SPECIFICATIONS

Blade Span:
9^{\prime} or 10' diameter 6061-T6 aluminum, varied pitch for low
wind, high torque start up.

Compressor:
Cast iron, heavy duty, two or four cylinder depending on pumping requirements. Compressor is capable of 5,10 or 15 cubic feet of air volume per minute depending on model.

Pump:

Air injection. No moving parts, no cylinders, valves, rods or leathers to wear out. Will run dry, accepting silt, sand, and sludge without harm. Can be made to fit well casings as small as 2 ". Length is 4 '.

Frame:

Cast stainless steel or painted steel depending on model, side facing auto furling turn out assembly with internal compression spring gas charged shock.

Air Line:
$1 / 2$ " polyethylene tubing

Water line:
$0-50$ ' lift: \#\#' tubing.
50-100' lift: \#\#' tubing.
100^{\prime} and over lift: \#\#' tubing.

AIRLIFT WINDMILL MODELS

LIFT CAPABILITIES

AIRLIFT Quad H.O.: 315^{\prime} Maximum lift From the static water level. Up to 30 gallons per minute.
AIRLIFT Quad: 315’ Maximum lift From the static water level. Up to 20 gallons per minute.
AIRLIFT 1: 300^{\prime} Maximum lift From the static water level. Up to 10 gallons per minute.

AIRLIFT Quad H.O. 10' Diameter blade 4 Cylinder compressor 200' X 1/2" Air line Air Injection Pump Net weight 260 lb

AIRLIFT Quad
10' Diameter blade 4 Cylinder compressor 200' X 1/2" Air line Air Injection Pump Net weight 250 lb

AIRLIFT 1
9' Diameter blade
2 Cylinder compressor $200^{\prime} \mathrm{X} 1 / 2^{\prime \prime}$ Air line Air Injection Pump Net weight 225 lb

Performance

 Submersion:
Depth of the Air Injection pump under water (minimum). Equal to \#\# of vertical lift distance from water level in well to the highest point of delivery. Where minimum recommended submersion is not possible, use of a collector tank and a regulator in the air line will prevent excessive air pressure and volume. Submersion less than \#\#' restricts vertical lift, but where water is only to be lifted a few feet, submersion of $\# \# \mathrm{ft}$. with air tank is practical.
\square

- highest performing
- EASIEST TO USE
- ECONOMICALLY PRICED

AIRLIFT TECHNOLOGIES WATER PUMPING WINDMILLS

THF BETTER AITERNATIVE TO THE
 OID FASHIONED WINDMIII

Lift/submergence Ratios Established by Corps of Army Engineer NOTE: Varying altitudes affect the ratios. Horizontal pumping requires up to an additional 25% submergence to maintain velocity and air/water ratios. Change of direction in water line to storage area requires use of long sweep bends.

* LIFT

Adequate submersion of the pump below static water level is \#\# up to lift. \#\# lift to \#\# lift requires \#\# submersion. Lift is the vertical distance from water level in the well to the delivery point.

