aminotransferase 2, EC:2.6.1.2	Amino acid metabolism			2.14		
CD852550 CD852523	Pvruvate dehvdrogenase E1 component alpha subunit, EC:1.2.4.1 Glyceraldehyde 3-phosphate dehydrogenase, putative EC:1.2.1.12	Amino acid metabolism Carbohydrate metabolism		- 1.20	-		1.83
AJ541069	6-phosphogluconate dehydrogenase family protein, EC:1.1.1.44	Carbohydrate metabolism			2.14		
AJ828522	Fructose-bisphosphate aldolase, putative, EC:4.1.2.13	Carbohydrate metabolism			1.41		
CX944948	Arabidopsis thaliana class IV chitinase (CHIV)	Defense	-1.69		1.72		
CD853264	AMPKBI beta subunit, complex-interacting region domain family	Defense	1.22				
CX944894	Thaumatin-like protein, putative	Defense		1.77	3.00		
AJ540097	Beta-1,3-glucanase 2	Defense			2.46		
CD857615	Peroxidase, putative, EC:1.11.1.7	Defense			1.76		
CD849150	Phenylalanine ammonia-lyase 2 (PAL2), EC:4.3.1.5	Defense		1.48	2.35		
AJ828267	F-type H+- transporting ATPase subunit C EC:3.6.3.14	Energy metabolism	1.27		-1.84		
CX943975	Vacuolar H+-ATPase subunit B, putative EC:3.6.3.14	Energy metabolism	1.87				
CX943940	Photosystem II 47 kDa protein	Energy metabolism		-1.79			
CD846156	Photosystem I subunit IX	Energy metabolism			1.47		
CD847301	Carbonate dehydratase 1 (CA1), EC:4.2.1.1	Energy metabolism			1.55		
AJ828896	Acetyl-CoA C-acyltransferase, putative, EC:2.3.1.9	Fatty acid metabolism			-1.36		
CD851371	Omega-6 fatty acid desaturase	Fatty acid desaturation			1.63		
CD855909	Esterase /lipase/ thioesterase family EC:3.1.1.3	Glycerolipid metabolism	1.75	-1.61	-2.42		
CD847070 CD854873	Coline-phosphate cvtidvlvltransferase, EC 2.7.7.15 Adenylate kinase, putative, EC:2.7.4.3	Glvcerolipid metabolism Protein kinase			-1.84		-1.43

AJ829107	Phosphoenolpyruvate carboxykinase (ATP), EC:4.1.1.49	Protein kinase			2.40		
BU026754	CBL-interacting protein kinase 18 (CIPK18)	Protein kinase			-1.47		
CD857614	Protein kinase family protein, EC:2.7.1.	Protein kinase			1.67		
AJ412383	Tyrosine/serine/threonine protein phosphatase-related	Protein phosphatase				-1.89	
AJ539881	Protein phosphatase 2A	Protein phosphatase			-		2.13
CD853200	Transcription factor-related	Transcription factor	1.86				
CD848175	MYB-related transcription factor (CCA1)	Transcription factor	-1.36	1.30	1.52		
CD850032	MYB family transcription factor	Transcription factor	-1.47				
CD848631	CCAAT-binding transcription factor subunit A	Transcription factor	-1.36				
AJ412452	WRKY family transcription factor	Tanscription factor		-	-		2.15
CX946549	AP2domain transcription factor RAP2.7	Tanscription factor		-	-		1.74
CX946945	HD-Zip transcription factor	Tanscription factor	-	-	-		1.59
CD855464	Isopentenyl diphosphate:dimethylallyl diphosphate isomerase, EC:5.3.3.2	Vitamin E biosynthesis			1.82		
CD845816	Dimethyllallyl pyrophosphate isomerase, EC:5.3.3.2	Vitamin E biosynthesis			1.39		

Table 2 Comparison of gene expression level of six differentially expressed clones using quantitative Real-Time RT-PCR with microarray results.

Six clones displaying different expression profiles and belonging to different functional categories were subjected to real-time RT-PCR analysis to confirm microarray results. The expression levels of the target genes derived from Real-Time RT-PCR were normalized using EF1 α as an internal control and the fold-change values were calculated using 2- $\Delta\Delta CT$ method and represent changes of mRNA abundance in inoculated samples *vs*. control. The Fold-change values derived from microarray analysis represent changes of mRNA abundance in inoculated samples *vs*. control and computed as 10 to the difference between normalized expression values.

	Partially resistant				Susceptible			
Sequence name	6h		48h		6h		48h	
	Microarray	QPCR	Microarray	QPCR	Microarray	QPCR	Microarray	QPCR
CX946549	-1.04	1.20	1.66	2.39	1.00	1.06	1.70	2.18
CD847070	1.12	1.60	-1.26	-1.17	1.13	-1.04	-1.43	-1.01
CD852550	-1.05	1.21	2.37	1.34	-1.01	1.07	1.22	1.67
CX944894	-1.09	-3.89	1.88	2.37	1.72	4.47	3.33	4.80
CD849150	1.11	1.00	1.63	2.09	1.45	1.51	1.84	3.42
CD848175	1.19	1.04	1.49	1.21	1.03	-1.21	1.59	1.68

Table 3 Classification of the putative sunflower defense-related clones implicated inSA, JA or ethylene pathway.

Putative functions are based on sequence homology to already known or predicted genes in *Arabidopsis thaliana*.

Pathways	Putative orthologue	Putative function
Salicylic acid	At1g74710	isochorismate synthase 1
Jasmonic acid	At2g39940	coronatine-insensitive1
	At1g17420	lipoxygenase putative
	At3g45140	lipoxygenase
	At2g43710	acyl-[acyl-carrier-protein] desaturase
	At1g19640	jasmonic acid carboxyl methyl
		transferase
	At1g17990	12-oxophytodienoate reductase putative
	At2g33150	acetyl-CoA C-acyltransferase CoA
		thiolase, putative
T .1 1	At5g03280	ethylene-insensitive2
Ethylene		
	At3g61510	1-aminocyclopropane-1-carboxylate
		synthase (ACCsynthase)
	At5g51690	1-aminocyclopropane-1-carboxylate
		synthase (ACCsynthase)
	At3g61510	1-aminocyclopropane-1-carboxylate
		synthase (ACCsynthase)
	At4g11280	1-aminocyclopropane-1-carboxylate
		synthase 6 (ACCsynthase6)
	At3g47190	1-aminocyclopropane-1-carboxylic acid
		oxidase (ACCoxidase) family
	At1g05010	1-aminocyclopropane-1- carboxylate
		oxidase (ACCoxidase)

Figure 1. Phenotypes of susceptible and partially resistant sunflower lines. Note the area of necrotic lesion on cotyledon petioles in susceptible line C106 (A) compared to those in the partially resistant line C 146 (B), one week after inoculation of two-weeks old plants.

Figure 2. Volcano plots of significance against expression difference. The plots show the difference in the transcript abundance between : (a) partially resistant and susceptible lines, (b) infected and control plants, (c) 6h and 48h after treatment. Significance is indicated as negative logarithm of the *p*-value. Each of the 918 ESTs, including those with interaction effects, is plotted as point. The horizontal line corresponds to the significant scale. Highly significant genes are located at the top of the graph.

Figure 3. Change in expression profile of four genes across all experiment conditions. The abscissa shows the experimental conditions (C : control, I : inoculated). The ordinate shows the normalized values of the expression level.

Figure 4. Expression profiles of a cDNA clone encoding tyrosine/serine/threonine protein phosphatase (AJ412383) in the two investigated lines under infected and control conditions. mRNA accumulation was abundant in the partially resistant line under control treatment compared to the susceptible line. However, after contamination, the expression level was largely down-regulated in partially resistant line and up-regulated in susceptible one.

Figure 5. Expression profiles of genes displaying significant interaction between time-points and treatments. Three clones, AJ412452, CX946549 and CX946945 putatively encode transcription factors belonging to WRKY, AP2 and HD-Zip super family respectively. Two clones, putatively encoding choline-phosphate cytidylyltransferase (CD847070) and pyruvate dehydrogenase E1 component α subunit (CD852550) are involved in glycerolipid and amino acids metabolism respectively. One cDNA clone, encoding protein phosphatase 2A (AJ539881) also exhibited significant interaction between treatment and times. In the absence of infection, these clones exhibited the same expression profiles.

Figure 6. Kinetic accumulation of 11 differentially expressed genes in the partial resistant line using real-time RT-PCR. All gene transcripts (AJ539881, CX946549, CX946945, AJ412383, CD847070, CX944894, CD849150, CD855909, AJ412452, CD848175, CD850032) follow the same patterns. Their expression level, compared to control, increased between 3 and 6 hours post inoculation, followed by temporary decrease between 6 and 24h and finally increase again between 24 et 72 h after

contamination. The expression values represent changes of mRNA abundance in inoculated samples *vs.* control. (a) Transcription factors; (b) Defense genes and others.

Figure 7. Functional classification of the selected EST spotted onto the array. These sunflower EST clones were selected from different cDNA libraries based on sequence homology to already known or predicted genes involved in main primary metabolic pathways, signal transduction and defense responses in *Arabidopsis thaliana*.

(A)

(B)

Fig. 2

Fig. 3

CONCLUSION GENERALE ET PERSPECTIVES

CONCLUSION GENERALE ET PERSPECTIVES

La maladie des taches noires du tournesol, dont l'agent responsable est le champignon Phoma macdonaldii, n'a jusqu'alors été que très peu étudiée. En France, si son apparition remonte au début des années 1980, elle provoque aujourd'hui des dégâts de plus en plus inquiétants. Elle a été classée, en 2004, deuxième maladie plus importante après le Mildiou, par les acteurs de la filière tournesol. Les travaux effectués jusqu'alors, ont porté sur la caractérisation phénotypique et moléculaire du champignon lui-même, et sur son mode de pénétration dans la plante. Nous savons que Phoma macdonaldii est un champignon nécrotrophe, qui va donc détruire les cellules à distance avant de progresser sur les tissus morts. Aucun génotype de tournesol n'a pu, à ce jour, être répertorié comme résistant à la maladie ; nous ne disposons que de génotypes tolérants. Et si l'héritabilité et le caractère polygénique de la tolérance du tournesol au Phoma ont été démontrés (Roustaee et al. 2000), aucune étude n'avait jusqu'alors été engagée sur les mécanismes génétiques qui la sous-tendent. L'étude qui nous a été confiée présente ainsi un intérêt triple, puisqu'en cherchant à identifier les mécanismes par lesquels le tournesol est capable de tolérer la maladie des taches noires, nous étudions un cas de tolérance à la maladie, très souvent supplanté dans la littérature par les cas d'études de résistance aux agents pathogènes, et nous étudions également les mécanismes de défense de la plante face à un champignon nécrotrophe, mécanismes moins étudiés que ceux mis en place en réponse à un agent pathogène biotrophe, ou encore hémibiotrophe.

Cette étude nous a permis de mettre en évidence différents points :

- L'étude histologique a révélé que le premier frein à la pénétration du champignon dans les cellules de l'hôte ne semble pas être l'épaisseur de la cuticule, mais plutôt des ornementations cuticulaires particulières plus prononcées chez le génotype tolérant. Autre point important, le fait que les deux génotypes réagissent de façon différente à la contamination par *Phoma macdonaldii*, avec une pénétration du champignon et une plasmolyse des cellules largement différés chez le génotype tolérant par rapport au génotype sensible, nous laisse penser que le génotype tolérant est capable d'inhiber la biosynthèse de zinniol ou d'autres toxines produites par *P. macdonaldii*, procédé largement utilisé par les plantes de résistance accrue, ou, autre hypothèse, que le génotype sensible exprime un gène de sensibilité à la maladie.
- Grâce à **l'étude des phytoalexines** du tournesol, la scopolétine et l'ayapine, • nous avons pu mettre en évidence que ces dérivés coumariniques avaient un effet inhibiteur important sur la germination du champignon, et que l'ayapine se montrait également capable d'inhiber la croissance de Phoma macdonaldii, et ce, à des doses infimes. Nous avons également pu mettre en évidence que les **concentrations** en ces molécules, **capables d'inhiber** 50% de la germination du champignon, pouvaient être variables d'une souche de l'agent pathogène à une autre. Enfin, le dosage de la scopolétine *in planta*, à différents temps après contamination par le *Phoma*, montre que la molécule présente un niveau de synthèse et d'accumulation jusqu'à deux fois plus élevé chez le génotype tolérant étudié par rapport au génotype sensible. Il serait donc intéressant de confirmer ces résultats sur d'autres génotypes de tournesol, et de réaliser le dosage de l'ayapine. Compte tenu des résultats obtenus, il n'est donc pas exclu que les coumarines du tournesol puissent être impliquées dans la résistance

multigénique du tournesol à *Phoma macdonaldii,* ce qui devrait encourager à des études plus poussées en vue de leur intégration dans des programmes de sélection. Comme nous l'avons expliqué dans le chapitre dédié à l'étude des phytoalexines, ces **molécules** pourraient en effet être utilisés comme **marqueurs moléculaires**, dans le but d'obtenir des variétés plus résistantes. Il peut être également envisageable de les inclure dans des **programmes de transformation génétique**, en surexprimant, de façon contrôlée, les gènes impliqués dans leur biosynthèse. Enfin, puisque leur biosynthèse peut être induite par pulvérisation sur la plante de molécules naturelles, une **alternative à la lutte contre le Phoma**, ou d'autres agents pathogènes du tournesol, pourrait être l'**application d'éliciteurs exogènes** «écologiquement corrects».

La dernière étude que nous avons réalisée, est une étude dite sans a priori. Elle a consisté a mettre au point une puce à ADN composée de 1000 unigènes, dont plus de 100 gènes impliqués dans la résistance des plantes aux maladies. Pour l'analyse des données, après une méthode globale de normalisation basée sur l'expression de tous les gènes, permettant de mieux tenir compte des effets locaux ou dépendants du niveau d'intensité, et en prenant l'hypothèse que l'expression de la grande majorité des gènes ne varie pas entre les situations analysées, nous avons mis en évidence les gènes différentiellement exprimés. La plupart des analyses de microarrays se basent encore sur le « fold change », en considérant un gène différentiellement exprimé si son niveau d'expression est deux fois supérieur dans une condition donnée par rapport une autre, méthode qui manque totalement de rigueur. Nous avons choisi de mesurer la différentiels ceux pour lesquels la différence est

statistiquement significative. Nous avons ainsi été en mesure de présenter des résultats tout à fait fiables.

- Cette étude s'est révélée fort intéressante, dans le sens où elle nous a permis de mettre en évidence, pour la première fois, certains gènes qui pourraient être impliqués dans la tolérance du tournesol à *Phoma macdonaldii*. Il serait cependant très intéressant maintenant de réitérer les hybridations sur cette puce avec des ADNc de génotypes tolérants autres que ceux que nous avons utilisés, et contaminés par la souche MP6, ou également par d'autres souches de Phoma très agressives, ou au contraire, non pathogènes. La confrontation des résultats issus de ces études complémentaires permettrait à elle seule d'avoir une vue plus précise des mécanismes de défense du tournesol face à l'agent pathogène considéré.
- La limite à cette dernière étude a été que nous ne disposions pas de toutes les ESTs de tournesol impliquées dans la résistance aux maladies. Certaines étaient difficilement accessibles, d'autres n'avaient tout simplement pas été créées. Il est par exemple fort regrettable que nous n'ayons pas eu à disposition les ESTs correspondant aux gènes impliqués dans la voie de biosynthèse des phytoalexines, qui nous auraient permis d'établir le lien entre l'approche sans *a priori*, et l'étude des dérivés coumariniques du tournesol. Un autre regret tient au fait que nous n'avions pas en notre possession un gène inhibiteur de la mort cellulaire, de type inhibiteur de caspase, afin de vérifier si son expression était accrue chez le génotype tolérant. Cela nous aurait permis une fois de plus de faire le lien avec les données histologiques.
- Au vu des résultats obtenus, et des hypothèses envisagées, il nous semble permis d'établir un modèle, qui est présenté figure 37, et dans lequel la régulation négative d'une MAPK phosphatase à double spécificité

pourrait être impliquée dans les mécanismes de défense du tournesol en réponse à *Phoma macdonaldii*. L'activation résultante d'une cascade MAP kinase pourrait impliquer des réponses de défense (biosynthèse de thaumatine, activation de la PAL pouvant engendrer la synthèse de phytoalexines), sous le contrôle de facteurs de transcription appartenant aux familles des MYB et WRKY. Parallèlement, l'activation d'une protéine phosphatase 2A, impliquée dans l'inhibition de la mort cellulaire, pourrait limiter le développement de l'agent pathogène. Enfin, d'un point de vue morphologique, les ornementations cuticulaires de l'hôte pourraient constituer un frein supplémentaire à la pénétration du champignon dans les tissus.

Les différents résultats obtenus nous laissent envisager une amélioration du tournesol afin d'augmenter son niveau de résistance aux maladies. Voyons quels moyens pourraient être mis en œuvre dans ce but.

Améliorer la résistance du tournesol aux maladies.

Outre les perspectives que nous proposons dans le paragraphe dédié aux phytoalexines, il serait intéressant de valider les résultats obtenus grâce au microarray. Cependant, les techniques de génétique reverse par mutagenèse insertionnelle restent limitées chez le tournesol, du fait de la difficulté rencontrée lors des essais de transformation génétique de la plante. La transformation par *Agrobacterium tumefaciens* ne donne que des rendements médiocres, et rendant de ce fait l'extinction des gènes étudiés peu envisageable. Hewezi a pu cependant mettre en évidence la possibilité d' « éteindre » les gènes de façon transitoire par RNAi (Hewezi *et al.*, 2004). L'étude des gènes candidats présentés dans cette étude pourrait donc être réalisée par cette approche. Une autre approche pourrait également consister à utiliser la technique du virus-induced gene silencing (VIGS),

Figure 37 : modèle proposé pour les composants impliqués dans la réponse du tournesol à *Phoma macdonaldii*. Les composants inconnus sont indiqués par un point d'interrogation.

qui, si elle n'a à notre connaissance pas encore été mise au point sur tournesol, a déjà fait ses preuves sur d'autres plantes comme par exemple *Nicotiana benthamiana* (Peart *et al.*, 2002), lors d'une étude sur les mécanismes de défense face aux agents pathogènes. Ces deux dernières techniques permettent la mise en place d'essais transitoires de façon fiable et à un débit important, pour tester les fonctions de gènes ou de familles de gènes. Comme seulement 300 pb d'une séquence sont suffisantes pour induire l'extinction d'un gène, les méthodes de VIGS et RNAi sont tout à fait compatibles avec toutes les séquences de gènes connus.

Cette étude, enfin, au delà de l'intérêt qu'elle présentait dans la recherche des mécanismes mis en place par le tournesol pour tolérer *Phoma macdonaldii*, nous a fait nous interroger sur plusieurs points, dont les **avantages que pouvait présenter la tolérance par rapport à la résistance**, ainsi que sur les **mécanismes de défense mis en jeu par la plante selon l'agent pathogène qu'elle rencontre**.

Place de la tolérance dans la protection des plantes

La résistance gène pour gène, comme son nom l'indique, est basée sur la reconnaissance du produit d'un gène de résistance de la plante par celui du gène d'avirulence correspondant chez l'agent pathogène. Une simple mutation, engendrant une perte de fonction, chez le gène d'avirulence du pathogène, et ce dernier ne peut plus éliciter la réaction hypersensible. Il peut ainsi infecter la plante, qui perd donc sa résistance. Ainsi, la **résistance gène pour gène est un système de résistance fragile**, dont la **durabilité dans le temps est des moins sûres**. La **tolérance**, en revanche, **n'engendre aucune pression de sélection vis-à-vis de l'agent pathogène**. Du point de vue de l'évolution, il semblerait même comme le décrit Clarke (Clarke, 1986), que **la tolérance puisse devenir profitable à l'un et l'autre acteurs d'une interaction plante-parasite** : certaines formes de résistance partielle, en freinant le développement de l'agent pathogène, pourraient être réellement profitables à l'agent pathogène lui-même en permettant à l'hôte de
continuer à croître et à produire des tissus qui puissent supporter des stades plus avancés de contamination. Un parasite qui passerait outre cette forme de résistance, s'exposerait, en détruisant ou en causant des dommages trop importants à la machinerie photosynthétique de la plante, à ce que cette dernière ne soit plus capable de produire de nouveaux tissus. Il ne nous paraît de ce fait pas impossible que la tolérance puisse prendre une part importante dans les programmes de protection des plantes. Par l'obtention de génotypes hautement tolérants à une maladie donnée, voir à plusieurs maladies, puisque souvent les mêmes types de défense basales semblent être mises en jeu, un niveau de productivité important pourrait être maintenu, tout en palliant le problème des contournements de résistance.

Un autre point sur lequel nous nous sommes interrogée durant cette étude, porte sur les **différents mécanismes de défense mis en place par la plante lorsqu'elle se trouve confrontée à un agent pathogène**.

Etude d'une interaction hôte-parasite : quelles priorités ?

Au cours des dernières années, les recherches sur les interactions hôteparasite ont permis d'établir des modèles de résistance des plantes, très souvent basés sur la résistance monogénique, avec le schéma général simplifié suivant : reconnaissance de l'agent pathogène, activation des trois grandes voies de l'acide salicylique, de l'acide jasmonique, et de l'éthylène, et production des protéines de défense par la plante. De ce fait, **l'étude d'une interaction hôte-parasite est souvent directement basée sur l'étude de ces grandes voies**, ou l'accumulation de tel ou tel composé ou molécule. **Mais c'est sans tenir compte de l'agent pathogène lui-même**. **Une bonne connaissance de ce dernier**, de son mode de vie (qu'il soit biotrophe, nécrotrophe, ...) à la composition de sa paroi, jusqu'aux types de molécules qu'il peut synthétiser afin de coloniser les tissus végétaux, **nous paraît primordiale** puisque c'est d'elle que va dépendre la batterie de défense mise en place par la plante. Ces informations sont donc à prendre en compte et nous incitent à une extrême prudence afin de ne pas établir des modèles trop généraux de réponses de défense induites par les agents pathogènes. Comme l'écrit Knogge (Knogge, 1996), un champignon capable de pénétrer activement les tissus végétaux, et de produire des toxines qui affectent les processus biochimiques fondamentaux possède tout le potentiel pour être un agent phytopathogène universel. A ce jour cependant, un tel agent pathogène n'existe pas, et au contraire, les agents phytopathogènes se développent préférentiellement ou exclusivement sur un nombre d'hôte limité. Les bases moléculaires pour la reconnaissance par la plante d'un pathogène potentiel sont les facteurs du non-soi, présents à la surface du champignon (comme les fragments de chitine ou de glucanes), ou sécrétées par le champignon (comme certaines protéines), ou encore des déterminants du soi tels que des fragments de la paroi végétale, comme les oligogalacturonates, qui vont être relachés par le biais de l'activité d'enzymes hydrolytiques produites par l'agent pathogène. Et si certains de ces éliciteurs, comme les oligo N-acetylglucosamines et les oligogalacturonates sont actifs sur de nombreuses espèces végétales, d'autres apparaissent comme étant espèce-spécifiques. Avant de se lancer dans une étude des mécanismes de défense des plantes, il convient donc de tenir compte des différents éliciteurs ou suppresseurs que les agents pathogènes secrètent ou mettent au contact des cellules végétales. Certaines cascades de réponses de défense pourraient, ou pas, être activées durant la pathogenèse, selon les interactions particulières établies entre les éliciteurs et les suppresseurs avec leur cible.

Un autre point important qui doit permettre d'orienter les recherches est le **mode de vie de l'agent pathogène considéré**. Des études commencent à montrer que les réponses de la plante sont différentes selon que l'agent pathogène considéré possède un mode de vie biotrophe ou nécrotrophe. En effet, pourquoi le végétal mettrait-il en place une réaction hypersensible pour stopper le développement d'un champignon nécrotrophe, qui se développe sur des tissus nécrosés ? Govrin et Levine (2000) ont d'ailleurs pu démontrer que la HR favorisait le développement du

167

champignon nécrotrophe *Botrytis cinerea*. La dissection génétique de ces différentes réponses de défense commence a être élaborée chez *Arabidopsis thaliana* (voir la revue d'Hammond-Kosack et Parker, 2003), pour qui des études variées ont permis d'identifier des gènes clés et processus. Le consensus émergent veut que les processus controlés par *NPR1* et l'acide salicylique assurent une protection contre les agents pathogènes biotrophes, alors que *COI1* et EIN2, *via* les voies du jasmonate et de l'éthylène, seraient plus enclins à contrôler les nécrotrophes. La camalexine, phytoalexine produite par *Arabidopsis*, serait quant à elle nécessaire dans la mise en place de la résistance au champignon nécrotrophe *Alternaria brassicicola* (Thomma *et al.*, 1999 b). Comme la production de camalexine n'est pas contrôlée directement par les voies du jasmonate, du salicylate ou encore de l'éthylène, la molécule pourrait être le produit final d'une voie additionnelle. Dans le cas de *Phoma macdonaldii*, aucun des gènes présents sur le microarray et impliqués dans les voies de biosynthèses des acides jasmonique, salicylique et de l'éthylène, n'ont été différentiellement exprimés durant la contamination par le champignon nécrotrophe.

Ces observations indiquent donc clairement que **les agents pathogènes varient fortement dans leur habilité à activer différents composés de défense, aussi bien qu'à supporter les molécules mises en places par le végétal pour se défendre**. Des recherches approfondies semblent donc indispensables à la compréhension de toutes ces variations dépendantes des agents pathogènes.

REFERENCES BIBLIOGRAPHIQUES

REFERENCES BIBLIOGRAPHIQUES

Α

- Aarts N., Metz M., Holub E., Staskawicz B.J., Daniels M.J., Parker J.E., 1998. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in *Arabidopsis. Proc. Natl. Acad. Sci. U S A*, 95 (17) : 10306-10311.
- Abad L.R., D'Urzo M.P., Liu D, Narasimhan M., Reuveni M., Zhu J.K., Niu X., Singh N.K., Hasegawa P.M., Bressan R.A., 1996. Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. *Plant Sci.*, **118** : 11-23.
- Abadie M., Boudart G., 1982. Etude cytologique et ultrastructurale de la nécrose des crucifèries due à *Leptosphaeria maculans* forme conidienne *Phoma linguam*. *Ann. Scien. Natur. Botan.*, **13** : 53-72.
- **Able A., Sutherland M. et Guest D.**, 2003. Production of reactive oxygen species during non-specific elicitation, non-host resistance and field resistance expression in cultured tobacco cells. *Funct. Plant Biol.*, **30** : 91-99.
- Afifi M., El-Kereamy A., Legrand V., Chervin C., Monje M.C., Nepveu F., Roustan J.P., 2003. Control of anthocyanin biosynthesis pathway gene expression by eutypine, a toxin from Eutypa lata, in grape cell tissue cultures. *J. Plant Physiol.*, 160 (8): 971-975.
- Alignan M., 2001. Le Phoma du tournesol : mise au point d'un test de contamination au collet et stimulation des défenses naturelles de l'hôte. Mémoire du Diplôme d'Etudes Approfondies de l'Ecole Nationale Supérieure Agronomique de Toulouse, 64 p.
- Anand A., Lei Z., Sumner L.W., Mysore K.S., Arakane Y., Bockus W.W., Muthukrishnan S., 2004. Apoplastic extracts from a transgenic wheat line

exhibiting lesion-mimic phenotype have multiple pathogenesis-related proteins that are antifungal. *Mol. Plant-Microbe Inter.*, **17**: 1306-17.

- Andreu D. et Rivas L., 1998. Animal antimicrobial peptides : an overview. *Biopolymers*, **47** : 415-433.
- Anfoka G. et Buchenauer H., 1997. Systemic acquired resistance in tomato against Phytophthora infestans by pre-inoculation with tobacco necrosis virus. *Physiol Mol. Plant Pathol.*, **50** : 85-101.
- **Angevain M.**, 1984. Mise au point d'une méthode de sélection de la luzerne contre Phoma Medicaginis Malbr. et Roum. Thèse de l'Université des Sciences et Techniques du Languedoc.
- Anzlovar S., Serra M.D., Dermastia M., Menestrina G., 1998. Membrane permeabilizing activity of pathogenesis-related protein linusitin from flax seed. *Mol. Plant-Microbe Inter.*, **11** : 610-617.
- Arabi M.I., Barrault G., Sarrafi A., Albertini L., 1992. Variation in the resistance of barley cultivars and in the pathogenicity of *Drechslera teres* f. sp. *maculata* and *D. teres* f. sp. *teres* from France. *Plant Pathol.*, **41** : 180-186.
- Arlorio M., Ludwig A., Boller T., Bonfante P., 1992. Inhibition of fungal growth by plant chitinases and β-1, 3-glucanases. A morphological study. *Protoplasma*, 171 : 34-43.
- Asai T., Tena G., Plotnikova J., Willmann M.R., Chiu W.L., Gomez-Gomez L., Boller T., Ausubel F.M., Sheen J., 2002. MAP kinase signalling cascade in *Arabidopsis* innate immunity. *Nature*, 415 : 977-983.

В

- **Barash I., Mor H., Netzer D., Kashman Y.,** 1981. Production of zinniol by *Alternaria dauci* and its phytotoxic effect on carrot. *Physiol. Plant Pathol.*, **19 (1)** : 7-16.
- **Barrault G.**, 1989. L'helminthosporiose de l'orge causée par. Drechslera Teres. Thèse de l'Institut National Polytechnique de Toulouse.

- Barrault G., Al-Ali B., Petitprez M., Albertini L., 1982. Contribution à l'étude de l'activité toxique de l'Helminthosporium teres, parasite de l'orge (Hordeum vulgare). Can. J. Bot., 60 (4) : 330-339.
- Ben C., Hewezi T., Jardinaud M.F., Bena F., Ladouce N., Moretti S., Tamborindeguy C., Liboz T., Petitprez M., Gentzbittel L., 2005. Comparative analysis of early embryonic sunflower cDNA libraries. *Plant Mol. Biol.*, 57 : 255-270.
- Bent A.F., Innes R.W., Ecker J.R., Staskawicz B.J., 1992. Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthomonas pathogens. *Mol. Plant-Microbe Inter.*, 5 (5) : 372-378.
- Bert P. F., Dechamp-Guillaume G., Serre F., Jouan I., de Labrouhe D.T., Nicolas P.,
 Vear F., 2004. Comparative genetic analysis of quantitative traits in sunflower (*Helianthus annuus L.*) 3. Characterisation of QTL involved in resistance to *Sclerotinia sclerotiorum* and *Phoma macdonaldi*. *Theor. Appl. Genet.*, **109 (4)** : 865-874.
- Bertucci F., Bernard K., Loriod B., Chang Y.C., Granjeaud S., Birnbaum D., Nguyen C., Peck K., Jordan B.R., 1999. Sensitivity issues in DNA array-based expression measurements and performance of nylon microarrays for small samples. *Hum. Mol. Genet.*, 8 (9) : 715-22. Erratum in: *Hum. Mol. Genet.* 1999, 8 (11) : 2129.
- Bertucci F., Loriod B., Tagett R., Granjeaud S., Birnbaum D., Nguyen C., Houlgatte
 R., 2001. DNA arrays: technological aspects and applications. *Bull Cancer*, 88
 (3): 243-52.
- Boerema G.H., 1970. Additional notes on *Phoma herbarum*. Persoonia, 6: 15-45.
- Bohlmann H., Clasen S., Behnke S., Giese H., Hiller C., Reimann-Philipp, Schrader G., Barkholt V., Apel K., 1988. Leaf-specific thionins of barley – a

novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defense mechanism of plants. *EMBO J.*, **7**: 1559-1565.

- Bohman S., Staal J., Thomma B.P., Wang M., Dixelius C., 2004. Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. *Plant J.*, **37 (1)** : 9-20.
- **Bolwell G.P.**, 1999. Role of active oxygen species and NO in plant defence responses. *Curr. Opin. Plant Biol.*, **2 (4)** : 287-294. Revue.
- Bolwell G.P., Wojtaszek P., 1997. Mechanisms for the generation of reactive oxygen species in plant defence—a broad perspective. *Physiol. Mol. Plant Pathol.*, **51** : 347–366.
- **Borgmeyer J.R., Smith C.E., Huynh Q.K.**, 1992. Isolation and characterization of a 25 kDa antifungal protein from flax seeds. *Biochem. Biophys. Res. Comm.*, **187** : 480-487.
- Bowyer P., Clarke B.R., Lunness P., Daniels M.J., Osbourn A.E., 1995. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. *Science*, **20**; **267** (**5196**) : 371-374.
- Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C., Aach J., Ansorge W., Ball C.A., Causton H.C., Gaasterland T., Glenisson P., Holstege F.C., Kim I.F., Markowitz V., Matese J.C., Parkinson H., Robinson A., Sarkans U., Schulze-Kremer S., Stewart J., Taylor R., Vilo J., Vingron M., 2001. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. *Nat. Gen.*, 29: 365-371.
- Broekaert W.F., Mariën W., Terras F.R.G., De Bolle M.F.C., Proost P., Van Damme J., Dillen L., Claeys M., Rees S.B., Vanderleyden J., Cammue B.P.A., 1992. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domains of chitin-binding proteins. *Biochem.*, **31** : 4308-4314.

- Broekaert W.F., Terras F.R.G., Cammue B.P.A., Osborn R.W., 1995. Plant defensins: Novel antimicrobial peptides as components of the host defense system. *Plant Physiol.*, **108** : 1353-1358.
- Broekaert W.F., van Parijs J., Leyns F., Joos H., Peumans W.J., 1989. A chitinbinding lectin from stinging nettle rhizomes with antifungal properties. *Science*, **245** : 1100-1102.
- Broekaert W.F., van Parijs J., Allen A.K., Peumans W.J., 1988. Comparison of some molecular, enzymatic and antifungal properties of chitinases from thornapple, tobacco and wheat. *Physiol. Mol. Plant Pathol.*, 33 : 319-331.
- Büschges R., Hollricher K., Panstruga R., Simons G., Wolter M., Frijters A., van Daelen R., van der Lee T., Diergaarde P., Groenendijk J., 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. *Cell*, 88 (5) : 695–705.

С

- Caaveiro J.M. Molina A., Gonzalez-Manas J.M., Rodriguez-Palenzuela P., Garcia-Olmedo F., Goni F.M., 1997. Differential effects of five types of antipathogenic plant peptides on model membranes. *FEBS Lett.*, **410** : 338-342.
- Caldwell R.M., Shafer J.F., Compton L.E., Patterson F.L., 1958. Tolerance to cereal leaf rusts. *Science*, **128** : 714-715.
- Cammue B.P.A., Thevissen K., Hendriks M., Eggermont K., Goderis I.J., Proost P.,
 Van Damme J., Osborn R.W., Guerbette F., Kader J.-C., Broekaert W.F., 1995.
 A potent antimicrobial protein from onion seeds showing sequence homology
 to plant lipid transfer proteins. *Plant Physiol.*, 109 : 445-455.
- Cammue B.P.A., De Bolle M.F.C., Terras F.R.G., Proost P., van Damme J., Rees S.B., Vanderleyden J., Broekaert W.F., 1992. Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J. Biol. Chem., 267 : 2228-2233.

- Cao H., Glazebrook J., Clarke J.D., Volko S., Dong X., 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. *Cell*, **88** : 57–63.
- Cao H., Bowling S.A., Gordon S. Dong X., 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. *Plant Cell*, 6 : 1583–1592.
- Caruso C., Caporale C., Chilosi G., Vacca F., Bertini L., Magro P., Poerio E., Buonocore V., 1996. Structural and antifungal properties of a pathogenesisrelated protein from wheat kernel. *J. Protein Chem.*, **15** : 35-44.
- **Castano F., Hemery-Tardin M.C., Tourvieille de Labrouhe D., Vear F.**, 1992. The inheritance and biochemistry of resistance to Sclerotinia sclerotiorum leaf infections in sunflower (Helianthus annuus L.). *Euphytica*, **58** : 209-219.
- **Cavallaro U., Nykjaer A., Nielsen M., Soria M.R.**, 1995. Alpha 2-macroglobulin receptor mediates binding and toxicity of plant ribosome-inhactivating proteins. *Eur. J. Biochem.*, **232** : 165-171.
- **Chandra S., Low P.S.,** 1995. Role of phosphorylation in elicitation of the oxidative burst in cultured soybean cells. *Proc. Natl. Acad. Sci. USA*, **92** : 4120–4123.
- **Chen C., Chen Z.**, 2002. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced *Arabidopsis* transcription factor. *Plant Physiol.*, **129** : 706-16.
- Chen W., Provart N., Glazebrook J., Katagiri F., Chang H.S., Eulgem T., Mauch F., Luan S., Zou G., Whitham S.A., 2002. Expression profile matrix of *Arabidopsis* transcription factor genes implies their putative functions in response to environmental stresses. *Plant Cell*, 14 : 559–574.
- Cheong N.E., Choi Y.O., Kim W.Y., Bae I.S., Cho M.J., Hwang I., Kim J.W., Lee S.Y., 1997. Purification and characterization of an antifungal PR-5 protein from pumpkin leaves. *Mol. Cells*, 7 : 214-219.

- **Clarke D.D.**, 1986. Tolerance of parasites and disease in plants and its significance in host-parasite interactions. *Adv. Plant Pathol.*, **5** : 161-197.
- **Cobb** N.A., 1894. Contributions to an economic Knowledge of australian rusts (Uredineae) Chap. 10. *Agr. Gaz. N. S. W.*, **5** : 239-250.
- **Coca M.A., Damsz B., Yun D.-J., Hasegawa P.M., Bressan R.A., Narasimhan M.L.,** 2000. Heterotrimeric G-proteins of a filamentous fungus regulate cell wall composition and susceptibility to a plant PR-5 protein. *Plant J.*, **22** : 61-69.
- Collinge D.B., Kragh K.M., Mikkelsen J.D., Nielsen K.K., Rasmussen U., Vad K., 1993. Plant chitinases. *Plant J.*, **3** : 31-40.
- **Cotty P.J., Misaghi I.J., Hine R.B.**, 1983. Production of zinniol by *Alternaria tagetica* and its phytotoxic effect on *Tagetes erecta*. *Phytopathol.*, **73** : 1326 1328.

D

- Dangl J.L., Jones J.D., 2001. Plant pathogens and integrated defense responses to infection. *Nature*, **411** : 826-833.
- de Samblanx G.W., Goderis I.J., Thevissen K., Raemaekers R., Fan F., Borremans F., Acland D.P.I., Osborn R.W., Patel S., Broekaert W.F., 1997. Mutational analysis of a plant defensin from radish (*Raphanus sativus* L.) reveals two adjacent sites important for antifungal activity. J. Biol. Chem., 272 : 1171-1179.
- Debaeke P., Pérès A., 2003. Influence of sunflower (*Helianthus annuus* L.) crop management on Phoma back stem (*Phoma macdonaldii* Boerema). Crop Protection, 22 : 741-752.
- **Decognet V.**, 1994. Phoma exigua var. Linicola, agent du mort-lin: variabilité et mode d'infection du parasite, expression de la maladie. Thèse de l'Université de Rennes.
- **Deising H., Nicholson R.L., Haug M., Howard R.J., Mendgen K.,** 1992. Adhesion pad formation and the involvement of cutinase and esterases in the attachment of uredospores to the host cuticle. *Plant Cell*, **4** : 1101-1111.

- Delaney T.P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gutrella M., Kessmann H., Ward E., Ryal, J., 1994. A central role of salicylic acid in plant disease resistance. *Science*, 266 : 1247–1250.
- **Delledonne M., Zeier J., Marocco A., Lamb C.,** 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. *Proc. Natl. Acad. Sci. U S A*, **98 (23)** : 13454-13459.
- Devoto A., Piffanelli P., Nilsson I., Wallin E., Panstruga R., von Heijne G., Schulze-Lefert P., 1999. Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J. Biol. Chem., 274 (49) : 34993-5004.
- Dixon R.A., 2001. Natural products and plant disease resistance. *Nature*, **14**; **411** (6839) : 843-847. Revue.
- **Dong X.**, 2001. Genetic dissection of systemic acquired resistance. *Curr. Opin. Plant Biol.*, **4**: 309-314.
- **Dowd C., Wilson I.W., Mc Fadden H.**, 2004. Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with *Fusarium oxysporum* f. sp. *vasinfectum*). *Mol. Plant- Microbe Inter.*, **17** : 654-667.
- **Dropkin V.H.,** 1955. The relations between nematodes and plants. *Exp. Parasitol.*, **4** : 282-322.
- Dubreil L., Gaborit T., Bouchet B., Gallant D.J., Broekaert W.F., Quillien L., Marion D., 1998. Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and non specific lipid transfer protein (ns-LTPlel) of Triticum aestivum seeds. Relationships with their in vitro antifungal properties. *Plant Sci.*, **138** : 121-135.
- Durner J., Wendehenne D., Klessig D.F., 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. *Proc. Natl. Acad. Sci. U S A*, 95 (17) : 10328-33.

Duvick J.P., Rood T., Rao A.G., Marshak D.R., 1992. Purification and characterization of a novel antimicrobial peptide from maize (*Zea mays* L.) kernels. *J. Biol. Chem.*, 267 : 18814-18820.

Ε

Enkerli J., Bhatt G., et Covert S.F., 1998. Maackiain detoxification contributes to the virulence of Nectria haematococca MP VI on chickpea. *Mol. Plant-Microbe Inter.*, **11** : 317-326.

F

- Falk A., Feys B., Frost L.N., Jones J.D.G., Daniels M.J., Parker J.E., 1999. EDS1, an essential component of R gene-mediated disease resistance in *Arabidopsis* has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. U S A, 96 : 3292–3297.
- Farmer E.E., Ryan C.A., 1992. Octadecanoid-derived signals in plants. *Trends Cell Biol.*, **2 (8)** : 236-241.
- Felix G., Duran J.D., Volko S., Boller T., 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. *Plant J.*, 18 (3) : 265-276.
- Felix G., Grosskopf D.G., Regenass M., Boller T., 1991. Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. *Proc. Natl. Acad. Sci. U S A*, 1; 88 (19) : 8831-8834.
- Fernandez de Caleya R., Gonzalez-Pascual B., Garcia-Olmedo F., Carbonero P., 1972. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. *Appl. Microbiol.*, 23 : 998-1000.
- Feys B.J., Moisan L.J., Newman M.A., Parker J.E., 2001. Direct interaction between the *Arabidopsis* disease resistance signalling proteins, EDS1 and PAD4. *EMBO J.*, 20: 5400–5411.
- **Feys B.J., Parker J.E.**, 2000. Interplay of signaling pathways in plant disease resistance. *Trends Genet.*, **16 (10)** : 449-455. Revue.

Flor H. H., 1946. Genetics of pathogenicity in *Melampsora lini*. J. agri. Sci., 73: 335-357.

- Flor H. H., 1942. Inheritance of pathogenicity in *Melampsora lini*. *Phytopathol.*, **32** : 653-669.
- Florack D.E.A., Stiekema W.J., 1994. Thionins: properties, possible biological roles and mechanisms of action. *Plant Mol. Biol.*, **26** : 25-37.
- **Fofana B., Benhamou N., McNally D.J., Labbe C., Seguin A., Belanger R.R.,** 2004. Suppression of induced resistance in cucumber through disruption of the flavonoid pathway, *Phytopathol.,* , **95 (1)** : 114 – 123.
- Fong W.P., Go T.T.M., Yeung H.W., 1991. Minireview : Enzymatic properties of ribosome-inactivating proteins (RIPs) and related toxins. *Life Sci.*, 49 : 1859-1869.
- Freialdenhoven A., Peterhansel C., Kurth J., Kreuzaler F., Schulze-Lefert P., 1996. Identification of genes required for the function of non-race specific mlo resistance to powdery mildew in Barley. *Plant Cell*, 8 : 5-14.
- Frezzi M.J., 1968. Leptosphaeria lindquistii n. sp., forma sexual de Phoma oleracea var. helianthi-tuberosi Sacc., hongo causal de la "mancha negra del tallo" del girasol (Helianthus annuus L.), en Argentina. Patologia Vegetal 5:73-80.
- Frye C.A., Tang D., Innes R.W., 2001. Negative regulation of defense responses in plants by a conserved MAPKK kinase. *Proc. Natl. Acad. Sci. U S A*, 98 (1) : 373-378.
- **Frye, C.A. et Innes R.W.**, 1998. An *Arabidopsis* mutant with enhanced resistance to powdery mildew. *Plant Cell*, **10 (6)** : 947-956.

G

Garcia D., Sanier C., Macheix, J., D'Auzac J., 1995. Accumulation of scopoletin in *Hevea brasiliensis* infected by *Microcyclus ulei* (P. Henn.) V. ARX and evaluation of its fungitoxicity for three leaf pathogens of rubber tree. *Physiol. Mol. Plant Pathol.*, 47: 213-223.

- Garcia-Arenal F., Sagasta E.M., 1980. Scanning electron microscopy of *Botrytis cinerea* penetration of bean (*Phaseolus vulgaris*) hypocotyls. *Phytopathologische Zeitschrift*, **99** : 37-42.
- Garcia-Casado G., Collada C., Allona I., Casado R., Pacios L.F., Aragoncillo C., Gomez L., 1998. Site-directed mutagenesis of active site residues in a class I endochitinase from chestnut seeds. *Glycobiology*, **8** : 1021-1028.
- Garcia-Olmedo F., Molina A., Alamillo J.M., Rodriguez-Palenzuela P., 1998. Plant defense peptides. *Biopolymers*, **47** : 479-491.
- Gianinazzi S., Martin C., Vallée J.C., 1970. Hypersensibilité aux virus, températures et protéines solubles chez le *Nicotiana Xanthi* nc. Apparition de nouvelles macromolécules lors de la répression de la synthèse virale. *C.R. Académie des sciences*. Paris 270, série D, 2383-2386.
- **Glazebrook J.**, 2001. Genes controlling expression of defense responses in *Arabodopsis*-2001 status. *Curr. Opin. Plant Biol.*, **4** : 301-308.
- **Gomez-Gomez L., Boller T.,** 2002. Flagellin perception : a paradigm for innate immunity. *Trends Plant Sci.*, **7** : 251-256.
- **Govrin E.M., Levine A.**, 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. *Curr. Biol.*, 29; **10 (13)** : 751-757.
- Gupta R., Huang Y., Kieber J., Luan S., 1998. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from *Arabidopsis. Plant J.*, 16:581-589.
- Gutierrez M.C., Parry A., Tena M., Jorrin J., Edwards R., 1994. Abiotic ellicitation of coumarin phytoalexins in Sunflower. *Phytochem.*, **38** : 1185-1191.
- Gutierrez-Mellado M.C., Edwards R., Tena M., Cabello F., Serghini K., Jorrin J., 1996. The Production of Coumarin Phytoalexins in different Plant Organs of Sunflower. *Plant physiol.*, **149** : 261-266.

Η

- Hain R., Reif H.-J., Krause E., Langebartels R., Kindl H., Vornam B., Wiese W.,
 Schmelzer E., Schreier P. H., Stöcker R. H., Stenzel K., 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. *Nature*, 14; 361 (6408) : 153-156.
- Hammerschmidt R., 1999. PHYTOALEXINS: what have we learned after 60 years? *Annu. Rev. Phytopathol.*, **37** : 285-306.
- Hammond-Kosack K.E., Parker J.E., 2003. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. *Curr. Opin. Biotechnol.*, 14 (2) : 177-193. Revue.
- Hassan A.K., Schulz C., Sacristan M.D., Wöstemeyer J., 1991. Biochemical and molecular tools for the differentiation of aggressive and non-aggressive isolates of the oilseed rape pathogen Phoma lingam. *J. Phytopathol.*, **131** : 120-136.
- He X., Anderson J.C., del Pozo O., Gu Y.Q., Tang X., Martin G.B., 2004. Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death. *Plant J.*, 38 : 563-77.
- **He X.Z., Dixon R.A.,** 2000. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4'-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. *Plant Cell*, **12 (9)** : 1689-1702.
- Hejgaard J., Jacobsen S., Bjorn S.E., Kragh K.M., 1992. Antifungal activity of chitinbinding PR-4 type proteins from barley grain and stressed leaf. *FEBS Lett.*, 307 : 389-392.
- **Hejgaard J., Jacobsen S., Svendsen I.,** 1991. Two antifungal thaumatin-like proteins from barley grain. *FEBS Lett.*, **291** : 127-131.
- Hewezi T., Alibert G., Kallerhoff J., 2005. Local infiltration of high and low molecular weight RNA from silenced sunflower (Helianthus annuus L.) plants

trigger post transcriptional gene silencing in non-silenced plants. *Plant Biotech. J.*, **3 (1)** : 81-89.

- Hipskind J.D., Paiva N.L., 2000. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to *Phoma medicaginis*. *Mol. Plant-Microbe Inter.*, **13 (5)** : 551- 62.
- Hoch H.C., Staples R.C., Whitehead B., Cormeau J., Wolf E.D., 1987. Signaling for growth orientation and cell differenciation by surface topography in *Uromyces*. *Science*, 235 : 1659-1662.
- Hoffman T., Schmidt J.S., Zheng X., Bent A.F., 1999. Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. *Plant Physiol.*, **119 (3)** : 935-950.
- Höhl B., Pfautsch M., Barz W., 1990. Histology of disease development in resistant and susceptible cultivars (*Cicer arietinum* L.) inoculated with spores of *Ascochyta rabiei*. J. Phytopathol., **129** : 31-45.
- Holub E.B. et Cooper A., 2004. Matrix, reinvention in plants: how genetics is unveilling secrets of non-host disease resistance. *Trends Plant Sci.*, **9** (5) : 211-214.
- Hu X., Reddy A.S.N., 1997. Cloning and expression of a PR5-like protein from *Arabidopsis* : inhibition of fungal growth by bacterially expressed protein. *Plant Mol. Biol.*, 34 : 949-959.
- Hughes P., Dennis E., Whitecross M., Llewellyn D., Gage P., 2000. The cytotoxic plant protein, β-purothionin, forms ion channels in lipid membranes. *J. Biol. Chem.*, **275** : 823-827.
- Huynh Q.K., Borgmeyer J.R., Smith C.E., Bell L.D., Shah D.M., 1996. Isolation and characterization of a 30 kDa protein with antifungal activity from leaves of *Engelmannia pinnatifida*. *Biochem. J.*, **316** : 723-727.

Ι

- **Ibeas J.I., Yun D.-J., Damsz B., Narasimhan M.L., Uesono Y., Ribas J.C., Lee H., Hasegawa P.M., Bressan R.A., Pardo J.M.,** 2001. Resistance to the plant PR-5 protein osmotin in the model fungus *Saccharomyces cerevisiae* is mediated by the regulatory effects of SSD1 on cell wall composition. *Plant J.*, **25** : 271-280.
- Ibeas J.I., Lee H., Damsz B., Prasad D.T., Pardo J.M., Hasegawa P.M., Bressan R.A., Narasimhan M.L., 2000. Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. *Plant J.*, **23** : 375-383.
- **Ippoliti R., Lendaro E., Bellelli A., Brunori M.,** 1992. A ribosomal protein is specifically recognized by saporin, a plant toxin which inhibits protein synthesis. *FEBS Lett.*, **298** : 145-148.

J

- Jabs T., Tschope M., Colling C., Hahlbrock K., Scheel D., 1997. Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. *Proc. Natl. Acad. Sci. U S A*, 29; 94 (9) : 4800-4805.
- Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C., 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in *Arabidopsis*. *EMBO J.*, **19** : 6150-6161.
- Jin W., Riley R.M., Wolfinger R.D., White K.P., Passador-Gurgel G., Gibson G., 2001. The contribution of sex, genotype and age to transcriptional variance in *Drosophila melanogaster*. *Nat. Gen.*, **29** : 389-395.
- Jirage D., Tootle T.L., Reuber T.L., Frost L.N., Feys B.J., Parker J.E., Ausubel F.M., Glazebrook J., 1999. *Arabidopsis thaliana* PAD4 encodes a lipase-like gene that is important for salicylic acid signalling. *Proc. Natl. Acad. Sci. U S A*, **96** : 13583– 13588.

- Joshi B.N., Sainani M.N., Bastawade K.B., Gupta V.S., Ranjekar P.K., 1998. Cysteine protease inhibitor from pear millet: A new class of antifungal protein. *Biochem. Biophys. Res. Comm.*, **246** : 382-387.
- Jouffret P., Penaud A., Taverne M., Pinochet X., Duroueix F., 2005. Neutraliser le phomopsis et le phoma du tournesol. *Oléoscope*, **80** : 9-30.
- Jung J.-L., Fritig B., Hahne G., 1993. Sunflower (*Helianthus annus* L.) pathogenesisrelated proteins: induction by aspirin (acetyl-salicylic acid) and characterization. *Plant Physiol.*, **101** : 873-880.

Κ

- Kamoun S., van West P., Vleeshouwers V.G., de Groot K.E., Govers F., 1998. Resistance of *Nicotiana benthamiana* to *Phytophthora infestans* is mediated by the recognition of the elicitor protein INF1. *Plant Cell*, **10** (9) : 1413-1426.
- Kanzaki H., Saitoh H., Ito A., Fujisawa S., Kamoun S., Katou S., Yoshioka H., Terauchi R., 2003. Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to *Pseudomonas cichorii* in *Nicotiana benthamiana*. *Mol. Plant Pathol.*, 4: 383-391.
- Kauffmann S., 2000. Les stratégies de défense. Pour la science, dossier hors série : 116-121.
- **Kauffmann S.,** 1987. Bilogical function of « pathogenesis related » proteins four P.R. proteins of tobacco have 1,3-ß-glucanase activity. *EMBO J.*, **6** : 3209-3212.
- **Keen N.T.**, 1981. Evaluation of the role of phytoalexins. In Plant Disease Control, ed. RC Staples, GH Toenniessen : 155–177, New York : Wiley.
- Kerr M.K., Martin M., Churchill G.A., 2000. Analysis of variance for gene expression microarray data. *J. Comput. Bio.*, 7:819-37.
- **Keyse S.M.**, 2000. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. *Curr. Opin. Cell Biol.*, **129** : 186-192.

- **Kim Y.J., Hwang B.K.,** 1996. Purification, N-terminal amino acid sequencing and antifungal activity of chitinases from pepper stems treated with mercuric chloride. *Physiol. Mol. Plant Pathol.*, **48** : 417-432.
- Kirankumar S. Mysore et Choong-Min Ryu, 2004. Nonhost resistance : how much do we know? *Trends Plant Sci.*, 9 (2) : 97-104.
- **Kitajima S., Sato F.,** 1999. Plant pathogenesis-related proteins : molecular mechanisms of gene expression and protein function. *J. Biochem.*, **125** : 1-8.
- Klessig D.F., Durner J., Noad R., Navarre D.A., Wendehenne D., Kumar D., Zhou
 J.M., Shah J., Zhang S., Kachroo P., Trifa Y., Pontier D., Lam E., Silva H.,
 2000. Nitric oxide and salicylic acid signaling in plant defense. *Proc. Natl. Acad. Sci. U S A*, 97 (16) : 8849-8855. Revue.
- Knoester M., van Loon L.C., van den Heuvel J., Hennig J., Bol J.F., Linthorst H.J.M., 1998. Ethylene-insensistive tobacco lacks nonhost resistance against soil-borne fungi. *Proc. Natl. Aca. Sci. U S A*, **95** : 1933-1937.
- Knogge W., 1996. Fungal Infection of Plants. Plant Cell, 8 (10): 1711-1722.
- Kobayashi I., Kobayashi Y., Yamaoka N., Kunoh H., 1992. Recognition of a pathogen and a nonpathogen by barley coleoptile cells. III. Response of microtubules and actin filaments in barley coleoptile cells to penetration attempts. *Can. J. Bot.*, **70** : 1815-1823.
- Kobayashi Y., Yamada M., Kobayashi I., Kunoh H., 1997. Actin microfilaments are required for the expression of nonhost resistance in higher plants. *Plant Cell Physiol.*, **38** : 725-733.
- Koiwa H., Kato H., Nakatsu T., Oda J., Yamada Y., Sato F., 1997. Purification and characterization of tobacco pathogenesis-related protein PR-5d, an antifungal thaumatin-like protein. *Plant Cell Physiol.*, **38** : 783-791.
- Koo J.C., Lee S.Y., Chun H.J., Cheong Y.H., Choi J.S., Kawabata S., Miyagi M., Tsunasawa S., Ha K.S., Bae D.W., Han C.-D., Lee B..L, Cho M.J., 1998. Two

hevein homologs isolated from the seed of *Pharbitis nil* L. exhibit potent antifungal activity. *Biochim. Biophys. Acta*, **1382** : 80-90.

- Kragh K.M., Nielsen J.E., Nielsen K.K., Dreboldt S., Mikkelsen J.D., 1995. Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris. *Mol. Plant-Microbe Inter.*, 8 : 424-434.
- **Kunkel B.N., Brooks D.M.**, 2002. Cross talk between signaling pathways in pathogen defense. *Curr. Opin. Plant Biol.*, 5 (4) : 325-331. Revue.

L

- Laloi C., Apel K., Danon A., 2004. Reactive oxygen signalling: the latest news. *Curr. Opin. Plant Biol.*, **7 (3)** : 323-328. Revue.
- Lamb C.J., Dixon R.A., 1997. The oxidative burst in plant disease resistance. *Annu. Rev. Plant Physiol. Plant Mol. Bio.*, **48** : 251-275.
- Larfeil C., 2003. La maladie des taches noires du tournesol causée par *Phoma macdonaldii* Boerema : variabilité phénotypique et moléculaire évaluation de la sensibilité des génotypes à la maladie modalités de l'infection. Castanet Tolosan, France. *Thèse de l'Institut National Polytechnique de Toulouse*, 102 p.
- Lawrence C.B., Singh N.P., Qui J., Gardner R.G., Tuzun S., 2000. Constitutive hydrolytic enzymes are associated with polygenic resistance of tomato to *Alternaria solani* and may function as an elicitor release mechanism. *Physiol. Mol. Plant Pathol.*, 57 : 211-220.
- Lawton M.A., Dixon R.A., Lamb C.J., 1980. Elicitor modulation of the turnover of Lphenylalanine ammonia lyase in French bean cell suspension cultures. *Biochimic. Biophys. Acta*, 633 : 162-175.
- Leah R., Tommerup H., Svendensen I., Mundy J., 1991. Biochemical and molecular characterization of three barley seed proteins with antifungal activity. J. Biol. Chem., 266 : 1564-1573.

- Lee M.W., Qi M., Yang Y.O., 2001. A novel jasmonic acid-inducible rice MYB gene associates with fungal infection and host cell death. *Mol. Plant-Microbe Inter.*, 14: 527-535.
- Lepoivre P., 2003. Phytopathologie. Editions de Boeck, 427 p.
- Livak K.J., Schmittgen T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*, 25 (4): 402-408.
- Lorang J.M., Carkaci-Salli N., Wolpert T.J., 2004. Identification and characterization of victorin sensitivity in *Arabidopsis thaliana*. *Mol. Plant-Microbe Inter.*, **17 (6)** : 577-582.
- Lorenzo O., Piqueras R., Sanchez-Serrano J.J., Solano R., 2003. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. *Plant Cell*, **15 (1)** : 165-178.
- Lorito M., Woo S.L., D'Ambrosio M., Harman G.E., Hayes C.K., Kubicek C.P., Scala F., 1996. Synergistic interaction between cell wall degrading enzymes and membrane affecting compounds. *Mol. Plant-Microbe Inter.*, **9** : 206-313.
- Lorito M., Broadway R.M., Hayes C.K., Woo S.L., Noviello C., Williams D.L., Harman G.E., 1994. Proteinase inhibitors from plants as a novel class of fungicides. *Mol. Plant-Microbe Inter.*, **7**: 525-527.
- Lu M., Tang M., Zhou J.M., 2001. *Arabidopsis* NHO1 is required for general resistance against Pseudomonas bacteria. *Plant Cell*, **13** : 437-447.
- Lumsden R.D., Dow R.L., 1973. Histopathology of *Sclerotinia sclerotiorum* infection of bean. *Phytopathol.*, 63 : 708–715.

M

- Mac Donald W.C., 1964. Phoma Black Stem of Sunflower. *Phytopathol.*, 54 : 492-493.
- Maleck K., Levine A., Eulgem T., Morgan A., Schmid J., Lawton K.A., Dangl J.L., Dietrich R.A., 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. *Nat. Genet.*, **26** (4) : 403-410.

- Malehorn D.E., Borgmeyer J.R., Smith C.E., Shah D.M., 1994. Characterization and expression of an antifungal zeamatin-like protein (Zlp) gene from *Zea mays*. *Plant Physiol.*, **106** : 1471-1481.
- Marathe R., Guan Z., Anandalakshmi R., Zhao H., Dinesh-Kumar S.P., 2004. Study of *Arabidopsis thaliana* resistance to cucumber mosaic virus using whole genome microarray. *Plant Mol. Biol.*, **55** : 501-520.
- Martin C., Paz-Ares J., 1997. MYB transcription factors in plants. *Trends Genet.*, **13**: 67–73.
- Martin G.B., Bogdanove A.J., Sessa G., 2003. Understanding the functions of plant disease resistance proteins. *Annu. Rev. Plant Biol.*, **54** : 23-61.
- Mathieu Y., Sanchez F.J., Droillard M.-J., Lapous D., Laurière C., Guern J., 1996.
 Involvement of protein phosphorylation in the early steps of transduction of the oligogalacturonide signal in tobacco cells. *Plant Physiol. Biochem.*, 34 : 399– 408.
- Mauch F., Mauch-Mani B., Boller T., 1988. Antifungal hydrolases in pea tissue. *Plant Physiol.*, **88** : 936-942.
- Maurin N., Gourret J. P., Tivoli B., 1993. Histopathology of the interaction between *Ascochyta fabae* and *Vicia faba* : Comparison of susceptible and resistant reactions. *Agronomie*, **13** : 921-927.
- May M.J., Hammond-Kosack K.E., Jones J., 1996. Involvement of reactive oxygen species, glutathione metabolism, and lipid peroxidation in the Cf-gene-dependent defense response of tomato cotyledons induced by race-specific elicitors of *Cladosporium fulvum*. *Plant Physiol.*, **110** : 1367-1379.
- Mazeyrat F., Mouzeyar S., Courbou I., Badaoui S., Roeckel-Drevet P., Tourvielle de Labrouhe D., Ledoigt G., 1999. Accumulation of defense related transcripts in sunflower hypocotyls (*Helianthus annuus* L.) infected with *Plasmopara halstedii*. *Eur. J. Plant Pathol.*, **105** : 333-340.

- **Mc Dowell J.M., Dangl J.L.**, 2000. Signal transduction in the plant immune response. *Trends Biochem. Sci.*, **25** : 79-82.
- Melchers L.S., Groot M.A., van der Knapp J.A., Ponstein A.S., Sela-Buurlage M.B., Bol J.F., Cornelissen B.J.C., van den Elzen J.M., Linthorst H.J.M., 1994. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. *Plant J.*, 4: 469-480.
- Mellersh D.G. et Heath M.C., 2003. An investigation into the involvement of defense signaling pathways in component of the nonhost resistance of *Arabidopsis thaliana* to rust fungi also reveals a model system for studying rust fungal compatibility. *Mol. Plant-Microbe Interact.*, **16** : 398-404.
- Menke F.L.H., van Pelt J.A., Pieterse Corné M.J., Klessig D.F., 2004. Silencing of the mitogen-activated kinase MPK6 compromises disease resistance in *Arabidopsis*. *Plant Cell* 16 : 897-907.
- Mestries E., Gentzbittel L., Tourvieille de Labrouhe D., Nicolas P., Vear F., 1998. Analyses of quantitative trait loci associated with resistance to Sclerotinia sclerotiorum in sunflowers (Helianthus annuus L.) using molecular markers. *Mol. Breeding*, **4** : 215-226.
- Michalikova A., 1974. Influence of the pathogen *Cercospora beticola* Sacc. Upon the ultrastructure of the leaf chloroplasts in sugar-beet. *Biologia* (Bratislava), **29** : 769-776.
- Millardet A., 1876. Etude sur les vignes d'origine américaine qui résistent au Phylloxera. *Mémoire Acad. Sci. Paris*, **32 (16)** : p 1-48.
- **Mirelman D., Galun E., Sharon N., Lotan R.,** 1975. Inhibition of fungal growth by wheat germ agglutinin. *Nature*, **256** : 414-416.
- Moerschbacher B.M., Noll U., Ocampo C.A., Flott B.E., Gotthardt U., Wuestefeld A., Reisener, H.J., 1990. Hypersensitive lignification response as the mechanism of non-host resistance of wheat against oat crown rust. *Physiol. Plant.*, **78** : 609-615.

- Molina A., Segura A., Garcia-Olmedo F., 1993. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. *FEBS Lett.*, **316** : 119-122.
- Moreno M., Segura A., Garcia-Olmedo F., 1994. Pseudothionin-St1, a potato peptide active against potato pathogens. *Eur. J. Biochem.*, **223** : 135-139.
- Müller K.O., Börger H., 1940. Experimentelle untersuchungen über die Phytophthora-resistenz der kartoffel. Arb. Biol. Reichsasnstalt Landw. Forstw. Berlin, 23: 189–231.
- Mysore K.S., Crasta O.R., Tuori R.P., Folkerts O., Swirsky P.B., Martin G.B., 2002. Comprehensive transcript profiling of Pto- and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. *Plant J.*, **32 (3)** : 299-315.

Ν

- Narasimhan M.L., Damsz B., Coca M.A., Ibeas J.I., Yun D.-J., Pardo J.M., Hasegawa P.M., Bressan R.A., 2001. A plant defense response effector induces microbial apoptosis. *Mol. Cell*, 8 : 921-930.
- Neill S., Desikan R., Hancock J., 2002. Hydrogen peroxide signalling. *Curr Opin Plant Biol.*, **5 (5)** : 388-95. Revue.
- Nhüse T.S., Peck S.C., Hirt H., Boller T., 2000. Microbial elicitors induce activation and dual phosphorylation of the *Arabidopsis thaliana* MAPK 6. *J. Bio. Chem.*, 275 : 7521-7526.
- Niderman T., Genetet I., Bruyère T., Gees R., Stintzi A., Legrand M., Fritig B., Mösinger E., 1995. Pathogenesis-related PR-1 proteins are antifungal. *Plant Physiol.*, **108** : 17-27.
- Nielsen K.K., Nielsen J.E., Madrid S.M., Mikkelsen J.D., 1997. Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. *Plant Physiol.*, 113: 83-91.

- Nielsen K.K., Nielsen J.E., Madrid S.M., Mikkelsen J.D., 1996. New antifungal proteins from sugar beet (*Beta vulgaris* L.) showing homology to non-specific lipid transfer proteins. *Plant Mol. Biol.*, **31** : 539-532.
- Nielsen K.K., Jorgensen P., Mikkelsen J.D., 1994. Antifungal activity of sugar beet chitinase against *Cercospora beticola*: an autoradiographic study on cell wall degradation. *Plant Physiol.*, **43** : 979-986.
- Norman-Setterblad C., Vidal S., Palva E.T., 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from *Erwinia carotovora*. *Mol. Plant-Microbe Inter.*, **13** : 430–438.

0

- Okada T., Yoshizumi H., 1973. The mode of action of a protein in wheat and barley on brewing yeast. *Agric. Chem.*, **37** : 2289-2294.
- Onaderra M., Monsalve R.I., Mancheno J.M., Villalba M., Martinez del Pozo A., Gavilanes J.G., Rodriguez R., 1994. Food mustard allergen interaction with phospholipid vesicles. *Eur. J. Biochem.*, **225** : 609-615.
- Osborn R.W., De Samblanx G.W., Thevissen K., Goderis I., Torrekens S., Van Leuven F., Attenborough S., Rees S.B., Broekaert W.F., 1995. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. *FEBS Lett.*, **368** : 257-262.

Osbourn A., 1996. Saponins and plant defence – a soap story. Trends Plant Sci., 1: 4-9.

Ρ

- Papadopoulou K., Melton R.E., Leggett M., Daniels M.J., Osbourn A.E., 1999. Compromised disease resistance in saponin-deficient plants. *Proc. Natl. Acad. Sci. USA*, 96 : 12923-12928.
- Parker J.E., 2003. Plant recognition of microbial patterns. *Trends Plant Sci.*, 8 (6) : 245-7. Revue.

- Parker J.E., Holub E.B., Frost L.N., Falk A., Gunn N.D., Daniels M.J., 1996. Characterization of eds1, a mutation in *Arabidopsis* suppressing resistance to *Peronospora parasitica* specified by several different RPP genes. *Plant Cell*, 8 (11) : 2033-2046.
- Pascholati S.F., Deising H., Leite B., Anderson D., Nicholson R.L., 1993. Cutinase and non-specific esterase activities in the conidial mucilage of Colletotrichum graminicola. *Physiol. Mol. Plant Pathol.*, **42** : 37-51.
- Pascholati S. F., Yoshioka H., and Kunoh H., 1992. Preparation of the infection court by *Erysiphe graminis* f. sp. *hordei* : Cutinase is a component of the conidial exudate. *Physiol. Mol. Plant Pathol.*, 41 : 53-59.
- **Paxton J.D.**, 1981. Phytoalexins—A working redefinition. *Phytopathol. Z.*, **101** : 106–109.
- Peart J.R., Lu R., Sadanandom A., Malcuit I., Moffett P., Brice D.C., Schauser L., Jaggard D.A., Xiao S., Coleman M.J., Dow M., Jones J.D., Shirasu K., Baulcombe D.C., 2002. Ubiquitin-ligase associated protein SGT1 is required for host and nonhost disease resistance in plants. *Proc. Natl. Acad. Sci. USA*, 99 : 10865-10869.
- Penaud A. et Péres A., 1994. Phoma du tournesol. Oléoscope, 15 : 37.
- Peres A., Lefol C., 1996. Phoma macdonaldii Boerema: éléments de biologie et mise au point d'une méthode de contamination artificielle en conditions controlées. Proceedings of the Fourteenth International Sunflower Conference. Beijing, China 2: 687-693.
- **Peumans W.J., Hao Q., Van Damme E.J.,** 2001. Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? *FASEB J.,* **15** : 1493-14506.
- Pineiro M., Diaz I., Rodriguez-Palenzuela P., Titarenko E.l., Garcia-Olmedo F., 1995. Selective disulphide linkage of plant thionins with other proteins. *FEBS Lett.*, **369** : 239-242.

- Pohl P., Antonenko Y.N., Evtodienko V.Y., Pohl E.E., Saparov S.M., Agapov I.I., Tonevitsky A.G., 1998. Membrane fusion mediated by ricin and viscumin. *Biochim. Biophys. Acta*, 1371 : 11-6.
- Ponstein A.S., Bres-Vloemans S.A., Sela-Buurlage M.B., van den Elzen P.J.M., Melchers L.S., Cornelissen B.J.C., 1994. A novel pathogen- and woundinducible tobacco (*Nicotiana tabacum*) protein with antifungal activity. *Plant Physiol.*, **104** : 109-118.
- Pratz-Perez E., Bazzalo M.E., Leon A., Novo J.V.J., 2000. Agronomic aspects of the sunflower 7-hydroxylated simple coumarins. *Helia*, **23 (33)** : 105-112.

R

- Rachid Al-Chaarani G., Roustaee A., Gentzbittel L., Mokrani L., Barrault G.,
 Dechamp-Guillaume G., Sarrafi A., 2002. A QTL analysis of sunflower partial resistance to downy mildew (*Plasmopara halstedii*) and black stem (*Phoma macdonaldii*) by the use of recombinant inbred lines (RILs). *Theor. Appl. Genet.*, 104 : 490–496.
- Radwan O., 2004. Analyse moléculaire des mécanismes de résistance du tournesol à l'agent du mildiou *Plasmopara halstedii* contrôlés par le locus *Pl5/Pl8*. Clermont-Ferrand, France. *Thèse de l'Université Blaise Pascal*, 154p.
- Rashotte A.M., Carson S.D., To J.P., Kieber J.J., 2003. Expression profiling of cytokinin action in *Arabidopsis*. *Plant Physiol.*, **132 (4)** : 1998-2011.
- Rauscher M., Adam A.L., Wirtz S., Guggenheim R., Mendgen K., Deising H.B., 1999. PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. *Plant J.*, **19** : 625-633.
- **Rayner R.W.**, 1970. A mycological colour chart. Kew, UK: Commonwealth Mycological Institute.
- Read N. D., Kellock L. J., Knight H., Trewavas A. J., 1992. Contact sensing during infection by fungal pathogens. In *Perspectives in Plant Cell Recognition*, p 137-

172. Edited by J. A. Callow & J. R. Green. Cambridge: Cambridge University Press.

- Reuber T.L., Plotnikova J.M., Dewdney J., Rogers E.E., Wood W., Ausubel F.M., 1998. Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. *Plant J.*, 16:473–85.
- **Rey-Debove J., Cottez H., Rey A**., 1974. Tolérance. In : Le petit Robert. 19^{ème} édition. Paris, France : *société du nouveau littré*, p 1790-1791.
- **Roberts W.K., Selitrennikoff C.P.,** 1990. Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. *J. Gen. Microbiol.*, **136** : 1771-1778.
- Roberts W.K., Selitrennikoff C.P., 1988. Plant and bacterial chitinases differ in antifungal activity. *J. Gen. Microbiol.*, **134** : 169-176.
- **Robinson R.A.**, 1976. Plant Pathosystems. Springer Verlag, Berlin, Heidelber, New York, 184p.
- **Rodrigo I., Vera P., Tornero P., Hernandez-Yago J., Conejero V.,** 1993. cDNA cloning of viroid-induced tomato pathogenesis-related protein P23. Characterization as a vacuolar antifungal factor. *Plant Physiol.*, **102** : 939-945.
- Roustaee A., Barrault G., Dechamp-Guillaume G., Lesigne P., Sarrafi A., 2000a. Inheritance of partial resistance to black stem (*Phoma macdonaldii*) on sunflower. *Plant Pathol.*, **49 (3)** : 396-401.
- Roustaee A., Dechamp-Guillaume G., Gelie B., Savy C., Dargent R., Barrault G., 2000b. Ultrastructural Studies of the Mode of Penetration by Phoma macdonaldii in Sunflower Seedlings. *Phytopathol.*, **90** : 915-920.
- Roustaee A., Costes S., Dechamp-Guillaume G. and Barrault G., 2000c. Phenotypic variability of Leptosphaeria linquistii (anamorph: Phoma macdonaldii), a fungal pathogen of sunflower. *Plant Pathol.*, **49** : 227-234.
- Ruth Schiffer R., Görg R., Jarosch B., Beckhove U., Bahrenberg G., Kogel K.H., Paul Schulze-Lefert P., 1998. Tissue Dependence and Differential Cordycepin

Sensitivity of Race-Specific Resistance Responses in the Barley-Powdery Mildew Interaction. *Mol. Plant-Microbe Inter.*, **10** : 830-839.

S

- Sahai A.S. et Manocha M.S., 1993. Chitinases of fungi and plants; their involvement in morphogenesis and host-parasite interaction. *FEMS Microbial Review*, **11** : 317-338.
- Salzman R.A., Tikhonova I., Bordelon B.P., Hasegawa P.M., Bressan R.A., 1998. Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. *Plant Physiol.*, **117** : 465-472.
- Scheideler M., Schlaich N.L., Fellenberg K., Beissbarth T., Hauser N.C., Vingron M., Slusarenko A.J., Hoheisel J.D., 2002. Monitoring the switch from housekeeping to pathogen defense metabolism in *Arabidopsis thaliana* using cDNA arrays. J. Biol. Chem., 277: 10555-10561.
- Schenk P.M., Kazan K., Wilson I., Anderson J.P., Richmond T., Somerville S.C., Manners J.M., 2000. Coordinated plant defense responses in *Arabidopsis* revealed by microarray analysis. *Proc. Natl. Acad. Sci. USA*, 97 : 11655-60.
- Segura A., Moreno M., Madueno F., Molina A., Garcia-Olmedo F., 1999. Snakin-1, a peptide from potato that is active against plant pathogens. *Mol. Plant-Microbe Interact.*, **12** : 16-23.
- Segura A., Moreno M., Molina A., García-Olmedo F., 1998. Novel defensin subfamily from spinach (*Spinacia oleracea*). *FEBS Lett.*, **435** : 159-162.
- Sela-Buurlage M.B., Ponstein A.S., Bres-Vloemans S.A., Melchers L.S., van den Elzen P.J.M., Cornelissen B.J.C., 1993. Only specific tobacco (*Nicotiana tabacum*) chitinases and β-1, 3-glucanases exhibit antifungal activity. *Plant Physiol.*, **101** : 857-863.
- Shah J., 2003. The salicylic loop in plant defense. Curr. Opin. Plant Biol., 6: 365-371.

- Shao F., Hu Z., Xiong Y.-M., Huang Q.-Z., Wang C.-G., Zhu R.-H., Wang D.-C., 1999. A new antifungal peptide from the seeds of *Phytolacca americana*: characterization, amino acid sequence and cDNA cloning. *Biochim. Biophys. Acta*, 1430 : 262-268.
- Simmons C.R., 1994. The physiology and molecular biology of plant 1,3-b-D-glucanases and 1,3;1,4-b-D-glucanases. *Crit. Rev. Plant Sci.*, **13** : 325-287.
- Smith D.R., Walker J.C., 1996. Plant protein phosphatases. *Annu. Rev. Plant Physiol. Plant Mol. Bio.*, **47** : 101-125.
- Song F., Goodman R.M., 2001. Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance. *Mol. Plant-Microbe Interact.*, **14 (12)** : 1458-1462.
- Staswick P.E., Yuen G.Y., Lehman C.C., 1998. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. *Plant J.*, 15 (6): 747-754.
- Sticher L., Mauch-Mani B., Metraux J.P., 1997. Systemic acquired resistance. *Annu. Rev. Phytopathol.*, **35** : 235-270.
- **Stuart L.S., Harris T.H.,** 1942. Bactericidal and fungicidal properties of a crystalline protein isolated from unbleached wheat flour. *Cereal Chem.*, **19** : 288-300.
- Sugarawa F., and Strobel G., 1986. Zinniol, a phytotoxin, is produced by *Phoma macdonaldii*. *Plant Sci.*, **43** : 19-23.
- Sugimoto K., Takeda S., Hirochika H., 2000. MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retrotransposon Tto1 and defense-related genes. *Plant Cell* **12**: 2511-2527.
- Suzuki K., Shinshi H., 1995. Transient Activation and Tyrosine Phosphorylation of a Protein Kinase in Tobacco Cells Treated with a Fungal Elicitor. *Plant Cell*, 7 (5) : 639-647.

T

- Tailor R.H., Acland D.P., Attenborough S., Cammue B.P.A, Evans I.J., Osborn R.W., Ray J.A., Rees S.B., Broekaert W.F., 1997. A novel family of small cysteine-rich antimicrobial peptides from seed of *Impatiens balsamina* is derived from a single precursor protein. *J. Biol. Chem.*, 272 : 24480-24487.
- **Tal B., Robeson D.J.**, 1986 a. The metabolism of Sunflower Phytoalexins Ayapin and Scopoletin. *Plant physiol.*, **82** : 167-172.
- **Tal B., Robeson D.J.**, 1986 b. The induction, by fungal innoculation, of ayapin and scopoletin biosynthesis in Helianthus annuus. *Phytochem.*, **25** : 77-79.
- Tamborindeguy C., Ben C., Liboz T., Gentzbittel L., 2004. Sequence evaluation of four specific cDNA libraries for developmental genomics of sunflower. *Mol. Genet. Genom.*, 271 : 367-75.
- Tanaka H., Akai S., 1960. On the mechanism of starch accumulation in tissue surrounding lesions in rice leaves due to the attack of *Cochliobolus miyabeanus*.
 II. On the activities of beta-amylase and invertase in tissues surrounding spots. *Nippon Shokubutsu Byori Gakkaiho*, 25 : 80-84.
- **Tariq V.N., Jeffries P.,** 1984. Appressorium formation by *Sclerotinia sclerotiorum* : scanning electron microscopy. *Trans. Brit. Mycol. Soc.*, **82** : 645-651.
- Terras F.R.G., Goderis I.J., Leuven F., van Vanderleyden J., Cammue B.P.A., Broekaert W.F., 1992 a. In vitro antifungal activity of a radish (*Raphanus sativus* L.) seed protein homologous to nonspecific lipid transfer proteins. *Plant Physiol.*, 100 : 1055-1058.
- Terras F.R.G., Schoofs H.M.E., DeBolle M.F.C., Van Leuven F., Rees S.B., Vanderleyden J., Cammue B.P.A., Broekaert W.F., 1992b. Analysis of two novel classes of plant antifungal proteins from radish (*Raphanus sativus* L.) seeds. J. Biol. Chem., 267 : 15301-15309.

- Terras F.R.G., Torrekens S., Van Leuven F., Osborn R.W., Vanderleyden J., Cammue B.P.A., Broekaert W.F., 1993a. A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. *FEBS Lett.*, **316** : 233-240.
- Terras F.R.G., Schoofs H.M.E., Thevissen K., Osborn R.W., Vanderleyden J., Camme B.P.A., Broekaert W.F., 1993b. Synergistic enhancement of the antifungal activity of wheat and barley thionins by raddish and oilseed rape 2S albumins and by barley trypsin inhibitors. *Plant Physiol.*, **103** : 1311-1319.
- Thevissen K., Cammue B.P., Lemaire K., Winderickx J., Dickson R.C., Lester R.L., Ferket K.K., Van Even F., Parret A.H., Broekaert W.F., 2000. A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of *Saccharomyces cerevisiae* to an antifungal plant defensin from dahlia (*Dahlia merckii*). Proc. Natl. Acad. Sci. USA, 97: 9531-9536.
- Thevissen K., Osborn R.W., Acland D.P., Broekaert W.F., 2000. Specific binding sites for an antifungal plant defensin from dahlia (*Dahlia merckii*) on fungal cells are required for antifungal activity. *Mol. Plant-Microbe Inter.*, **31**: 54-61.
- Thevissen K., Terras F.R.G., Broekaert W.F., 1999. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. *Appl. Envir. Microbiol.*, 65 : 5451-5458.
- Thevissen K., Osborn R.W., Acland D.P., Broekaert W.F., 1997. Specific, high affinity binding sites for an antifungal plant defensin on *Neurospora crassa* hyphae and microsomal membranes. *J. Biol. Chem.*, **272** : 32176-32181.
- Thevissen K., Ghazi A., De Samblanx G.W., Brownlee C., Osborn R.W., Broekaert W.F., 1996. Fungal membrane responses induced by plant defensins and thionins. J. Biol. Chem., 271: 15018-15025.
- **Thomma B.P., Penninckx I.A., Broekaert W.F., Cammue B.P.**, 2001. The complexity of disease signaling in Arabidopsis. *Curr. Opin. Immunol.*, **13 (1)** : 63-68. Revue.
- Thomma B.P.H.J., Eggermont K., Tierens K.F.M.-J., Broekaert W.F., 1999a. Requirement of functional EIN2 (ethylene insensitive 2) gene for efficient

resistance of *Arabidopsis thaliana* to infection by *Botrytis cinerea*. *Plant Physiol.*, **121**: 1093-1101.

- Thomma B.P.H.J., Nelissen I., Eggermont K., Broekaert W.F., 1999b. Deficiency in phytoalexin production causes enhanced susceptibility of *Arabidopsis thaliana* to the fungus *Alternaria brassicicola*. *Plant J.*, **19:** 163-71.
- Thomma B.P.H.J., Eggermont K., Penninckx I.A.M.A., Mauch-Mani B., Vogelsang R., Cammue B.P.A, Broekaert W.F., 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. *Proc. Natl. Acad. Sci. USA*, **95** : 15107–15111.
- **Thordal-Christensen H.,** 2003. Fresh insights into processes of nonhost resistance. *Curr. Opin. Plant Biol.*, **6**: 351-357.
- Thuault M.C., et Tourvieille D., 1988. Etudes du pouvoir pathogène de huit isolats de Sclerotinia appartenant aux espèces S. sclerotiorum, S. minor et S. trifoliorum sur le tournesol. *Int. Tech. CETIOM*, **103** : 21–27.
- Tourvieille D. et Vear F., 1990. Heredity of resistance to Sclerotinia sclerotiorum in sunflowers. III - Study of reaction to artificial infections of roots and cotyledons. *Agronomie*, **10** : 323-330.
- Tsuba M., Katagiri C., Takeuchi Y., Takada Y, Yamaoka N., 2002. Chemical factors of the leaf surface involved in the morphogenesis of *Blumeria graminis*. *Physiol. Mol. Plant Pathol.*, 60 : 51-57.

U

- Ulm R., Ichimura K., Mizoguchi T., Peck S.C., Zhu T., Wang X., Shinozaki K., Paszkowski J., 2002. Distinct regulation of salinity and genotoxic stress responses by *Arabidopsis* MAP kinase phosphatase 1. *EMBO J.*, **21**: 6483-93.
- **Urdangarin C., Regente M.C., Jorrin J., de la Canal L.,** 1999. Sunflower coumarin phytoalexins inhibit the growth of the virulent pathogen *Sclerotinia sclerotiorum*. *J. Phytopathol.*, **147** : 441-443.

V

- Vailleau F., Daniel X., Tronchet M., Montillet J.L., Triantaphylides C., Roby D., 2002. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. *Proc. Natl. Acad. Sci. USA*, 99: 10179–10184.
- Van Damme E.J.M., Charels D., Roy S., Tierrens K., Barre A., Martins J.C., Rougé P., Van Leuven F., Does M., Peumans W.J., 1999. A gene encoding a heveinlike protein from elderberry fruits is homologous to PR-4 and class V chitinase genes. *Plant Physiol.*, **119** : 1547-1556.
- Van de Graaf P., Joseph M.E., Chartier-Hollis J.M., O'Neill, T.M., 2002. Prepenetration stages in infection of clematis by Phoma clematidina. *Plant Pathol.*, 51, 331-337.
- Van Der Plank J.E., 1968. Disease resistance in plants. Academic press. edit., 206 p.
- Van Etten H.D., Mansfield J.W., Bailey J. A., and Farmer E.E., 1994. Two classes of plant antibiotics : Phytoalexins versus "Phytoanticipins." *Plant Cell*, 6 : 1191– 1192.
- Van Loon L.C., van Strien E.A., 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. *Physiol. Mol. Plant Pathol.*, 55 : 85-97.
- Van Loon, L.C., Van Kammen, A., 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from *Nicotiana tabacum* var. « Samsun » and « Samsun NN ». Changes in protein constitution after TMV infection. *Virology*, 40 : 199-201.
- Van Parijs J., Broekaert W.F., Goldstein I., Peumans W.J., 1991. Hevein: An antifungal protein from rubber-tree (*Hevea brasiliensis*) latex. *Planta*, 183 : 258-264.
- Vear F. et Tourvieille D., 1988. Heredity of resistance to Sclerotinia sclerotiorum in sunflower. II. Study of capitulum resistance to natural and artificial ascospore infections. *Agronomie*, 8 : 503-508.
- Vera-Estrella R., Barkla B.J., Higgins V.J., Blumwald E., 1994 a. Plant Defense Response to Fungal Pathogens (Activation of Host-Plasma Membrane H+-ATPase by Elicitor-Induced Enzyme Dephosphorylation). *Plant Physiol.*, 104 (1): 209-215.
- Vera-Estrella R., Higgins V.J., Blumwald E., 1994 b. Plant Defense Response to Fungal Pathogens (II. G-Protein-Mediated Changes in Host Plasma Membrane Redox Reactions). *Plant Physiol.*, **106 (1)** : 97-102.
- **Verburg J.G., Huynh Q.K.,** 1991. Purification and characterization of an antifungal chitinase from *Arabidopsis thaliana*. *Plant Physiol.*, **95** : 450-455.
- Veronese P., Ruiz M.T., Coca M.A., Hernandez-Lopez A., Lee H., Ibeas J.I., Damsz B., Pardo J.M., Hasegawa P.M., Bressan R.A., Narasimhan M.L., 2003. In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. *Plant Physiol.*, **131 (4)** : 1580-90.
- **Verwoerd T.C., Dekker B.M.M., Hoekema A.,** 1989. A small-scale procedure for the rapid isolation of plant RNAs. *Nucleic Acids Res.*, **17** : **(6)**, 2362.
- Vigers A.J., Wiedemann S., Roberts W.K., Legrand M., Selitrennikoff C.P., Fritig
 B., 1992. Thaumatin-like pathogenesis-related proteins are antifungal. *Plant* Sci., 83: 155-161.
- Viguié A., Vear F., Tourvieille De Labrouhe D., 1999. Interactions between French isolates of Phomopsis/Diaporthe helianthi Munt.-Cvet. and sunflower (Helianthus annuus L.) genotypes. *Eur. J. Plant Pathol.*, **105** : 697-702.
- Vijayan P., Shockey J., Levesque C.A., Cook R.J., Browse J., 1998. A role for jasmonate in pathogen defense of arabidopsis. *Proc. Natl. Acad. Sci. U S A*, 95 (12): 7209-7214.

- Vivanco J.M., Savary B.J., Flores H.E., 1999. Characterization of two novel type I ribosome-inactivating proteins from the storage roots of the andean crop *Mirabilis expansa*. *Plant Physiol.*, **119** : 1447-1456.
- Vleeshouwers V.G., van Dooijeweert W., Govers F., Kamoun S., Colon L.T., 2000a. The hypersensitive response is associated with host and nonhost resistance to *Phytophthora infestans*. *Planta*, **210 (6)** : 853-64.
- Vleeshouwers V.G.A.A., van Dooijeweert W., Govers F., Kamoun S., Colon L.T., 2000b. Does basal PR gene expression in *Solanum* species contribute to nonspecific resistance to *Phytophthora infestans? Physiol. Mol. Plant Pathol.*, 57 : 35-42.
- **Vogel J. et Somerville S**., 2000. Isolation and characterization of powdery mildewresistant *Arabidopsis* mutants. *Proc. Natl. Acad. Sci. U S A*, **15**; **97 (4)** : 1897-902.
- Vranceanu A.V., Craiciu D.S., Soare G., Pacureanu A.V., Voinescu G. and Sandu I., 1993. Sunflower genetic resistance to Phomopsis helianthi attack. In: Proceedings of the 13th International Sunflower Conference, Vol II, Pisa, Italy : 1301–1306.
- Vu L., Huynh Q.K., 1994. Isolation and characterization of a 23-kDa antifungal protein from the fruits of *Diospyros texana*. *Biochem. Biophys. Res. Comm.*, 202 : 666-672.

W

- Wang K.L., Li H., Ecker J.R., 2002. Ethylene biosynthesis and signaling networks. *Plant Cell*, **14** Suppl : S1, 31-51. Revue.
- Wang Y., Ohara Y., Nakayashiki H., Tosa Y., Mayama S., 2005. Microarray analysis of the gene expression profile induced by the endophytic plant growthpromoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in *Arabidopsis*. *Mol. Plant-Microbe Inter.*, **18 (5)** : 385-396.
- Wendehenne D., Durner J., Klessig D.F., 2004. Nitric oxide: a new player in plant signalling and defence responses. *Curr. Opin. Plant Biol.*, **7 (4)** : 449-455. Revue.

- White G.A., Starrat A.N., 1967. The production of a phytotoxic substance by *Alternaria zinniae*. *Can. J. Bot.*, **45** : 2087-2090.
- Wildermuth M.C., Dewdney J., Wu G., Ausubel F.M., 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. *Nature*, **414** : 562-565.
- Wolfinger R.D., Gibson G., Wolfinger E.D., Bennett L., Hamadeh H., Bushe P., Afshari C., Paules R.S., 2001. Assessing gene significance from cDNA microarray expression data *via* mixed models. J. Comput. Biol., 8 : 625-37.
- Woloshuk C.P., Meulenhoff J.S., Sela-Buurlage M., van den Elzen P.J.M., Cornelissen B.J.C., 1991. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. *Plant Cell*, **3**: 619-628.

Х

Xing T., Ouellet T., Miki B.L., 2002. Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions. *Trends Plant Sci.*, 7 (5) : 224-30. Revue.

Y

- Yang J., Verma P. R., Lee, G. L. 1992. The role of cuticle and epidermal cell wall in resistance of rapeseed and mustard to Rhizoctonia solani. *Plant Soil*, 142 : 315-321.
- Yang Y.O., Klessig D.F., 1996. Isolation and characterization of a tobacco mosaic virus-inducible MYB oncogene homolog from tobacco. *Proc. Natl. Acad. Sci.* USA, 93 : 14972-14977.
- Ye X.Y., Wang H.X., Ng T.B., 1999. First chromatographic isolation of an antifungal thaumatin-like protein from French bean legumes and demonstration of its antifungal activity. *Biochem. Biophys. Res. Comm.*, 263 : 130-134.
- Yu I.C., Parker J., Bent A.F., 1998. Gene-for-gene disease resistance without the hypersensistive response in *Arabidopsis* dnd1 mutant. *Proc. Natl. Acad. Sci.* USA, 99 : 7819-7824.

- Yun D.J., Ibeas J.I., Lee H., Coca M.A., Narasimhan M.L., Uesono Y., Hasegawa P.M., Pardo J.M., Bressan R.A., 1998. Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility. *Mol. Cell*, 1: 807-817.
- Yun D.-J., Zhao Y., Pardo J.M., Narasimhan M.L., Damsz B., Lee H., Abad L.R., d'Urzo M.P., Hasegawa P.M., Bressan R.A., 1997. Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. *Proc. Natl. Acad. Sci. USA*, 94 : 7082-7087.
- Yun D.-J., Paino d'Urzo M., Abad L., Takeda S., Salzman R., Chen Z., Lee H., Hasegawa P.M., Bressan R.A., 1996. Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform. *Plant Physiol.*, **111** : 1219-1225.

Ζ

Zhou J., Tang X., Martin G.B., 1997. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. *EMBO J.*, **16 (11)** : 3207-3218.

ANNEXES

ANNEXES

ANNEXE 1

Activités antimicrobiennes des protéines et peptides de défense des plantes in vitro

Tableau I. Activités antimicrobiennes des protéines et peptides de défense des plantes *in vitro* (Veronese *et al.,* 2003).

PROTEIN / PEPTIDE	Activ against	Inactiv against
PR-1		
tomato basic P14a	Phytophthora infestans	
tomato basic P14b	P. infestans	
tomato basic P14c (38)	P. infestans + ^a	
tobacco acidic PR-1a	P. infestans	
tobacco acidic PR-1b	P. infestans	
tobacco acidic PR-1c	P. infestans	
tobacco acidic PR-1g	P. infestans+	
bean basic PR-1	Uromyces fabae	
β-1, 3-glucanases		
barley seed	Trichoderma reesei, Fusarium sporotrichioides	
pea pod	Fusarium solani f.sp. pisi	Athelia bombacina, Alternaria solani, Ascochyta pisi, Aspergillus niger, Botrytis cinerea, Cladosporium cucumerinum, Colletotrichum lagenarium, Fusarium culmorum, Fusarium oxysporum f.sp. lycopersici, F. solani f.sp. phaseoli, Monilia fructigena, Penicillium digitatum, Phoma betae, Pythium aphanidermatum, Pythium ultimum, Thielaviopsis basicola, Trichoderma viride
pea pod		Trichoderma longibrachiatum Alternaria mali, Colletotrichum

pepper basic	Phytophthora capsici	gloeosporioides, F. oxysporum f.sp. cucumerinum, Magnaporthe grisea
tobacco class I tobacco class II	F. solani	F. solani
Chitinases		
basic Arabidopsis	T. reesei	A. solani, F. oxysporum, Gaeumannomyces graminis, Phytophthora megasperma, Sclerotinia sclerotiorum
barley seed	F. sporotrichioides, T. reesei	
barley seed	Phycomyces blakesleeanus, T. reesei	
chestnut class I Ch3	T. viride	
basic grape berry chitinase	B. cinerea, Guignardia bidwellii	
pea pod	T. viride	A. bombacina, A. solani, A. pisi, A. niger, B. cinerea, F. culmorum, F. oxysporum f.sp. lycopersici, F. solani f.sp. phaseoli, M. fructigena, P. digitatum, P. betae, P. ultimum, T. basicola
maize seed	P. blakesleeanus, T. reesei	
pea pod CH1 and CH2	T. longibrachiatum	
pepper acidic a1		A. mali, C. gloeosporioides, F. oxysporum f.sp. cucumerinum, M. grisea, P. capsici, T. viride
pepper basic b1	C. gloeosporioides, F. oxysporum f.sp. cucumerinum, M. grisea, T. viride	A. mali, P. capsici
pepper basic b2	C. gloeosporioides, F. oxysporum f.sp. cucumerinum, M. grisea, T. viride	A. mali, P. capsici
basic sugar beet	Cercospora beticola	
tobacco class I	F. solani	
tobacco class II		F. solani
tobacco basic class I T1	F. oxysporum f.sp. lycopersici, T. longibrachiatum	
tobacco leaf basic T3	F. oxysporum f.sp. lycopersici, T.	

	longibrachiatum	
tobacco basic T4	F. oxysporum f.sp. lycopersici, T. longibrachiatum	
tobacco basic class I T2	Cercospora zeae-maydis, Colletotrichum graminicola, Fusarium moniliforme, F. oxysporum f.sp. lycopersici, Rhizoctonia solani, T. longibrachiatum, Verticillium dahliae	Aspergillus flavus, C. cucumerinum, Phytophthora parasitica var. nicotianae
tobacco leaf class V	Alternaria radicina, T. viride	F. solani, Septoria lycopersisci, R. solani, P. infestans
tobacco leaf	P. blakesleenus, Trichoderma hamatum	B. cinerea
thorn-apple leaf	P. blakesleenus, T. hamatum	B. cinerea
wheat embryo	P. blakesleenus, T. hamatum	B. cinerea
wheat seed	P. blakesleeanus, T. reesei	
PR-4		
barley grain CBP N, leaf CBP 4 and 5	Trichoderma harzianum	
elderberry fruit SN-HLPf	Neurospora crassa	F. culmorum
tobacco leaf CBP 20	F. solani, T. viride	A. radicina
wheat kernel wheatwin1	B. cinerea, F. culmorum, Fusarium graminearum+	
wheat kernel wheatwin2	B. cinerea, F. culmorum, F. graminearum	
Hevein-like		
amaranth seed Ac-AMP1	Alternaria brassicicola, A. pisi, B. cinerea, C. lindemuthianum, F. culmorum, T. hamatum, V. dahliae+, Bacillus megaterium, Sarcina lutea	Erwinia carotovora, Escherichia coli
amaranth seed Ac-AMP2	A. brassicicola+, A. pisi, B. cinerea+, C. lindemuthianum, F. culmorum, T. hamatum+, V. dahliae, B. megaterium, S. lutea	E. carotovora, E. coli

morning glory seed Pn- AMP1	B. cinerea, C. lagenarium, F. oxysporum, P. capsici, P. parasitica, R. solani+, S. sclerotiorum, Bacillus subtilis, Saccharomyces cerevisiae	Agrobacterium. tumefaciens, E. coli
morning glory seed Pn- AMP2 (26)	B. cinerea+, C. lagenarium+, F. oxysporum+, P. capsici+, P. parasitica+, Pythium spp., R. solani, , S. sclerotiorum+, B. subtilis+, S. cerevisiae+	A. tumefaciens, E. coli
rubber three latex hevein	B. cinerea, F. culmorum, F oxysporum. f.sp. pisi, P. blakesleeanus, Pyrenophora tritici-repentis, Pyricularia oryzae, Septoria nodorum, T. hamatum	
stinging nettle agglutinin UDA	A. brassicicola, B. cinerea, Colletotrichum lindemuthianum, P. betae, P. blakesleeanus, R. solani, S. nodorum, T. hamatum, T. viride, V. dahliae, B. megaterium	Phytophthora erythroseptica, E. carotovora, E. coli, S. lutea
sugar beet leaf IWF4	C. beticola	
wheat germ agglutinin WGA	T. viride	

Thaumatin-like proteins

Arabiopsis acidic ATLP-3	A. solani, F. oxysporum, T. reesei, Verticillium albo-atrum, V. dahliae, Candida albicans	
barley seed PR-R	T. viride, C. albicans	
barley seed PR-S	T. viride, C. albicans+	
corn ZLP	A. solani, N. crassa, T. reesei, C. albicans	
corn seed 22 kDa zeamatin	C. beticola, N. crassa, T. reesei, C. albicans	
Diospyros texana fruit (68)	P. infestans	
flax seed linusitin	A. solani	P. infestans, C. albicans
French bean TLP	F. oxysporum	R. solani

grape berry osmotin GO	B. cinerea, G. bidwellii	
pumpkin leaf PLTP	F. oxysporum, N. crassa	
tobacco osmotin	A. solani, Bipolaris maydis, Bypolaris zeicola, B. cinerea, C. zeae-maydis, C. cucumerinum, C. gloeosporioides, C. graminicola, C. lagenarium, Colletotricum sublineolum, F. graminearum, F. moniliforme, F. oxysporum f.sp. dianthi, F. oxysporum f.sp. lycopersici, Fusarium roseum (Sambucinum), Kabatiella zeae, M. grisea, Periconia circinata, P. infestans, P. parasitica var. dianthi, P. parasitica var. nicotianae, S. sclerotiorum, Stenocarpella maydis, T. longibrachiatum, V. dahliae, S. cerevisiae	A. flavus, Aspergillus parasitica, Macrophomina phaseolina, R. solani
tobacco PR-S	C. beticola +	N. crassa, T. reesei, C. albicans
tobacco osmotin	C. beticola, N. crassa, T. reesei, C. albicans	
tobacco PR-5d	A. solani, Cochliobolus miyabeanus, C. lagenarium, F. oxysporum f.sp. cucumerinum, F. oxysporum f.sp. lycopersici, N. crassa, P. parasitica var. nicotianae, P. oryzae, T. basicola, T. reesei, C. albicans	
tomato AP24	P. infestans	
tomato leaf P23	Colletotrichum coccodes, F. oxysporum f.sp. lycopersici, Phytophthora citrophthora, Trichothecium roseum	
Protease Inhibitors (PIs)		
barley seed trypsin inhibitors <i>Hv</i> -Ti 1-3	A. brassicicola, A. pisi, F. culmorum, V. dahliae	
cabbage leaf trypsin inhibitor	B. cinerea, F. solani f.sp. pisi	A. brassicicola
cabbage leaf	B. cinerea, F. solani f.sp. pisi	A. brassicicola

chymotrypsin inhibitorpearl millet seed cysteineprotease inhibitorprotease inhibitorA. solani, Claviceps paspali, Clavicepspurpurea, Curvularia fallax, Curvulariacymbopogonis, Curvularia lunata, F.

oxysporum, Helminthosporium spp., T. reesei

Ribosome Inactivating Proteins (RIPs)

barley seed	F. sportotrichioides, T. reesei	Alternaria alternata, P. blakesleeanus
<i>Mirabilis expansa</i> root ME 1 and ME2	A. solani, Fusarium proliferatum, F. oxysporum solani, Phytophthora drechsleri, P. irregulare, T. harzianum, T. reesei, V. dahliae, A. tumefaciens C58, Agrobacterium rhizogenes ATCC15834, B. subtilis G13R, E. carotovora ATCC15713, Pseudomonas syringae B, Rhizobium leguminosarum, Serratia marcescens, Xanthomonas campestris pv. vesicatoria	Phytophthora cinnamomi, Phytophthora crytoptogea, P. megasperma, Phytophthora palmivora, P. ultimum, R. solani, Agrobacterium radiobacter K84, Bacillus cepacea Deny, Bacillus thuringensis, Clavibacter michiganensis subsp. nebraskensis, Erwinia amylovora, E. coli ESS, Erwinia herbicola, Pseudomonas aureofaciens 30-84, Pseudomonas fluorescens PFS rpos Pseudomonas fluorescens 2-79, Pseudomonas putida Qd8, P. syringae pv. phaseolicola, Streptomyces griseovivides Mycostop, X. campestris pv. peligonii
Defensins		
radish seed Rs-AFP1	A. brassicicola, A. pisi, B. cinerea, C. beticola, C. lindemuthianum, F. culmorum, F. oxysporum f.sp. lycopersici, F. oxysporum f.sp. pisi, Mycosphaerella fijiensis, Nectria haematococca, P. betae, P. infestans+, P. tritici-repentis, P. oryzae, R. solani+, S. sclerotiorum+, S. nodorum+, T. hamatum, Venturia inaequalis, V. dahliae, B. megaterium var. fijiensis	
radish seed Rs-AFP2	A. brassicicola, A. pisi+, B. cinerea+, C.	B. subtilis, E. coli, Proteus vulgaris,

B. subtilis, E. coli, Proteus vulgaris, Micrococcus luteus, Staphylococcus aureus, Streptococcus faecalis S. cerevisiae

beticola, C. lindemuthianum+,
Cladosporium sphaerospermum, F.
culmorum, F. oxysporum f.sp.
lycopersici+, F. oxysporum f.sp. pisi+,
Leptosphaeria maculans, M. fijiensis+,
N. haematococca+, Penicillium
digitatum, P. betae+, P. infestans, P.
tritici-repentis+, P. oryzae+, R. solani, S.
sclerotiorum, S. nodorum, S. tritici, T.
hamatum+, T. viride, V. inaequalis, V.
albo-atrum, V. dahliae

At-AFP1A.brassicicola, B. cinerea, F. culmorum,
F. oxysporum f.sp. lycopersici, P.

	oryzae+, V. dahliae	
Bn-AFP1	A. brassicicola+, B. cinerea, F. culmorum+, F. oxysporum f.sp. lycopersici+, P. oryzae, V. dahliae	
Bn-AFP2	A. brassicicola, B. cinerea, F. culmorum, F. oxysporum f.sp. lycopersici, P. oryzae+, V. dahliae	
Br-AFP1	A. brassicicola, B. cinerea+, F. culmorum+, F. oxysporum f.sp. lycopersici, P. oryzae+, V. dahliae+	
Br-AFP2	A. brassicicola, B. cinerea, F. culmorum, F. oxysporum f.sp. lycopersici, P. oryzae, V. dahliae	
Sa-AFP1	A. brassicicola, B. cinerea, F. culmorum, F. oxysporum f.sp. lycopersici, P. oryzae, V. dahliae	
Sa-AFP2	A. brassicicola, B. cinerea, F. culmorum, F. oxysporum f.sp. lycopersici, P. oryzae, V. dahliae	
Ah-AMP1	B. cinerea, C. sphaerospermum+, F. culmorum, L. maculans+, P. digitatum, S. tritici+, T. viride, V. albo-atrum, B. subtilis	E. coli, P. vulgaris, M. luteus, S. aureus, S. faecalis
Ct-AMP1	B. cinerea, C. sphaerospermum, F. culmorum, L. maculans, P. digitatum, S. tritici, T. viride, V. albo-atrum+, B. subtilis, S. cerevisiae	E. coli, P. vulgaris, M. luteus, S. aureus, S. faecalis
Dm-AMP1	A. brassicola, B. cinerea, C. sphaerospermum, F. culmorum, L. maculans, N. crassa, P. digitatum, S. tritici, T. viride, V. albo-atrum, B. subtilis, S. cerevisiae	E. coli, P. vulgaris, M. luteus, S. aureus, S. faecalis
Dm-AMP2	B. cinerea, C. sphaerospermum, F. culmorum, L. maculans, P. digitatum, S. tritici, T. viride, V. albo-atrum+	E. coli, P. vulgaris, M. luteus, S. aureus, S. faecalis
Hs-AFP1	A. brassicola, B. cinerea+, C.sphaerospermum, F. culmorum+, L. maculans, N. crassa, P. digitatum+, S.tritici+, T. viride+, V. albo-atrum	S. cerevisiae

SIa1	B. cinerea, C. sphaerospermum, F. culmorum, P. digitatum, T. viride	
Potato tuber pseudothionin Pth-St1	F. solani, C. michiganensis subsp. sepedonicus, Pseudomonas solanacearum, R. solanacearum	F. culmorum, T. viride
spinach leaf So-D1	C. michiganensis subsp. sepedonicus, R. solanacearum	F. culmorum, F. solani, T. viride
spinach leaf So-D2	B. maydis, C. lagenarium, F. culmorum, F. solani, C. michiganensis subsp. sepedonicus, R. solanacearum	S. nodorum, T. viride
spinach leaf So-D6	F. solani+, C. michiganensis <i>subsp.</i> sepedonicus, R. solanacearum	
spinach leaf So-D7	F. solani, C. michiganensis subsp. sepedonicus +, R. solanacearum+	
sugar beet leaf AX1	B. maydis, B. cinerea+, C. beticola, F. graminearum, E. coli+	B. subtilis, Pseudomonas phaseolicola
sugar beet leaf AX2	B. maydis, B. cinerea, C. beticola+, F. graminearum, E. coli	B. subtilis, P. phaseolicola

Thionins

	Drechslera teres, Thielaviopsis paradoxa	
barley leaf thionin		
barley seed α-		
hordothionin	F. culmorum, N. crassa	
radish storage organ		
thionin	F. culmorum	
wheat seed thionin	Pneumococcus type I and III, S. lutea, S. aureus, Streptococcus viridans, S. cerevisiae, Debaryomyces nadiformis, Endomycopsis albicans	A. niger, Rhizopus nigricans, Eberthella typhi, E. coli, Pseudomonas pyocyaneus
wheat seed thionin	S. cerevisiae	
wheat seed α -purothionin	P. solanacearum, Xanthomonas phaseoli	
wheat seed β -purothionin	P. solanacearum, X. phaseoli+	
wheat seed β -purothionin	A. brassicola, A. pisi, B. cinerea, C. lindemuthianum, F. culmorum, F.	E. carotovora

	oxysporum f.sp. pisi, N. haematococca, P. betae, P. tritici-repentis, T. hamatum, V. inaequalis, V. dahliae, B. megaterium, E. coli, P. solanacearum, S. lutaea, X. phaseoli
wheat Ta-TH α	F. culmorum, F. solani, T. viride, C. michiganensis subsp. sepedonicus, R. solanacearum

Non-specific lipid transfert Proteins (nsLTPs)

barley leaf Cw 18, Cw 20, Cw 21 and Cw 22	F. solani, C. michiganensis subsp. sepedonicus, P. solanacearum	
maize leaf Cw41	C. michiganensis subsp. sepedonicus	
maize seed Zm-nsLTP	N. haematococca, P. betae, B. megaterium	A. brassicola, A. pisi, C. lindemuthianum, F. culmorum, F. oxysporum f.sp. lycopersici, F. oxysporum f.sp. pisi, V. dahlia, Alcaligenes eutrophus, Azospirillum brasilense, A. tumefaciens, E. carotovora, E. coli, P. solanacearum, P. syringae, S. lutea
onion seed Ace-AMP1	A. brassicola+, A. pisi+, B. cinerea+, C. lindemuthianum, F. culmorum+, F. oxysporum f.sp. lycopersici+, F. oxysporum f.sp. pisi+, N. hematococca+, P. betae, P. oryzae+, P. tritici-repentis, V. dahliae+, B. megaterium+, S. lutea	A. eutrophus, A. brasilense, A. tumefaciens, E. carotovora, E. coli, P. solanacearum, P. syringae, S. lutea
radish seed Rs-nsLTP	A. brassicola, A. pisi, B. cinerea, C. lindemuthianum, F. culmorum, F. oxysporum f.sp. lycopersici, F. oxysporum f.sp. pisi, N. haematococca, P. betae, P. oryzae, T. hamatum, V. dahliae, B. megaterium	A. eutrophus, A. brasilense, A. tumefaciens, E. carotovora, E. coli, P. solanacearum, P. syringae
sugar beet leaf IWF1and IWF 2	C. beticola	
wheat seed Ta-nsLTP		A. brassicola, A. pisi, C. lindemuthianum, F. culmorum, F. oxysporum f.sp. lycopersici, F. oxysporum f.sp. pisi, N. haematococca, P. betae, V. dahliae, A. eutrophus, A. brasilense, A. tumefaciens, B.

megaterium, E. carotovora, E. coli, P. solanacearum, P. syringae, S. lutea

wheat seed ns-LTP1e

A. brassicola, A. pisi, V. dahliae

B. cinerea, F. culmorum

Knottin-like	peptides

four-o-clock seed Mj- AMP1	A. brassicola, A. pisi, B. cinerea, C. beticola, C. lindemuthianum, F. culmorum, F. F. oxysporum f.sp. lycopersici, F. oxysporum f.sp. pisi, N. haematococca, P. betae, P. tritici-repentis, P. oryzae, R. solani, V. inaequalis,V. dahliae, B. megaterium, S. lutea	E. coli, E. carotovora
four-o-clock seed Mj- AMP2	A. brassicola, A. pisi, B. cinerea, C. beticola, C. lindemuthianum, F. culmorum, F. oxysporum f.sp. lycopersici, F. oxysporum f.sp. pisi, N. haematococca, P. betae, P. tritici-repentis, P. oryzae, R. solani, V. inaequalis,V. dahliae, B. megaterium, S. lutea	E. coli, E. carotovora
<i>Phytolacca americana</i> seed PAFPs	Alternaria. tenuis, Armillaria mellea, F. graminearum, F. oxysporum, Morchelia conica, P. oryzae, T. viride	E. coli
Ib-AMPs		_
<i>Impatiens balsamina</i> seed Ib-AMP1	Alternaria longipes, B. cinerea, C. sphaerospermum, F. culmorum, P. digitatum, T. viride, V. albo-atrum, B. subtilis, M. luteus, S. aureus, S. faecalis	E. coli, P. solanacearum
Ib-AMP2	A. longipes, B. cinerea, C. sphaerospermum, F. culmorum, P. digitatum, T. viride, V. albo-atrum	E. amylovora, E. coli, P. solanacearum
Ib-AMP3	A. longipes, B. cinerea, C. sphaerospermum, F. culmorum, P. digitatum, T. viride, V. albo-atrum	
Ib-AMP4	A. longipes, B. cinerea, C. sphaerospermum, F. culmorum, P. digitatum, T. viride, V. albo-atrum, B. subtilis, M. luteus, S. aureus, S. faecalis, X. campestris, Xanthomonas	

MBP-1

maize kernel MBP-1	A. longipes, F. graminearum, F. moniliforme, S. sclerotiorum, Sclerotinia trifoliorum, C. michiganensis ssp. nebraskense, E. coli	A. flavus
2S albumins		
Arabidopsis At-2S	A. brassicola, B. cinerea, F. culmorum, F. oxysporum f.sp. lycopersici, P. oryzae, V. dahliae	
Brassica rapa Bn-2S	A. brassicola, B. cinerea, F. culmorum, F. oxysporum <i>f.sp.</i> lycopersici+, P. oryzae, V. dahliae	
Brassica napus Br-2S	A. brassicola, B. cinerea+, F. culmorum, F. oxysporum <i>f.sp</i> . lycopersici, P. oryzae, V. dahliae	
radish seed Rs-2S	A. brassicola+, A. pisi, C. lindemuthianum, F. culmorum+, F. oxysporum f.sp. pisi, N. haematococca, P. infestans, P. oryzae+,T. hamatum, V. dahliae+, B. megaterium, E. carotovora	B. cinerea, P. betae, F. oxysporum f.sp. lycopersici
Sinapis alba Sa-2S	A. brassicola, B. cinerea, F. culmorum, F. oxysporum f.sp. lycopersici+, P. oryzae, V. dahliae	
Puroindolines		
wheat seed PIN-a	A. brassicola, A. pisi, B. cinerea F. culmorum, V. dahliae	
wheat seed PIN-b	A. brassicola, A. pisi, B. cinerea F. culmorum, V. dahliae +	
Potato tuber snakin-1 (SN1)	B. maydis, B. cinerea, C. lagenarium, F. solani, C. michiganensis subsp. sepedonicus	A. flavus, R. solanacearum
<i>Engelmannia pinnatifida</i> leaf 30 kDa antifungal protein (Ep-30)	A. solani, F. oxysporum, G. graminis, P. infestans, P. megasperma, S. sclerotiorum	C. albicans

^a+ indicates the most powerful antimicrobial activity for proteins and peptides compared in the same study

Activités connues et postulées liées aux mécanismes de toxicité des protéines et peptides anti-microbiens de plantes

Tableau II. Activités connues et postulées liées aux mécanismes de toxicité des protéines et peptides

 anti-microbiens de plantes ^a (Veronese *et al.,* 2003).

Known and postulated activities	Target specificity ^b	Probable source of target specificity
Unknown	Unknown	Unknown
Hydrolysis of cell wall glucans Hydrolysis of cell wall chitin	yes	Composition of target cell wall
(Interference with chitin biosynthesis linked to the presence of chitin binding	yes	Composition of target cell wall
domain) Unknown (Interference with chitin biosynthesis linked to the presence of chitin binding	yes	Unknown
Alteration of cell membrane permeability Induction of cell wall weakening Induction of programmed cell	yes	Cell membrane components Cell wall polysaccharides and glycoproteins
Inhibition of protease activities (Inhibition of chitin byosynthesis)	yes	Unknown
Interference with protein synthesis linked to rRNA N- glycosidase activity DNAse, phospholipase and		Recognition of ribosomal or cell membrane proteins
other enzymatic activities Insertion into lipid bilayers and formation of membrane channels Vesicle fusion Alteration of cell membrane permeability and membrane potential by promoting K ⁺ efflux, Ca ²⁺ influx and movement of low molecular weight solutes Toxicity and permeabilization	yes yes	Plasma membrane sphingolipids
	Known and postulated activities Unknown Hydrolysis of cell wall glucans Hydrolysis of cell wall chitin (Interference with chitin biosynthesis linked to the presence of chitin binding domain) Unknown (Interference with chitin biosynthesis linked to the presence of chitin binding domain) Alteration of cell membrane permeability Induction of cell wall weakening Induction of programmed cell death Inhibition of protease activities (Inhibition of chitin byosynthesis) Interference with protein synthesis linked to rRNA N- glycosidase activity DNAse, phospholipase and other enzymatic activities Insertion into lipid bilayers and formation of membrane channels Vesicle fusion Alteration of cell membrane permeability and membrane potential by promoting K ⁺ efflux, Ca ²⁺ influx and movement of low molecular weight solutes Toxicity and permeabilization	Known and postulated activitiesTarget specificity bUnknownUnknownHydrolysis of cell wall glucans Hydrolysis of cell wall chitin (Interference with chitin biosynthesis linked to the presence of chitin binding domain)yesUnknownInterference with chitin biosynthesis linked to the presence of chitin binding domain)yesUnknownInterference with chitin biosynthesis linked to the presence of chitin binding domain)yesAlteration of cell membrane permeabilityyesInduction of cell wall weakeningyesInduction of programmed cell deathyesInhibition of protease activities (Inhibition of chitin byosynthesis)yesInterference with protein synthesis linked to rRNA N- glycosidase activityyesDNAse, phospholipase and other enzymatic activitiesyesInsertion into lipid bilayers and formation of membrane permeability and membrane potential by promoting K* efflux, Ca ²⁺ influx and movement of low molecular yesyes

Tableau II. (suite) Activités connues et postulées liées aux mécanismes de toxicité des protéines et peptides anti-microbiens de plantes ^a (Veronese *et al.*, 2003).

Thionins	Alteration of cell membrane permeability and membrane potential by promoting K ⁺ efflux, Ca ²⁺ influx and movement of low molecular weight solutes Formation of monovalent cation- selective ion channels Binding to nucleic acids Inhibition of cell-free protein synthesis	yes	Cell wall polysaccharides Plasma membrane components Inactivation by disulfide exchange
Non-specific Lipid Transfer Proteins (nsLTPs)	Vesicle leakage Lipid transfer between membranes	yes	Unknown, maybe linked to membrane lipid composition
2S Albumins	(Lipid mixing and membrane permeabilization caused by the interaction with acidic phospholipids)	yes	Unknown
Other antimicrobial peptides (Knottins, Puroindolines, Ib- AMPs, MBP-1, Ep- 30, Snakin)	Unknown	yes	Unknown

ANNEXE 2

Stades repères du tournesol (Prolea, 2002).

ANNEXE 3

Données numériques relatives aux essais réalisées avec la scopolétine.

Tableau 1 : valeurs calculées pour les facteurs de germination (nombre de spores germées x nombre total de spores).

Concentration	Essai 1	Essai 2	Essai 3
0	0,813953488	0,76744186	0,8
0	0,842105263	0,660194175	0,85
0,1	0,761904762	0,586206897	0,725
0,15	0,703703704	0,455696203	0,625
0,2	0,545454545	nd	nd
0,3	0,5	0,418604651	0,43902439
0,4	0,476190476	0,358974359	0,317073171

Tableau 2 : valeurs calculées pour I = longueur moyenne du tube germinatif (LMTG) x facteur de germination

Concentration	Essai 1	Essai 2	Essai 3
0	2,35503876	1,302093023	2,3333333333
0	2,211929825	1,203754045	2,164666667
0,1	1,340952381	0,715576694	1,696666667
0,15	1,003950617	0,580253165	0,75625
0,2	0,785818182	nd	nd
0,3	0,63	0,33089701	0,528343146
0,4	0,59047619	0,078395062	0,358175248

Tableau 3 : pourcentage d'inhibition des spores de *Phoma macdonaldii* par la scopolétine ((I_{Témoin}-I_{Essai})/I _{Témoin}) x 100.

((Tremoin-Tessai)/T Temoin) × 100.					
Concentration	Essai 1	Essai 2	Essai 3		
0,1	41,27604094	42,88744087	24,55906329		
0,15	56,03426655	53,68806247	66,37394398		
0,2	65,58688034	nd	nd		
0,3	72,41058315	73,59000762	76,50764137		
0,4	74,14143848	93,74302904	84,07402186		
LMTG témoin	2,283484292	1,252923534	2,249		

Tableau 4 : transformation des pourcentages d'inhibition en probits.

	Essai	1	Essa	i 2	Essai	3
Concentration	% inhibition	Probits	% inhibition	Probits	% inhibition	Probits
0,1	41,28	4,77	42,89	4,82	24,56	4,33
0,15	56,03	5,15	53,69	5,1	66,37	5,41
0,2	65,59	5,41	nd	nd	nd	nd
0,3	72,41	5,58	73,59	5,6	76,51	5,74
0,4	74,14	5,64	93,74	6,55	84,07	5,99

Les concentrations en scopolétine sont données en mmole.l-1.

Données graphiques relatives aux essais réalisées avec la scopolétine.

Equation de la droite de régression : y = 1.4491 x + 6.3081. R² = 0.9379.

Pour une valeur de probit = 5 on a log C = -0.90. La CI50 est donc égale à $10^{-0.90} = 0.13$ mM.

Equation de la droite de régression : y = 2.5857 x + 7.2917. R² = 0.8762.

Pour une valeur de probit = 5 on a log C = - 0,89. La CI50 est donc égale à 10^{-} - 0,89 = 0,13 mM.

Données graphiques relatives aux essais réalisées avec la scopolétine.

(suite)

Equation de la droite de régression : y = 2.4647 x + 7.0588. $R^2 = 0.8602$. Pour une valeur de probit = 5 on a log C = - 0.84. La CI50 est donc égale à 10^ - 0.84 = 0.14 mM. Données numériques relatives aux essais réalisées avec l'ayapine.

Effet de l'ayapine sur la germination de Phoma macdonaldii.

total ue s	pores).		
Concentration	Essai 1	Essai 2	Essai 3
0	0,85	0,86	0,83
0	0,80	0,82	0,8
0,1	0,75	0,76	0,74
0,15	0,71	0,72	0,69
0,2	0,44	0,44	0,47
0,3	0,20	0,28	0,31
0,4	nd	0,2	0,24
0,5	0,23	0,15	0,17

Tableau 5 : valeurs calculées pour les facteurs de germination (nombre de spores germées x nombre total de spores).

Tableau 6 : valeurs calculées pour I = longue	ur moyenne du tube	germinatif (LMTG) x	facteur de
germination			

Essai 1	Essai 2	Essai 3
1,59	1,58	1,64
1,34	1,44	1,46
1,13	1,12	1,14
0,77	0,70	0,76
0,41	0,36	0,44
0,24	0,22	0,27
nd	0,14	0,15
0,11	0,06	0,07
	Essai 1 1,59 1,34 1,13 0,77 0,41 0,24 nd 0,11	Essai 1Essai 21,591,581,341,441,131,120,770,700,410,360,240,22nd0,140,110,06

 Tableau 7 : pourcentage d'inhibition des spores de Phoma macdonaldii par l'ayapine

 ((Itémain Lecci)/I témain) x 100

((I Temoin-LES	((ITemoin-Tessai)/I Temoin) X 100.					
Concentration	Essai 1	Essai 2	Essai 3			
0,1	22,93	25,96	26,24			
0,15	47,62	53,55	50,94			
0,2	72,30	75,94	71,77			
0,3	83,63	85,70	82,55			
0,4	nd	90,94	90,44			
0,5	92,36	95,96	95,71			
LMTG Témoin	1,47	1,51	1,55			

	Essai 1		Essai 2		Essai 3	
Concentration	% inhibition	Probits	% inhibition	Probits	% inhibition	Probits
0,1	22,93	4,26	25,96	4,36	26,24	4,36
0,15	47,62	4,95	53,55	5,09	50,94	5,03
0,2	72,30	5,58	75,94	5,71	71,77	5,58
0,3	83,63	5,99	85,70	6,06	82,55	5,94
0,4	nd	nd	90,94	6,34	90,44	6,3
0,5	92,36	6,41	95,96	6,75	95,71	6,72

Les concentrations en ayapine sont données en mmole.l-1.

Données graphiques relatives aux essais réalisées avec l'ayapine. Effet de l'ayapine sur la germination de Phoma macdonaldii.

Equation de la droite de régression : y = 3.0891 x + 7.5057. $R^2 = 0.9598$. Pour une valeur de probit = 5 on a log C = - 0,81. La CI50 est donc égale à 10^ - 0,81 = 0,15 mM.

Equation de la droite de régression : $y = 3.248 \times +7.7455$. $R^2 = 0.977$. Pour une valeur de probit = 5 on a log C = -0,85. La CI50 est donc égale à 10^ - 0,85 = 0,14 mM. Données graphiques relatives aux essais réalisées avec l'ayapine.

Effet de l'ayapine sur la germination de *Phoma macdonaldii*. (suite)

Equation de la droite de régression : y = 3.222 x + 7.6659. R² = 0.988. Pour une valeur de probit = 5 on a log C = - 0,83.

La CI50 est donc égale à 10^{-1} - 0,83 = 0,15 mM.

Données numériques relatives aux essais réalisées avec l'ayapine.

Effet de l'ayapine sur la croissance de Phoma macdonaldii.

total de s			
Concentration	Essai 1	Essai 2	Essai 3
0	0,95	0,93	0,94
0	0,93	0,95	0,92
0,1	0,89	0,88	0,86
0,15	0,80	0,85	0,84
0,2	0,83	0,84	0,8
0,3	0,80	0,79	0,77
0,4	0,75	0,75	0,71
0,5	0,50	0,6	0,61

Tableau 9 : valeurs calculées pour les facteurs de germination (nombre de spores germées x nombre total de spores).

Tableau 10 : valeurs calculées pour I = longueur moyenne du tube germinatif (LMTG) x facteur de germination

germina			
Concentration	Essai 1	Essai 2	Essai 3
0	2,70	3,00	2,99
0	2,85	2,85	3,15
0,1	2,71	2,74	2,63
0,15	2,33	2,58	2,44
0,2	2,46	2,43	2,22
0,3	2,07	2,10	2,01
0,4	1,81	1,73	1,76
0,5	0,57	1,12	1,30

Tableau 11 : pourcentage d'inhibition des spores de *Phoma macdonaldii* par l'ayapine ((I_{Témoin}-I_{Essai})/I _{Témoin}) x 100.

Concentration	Essai 1	Essai 2	Essai 3	
0,1	2,54	6,44	14,26	
0,15	16,09	11,69	20,32	
0,2	11,54	16,99	27,73	
0,3	25,50	28,30	34,57	
0,4	34,74	41,02	42,73	
0,5	79,54	61,82	57,53	
LMTG Témoin	2,78	2,924967742	3,07	

Tableau 12 : transformation des pourcentages d'inhibition en probits.

	Essai	1	Essa	i 2	Essai	3
Concentration	% inhibition	Probits	% inhibition	Probits	% inhibition	Probits
0,1	2,54	3,12	6,44	3,48	14,26	3,93
0,15	16,09	4,01	11,69	3,81	20,32	4,16
0,2	11,54	3,82	16,99	4,05	27,73	4,41
0,3	25,50	4,33	28,30	4,42	34,57	4,6
0,4	34,74	4,61	41,02	4,77	42,73	4,81
0,5	79,54	5,81	61,82	5,31	57,53	5,19

Les concentrations en ayapine sont données en mmole.l-1.

Données graphiques relatives aux essais réalisées avec l'ayapine.

Effet de l'ayapine sur la croissance de Phoma macdonaldii.

Equation de la droite de régression : y = 3.1152 x + 6.2276. $R^2 = 0.8382$. Pour une valeur de probit = 5 on a log C = - 0,39. La CI50 est donc égale à 10^ - 0,39 = 0,41 mM.

Equation de la droite de régression : y = 2.4663 x + 5.8459. $R^2 = 0.9617$. Pour une valeur de probit = 5 on a log C = - 0,34. La CI50 est donc égale à 10^ - 0,34 = 0,46 mM.

Données graphiques relatives aux essais réalisées avec l'ayapine. Effet de l'ayapine sur la croissance de *Phoma macdonaldii*. (suite)

Equation de la droite de régression : y = 1.6792 x + 5.5647. $R^2 = 0.9661$. Pour une valeur de probit = 5 on a log C = - 0,34. La CI50 est donc égale à 10^ - 0,34 = 0,46 mM.

ableau	13 : tran	sformatio	on des po	urcentag	es d'inhi	bition en	probits.			
%	0	1	2	3	4	5	6	7	8	9
0		2.67	2.95	3.12	3.25	3.36	3.45	3.52	3.59	3.66
10	3.72	3.77	3.82	3.87	3.92	3.96	4.01	4.05	4.08	4.12
20	4.16	4.19	4.23	4.26	4.29	4.33	4.36	4.39	4.42	4.45
30	4.48	4.50	4.53	4.56	4.59	4.61	4.64	4.67	4.69	4.72
40	4.75	4.77	4.80	4.82	4.85	4.87	4.90	4.92	4.95	4.97
50	5.00	5.03	5.05	5.08	5.10	5.13	5.15	5.18	5.20	5.23
60	5.25	5.28	5.31	5.33	5.36	5.39	5.41	5.44	5.47	5.50
70	5.52	5.55	5.58	5.61	5.64	5.67	5.71	5.74	5.77	5.81
80	5.84	5.88	5.92	5.95	5.99	6.04	6.08	6.13	6.18	6.23
90	6.28	6.34	6.41	6.48	6.55	6.64	6.75	6.88	7.05	7.33
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
99	7.33	7.37	7.41	7.46	7.51	7.58	7.65	7.75	7.88	8.09

Transformation des pourcentages d'inhibition en probits.

Tableau 13 :	transformation d	les pourcentages	d'inhibition en	probits.
--------------	------------------	------------------	-----------------	----------

Transformation des concentrations en logarithme décimal.

Tableau 14 : transformation des concentrations en logarithme décimal

Concentration	LOG (C)
0,1	-1
0,15	-0,82390874
0,2	-0,69897
0,3	-0,52287875
0,4	-0,39794001
0,5	-0,30103

ANNEXE 4

Extraction d'ARNs totaux, d'après Verwoerd et al. (1989)

- Broyer le matériel végétal, en veillant à ne pas le décongeler, puis transférer dans des tubes résistant au phénol.
- Ajouter à la poudre obtenue 2.5 mL de phénol et 2.5 mL de tampon d'extraction chauds (65°C), pour environ 1 g de pétioles. Vortexer 1 min.
- Ajouter 2.5 mL de mélange chloroforme/alcool isoamylique (24 : 1) ; vortexer et transvaser rapidement la solution dans deux tubes Eppendorf.
- Centrifuger 5 min à 10 000 g, à 4°C, et prélever le surnageant en estimant son volume.
- Ajouter un volume égal de LiCl 4M, vortexer et conserver les tubes toute une nuit à 4°C.
- Centrifuger 30 min à 15 000 g, à 4°C, et jeter le surnageant. Resuspendre le culot par pipetages successifs, dans 500 μL d'eau DEPC.
- Ajouter 50 µL d'acétate de sodium 3M pH 5.6 et 1000 µL d'EtOH absolu ; mélanger par retournements.
- Placer les tubes à 80°C pendant 1 heure (ou à –20°C pendant une nuit).
- Centrifuger 30 min à 15 000 g, à 4°C, vider le surnageant.
- Laver le culot à l'EtOH 70°, puis laisser sécher les culots sous la hotte chimique, sur glace.
- Resuspendre les culots dans 50 µL d'eau DEPC.

Tampon d'extraction

Tris 1M pH 8	10 mL (100mM)
LiCl 4M	2.5 mL (100mM)
EDTA 0.5M	2 mL (10mM)
SDS 20%	5 mL (1%)
Eau DEPC q.s.p. 100 mL	80.5 mL
R.T. PCR

Traitement DNAse

- Préparer dans un Eppendorf de 200 µL
 - x µL de solution d'ARN
 - 1 μL de DNAse (1 unité) pour entre 5 et 10 μg d'ARN
 - 10 µL de réaction buffer Promega 10 X
 - H₂O DEPC qsp 100μL.
- Incuber 30 min à 37°C (thermocycleur).
- Ajouter 10 µL de solution stop Promega.
- Incuber 10 min à 65°C.

Elimination de la DNAse

- Transférer la solution dans un Eppendorf de 1.5 mL.
- Compléter avec H₂O DEPC qsp 300 μL.
- Ajouter 300 µL de Phénol/chloroforme/alcool isoamylique (25 :24 :1) mélanger.
- Centrifuger 10 min à 10 000 g, à 4°C.
- Récupérer la phase aqueuse.
- Compléter avec H₂O DEPC qsp 300 µL.
- Ajouter 300 µL de chloroforme mélanger.
- Centrifuger 10 min à 10 000 g, à 4°C.
- Estimer le volume obtenu.
- Ajouter 1/10^{ème} de volume de Na Acétate 3M, pH 5.2 et 2 volumes d'EtOH absolu.
- Incuber 2 heures minimum à –80°C.
- Centrifuger 30 min à 12 000 g, à 4°C.
- Eliminer le surnageant et laver le culot avec 500 µL d'EtOH 70°.
- Centrifuger 15 min à 12 000 g, à 4°C.

- Eliminer le surnageant et sécher le culot sur de la glace sous une hotte aspirante.
- Reprendre le culot dans 30 µL d'H₂0 DEPC.

Dosage et contrôle

- Doser au spectrophotomètre en diluant 1 μL de solution d'ARN dans 400 μL d'H2O DEPC.

D.O.260 nm x 40 x 400 = Qté d'ARN en ng/µL.

- Elèctrophorèse contrôle : gel 1.2% d'agarose dans TAE
 - 1 µg d'ARN maxi
 - 2 µL de tampon de charge 6X
 - H_2O DEPC qsp 12 μ L.
- Diluer la solution d'ARN de façon à obtenir 3 μg d'ARN par 12.5 μL d'H₂O
 DEPC, soit une concentration de 0.24 μg/μL.
- Aliquoter par 12.5 µL dans des Eppendorf de 200µL (Eppendorfs PCR).
- Stocker à –80°C.

Synthèse d'ADNc

• Préparation du kit

Sortir le kit du congélateur et décongeler les tubes en les plaçant sur de la glace. Après décongélation, vortexer brièvement chaque tube, puis centrifuger rapidement. Si plusieurs échantillons d'ARN doivent être traités, préparer un mix RT :

Pour un échantillon :	
réaction buffer 5X	4 μL
mix dNTP	1 μL
Recombinant RNAse inhibitor	0.5 μL
MMLV reverse transcriptase	1 μL
Volume total	6.5 μL

Mélanger par pipetage.

o Synthèse

Essai : 3 µg maxi d'ARN dans 12.5 µL d'H2O DEPC.

- Ajouter 1 μ L d'oligos dT (volume final 13.5 μ L).
- Chauffer le mélange à 70°C pendant 2 min (thermocycleur). •
- Replacer rapidement sur glace. ٠
- Ajouter 6.5 μ L du mix RT (volume final : 20 μ L) mélanger par pipetage. ٠
- Incuber à 42°C pendant 1 heure puis à 94°C pendant 5 min (thermocycleur).
- Ajouter 80 μ L d'H₂O DEPC (volume final 100 μ L). •

P.C.R.

• Programme PCR

- 95°C 2 min
- 95°C 30 sec -
- > 40 cycles 52°C 30 sec
- 72°C 2 min _
- 72°C 7 min
- 15°C ∞

• Composition du mix

	1 échantillon
ADN	8 μL
Tampon 10 X	10µL
MgCl2 25 mM	10 µL
DNTP 100 mM	0.2 μL
Primer 5' 100 mM	0.2 μL
Primer 3' 100 mM	0.2 μL
Taq polymérase	2 μL
Eau UHQ	69.4 μL

• Caractéristiques des gènes amplifiés :

Nom du gène amplifié	Nombre de cycles avant saturation	Température d'hybridation	Taille du produit d'amplification
Chitinase	27	60°C	339
PAL	29	60°C	200
B-glucanase	30	60°C	217
Isochorismate synthase	29	58°C	311
ACC synthase	34	58°C	214
Lipoxygénase	34	58°C	301
Protéine ribosomiale	33	60°C	400
EF1 a	30	60°C	456

Boiling - PCR

- Déposer 200 µL de LB freezing (avec ampicilline 100 mg/l) par puit.
- Ensemencer les plaques à l'aide d'un cure dents à partir des banques.
- Cultiver les bactéries durant 37 heures :
 - o à 37° C pour les M13
 - $\circ~$ à 31° C pour les triplex.
- 10 µL de culture bactérienne dans 90 µL d'eau UHQ.
- Chauffer à 95°C pendant 10 min.
- Centrifuger à 1200 g pendant 3 min.
- Récupérer 8 µL de surnageant et l'ajouter à 90 µL de mix PCR.
- Amplifier.

Programme PCR

- 95°C 2 min
- 95°C 30 sec
- 52°C 30 sec > 40 cycles
- 72°C 2 min
- 72°C 7 min
- 15°C∞

Composition du mix

	1 échantillon
ADN	8 μL
Tampon 10 X	10µL
MgCl2 25 mM	10 µL
DNTP 100 mM	0.2 μL
Primer 5' 100 mM	0.2 μL
Primer 3' 100 mM	0.2 μL
Taq polymérase	2 μL
Eau UHQ	69.4 μL

Synthèse d'ADNc radio marqué pour hybridation sur puce

Préparation du kit

 Sortir le kit du congélateur et décongeler les tubes en les plaçant sur de la glace. Après décongélation, vortexer brièvement chaque tube, puis centrifuger rapidement.

Si plusieurs échantillons d'ARN doivent être traités, préparer un mix RT :

	1 échantillon
réaction buffer 5X	8 μL
mix dNTP avec 100 fois	2 μL
moins de dCTP	
Recombinant RNAse	1 μL
inhibitor	
MMLV reverse	2 μL
transcriptase	
α P33*	$4 \ \mu L$
Volume total	17 μL

Mélanger par pipetage.

<u>Synthèse</u>

- 10 μg maximum d'ARN dans 21 μL d'H₂O DEPC de façon générale
- Ajouter 2 μ L d'oligos dT (volume final 23 μ L).
- Chauffer le mélange à 70°C pendant 2 min (thermocycleur).
- Replacer rapidement sur glace.
- Ajouter 17 μ L du mix RT (volume final : 40 μ L) mélanger par pipetage.
- Incuber à 42°C pendant 1 heure puis à 94°C pendant 5 min (thermocycleur).

Dépôt et traitement des microarrays

<u>Dépôt</u>

- Découper des membranes Hybond N+ à la taille d'une lame de verre (2.6 x 7.6 cm).
- Vaporiser de la colle spray (3M) sur le nombre adéquat de lames.
- Attendre 15 secondes.
- Déposer les membranes sur les lames de verre pré-collées.
- Ordonner les arrays sur le robot GMS. L'hygrométrie doit être maintenue entre 65 et 75%.
- Spotter en faisant 5 dépôts d'un même échantillon par spot.

Traitement des microarrays

- Décoller délicatement les membranes des lames à l'aide de pinces.
- Déposer les arrays face spottée sur le dessus sur du blotting imbibé de solution de dénaturation durant 20 minutes.
- Déposer les arrays sur du blotting imbibé de solution de neutralisation durant 20 minutes.
- Laisser sécher les arrays à l'abri de la poussière.
- Mettre au four 2 heures à 80°C.
- Crosslinker aux UV courts durant 1 min 30 sec.

Tampon de dénaturation

	1 litre	500 mL
NaOH 0.5 M	20 g	10 g
NaCl 1.5 M	87.66 g	43.83 g

Tampon de neutralisation

	1 litre	500 mL
Tris HCl, pH 7.4 1 M	121.14 g	60.57 g
NaCl 1.5 M	87.66 g	43.83 g

Synthèse d'ADNc pour Q-PCR

Préparation du kit

 Sortir le kit du congélateur et décongeler les tubes en les plaçant sur de la glace. Après décongélation, vortexer brièvement chaque tube, puis centrifuger rapidement.

Si plusieurs échantillons d'ARN doivent être traités, préparer un mix RT :

	1 échantillon
réaction buffer 5X	8 μL
mix dNTP	2 μL
Recombinant RNAse	1 μL
inhibitor	
MMLV reverse	2 μL
transcriptase	
dTT	1 μL
Volume total	14 μL

Mélanger par pipetage.

Synthèse

Essai : - 5 μ g d'ARN dans 24 μ L d'H₂O DEPC

- Ajouter 2 µL d'oligos dT (volume final 26 µL)
- Chauffer le mélange à 70°C pendant 10 min (thermocycleur)
- Replacer rapidement sur glace
- Ajouter 14 µL du mix RT (volume final : 40 µL) mélanger par pipetage
- Incuber à 42°C pendant 1 heure puis
- Ajouter 1 µL de MMLV
- Incuber à 42°C pendant à nouveau 1 heure puis à 94°C pendant 5 min (thermocycleur)

ANNEXE 5

Liste des clones sélectionnés pour la puce à ADN, et leur fonction putative

(tableau ci-après).

Accession number	Metabolic pathway	Annotation	Putative orthologue
CD846700	Fatty acid	acyl-(acyl carrier protein) thioesterase [EC:3.1.2.14]	Z36912
CD848165	Fatty acid	acetyl co-enzyme A carboxylase [EC:6.4.1.2]	At2g38040
CD849764	Fatty acid	acetyl co-enzyme A carboxylase carboxyltransferase alpha subunit family [EC:1.3.1.9]	At2g05990
CD856161	Fatty acid	3-ketoacyl-CoA thiolase [EC:2.3.1.16]	AB008854
CD856326	Fatty acid	acyl-(acyl carrier protein) thioesterase / acyl-ACP thioesterase / oleoyl-(acyl- carrier protein) hydrolase / S-acyl fatty acid synthase thioesterase [EC:1.2.1.3]	At3g25110
CD858424	Fatty acid	acetyl-CoA carboxylase, biotin carboxylase subunit (CAC2) [EC:6.3.4.14]	At5g35360
CD857760	Fatty acid	alcohol dehydrogenase class III / glutathione-dependent formaldehyde dehydrogenase [EC:1.1.1.1]	At5g43940
CD850901	Fatty acid	acetyl-CoA carboxylase, biotin carboxylase subunit (CAC2) [EC:6.3.4.14]	At5g35360
CD850990	Fatty acid	[acyl-carrier protein] S-malonyltransferase [EC:2.3.1.39]	At2g30200
CD851119	Fatty acid	acetyl-CoA carboxylase biotin carboxylase subunit (CAC2) gene [EC:6.4.1.2]	U91414
CD851804	Fatty acid	long chain acyl-CoA synthetase 5 (LACS5)	AF503755
CD851889	Fatty acid	long chain acyl-CoA synthetase 2 (LACS2) [EC:6.2.1.3	AF503752
CD852420	Fatty acid	obtusifoliol 14-demethylase (CYP51) [EC:1.14.14.1]	At1g11680
CD852966	Fatty acid	3-oxoacyl-(acyl-carrier protein) reductase, chloroplast / 3-ketoacyl-acyl carrier protein reductase[EC: 1.1.1.100]	At1g24360
CD853773	Fatty acid	3-oxoacyl-(acyl-carrier-protein) synthase I [EC:2.3.1.41]	At5g46290
CD853868	Fatty acid	alcohol dehydrogenase (ADH) [EC:1.1.1.1]	AJ251276
CD854191	Fatty acid	obtusifoliol 14-demethylase (CYP51) [EC:1.14.14.1]	At1g11680
CD854869	Fatty acid	beta 2-microglobulin [EC:1.1.1.1]	S71244
CD854927	Fatty acid	Bla-10 Adh gene for alcohol dehydrogenase, complete cds [EC:1.1.1.1]	D84242
CD855000	Fatty acid	alcohol dehydrogenase, [EC:1.1.1.1]	AJ251286
CD855187	Fatty acid	acetyl-CoA carboxylase, biotin carboxylase subunit (CAC2) [EC:6.3.4.14]	At5g35360
CX947125	Fatty acid	alcohol dehydrogenase, [EC:1.1.1.1]	At1g77120
CX947466	Fatty acid	acetyl-CoA C-acyltransferase, putative / 3-ketoacyl-CoA thiolase [EC:2.3.1.9]	At5g47720
AJ828911	Fatty acid	acetyl-CoA carboxylase beta subunit	NP_051068.1

List of the selected cDNA clones and their putative functions

AJ828896	Fatty acid	acetyl-CoA C-acyltransferase, putative / 3-ketoacyl-CoA thiolase [EC:2.3.1.9]	NM_124198
BQ970954	Fatty acid	biotin carboxyl carrier protein isoform 2 (BCCP2) [EC:6.4.1.2]	At5g15530
CD846056	Fatty acid desaturation	acyl-(acyl-carrier-protein) desaturase, putative / stearoyl-ACP desaturase, putative	At5g16240
CD850307	Fatty acid desaturation	delta 9 desaturase [EC 1.14.19.1]	D88536
CX944178	Fatty acid desaturation	omega-6 fatty acid desaturase: endoplasmic reticulum (delta-12)	BE037733
CX944898	Fatty acid desaturation	Zeta-carotene desaturase (EC 1.14.99.30)	At3g04870
CD851371	Fatty acid desaturation	omega-6 fatty acid desaturase: endoplasmic reticulum (delta-12)	BE037733
CD845977	Glycerolipid metabolism	triosephosphate isomerase [EC:5.3.1.1]	At2g21170
CD846267	Glycerolipid metabolism	1-phosphatidylinositol phosphodiesterase-related [EC: 3.1.4.3]	At4g38690
CD846561	Glycerolipid metabolism	triosephosphate isomerase [EC :5.3.1.1]	At2g21170
CD847070	Glycerolipid metabolism	CTP:phosphorylcholine cytidylyltransferase [EC: 2.7.7.15]	AB056715
CD847532	Glycerolipid metabolism	glycerol-3-phosphate acyltransferase [EC:2.3.1.15]	D00672
CD849234	Glycerolipid metabolism	phosphatidylserine d[ECarboxylase [EC:4.1.1.65]	At4g25970
CD849401	Glycerolipid metabolism	alpha-galactosidase [EC:3.2.1.22]	At3g56310
CD850021	Glycerolipid metabolism	phosphoesterase family protein [EC:3.1.4.3]	At1g07230
CD850473	Glycerolipid metabolism	CTP:phosphorylcholine cytidylyltransferase [EC: 2.7.7.15]	AB056715
CD855909	Glycerolipid metabolism	esterase/lipase/thioesterase [EC:3.1.1.3]	At5g22460
CD856071	Glycerolipid metabolism	putative beta-galactosidase [EC:3.2.1.23]	AJ270308
CD857538	Glycerolipid metabolism	alpha-galactosidase, putative [EC:3.2.1.22]	At3g56310
CD857538	Glycerolipid metabolism	galactosidase [EC:3.2.1.22]	U12926
CD858343	Glycerolipid metabolism	phospholipid/glycerol acyltransferase [EC:2.3.1.51]	At1g80950
CX944060	Glycerolipid metabolism	glycerol kinase similar to glycerol kinase (ATP:glycerol 3-phosphotransferase, Glycerokinase, GK [EC:2.7.1.30]	At1g80460
CD851727	Glycerolipid metabolism	phospholipid/glycerol acyltransferase [EC:2.3.1.51]	At4g30580
CD852553	Glycerolipid metabolism	cytosolic triose phosphate isomerase [EC:5.3.1.1]	U02949
CD853379	Glycerolipid metabolism	esterase/lipase/thioesterase [EC:3.1.1.3]	At3g44520
CD854110	Glycerolipid metabolism	glycosyltransferase family protein [EC:2.4.1]	At2g44660
CD855289	Glycerolipid metabolism	cytosolic triose phosphate isomerase [EC:5.3.1.1]	U02949
CX945878	Glycerolipid metabolism	phosphatidylserine decarboxylase [EC:4.1.1.65]	At4g16700
CX946735	Glycerolipid metabolism	triosephosphate isomerase [EC:5.3.1.1]	Z18125

CX947537	Glycerolipid metabolism	putative beta-galactosidase [EC:3.2.1.23]	AJ270298
CX947542	Glycerolipid metabolism	putative beta-galactosidase (BGAL2) [EC:3.1.1.4]	AJ238117
CX947829	Glycerolipid metabolism	putative beta-galactosidase (BGAL3) [EC:3.2.1.23]	AJ270299
CX947916	Glycerolipid metabolism	hydrolase [EC:3.1.1.3]	At5g17780
AJ542205	Glycerolipid metabolism	monogalactosyldiacylglycerol synthase [EC:2.4.1.46]	AJ000331
CD845816	Vitamin E biosynthesis	isopentenyl pyrophosphate:dimethyllallyl pyrophosphate isomerase (ipiAt1) [EC:5.3.3.2]	AF188066
CD848124	Vitamin E biosynthesis	mevalonate diphosphate d[ECarboxylase [EC:4.1.1.33]	At3g54250
CX944271	Vitamin E biosynthesis	geranylgeranyl reductase	AJ007789.1
CD852146	Vitamin E biosynthesis	gamma-tocopherol methyltransferase [EC:2.1.1.95]	At1g64970
CD852560	Vitamin E biosynthesis	UbiA prenyltransferase family protein	At3g11950
CD853656	Vitamin E biosynthesis	glutathione S-transferase [EC:2.5.1.1]	X75303
CD855411	Vitamin E biosynthesis	farnesyl pyrophosphate synthetase [EC:2.5.1.1]	X75789
CD855464	Vitamin E biosynthesis	isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IPP1) [EC5.3.3.2]	U47324
CX946795	Vitamin E biosynthesis	dimethyl allyltrans transferase/geranyl transtransferase [EC:2.5.1.1]	At5g47770
AJ437873	Vitamin E biosynthesis	isopentenyl pyrophosphate:dimethyllallyl pyrophosphate isomerase (ipiAt1) [EC5.3.3.2]	AF188066
AJ539886	Vitamin E biosynthesis	dimethyl allyltrans transferase/geranyl transtransferase [EC:2.5.1.1]	At5g47770
CD850751	Amino acid metabolism	glutathione peroxidase [EC:1.11.1.9]	At2g31570
CD845620	Amino acid metabolism	tRNA synthetase class II (G, H, P and S) family protein [EC:6.1.1.15]	At5g52520
CD845686	Amino acid metabolism	glutamate:glyoxylate aminotransferase 2 (GGT2) [EC:2.6.1.2]	At1g70580
CD845693	Amino acid metabolism	monooxygenase family protein [EC:1.14.13]	At3g24200
CD845722	Amino acid metabolism	catalase 2 [EC:1.11.1.6]	At4g35090
CD845840	Amino acid metabolism	dimethylmenaquinone methyltransferase [EC:2.1.1]	At3g02770
CD845949	Amino acid metabolism	dehydroascorbate reductase [EC:6.1.1.9]	At5g16710
CD846028	Amino acid metabolism	acetolactate synthase, chloroplast / acetohydroxy-acid synthase (ALS) [EC:2.2.1.6]	At3g48560
CD846051	Amino acid metabolism	alanine aminotransferase (ALAAT2) [EC:2.6.1.2]	At1g72330
CD846080	Amino acid metabolism	peroxidase ATP26a [EC:1.11.1.7]	At5g40150
CD846261	Amino acid metabolism	glycine dehydrogenase [EC:1.4.4.2]	At2g26080
CD846315	Amino acid metabolism	catalase 2 [EC:1.11.1.6]	At4g35090

CD846432	Amino acid metabolism	S-adenosylmethionine synthetase 1 (SAM1) [EC:2.5.1.6]	At2g36880
CD846465	Amino acid metabolism	glutamate:glyoxylate aminotransferase 2 (GGT2) [EC:2.6.1.2]	At1g70580
CD846484	Amino acid metabolism	phenylalanine ammonia-lyase 2 (PAL2) [EC:4.3.1.5]	At3g53260
CD846639	Amino acid metabolism	aminomethyltransferase [EC:2.1.2.10]	At1g11860
CD846668	Amino acid metabolism	glycine hydroxymethyltransferase / serine hydroxymethyltransferase /	At4g37930
		serine/threonine aldolase [EC:2.1.2.1]	
CD846760	Amino acid metabolism	threonine aldolase [EC:4.1.2]	At3g04520
CD846763	Amino acid metabolism	glutathione S-transferase [EC:2.5.1.18]	At1g02920
CD846768	Amino acid metabolism	peroxidase ATP26a [EC:1.11.1.7]	At1g05240
CD846782	Amino acid metabolism	glutamine synthetase (GS2) [EC:6.3.1.2]	At5g35630
CD846787	Amino acid metabolism	seryl-tRNA synthetase / serinetRNA ligase [EC:6.1.1.11]	At5g27470
CD846861	Amino acid metabolism	putative / NADP+ isocitrate dehydrogenase [EC:1.1.1.42]	At5g14590
CD84692	Amino acid metabolism	serine-glyoxylate aminotransferase [EC:2.6.1.45]	At2g13360
CD847018	Amino acid metabolism	glutamate decarboxylase 1 (GAD 1) [EC:4.1.1.15]	At5g17330
CD847313	Amino acid metabolism	tRNA synthetase class I (I, L, M and V) [EC:6.1.1.5]	At5g49030
CD847416	Amino acid metabolism	glutamyl-tRNA reductase 2 / GluTR (HEMA2) [EC:1.2.1]	At1g09940
CD847556	Amino acid metabolism	S-adenosylmethionine synthetase 1 (SAM1) [EC:2.5.1.6]	At1g02500
CX943627	Amino acid metabolism	threonyl-tRNA synthetase / threoninetRNA ligase (THRRS) [EC:6.1.1.3]	At5g26830
CD848079	Amino acid metabolism	glycine hydroxymethyltransferase / serine hydroxymethyltransferase /	At4g13930
		serine/threonine aldolase [EC:2.1.2.1]	
CD848269	Amino acid metabolism	tryptophan synthase, beta subunit 2 (TSB2) [EC:4.2.1.20]	At4g27070
CD848294	Amino acid metabolism	prephenate dehydratase [EC:4.2.1.51]	At1g11790
CD848529	Amino acid metabolism	S-adenosylmethionine synthetase [EC:2.5.1.6]	At2g36880
CD848750	Amino acid metabolism	carbon-nitrogen hydrolase [EC:6.3.5.1]	At1g55090
CD848872	Amino acid metabolism	betaine aldehyde dehydrogenase [EC:1.2.1.8]	At3g48170
CD848888	Amino acid metabolism	glutathione peroxidase [EC:1.11.1.9]	At4g11600
CD848973	Amino acid metabolism	glutathione peroxidase [EC:1.11.1.9]	At2g31570
CX943746	Amino acid metabolism	dimethylmenaquinone methyltransferase [EC:2.1.1]	At3g02770
CD849117	Amino acid metabolism	tRNA synthetase class I (W and Y) [EC:6.1.1.2]	At3g04600
CD849150	Amino acid metabolism	phenylalanine ammonia-lyase 2 (PAL2) [EC:4.3.1.5]	At3g53260

CD849207	Amino acid metabolism	glycine hydroxymethyltransferase / serine hydroxymethyltransferase / serine/threonine aldolase [EC:2.1.2.1]	At4g13930
CD849243	Amino acid metabolism	arginyl-tRNA synthetase [EC:6.1.1.19]	At4g26300
CD849333	Amino acid metabolism	UbiE/COQ5 methyltransferase family protein, similar to 2-hexaprenyl-1,4- naphthoquinone [EC:2.1.1]	At1g23360
CD849703	Amino acid metabolism	peptidase M1 family protein [EC:3.4.11.2]	At1g63770
CD849973	Amino acid metabolism	dihydrodipicolinate reductase [EC:1.3.1.26]	At5g52100
CD850377	Amino acid metabolism	tRNA synthetase class II (D, K and N) [EC:6.1.1.6]	At3g13490
CD850477	Amino acid metabolism	cysteine synthase / O-acetylserine (thiol)-lyase / O-acetylserine sulfhydrylase (OAS1) [EC:2.5.1.47]	At4g14880
CD850628	Amino acid metabolism	cysteine synthase / O-acetylserine (thiol)-lyase / O-acetylserine sulfhydrylase (OAS1) [EC:2.5.1.47]	At3g59760
CD855634	Amino acid metabolism	pyrroline-5-carboxylate reductase	At1g13440
CD855701	Amino acid metabolism	peroxidase, putative, identical to peroxidase ATP23a [EC:1.11.1.7]	At1g68850
CD855846	Amino acid metabolism	S-adenosylmethionine synthetase 1 (SAM1), [EC:2.5.1.6]	At1g02500
CD856236	Amino acid metabolism	betaine aldehyde dehydrogenase [EC:1.2.1.8]	At3g48170
CD856273	Amino acid metabolism	IAA-amino acid hydrolase 1 (ILR1) [EC:3.5.1]	At3g02875
CD856300	Amino acid metabolism	putative (NAD+) aldehyde dehydrogenase [EC:1.2.1.3]	At3g48000
CD857475	Amino acid metabolism	anthranilate synthase - alpha subunit [EC:4.1.3.27]	At2g29690
CD857508	Amino acid metabolism	threonyl-tRNA synthetase / threoninetRNA ligase (THRRS) [EC:6.1.1.3]	At5g26830
CD857533	Amino acid metabolism	indole-3-glycerol phosphate synthase [EC:4.1.1.48]	At5g48220
CD857614	Amino acid metabolism	peroxidase [EC:1.11.1.7]	At1g05240
CD857703	Amino acid metabolism	adenylosuccinate lyase [EC:4.3.2.2]	At1g36280
CD858165	Amino acid metabolism	aminotransferase class I and II family protein [EC:2.6.1]	At1g77670
CD858207	Amino acid metabolism	aminoacyl-t-RNA synthetase [EC:6.1.1.14]	At3g48110
CD858233	Amino acid metabolism	AGT1 encodes peroxisomal alanine : glyoxylate aminotransferase. It is involved in photorespiration [EC:2.6.1.45]	At2g13360
CD858272	Amino acid metabolism	adenosylmethionine decarboxylase family protein [EC:4.1.1.50]	At3g02470
CD858321	Amino acid metabolism	glycine hydroxymethyltransferase [EC:2.1.2.1]	At4g13930
CD858388	Amino acid metabolism	ketol-acid reductoisomerase [EC:1.1.1.86]	At3g58610
CD857392	Amino acid metabolism	shikimate kinase [EC:2.7.1.71]	At2g21940

CD856858	Amino acid metabolism	cystathionine gamma-synthase, chloroplast / O-succinylhomoserine (Thiol)-lyase (CGS) [EC:2.5.1.48]	e At3g01120
CD857829	Amino acid metabolism	sulfate adenylyltransferase 3 / ATP-sulfurylase 3 (APS3) [EC:2.7.7.4]	At4g14680
CD857724	Amino acid metabolism	GMP synthase (glutamine-hydrolyzing), putative / glutamine amidotransferase [EC:6.3.5.2]	At1g63660
CD857753	Amino acid metabolism	nitrilase 4 (NIT4) [EC:3.5.5.1]	At5g22300
CX944011	Amino acid metabolism	glutamine synthetase (GS1) [EC:6.3.1.2]	At1g48470
CX944182	Amino acid metabolism	glycine dehydrogenase [EC:1.4.4.2]	At4g33010
CX944493	Amino acid metabolism	S-adenosylmethionine synthetase 1 (SAM1) [EC:2.5.1.6]	At1g02500
CX944573	Amino acid metabolism	sulfite reductase / ferredoxin (SIR) [EC:1.8.7.1]	At5g04590
CX944711	Amino acid metabolism	catalase 2 [EC:1.11.1.6]	At4g35090
CX944773	Amino acid metabolism	dihydrolipoamide dehydrogenase 1 [EC:1.8.1.4]	At3g16950
CX944811	Amino acid metabolism	sulfate adenylyltransferase, ATP sulfurylase [EC:2.7.7.4]	At5g43780
CX944830	Amino acid metabolism	pyruvate dehydrogenase E1 component beta subunit [EC:1.2.4.1]	At1g30120
CX944987	Amino acid metabolism	L-lactate dehydrogenase [EC:1.1.1.27]	At4g17260
CD850818	Amino acid metabolism	dehydratase [EC:4.2.1.9]	At3g23940
CD850822	Amino acid metabolism	enolase [EC:4.2.1.11]	At2g36530
CD850842	Amino acid metabolism	lysyl-tRNA synthetase [EC:6.1.1.6]	At3g11710
CD850911	Amino acid metabolism	alanine aminotransferase (ALAAT2) [EC:2.6.1.2]	At1g72330
CD850944	Amino acid metabolism	mRNA for Aspartate aminotransferase 1 [EC:2.6.1.1]	At2g30970
CD850946	Amino acid metabolism	glycosyl hydrolase family 1 putativebeta-glucosidase[EC:3.2.1.147]	At2g44460
CD850959	Amino acid metabolism	methioninetRNA ligase [EC:6.1.1.10]	At4g13780
CD851074	Amino acid metabolism	aspartate aminotransferase, chloroplast / transaminase A (ASP3) [EC:2.6.1.1]	At5g11520
CD851456	Amino acid metabolism	adenosylmethionine decarboxylase [EC:4.1.1.50]	At3g02470
CD851564	Amino acid metabolism	adenylosuccinate synthetase (ADSS) [EC:6.3.4.4]	At3g57610
CD851608	Amino acid metabolism	glutamine synthetase (GS1) [EC:6.3.1.2]	At3g17820
CD851646	Amino acid metabolism	mRNA for Aspartate aminotransferase 1 [EC:2.6.1.1]	At2g30970
CD851699	Amino acid metabolism	branched-chain amino acid aminotransferase 1 / branched-chain amino acid	At1g10060
		transaminase 1 (BCAT1) [EC:2.6.1.42]	
CD851830	Amino acid metabolism	arginyl-tRNA synthetase [EC:6.1.1.19]	At4g26300
CD852005	Amino acid metabolism	dihydrolipoamide dehydrogenase 1 [EC:1.8.1.4]	At3g16950

CD852443	Amino acid metabolism	sulfite reductase / ferredoxin (SIR) [EC:1.8.7.1]	At5g04590
CD852539	Amino acid metabolism	phosphoserine aminotransferase [EC:2.6.1.52]	At2g17630
CD852550	Amino acid metabolism	e1 alpha subunit of the pyruvate dehydrogenase complex (PDC) [EC:1.2.4.1]	At1g59900
CD852681	Amino acid metabolism	tRNA synthetase beta subunit phenylalanyl-tRNA synthetase beta chain	At1g72550
		[EC:6.1.1.20]	
CD852716	Amino acid metabolism	aminoacyl-t-RNA synthetase [EC:6.1.1.14]	At3g48110
CD852942	Amino acid metabolism	alanine aminotransferase (ALAAT2) [EC:2.6.1.2]	At1g72330
CD852947	Amino acid metabolism	pyruvate dehydrogenase E1 component beta subunit [EC:1.2.4.1]	At5g50850
CD852952	Amino acid metabolism	ornithine carbamoyltransferase, chloroplast [EC:2.1.3.3]	At1g75330
CD853116	Amino acid metabolism	arginine decarboxylase (ARGdc) [EC:4.1.1.19]	At2g16500
CD853185	Amino acid metabolism	aminotransferase class I and II [EC:2.6.1.1]	At2g22250
CD853478	Amino acid metabolism	spermidine synthase 2 (SPDSYN2) [EC:2.5.1.16]	At1g70310
CD853803	Amino acid metabolism	glycyl-tRNA synthetase / glycinetRNA ligase [EC:6.1.1.14]	At1g29880
CD853883	Amino acid metabolism	aminotransferase class I and II [EC:2.6.1.1]	At4g33680
CD853963	Amino acid metabolism	catalase 2 [EC:1.11.1.6]	At4g35090
CD854112	Amino acid metabolism	isocitrate dehydrogenase, putative [EC:1.1.1.42]	At1g54340
CD854278	Amino acid metabolism	isocitrate dehydrogenase, putative [EC:1.1.1.42]	At1g65930
CD854301	Amino acid metabolism	carbamoyl-phosphate synthase (glutamine-hydrolyzing) (CARA) [EC:6.3.5.5]	At3g27740
CD854312	Amino acid metabolism	DNA (cytosine-5-)-methyltransferase [EC:2.1.1.37]	At4g08990
CD854513	Amino acid metabolism	glucosaminefructose-6-phosphate aminotransferase (isomerizing), putative	At3g24090
		[EC:2.6.1.16]	
CD854632	Amino acid metabolism	aspartate aminotransferase, chloroplast / transaminase A (ASP5) (AAT1)	At4g31990
		[EC:2.6.1.1]	
CD855061	Amino acid metabolism	aminotransferase [EC:2.6.1.5]	At4g28420
CD855099	Amino acid metabolism	pyruvate dehydrogenase E1 component alpha subunit, chloroplast [EC:1.2.4.1]	At1g01090
CX945394	Amino acid metabolism	glutathione S-transferase (103-1A) [EC:2.5.1.18]	At3g43800
CD855351	Amino acid metabolism	glutamate dehydrogenase 1 (GDH1) [EC:1.4.1.3]	At5g18170
CD855378	Amino acid metabolism	aspartyl-tRNA synthetase, putative [EC6.1.1.12]	At4g31180
CD855556	Amino acid metabolism	adenosylmethionine decarboxylase [EC:4.1.1.50]	At3g02470
CX945859	Amino acid metabolism	isoleucyl-tRNA synthetase [EC:6.1.1.5]	At4g10320
CX946030	Amino acid metabolism	glutathione synthetase (GSH2) [EC:6.3.2.3]	At5g27380

CX946265	Amino acid metabolism	aminotransferase [EC:2.6.1.5]	At5g53970
CX946267	Amino acid metabolism	encodes a bifunctional protein that has phosphoribosyl-ATP	At1g31860
		pyrophosphohydrolase (PRA-PH) and phosphoribosyl-AMP cyclohydrolase	
		(PRA-CH) activities [EC:3.5.4.19]	
CX946481	Amino acid metabolism	mRNA for Aspartate aminotransferase 1 [EC:2.6.1.1]	At2g30970
CX946554	Amino acid metabolism	dihydrolipoamide dehydrogenase 1 [EC:1.8.1.4]	At3g16950
CX946615	Amino acid metabolism	enolase [EC:4.2.1.11]	At2g36530
CX946738	Amino acid metabolism	aldehyde dehydrogenase [EC:1.2.1]	At1g54100
CX946769	Amino acid metabolism	2-oxoglutarate dehydrogenase E1 component [EC:1.2.4.2]	At5g65750
CX946860	Amino acid metabolism	histidyl-tRNA synthetase [EC:6.1.1.21]	At3g02760
CX946890	Amino acid metabolism	methyltetrahydropteroyltriglutamatehomocysteine methyltransferase	At5g17920
CV047027	A mine agid metabolism	[EC.2.1.1.14]	A +2~27740
CX947037	Amino acid metabolism	tPNA synthesis class I (L. J. M and V) [EC:6.1.1.4]	At3g27740
CX947107	Amino acid metabolism	E mathedratere class I (I, E, M and V) [EC.0.1.1.4]	At1g09020
CX947266	Amino acid metabolism	[EC:2.1.1.14]	At3g03780
CX947269	Amino acid metabolism	aminotransferase class I and II [EC:2.6.1.1]	At4g33680
CX947270	Amino acid metabolism	arginosuccinate synthase [EC:6.3.4.5]	At4g24830
CX947292	Amino acid metabolism	succinate-semialdehyde dehydrogenase (SSADH1) [EC:1.2.1.16]	At1g79440
CX947297	Amino acid metabolism	adenosylhomocysteinase / S-adenosyl-L-homocysteine hydrolase [EC:3.3.1.1]	At4g13940
CX947380	Amino acid metabolism	glutamine synthetase (GS1) [EC:6.3.1.2]	At3g17820
CX947586	Amino acid metabolism	steroid sulfotransferase [EC:2.8.2]	At2g03760
CX947646	Amino acid metabolism	glucose-6-phosphate 1-dehydrogenase [EC:1.1.1.49]	At3g27300
CX947703	Amino acid metabolism	aspartate kinase [EC:2.7.2.4]	At5g13280
CX947911	Amino acid metabolism	pyruvate dehydrogenase E1 component alpha subunit [EC:1.2.4.1]	At1g01090
CX947987	Amino acid metabolism	2,3-biphosphoglycerate-independent phosphoglycerate mutase [EC:4.1.1]	At4g09520
CX947993	Amino acid metabolism	aspartate aminotransferase, chloroplast / transaminase A (ASP5) (AAT1) [EC:2.6.1.1]	At5g11520
CX948065	Amino acid metabolism	dihydrodipicolinate synthase 1 (DHDPS1) [EC:4.2.1.52]	At3g60880
AJ828446	Amino acid metabolism	pyrroline-5-carboxylate reductase [EC:1.5.1.2]	At5g14800
AJ828956	Amino acid metabolism	aminotransferase class I and II [EC:2.6.1]	At1g77670

AJ829054	Amino acid metabolism	aminotransferase class I and II [EC:4.3.2.2]	At4g18440
AJ828456	Amino acid metabolism	histidyl-tRNA synthetase [EC:6.1.1.21]	At3g02760
AJ828735	Amino acid metabolism	glycine hydroxymethyltransferase [EC:2.1.2.1]	At4g32520
AJ828782	Amino acid metabolism	cysteine synthase, mitochondrial [EC:2.5.1.47]	At3g59760
AJ828957	Amino acid metabolism	threonine synthase, chloroplast [EC:4.2.3.1]	At4g29840
AJ829036	Amino acid metabolism	isoleucyl-tRNA synthetase [EC:6.1.1.5]	At4g10320
AJ829012	Amino acid metabolism	cysteine synthase, mitochondrial [EC:2.5.1.47]	At3g59760
AJ828383	Amino acid metabolism	aspartate aminotransferase, cytoplasmic isozyme 1 / transaminase A (ASP2) [EC:2.6.1.1]	At5g19550
AJ829063	Amino acid metabolism	delta 1-pyrroline-5-carboxylate synthetase B / P5CS B (P5CS2) [EC:2.7.2.11, 1.2.1.41]	At3g55610
AJ828607	Amino acid metabolism	glycosyl hydrolase family 1 [EC:3.2.1.21]	At3g18080
AJ828617	Amino acid metabolism	dihydrolipoamide dehydrogenase 1, plastidic [EC:1.8.1.4]	At3g16950
AJ828717	Amino acid metabolism	pyruvate dehydrogenase E1 component beta subunit [EC:1.2.4.1]	At1g30120
AJ829064	Amino acid metabolism	transketolase family protein, similar to SP O66113 Pyruvate dehydrogenase E1 component, beta subunit [EC:1.2.4.1]	At2g34590
AJ828819	Amino acid metabolism	argininosuccinate lyase [EC:4.3.2.1]	At5g10920
AJ828669	Amino acid metabolism	argininosuccinate lyase [EC:4.3.2.1]	At5g10920
AJ828600	Amino acid metabolism	glutamate-cysteine ligase / gamma-glutamylcysteine synthetase (GSH1) [EC:6.3.2.2]	At4g23100
AJ829008	Amino acid metabolism	D-3-phosphoglycerate dehydrogenase [EC:1.1.1.95]	At4g34200
AJ829010	Amino acid metabolism	delta 1-pyrroline-5-carboxylate synthetase B / P5CS B (P5CS2) [EC:2.7.2.11, 1.2.1.41]	At3g55610
AJ412633	Amino acid metabolism	arginine decarboxylase 2 [EC:4.1.1.19]	At4g34710
AJ539742	Amino acid metabolism	sulfite reductase / ferredoxin (SIR) [EC:1.8.7.1]	At5g04590
AJ539932.	Amino acid metabolism	glutathione S-transferase (103-1A) [EC:2.5.1.18]	At2g29490
AJ540068	Amino acid metabolism	hydantoinase/ oxoprolinase like protein [EC:3.5.2.9]	At5g37830
AJ542245	Amino acid metabolism	trans-cinnamate 4-monooxygenase / cinnamic acid 4-hydroxylase (C4H) (CA4H) / cytochrome P450 [EC:1.14.13.11]	At2g30490
AJ542342	Amino acid metabolism	asparagine synthetase (ASN3) [EC:6.3.5.4]	At5g10240
AJ541175	Amino acid metabolism	glutathione S-transferase [EC:2.5.1.18]	At3g09270

AJ541258	Amino acid metabolism	2-dehydro-3-deoxyphosphoheptonate aldolase, putative / 3-deoxy-D-arabino- heptulosonate 7-phosphate synthase [EC:2.5.1.54]	At1g22410
CD852375	Carbohydrate metabolism	mannose 6-phosphate reductase	At2g21250
CD847396	Carbohydrate metabolism	glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12]	At1g12900
CD847576	Carbohydrate metabolism	glyceraldehyde-3-phosphate dehydrogenase B [EC:1.2.1.12]	At1g42970
CD848053	Carbohydrate metabolism	glyceraldehyde-3-phosphate dehydrogenase B [EC:1.2.1.12]	At1g42970
CD848087	Carbohydrate metabolism	glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12]	At1g12900
CD849972	Carbohydrate metabolism	glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12]	At1g13440
CD856527	Carbohydrate metabolism	glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12]	At1g13440
CD851189	Carbohydrate metabolism	glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12]	At1g13440
CD851952	Carbohydrate metabolism	glyceraldehyde-3-phosphate dehydrogenase B [EC:1.2.1.12]	At3g04120
CD852523	Carbohydrate metabolism	glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12]	At1g16300
CD852772	Carbohydrate metabolism	glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12]	At1g13440
CX946589	Carbohydrate metabolism	glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12]	At1g13440
CX947244	Carbohydrate metabolism	glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12]	At1g13440
CX947541	Carbohydrate metabolism	glyceraldehyde-3-phosphate dehydrogenase B [EC:1.2.1.12]	At3g04120
CD845899	Carbohydrate metabolism	fructose-bisphosphate aldolase [EC4.1.2.13]	At4g38970
CD846315	Carbohydrate metabolism	fructose-bisphosphate aldolase [EC4.1.2.13]	At2g21330
CD846508	Carbohydrate metabolism	(S)-2-hydroxy-acid oxidase, peroxisomal [EC1.1.3.15]	At3g14415
CD846746	Carbohydrate metabolism	hexokinase 2 (HXK2) [EC2.7.1.1]	At2g19860
CD847324	Carbohydrate metabolism	fructose-bisphosphate aldolase [EC4.1.2.13]	At2g21330
CD847368	Carbohydrate metabolism	fructose-bisphosphate aldolase [EC4.1.2.13]	At2g21330
CD847607	Carbohydrate metabolism	ribose 5-phosphate isomerase-related [EC:5.3.1.6]	At3g04790
CD847687	Carbohydrate metabolism	ribulose bisphosphate carboxylase small chain 2B / RuBisCO small subunit 2B [EC:4.1.1.39]	At5g38420
CD848030	Carbohydrate metabolism	malate dehydrogenase, cytosolic [EC:1.1.1.37]	At1g04410
CD848052	Carbohydrate metabolism	fructose-bisphosphate aldolase [EC4.1.2.13]	At4g38970
CD848306	Carbohydrate metabolism	eukaryotic phosphomannomutase family protein [EC:5.4.2.8]	At2g45790
CD848418	Carbohydrate metabolism	fructose-1,6-bisphosphatase [EC:3.1.3.11]	At1g43670
CD849007	Carbohydrate metabolism	2-oxoacid dehydrogenase family protein [EC:2.3.1.61]	At5g55070
CD849303	Carbohydrate metabolism	phosphofructokinase family protein [EC:2.7.1.90]	At4g32840

CD849401	Carbohydrate metabolism	cytochrome P450 [EC:1.4]	At1g01190
CD849747	Carbohydrate metabolism	pyrophosphatefructose-6-phosphate 1-phosphotransferase beta subunit [EC:2.7.1.90]	At4g04040
CD849988	Carbohydrate metabolism	fructose-bisphosphate aldolase [EC4.1.2.13]	At3g52930
CD849992	Carbohydrate metabolism	Encodes a cytosolic ascorbate peroxidase. Ascorbate peroxidases scavenge hydrogen peroxide in the cytosol and chloroplasts of plants [EC:1.11.1.11]	At1g07890
CD850250	Carbohydrate metabolism	malate dehydrogenase [EC:1.1.1.37]	At1g04410
CD850436	Carbohydrate metabolism	aldose 1-epimerase family protein [EC:5.1.3.3.]	At3g17940
CD850470	Carbohydrate metabolism	GDP-mannose pyrophosphorylase (GMP1) [EC:2.7.7.22]	At2g39770
CD855659	Carbohydrate metabolism	2,3-biphosphoglycerate-independent phosphoglycerate mutase [EC:5.4.2.1]	At3g08590
CD855691	Carbohydrate metabolism	2,3-biphosphoglycerate-independent phosphoglycerate mutase [EC:5.4.2.1]	At3g50520
CD855847	Carbohydrate metabolism	citrate synthase, glyoxysomal [EC:2.3.3.1]	At3g58750
CD855884	Carbohydrate metabolism	phosphomannose isomerase [EC:5.3.1.8]	At1g67070
CD855910	Carbohydrate metabolism	glucosamine/galactosamine-6-phosphate isomerase family protein [EC:3.1.1.31]	At1g13700
CD856042	Carbohydrate metabolism	phosphofructokinase family protein [EC:2.7.1.90]	At4g32840
CD857464	Carbohydrate metabolism	malate synthase [EC:2.3.3.9]	At5g03860
CD857465	Carbohydrate metabolism	pyruvate phosphate dikinase family protein [EC:2.7.9.1]	At4g15530
CD857473	Carbohydrate metabolism	phosphoglucomutase, cytoplasmic [EC:5.4.2.2.]	At1g23190
CD857486	Carbohydrate metabolism	L-ascorbate peroxidase, chloroplast [EC:1.11.1.11]	At4g09010
CD857618	Carbohydrate metabolism	alpha-glucosidase 1 (AGLU1) [EC:3.2.1.20]	At5g11720
CD858224	Carbohydrate metabolism	encodes a microbody NAD-dependent malate dehydrogenase [EC:1.1.1.37]	At5g09660
CD858300	Carbohydrate metabolism	ribose-phosphate pyrophosphokinase [EC:2.7.6.1]	At2g44530
CD858336	Carbohydrate metabolism	isocitrate lyase [EC:4.1.3.1]	At3g21720
CD858374	Carbohydrate metabolism	isocitrate lyase [EC:4.1.3.1]	At3g21720
CD858415	Carbohydrate metabolism	transketolase [EC:2.2.1.1]	At2g45290
CD858423	Carbohydrate metabolism	malate synthase [EC:2.3.3.9]	At5g03860
CD858471	Carbohydrate metabolism	beta-fructosidase (BFRUCT3) / beta-fructofuranosidase / invertase, vacuolar [EC:3.2.1.26]	At1g62660
CD857225	Carbohydrate metabolism	putative methylmalonate-semi aldehyde dehydrogenase 2 [EC:1.2.1.27]	At2g14170
CD856587	Carbohydrate metabolism	pectinesterase family protein [EC:3.1.1.11]	At3g47400
CD858024	Carbohydrate metabolism	fructose-bisphosphate aldolase [EC4.1.2.13]	At2g21330

CD858124	Carbohydrate metabolism	glucose-6-phosphate isomerase [EC:5.3.1.9]	At4g24620
CD857738	Carbohydrate metabolism	malate oxidoreductase [EC:1.1.1.40]	At5g25880
CD857758	Carbohydrate metabolism	(S)-2-hydroxy-acid oxidase, peroxisomal [EC:1.1.3.15]	At3g14415
CD857771	Carbohydrate metabolism	aconitate hydratase, cytoplasmic [EC:4.2.1.3]	At2g05710
CX944100	Carbohydrate metabolism	isocitrate dehydrogenase [EC:1.1.1.41]	At5g03290
CX944296	Carbohydrate metabolism	ribulose-phosphate 3-epimerase [EC:5.1.3.1]	At5g61410
CX944576	Carbohydrate metabolism	dihydrolipoamide S-acetyltransferase [EC:2.3.1.12]	At3g13930
CX944715	Carbohydrate metabolism	fructose-1,6-bisphosphatase [EC:3.1.3.11]	At3g54050
CX944848	Carbohydrate metabolism	malate synthase [EC:2.3.3.9]	At5g03860
CX944968	Carbohydrate metabolism	tetrahydrofolate dehydrogenase/cyclohydrolase [EC:3.5.4.9 and EC:1.5.1.5]	At3g12290
CD850807	Carbohydrate metabolism	malate dehydrogenase (NAD), mitochondrial [EC:1.1.1.37]	At1g53240
CD850867	Carbohydrate metabolism	fructose-bisphosphate aldolase [EC4.1.2.13]	At2g01140
CD851029	Carbohydrate metabolism	2,3-biphosphoglycerate-independent phosphoglycerate mutase [EC:5.4.2.1]	At1g09780
CD851319	Carbohydrate metabolism	hydroxyacylglutathione hydrolase, mitochondrial / glyoxalase II (GLX2-1) [EC:3.1.2.6]	At2g43430
CD851543	Carbohydrate metabolism	lactoylglutathione lyase [EC:4.4.1.5]	At1g08110
CD851721	Carbohydrate metabolism	L-ascorbate peroxidase 1, cytosolic (APX1) [EC:1.11.1.11]	At1g07890
CD851965	Carbohydrate metabolism	fructose-bisphosphate aldolase [EC4.1.2.13]	At3g52930
CD852140	Carbohydrate metabolism	acetyl-CoA synthetase [EC:6.2.1.1.]	At5g36880
CD852202	Carbohydrate metabolism	hydroxyacylglutathione hydrolase, cytoplasmic / glyoxalase II (GLX2-2) [EC:3.1.2.6]	At3g10850
CD852430	Carbohydrate metabolism	isocitrate dehydrogenase subunit 1 [EC:1.1.1.41]	At4g35260
CD852589	Carbohydrate metabolism	L-ascorbate peroxidase 1, cytosolic (APX1) [EC:1.11.1.11]	At1g07890
CD852614	Carbohydrate metabolism	succinyl-CoA ligase (GDP-forming) alpha-chain, mitochondrial [EC:6.2.1.4]	At5g08300
CD853144	Carbohydrate metabolism	pfkB-type carbohydrate kinase family protein [EC:2.7.1.4]	At3g59480
CD853267	Carbohydrate metabolism	pyruvate decarboxylase [EC:4.1.1.1]	At5g01320
CD853682	Carbohydrate metabolism	ribulose-phosphate 3-epimerase, cytosolic [EC:5.1.3.1]	At1g63290
CD853988	Carbohydrate metabolism	alcohol dehydrogenase class III / glutathione-dependent formaldehyde	At5g43940
		dehydrogenase / GSH-FDH (ADHIII) [EC::1.1.1.1 and 1.2.1.1]	
CD854322	Carbohydrate metabolism	cytochrome P450 [EC:1.4]	At5g57220
CD854555	Carbohydrate metabolism	pyruvate kinase [EC:2.7.1.40]	At3g52990

CD855025	Carbohydrate metabolism	phosphoglycerate kinase [EC:2.7.2.3]	At1g79550
CX946496	Carbohydrate metabolism	2,3-biphosphoglycerate-independent phosphoglycerate mutase[EC:5.4.2.1]	At1g09780
CX946497	Carbohydrate metabolism	phosphofructokinase family protein [EC:2.7.1.90]	At4g32840
CX946552	Carbohydrate metabolism	aldose 1-epimerase family protein [EC:5.1.3.3.]	At3g47800
CX946632	Carbohydrate metabolism	fructose-bisphosphate aldolase [EC4.1.2.13]	At2g01140
CX946652	Carbohydrate metabolism	malate dehydrogenase (NAD), mitochondrial [EC:1.1.1.37]	At3g47520
CX946695	Carbohydrate metabolism	glycoside hydrolase family 28 protein / polygalacturonase (pectinase) family protein [EC:3.2.1.15]	At4g32370
CX946942	Carbohydrate metabolism	glycoside hydrolase family 28 protein / polygalacturonase (pectinase) family protein [EC:3.2.1.15]	At4g33440
CX947271	Carbohydrate metabolism	phosphoenolpyruvate carboxylase [EC:4.1.1.31]	At2g42600
CX947444	Carbohydrate metabolism	transaldolase [EC:2.2.1.2]	At1g12230
CX947454	Carbohydrate metabolism	formate dehydrogenase (FDH) [EC:1.2.1.2]	At5g14780
CX947513	Carbohydrate metabolism	formyltetrahydrofolate deformylase [EC:3.5.1.10]	At4g17360
CX947524	Carbohydrate metabolism	glucose-6-phosphate isomerase [EC:5.3.1.9]	At4g24620
CX947692	Carbohydrate metabolism	glycoside hydrolase family 28 protein / polygalacturonase (pectinase) family protein [EC:3.2.1.15]	At4g33440
CX947861	Carbohydrate metabolism	pyruvate kinase [EC:2.7.1.40]	At3g52990
CX948035	Carbohydrate metabolism	ATP-citrate synthase [EC:2.3.3.8]	At3g06650
AJ828522	Carbohydrate metabolism	fructose-bisphosphate aldolase [EC4.1.2.13]	At2g01140
AJ828832	Carbohydrate metabolism	multi-copper oxidase type I family protein [EC:1.10.3.3]	At1g55570
AJ828404	Carbohydrate metabolism	pyruvate kinase [EC:2.7.1.40]	At5g52920
AJ828951	Carbohydrate metabolism	UTPglucose-1-phosphate uridylyltransferase [EC:2.7.7.9]	At5g17310
AJ829090	Carbohydrate metabolism	hexokinase 1 (HXK1) [EC:2.7.1.1]	At1g47840
AJ829107	Carbohydrate metabolism	phosphoenolpyruvate carboxykinase (ATP) [EC:4.1.1.49]	At4g37870
AJ829167	Carbohydrate metabolism	UDP-D-xylose 4-epimerase, putative (MUR4) [EC:5.1.3.2]	At1g30620
AJ539797	Carbohydrate metabolism	hexokinase 1 (HXK1) [EC:2.7.1.1]	At4g29130
AJ542122	Carbohydrate metabolism	beta-fructosidase (BFRUCT4) [EC:3.2.1.26]	At1g12240
AJ542288	Carbohydrate metabolism	UTPglucose-1-phosphate uridylyltransferase [EC:2.7.7.9]	At5g17310
AJ541069	Carbohydrate metabolism	6-phosphogluconate dehydrogenase family protein [EC:1.1.1.44]	At1g64190
AJ541213	Carbohydrate metabolism	polygalacturonase, putative / pectinase [EC:3.2.1.15]	At3g59850

AJ541270	Carbohydrate metabolism	1-aminocyclopropane-1-carboxylate synthase [EC:4.4.1.14]	At3g49700
BQ915995	Carbohydrate metabolism	cytochrome P450 family protein [EC:1.4]	At5g10600
BQ968480	Carbohydrate metabolism	cytochrome P450 family protein [EC:1.4]	At5g10610
BQ970143	Carbohydrate metabolism	pectinesterase family protein [EC:3.1.1.11]	At1g53830
BU031071	Carbohydrate metabolism	hydroxymethylglutaryl-CoA lyase [EC:4.1.3.4]	At2g26800
CD850762	Energy metabolism	vacuolar ATP synthase subunit G 1 (VATG1) [EC:3.6.3.14]	At3g01390
CD845614	Energy metabolism	photosystem II core complex proteins psbY, chloroplast (PSBY) / L-arginine metabolising enzyme	At1g67740
CX943537	Energy metabolism	ATP synthase gamma chain 2, chloroplast (ATPC2) putative[EC:3.6.3.14]	At1g15700
CD845773	Energy metabolism	photosystem I reaction center subunit III family protein	At1g31330
CD845891	Energy metabolism	putative protein 1 photosystem II oxygen- evolving complex	At3g50820
CD845897	Energy metabolism	sedoheptulose-1,7-bisphosphatase [EC:3.1.3.37]	At3g55800
CD846131	Energy metabolism	photosystem II core complex proteins psbY, chloroplast (PSBY) / L-arginine metabolising enzyme	At1g67740
CD846156	Energy metabolism	psaJ PSI J protein	NP_051079.1
CD846209	Energy metabolism	photosystem I reaction center subunit psaK	At1g30380
CD846591	Energy metabolism	sedoheptulose-1,7-bisphosphatase [EC:3.1.3.37]	At3g55800
CD846665	Energy metabolism	phosphoribulokinase (PRK) precursor [EC:2.7.1.19]	At1g32060
CD846816	Energy metabolism	psaJ PSI J protein	NP_051079.1
CD846879	Energy metabolism	oxygen-evolving enhancer protein, chloroplast, putative / 33 kDa subunit of oxygen evolving system of photosystem II, putative (PSBO2	At3g50820
CD846888	Energy metabolism	photosystem II oxygen-evolving complex 23 (OEC23	At1g06680
CD846889	Energy metabolism	photosystem I reaction center subunit VI, chloroplast, putative / PSI-H, putative (PSAH2	At1g52230
CD846953	Energy metabolism	photosystem I reaction center subunit II,	At1g03130F
CD847023	Energy metabolism	PSII 43KDa protein	NP_051055.1
CD847059	Energy metabolism	photosystem I reaction center subunit XI	At4g12800
CD847125	Energy metabolism	photosystem I reaction center subunit PSI-N,	At5g64040
CD847244	Energy metabolism	photosystem II oxygen-evolving complex 23 (OEC23	At1g06680
CD847301	Energy metabolism	carbonic anhydrase 1	At3g01500
CD847382	Energy metabolism	putative protein 1 photosystem II oxygen- evolving complex	At3g50820

CD847423	Energy metabolism	putative photosystem I reaction center subunit IV	At2g20260
CD847440	Energy metabolism	carbonic anhydrase 2 / carbonate dehydratase 2 (CA2) (CA18) [EC:4.2.1.1]	At5g14740
CD847586	Energy metabolism	photosystem I reaction center subunit II	At1g03130
CD847862	Energy metabolism	photosystem I reaction center subunit VI precursor	At1g52230
CD848336	Energy metabolism	ATP synthase gamma chain 2 putative[EC:3.6.3.14]	At1g15700
CD848590	Energy metabolism	ATPase epsilon subunit [EC:3.6.3.14]	NP_051065
CD848614	Energy metabolism	ATP synthase D chain-related putativeprotein[EC:3.6.3.14]	At3g52300
CD848760	Energy metabolism	plastocyanin putative	At1g20340
CD849098	Energy metabolism	photosystem II reaction centre W (PsbW)	At4g28660
CD849201	Energy metabolism	vacuolar ATP synthase subunit G 1 (VATG1) [EC:3.6.3.14]	At3g01390
CD849969	Energy metabolism	photosystem II family protein	At1g03600
CD850185	Energy metabolism	H+-transporting two-sector, ATPase adenosine triphosphatase, putative[EC:3.6.3.14]	At3g28710
CD850236	Energy metabolism	ATPase beta subunit [EC:3.6.3.14]	NP_051066.1
CD850257	Energy metabolism	oxygen-evolving enhancer protein	At3g50820
CD850475	Energy metabolism	psbC PSII 43KDa protein	NP_051055.1
CD850628	Energy metabolism	epsilon subunit of mitochondrial F1- ATPase [EC:3.6.3.14]	At1g51650
CD855764	Energy metabolism	vacuolar ATP synthase 16 kDa proteolipid subunit 2 [EC:3.6.3.14]	At1g19910
CD857539	Energy metabolism	photosystem I reaction center subunit VI precursor , chloroplast	At1g52230
CD857648	Energy metabolism	putative vacuolar proton- ATPase subunit [EC:3.6.3.14]	At2g21410
CD857077	Energy metabolism	PSII low MW protein	NP_051086.1
CD857786	Energy metabolism	PSII D2 protein	NP_051054.1
CX943940	Energy metabolism	PSII 47KDa protein	NP_051084.1
CX943950	Energy metabolism	sedoheptulose-1,7-bisphosphatase precursor[EC:3.1.3.37], chloroplast	At3g55800
CX943975	Energy metabolism	vacuolar ATP synthase subunit B, putative[EC:3.6.3.14]	At1g20260
CX944063	Energy metabolism	PSI P700 apoprotein A	NP_051059.1
CX944092	Energy metabolism	PSII 47KDa protein	NP_051084.1
CX944207	Energy metabolism	PSII cytochrome b 559	NP_051076.1
CX944302	Energy metabolism	PSI P700 apoprotein A2	NP_051058.1
CX944441	Energy metabolism	PSII 32KDa protein	NP_051039.1
CX944788	Energy metabolism	cytochrome b/f	NP_051089.1

C//HH//H	Lifeigy metabolism	phosphorbulokinase (FKK) / phosphopentokinase precursor[EC.2.7.1.19]	At1g32060
CX944845	Energy metabolism	PSII L protein	NP_051074.1
CX944882	Energy metabolism	PSI 9 Kda protein	NP_051110.1
CD851253	Energy metabolism	glutamate synthase (GLU1) / ferredoxin-dependent glutamate synthase (Fd-GOGAT 1) [EC:1.4.7.1]	At5g04140
CD851678	Energy metabolism	cyanate lyase family	At3g23490
CD853030	Energy metabolism	vacuolar ATP synthase subunit E putative[EC:3.6.3.14]	At1g64200
CD854130	Energy metabolism	delta subunit of mitochondria IF1- ATPase [EC:3.6.3.14]	At5g13450
CD854475	Energy metabolism	ferredoxin family protein putative	At1g32550
CD854524	Energy metabolism	ATPase a subunit [EC:3.6.3.14]	NP_051047.1
CD855255	Energy metabolism	ATPase I subunit [EC:3.6.3.14]	NP_051045.1
CX946571	Energy metabolism	ferredoxinNADP(+) reductase - likeprotein [EC:1.18.1.2]	At4g05390
CX947216	Energy metabolism	ATP synthase beta chain 1, mitochondrial [EC:3.6.3.14]	At5g08670
CX947615	Energy metabolism	cytochrome B6-F complex iron-sulfur subunit, chloroplast	At4g03280
CX947874	Energy metabolism	vacuolar ATP synthase catalytic subunit A / V-ATPase A subunit putative [EC:3.6.3.14]	At1g78900
CX947929	Energy metabolism	ATP synthase beta chain 1, mitochondrial [EC:3.6.3.14]	At5g08670
CX948024	Energy metabolism	vacuolar ATP synthase catalytic subunit A / V-ATPase A subunit putative [EC:3.6.3.14]	At1g78900
AJ828267	Energy metabolism	H+-transporting two-sector ATPase, C subunit family protein [EC:3.6.3.14]	At2g07671
AJ541270	Energy metabolism	ATPase alpha subunit [EC:3.6.3.14]	NP_051044.1
AJ541681	Energy metabolism	cytochrome B6	NP_051088.1
AJ541501	Energy metabolism	cytochrome B6	NP_051088.1
AJ541556	Energy metabolism	H+-transporting two-sector ATPase, C subunit family protein [EC:3.6.3.14]	At2g07671
AJ541556	Energy metabolism	H+-transporting two-sector ATPase, C subunit family protein [EC:3.6.3.14]	At2g07671
AJ412206	Protein kinase	protein kinase family protein	At2g16750
AJ412208	Protein kinase	protein kinase family protein	At3g58640
CD850795	Protein kinase	calcium-dependent protein kinase 1 (CDPK1) [EC:2.7.1]	At2g46700
CD845796	Protein kinase	pfkB-type carbohydrate kinase family protein; ribokinase,putative	At1g19600
CD846059	Protein kinase	leucine-rich repeat transmembrane protein kinase putative (N)	At1g63430
CD846424	Protein kinase	protein kinase family protein	At1g16670

CD846665	Protein kinase	phosphoribulokinase (PRK) / phosphopentokinase precursor [EC:2.7.1.19]	At1g32060
CD846746	Protein kinase	hexokinase-related	At1g50460
CD846863	Protein kinase	uracil phosphoribosyltransferase	At3g27440
CD847049	Protein kinase	phosphoglycerate kinase putative[EC:2.7.2.3]	At1g56190
CD847135	Protein kinase	adenylate kinase-related	At2g37250
CD847167	Protein kinase	5'-AMP-activated protein kinase beta-2 subunit	At5g21170
CD847197	Protein kinase	protein kinase family protein	At1g01740
CD847512	Protein kinase	nitrate/chlorate transporter (NRT1.1), putativeNPK1-relatedproteinkinase2	At1g12110
CD847780	Protein kinase	guanine nucleotide-binding family protein / activated protein kinase C receptor (RACK1)	At3g18130
CD847891	Protein kinase	nucleoside diphosphate kinase 1 (NDK1) [EC:2.7.4.6]	At4g09320
CD848003	Protein kinase	UDP-galactose/UDP-glucose transporter-related; proteinserine/threoninekinase-likeprotein(N)	At5g59740
CD848106	Protein kinase	protein kinase family protein	At2g17090
CD848136	Protein kinase	mitogen-activated protein kinase, putative / MAPK, putative (MPK11)	At1g01560
CD848145	Protein kinase	leucine-rich repeat protein kinase, putative (TMK1),receptor protein kinase putative [EC:2.7.1]	At1g66150
CD848170	Protein kinase	shaggy-related protein kinase iota / ASK-iota (ASK9) (GSK1) putative[EC:2.7.1]	At1g06390
CD848187	Protein kinase	protein kinase family protein	At1g07870
CD848345	Protein kinase	ribose-phosphate pyrophosphokinase 4 / phosphoribosyl diphosphate synthetase 4 (PRS4)	At2g42910
CD848699	Protein kinase	protein kinase, putative, similar to serine/threonine protein kinase 24	At3g15220
CD848716	Protein kinase	protein kinase, putative, similar to MAP3K epsilon protein kinase (Arabidopsis thaliana)	At3g07980
CX943718	Protein kinase	zinc-binding protein, putative / protein kinase C inhibitor, putative, similar to 14 kDa	At3g56490
CD848782	Protein kinase	mitogen-activated protein kinase, putative / MAPK, putative (MPK12), mitogen- activated protein	At2g46070
CD848950	Protein kinase	5'-AMP-activated protein kinase beta-2 subunit, putative	At5g21170
CD848997	Protein kinase	protein kinase (ATN1), almost identical (1 amino acid difference) to protein kinase ATN1	At3g27560

CD849040	Protein kinase	mitogen-activated protein kinase, putative / MAPK, putative (MPK1)[EC:2.7.1]	At1g10210
CX943745	Protein kinase	nucleotide diphosphate kinase II, chloroplast (NDPK2) [EC:2.7.4.6]	At5g63310
CD849167	Protein kinase	adenylate kinase family protein	At2g37250
CD849252	Protein kinase	protein kinase family protein	At1g51170
CD849303	Protein kinase	phosphofructokinase family protein, similar to phosphofructokinase	At4g26270
CD849389	Protein kinase	protein kinase-related, contains protein kinase domain	At5g18700
CD849469	Protein kinase	aspartate/glutamate/uridylate kinase family protein	At3g10030
CD849530	Protein kinase	lectin recepto rkinase-related	At1g10260
CD849653	Protein kinase	leucine-rich repeat transmembrane protein kinase putative (N)	At1g63430
CD849747	Protein kinase	pyrophosphate-fructose-6-phosphate 1-phosphotransferase beta subunit, putative [E C:2.7.1.90]	At4g04040
CD849859	Protein kinase	cell division protein kinase, putative, similar to cell division protein kinase 7	At1g18040
CD849927	Protein kinase	expressed protein, contains Pfam profile PF03647: Uncharacterised protein family proteinkinase-related	At1g33265
CD849946	Protein kinase	protein kinase, putative, contains protein kinase domain	At3g57770
CD850161	Protein kinase	protein kinase PINOID (PID), identical to protein kinase PINOID	At2g34650
CD850407	Protein kinase	nucleoside diphosphate kinase 3, mitochondrial (NDK3), identical to Nucleoside diphosphate kinase [EC:32.7.4.6]	At4g11010
CD855678	Protein kinase	thymidylate kinase family protein, similar to thymidylate kinase [EC:2.7.4.9]	At5g59440
CD855729	Protein kinase	cell division control protein, putative cdc2MsF [EC:2.7.1]	At1g20930
CD855746	Protein kinase	zinc-binding protein, putative / protein kinase C inhibitor, putative	At1g31160
CD855807	Protein kinase	protein kinase family protein / ankyrin repeat family protein	At1g14000
CD855954	Protein kinase	serine/threonine protein kinase (RKF2) putative, nearly identical to receptor-like serine/threonine kinase	At1g19090
CD855985	Protein kinase	leucine-rich repeat transmembrane protein kinase, putative, similar to receptor protein kinase	At2g33170
CD856016	Protein kinase	guanine nucleotide-binding family protein / activated protein kinase C receptor or RACK1	At3g18130
CD856052	Protein kinase	xylulose kinase, putative, similar to D-xylulokinase	At5g49650
CD856331	Protein kinase	protein kinase family protein, contains protein kinase domain	At5g58350

CD856341	Protein kinase	putative pyruvate kinase [EC:2.7.1.40], cytosolic isozyme	At3g04050
CD856417	Protein kinase	leucine-rich repeat transmembrane protein kinase, putative CLAVATA1 receptor kinase	At3g49670
CD857465	Protein kinase	pyruvate phosphate dikinase family protein [EC:2.7.9.1]	At4g15530
CD857476	Protein kinase	shikimate kinase-related	At2g35500
CD857495	Protein kinase	protein kinase family protein	At2g19410
CD857535	Protein kinase	pfk B type carbohydrate kinase protein family	At5g58730
CD857569	Protein kinase	protein kinase family protein	At3g21630
CD857578	Protein kinase	calcium-dependent protein kinase 1 (CDPK1) [EC:2.7.1]	At3g57530
CD857614	Protein kinase	leucine-rich repeat family protein /putativeprotein kinase [EC:2.7.1]	At1g24650
CD858156	Protein kinase	protein kinase family protein	At3g59110
CD858266	Protein kinase	protein kinase family protein	At2g40270
CD858300	Protein kinase	ribose-phosphate pyrophosphokinase 2 [EC:2.7.6.1]	At1g32380
CD858440	Protein kinase	RelA/SpoT protein, putative (RSH2), GTPpyrophosphokinase-related	At3g14050
CD857237	Protein kinase	protein kinase family protein	At5g01020
CD857392	Protein kinase	putative shikimate kinase precursor [EC:2.7.1.71]	At2g21940
	Protein kinase	pfkB-type carbohydrate kinase family protein	At1g69200
CD857929	Protein kinase	encodes a leucine-repeat containing receptor-like, receptor protein kinase, putative	At1g80080
CD857720	Protein kinase	Phosphorylates serine, threonine, and tyrosine; putative protein kinase, ADK1 [EC:2.7.1]	At1g03930
CD857779	Protein kinase	RelA/SpoT protein, putative (RSH1), putativeGTPpyrophosphokinase[EC:2.7.6.5]	At4g02260
CX943958	Protein kinase	protein kinase (APK1a) [EC:2.7.1]	At1g07570
CX944036	Protein kinase	phosphatidylinositol 3- and 4-kinase family protein	At1g64460
CX944060	Protein kinase	putative glycerol kinase [EC:2.7.1.30]	At1g80460
CX944794	Protein kinase	phospho ribulokinase precursor [EC:2.7.1.19]	At1g32060
CX944967	Protein kinase	phosphoenolpyruvate carboxykinase (ATP) [EC:4.1.1.49]	At4g37870
CD850870	Protein kinase	leucine-rich repeat protein kinase putative, similar to light repressible receptor protein kinase	At1g07550
CD850934	Protein kinase	putative casein kinase II catalytic b unit [EC:2.7.1.37]	At2g23070

CD850949	Protein kinase	protein kinase family protein, contains protein kinase domain	At1g24030
CD850951	Protein kinase	protein kinase family protein, contains protein kinase domain	At5g60550
CD851018	Protein kinase	guanine nucleotide-binding family protein / activated protein kinase C receptor or RACK1	At3g18130
CD851219	Protein kinase	leucine-rich repeat protein kinas, putative (ERECTA), identical to uncharacterized receptor	At2g26330
CD851219	Protein kinase	leucine-rich repeat transmembrane protein kinase; putative, protein kinase Xa21	At3g47570
CD851322	Protein kinase	casein kinase II beta chain, putative	At2g44680
CD851374	Protein kinase	uridylate kinase, putative [EC:2.7.4] / uridine monophosphate kinase, putative / UMP kinase, putative	At3g60180
CD851465	Protein kinase	protein kinase family protein, contains protein kinase domain	At5g07620
CD851502	Protein kinase	protein kinase family protein, identical to SRPK2	At2g17530
CD851603	Protein kinase	protein kinase family protein, contains eukaryotic protein kinase domain	At1g07150
CD851606	Protein kinase	adenosine kinase 1 (ADK1) / adenosine 5'-phosphotransferase 1, identical to adenosine kinase 1 [EC:2.7.1.20]	At3g09820
CD851765	Protein kinase	ribose-phosphate pyrophosphokinase 4 / phosphoribosyl diphosphate synthetase 4	At2g42910
CD851833	Protein kinase	protein kinase family protein, contains protein kinase domain	At1g11050
CD851911	Protein kinase	protein kinase family protein, contains protein kinase domain	At1g49160
CD852273	Protein kinase	serine/threonine protein kinase, putative, similar to serine/threonine kinase Ayk1	At2g25880
CD852330	Protein kinase	member of a CDC2-related kinase subfamily, the LAMMER kinases / protein kinase (AFC1) (AME2)	At3g53570
CD852432	Protein kinase	mitogen-activated protein kinase, putative / MAPK, putative (MPK9)	At3g18040
CD852474	Protein kinase	cell division control protein, putative, cdc2 kinase [EC:2.7.1]	At1g20930
CD852521	Protein kinase	protein kinase, putative, similar to ATMRK1	At3g01490
CD852541	Protein kinase	putative pyrophosphate- dependent phospho fructokinase alpha subunit [EC:2.7.1.90]	At1g20950
CD852566	Protein kinase	protein kinase family protein	At1g77720
CD852631	Protein kinase	receptor-related protein kinase, ERECTA	At2g26330
CD852661	Protein kinase	serine/threonine proteinkinase, putative	At2g25880

CD853069	Protein kinase	adenvlate kinase [FC·2.7.4.3]	At5950370
CD853144	Protein kinase	nfkB type carbohydrate kinase protein family	At1g06020
CD853264	Protein kinase	MPKB L beta subunit complex-interacting region) domainfamily (N)	At5g21170
CD853382	Protein kinase	casein kinasel	A t4 g1 4 3 4 0
CD853423	Protein kinase	protein kinase Cinhibitor hinding protein)-related(N)	At1g31160
CD853912	Protein kinase	protein kinase mutative	At1g61590
CD853933	Protein kinase	protein kinase, pututve	A +3g09240
CD853960	Protoin kinase	protein kinase-related	A +1 g039240
CD854200	Protein kinase	puoloogido, diphographato kinogo [EC:2746] (N)	At1g000020
CD854200	Protein kinase	Chapter related restation him and table [EC.2.7.4.0] (N)	At4g09320
CD854469	Protein kinase	Snaggy related protein kinase tetna [EC:2.7.1] (N)	At4g00720
CD854499	Protein kinase	protein kinase C inhibitor binding protein-related(N)	At1g31160
CD854724	Protein kinase	protein kinase family	At1g01740
CD854873	Protein kinase	adenylate kinase[EC:2.7.4.3]	At5g50370
CD855025	Protein kinase	phosphoglycerate kinase, putative [EC:2.7.2.3] (N)	At1g56190
CD855085	Protein kinase	AMPKBI beta subunit, complex-interacting region domain family (N)	At5g21170
CD855186	Protein kinase	mitogen- activated protein kinase kinase (MAPKK) (MKK1/MEK1) (N)	At4g26070
CD855536	Protein kinase	protein kinase, putative	At3g17850
CX945586	Protein kinase	serine/threonine protein kinase, putative [EC:2.7.1] (N)	At1g10940
CX945671	Protein kinase	putative thymidine kinase [EC:2.7.1.21]	At3g07800
CX945791	Protein kinase	mitogen-activated protein kinase, putative (N)	At4g08470
CX946364	Protein kinase	CDPK-related protein kinase [EC:2.7.1] (N)	At3g50530
CX946470	Protein kinase	pyruvate orthophosphate dikinase [EC:2.7.9.1] (N)	At4g15530
CX946490	Protein kinase	sphingosine kinase	At5g23450
CX946497	Protein kinase	pyrophosphate-dependent phospho fructo-1- kinase (N)	At4g26270
CX946584	Protein kinase	protein kinase family	At4g31170
CX946653	Protein kinase	glutamate5-kinase/glutamate-5- semi aldehyde dehydrogenase	At3g55610
		[EC:2.7.2.111.2.1.41] (N)	C
CX946694	Protein kinase	protein kinase family	At4g16970
CX946911	Protein kinase	protein kinase family	At3g58640
CX946955	Protein kinase	uridine kinase/uracil phosphoribosyl transfer as-related(N)	At3g27440
CX947012	Protein kinase	receptor-related protein kinase,ERECTA	At2g26330

CX947027	Protein kinase	protein kinase	At3g53570
CX947233	Protein kinase	calcium-dependent protein kinase, putative (CDPK) (N)	At1g61950
CX947360	Protein kinase	protein kinase family	At1g56720
CX947517	Protein kinase	uridine kinase / uracil phosphoribosyl transfer as-related (N)	At3g27440
CX947539	Protein kinase	glutamate5-kinase / glutamate-5- semi aldehyde dehydrogenase	At3g55610
		[EC:2.7.2.111.2.1.41] (N)	
CX947645	Protein kinase	protein kinase family protein	At5g14640
CX947703	Protein kinase	aspartate kinase,lysine-sensitive, putative (N)	At3g02020
CX947781	Protein kinase	uridine kinase/uracil phosphoribosyl transfer as-related (N)	At3g27440
CX947847	Protein kinase	receptor protein kinase- relatedprotein (N)	At4g08850
CX947861	Protein kinase	pyruvate kinase- likeprotein [EC:2.7.1.40] (N)	At3g52990
CX947910	Protein kinase	LRR receptor protein kinase-related	At2g23950
AJ828753	Protein kinase	calcium-dependent protein kinase 1 (CDPK1) [EC:2.7.1]	At1g18890
AJ828382	Protein kinase	protein kinase family protein / glycerophosphoryl diester phosphodiesterase	At1g66980
		family protein	
AJ828920	Protein kinase	leucine-rich repeat transmembrane protein kinase putative (N)	At5g67200
AJ828404	Protein kinase	pyruvate kinase putative	At1g32440
AJ829074	Protein kinase	aspartate kinase, lysine-sensitive, putative(N)	At3g02020
AJ828506	Protein kinase	cell division control protein kinase cdc2 homolog B [EC:2.7.1]	At3g54180
AJ829090	Protein kinase	hexokinase, putative[EC:2.7.1.1]	At1g47840
AJ829107	Protein kinase	phosphoenolpyruvate carboxykinase (ATP) [EC:4.1.1.49]	At4g37870
AJ829139	Protein kinase	leucine-rich repeat transmembrane protein kinase putative (N)	At2g02220
AJ412314	Protein kinase	putative pyruvate kinase [EC:2.7.1.40]	At3g04050
AJ412355	Protein kinase	protein kinase family protein	At2g32850
AJ412491	Protein kinase	protein kinase family protein	At4g35030
AJ412498	Protein kinase	protein kinase family protein	At3g58640
AJ412511	Protein kinase	nucleotide diphosphate kinase II [EC:2.7.4.6]	At5g63310
AJ412516	Protein kinase	nucleotide diphosphate kinase II [EC:2.7.4.6]	At5g63310
AJ412525	Protein kinase	shaggy-related protein kinase iota / ASK-iota (ASK9) (GSK1), putative[EC:2.7.1] At1g06390
AJ412557	Protein kinase	putative casein kinase I [EC:2.7.1]	At1g04440

AJ412581	Protein kinase	guanine nucleotide-binding family protein / activated protein kinase C receptor (RACK1),	At3g18130
AJ437753	Protein kinase	shikimate kinase family protein	At3g26900
AJ437796	Protein kinase	putative pyruvate kinase [EC:2.7.1.40]	At3g25960
AJ437849	Protein kinase	leucine-rich repeat transmembrane protein kinase putative (N)	At1g53730
AJ539797	Protein kinase	hexokinase-like protein [EC:2.7.1.1]	At4g37840
AJ540184	Protein kinase	calcium-dependent protein kinase 1 (CDPK1) [EC:2.7.1]	At3g51850A
AJ542194	Protein kinase	diacylglycerol kinase-related	At2g18730
AJ542321	Protein kinase	leucine-rich repeat transmembrane protein kinase putative (N)	At2g45340
AJ542380	Protein kinase	UDP-galactose/UDP-glucose transporter-related, protein serine/threonine kinase - like protein (N)	At5g59740
AJ541171	Protein kinase	mitogen-activated protein kinase putative (MPK11)	At1g01560
BU025334	Protein kinase	receptor lectin kinase, putative	At1g70130
BU026062	Protein kinase	serine/threonine protein kinase, putative	At1g06700
BU026754	Protein kinase	CBL-interacting protein kinase 18 (CIPK18)	At1g29230
AJ412383	Protein phosphatase	protein phosphatase-related	At2g04550
AJ539881	Protein phosphatase	protein phosphatase 2AN	At2g42500
CD850768	Protein phosphatase	phosphatase like protein	At4g15410
CD845871	Protein phosphatase	4-nitrophenyl phosphatase-like protein [EC:3.1.3.41] (N)	At5g47760
CD846333	Protein phosphatase	serine/threonine protein phosphatase, PP2A [EC:3.1.3.16] (N)	At1g10430
CD847464	Protein phosphatase	protein phosphatase 2C	At1g47380
CD847464	Protein phosphatase	protein phosphatase 2C	At1g09160
CD847587	Protein phosphatase	serine/threonine protein phosphatase, PP2A [EC:3.1.3.16] (N)	At1g10430
CD847756	Protein phosphatase	4-nitrophenyl phosphatase-like protein [EC:3.1.3.41] (N)	At5g47760
CD848074	Protein phosphatase	serine/threonine protein phosphatase-related (N)	At1g56440
CD848418	Protein phosphatase	fructose-bis phosphatase-related protein	At5g64380
CD848729	Protein phosphatase	protein phosphatase 2C-related	At1g16220
CD849044	Protein phosphatase	protein phosphatase 2C	At1g07430
CD849087	Protein phosphatase	protein phosphatase 2C	At1g07430
CD850577	Protein phosphatase	putative phosphoprotein phosphatase [EC:3.1. 3.16] (N)	At2g42810
CD855607	Protein phosphatase	serine/threonine protein phosphatase 2A regulatory subunit,putative (N)	At1g13320

CD855727	Protein phosphatase	phosphoprotein phosphatase1 [EC:3.1.3.16] (N)	At1g64040
CD856163	Protein phosphatase	protein-tyrosine-phosphatase- likeprotein [EC:3.1.3.48] (N)	At3g44620
CD857470	Protein phosphatase	phosphoprotein phosphatase1) [EC:3.1.3.16] (N)	At4g26720
CD857521	Protein phosphatase	serine/threonine protein phosphatase, PP2A [EC:3.1.3.16] (N)	At1g10430
CD857581	Protein phosphatase	protein phosphatase 2C	At1g22280
CD857596	Protein phosphatase	protein phosphatase 2C-related	At3g12620
CD857681	Protein phosphatase	inorganic pyrophosphatase- likeprotein [EC:3.6.1.1] (N)	At3g53620
CD858441	Protein phosphatase	protein serine/threonine phosphatase alpha- related (N)	At1g08420
CD858446	Protein phosphatase	protein phosphatase 2C	At3g15260
CD856590	Protein phosphatase	protein phosphatase2C	At1g48040
CX944715	Protein phosphatase	fructose-bis phosphatase-related protein	At5g64380
CD851572	Protein phosphatase	protein phosphatase-related	At5g10480
CD852391	Protein phosphatase	phosphoprotein phosphatase 1 [EC:3.1.3.16](N)	At1g64040
CD852471	Protein phosphatase	protein phosphatase 2A-related	At1g03960
CD852509	Protein phosphatase	inorganic pyrophosphatase-like protein	At5g09650
CD852547	Protein phosphatase	Inositol monophosphatase-like protein	At4g39120
CD852759	Protein phosphatase	phospho protein phosphatase 1 [EC:3.1.3.16] (N)	At1g64040
CD854259	Protein phosphatase	inorganic pyrophosphatase- like protein [EC:3.6.1.1] (N)	At3g53620
CD854533	Protein phosphatase	inorganic pyrophosphatase-like protein	At5g09650
CD855321	Protein phosphatase	protein phosphatase X isoform 2 [EC:3.1.3.16] (N)	At5g55260
CX945856	Protein phosphatase	protein phosphatase 2C	At2g25070
CX945996	Protein phosphatase	protein phosphatase 2C	At2g25070
CX946018	Protein phosphatase	protein phosphatase 2A-related	At1g03960
CX947490	Protein phosphatase	serine/threonine protein phosphatase 2A regulatory subunit, putative (N)	At1g13320
CX947797	Protein phosphatase	phosphoprotein phosphatase 1 [EC:3.1.3.16] (N)	At1g64040
CX947877	Protein phosphatase	phosphoprotein phosphatase- type1 catalytic subunit [EC:3.1.3.16] (N)	At2g29400
AJ828712	Protein phosphatase	protein phosphatase 2C	At1g03590
AJ828789	Protein phosphatase	serine/threonine protein phosphatase 2A regulatory subunit, putative (N)	At1g13320
AJ437766	Protein phosphatase	serine/threonine protein phosphatase 2A regulatory subunit, putative (N)	At1g13320
CD846059	Receptor	receptor-like protein CLAVATA2	At1g65380
CD846271	Receptor	laminin receptor-like protein	At1g72370

CD846377	Receptor	Arabidopsis thaliana flavin-type blue-light photoreceptor (N)	At4g08920
CD848185	Receptor	receptor-like protein CLAVATA2	At1g65380
CD848476	Receptor	transmembrane receptor (Secretinfamily)	At3g13320
CD848478	Receptor	receptor like protein	At4g22140
CD849653	Receptor	receptor-like protein CLAVATA2	At1g65380
CD855881	Receptor	peroxisomal targeting signal type 1 receptor X5 (N)	At5g56290
CD856122	Receptor	photoreceptor-interacting protein- related(N)	At5g47800
CD856470	Receptor	peroxisomal targeting signal type 2 receptor	At1g12830
CD857561	Receptor	transmembrane receptor (Secretinfamily),	At3g13320
CD851219	Receptor	receptor-like protein CLAVATA2	At1g65380
CD851897	Receptor	peroxisomal targeting signal type 2 receptor	At1g12830
CD851959	Receptor	protein import receptor-related protein import receptor TOM20, mitochondrial-related (N)	At1g27390
CD853369	Receptor	signal sequence receptor, alpha subunit (SSR-alpha)-related (N)	At2g21160
CD854178	Receptor	protein import receptor-related protein import receptor TOM20, mitochondrial-related (N)	At1g27390
CD854495	Receptor	signal sequence receptor, alpha subunit (SSR-alpha) -related (N)	At2g21160
CX946539	Receptor	signal recognition particle receptor beta subunit-related (N)	At2g18770
CX947147	Receptor	G protein -coupled receptor-related	At1g52920
CX947532	Receptor	ER lumen protein-retaining receptor	At1g19970
CX947612	Receptor	receptor like protein	At4g22140
CX947804	Receptor	receptor like protein	At4g22140
AJ828993	Receptor	ER lumen protein retaining receptor-related	At1g75760
AJ437899	Receptor	G protein-coupled receptor-related	At1g52920
AJ541108	Receptor	protein import receptor-related	At1g27390
CD850711	Transcription factor	auxin response transcription factor 3F3)(N)	At2g33860
CD850774	Transcription factor	WRKY family transcription factor	At1g30650
CD845611	Transcription factor	AP2 domain transcription factor, putative	At1g68550
CD845701	Transcription factor	zinc finger transcription factor	At5g07500
CD846305	Transcription factor	heat shock transcription factor family	At4g13980
CD846383	Transcription factor	homeobox-leucine zipper protein ATHB-13 Zip transcription factor (N)	At1g69780
CD846525	Transcription factor	myb-family transcription factor-related	At3g12560
----------	----------------------	---	-----------
CD846945	Transcription factor	bZIP family transcription factor	At2g40950
CD847197	Transcription factor	AP2 domain transcription factor, putative	At4g23750
CD847644	Transcription factor	transcription factor	At2g43010
CD847771	Transcription factor	TF II H basal transcription factor complex helicase XPB subunit, putative (N)	At5g41360
CD847895	Transcription factor	G-box binding bZIP transcription factor	At2g46270
CD847968	Transcription factor	AP2 domain transcription factor RAP2.6	At1g43160
CD847968	Transcription factor	AP2 domain transcription factor, putative	At1g49120
CD848097	Transcription factor	bZIP family transcription factor	At3g10800
CD848128	Transcription factor	AP2 domain transcription factor, putative	At1g01250
CD848175	Transcription factor	MYB-related transcription factor	At2g46830
CD848366	Transcription factor	WRKY family transcription factor	At2g44745
CD848411	Transcription factor	bZIP family transcription factor	At1g13600
CD848535	Transcription factor	scarecrow transcription factor family	At2g45160
CD848542	Transcription factor	GATA transcription factor1	At3g24050
CD848624	Transcription factor	bZIP family transcription factor	At1g27000
CD848631	Transcription factor	CCAAT-binding transcription factorsubunit A- related (N)	At1g09030
CD848883	Transcription factor	transcription factor IIA large subunit	At1g07480
CD848928	Transcription factor	transcription factor Hap5a,putative	At3g12480
CD848939	Transcription factor	AP2 domain transcription factor, putative	At3g25730
CD849036	Transcription factor	transcription factor IIA small subunit	At4g24440
CD849143	Transcription factor	scarecrow transcription factor	At3g54220
CD849214	Transcription factor	myb family transcription factor	At2g37630
CD849387	Transcription factor	AP2 domain transcription factor, putative	At1g50680
CD849460	Transcription factor	AP2 domain transcription factor, putative	At1g19210
CD849568	Transcription factor	MAD Sbox transcription factor, putative	At1g77950
CD849619	Transcription factor	bHLH064 putative bHLH transcription factor	At2g18300
CD849676	Transcription factor	c2h2 zinc finger transcription factor- related (N)	At5g04340
CD849866	Transcription factor	transcription factor L2	At3g55770
CD849908	Transcription factor	basic helix-loop-helix (bHLH) family protein,	At5g67060
CD850032	Transcription factor	myb family transcription factor	At1g74840

CD850074	Transcription factor	AP2 domain transcription factor, putative	At1g12890
CD850126	Transcription factor	GATA transcription factor 1	At3g24050
CD850151	Transcription factor	homeobox-leucine zipper protein ATHB-13 Zip transcription factor Athb-13) (N	I) At1g69780
CD850340	Transcription factor	scarecrow transcription factor family	At3g49950
CD850384	Transcription factor	transcriptional factor B3 family	At5g58280
CD850615	Transcription factor	transcription factor BBFa	At3g61850
CD855618	Transcription factor	CCAAT-binding transcription factor subunit-related (N)	At2g27470
CD855694	Transcription factor	GATA transcription factor 1	At3g24050
CD855900	Transcription factor	floral homeodomain transcription factor (N)	At2g42830
CD856019	Transcription factor	transcription initiation factor TFIID-2 transcription initiation factor TFIID-	At1g55520
		1(TATAsequence-bindingprotein1) (N)	
CD857344	Transcription factor	CCAAT-binding transcription factor subunit A- related (N)	At1g09030
CD857736	Transcription factor	homeobox-leucine zipper protein ATHB-12 Zip transcription factor (N)	At3g61890
CD857752	Transcription factor	AP2 domain transcription factor, putative	At5g51190
CX944003	Transcription factor	zinc finger transcription factor- related protein (N)	At5g58620
CX944687	Transcription factor	homeobox-leucine zipper protein ATHB-13 Zip transcription factor (N)	At1g69780
CD851194	Transcription factor	transcriptional activation factor TAFII32- related (N)	At1g54140
CD851235	Transcription factor	CCAAT-binding transcription factor subunitA- related (N)	At1g09030
CD851235	Transcription factor	CCAAT-binding transcription factor subunit- related (N)	At2g38880
CD851304	Transcription factor	transcription factor IIA large subunit	At1g07470
CD851495	Transcription factor	CCAAT-binding transcription factor subunit- related (N)	At2g38880
CD851759	Transcription factor	WRKY family transcription factor	At4g30930
CD852109	Transcription factor	bzip-related transcription factor	At1g21740
CD852187	Transcription factor	bZIP family transcription factor	At1g13600
CD852507	Transcription factor	Transcription factor II homolog	At4g31720
CD852586	Transcription factor	transcription factor, putative	At1g21160
CD852649	Transcription factor	bZIP family transcription factor	At3g51960
CD853200	Transcription factor	transcription factor-related	At1g17880
CD853576	Transcription factor	transcriptional factor B3 family	At5g58280
CD853848	Transcription factor	transcription factor-related	At1g17880
CD854221	Transcription factor	transcription factor TEIL / ethylene- insensitive-like protein(N)	At5g10120

CD854339	Transcription factor	MYB family transcription factor-related	At2g30380
CD854547	Transcription factor	transcription factor IIA small subunit	At4g24440
CD855362	Transcription factor	transcription factor IIA large subunit	At1g07480
CX945457	Transcription factor	transcription factor CRC	At1g69180
CX946013	Transcription factor	MYB family transcription factor-related	At2g30380
CX946549	Transcription factor	AP2 domain transcription factorRAP2.7	At2g28550
CX946651	Transcription factor	transcription factor BBFa	At3g61850
CX946751	Transcription factor	transcriptional factor B3 family	At2g30470
CX946808	Transcription factor	transcriptional factor B3 family	At2g30470
CX946833	Transcription factor	transcription factor 3	At1g53230
CX946833	Transcription factor	TCP family transcription factor, putative	At3g15030
CX946884	Transcription factor	AP2 domain transcription factor, putative	At1g22190
CX946884	Transcription factor	AP2 domain transcription factor, putative	At2g38340
CX946945	Transcription factor	HD-Zip transcription factor	At1g52150
CX947084	Transcription factor	GATA transcription factor 1	At3g24050
CX947160	Transcription factor	auxin response transcription factor	At2g28350
CX947232	Transcription factor	homeodomain-leucine zipper protein	At5g60690
CX947421	Transcription factor	PHD finger transcription factor, putative	At5g58610
CX947451	Transcription factor	myb family transcription factor	At1g75250
CX947599	Transcription factor	PHD finger transcription factor, putative	At3g14980
CX947636	Transcription factor	transcription factor	At1g19850
CX947840	Transcription factor	transcription factor CRC	At1g69180
CX947845	Transcription factor	transcription factor CRC	At1g69180
CX947852	Transcription factor	transcriptional factor B3 protein leafy cotyledon 2 (N)	At1g28300
AJ828412	Transcription factor	auxin response transcription factor	At1g30330
AJ828635	Transcription factor	transcription factor Hap5a, putative	At1g08970
AJ828511	Transcription factor	MYB family transcription factor-related	At2g38090
AJ829084	Transcription factor	AP2domain transcription factor, putative	At5g67180
AJ829163	Transcription factor	AP2 domain transcription factor, putative	At5g60120
AJ412302	Transcription factor	homeo domain transcription factor-related	At2g01500
AJ412445	Transcription factor	AP2 domain transcription factor, putative	At1g24590

AJ412452	Transcription factor	WRKY family transcription factor	At4g31800
AJ412547	Transcription factor	HD-Zip transcription factor Athb-8	At4g32880
AJ412554	Transcription factor	heat shock transcription factor family	At2g41690
AJ412561	Transcription factor	homeobox-leucine zipper protein ATHB-13 Zip transcription factor (N)	At1g69780
AJ412564	Transcription factor	WRKY family transcription factor	At4g30930
AJ540004	Transcription factor	transcription initiation factor IIF, beta subunit,putative (N)	At3g52270
AJ540133	Transcription factor	bZIP family transcription factor	At1g27000
AJ541657	Transcription factor	WRKY family transcription factor	At1g29860
AJ541715	Transcription factor	PHD finger transcription factor, putative	At5g35210
BU017162	Transcription factor	myb family transcription factor	At1g19510
CD848827	Hormones/ Brassinosteroids	squalene monooxygenase epoxidase) (SE), putative [EC:1.14.99.7]	At1g58440
CD858486	Hormones/ Brassinosteroids	cell elongation protein (DIMINUTO) (DIM)	At3g19820
		farnesyl-diphosphate farnesyltransferase [squalene synthase 1] (SQS1)	
CX944373	Hormones/ Brassinosteroids	[EC:2.5.1.21]	At4g34640
		farnesyl-diphosphate farnesyltransferase [squalene synthase 1] (SQS1)	
AJ412655	Hormones/ Brassinosteroids	[EC:2.5.1.21]	At4g34640
CX947222	Hormones/ Brassinosteroids	steroid 22-alpha-hydroxylase (DWF4)	At3g50660
CD857672	Hormones/ Auxin	auxin transport protein, putative (PIN3)	At1g70940
CD857753	Hormones/ Auxin	nitrilase 1	At3g44310
CX946758	Hormones/Gibberellins	copalyl diphosphate synthase (ent-kaurene synthetase A)	At4g02780
CX946889	Hormones/Gibberellins	copalyl diphosphate synthase (ent-kaurene synthetase A)	At4g02780
CX944712	Oxidative burst/stress apoptosis	catalase 3 [EC:1.11.1.6]	At1g20620
CD853963	Oxidative burst/stress apoptosis	catalase 3 [EC:1.11.1.6]	At1g20620
CD846763	Oxidative burst/stress apoptosis	glutathione transferase, putative	At2g47730
CD847604	Oxidative burst/stress apoptosis	iron superoxide dismutase [EC:1.15.1.1]	At4g25100
CD848564	Oxidative burst/stress apoptosis	iron superoxide dismutase [EC:1.15.1.1]	At4g25100
CD850388	Oxidative burst/stress apoptosis	manganese superoxide dismutase [EC:1.15.1.1]	At3g10920
CD857663	Oxidative burst/stress apoptosis	manganese superoxide dismutase [EC:1.15.1.1]	At3g10920
AJ828744	Oxidative burst/stress apoptosis	manganese superoxide dismutase [EC:1.15.1.1]	At3g10920
AJ828935	Oxidative burst/stress apoptosis	manganese superoxide dismutase [EC:1.15.1.1]	At3g10920
CD858191	Oxidative burst/stress apoptosis	iron superoxide dismutase (792 letters)	At5g23310

CD855647	Oxidative burst/stress apoptosis	copper/zinc superoxide dismutase [EC:1.15.1.1]	At2g28190
CD858356	Oxidative burst/stress apoptosis	respiratory burst oxidase protein EPH oxidase (RbohE)	At1g19230
CD846450	Anti-microbial proteins	beta-1,3-glucanase 2	At3g57260
CX944462	Anti-microbial proteins	beta-1,3-glucanase 2	At3g57260
AJ540097	Anti-microbial proteins	beta-1,3-glucanase 2	At3g57240
CD846862	Anti-microbial proteins	plant defensin protein, putative (PDF1.4)	At1g19610
CD847478	Anti-microbial proteins	pathogenesis-related protein 5	At1g75040
CD848342	Anti-microbial proteins	plant defensin protein, putative (PDF2.4)	At1g61070
CD848698	Anti-microbial proteins	plant defensin protein, putative (PDF2.4)	At1g61070
CD849780	Anti-microbial proteins	plant defensin protein, putative (PDF2.4)	At1g61070
CD849829	Anti-microbial proteins	plant defensin protein, putative (PDF2.4)	At1g61070
CD854598	Anti-microbial proteins	plant defensin protein, putative (PDF2.5)	At5g63660
CX944060	Anti-microbial proteins	glycerolkinase-related required against bacteria and fungal resistance	At1g80460
CX944894	Anti-microbial proteins	thaumatin-like protein (pathogenesis-related protein), putative	At1g75050
AJ541342	Anti-microbial proteins	thaumatin-like protein (pathogenesis-related protein), putative	At1g73620
CX947847	Anti-microbial proteins	polygalacturonase inhibiting protein	At5g06860
CX944948	Anti-microbial proteins	Arabidopsis thaliana class IV chitinase (CHIV)	At3g54420
AJ539652	Anti-microbial proteins	glycosyl hydrolase family (1920)	At3g54420
CX947363	Cell wall modification	callose synthase (1,3-beta-glucan synthase)	At1g05570
CX947676	Cell wall modification	callose synthase synthase family	At2g31960
AJ412274	Cell wall modification	callose synthase synthase family	At2g36850
AJ829083	Cell wall modification	callose synthase synthase) family	At5g13000
CD849757	Cell wall modification	expansin, putative (789 letters)	At1g12560
CD849757	Cell wall modification	expansin, putative	At1g12560
CD849943	Cell wall modification	expansin, putative	At1g12560
CD857595	Cell wall modification	expansin, putative	At1g12560
AJ412389	Cell wall modification	expansin, putative	At1g12560
AJ828331	Cell wall modification	expansin, putative	At1g12560
AJ412487	Cell wall modification	beta-expansin, putative	At1g12560
CD857564	Cell death response	seven transmembrane MLO protein family	At1g26700
CD851413	Cell death response	seven transmembrane MLO protein family	At2g17430

CD855085	Cell death response	calmodulin, putative	At1g12310
CD848068	Cell death response	calmodulin, putative	At1g12310
CD850759	Cell death response	calmodulin, putative	At1g12310
CD857776	Cell death response	cyclic nucleotide-regulated ion channel (CNGC4)	At5g54250
CX946896	Cell death response	cyclic nucleotide-regulated ion channel (CNGC4)	At5g54251
CD847955	Cell death response	elongation factor Tu	At4g02930
CX947562	Cell death response	elongation factor Tu	At4g02930
AJ828440	Cell death response	elongation factor Tu	At4g02930
AJ828655	Cell death response	elongation factor Tu	At4g02930
CD854684	Cell death response	Macrophage migration inhibitory factor	At3g51660
CD854692	Cell death response	carboxyl-terminal proteinase like protein	At4g17510
AJ542194	Cell death response	diacyl glycerol kinase-related	At2g18730
CX944932	Stress inducible proteins	dehydration-induced protein family	At4g18030
CX946792	Stress inducible proteins	dehydration-induced protein family	At4g18030
CD850987	Stress inducible proteins	stress inducible protein putative	At1g62740
CD854195	Stress inducible proteins	stress inducible protein	At1g12270
CD848299	Stress inducible proteins	disease resistance protein RPM1 putative	At3g07040
AJ412550	Stress inducible proteins	disease resistance protein family	At2g34930
AJ539777	Stress inducible proteins	disease resistance response protein-related	At1g22900
CD851219	Stress inducible proteins	disease resistance protein family	At2g34930
CD845757	Jasmonic acid pathway	lipoxygenase putative	At1g17420
CD847535	Jasmonic acid pathway	lipoxygenase	At3g45140
CD846056	Jasmonic acid pathway	acyl-[acyl-carrier-protein] desaturase ACP desaturase	At2g43710
CD848237	Jasmonic acid pathway	S-adenosyl-L- methionine :jasmonic acid carboxyl methyl transferase (JMT)	At1g19640
CD848738	Jasmonic acid pathway	12-oxophytodienoate reductase putative	At1g17990
CD856206	Jasmonic acid pathway	acetyl-CoAC-acyltransferase CoA thiolase), putative	At2g33150
CD848975	Jasmonic acid pathway	coronatine-insensitive1	At2g39940
AJ437879	Ethylene pathway	1-aminocyclopropane-1-carboxylate synthase (ACCsynthase)	At3g61510
CD853943	Ethylene pathway	1-aminocyclopropane-1- carboxylate synthase (ACCsynthase), putative	At5g51690
AJ541445	Ethylene pathway	1-aminocyclopropane-1-carboxylate synthase (ACCsynthase)	At3g61510
CD846051	Ethylene pathway	1-aminocyclopropane-1- carboxylate synthase 6 (ACCsynthase6) (ACS6)	At4g11280

CD846979	Ethylene pathway	1-aminocyclopropane-1- carboxylic acid oxidase (ACCoxidase) family	At3g47190
CD850275	Ethylene pathway	1-aminocyclopropane-1- carboxylateoxidase (ACCoxidase) (EFE)	At1g05010
AJ412464	Ethylene pathway	ethylene-insensitive2	At5g03280
AJ412471	Salicylic acid pathway	isochorismate synthase 1	At1g74710
CD846484	Phenylpropanoids	phenylalanine ammonia lyase [EC:4.3.1.5]	At2g37040
CD849640	Phenylpropanoids	phenylalanine ammonia lyase [EC:4.3.1.5]	At2g37040
CD847394	Phenylpropanoids	caffeoyl-CoA 3-O-methyltransferase, putative	At1g24735
CD849237	Phenylpropanoids	caffeoyl-CoA 3-O-methyltransferase, putative	At1g24735
CD848935	Phenylpropanoids	hydroxy cinnamoyl /benzoyl transferase family	At2g19070
CD849618	Phenylpropanoids	cinnamoyl-CoA reductase family	At1g76470
CD849900	Phenylpropanoids	chalcone-flavanone isomerase family	At5g05270
CD857615	Phenylpropanoids	peroxidase, putative [EC:1.11.1.7]	At1g05240
AJ412359	Phenylpropanoids	peroxidase	At1g34330
AJ542245	Phenylpropanoids	cytochrome P450 73 / trans-cinnamate 4-monooxygenase / cinnamate-4-	
		hydroxylase (CYP73) (C4H) [EC:1.14.13.11]	At2g30490
CD848156	Cell structure	very-long-chain fatty acid condensing enzyme (CUT1), putative	At1g25450
CD848346	Cell structure	cytochrome P450, putative	At2g45970
CD848156	Cell structure	very-long-chain fatty acid condensing enzyme (CUT1)	At1g68530
CX947718	Cell structure	4-coumarate:CoA ligase synthase	At5g63380
CD857737	Cell structure	cellulose synthase, catalytic subunit, putative	At2g21770
AJ828573	Cell structure	cellulose synthase family	At1g02730
CD849040	High molecular weight signal regulation	mitogen-activated protein kinase (MAPK), putative (MPK1) [EC:2.7.1]	At1g10210
CD848136	High molecular weight signal regulation	mitogen-activated protein kinase (MAPK), putative (MPK11)	At1g01560
AJ541171	High molecular weight signal regulation	mitogen-activated protein kinase (MAPK), putative (MPK11)	At1g01560
CD850951	High molecular weight signal regulation	mitogen-activated protein kinase kinase (MAPKK), putative (MKK4)	At1g51660
CX945791	High molecular weight signal regulation	mitogen-activated protein kinase kinase kinase (MAPKKK), putative (MAP3Ka)	At1g53570
CD853656	Other defense genes	glutathione transferase, putative	At2g47730
AJ541539	Other defense genes	chaperonin, putative	At2g33210
AJ542178	Other defense genes	transferase family	At3g03480
CD853377	Other defense genes	AAA-type ATPase-related	At2g03670
CD853578	Other defense genes	RING zinc finger protein-related	At3g16720

CD850828	Other defense genes	SGS3 protein_coding required for post transcriptional gene silencing and natura	1
		virus resistance	At5g23570
CD854985	Other defense genes	SGS3 protein_coding required for post transcriptional gene silencing and natura	1
		virus resistance	At5g23570
CD855030	Other defense genes	ankyrin repeat-containing protein2	At4g35450
CX946392	Other defense genes	ankyrin repeat-containing protein2	At4g35450
CD846743	Other defense genes	ABC transporter family protein	At5g06530
CD857544	Other defense genes	transferase family	At3g03480
CD847078	Other defense genes	rubisco activase-related	At1g73110
CD850515	Other defense genes	60 S ribosomal protein L8	At2g18020
CD855689	Other defense genes	60 S ribosomal protein L8	At2g18020
AJ828775	Other defense genes	60 S ribosomal protein L8	At2g18020
CD851218	Other defense genes	60 S ribosomal protein L8	At2g18020
CD848398	Other defense genes	mannitol dehydrogenase	At4g37980
AJ539892	Other defense genes	mannitol dehydrogenase	At4g37980
CD852605	Other defense genes	RNA helicase SDE3	At1g05460

ABSTRACT

Few investigations have been undertaken on the mechanisms subtending the tolerance of sunflower to black stem disease. Caused by the necrotrophic fungus *Phoma macdonaldii*, the disease occurs in France from the 1980's. Today it is responsible of yield losses with increased seriousness. In 2004, it was the second more important disease on sunflower, after mildew. So far, no resistant genotype has been identified. Tolerant genotypes exist and their tolerance was shown to be highly variable. Our investigations, developped according to three main axes, have allowed to shed light on differents points :

- an **ultrastructural investigation** revealed that the **first limitation** to the fungus penetration in the host cells seems to be **particular cuticular ornamentations** more pronounced in tolerant genotype compared to the susceptible one. A kinetic of infection was also realised.
- The study of sunflower phytoalexins, scopoletin and ayapin, allowed us to show that these coumarinic derivatives have a strong inhibitor effect on the fungus germination. Ayapin was also able to inhibit *Phoma macdonaldii* growth. Quantification of scopoletin in planta, at different time after contamination by *Phoma*, proved that this compound showed a level of synthesis and accumulation twice more important in tolerant genotype compared to the susceptible one.
- Finally, with the construction of a 1000 element cDNA microarray, on which were included more than 100 cDNA implicated in biotic stress responses, we revelead differential expression of some genes between partially resistant and susceptible genotypes. These genes could be implicated in sunflower tolerance to *Phoma macdonaldii*.

The different results obtained will hopefully allow sunflower inprovement in order to increase its resistance to this disease.