CHAPTER 2. Farming of Macrobrachium rosenbergii

## CHAPTER. 2. FARMING OF MACROBRACHIUM ROSENBERGII

### 2.1. INTRODUCTION

Aquaculture as an innovative step to economic strategy of any country hardly needs emphasis, it includes all aspects of production of fresh, brackish and marine water aquaculture organisms in captivity either some or all stages of their life cycle up to marketable sizes. Lone Khalid (1988) has described "Aquaculture as an underwater agriculture". FAO (2002), "Farming of aquatic organisms including fish, molluscans, aquatic plants and crustaceans. Farming implies some form of interventions in the rearing process to enhance production such as regular stocking, feeding, protection from predators etc". Aquaculture has been defined as "the rearing of aquatic organisms under controlled or semi-controlled conditions". "Aquaculture has also been stated the same objective of agriculture and stock breeding mainly to increase the production by all possible means than the natural wild level of production". Further, the new encyclopedia Britannica, has defined aquaculture on "The exploitation of a natural or artificial body of water for the growth of food products, such as fish, mollusks, crustaceans and seaweed".

The freshwater prawn Macrobrachium rosenbergii was the first species to be studied extensively and farmed commercially which is indigenous in the whole of South and South East Asian countries as well as Northern Oceania and Western Pacific islands. It has been transferred extensively within its natural range and has been introduced into many countries where its farming has been established (Nandlal and Pickering, 2005). Among all the freshwater prawn, scampi is the largest known species and grows to a maximum size of 750 gm .

### 2.1.1. Systemic position of Macrobrachium rosenbergii- Nomenclature (New, 2002)

The giant freshwater prawn, Macrobrachium rosenbergii (De Man, 1879), was one of the first species of the Macrobrachium genus. The family tree of the giant freshwater prawn is:

| Kingdom | Animalia - animals |
| :--- | :--- |
| Phylum | Arthropoda - (insects, spiders, crustaceans etc.) |
| Subphylum | Crustacea - (crabs, lobsters, shrimp, etc.) |
| Class | Malacostraca |
| Order | Decapoda |
| Sub-order | Pleocyemata |
| Family | Palaemonidae |
| Subfamily | Macrobrachium |
| Genus | rosenbergii (DeMan, 1879) |
| Species | - Giant River prawn |
| English | - Mandai erral |
| Tamil | - Neela kanta royyi |
| Telegu | - Atta kondu |
| Malayalam | - Scampi |
| Commercial name |  |

In India, the major commercial species are M. rosenbergii and M. malcomsonii. In India, the giant freshwater prawn inhabits most of the tidal rivers, along both the coasts, in the west coast from Indus delta to Malabar Coast and on the east coast from the South to Mahanadi delta and also in deltanic Bengals (Chandrasekaran and Sharma, 1997).

Chandrasekaran and Sharma (1997) and Mariappan (2000) reports on the prawn fisheries in the longest rivers such as Godavari, Krishna, Ganga, Hooghly and Cauvery.

### 2.1.2. Economic value

Farmed production of freshwater prawns in India increased from 7140 mt in 1999-2000 (financial year April 1999 to March 2000) to 30450 mt , valued at Rs.584.6 crores (US $\$ 1.3$ million) in 2002-2003 (MPEDA, 2001 and 2004). The production of farmed marine shrimp in India in 2002-2003 is estimated at 115320 mt , valued at Rs. 3346.96 crores (US $\$ 7.438$ Million) (Kutty, 2005). The average farmed prawn production for India is $879 \mathrm{~kg} / \mathrm{ha} / \mathrm{year}$, which is higher than the corresponding value for shrimp (758 kg/ha/year) (MPEDA, 2004).

Prawns are considered a delicacy and therefore have a huge demand in domestic and foreign markets. They are well known as a high protein, low fat food and containing protein (16-19\%), total lipid (1.0-2.2\%) and gross energy 85-90 kcal (Gopalan et al., 2000). These are exported to as many as 70 countries all over the world (Bhojan, 2003). For example India alone carried about INR 6100 crore, earned by the export of prawn and shrimps. Giant freshwater prawn alone contributed INR 444.1 crore (US\$ 925 millions) (Murthy and Thanuja, 2005).

### 2.1.2.1. Status of freshwater prawn farming

Giant freshwater prawn farming is a major contributor to global aquaculture, both in terms of quantity and value. By 1987, global production of farmed M. rosenbergii was estimated to be around 27,000 tons per annum (New, 1990). In 1993, the overall production was 17,164 tons, worth US\$ 116,799,000 and in 2005 it reached 205,033 tons with a net value of US\$ 896,263,000 (FAO, 2007). China is by far the leading producer with over 128,300 tons. Vietnam was the second in the list with 28,000 tons. However,
even if a very modest expansion of 10 percent year ${ }^{-1}$ occurs, global farmed production of M. rosenbergii will have significantly exceeded 400,000 tons by 2010.

### 2.2. REVIEW OF LITERATURE

### 2.2.1. History of freshwater M. rosenbergii aquaculture systems

Primitive methods of prawn culture had been practiced for centuries in some Asian countries, especially in India and Bangladesh. Ling (1962) first studied the life cycle and Fujimura (1966) demonstrated mass rearing techniques of juveniles of M. rosenbergii. The first juvenile prawns were produced in June, 1962 and within a period of about ten years, worldwide interest in freshwater prawn culture was generated and research and development started practically in all the Asian and far Eastern countries (Ling and Costello, 1976). Burma, Bangladesh, India, Indonesia, Kampuchea, Malaysia, Philippines, Sri Lanka, Thailand and Vietnam have their own native stock. However, Australia, England, Hawaii, Japan and Singapore obtained their initial stock from Malaysia, Israel, Taiwan, Province of China, imported stocks from Thailand (Ling and Costello, 1976).

After successful commercial rearing of $M$. rosenbergii larva by Ling (1969), many attempts have been made towards the production of seeds with artificial, live and microencapsulated diets (Nelson et al., 1977a; Kanazawa et al., 1982; Ang et al., 1987; Rao 1994; Dhert and Sorgeloos, 1995; Alam et al., 1996; Murthy, 1998; Tiwari and Sahu, 1999; Debabani et al., 2001; Kovalenko et al., 2002; Das et al., 2007; Velu and Munuswamy, 2007 and Nhan et al., 2010). Attempts were also made to improve the nutritional quality of $M$. rosenbergii with different feeds with probiotics. In this regard, contributions were made by Ravishankar and Keshavanath (1988); Sheen and D'Abramo (1991); Das et al. (1996); Harparz (1997); Tidwell et al. (1998a, 1999, 2000); Gonzalez-

Pena et al. (2002); Du and Niu (2003); Felix and Sudharsan (2004); Giap et al. (2005); Lan et al. (2006) and Gupta et al. (2007).

### 2.2.2. Soil composition

For the farming of $M$. rosenbergii, good pond soil and availability of water are two important prerequisites. The soil texture and compounds such as organic carbon, pH and nutrients varies in different ponds. The soil characteristics of aquaculture ponds are reported by Boyd (1995), Chien (1992), Clifford (1992) and Hattori (1994). Smith (1996) studied soil texture, trace metals, total nitrogen and phosphorus in Australian freshwater prawn farming area. Mukhophadyay et al. (1997) reported $20.2 \%$ clay, $13.5 \%$ silt and $66.5 \%$ sand in low saline M. rosenbergii culture ponds. Paulraj (1999) studied the accumulation of organic matter, nitrogen and phosphorus content of the soil during fourth month of culture. Correia et al. (2003) studied the effect of pond on natural food availability and growth of $M$. rosenbergii. Wudtisin and Boyd (2006) recorded $36.2 \%, 63.6 \%$ and $0.2 \%$ of clay, silt and sand, respectively, in freshwater prawn ponds.

### 2.2.3. Soil bacteria

Bacteria are the most dominant group of microorganisms in the soil and its population depends upon physical, chemical and biological conditions of the soil (Alexander, 1983). Fonseka (1990) and Smith (1996) studied the total microbial population in freshwater prawn farm in Sri Lanka and Australia, respectively. Abraham et al. (1995) studied occurrence of luminescent bacteria in penaeid shrimp grow-out system. Nabi et al. (1996) reported bacterial colony forming units of $P$. chinensis and $M$. rosenbergii in summer and winter monsoon periods.

Pond water, pond sediments and receiving water are compared with bacterial load in P. monodon by Tendencia and de la Pena (2001). Phatarpekar et al. (2002) investigated
the quantitative and qualitative of bacterial flora associated with larval rearing. Sahul Hameed et al. (2003) studied the bacterial load in larvae and post larvae of M. rosenbergii and their resistance to various antibiotics used in aquaculture. Abraham and Palaniappan (2004) studied luminous bacterial load and its species composition in commercial penaeid shrimp farms. Total heterotrophic bacterial counts were studied in modified extensive and semi - intensive shrimp culture system in west Bengal, India by Abraham et al. (2004). Lalitha and Surendran (2004) studied water canal sediment bacterial samples of $M$. rosenbergii culture pond. Jeyasekaran et al. (2006) explained bacteriological quality of $P$. indicus, Tuticorin, Tamilnadu, India. Jana et al. (2007) studied bacterial changes in water quality attribute to the polyculture of $M$. rosenbergii. The diverse range of bacteria has been examined as probiotics for possible use in aquaculture by Kesarcodi-Watson et al. (2008).

### 2.2.4. Soil fungi

Fungi are viable in a variety of habitat. Mostly all aquatic fungi are heterotrophicin nature, require free oxygen, some grow in acid as well as in alkaline waters, at pH values of 3.0 - 9.5. Manoharachary and Ramarao (1983) isolated 47 fungal species from two freshwater mud ponds in Hyderabad. Singh and Wadhwani (1989) reported the fungal population of flowing and stagnant aquatic habitats.

The diversity of freshwater fungi has been investigated in different ecological habitats such as, ponds, streams, lakes, reservoirs and rivers. Okaemo and Olufemi (1997) and Okpokwasilli et al. (1998) studied fungal species in tilapia and catfish pond, respectively, in Nigeria. Further, Girivasan et al. (1998) and Koilraj et al. (1999) isolated fungal species in peat soil and caves, respectively. Paulraj (2002) isolated 12 and 7 genera of mesophilic and thermophilic fungi in the culture ponds of $M$. rosenbergii respectively.

### 2.2.5. Phytoplankton

Phytoplankton forms the basic link in the food chain of fishes in aquatic biotope. Many investigators have studied phytoplankton and their role in the freshwater ponds (Sharma and Saini, 1991). MacLean et al. (1994) reported the phosphorous and nitrogen are the most important limiting nutrients for the phytoplankton growth. Akpan and Okafor (1997) reported the diversity and abundance of plankton in response to fertilization with fresh piggery and poultry dungs in two freshwater ponds in Nigeria. Johnston et al. (2002) studied water quality parameters and plankton diversities in shrimp pond in Mekong delta of Vietnam. The effects of different densities of caged Oreochromis niloticus, on water quality, phytoplankton populations, were evaluated in M. rosenbergii, production ponds (Danaher et al., 2007). Rahman et al. (2008) reported water quality, nutrient accumulation and plankton and benthos were high in common carp pond.

### 2.2.6. Zooplankton

Zooplankton forms an important link in the transfer of energy from producers to carnivores. The consumption of zooplankton by juveniles of shrimp in aquaculture ponds was suggested in earlier studies (Moriarty and Barklay, 1981 and Chen and Chen, 1992). Further, Boyd (1990) and Sharma and Saini (1991) reported peak zooplankton population coinciding with or followed by the maximum release of nutrients. Hills et al. (1997) and Tidwell et al. (1995, 1997a) showed that the benthic fauna of $M$. rosenbergii culture pond plays a major role in determining its production. Further, Martinez-Cordova et al. (1997) reported the presence of larvae of copepods, polychaetes and ostracods in the digestive tract of $P$. vannamei. The importance of live feed in aquaculture was reviewed by many investigators (Neelakantan et al. 1988 and Lavens and Sorgeloos, 1996). Sivakumar and Altaff (2001) reported diversity of rotifers species in Dharmapuri district in Tamilnadu,

India. The copepod and cladocerans population of fifty freshwater bodies are studied in Dharmapuri district by Sivakumar and Altaff (2004). The abundance and species composition of zooplankton assemblage were examined in $P$. monodon pond in Australia by Preston et al. (2003).

The diversity of copepods of Muttukadu and Ennore of Chennai coast were recorded 33 species from March 2002 to February 2003, in Chennai, Tamilnadu, India by Altaff et al. (2004). Sivakumar and Altaff (2005) reported diversity of zooplankton in around Chennai, India. Coman et al. (2006) studied zooplankton and epibenthic invertebrates of $P$. monodon pond, for entire growth period. The largest fractions of N and P inputs accumulating in fish, phytoplankton and zooplankton observed in common carp ponds with artificial feed to fertilize in rohu, Labeo rohita pond (Rahman et al., 2008).

### 2.2.7. Physical and chemical parameters of the culture pond water:

### 2.2.7.1. Water Quality

Probiotics was used to supply beneficial bacteria strains to rearing water that will help to increase microbial sp . composition in the environment and to improve water quality. Probiotics is considered to be able to make cultured animals healthier by inhibiting the growth of pathogenic bacteria in the same habitat. This led to new strategy for prevention of disease outbreaks and improvement of seed quality (Maeda, 1999, Oanh et al., 2000, Verschuere et al., 2000 and Rengpipat et al., 2003). The major source of nutrients in intensive prawn culture pond is feed. Excess feed, fecal matter and other metabolites become available in large quantities for the growth of algae and micro-organisms. Sudden increase or decrease of algal and microbial population can cause drastic changes in water quality parameters, which inturn affect the growth of the cultivable animal.

### 2.2.7.2. Water depth

Average pond water depth and water movements are two important factors that can affect numerous aspects of pond environment. New and Singholka (1985) recommended 0.9 - 1 m depth for freshwater prawn farming. A water depth of $40.7-110 \mathrm{~cm}$ was reported by Rao (1986b) in M. malcolmsonii culture pond. Recently D'Abramo et al. (2000) studied water volume and exchange rate in M. rosenbergii juvenile growth. Apart from this, water quality with different manures (MacLean et al., 1994), range of salinity (Ignatius and Thampy, 1991), trace metals (Abdennour et al., 2000) and probiotics (Wang et al., 2005) of shrimp/prawn culture ponds were also reported.

### 2.2.7.3. Turbidity and Transparency

Water transparency refers to the quantity of suspended material which interfers with light penetration in the water column of about $35-45 \mathrm{~cm}$ is considered to be normal. If it is below 30 cm it indicates high phytoplankton density whereas above 45 cm indicates low phytoplankton density. High turbidity raises temperature and enhances the dissolved oxygen stratification in ponds and also clogs the gills of the prawn. Rao (1986b) recorded a turbidity level of 24.2 to 38.7 cm in M. malcolmsonii culture pond. Sadek and Moreau (2000) recorded $35 \pm 15 \mathrm{~cm}$ and $37 \pm 10 \mathrm{~cm}$, in $M$. rosenbergii and $P$. semisulcatus culture ponds respectively. Wang et al. (2005) reported the final transparency of the commercial probiotic treated ponds of $P$. vannameii was higher $(26.5 \pm 2.1 \mathrm{~cm})$ than $(6.7 \pm 0.9 \mathrm{~cm})$ the control ones $56.5 \pm 8.6 \mathrm{~cm}$ of transparency were recorded in M. rosenbergii cage culture by Cuvin -Aralar et al. (2007).

### 2.2.7.4. Temperature

Normally a temperature range of $25-30^{\circ} \mathrm{C}$ supports normal growth of prawns/shrimps, (Thang, 1995). Optimum growth of M. rosenbergii at $27^{\circ} \mathrm{C}$ temperature
was reported and recommended (Smith and Sandifer, 1982; New and Singholka, 1985). Ra'anan et al. (1990) observed mortality of $M$. rosenbergii in the culture pond of Israel at $19^{\circ} \mathrm{C}$. Temperature ranges from 24.8 to $29^{\circ} \mathrm{C}$ for M. malcolmsonii (Rao, 1986b), 19 to $33^{\circ} \mathrm{C}$ for M. rosenbergii (Langer and Somalingam, 1993) and $27.7-29.5^{\circ} \mathrm{C}$ for $P$. monodon (Hariati et al. 1996) was suggested. Hoq et al. (1996) and Sadek and Moreau (2000) recorded the temperature ranges from 27.5 to $30.5^{\circ} \mathrm{C}$, and $26 \pm 2.9^{\circ} \mathrm{C}$ in $M$. rosenbergii polyculture system, respectively. Herrera et al. (1998) and Manush et al. (2004) reported critical thermal maxima and minima in post larvae and juvenile of $M$. rosenbergii acclimated at 10 to $41.6^{\circ} \mathrm{C}$. VanArnum et al. (2001) reported influence of temperature in food consumption of M. nipponense increased with temperature ranges from $10-30^{\circ} \mathrm{C}$. Niu et al. (2003) studied the effect of temperature on feed, consumption, growth and metabolism in M. rosenbergii. Wang et al. (2005) recorded the temperature of probiotic applied ponds of $P$. vannamei of about 22.2 to $34.8^{\circ} \mathrm{C} .28 .9-32.5^{\circ} \mathrm{C}$ of temperature were recorded in low-cost diet experiment by Hossain and Paul (2007) in M. rosenbergii.

### 2.2.7.5. pH

Water pH is influenced by accumulation of carbon dioxide during night, which makes water pH to fall to its minimum, at dawn. According to New and Singholka (1985), fresh and marine water resources used for prawn hatchery should have pH ranges from $7.0-8.5$.

Generally a pH range from $7.5-9.0$ was reported in the monoculture ponds (Rao, 1986b; Durairaj et al., 1992; Langer and Somalingam, 1993 and Vasudevappa et al., 1998). However, pH range from $7.4-8.5$ was reported in M. rosenbergii polyculture system (Hoq et al., 1996; Hassan and Bandhopadhyay, 1997 and Sadek and Moreau,
2000). Straus et al. (1991) reported high pH caused mortality in M. rosenbergii. Cheng and Chen (2000) tested with four different pH levels at $28^{\circ} \mathrm{C}$, different temperature levels at pH 7.5 , different salinity levels of $7.5-7.8$ at $28^{\circ} \mathrm{C}$ and $0.6 \%$ feeding rate in different temperature of 7.5 pH . Cheng and Chen (2002a) and Chen and Chen (2003) reported feeding rate was reduced in $M$. rosenbergii exposed to pH 6.8 and lower. High pH level decreased the last zoea stage of $M$. rosenbergii larval rearing (Mallasen and Valenti, 2005). Hossain and Paul (2007) recorded $6.4-7.7 \mathrm{pH}$ in different low-cost feeding regimes in their experiment.

### 2.2.7.6. Dissolved oxygen

Oxygen concentration in pond water exhibits a diurnal pattern with maximum occurrence during the peak of photosynthesis in the afternoon, minimum occurring at dawn due to high respiration. Low dissolved oxygen in ponds is one of the most common causes of mortality and growth reduction in prawn. Dissolved oxygen range from 2.5 to 10.2 ppm was recorded in M. rosenbergii culture ponds (Durairaj et al., 1992; Raman, 1992; Langer and Somalingam, 1993 and Vasudevappa et al., 1998). Chen and Kou (1996) studied oxygen consumption related to temperature and excretion. Taylor et al. (2002) studied the oxygen consumption which inturn influence the metabolic rate in $M$. rosenbergii post larvae. Cheng et al. (2003b) investigated the physiological parameters of M. rosenbergii exposed to various dissolved oxygen (DO) levels. Manush et al. (2004) tested externa and internal maxima and minima rate of oxygen consumption in adult $M$. rosenbergii. Lan et al. (2006) recorded $3.48 \pm 0.24$ to $4.45 \pm 0.46 \mathrm{mg} / \mathrm{L}$ of DO in rotational rice-prawn system at different density in M. rosenbergii culture. Hossain and Paul (2007) reported $8.1-8.5 \mathrm{ppm}$ of dissolved oxygen in different low cost feeding regime in M. rosenbergii.

### 2.2.7.7. Alkalinity and hardness

In general, alkalinity ranged between $30-300 \mathrm{mg} / \mathrm{l}$ in freshwater aquaculture system (Chand, 1999c and Adhikari, 2000). Alkalinity is closely related to hardness. Bartlett and Enkarlin (1983) and New and Singholka (1985) reported hardness level of 40-150 ppm as normal for $M$. rosenbergii culture. However, occurrence of high total hardness was studied in many cultures ponds of M. rosenbergii (Vasquez et al., 1989; Brown et al., 1991; Sadek and Gayer, 1995; Hoq et al., 1996 and Sadek and Moreau, 2000). Further, Rao (1986b) recorded an alkalinity range from 141 to 194 ppm in M. malcolmsonii culture ponds. Variations in the levels of the total alkalinity of $M$. rosenbergii culture ponds were reported (Durairaj et al., 1992; Langer and Somalingam, 1993; Sadek and Gayer, 1995 and Hassan and Bandhopadhyay, 1997). Sadek and Moreau (2000) recorded a total alkalinity range between 200-220 mg/l in M. rosenbergii polyculture system.

### 2.2.7.8. Ammonia and nitrite

Ammonia is released by excretion and bacterial decomposition. Ammonia is more toxic in alkaline water. When ammonia is combined with nitrite, it affects the animal growth. At the same time total ammonia is toxic when dissolved oxygen concentration is low. Chen et al. (1990) studied the effect of ammonia and nitrite on $P$. monodon juveniles. Straus et al. (1991) recorded high ammonia value cause mortality in M. rosenbergii culture pond. Chen and Kou (1996) revealed that Ammonia- N excretion and total nitrogen excretion decreased with increased pH level in M. rosenbergii. Higher level of ammonia was reported in many $M$. rosenbergii culture ponds (Langer and Somalingam, 1993; Vasudevappa et al., 1998 and Sadek and Moreau, 2000). The ammonia in water decreases the virulence of Enterococcus and reduces the immune resistance of $M$
rosenbergii (Cheng and Chen, 2002b). Higher level of ammonia decreased the last zoea stage of M. rosenbergii (Mallasen and Valenti, 2005). Ammonia- nitrogen toxicity studies was carried by Naqvi et al. (2007) in M. rosenbergii juveniles in culture pond.

### 2.2.8. Farming

The giant freshwater prawn can be cultured alone or in polyculture with fishes in pond. In tropical areas, prawns were cultured and selectively harvested on a regular basis from continuous production ponds (Fujimura, 1974), whereas in temperate areas ponds were drained and harvest was carried out (Smith et al., 1976). Many attempts were carried out to increase the production and yield of $M$. rosenbergii with different stocking densities, water and soil qualities (Boyd, 1990; Clifford, 1992; Langer and Somalingam, 1993; Sadek and Gayar, 1995 and Adams and Thompson, 2011), artificial and natural feed (Rao, 1992, 1994, 1998; Alam et al., 1993a, b and Murthy, 1998) in mono and polyculture systems (Buck et al., 1981; D’Abramo et al. 1986; Karplus et al., 1986a; MacLean et al., 1994; Sadek and Moreau, 1998, 2000, Tidwell et al., 2004a, b; Kutty, 2005; Uddin et al., 2007; Kunda et al., 2008 and Uddin et al., 2008).

### 2.2.8.1. Monoculture

Monoculture of $M$. rosenbergii was carried out by many investigators in different stocking densities (Brody et al., 1980; Limpadanai and Tansakul, 1980 and Smith and Sandifer, 1982). Further, Subramanyam (1984) obtained $700 \mathrm{~kg} / \mathrm{ha}$ of M. rosenbergii in 180 days with a stocking density of 30,000/ha. Karplus et al. (1986a) reported 1 - 4 nos $/ \mathrm{m}^{2}$ in $M$. rosenbergii culture pond. Similar type of experiment was carried out by Stwalley and Beasley (1987), Wang et al. (1987) and D’Abramo et al. (1989). Raman (1992) recommended a stocking density of $1.7-2.5 \mathrm{nos} / \mathrm{m}^{2}$ for $M$. rosenbergii culture. A stocking density of 6 and $12 \mathrm{nos} / \mathrm{m}^{2}$ was experimented by Sadek and Gayer (1995), Sadek
and Moreau (1998) and Tidwell et al., (1999).
Giap et al. (2005) studied the effect of different feeding and fertilization regimes on rice and $M$. rosenbergii production. $28.8 \pm 3.2$ to $49.8 \pm 2.8$ percentage of survival was achieved at different stocking density of $M$. rosenbergii ( $1,2,3$, and 4 PL $\mathrm{m}^{2}$ ) using pellet and pellet with snail meat by Lan et al. (2006). Three experimental diets were formulated using fish meal, meat and bone meal, mustard oilcake, sesame meal and rice bran in different combinations in M. rosenbergii (Hossain and Paul, 2007) and Moraes-Valenti and Valenti (2007) investigated the feeding habit, growth, and production and population structure of $M$. amazonicum. Singh et al. (2008) studied the growth performance and Schwantes et al. (2009) reviewed the production performance of M. rosenbergii in Thailand. Nhan et al. (2010) investigate the effects of larval stocking density and feeding regime on larval growth, survival and larval quality of $M$. rosenbergii.

### 2.2.8.2. Polyculture

The advantage of polyculture of prawn over monoculture is that it requires less prawn seed and feed, therefore lower investment. Wohlfarth et al. (1985) cultured M. rosenbergii with common carp, Chinese carp and tilapia. Same types of experiments were conducted by Costa-Pierce et al. (1987) using silver carp, grass carp and gray mullet in M. rosenbergii polyculture system. Karplus et al. (1990) obtained $81 \%$ survival in M. rosenbergii polyculture with carps. Similar study was also conducted by Granados et al. (1991), Langer and Somalingam (1993) and Hoq et al. (1996).

Further, Sadek and Moreau (1996) reported M. rosenbergii, Oreochromis niloticus, Cyprinus carpio culture with different stocking densities. Ahmed et al. (1996) stated that polyculture of $M$. rosenbergii will not affect the production of carps. Hassan and Bandhopadhyay (1997) revealed fish and prawn culture practices in rain fed coastal soils.

Sarangi et al. (1998) studied the possibility of polyculture of $M$. rosenbergii in Andaman Island. The production potential of $M$. rosenbergii in polyculture system was described by Nair and Murthy (1999) and Sadek and Moreau (2000). Garcia-Peerez et al. (2000) compared the yield of monoculture and polyculture production of $M$. rosenbergii in Pueto Rico.

Hossain and Islam (2006) workout for optimized stocking density of $M$. rosenbergii with carps for 3 months in 10 experimental pond of $80 \mathrm{~m}^{2}$. Optimized the stocking ratios of tilapia and freshwater prawn in periphyton based systems and compared tilapia monoculture and its polyculture with freshwater prawn by Uddin et al. (2006). Kunda et al. (2008) and Wahah et al. (2008) reported stocking density of M. rosenbergii with small fish 'mola' Amblypharyngodon mola in rotational rice-fish/ prawn culture systems in Bangladesh. Mohanty (2009) also studied M. rosenbergii with carps in ricefield in India. Asaduzzaman et al. (2010) studied two carbohydrate sources compared in $40 \mathrm{~m}^{2}$ ponds stocked with M. rosenbergii juveniles, 20 Orecochronis niloticus and rohu, Labeo rohita in three different combinations.

### 2.2.9. Probiotics

Recently many workers proved probiotics as a better choice to incorporate in the feed and aquaculture environment. Suralikar (1996) reported the use of Lactococcus lactis subspecies cremoris as probiotic for M. rosenbergii post-larvae. Rengpipat et al. (1998) reported $P$. monodon larvae reared using the Bacillus-fortified Artemia probiotic as a feed. Himabindu (1998) observed that a significant growth rate was recorded when probiotic was fed to M. rosenbergii post-larvae. Gatesoupe (1999) clearly reviewed probiotic terminology applied in the aquatic environment and needs for further research. Oanh et al.
(2000) reported the effects of probiotics in the culture of post larvae of freshwater prawn M. rosenbergii.

The feeding with live bacteria can be an effective treatment for improving the growth in pond condition was reported by Rengpipat et al. (2000) in Penaeus monodon. Abidi (2003) reviewed probiotic application in Nellore district, where farmers using both water and feed probiotic in M. rosenbergii culture. Indulkar and Belsare (2003) examined 90 to $95 \%$ survival of post-larvae of $M$. rosenbergii when administrated probiotic mixed diet. Vaseeharan and Ramasamy (2003) results indicated that probiotic treatment offers a promising alternative for the use of antibiotics in shrimp aquaculture. Gullian et al. (2004) and El-Dakar and Goher (2004) found the enhanced growth was generally obtained in shrimp fed diets with B. subtilis inclusion. Lin et al. (2004) used a probiotic strain (Bacillus sp.) in the culture of Liptopenaeus vannamei. Venkat et al. (2004) conducted a study of probiotics treatment in the post-larval diet of $M$. rosenbergii using Lactobacillus acidophilus and $L$. sporogenes for 60 days. Wang et al. (2005) tested the effectiveness of water quality, population density of bacteria and shrimp productions in ponds treated with commercial probiotics in $P$. vannamei.

Farzanfar (2006) reviewed the use of probiotics in shrimp aquaculture. Vine et al. (2006) also reviewed probiotics in marine larviculture. A significant improvement of growth of $M$. rosenbergii occurred when the feed included a mixed culture of Bacillus strain, (Deeseenthum et al., 2007). Keysami et al. (2007) studied by using Bacillus subtitles bacterium, on larval growth and development rate of M. rosenbergii in Malaysian hatchery. Wang et al. (2007a) analysed the diversity of bacteria in shrimp ponds. Decamp et al. (2008) reported the performance of Bacillus strains, using data from Asian and Latin American hatcheries with P. monodon and Liptopenaeus vannamei. Gatesoupe (2008)
updated the importance of lactic acid bacteria and probiotic treatments in polyculture farming. Kesarcodi - Watson et al. (2008) reported the need, principles, mechanism of action and screening processes of probiotic application in aquaculture. Sahu et al. (2008) reported the selection of the potential probiotics, their importance and future perspectives in aquaculture industry. Zhang et al. (2008b) identified the potential probiotic in shrimp $F$. chinensis.

Saad et al. (2009) investigated the impact of adding probiotics (Biogen) in the diet of M. rosenbergii during the post larval growth. Sansawat and Thirabunyanon (2009) studied the characteristic activity and antagonistic ability of the novel probiotic strain of B. subtilis isolated from the gastro intestinal tract of M. rosenbergii. Qi et al. (2009) discussed mainly the application about species, effects, mechanism, problems and prospect of probiotics used in aquaculture in china. Though, several studies have shown that the probiotic concept has potential with aquaculture sector, much more work is still needed.

### 2.2.10. Aim of the study

The perusal of the literature indicates the importance of freshwater prawn culture and a number of factors governing the successful culture of M. rosenbergii. Earlier reports indicated a variation with regard to soil parameters, water parameters and plankton in different ponds. Stocking density, culture duration and harvest also showed variation in different places. Though, culture of $M$. rosenbergii was studied extensively in many countries like America, England, Australia, Bangladesh, Israel, Egypt, Brazil, Thailand, Taiwan, Philippines, Malaysia, China, etc. and also many parts of India, only a few reports are available from Tamilnadu (Durairaj and Uma Maheswari, 1991 and Durairaj et al., 1992).

Further, it is evident that most of the probiotics are used for shrimp culture practices except Suralikar (1996), Himabindu (1998), Indulkar and Belsare (2003) and Venkat et al. (2004) reported larval rearing of $M$. rosenbergii in India, but no reports on farming trial. However, probiotic specific to freshwater conditions have not been developed, the commercial probiotics currently used in marine shrimp farms are from soil, water, intestine and terrestrial group. The effect of these bacteria or their spores in the environment or to the cultured animals has not so far been investigated in a comprehensive manner. In this concept the present study was carried out on detail, of intensive culture and growth of M. rosenbergii in two adjacent ponds along with soil, water and feed commercial probiotic applications.

### 2.3. MATERIALS AND METHODS

### 2.3.1. Pond location

The M. rosenbergii culture farm selected for the present study is situated at Vishnuvakkam 56 km away from Chennai, Tiruvallur District, Tamil Nadu, India. This farm consists of two ponds: control pond (fig.1) and probiotic experiment pond of 0.603 ha (length and width, $298 \times 213 \mathrm{~m}$ ) (fig.2). Depth of these ponds is about 1.5 m . Control pond is separated from probiotic experiment pond by a bund of $80-95 \mathrm{~cm}$ width. All the other three sides of the ponds also have bund of same width. These ponds are surrounded by agriculture field and are provided with a sluice gate measuring $2 \times 1.5 \mathrm{~m}$ (length and width) in order to drain the water. There are three screens at the sluice gate with a mesh size of $0.5,1.0$ and 1.5 cm in order to prevent the escape of animals at the time of drainage of water. In addition to the sluice gate, two emergency pipes of 8 inch diameter with valves were also installed for letting out water during rainy seasons. In order to prevent cannibalism, shelter and hideouts (country tiles and coconut leaves) were

Fig. 1.
Control pond of Macrobrachium rosenbergii culture

Fig. 2. Probiotic experimental pond


Fig.3. Dewatered and dried pond

Fig . 4.
Ploughed pond

provided at the bottom of the pond.

### 2.3.1.1. Pond preparation

As a first preparatory measure, the ponds were dewatered and dried. The soil surface was exposed to sunlight till it develops deep cracks (fig. 3). The ponds were then ploughed using a tractor to tilt the soil up to a depth of $10-15 \mathrm{~cm}$ (fig. 4). This was followed by the manual application of agricultural lime, ( $100 \mathrm{~kg} / \mathrm{ha}$ ) to each of the ponds in order to decompose the organic matter of the pond soil. Twenty four hours later, water was pumped to a height of 15 cm and allowed to stand for 48 hrs and at the same time 50 kg of bleaching powder were applied to kill the microbes and fish eggs, thereafter it was drained. Subsequently to this, the ponds were filled with ground water pumped through two 15 HP motor from a bore-well. Filling up of water to a height of one meter was achieved by pumping water for two weeks.

### 2.3.1.2. Pond fertilization

After filling water, the ponds were fertilized with microbial mixture and inorganic fertilizers for a period of 10 days in order to provide nutrients for the growth of microbes, algae and zooplankton. First, microbial mixture [rice bran ( 15 kg ), groundnut oilcake ( 5 kg ), jaggery ( 1 kg ) and yeast ( 100 gm )] was concentrate applied to the ponds, whenever there is depletion of plankton bloom again this microbial mixture was diluted and apply to the ponds, when the animals are noticed in juvenile conditions. Simultaneously $10 \mathrm{~kg} / \mathrm{ha}$ of superphosphate was applied, subsequently $5 \mathrm{~kg} / \mathrm{ha}$ of urea were also applied. At the same time Soda mix [Composition of soda mix- $\mathrm{Ca}++, \mathrm{Mg}++, \mathrm{Na}+, \mathrm{K}+, \mathrm{Cr}$ and So 2 ] (Mineral mix from C.P. Aquaculture (India) Pvt. Ltd., Chennai, Tamilnadu, India) were applied to the pond to improve the mineral level in pond water. Further, Super PS (C.P.) Aquaculture (India) Pvt. Ltd., Chennai, Tamilnadu, India) also mixed with sand and
applied to pond for 20 days once upto end of the culture in probiotic pond only (Rhodobactor Sp., Rhodococcus sp., at concentration of $10^{9} \mathrm{CFU} / \mathrm{ml}$ ).

### 2.3.2. Postlarval stocking and acclimatization

The postlarvae $(60,000)$ were obtained from Aqua Nova (P) Ltd., Kannathur, Chennai, which is situated 106 km away from the culture farm. Five hundred healthy and active postlarvae (PL-15) (mean length $12.8 \pm 1.1 \mathrm{~mm}$ and mean weight $1.2 \pm 0.2 \mathrm{mg}$ ) were packed in each polythene bags ( $40 \times 80 \mathrm{~cm}$ ) containing two liters of water (fig.5) and the bag was inflated with oxygen and closed tightly with the help of a rubber band (fig.6). Artemia nauplii were added to the polythene bags as food for the postlarvae while transportation.

Larvae were carefully transported during the evening hours after sunset by a van. The polythene bags containing postlarvae were placed in the ponds for about an hour for acclimatization. The polythene bags were then opened with least disturbance and pond water was allowed to enter into it by slowly opening the mouth of the bags. The postlarvae were slowly released and introduced in both ponds (fig. 7, 8, 9). The stocking density of $M$. rosenbergii in control pond and probiotic experiment pond was $1.3 / \mathrm{m}^{2}$.

### 2.3.3. Physical and chemical parameter of water analysis

Physical and chemical parameters of water samples of both the ponds were analysed one week prior to the stocking of postlarvae, on the day of stocking of postlarvae, as well as weekly and monthly samples were analysed during the culture period. The physical and chemical parameters such as odour, colour, transparency (Secchi disc), water level, pH (C.P. pH kit), salinity (Refractometer), dissolved oxygen (C. P. DO kit), temperature (Mercury thermometer-atmospheric and water) were analysed weekly in the culture farm.

Fig .5. Measuring post larvae

Fig.6. Packing of Post larvae with aerated bags


Fig.7. Packed postlarvae ready for transportation to culture ponds.

Fig.8. Post larvae packing introduced in the culture pond

Fig.9. Acclimatization of post larvae in the culture ponds


Monthly collection of water samples from control and probiotic experimental ponds were made without overlapping the days of weekly sample analysis and the various parameters of water analysis were analysed in the laboratory by adopting standard procedures of APHA (1995).

### 2.3.4. Soil analysis

Monthly analyses of the soil samples of both ponds were carried out during the culture period. Soil samples from nine places in each pond were collected in a zigzag pattern and the soil was mixed well before analysis. All the studied soil parameters were tested in the "Soil testing and Technology Advisory Centre, Department of Soil Science \& Agricultural Chemistry, Tamilnadu Agricultural University, Coimbatore, Tamilnadu, India.

### 2.3.5. Soil bacterial analysis

. For the culture of soil microbes, culture media were sterilized in an autoclave at 103 kpa for 15 minutes. The glassware's were sterilized in a hot air oven at $160^{\circ} \mathrm{C}$ for 3 h . Pour plate was used to enumerate total heterotrophic bacterial population in the soil samples. Nutrient agar medium was used to culture the bacteria. Composition of the nutrient agar medium per 100 ml distilled water is as follows ( pH 7.2 ):-

| Peptone | -5.0 g |
| :--- | :---: |
| Beef extract | -3.0 g |
| Yeast extract | -2.0 g |
| Agar | -15.0 g |
| Sodium chloride | -1.0 g |

Ninety-nine ml and 9.0 ml of sterile saline $(0.85 \% \mathrm{NaCl})$ blanks were prepared for the serial dilution of the sample. One gram of soil sample was homogenized and then
transferred to sterile saline and thoroughly mixed. The samples were then serially diluted using 9.0 ml of saline water blanks.

One ml of aliquotes from each samples were pipetted out into sterile petriplates and $15-20 \mathrm{ml}$ of sterile nutrient agar medium was poured into the petriplates and the plates were rotated clockwise and anticlockwise. The plates were inverted after the medium got solidified. Duplicate plates were maintained for each dilution and the plates were incubated for $24-42 \mathrm{hrs}$ at $37^{\circ} \mathrm{C}$. After incubation period the bacterial colonies were counted using a bacteriological colony counter. Petriplates containing 30-300 bacterial colonies were selected for the enumeration of bacterial colonies. The bacterial populations were expressed as number of colony forming units (CFU) per gram of the sample analysed.

### 2.3.6. Generic composition of bacterial strains

Isolated bacterial colonies with different morphological growth characteristics were selected at random. The selected bacterial isolates were sub-cultured by streaking in nutrient agar plates to check the purity of the strains. The pure strains were then selected and stored in nutrient agar slants at $4^{\circ} \mathrm{C}$. All the isolates from both ponds sediment were identified upto generic level. The bacterial isolates were identified after Shewan et al. (1960) and Bergey's manual (1986).

### 2.3.7. Soil fungal analysis

The mesophilic fungi were isolated from soil samples using different culture medium at different temperatures. For the present study, Czapek-Dox-Agar (CDA) medium was used for isolation of mesophilic fungi.

### 2.3.7.1. Composition of Czapek-Dox-Agar medium/ 1000 ml distilled water

| Sodium nitrate | -2.0 g |
| :--- | :---: |
| Potassium dihydrogen phosphate | -1.0 g |
| Magnesium sulphate | -0.5 g |
| Potassium chloride | -0.5 g |
| Ferrous sulphate | -0.01 g |
| Agar | -20.0 g |
| Sucrose | -30.0 g |

One gram of soil sample was dispersed thoroughly in 10 ml of sterile distilled water termed as stock solution. From this, 1 ml was transferred to 9 ml of sterile water and mixed well. From this, the stock solution 1 ml was pipetted out into 9 ml of sterile water and mixed well. From this solution, 1 ml was transferred into sterile petriplates containing antibiotic amended agar medium (CDA) ( $10^{3}$ dilutions). Streptomycin sulphate was used as an antibiotic to prevent the bacterial growth in the medium.

The petriplates were incubated at $29 \pm 1^{\circ} \mathrm{C}$ for one week. Six replicates were maintained for each sample of mesophilic fungi. Fungi were mounted using lacto-phenol cotton blue stain and were observed under light microscope. The fungi were identified using Standard Manuals (Cooney and Emerson, 1964; Gilman, 1967; Barnett and Hunter, 1972 and Onions et al., 1981). Percentage contribution and colony forming unit of the fungi were calculated using the following formulae:


Average no. of colonies / plates
Colony forming unit = ---------------------------------------- X dilution factor (CFU)
Total no. of colonies of all species

### 2.3.8. Plankton analysis

### 2.3.8.1. Collection of sample

Monthly collections of plankton sample were made during 6.30-7.30 am from both the ponds during culture period using plankton net of bolten silk mesh (size $50 \mu \mathrm{~m}$ ). Plankton samples were collected by towing the net horizontally at a depth of 1.5 feet for about $40-50$ times. The collected samples were narcotised with $20 \%$ ethyl alcohol and were preserved in 5\% neutral formalin.

### 2.3.8.2. Phytoplankton analysis

Qualitative analysis of phytoplankton was carried out by observing different morphological characters under compound microscope and was identified following the description of Venkataraman (1969) and Anand (1998).

### 2.3.8.3. Zooplankton analysis

### 2.3.8.3.1. Qualitative analysis

The different groups of zooplankton were separated under stereoscopic binocular dissection microscope. Temporary and permanent mounts of the whole plankton were prepared following the methods of Altaff (1990). They were dentified based on the minute morphological details and key characters described by Dussart and Defaye (1995) for copepods; Raghunathan (1989), Murugan et al. (1998) and Sureshkumar (2000) for cladocerans; Chandrasekar and Kodarkar (1995) and Dhanapathi (2000) for rotifers; Victor and Fernando (1979) for ostracods. The eggs, neonates, copepodids and naupliar stages were also identified and recorded.

### 2.3.8.3.2. Quantitative analysis

Hundred liters of water samples was collected from the ponds and separately filtered through the plankton net and plankton were narcotised using 20\% ethyl alcohol
and carefully transferred without any loss to a plastic bottle and preserved in 5\% neutral formalin. For quantification of zooplankton the plankton sample was made up to 10 ml and enumerated using a Sedgewick-rafter counting chamber. The plankton sample was thoroughly mixed and 1 ml of the sample was drawn using a wide mouthed pipette and transferred to the counting chamber. The number of copepods, cladocerans, rotifers, ostracods, eggs, neonates, copepodids and nauplii in ten randomly selected squares of the counting chamber were counted under a compound microscope. The number of plankton per liter was calculated using the formula of Santhanam et al. (1989):

| $\mathbf{N}$ | $=\frac{\mathrm{nxv}}{\mathrm{V}}$ |
| :--- | :--- |
| $\mathbf{N}$ | $=$ |
| $\mathbf{n}$ | $=$ Total number of plankton per liter |
| $\mathbf{v}$ | $=$ Average number of plankton in one ml of plankton cell |
| $\mathbf{V}$ | $=$ Volume of plankton concentrated $(\mathrm{ml})$ |

### 2.3.9. Feeding schedule

Artificial pelletized feed was given to the postlarvae from the second day onwards. The feed provided was "C.P. Scampi feed" C.P. Aquaculture India Pvt. Ltd., Chennai, India. The size of the pellets was ranged from 0.4-0.6 mm. Biochemical composition of the pellet was $30 \%$ crude protein, $3.5 \%$ fat, $12 \%$ moisture and $8 \%$ fiber. Fish meal, soya meal, shrimp shell meal, groundnut meal, sunflower meal, cotton seed meal, vitamin and mineral mix were the ingredients of the feed.

Six hundred grams of feed was broadcasted at 6.30 am and 5.30 pm for two days, in the afternoon 10 liters of microbial mixture was applied to each pond. C.P. scampi feed schedule was followed as per company standardized chart. For broadcasting feed, four poles were erected in the pond corners and connected with rope. Using a boat connected
with the rope, food was broadcasted slowly so as to reach uniformly throughout the pond.
The post larvae after stocking into the culture ponds were left undisturbed, however regular observations are carried out. Continuously probiotic mixed feed were broadcasted to the probiotic experimental pond. Simultaneously vitamin and mineral mixture also mixed along with feed and applied during night feeding. During the culture "sodamix" were applied to the pond for 20 days once to equalize the mineral requirement to the water. The feed assessments were done in both ponds by trial netting. The feeding schedule was given in the table.1.

### 2.3.10. Probiotic feeding

The feed additives are Lact-Act (Lactobacillus sporogens with a concentration of 1500 million viable spores per gram of powder) and Thionil (mixture of bacterial culture) (Poseidon Biotech, Chennai, Tamilnadu, India) and Mutagen (C.P. Aquaculture (India) PVT. Ltd., Chennai, Tamilnadu, India) (fig.10.). Composition of mutagen includes vitamin A, D, E, K, B $, B_{2}, B_{6}, B_{12}$, Biotin, Ascorbic acid, Iron, Manganese, Copper, Zinc, Iodine, Calcium, Magnesium, B.H.T., Immunostimulant and aminoacid were mixed in the feed as per company feed direction during the night and broadcasted to the probiotic experimental pond.

### 2.3.10.1. Procedure adopted for probiotic mixing:

The known quantity of C.P. feed and the Lactact $10 \mathrm{~g} / \mathrm{kg}$, Thionil $20 \mathrm{~g} / \mathrm{kg}$ and Mutagen $15 \mathrm{~g} / \mathrm{kg}$ were mixed with water and to this 30 ml of affinity gel also mixed and kept for 10 minutes, dried in the shade for 20-30 minutes (fig.11, 12 and 13), then feed was broadcasted as per feeding schedules. Probiotic mixed feed was offered during night time to the experiment pond animals (4 times/day), during rainy seasons and cloudy times probiotic feed offered in the afternoon time (3 times/day).

Table.1.Feeding schedule of Macrobrachium rosenbergii during the culture period in control and probiotic experimental pond

| S.no | Period | Feed broad cast time (hrs) |  | Quantity <br> of Feed <br> broad <br> cast(Kg) |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1. | $5.2 .08-20.2 .08$ | $6.30-7.30$ | 17.00 | - | 0.6 |
| 2. | $21.2 .08-30.2 .08$ | $6.30-7.30$ | 17.00 | - | 1.0 |
| 3. | $31.3 .08-3.4 .08$ | $5.30-6.30$ | $16.00-16.30$ | $22.30-23.00$ | 1.5 |
| 4. | $4.4 .08-25.4 .08$ | $5.30-6.30$ | $16.00-16.30$ | $22.30-23.00$ | 2.0 |
| 5. | $26.4 .08-25.5 .08$ | $5.30-6.30$ | $16.00-16.30$ | $22.30-23.00$ | 3.0 |
| 6. | $26.5 .08-25.7 .08$ | $5.30-6.30$ | $16.00-16.30$ | $22.30-23.00$ | 5.0 |
| 7. | $26.7 .08-31.8 .08$ | $5.30-6.30$ | $16.00-16.30$ | $22.30-23.00$ | 7.0 |
| 8. | $1.9 .08-28.10 .08$ | $5.30-6.30$ | $16.00-16.30$ | $22.30-23.00$ | 10.0 |
| 9. | $29.10 .08-23.12 .08$ | $5.30-6.30$ | $16.00-16.30$ | $22.30-23.00$ | 4.0 |

Fig.10. Packages of commercial probiotics

Fig.11. Pouring of probiotics with pelletized feed


Fig. 12 Mixing the probiotics with the feed

Fig, 13. Drying of commercial probiotic mixture


After 65th day, based on the trial netting and assessment of biomass of prawn, the quantity of the feed was increased, the feed broadcasting also increased to thrice/four a day at $6.30 \mathrm{am}, 11.30 \mathrm{am}, 4.30 \mathrm{pm}$ and 9.30 pm . Trial netting was done on $65^{\text {th }}, 89 \mathrm{th}$, $117^{\text {th }}$ and $145^{\text {th }}$ day of the culture to assess the biomass of $M$. rosenbergii. Feed increase was affected based on the following formula:

Feed increased $=$ Average weight x approximate survival x percentage of body weight

### 2.3.11. Fish stocking

Due to very high bloom of zooplankton population and depletion of dissolved oxygen level in both the ponds, fish fingerlings were stocked in these ponds. Catla (Catla catla) and Silver carp (Hypophthalmichthys molitrix) 300 and 220 numbers, respectively were introduced in each pond. The mean length and mean weight of Catla catla was $4 \pm$ 0.5 cm and $4.2 \pm 1.0 \mathrm{~g}$ respectively, while the mean length and mean weight of Hypophthalmichthys molitrix was $3.5 \pm 0.5 \mathrm{~cm}$ and $3 \pm 0.5 \mathrm{~g}$ respectively.

### 2.3.12. Predator's control

Water birds, crabs and tadpoles are the chief predators of the M. rosenbergii during culture period. Crackers were used to clear bird population in and around the vicinity of the ponds. Further, hunters were brought to the ponds and made hunting the water birds when the birds are higher number in the ponds. Crabs and tadpoles were removed manually and also by hand netting.

### 2.3.13. Growth measurement:

Total length (cm), body weight (g) of harvested prawns in both ponds was measured four times in a month during the harvest time. The specific growth rate (SGR), feed conversion ratio (FCR), Protein efficiency ratio (PER), Benefit cost ratio (BCR) and Feed efficiency (FE) were calculated according to Sweilum (2006) as follows:

| SGR |  | (Final weight - Initial weight) |
| :---: | :---: | :---: |
|  |  | Culture period in days |
| FCR | $=$ | Quantity of feed consumed |
|  |  | Total weight gained |
| PER | = | Weight gain (g) x No. of prawns |
|  |  | Protein intake |
| BCR | $=$ | Total benefit return |
|  |  | Total cost |
|  |  | Total weight gain (g) |
| FE | = | ------------------------ |

### 2.3.14. Harvest

After $119^{\text {th }}$ day of culture, the prawn was harvested in control and probiotic experiment pond and subsequent month's partial harvest were done. During the partial harvest above 60, 50, and 40 gm animals were harvested by drag net (fig. 14, 15 and 16). One day prior to harvest, water level was lowered to 0.5 m . The complete harvest was done within 4 days (15-20 ${ }^{\text {th }}$ December 2008). Every day, harvesting was done from 5.00 am - 10.30 am and $3.00 \mathrm{pm}-6.30 \mathrm{pm}$. Hand picking was also done as a post harvest procedure to accomplish $100 \%$ harvest. Fish population was also harvested (fig.17). After complete harvest, animals were weighed and separated according to the size and were ice packed (fig. 18-21). The stunted prawns were segregated during harvest and cultured in a separate pond to study the growth status (Chapter. 5).

### 2.3.15. Economics Analysis

Harvested prawns were sold in the Chennai export market whereas fishes were sold in the local market. Seed, feed, fertilizers, power, labour, harvest and trial netting

Fig. 14 and 15. Harvesting of prawn by tracking and by hand picking


> Fig.16. Harvesting by netting

Fig.17. Harvesting of prawns and fishes


Fig. 18 and 19. Harvested Adult mature Prawn


Fig. 20. Weighing the harvested prawns

Fig. 21.Icepacking

costs were accounted and compared with the results of control and probiotic experiment pond were shown in table. 33 and 34 . The operational cost, net income and profit were calculated. The cost of leasing of pond was not included. The cost of production was based on the wholesale market price (2008-2009) for the input used.

### 2.3.16. Statistical analysis

Statistical analysis was carried out for the resulted data on soil texture, water parameters, fungal and plankton populations were analysed using 't' test (Systat Version 10.0). DO, pH and Temperature were also analysed using Correlation, Regression and ANOVA at 5\% level. The growth relationship (positive/negative) between the control and experimental pond cultured prawn was calculated (SPSS Inc. 2010).

### 2.4. RESULTS

### 2.4.1. General description of $M$. rosenbergii

The sexes are separate. The whole body of M. rosenbergii was divided into 20 segments known as Somites. There are 14 segments in the head which are fused together and invisible under a large dorsal and lateral shield known as the Carapace (fig.22). The carapace is hard and smooth except for 2 spines on either side: one (the antennal spine) is just below the orbit and the other (the hepatic spine) is lower down and behind the antennal spine. The carapace ends at the front in a long beak or rostrum which is slender and curved upwards. The rostrum extends further forwards then the antennal scale and has 11-14 teeth on the top $8-10$ underneath (fig. 23 and 24). The colour of the bodies of the prawn tends to be brighter in the younger animals and generally darker and blue or brownish in older prawns.

Fig. 22. Adult Male and Female M. rosenbergii

Fig. 23. Dorsal views of Adult male M. rosenbergii

Fig. 24 Ventral views of Adult male M. rosenbergii


Mature male prawns are considerably larger than females and $2^{\text {nd }}$ chelipods much larger and thicker, the abdomen is narrower (fig.22). The head of the mature female and $2^{\text {nd }}$ walking legs are much smaller than the adult male.

### 2.4.2. Soil analysis of pond:

The studied soil texture analysis of the freshwater prawn $M$. rosenbergii culture in control and probiotic applied pond at Vishnuvakkam, Tiruvallur district, Tamilnadu, India are presented in table. 2.

The soil pH throughout the study period was more or less same except in the month of July and November (8.2) in control pond and in the month of November (8.2) in probiotic experiment pond (fig.25). The range of $\mathrm{pH} 7.4-8.2$ was observed in the present study. The electrical conductivity was higher in the month of June $(1.93 \mu \mathrm{~s} / \mathrm{m})$ in control pond and in the month of March and June $(1.8 \mu \mathrm{~s} / \mathrm{m})$ in probiotic experimental pond. Lower level of EC was noticed $(0.47 \mu \mathrm{~s} / \mathrm{m})$ in the month of September and October in control and in the month of October $(0.7 \mu \mathrm{~s} / \mathrm{m})$ in experiment pond. The percentage of slit, clay and sand content are not showed much variation between the control and probiotic experiment pond throughout the study period but there was some fluctuations noticed between the months in both ponds (fig.26). Available mean values of nitrogen ( $29.454 \pm 1.485,41.09 \pm 1.423$ ), available phosphorus $(3.945 \pm 0.166,4.654 \pm 0.228)$, available potash (105.909 $\pm 8.182,129.272 \pm$ 8.543), copper $(0.8218 \pm 6.397,0.7555 \pm 6.227 \mathrm{ppm})$, Iron $(4.432 \pm 0.213,4.351 \pm 0.185$ ppm) were recorded in control and probiotic experiment pond (table. 2a) (fig.27). The manganese in the month of July ( 6.35 ppm ) showed higher level in probiotic applied pond when compared to control pond.

Significant values $(\mathrm{P}<0.05)$ were observed for all the soil texture parameters. The correlation co-efficient (r) values of soil texture parameters of control and experiment

Table-2: Soil texture analysis of control and Probiotic experiment pond of freshwater prawn M. rosenbergii culture
(February - December 2008)

| Soil <br> Parame <br> ters | Feb |  | Mar |  | April |  | May |  | June |  | July |  | Aug |  | Sep |  | Oct |  | Nov |  | Decr |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | E | C | E | C | E | C | E | C | E | C | E | C | E | C | E | C | E | C | E | C | E |
| pH | $\begin{aligned} & 7 . \\ & 6 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 4 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 6 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 8 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 7 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 8 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 4 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 6 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 6 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 6 \end{aligned}$ | $\begin{aligned} & \hline 8 . \\ & 2 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 6 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 6 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7 . \\ & 6 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7 . \\ & 4 \end{aligned}$ | $\begin{aligned} & 7 . \\ & 4 \end{aligned}$ | $\begin{aligned} & 8 . \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 8 . \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7 . \\ & 6 \end{aligned}$ | 7.6 |
| Electric <br> al <br> conducti <br> vity <br> ( $\mu \mathrm{s} / \mathrm{m}$ ) | $1$ | $\begin{aligned} & 1 . \\ & 7 \end{aligned}$ | $\begin{aligned} & 1 . \\ & 7 \end{aligned}$ | $\begin{aligned} & 1 . \\ & 8 \end{aligned}$ | $\begin{gathered} 1 . \\ 35 \end{gathered}$ | $\begin{aligned} & 1 . \\ & 4 \end{aligned}$ | $\begin{aligned} & 1 . \\ & 7 \end{aligned}$ | $\begin{aligned} & 1 . \\ & 7 \end{aligned}$ | $\begin{gathered} 1 . \\ 93 \end{gathered}$ | $\begin{aligned} & 1 . \\ & 8 \end{aligned}$ | $\begin{gathered} 1 . \\ 03 \end{gathered}$ | $\begin{aligned} & 1 . \\ & 4 \end{aligned}$ | $\begin{gathered} 0 . \\ 92 \end{gathered}$ | $\begin{aligned} & 1 . \\ & 2 \end{aligned}$ | $\begin{aligned} & 0 . \\ & 47 \end{aligned}$ | $\begin{aligned} & 0 . \\ & 9 \end{aligned}$ | $\begin{aligned} & 0 . \\ & 47 \end{aligned}$ | $\begin{aligned} & 0 . \\ & 7 \end{aligned}$ | $\begin{gathered} 0 . \\ 92 \end{gathered}$ | $\begin{gathered} 0 . \\ 9 \end{gathered}$ | $\begin{aligned} & 0 . \\ & 92 \end{aligned}$ | 0.9 |
| Clay <br> (\%) | 23 .4 | $\begin{gathered} 26 \\ .4 \end{gathered}$ | $\begin{gathered} 23 \\ .6 \end{gathered}$ | $\begin{gathered} 26 \\ .8 \end{gathered}$ | $\begin{gathered} 24 \\ .5 \end{gathered}$ | $\begin{gathered} 27 \\ .2 \end{gathered}$ | $\begin{gathered} 24 \\ .8 \end{gathered}$ | $\begin{gathered} 28 \\ .2 \end{gathered}$ | $\begin{gathered} 25 \\ .2 \end{gathered}$ | $\begin{gathered} 28 \\ .4 \end{gathered}$ | $\begin{gathered} 25 \\ .6 \end{gathered}$ | $\begin{gathered} 29 \\ .8 \end{gathered}$ | $\begin{gathered} 26 \\ .1 \end{gathered}$ | $\begin{gathered} 29 \\ .1 \end{gathered}$ | $\begin{gathered} 26 \\ .8 \end{gathered}$ | $\begin{gathered} 29 \\ .8 \end{gathered}$ | $\begin{array}{r} 27 \\ .4 \end{array}$ | $\begin{gathered} 30 \\ .2 \end{gathered}$ | $\begin{aligned} & 27 \\ & .7 \end{aligned}$ | $\begin{array}{r} 31 \\ .4 \end{array}$ | $\begin{gathered} 28 \\ .4 \end{gathered}$ | 31. 9 |
| Slit (\%) | $\begin{gathered} 30 \\ .2 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 31 \\ & .2 \\ & \hline \end{aligned}$ | $\begin{array}{r} 30 \\ .6 \\ \hline \end{array}$ | $\begin{array}{r} 32 \\ .4 \\ \hline \end{array}$ | $\begin{aligned} & 31 \\ & .6 \end{aligned}$ | $\begin{array}{r} 33 \\ .8 \\ \hline \end{array}$ | $\begin{aligned} & 31 \\ & .8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 34 \\ & .2 \\ & \hline \end{aligned}$ | $\begin{aligned} & 31 \\ & .2 \end{aligned}$ | $\begin{gathered} 34 \\ .9 \\ \hline \end{gathered}$ | $\begin{gathered} 30 \\ .6 \\ \hline \end{gathered}$ | $\begin{gathered} 34 \\ .8 \\ \hline \end{gathered}$ | $\begin{aligned} & 32 \\ & .1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 35 \\ & .2 \\ & \hline \end{aligned}$ | $\begin{gathered} 31 \\ .8 \\ \hline \end{gathered}$ | $\begin{aligned} & 35 \\ & .4 \\ & \hline \end{aligned}$ | $\begin{aligned} & 32 \\ & .6 \\ & \hline \end{aligned}$ | $\begin{aligned} & 35 \\ & .6 \\ & \hline \end{aligned}$ | $\begin{gathered} 32 \\ .8 \\ \hline \end{gathered}$ | $\begin{array}{r} 38 \\ .4 \\ \hline \end{array}$ | $\begin{aligned} & \hline 33 \\ & .1 \\ & \hline \end{aligned}$ | $\begin{gathered} 40 . \\ 1 \end{gathered}$ |
| Sand (\%) | $\begin{aligned} & 27 \\ & .2 \end{aligned}$ | $\begin{gathered} 28 \\ .4 \end{gathered}$ | $\begin{aligned} & 27 \\ & .3 \end{aligned}$ | $\begin{gathered} 28 \\ .6 \end{gathered}$ | $\begin{array}{r} 27 \\ .4 \end{array}$ | $\begin{gathered} 28 \\ .8 \end{gathered}$ | $\begin{gathered} 28 \\ .2 \end{gathered}$ | $\begin{gathered} 28 \\ .8 \end{gathered}$ | $\begin{gathered} 28 \\ .4 \end{gathered}$ | $\begin{gathered} 29 \\ .2 \end{gathered}$ | $\begin{gathered} 28 \\ .3 \end{gathered}$ | $\begin{gathered} 29 \\ .3 \end{gathered}$ | $\begin{gathered} 28 \\ .6 \end{gathered}$ | $\begin{gathered} 29 \\ .4 \end{gathered}$ | $\begin{gathered} 28 \\ .2 \end{gathered}$ | $\begin{gathered} 29 \\ .6 \end{gathered}$ | $\begin{gathered} 28 \\ .8 \end{gathered}$ | $\begin{gathered} 30 \\ .1 \end{gathered}$ | $\begin{gathered} 28 \\ .8 \end{gathered}$ | $\begin{gathered} 30 \\ .9 \end{gathered}$ | $\begin{aligned} & 29 \\ & .4 \end{aligned}$ | $\begin{gathered} 32 . \\ 4 . \end{gathered}$ |
| Organic Carbon (\%) | $\begin{aligned} & 0 . \\ & 12 \end{aligned}$ | $\begin{aligned} & 0 . \\ & 12 \end{aligned}$ | $\begin{gathered} 0 . \\ 14 \end{gathered}$ | $\begin{gathered} 0 . \\ 13 \end{gathered}$ | $\begin{gathered} 0 . \\ 13 \end{gathered}$ | $\begin{gathered} 0 . \\ 16 \end{gathered}$ | $\begin{gathered} 0 . \\ 15 \end{gathered}$ | $\begin{gathered} 0 . \\ 14 \end{gathered}$ | $\begin{aligned} & 0 . \\ & 12 \end{aligned}$ | $\begin{gathered} 0 . \\ 14 \end{gathered}$ | $\begin{gathered} 0 . \\ 14 \end{gathered}$ | $\begin{gathered} 0 . \\ 15 \end{gathered}$ | $\begin{aligned} & 0 . \\ & 15 \end{aligned}$ | $\begin{gathered} 0 . \\ 16 \end{gathered}$ | $\begin{gathered} 0 \\ 17 \end{gathered}$ | $\begin{gathered} 0 . \\ 16 \end{gathered}$ | $\begin{gathered} 0 . \\ 16 \end{gathered}$ | $\begin{gathered} 0 . \\ 15 \end{gathered}$ | $\begin{gathered} 0 . \\ 17 \end{gathered}$ | $\begin{gathered} 0 . \\ 16 \end{gathered}$ | $\begin{gathered} 0 . \\ 16 \end{gathered}$ | $\begin{gathered} 0.1 \\ 7 \end{gathered}$ |
| Availabl <br> e <br> Nitroge <br> n <br> (mg/100 <br> g soil) | 25 | 35 | 27 | 36 | 26 | 35 | 26 | 38 | 28 | 40 | 30 | 41 | 30 | 42 | 32 | 45 | 36 | 46 | 34 | 46 | 36 | 48 |
| Availabl <br> e <br> Phospho <br> rus <br> (mg/100 <br> g soil) | $\begin{aligned} & 3 . \\ & 2 \end{aligned}$ | $\begin{gathered} 3 . \\ 5 \end{gathered}$ | $\begin{aligned} & 3 . \\ & 5 \end{aligned}$ | $\begin{aligned} & 3 . \\ & 8 \end{aligned}$ | $\begin{gathered} 3 . \\ 5 \end{gathered}$ | $\begin{aligned} & 3 . \\ & 9 \end{aligned}$ | $\begin{aligned} & 3 . \\ & 5 \end{aligned}$ | $\begin{aligned} & 4 . \\ & 2 \end{aligned}$ | $\begin{aligned} & 3 . \\ & 6 \end{aligned}$ | $\begin{aligned} & 4 . \\ & 4 \end{aligned}$ | $\begin{aligned} & 3 . \\ & 8 \end{aligned}$ | $\begin{gathered} 4 . \\ 6 \end{gathered}$ | $\begin{gathered} 4 . \\ 1 \end{gathered}$ | $\begin{gathered} 5 . \\ 1 \end{gathered}$ | $\begin{aligned} & 4 . \\ & 2 \end{aligned}$ | $\begin{aligned} & 5 . \\ & 2 \end{aligned}$ | $\begin{aligned} & 4 . \\ & 4 \end{aligned}$ | $\begin{aligned} & 5 . \\ & 2 \end{aligned}$ | $\begin{aligned} & 4 . \\ & 8 \end{aligned}$ | $\begin{aligned} & 5 . \\ & 5 \end{aligned}$ | $\begin{aligned} & 4 . \\ & 8 \end{aligned}$ | 5.8 |
| Availabl e Potash (mg/100 g soil) | 75 | 85 | 72 | 92 | 84 | $\begin{gathered} 10 \\ 8 \end{gathered}$ | 88 | $\begin{gathered} 11 \\ 6 \end{gathered}$ | 90 | $\begin{gathered} 12 \\ 0 \end{gathered}$ | 98 | $\begin{gathered} 12 \\ 8 \end{gathered}$ | $\begin{gathered} 11 \\ 0 \end{gathered}$ | $\begin{gathered} 13 \\ 4 \end{gathered}$ | $\begin{gathered} 12 \\ 6 \end{gathered}$ | $\begin{gathered} 14 \\ 1 \end{gathered}$ | $\begin{gathered} 13 \\ 4 \end{gathered}$ | $\begin{gathered} 15 \\ 0 \end{gathered}$ | $\begin{gathered} 14 \\ 0 \end{gathered}$ | $\begin{gathered} 15 \\ 8 \end{gathered}$ | $\begin{gathered} 14 \\ 8 \end{gathered}$ | $\begin{gathered} 16 \\ 0 \end{gathered}$ |
| Copper (ppm) | $\begin{aligned} & 0 . \\ & 78 \end{aligned}$ | $\begin{gathered} 0 . \\ 50 \end{gathered}$ | $\begin{aligned} & 0 . \\ & 78 \end{aligned}$ | $\begin{gathered} 0 . \\ 75 \end{gathered}$ | $\begin{gathered} 1 . \\ 24 \end{gathered}$ | $\begin{aligned} & 0 . \\ & 78 \end{aligned}$ | $\begin{aligned} & 0 . \\ & 78 \end{aligned}$ | $\begin{gathered} 0 . \\ 77 \end{gathered}$ | $\begin{gathered} 1 . \\ 24 \end{gathered}$ | $\begin{gathered} 0 . \\ 85 \end{gathered}$ | $\begin{gathered} 0 . \\ 79 \end{gathered}$ | $\begin{gathered} 1 . \\ 24 \end{gathered}$ | $\begin{gathered} 0 . \\ 79 \end{gathered}$ | $\begin{aligned} & 0 . \\ & 85 \end{aligned}$ | $\begin{gathered} 0 . \\ 53 \end{gathered}$ | $\begin{gathered} 0 . \\ 77 \end{gathered}$ | $\begin{gathered} 0 . \\ 53 \end{gathered}$ | $\begin{gathered} 0 . \\ 75 \end{gathered}$ | $\begin{gathered} 0 . \\ 79 \end{gathered}$ | $\begin{gathered} 0 . \\ 55 \end{gathered}$ | $\begin{gathered} 0 . \\ 79 \end{gathered}$ | $\begin{gathered} 0.5 \\ 0 \end{gathered}$ |
| Mangan ese (ppm) | $\begin{gathered} 6 . \\ 33 \end{gathered}$ | $\begin{aligned} & 4 . \\ & 35 \end{aligned}$ | $\begin{gathered} 6 . \\ 33 \end{gathered}$ | $\begin{aligned} & 4 . \\ & 37 \end{aligned}$ | $\begin{gathered} 5 . \\ 02 \end{gathered}$ | $\begin{gathered} 5 . \\ 05 \end{gathered}$ | $\begin{gathered} 6 . \\ 33 \end{gathered}$ | $\begin{gathered} 5 . \\ 05 \end{gathered}$ | $\begin{gathered} 5 . \\ 02 \end{gathered}$ | $\begin{gathered} 6 . \\ 24 \end{gathered}$ | $\begin{aligned} & 4 . \\ & 33 \end{aligned}$ | $\begin{aligned} & 6 . \\ & 35 \end{aligned}$ | $\begin{aligned} & 4 . \\ & 33 \end{aligned}$ | $\begin{gathered} 6 . \\ 25 \end{gathered}$ | $\begin{gathered} 6 . \\ 24 \end{gathered}$ | $\begin{gathered} 6 . \\ 20 \end{gathered}$ | $\begin{gathered} 6 . \\ 24 \end{gathered}$ | $\begin{gathered} 5 . \\ 10 \end{gathered}$ | $\begin{aligned} & 4 . \\ & 37 \end{aligned}$ | $\begin{gathered} 4 . \\ 30 \end{gathered}$ | $\begin{aligned} & 4 . \\ & 33 \end{aligned}$ | $\begin{gathered} 4.2 \\ 7 \end{gathered}$ |
| Iron (ppm) | $\begin{gathered} 5 . \\ 34 \end{gathered}$ | $\begin{gathered} 3 . \\ 30 \end{gathered}$ | $\begin{gathered} 5 . \\ 34 \end{gathered}$ | $\begin{aligned} & 4 . \\ & 35 \end{aligned}$ | $\begin{gathered} 3 . \\ 31 \end{gathered}$ | $\begin{aligned} & 4 . \\ & 40 \end{aligned}$ | $\begin{gathered} 5 . \\ 34 \end{gathered}$ | $\begin{gathered} 4 . \\ 56 \end{gathered}$ | $\begin{gathered} 3 . \\ 31 \end{gathered}$ | $\begin{gathered} 5 . \\ 10 \end{gathered}$ | $\begin{gathered} 4 . \\ 37 \end{gathered}$ | $\begin{gathered} 5 . \\ 30 \end{gathered}$ | $\begin{gathered} 4 . \\ 37 \end{gathered}$ | $\begin{gathered} 4 . \\ 58 \end{gathered}$ | $\begin{aligned} & 4 . \\ & 32 \end{aligned}$ | $\begin{aligned} & 4 . \\ & 36 \end{aligned}$ | $\begin{aligned} & 4 . \\ & 32 \end{aligned}$ | $\begin{aligned} & 4 . \\ & 32 \end{aligned}$ | $\begin{aligned} & 4 . \\ & 37 \end{aligned}$ | $\begin{gathered} 4 . \\ 30 \end{gathered}$ | $\begin{aligned} & 4 . \\ & 37 \end{aligned}$ | $\begin{gathered} 3.3 \\ 0 \end{gathered}$ |

C- Control
E-Experiment

Fig. 25. pH of the soil in control and probiotic experiment ponds of $M$. rosenbergii culture


Fig.26. Mean values of Clay, Slit and Sand content of the soil in control and probiotic experiment ponds of M. rosenbergif culture


Table-2a: Levels of soil texture of Control and Probiotic experiment pond (T-test analysis)

| Parameters | Ponds | Mean $\pm \mathbf{S E M}^{*}$ | T-test values | P-value |
| :--- | :---: | :--- | :---: | :---: |
| $\mathrm{P}^{\mathrm{H}}$ | Control | $7.681 \pm 8.182 \mathrm{E}-02$ | 93.889 | 0.000 |
|  | Experiment | $7.654 \pm 6.656 \mathrm{E}-02$ | 115.008 | 0.000 |
| Electrical <br> conductivity | Control | $1.1918 \pm 0.154$ | 7.701 | 0.000 |
|  | Experiment | $1.3091 \pm 0.123$ | 10.564 | 0.000 |
| Clay | Control | $25.772 \pm 0.5018$ | 51.357 | 0.000 |
|  | Experiment | $20.018 \pm 0.545$ | 53.193 | 0.000 |
| Slit | Control | $31.672 \pm 0.2873$ | 110.229 | 0.000 |
|  | Experiment | $35.090 \pm 0.746$ | 46.980 | 0.000 |
| Sand | Control | $28.236 \pm 0.209$ | 135.095 | 0.000 |
|  | Experiment | $29.590 \pm 0.3541$ | 83.577 | 0.000 |
| Organic Carbon | Control | $0.1464 \pm 5.439 \mathrm{E}-03$ | 26.908 | 0.000 |
|  | Experiment | $0.1491 \pm 4.564 \mathrm{E}-03$ | 32.670 | 0.000 |
| Available Nitrogen | Control | $29.454 \pm 1.485$ | 19.828 | 0.000 |
|  | Experiment | $41.090 \pm 1.423$ | 28.865 | 0.000 |
| Available | Control | $3.945 \pm 0.166$ | 23.705 | 0.000 |
|  | Experiment | $4.654 \pm 0.228$ | 20.399 | 0.000 |
| Available Potash | Control | $105.909 \pm 8.182$ | 12.943 | 0.000 |
|  | Experiment | $129.272 \pm 8.543$ | 15.132 | 0.000 |
| Manganese | Control | $0.8218 \pm 6.397 \mathrm{E}-02$ | 11.849 | 0.000 |
|  | Experiment | $0.7555 \pm 6.227 \mathrm{E}-02$ | 12.133 | 0.000 |
| Iron | Control | $5.351 \pm 0.282$ | 18.960 | 0.000 |
|  | Experiment | $5.230 \pm 0.263$ | 19.848 | 0.000 |

* : Mean sample 11 months

Significance at the $5 \%$ level $(\mathrm{P}<0.05)$

Table-2b: Correlation co-efficient (r-value) of soil texture of control and probiotic experiment pond

| Parameters | Correlation <br> (r-value) | Significance |
| :--- | :---: | :---: |
| $\mathrm{P}^{\mathrm{H}}$ | 0.619 | $0.042 \bullet$ |
| Electrical conductivity | 0.946 | $0.000 \dagger$ |
| Clay | 0.972 | $0.000 \dagger$ |
| Slit | 0.866 | $0.001 \dagger$ |
| Sand | 0.859 | $0.001 \dagger$ |
| Organic Carbon | 0.646 | $0.032 \bullet$ |
| Available Nitrogen | 0.866 | $0.001 \dagger$ |
| Available Phosphorus | 0.965 | $0.000 \dagger$ |
| Available Potash | 0.937 | 0.000 |
| Copper | 0.113 | 0.741 |
| Manganese | $-0.208^{*}$ | 0.540 |
| Iron | $-0.382^{*}$ | 0.247 |

- : Significance at the 0.05 level * : Negative correlation $\dagger:$ Significant at the 0.01 level


pond were presented in table. 2 b . Manganese and Iron were showed negative correlation and this was found to statistically significant at $\mathrm{P}<0.01$ level.


### 2.4.3. Physico chemical parameters of pond water: (weekly analysis)

The weekly analysis of colour, odour, temperature, transparency, pH and DO of control and probiotic applied pond from $3^{\text {rd }}$ February to $21{ }^{\text {st }}$ December 2008 was presented in table.3. Light green colour is appeared most of the months, except in October and earthy odour smell was observed in the beginning of the culture then no odour was observed except in September and October, in the experiment pond. The transparency levels ranged from $20-40 \mathrm{~cm}$, mostly normal transparency level was recorded during the culture period. The temperature was varied between $26-34^{\circ} \mathrm{C}$ in probiotic experiment pond. The recorded dissolved oxygen ranges between $3.0-5.5 \mathrm{ppm}$ during the culture period.

Control pond shows light green, thick green, greenish brown, golden yellow, dark green colours during the culture period. Earthy odours were smelled in the beginning of the culture, after that odourless and sandy odour was noticed. The't' test values, correlation and regression and ANOVA values for $\mathrm{DO}, \mathrm{pH}$ and temperature of control and probiotic experiment pond were presented in table 3a,b,c and fig 28.

### 2.4.3.1. Monthly analysis:

Monthly recorded values of physical and chemical parameters of control and probiotic experiment pond were presented in table 4 . The resulted values of physical and chemical parameters of control and probiotic experiment pond were found to be statistically significant at various levels. Normal pH ranges were appeared in both the ponds where as the alkalinity pH showed fluctuated. (fig. 29, 30). Higher alkalinity was recorded in the month of December in both the ponds. Total hardness of the water shows

Table-3: Physical and Chemical parameters of control and probiotic experiment pond of freshwater prawn M. rosenbergii culture (February - December 2008 weekly analysis)

| Date | Colour |  | Odour |  | Temperature $\left({ }^{\circ} \mathrm{C}\right)$ |  | Transparency (cm) |  | Dissolved oxygen (ppm) |  | pH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | E | C | E | C | E | C | E | C | E | C | E |
| 03.02.08 | Light green | Light green | Earthy | Earthy | 29 | 30 | 22-35 | 26-35 | 5.0 | 5 | 7.6 | 7.4 |
| 10.02.08 | - do - | - do - | - do - | - do - | 30 | 29 | 21-35 | 25-35 | 5.0 | 5 | 7.6 | 7.4 |
| 17.02.08 | - do - | - do - | - do - | - do - | 32 | 28 | 18-28 | 25-35 | 5.0 | 5 | 7.9 | 7.6 |
| 24.02.08 | - do - | - do - | - do - | - do - | 31 | 26 | 23-34 | 30-40 | 4.5 | 5 | 7.9 | 7.6 |
| 02.03.08 | - do - | - do - | - do - | - do - | 32 | 27 | 21-30 | 25-35 | 4. | 5 | 8.2 | 8.2 |
| 09.03.08 | - do - | - do - | - do - | - do - | 31 | 28 | 18-27 | 25-37 | 4 | 5 | 8.2 | 7.4 |
| 16.03.08 | - do - | - do - | - do - | - do - | 29 | 26 | 18-23 | 25-36 | 4 | 4.5 | 8.5 | 7.6 |
| 23.03.08 | - do - | - do - | - do - | - do - | 31 | 27 | 21-30 | 27-35 | 4 | 4.5 | 8.5 | 7.9 |
| 30.03.08 | - do - | - do - | - do - | - do - | 32 | 30 | 22-35 | 20-33 | 4 | 4 | 8.5 | 7.4 |
| 06.04.08 | - do - | - do - | Odurless | Odurless | 30 | 28 | 21-30 | 25-37 | 4 | 5 | 8.5 | 7.4 |
| 13.04.08 | - do - | - do - | - do - | - do - | 30 | 32 | 19-33 | 25-40 | 3.5 | 5.5 | 8.5 | 7.6 |
| 20.04.08 | - do - | - do - | - do - | - do - | 31 | 30 | 18-32 | 21-33 | 3.5 | 5.5 | 8.5 | 7.9 |
| 27.04.08 | - do - | - do - | - do - | - do - | 31 | 29 | 21-30 | 25-37 | 3.5 | 5.5 | 8.8 | 7.4 |
| 04.05.08 | - do - | - do - | - do - | - do - | 32 | 28 | 24-32 | 24-38 | 3 | 5.5 | 8.8 | 7.6 |
| 11.05 .08 | - do - | - do - | - do - | - do - | 31 | 26 | 18-32 | 20-32 | 3 | 5 | 8.8 | 7.6 |
| 18.05.08 | - do - | - do - | - do - | - do - | 33 | 27 | 18-28 | 21-34 | 3 | 5 | 8.5 | 7.6 |
| 25.05.08 | - do - | - do - | - do - | - do - | 33 | 30 | 20-33 | 21-28 | 3 | 5 | 8.5 | 8.2 |
| 01.06.08 | - do - | - do - | - do - | - do - | 33 | 36 | 20-34 | 23-37 | 4 | 4.5 | 8.2 | 7.4 |
| 08.06.08 | - do - | - do - | - do - | - do - | 33 | 32 | 21-34 | 25-35 | 4.5 | 4.5 | 8.5 | 7.6 |
| 15.06.08 | - do - | - do - | - do - | - do - | 33 | 34 | 22-35 | 24-35 | 4.5 | 4.5 | 8.5 | 7.9 |
| 22.06.08 | - do - | - do - | - do - | - do - | 32 | 30 | 22-30 | 25-35 | 4 | 4.5 | 8.8 | 7.6 |
| 29.06.08 | - do - | - do - | - do - | - do - | 33 | 29 | 24-37 | 24-32 | 4 | 4 | 8.5 | 8.2 |
| 06.07.08 | - do - | - do - | - do - | - do - | 32 | 28 | 21-35 | 25-38 | 4.5 | 4.5 | 8.2 | 8.2 |

Contd. Page

| 13.07.08 | - do - | - do - | - do - | - do - | 31 | 26 | 20-28 | 25-35 | 3.5 | 4.5 | 8.2 | 7.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20.07.08 | - do - | - do - | - do - | - do - | 29 | 27 | 21-32 | 20-32 | 3.5 | 4.5 | 8.2 | 7.6 |
| 27.07.08 | - do - | - do - | - do - | - do - | 30 | 32 | 22-30 | 26-34 | 3 | 4.5 | 8.5 | 8.2 |
| 03.08.08 | - do - | - do - | - do - | - do - | 28 | 28 | 21-34 | 27-38 | 3 | 4.5 | 8.5 | 7.4 |
| 10.08.08 | - do - | - do - | - do - | - do - | 32 | 28 | 22-32 | 26-35 | 3 | 4.5 | 8.2 | 7.6 |
| 17.08.08 | - do - | - do - | - do - | - do - | 33 | 26 | 18-24 | 20-34 | 3 | 4.5 | 8.2 | 7.9 |
| 24.08.08 | - do - | - do - | - do - | - do - | 33 | 27 | 23-32 | 25-32 | 3 | 4.5 | 8.5 | 7.6 |
| 31.08 .08 | - do - | - do - | - do - | - do - | 31 | 30 | 21-33 | 24-33 | 3 | 4.5 | 8.5 | 7.6 |
| 07.09.08 | - do - | - do - | Sandy | Sandy | 29 | 29 | 18-28 | 25-35 | 3 | 4.5 | 8.5 | 8.2 |
| 14.09.08 | - do - | - do - | - do - | - do - | 30 | 28 | 22-30 | 26-34 | 3 | 5.5 | 8.8 | 7.6 |
| 21.09.08 | - do - | - do - | - do - | - do - | 31 | 26 | 21-32 | 25-36 | 3 | 5.5 | 8.5 | 7.6 |
| 28.09.08 | - do - | - do - | - do - | - do - | 29 | 27 | 18-25 | 24-31 | 3 | 5.5 | 8.5 | 8.2 |
| 05.10.08 | Thick green | Thick green | - do - | - do - | 30 | 30 | 24-30 | 24-35 | 3.5 | 5.5 | 8.5 | 7.4 |
| 12.10.08 | - do - | - do - | - do - | - do - | 32 | 28 | 22-35 | 26-35 | 3.5 | 5.5 | 8.5 | 7.6 |
| 19.10.08 | - do - | - do - | - do - | - do - | 34 | 32 | 20-30 | 24-30 | 3.5 | 6.5 | 8.5 | 7.9 |
| 26.10 .08 | - do - | - do - | - do - | - do - | 33 | 34 | 21-37 | 25-37 | 3.5 | 6.5 | 8.5 | 7.6 |
| 02.11.08 | - do - | - do - | Odourless | Odourless | 32 | 30 | 22-31 | 26-36 | 3.5 | 4.5 | 7.9 | 7.9 |
| 09.11.08 | - do - | - do - | - do - | - do - | 31 | 29 | 21-33 | 24-33 | 4.5 | 4.5 | 7.6 | 7.6 |
| 16.11.08 | - do - | - do - | - do - | - do - | 30 | 28 | 28-35 | 25-35 | 4.5 | 4.5 | 7.6 | 7.6 |
| 23.11 .08 | - do - | - do - | - do - | - do - | 30 | 26 | 18-28 | 30-40 | 5 | 5 | 7.6 | 7.6 |
| 30.11 .08 | - do - | - do - | - do - | - do - | 29 | 27 | 21-35 | 25-35 | 5 | 5 | 7.6 | 7.6 |
| 07.12.08 | - do - | - do - | - do - | - do - | 28 | 28 | 20-34 | 24-34 | 4.5 | 6 | 7.9 | 7.9 |
| 14.12.08 | - do - | - do - | - do - | - do - | 26 | 26 | 22-33 | 24-33 | 4.5 | 6.5 | 8 | 8 |
| 21.12.08 | - do - | - do - | - do - | - do - | 27 | 27 | 24-30 | 20-30 | 5 | 6.5 | 8 | 8 |

## C- Control

## E-Experiment

Table- 3a: T-test values of DO, pH and temperature of control and Probiotic experiment pond of freshwater prawn M. rosenbergii culture (On the spot values)

| Parameters | Ponds | Mean $\pm$ SEM $^{*}$ | T-test value | P-value |
| :--- | :--- | :--- | :--- | :--- |
| DO | Control | $3.808 \pm 0.102$ | 37.106 | 0.000 |
|  | Experimental | $5.000 \pm 9.375 \mathrm{E}-02$ | 53.336 | 0.000 |
| pH | Control | $8.293 \pm 5.254$ | 157.854 | 0.000 |
|  | Experimental | $7.717 \pm 3.867$ | 202.289 | 0.000 |
| Temperature | Control | $30.893 \pm 0.258$ | 119.512 | 0.000 |
|  | Experimental | $28.702 \pm 0.342$ | 83.767 | 0.000 |

* : Mean sample $47 \quad$ Significance at the $5 \%$ level ( $\mathrm{P}<0.05$ )

Table.3b: Correlation (r-value) and ANOVA (F-value) of DO, $\mathbf{p H}$ and temperature of control and Probiotic experiment pond of freshwater prawn M. rosenbergii culture

| Parameters | (r-value) | F-value | p-value |
| :--- | :--- | :--- | :--- |
| DO | 0.048 | 2.737 | $0.032^{*}$ |
| pH | 0.069 | 0.520 | 0.722 |
| Temperature | 0.394 | 1.082 | 0.393 |

Table- 3c: Regression values of Dissolved oxygen, pH and temperature of control and Probiotic experiment pond of freshwater prawn M. rosenbergii culture

| Parameters | (R-value) |
| :--- | :--- |
| DO | 0.048 |
| pH | 0.069 |
| Temperature | 0.394 |

Table-4: Physical and Chemical parameters of control and probiotic experiment pond of freshwater prawn M. rosenbergii culture (February - December 2008)

| Paraame <br> ters | Feb |  | Mar |  | Apr |  | May |  | June |  | July |  |  | Aug |  | Sep |  | Oct |  | Nov |  | $\begin{gathered} \text { Dec } \\ \hline \mathbf{E} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | E | C | E | C | E | C | E | C | E | C | E | C | E | C | E | C | E | C | E | C |  |
| pH | 7. 6 | 7.9 | 8.2 | 8.2 | 8.5 | 8.4 | 8.5 | 8.4 | 8.5 | 8.5 | 8.2 | 8.2 | 8.8 | 8.2 | 8.8 | 8.5 | 8.5 | 8.5 | 8.2 | 7.6 | 8.2 | 7.9 |
| Alkalini ty pH | 12 .0 | 12.0 | 16.0 | 16.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.00 | 16.00 | 16.00 | 16.00 | 16.00 | 12.00 | 12.00 | 16.00 | 16.00 |
| Electric <br> al <br> conducti <br> vity | 16 50 | 1180 | 1680 | 1190 | 1750 | 1680 | 1940 | 2000 | 1885 | 2260 | 2030 | 2250 | 1950 | 2230 | 1860 | 2140 | 1855 | 1920 | 1850 | 1865 | 1780 | 1780 |
| Total dissolve d solids | $\begin{aligned} & 11 \\ & 30 \end{aligned}$ | 1130 | 1220 | 1125 | 1300 | 1150 | 1250 | 1420 | 1350 | 1530 | 1365 | 1615 | 1265 | 1565 | 1260 | 1460 | 1255 | 1355 | 1210 | 1260 | 1150 | 1280 |
| Turbidit $\mathrm{y}(\mathrm{~cm})$ | 34 | 24 | 35 | 25 | 25 | 45 | 28 | 42 | 30 | 60 | 38 | 45 | 35 | 50 | 30 | 35 | 15 | 35 | 18 | 45 | 20 | 40 |
| Total <br> Alkalini <br> ty <br> $(\mathrm{ppm})$ | 45 | 50 | 50 | 65 | 70 | 65 | 75 | 70 | 80 | 70 | 85 | 70 | 90 | 80 | 110 | 100 | 110 | 100 | 120 | 110 | 125 | 120 |
| Total hardnes s $(\mathrm{ppm})$ | $\begin{gathered} 24 \\ 5 \end{gathered}$ | 225 | 220 | 220 | 235 | 220 | 240 | 210 | 290 | 190 | 220 | 170 | 180 | 180 | 160 | 160 | 140 | 140 | 190 | 160 | 210 | 190 |
| Calcium $(\mathrm{ppm})$ | 10 4 | 45 | 104 | 30 | 77 | 38 | 69 | 25 | 69 | 45 | 77 | 30 | 64 | 25 | 67 | 27 | 62 | 32 | 104 | 40 | 104 | 45 |
| $\begin{aligned} & \hline \text { Magnesi } \\ & \text { um } \\ & (\mathrm{ppm}) \end{aligned}$ | 43 | 38 | 48 | 42 | 32 | 45 | 28. | 44 | 28. | 55 | 32. | 42 | 26. | 36 | 29 | 33 | 27 | 37 | 43 | 42 | 48 | 48. |
| $\begin{aligned} & \text { Sodium } \\ & (\mathrm{ppm}) \end{aligned}$ | 24 | 24 | 25 | 24 | 20 | 20 | 23 | 22 | 22 | 22 | 20 | 21 | 18 | 17 | 20 | 20 | 22 | 23 | 24 | 27 | 22 | 24 |
| $\begin{aligned} & \text { Potassiu } \\ & \mathrm{m} \\ & (\mathrm{ppm}) \end{aligned}$ | 20 | 20 | 20 | 20 | 18 | 22 | 22 | 22 | 22 | 18 | 18 | 18 | 16. | 16 | 18 | 18 | 20. | 20 | 20 | 22 | 20 | 22 |

Contd. Page

| Phospho rus (ppm) | 0.29 | 0.28 | 0.36 | 0.34 | 1.08 | 1.05 | 0.30 | 0.25 | 0.98 | 1.08 | 1.08 | 1.08 | 1.58 | 1.48 | 2.02 | 2.00 | 2.12 | 2.02 | 0.29 | 0.27 | 0.36 | 0.35 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { Iron } \\ & (\mathrm{ppm}) \end{aligned}$ | 1.00 | 1.2 | 1.00 | 1.6 | 2.4 | 2.6 | 3.0 | 3.2 | 1.5 | 2.8 | 2.5 | 2.8 | 1.30 | 1.8 | 1.60 | 1.9 | 1.60 | 1.9 | 0.8 | 2.1 | 0.90 | 1.90 |
| Fluoride (ppm) | 1.20 | 0.15 | 1.40 | 0.25 | 1.50 | 0.15 | 0.70 | 0.15 | 1.5 | 0.15 | 1.50 | 0.15 | 1.50 | 0.15 | 1.50 | 0.15 | 1.50 | 0.15 | 1.20 | $0 . .20$ | 1.40 | 0.25 |
| Chloride (ppm) | 358 | 341 | 392 | 376 | 271 | 251 | 298 | 285 | 292 | 275 | 293 | 251 | 246 | 218 | 284 | 263 | 285 | 261 | 365 | 341 | 382 | 376 |
| Free Ammoni a (ppm) | 0.24 | 0.20 | 0.32 | 0.21 | 1.04 | 0.80 | 0.56 | 0.44 | 0.10 | 0.09 | 1.07 | 1.02 | 1.05 | 0.90 | 1.01 | 0.70 | 1.03 | 0.80 | 0.24 | 0.12 | 0.32 | 0.25 |
| $\begin{gathered} \hline \text { Nitrate } \\ (\mathrm{ppm}) \end{gathered}$ | 3 | 2 | 3 | 2 | 3 | 2 | 3 | 2 | 4 | 3 | 4 | 3 | 5 | 3 | 5 | 3 | 4 | 3 | 4 | 3 | 4 | 3 |
| Sulphate $(\mathrm{ppm})$ | 40. | 30 | 15 | 12 | 13 | 13 | 9 | 8 | 10 | 10. | 13 | 11 | 13 | 12 | 17 | 14 | 18 | 15 | 40 | 35 | 15 | 18 |

## C- Control

## E-Experiment



Fig. 30 Alkalinity pH of the water in control and probiotic experiment ponds of $M$. rosenbergii culture

$\rightarrow$ Control AlkalinitypH - - Experiment AlkalinitypH

Fig. 31 Total Alkalinity and total hardness of the water in control and probiotic experiment ponds of $\boldsymbol{M}$. rosenbergii culture


Months

Fig. 32 Chloride content of the water in control and probiotic experiment ponds of $M$. rosenbergii culture


Months

Table-4a: Levels of physical and chemical parameters of control and probiotic experiment pond (T-test analysis)

| Parameters | Ponds | Mean $\pm$ SE - | t- values | p-value |
| :---: | :---: | :---: | :---: | :---: |
| pH | C | $8.363 \pm 0.102$ | 81.960 | 0.000 |
|  | E | $8.209 \pm 8.990 \mathrm{E}-02$ | 91.310 | 0.000 |
| Alkalinity pH | C | $13.090 \pm 0.414$ | 31.574 | 0.000 |
|  | E | $13.454 \pm 0.608$ | 22.112 | 0.000 |
| Electrical conductivity | C | $1839.090 \pm 34.946$ | 52.625 | 0.000 |
|  | E | $1863.181 \pm 116.798$ | 15.952 | 0.000 |
| Total Dissolved solids | C | $1250.454 \pm 21.944$ | 56.982 | 0.000 |
|  | E | $1353.636 \pm 53.746$ | 25.186 | 0.000 |
| Turbidity | C | $28.000 \pm 2.304$ | 12.152 | 0.000 |
|  | E | $40.545 \pm 3.171$ | 12.783 | 0.000 |
| Total Alkalinity | C | $81.818 \pm 6.683$ | 12.242 | 0.000 |
|  | E | $87.272 \pm 8.100$ | 10.774 | 0.000 |
| Total hardness | C | $211.818 \pm 12.796$ | 16.552 | 0.000 |
|  | E | $188.636 \pm 9.047$ | 20.849 | 0.000 |
| Calcium | C | $81.909 \pm 5.454$ | 15.016 | 0.000 |
|  | E | $34.727 \pm 2.442$ | 14.219 | 0.000 |
| Magnesium | C | $34.909 \pm 2.633$ | 13.256 | 0.000 |
|  | E | $42.000 \pm 1.848$ | 22.717 | 0.000 |
| Sodium | C | $21.818 \pm 0.644$ | 33.873 | 0.000 |
|  | E | $22.181 \pm 0.807$ | 27.487 | 0.000 |
| Potassium | C | $19.454 \pm 0.545$ | 35.667 | 0.000 |
|  | E | $19.818 \pm 0.629$ | 31.466 | 0.000 |
| Phosphorus | C | $0.950 \pm 0.211$ | 4.489 | 0.001 |
|  | E | $0.927 \pm 0.206$ | 4.486 | 0.001 |
| Iron | C | $1.600 \pm 0.220$ | 7.248 | 0.000 |
|  | E | $2.163 \pm 0.182$ | 11.853 | 0.000 |
| Fluoride | C | $1.354 \pm 7.43 \mathrm{E}-02$ | 18.230 | 0.000 |
|  | E | $0.172 \pm 1.236 \mathrm{E}-02$ | 13.969 | 0.000 |
| Chloride | C | $315.09 \pm 14.962$ | 21.058 | 0.000 |
|  | E | $294.36 \pm 16.467$ | 17.875 | 0.000 |
| Free ammonia | C | $\mathbf{0 . 6 3 4} \pm 0.121$ | 5.222 | 0.000 |
|  | E | $0.502 \pm 0.104$ | 4.807 | 0.001 |
| Nitrate | C | $3.818 \pm 0.226$ | 16.868 | 0.000 |
|  | E | $\mathbf{2 . 6 3 6} \pm \mathbf{0 . 1 5 2}$ | 17.331 | 0.000 |
| Sulphate | C | $18.454 \pm 3.309$ | 5.576 | 0.000 |
|  | E | $16.181 \pm 2.579$ | 6.274 | 0.000 |

- : Mean of 11 samples

Significant at $1 \%$ level ( $\mathrm{P}<0.01$ )

Table-4b: Correlation co-efficient (r-value) of physical and chemical parameters of control and probiotic experiment pond

| Parameters | Correlation <br> (r-value) | $\mathbf{p}$-value |
| :--- | :---: | :--- |
| pH | 0.638 | $0.035 \bullet$ |
| Alkalinity pH | 0.812 | $0.002 \dagger$ |
| Electrical conductivity | 0.915 | $0.000 \dagger$ |
| Total dissolved solids | 0.667 | $0.025 \bullet$ |
| Turbidity | $-0.063 \bullet$ | 0.853 |
| Total Alkalinity | 0.958 | $0.000 \dagger$ |
| Total hardness | 0.711 | $0.014 \bullet$ |
| Calcium | 0.553 | 0.078 |
| Magnesium | 0.149 | 0.661 |
| Sodium | 0.881 | $0.000 \dagger$ |
| Potassium | 0.999 | 0.117 |
| Phosphorus | 0.805 | $0.000 \dagger$ |
| Iron | 0.013 | 0.969 |
| Fluoride | 0.989 | 0.000 |
| Chloride | 0.980 | $0.000 \dagger$ |
| Free Ammonia | 0.864 | $0.001 \dagger$ |
| Nitrate | 0.973 | $0.000 \dagger$ |
| Sulphate |  |  |



fluctuation during the study period (fig. 31). Nutrient such as calcium, magnesium, sodium, potassium, sulphates showed normal range. However, fluoride showed higher range in the month of April, June, July, August, September, October ( 1.5 ppm ) in control pond. Phosphorous, iron and nitrate showed normal range in all the months. Chloride, Free ammonia, Nitrate and Sulphate content of the water shows fluctuation in control and probiotic experiment pond during the study period (fig. 32, 33 and 34).

The ' $t$ ' test values of control and probiotic experiment pond were presented in table 4a. In the present experiment, very high mean difference values were recorded in total dissolved solids, calcium and fluoride showed significant and some values are found to be non significant. The positive and negative correlation co-efficient (r) values of physicchemical parameters of control and experiment pond are presented in the table. 4b. Most of the parameters showed high correlation except fluoride (0.013) and magnesium (0.149)

### 2.4.4. Biological parameters:

### 2.4.4.1. Bacteria:

In the present study, the results of the soil bacterial analysis showed 7 and 15 genera in control and probiotic experiment pond (table 5 and 6) respectively from February to December 2008. Actinobacter, Aeromonas, Pseudomonas, Bacillus, Enterococcus, Flavobacterium and Cornybacterim were present in both the ponds. Lactobacillus, Micrococcus, Rhodobacter, Enterobacter, Arthrobacter, Achromobacter, Acinetobacter are present only in probiotic experiment pond. The bacterial load in the soil samples of control and experiment pond was presented in table 7. Higher bacterial load was recorded in August (5.3 $\times 10^{4}$ ), July (7.1x $10^{5}$ ) months in control and probiotic experiment pond respectively, whereas very low bacterial load were recorded in control
pond in the month of April $\left(1.2 \times 10^{3}\right)$ and in probiotic experiment pond in the month of $\operatorname{October}\left(3.5 \times 10^{3}\right)$.

### 2.4.4.2. Fungi:

In the present study, the results of the fungal analysis showed 28 and 35 genera in control and probiotic experiment pond (table 8 and 9) respectively from February to December 2008. Aspergillus is the dominant genera have 10 species in control pond, next to this, Pencillium genera represents 3 species. The Curvularia, Drechslara and Fusarium genera represents 2 species. However, the other genera are represent only one species. Monthly analysis of mesophilic fungal species composition in control and probiotic experiment pond was presented in table 10, 11 and fig. 37. In probiotic experiment pond Absidia, Cladosporium and Geotridum and Mucor are additional genera recorded. A. tamari, A. chavallari and A. ohraceus were the additional species recorded in probiotic experiment pond. A. terreus, A. fumigatus and A. flavipes were the most commonly found mesophilic fungus both in control pond and probiotic experimental pond. A. niger is the higher mesophilic fungi observed in both ponds.

Further, mesophiic fungi total composition, percentage contribution and CFU of control and probiotic experiment pond were recorded in table. 12, fig. 35 and table. 13, fig. 36 respectively. In the present study, $50.39 \%$ and $45.82 \%$ of Aspergillus genera contributed in control pond and probiotic experiment pond respectively. Among this, $A$. nidulus, contributed $6.93 \%$, in control pond where as in probiotic experimental pond the A. niger $(9.42 \%)$ contributed higher percentage. The sporulative and yeast colonies contributed $3.60 \%$ and $2.25 \%$ in control pond whereas $3.05 \%$ and $2.81 \%$ in probiotic experimental pond respectively during the study period.

Table-5: Analysis of soil Bacteria in the control pond of freshwater prawn M. rosenbergii culture (February - December 2008)

| S.no | Bacteria | Months |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | February | March | April | May | June | July | August | September | October | November | December |
| 1. | Actinobacter | + | - | + | + | - | - | + | + | - | + | + |
| 2. | Aeromonas | + | + | + | - | + | + | - | - | + | + | - |
| 3. | Pseudomonas | + | + | + | - | + | + | + | + | + | + | - |
| 4. | Bacillus | + | + | + | + | + | + | + | - | - | + | + |
| 5. | Enterococcus | + | + | - | - | + | + | + | - | - | + | - |
| 6. | Flavobacterium | - | + | + | - | - | + | + | + | - | - | + |
| 7. | Cornybacterium | - | - | + | + | + | + | - | - | + | + | + |

$+\quad:$ Present

- : Absent

Table-6: Analysis of soil Bacteria in the Probiotic experiment pond of freshwater prawn M. rosenbergii culture (February - December 2008)

|  |  | Months |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S.no | Bacteria | Feb | Mar | April | May | June | July | Aug | Sep | Oct | Nov | Dec |
| 1. | Actinobacter | + | + | + | - | - | + | + | + | + | - | - |
| 2. | Aeromonas | + | + | - | - | + | + | + | - | + | + | + |
| 3. | Pseudomonas | + | + | - | - | + | + | + | + | + | + | + |
| 4. | Bacillus | + | + | + | + | - | - | + | - | - | + | + |
| 5. | Lactobacillus | + | + | + | - | - | + | - | + | + | + | - |
| 6. | Flavobacterium | + | + | - | + | + | + | + | - | - | + | + |
| 7. | Cornybacterium | + | + | + | + | - | - | + | + | + | + | + |
| 8. | Enterococcus | + | + | + | + | - | + | + | + | - | - | + |
| 9. | Micrococcus | + | + | + | - | + | + | - | - | + | - | + |
| 10. | Rhodococcus | + | + | - | - | + | + | + | + | - | + | + |
| 11. | Rhodobacter | + | - | + | + | - | - | + | + | + | + | - |
| 12. | Enterobacter | + | + | - | - | + | + | + | + | - | + | + |
| 13. | Arthrobacter | - | + | + | + | + | - | - | + | + | - | + |
| 14 | Achromobacter | + | + | - | - | + | + | + | - | - | + | - |
| 15 | Acinetobacter | - | + | + | - | - | + | - | + | + | + | - |

Table- 7: Bacterial load in control and probiotic experiment pond of freshwater prawn M. rosenbergii culture (February - December 2008)

| Months | Control <br> $(\mathbf{c f u} / \mathbf{g m})$ | Experiment <br> $(\mathbf{c f u} \mathbf{g m})$ |
| :---: | :---: | :---: |
| February | $2.6 \times 10^{3}$ | $4.4 \times 10^{4}$ |
| March | $2.2 \times 10^{4}$ | $6.3 \times 10^{5}$ |
| April | $1.2 \times 10^{3}$ | $4.9 \times 10^{6}$ |
| May | $2.1 \times 10^{3}$ | $4.7 \times 10^{6}$ |
| June | $4.3 \times 10^{5}$ | $5.9 \times 10^{6}$ |
| July | $5.1 \times 10^{5}$ | $7.1 \times 10^{5}$ |
| August | $5.3 \times 10^{4}$ | $6.2 \times 10^{6}$ |
| September | $4.6 \times 10^{4}$ | $5.8 \times 10^{6}$ |
| October | $2.2 \times 10^{4}$ | $3.5 \times 10^{4}$ |
| November | $2.6 \times 10^{3}$ | $4.4 \times 10^{4}$ |
| December | $4.3 \times 10^{5}$ | $5.8 \times 10^{6}$ |

Cfu : Colony forming unit

Table 8: Identification of mesophilic fungal species composition in serial dilution method of control pond of freshwater prawn M. rosenbergii culture (CFU)

| S.no | Fungus | No. of plates/colonies |  |  |  |  |  | Total | PC | CFU/gm <br> soil |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Plate1 | Plate2 | Plate3 | Plate4 | Plate5 | Plate6 |  |  | 10 |
| 1 | Aspergillus niger | 12 | 10 | 11 | 10 | 12 | 10 | 65 | 17.01 | 6500 |
| 2 | A. terreus | 3 | 3 | 4 | 3 | 3 | 4 | 20 | 5.23 | 2000 |
| 3 | A.fumigatus | 4 | 3 | 5 | 3 | 3 | 4 | 22 | 5.75 | 2200 |
| 4 | A. flavipes | 2 | 3 | 3 | 3 | 3 | 3 | 17 | 4.45 | 1700 |
| 5 | A.nidulus | 5 | 5 | 5 | 4 | 5 | 4 | 28 | 7.32 | 2800 |
| 6 | A. versicolor | 2 | 2 | 3 | 2 | 3 | 2 | 14 | 3.66 | 1400 |
| 7 | A. glaucus | 3 | 3 | 3 | 2 | 3 | 2 | 16 | 4.18 | 1600 |
| 8 | A. ustus | 2 | 1 | 2 | 2 | 1 | 2 | 10 | 2.61 | 1000 |
| 9 | Curvularia lunata | 1 | - | 1 | - | 1 | - | 3 | 0.78 | 300 |
| 10 | C.tuberculata | 3 | 2 | 2 | 2 | 2 | 2 | 13 | 3.40 | 1300 |
| 11 | Pencillium <br> Oxalium | 10 | 10 | 9 | 10 | 9 | 10 | 58 | 15.18 | 5800 |
| 12 | F. solani | 1 | 2 | 1 | 2 | 2 | 2 | 10 | 2.61 | 1000 |
| 13 | Acremonicim | 2 | 2 | 2 | 2 | 2 | 3 | 13 | 3.40 | 1300 |
| 14 | Humicola grisea | 3 | 3 | 3 | 3 | 2 | 3 | 17 | 4.45 | 1700 |
| 15 | Nigrospora <br> sphaeriea | 2 | 1 | 2 | 2 | 1 | 2 | 10 | 2.61 | 1000 |
| 16 | Alternaria <br> alternata | 3 | 3 | 3 | 4 | 3 | 4 | 20 | 5.23 | 2000 |
| 17 | Rhizopus <br> stolonifer | 1 | 1 | 2 | 1 | 2 | 1 | 8 | 2.09 | 800 |
| 18 | Drechslera sp. | 2 | 2 | 1 | 2 | 1 | 2 | 10 | 2.61 | 1000 |
| 19 | D. halodas | 1 | 1 | 1 | 2 | 2 | 1 | 8 | 2.09 | 800 |
| 20 | Non-sporulation | 1 | 2 | 2 | 2 | 1 | 2 | 10 | 2.61 | 1000 |
| 21 | Yeast colonies | 2 | 2 | 1 | 1 | 2 | 2 | 10 | 2.61 | 1000 |

Cfu : Colony forming unit

Table 9: Identification of mesophilic fungal species composition in serial dilution method of Probiotic experiment pond of freshwater prawn M. rosenbergii culture (CFU)

| S.no | Species | No. of plates/colonies |  |  |  |  |  | Total | PC | $\begin{gathered} \text { CFU/gm } \\ \text { Soil } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Plate1 | Plate2 | Plate3 | Plate 4 | Plate5 | Plate6 |  |  |  |
| 1 | Aspergillus niger | 7 | 7 | 6 | 7 | 7 | 6 | 40 | 9.85 | 4000 |
| 2 | A. terreus | 4 | 3 | 3 | 4 | 3 | 3 | 20 | 4.92 | 2000 |
| 3 | A. flavus | 2 | 2 | 3 | 2 | 3 | 2 | 14 | 3.44 | 1400 |
| 4 | A. fumigatus | 2 | 3 | 2 | 2 | 2 | 2 | 13 | 3.20 | 1300 |
| 5 | A. japonicus | 1 | - | 1 | - | 1 | - | 3 | 0.73 | 300 |
| 6 | A. flavipes | 3 | 2 | 3 | 2 | 3 | 2 | 15 | 3.69 | 1500 |
| 7 | A. tamarii | 3 | 3 | 3 | 3 | 3 | 3 | 18 | 4.43 | 1800 |
| 8 | A. cohraceus | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 1.47 | 600 |
| 9 | A. chevalteri | 2 | 3 | 2 | 3 | 2 | 2 | 14 | 3.44 | 1400 |
| 10 | A. nidulus | 2 | 2 | 2 | 1 | 1 | 2 | 10 | 2.46 | 1000 |
| 11 | A. versicolor | 2 | 2 | 2 | 2 | 2 | 2 | 12 | 2.95 | 1200 |
| 12 | A. glaucus | 1 | 1 | 1 | 2 | 1 | 2 | 8 | 1.97 | 800 |
| 13 | A. ustus | 5 | 5 | 5 | 5 | 5 | 5 | 30 | 7.38 | 3000 |
| 14 | Pencillium Oxalium | 3 | 2 | 3 | 2 | 3 | 2 | 15 | 3.69 | 1500 |
| 15 | Curvularia lunata | 2 | 1 | 2 | 1 | 2 | 2 | 10 | 2.46 | 1000 |
| 16 | C.tuberculata | 1 | 1 | - | 1 | - | - | 3 | 0.73 | 300 |
| 17 | Scopularis brevicaulis | 1 | 1 | 2 | 1 | 1 | 1 | 7 | 1.72 | 700 |
| 18 | Trichoderma longibrachiatum | 2 | 2 | 2 | 1 | 1 | 2 | 10 | 2.46 | 1000 |
| 19 | Absidia corymbifera | 2 | 1 | 1 | 2 | 2 | 2 | 10 | 2.46 | 1000 |
| 20 | Fusarium oxysporium | 2 | 1 | 2 | 1 | 1 | 1 | 8 | 1.97 | 800 |
| 21 | Alternaria alternata | 2 | 2 | 3 | 2 | 2 | 2 | 13 | 3.20 | 1300 |
| 22 | Rhizopus stolonifer | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 1.97 | 800 |
| 23 | Drechslera sp. | 3 | 3 | 3 | 4 | 3 | 3 | 19 | 4.67 | 1900 |
| 24 | D. halodas | 2 | 2 | 2 | 3 | 2 | 3 | 14 | 3.44 | 1400 |
| 25 | Acremonicim | 2 | 3 | 2 | 3 | 2 | 3 | 15 | 3.69 | 1500 |
| 26 | Humicola grisea | 2 | 2 | 2 | 2 | 2 | 2 | 12 | 2.95 | 1200 |
| 27 | Nigrospora sphaeriea | 2 | 3 | 2 | 3 | 2 | 3 | 15 | 3.69 | 1500 |
| 28 | Geotridum cardium | 1 | 1 | 1 | 1 | 1 | 2 | 7 | 1.72 | 700 |
| 29 | Cladosporium sphaerospermum | 3 | 2 | 2 | 2 | 2 | 2 | 13 | 3.20 | 1300 |
| 30 | Mucor racemosus | 2 | 1 | 2 | 1 | 2 | 1 | 9 | 2.21 | 900 |
| 31 | Non-sporulation | 1 |  |  | 1 |  | 1 | 3 | 0.73 | 300 |
| 32 | Yeast colonies | 2 | 2 | 2 | 2 | 2 | 2 | 12 | 2.95 | 1200 |
|  | Total | 71 | 65 | 68 | 68 | 66 | 68 | 406 |  |  |

Cfu : Colony forming unit


Fig. 36 Percentage composition in Mesophyl fungal colonies in probiotic experiment pond of M. rosenbergii culture


Mesophyl fungai species

Table-10: Analysis of mesophilic soil fungal in the control pond of freshwater prawn M. rosenbergii culture (February - December 2008)

| S.No | Species | $\begin{aligned} & \mathrm{Fe} \\ & \mathrm{~b} \\ & \hline \end{aligned}$ | Ma $\mathbf{r}$ | $\begin{array}{\|l} \hline \text { Apri } \\ \hline \mathbf{l} \\ \hline \end{array}$ | Ma $\mathbf{y}$ | $\begin{array}{\|l\|} \hline \text { Jun } \\ \mathbf{e} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { Jul } \\ \hline \end{array}$ | Au <br> g | Sep $\mathbf{t}$ | $\begin{array}{\|l\|} \hline \mathbf{O c} \\ \mathbf{t} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { No } \\ \text { v } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \mathbf{D e} \\ \mathbf{c} \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Aspergillus niger | + | + | + | + | + | + | - | + | + | + | - |
| 2. | A. terreus | + | + | + | + | + | + | + | + | + | + | + |
| 3. | A. flavus | - | + | + | + | - | + | + | + | + | + | + |
| 4. | A. fumigatus | + | + | + | + | + | + | + | + | + | + | + |
| 5. | A. japonicus | - | + | + | + | - | + | + | + | + | + | + |
| 6. | A. flavipes | + | + | + | + | + | + | + | + | + | + | + |
| 7. | A .nidulus | + | + | + | + | + | - | + | + | + | - | + |
| 8. | A. versicolor | + | + | + | + | + | + | - | + | + | + | + |
| 9. | A. glaucus | + | + | + | - | + | + | + | - | + | + | + |
| 10. | A. ustus | + | + | - | - | + | + | - | + | + | + | + |
| 11. | Curvularia lunata | + | + | + | + | + | + | - | - | + | - | - |
| 12. | C. tuberculata | + | + | + | + | + | - | + | + | + | - | + |
| 13. | Pencillium <br> Oxalium | + | + | + | + | - | - | + | + | - | + | + |
| 14. | P. citrinum | - | + | + | + | + | + | - | - | + | + | - |
| 15. | $P$. purfurogenum | - | + | - | + | + | + | + | - | + | + | - |
| 16 | Fusarium oxysporium | - | + | + | - | + | + | + | - | + | + | + |
| 17 | F. solani | + | + | - | - | + | + | - | + | + | + | + |
| 18 | Acremonicim | + | + | + | + | - | - | + | - | + | - | + |
| 19 | Humicola grisea | + | + | - | - | + | - | - | + | - | + | + |
| 20 | Nigrospora sphaeriea | + | + | + | + | - | + | + | + | - | + | + |
| 21 | Alternaria alternata | + | + | + | - | - | + | + | - | + | + | + |
| 22 | Rhizopus stolonifer | + | - | + | + | + | - | + | + | + | - | - |
| 23 | Trichoderma longibrachiatu m | - | + | + | + | - | - | + | + | - | + | + |
| 24 | Drechslera sp. | + | + | + | + | + | - | - | + | + | - | + |
| 25 | D. halodas | + | - | - | + | + | - | - | + | - | - | + |
| 26 | Scopularipis brevicaulis | - | - | - | + | + | - | + | + | - | + | + |
| 27 | Nonsporulation | + | + | + | + | + | - | + | + | + | - | + |
| 28 | Yeast colonies | + | + | + | + | + | + | + | + | + | + | + |

Table-11: Analysis of mesophilic soil fungal in the probiotic experiment pond of freshwater prawn M. rosenbergii culture (February - December 2008)

| S.No. | Species | Feb | Mar | Apr | May | June | July | Aug | Sep | Oct | Nov | Dec |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Aspergillus niger | + | + | + | + | + | + | + | + | + | + | + |
| 2. | A. terreus | + | + | + | - | + | + | + | + | + | + | + |
| 3. | A. flavus | + | + | + | + | + | + | - | - | + | + | - |
| 4. | A. fumigatus | + | + | + | + | + | - | + | + | + | + | + |
| 5. | A. japonicus | + | + | + | + | - | + | + | + | + | + | + |
| 6. | A. flavipes | + | + | + | $+$ | - | $+$ | - | + | - | + | $+$ |
| 7. | A. tamarii | + | - | - | + | $+$ | - | + | + | - | + | + |
| 8. | A. cohraceus | + | - | + | + | + | + | - | - | + | + | - |
| 9. | A. chevalteri | + | + | + | - | + | + | + | - | + | + | + |
| 10. | A .nidulus | + | + | - | - | + | + | - | + | - | + | - |
| 11. | A. versicolor | + | + | + | - | + | + | - | + | - | + | + |
| 12. | A. glaucus | + | - | + | + | + | - | + | + | - | + | + |
| 13. | A. ustus | + | - | + | + | - | - | - | - | - | - | - |
| 14. | Pencillium <br> Oxalium | + | + | - | - | + | + | - | - | + | + | - |
| 15. | P.citrinum | - | + | - | + | $+$ | + | + | - | + | + | - |
| 16 | P.purfurogenum | - | + | + | - | + | + | + | - | + | + | + |
| 17 | Curvularia lunata | + | + | - | - | + | + | - | + | + | + | + |
| 18 | C.tuberculata | + | + | - | - | + | - | + | - | + | + | - |
| 19 | Scopularis brevicaulis | + | + | - | + | + | + | - | + | + | + | + |
| 20 | Trichoderma longibrachiatum | + | + | + | + | - | - | + | + | - | - | $+$ |
| 21 | Absidia corymbifera | + | + | + | - | - | + | - | - | + | - | - |
| 22 | Fusarium oxysporium | + | - | + | + | + | - | + | + | - | + | - |
| 23 | F.solani | -- | + | - | $+$ | - | $+$ | - | $+$ | - | - | - |
| 24 | Alternaria alternata | + | + | + | + | + | + | + | + | + | - | + |
| 25 | Rhizopus stolonifer | + | - | + | + | + | - | - | + | - | - | + |
| 26 | Drechslera sp. | + | + | - | + | + | - | + | + | - | + | $+$ |
| 27 | D. halodas | + | + | + | + | - | + | + | - | + | + | + |
| 28 | Acremonicim | + | + | - | + | $+$ | + | - | + | + | - | - |


| 29 | Humicola grisea | + | + | + | + | + | - | + | + | - | + | - |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | Nigrospora <br> sphaeriea | + | + | - | + | + | + | - | - | + | - | + |
| 31 | Geotridum <br> cardium | + | + | - | + | + | - | + | + | + | - | - |
| 32 | Cladosporium <br> sphaerospermum | + | - | + | + | + | + | + | - | + | + | + |
| 33 | Mucor <br> racemosus | + | + | - | + | + | - | + | - | - | - | - |
| 34 | Non-sporulation | + | + | + | + | + | - | + | + | + | - | + |
| 35 | Yeast colonies | + | + | + | + | + | + | + | + | + | + | + |

Table- 12: Mesophile fungi total species composition and percentage contribution in the control pond of freshwater prawn M. rosenbergii culture (February - December 2008)

| S.No. | Species | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct | Nove | Dece | Tot | Pc | CFU |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Aspergillus niger | 65 | 72 | 15 | 17 | 13 | 8 | - | 20 | 17 | 13 | - | 240 | 6.76 | 24000 |
| 2. | A. terreus | 20 | 15 | 8 | 3 | 20 | 40 | 6 | 7 | 15 | 17 | 13 | 164 | 4.62 | 16400 |
| 3. | A. flavus | - | 10 | 17 | 13 | - | 10 | 15 | 20 | 17 | 13 | 5 | 120 | 3.38 | 12000 |
| 4. | A.fumigatus | 22 | 3 | 15 | 7 | 15 | 17 | 13 | 15 | 20 | 17 | 13 | 157 | 4.42 | 15700 |
| 5. | A.japonicus | - | 25 | 17 | 13 | - | 10 | 15 | 20 | 17 | 13 | 13 | 143 | 4.03 | 14300 |
| 6. | A.flavipes | 17 | 8 | 65 | 72 | 13 | 10 | 15 | 8 | 15 | 8 | 8 | 239 | 6.73 | 23900 |
| 7. | A . nidulus | 28 | 75 | 55 | 17 | 13 | - | 10 | 15 | 20 | - | 13 | 246 | 6.93 | 24600 |
| 8. | A.versicolor | 14 | 32 | 25 | 22 | 17 | 13 | - | 10 | 15 | 20 | 17 | 185 | 5.21 | 18500 |
| 9. | A.glaucus | 16 | 40 | 8 | - | 20 | 17 | 13 | - | 10 | 15 | 8 | 147 | 4.14 | 14700 |
| 10. | A.ustus | 10 | 5 | - | - | 15 | 20 | - | 22 | 20 | 25 | 30 | 147 | 4.14 | 14700 |
| 11. | Curvularia lunata | 3 | 8 | 8 | 7 | 10 | 5 | - | - | 15 | - | - | 56 | 1.57 | 5600 |
| 12. | C.tuberculata | 13 | 10 | 15 | 8 | 13 | - | 10 | 17 | 13 | - | 17 | 116 | 3.26 | 11600 |
| 13. | Pencillium Oxalium | 58 | 42 | 10 | 5 | - | - | 15 | 20 | - | 3 | 5 | 158 | 4.45 | 15800 |
| 14. | P.citrinum | - | 20 | 22 | 25 | 15 | 10 | - | - | 8 | 6 | - | 106 | 2.98 | 10600 |
| 15. | P.purfurogenum | - | 2 | - | 4 | 5 | 20 | 15 | - | 10 | 8 | - | 64 | 1.80 | 6400 |
| 16 | Fusarium oxysporium | - | 5 | 8 | - | 20 | 17 | 13 | - | 10 | 15 | 20 | 108 | 3.04 | 10800 |
| 17 | F.solani | 10 | 5 | - | - | 15 | 20 | - | 23 | 10 | 17 | 13 | 113 | 3.18 | 11300 |
| 18 | Acremonicim | 13 | 10 | 15 | 8 | - | - | 10 | - | 8 | - | 10 | 74 | 2.08 | 7400 |
| 19 | Humicola grisea | 17 | 13 | - | - | 15 | - | - | 10 | - | 13 | 16 | 84 | 2.36 | 8400 |
| 20 | Nigrospora sphaeriea | 10 | 8 | 5 | 8 | - | 20 | 17 | 13 | - | 10 | 7 | 98 | 2.70 | 9800 |
| 21 | Alternaria alternata | 20 | 17 | 5 | - | - | 15 | 20 | - | 23 | 20 | 17 | 137 | 3.86 | 13700 |
| 22 | Rhizopus stolonifer | 8 | - | 20 | 17 | 13 | - | 10 | 15 | 8 | - | - | 91 | 2.56 | 9100 |
| 23 | Trichoderma longibrachiatum | - | 10 | 15 | 8 | - | - | 10 | 15 | - | 17 | 9 | 84 | 2.36 | 8400 |
| 24 | Drechslera sp. | 10 | 15 | 20 | 17 | 8 | - | - | 17 | 13 | - | 10 | 110 | 3.10 | 11000 |
| 25 | D. halodas | 8 | - | - | 17 | 13 | - | - | 17 | - | - | 15 | 70 | 1.97 | 7000 |
| 26 | Scopularipis brevicaulis | - | - | - | 15 | 12 | - | 10 | 15 | - | 17 | 14 | 83 | 2.33 | 8300 |
| 27 | Non-sporulation | 10 | 15 | 20 | 17 | 8 | - | 20 | 17 | 13 | - | 8 | 128 | 3.60 | 12800 |
| 28 | Yeast colonies | 10 | 9 | 8 | 11 | 4 | 2 | 3 | 8 | 10 | 8 | 7 | 80 | 2.25 | 8000 |

P.C. : Percentage contribution
: Absent

Table- 13 Mesophile fungi total species composition and percentage contribution in the probiotic experiment pond of freshwater prawn M. rosenbergii culture (February - December 2008)

| $\mathbf{S}$ | Species | Feb | $\mathbf{M a}$ $\mathbf{r}$ | Ap | $\begin{aligned} & \hline \mathbf{M} \\ & \mathbf{a y} \end{aligned}$ | June | $\begin{array}{\|l\|} \hline \mathrm{Ju} \\ \mathrm{ly} \end{array}$ | Aug | Se | Oct | No | Dec | Tot al | Pc | CFU |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Aspergillus niger | 40 | 65 | 72 | 13 | 10 | 15 | 32 | 25 | 55 | 20 | 32 | 379 | 9.42 | 37900 |
| 2. | A. terreus | 20 | 15 | 85 | - | 20 | 17 | 13 | 45 | 10 | 15 | 13 | 253 | 6.29 | 25300 |
| 3. | A. flavus | 14 | 38 | 8 | 7 | 10 | 5 | - | - | 15 | 20 | - | 117 | 2.91 | 11700 |
| 4. | A. umigatus | 13 | 10 | 15 | 8 | 13 | - | 10 | 17 | 13 | 20 | 17 | 136 | 3.38 | 13600 |
| 5. | A.japonicus | 3 | 25 | 17 | 13 | - | 10 | 15 | 20 | 17 | 13 | 28 | 161 | 4.00 | 16100 |
| 6. | A.flavipes | 15 | 8 | 6 | 7 | - | 10 | - | 13 | - | 10 | 15 | 84 | 2.08 | 8400 |
| 7. | A.tamarii | 18 | - | - | 17 | 13 | - | 10 | 15 | - | 17 | 13 | 103 | 2.56 | 10300 |
| 8. | A.cohraceus | 6 | - | 15 | 17 | 13 | 8 | - | - | 17 | 13 | - | 89 | 2.21 | 8900 |
| 9. | A.chevalteri | 14 | 40 | 8 | - | 20 | 17 | 13 | - | 10 | 15 | 8 | 145 | 3.60 | 14500 |
| 10. | A .nidulus | 10 | 5 | - | - | 15 | 20 | - | 22 | - | 25 | - | 97 | 2.41 | 9700 |
| 11. | A.versicolor | 12 | 17 | 13 | - | 10 | 13 | - | 10 | - |  | 7 | 90 | 2.23 | 9000 |
| 12. | A.glaucus | 8 | - | 72 | 13 | 10 | - | 10 | 15 | - | 15 | 8 | 151 | 3.75 | 15100 |
| 13. | A.ustus | 30 | - | 2 | 5 | - | - | - | - | - | - | - | 37 | 0.92 | 3700 |
| 14. | Pencillium Oxalium | 15 | 20 | - | - | 15 | 10 | - | - | 8 | 6 | - | 74 | 1.84 | 7400 |
| 15. | P.citrinum | - | 2 | - | 4 | 5 | 20 | 15 | - | 10 | 8 | - | 64 | 1.59 | 6400 |
| 16 | $\begin{aligned} & \text { P.purfurogen } \\ & \text { um } \end{aligned}$ | - | 5 | 8 | - | 20 | 17 | 13 | - | 10 | 15 | 20 | 108 | 2.68 | 10800 |
| 17 | Curvularia lunata | 10 | 5 | - | - | 15 | 20 | - | 23 | 10 | 17 | 13 | 113 | 2.81 | 11300 |
| 18 | C.tuberculata | 3 | 2 | - | - | 13 | - | 10 | - | 8 | 17 | - | 53 | 1.31 | 5300 |
| 19 | Scopularis brevicaulis | 7 | 13 | - | 10 | 15 | 20 | - | 10 | 17 | 13 | 16 | 121 | 3.00 | 12100 |
| 20 | Trichoderma longibrachiat um | 10 | 8 | 5 | 8 | - | - | 17 | 13 | - | - | 7 | 68 | 1.69 | 6800 |
| 21 | Absidia corymbifera | 10 | 17 | 5 | - | - | 15 | - | - | 23 | - | - | 70 | 1.74 | 7000 |
| 22 | Fusarium oxysporium | 8 | - | 20 | 17 | 13 | - | 17 | 13 | - | 10 | - | 98 | 2.43 | 9800 |
| 23 | F.solani | -- | 10 | - | 8 | 8 | 9 | - | 15 | - | - | - | 42 | 1.04 | 4200 |
| 24 | Alternaria alternata | 13 | 15 | 20 | 17 | 8 | 6 | 20 | 17 | 13 | - | 10 | 139 | 3.45 | 13900 |
| 25 | Rhizopus stolonifer | 8 | - | 20 | 17 | 13 | - | ${ }^{-}$ | 13 | - | - | 15 | 86 | 2.13 | 8600 |
| 26 | Drechslera sp. | 19 | 13 | - | 10 | 15 | - | 10 | 15 | - | 17 | 19 | 118 | 2.93 | 11800 |
| 27 | D. halodas | 14 | 15 | 20 | 32 | - | 17 | 13 | - | 10 | 15 | 22 | 158 | 3.93 | 15800 |
| 28 | Acremonicim | 15 | 32 | - | 22 | 17 | 13 | - | 10 | 15 | - | - | 124 | 3.08 | 12400 |
| 29 | Humicola grisea | 12 | 20 | 18 | 17 | 13 | - | 10 | 15 | - | 5 | - | 110 | 2.73 | 11000 |
| 30 | Nigrospora sphaeriea | 15 | 13 | - | 10 | 15 | 22 | - | - | 25 | - | 14 | 114 | 2.83 | 11400 |
| 31 | Geotridum cardium | 7 | 13 | - | 10 | 15 | - | 17 | 17 | 5 | - | - | 84 | 2.08 | 8400 |


| 32 | Cladosporiu <br> s <br> sphaerosper <br> mum | 13 | - | 10 | 15 | 15 | 17 | 13 | - | 10 | 15 | 11 | 119 | 2.96 | 11900 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 33 | Mucor <br> racemosus | 9 | 13 | - | 10 | 15 | - | 32 | - | - | - | - | 79 | 1.96 | 7900 |
| 34 | Non- <br> sporulation | 3 | 15 | 20 | 17 | 8 | - | 20 | 17 | 13 | - | 10 | 123 | 3.05 | 12300 |
| 35 | Yeast <br> colonies | 12 | 11 | 10 | 15 | 8 | 4 | 3 | 12 | 17 | 11 | 10 | 113 | 2.81 | 11300 |

Table- 13a: Mesophile fungal population in control and probiotic experiment (t-test analysis)

| Parameters | Ponds | Mean $\pm$ SE $*$ | t value | p-value |
| :--- | :--- | :--- | :---: | :---: |
| Monthwise total | Control | $322.545 \pm 21.054$ | 15.247 | 0.000 |
|  | Experiment | $365.454 \pm 17.736$ | 20.605 | 0.000 |
|  | Control | $126.714 \pm 9.875$ | 12.831 | 0.000 |
|  | Experiment | $114.857 \pm 11.158$ | 11.158 | 0.000 |

Significance at the $5 \%$ level $(\mathrm{P}<0.05)$

Table-13b. Correlation values of Mesophile fungal population in control and probiotic experiment pond (r-values)

| Mesophile fungal | Correlation <br> (r-values) | Significance |
| :--- | :---: | :---: |
| Monthwise total <br> population | 0.891 | $0.000 \dagger$ |
| $\quad$ : Significance at 0.01 level |  |  |

Fig. 37 Monthly total fungal colonies of control and probiotic experiment ponds of M. rosenbergii culture


Months
$\square$ Control Fungi $\square$ Experiment fungi

Higher CPU/g (colony forming unit) of soil was recorded with regard to $A$. terreus, $A$. fumigatus and A. flavipes than that of the other species of this genus throughout the culture period in control and experiment pond. In the present study, the monthwise mean population of probiotic experimental pond showed higher ( $365.45 \pm 17.736$ ) values while specieswise total mean value showed higher $(126.71 \pm 9.875)$ in control pond but the values showed statistically significant ( $\mathrm{P}<0.05$ ) in both the ponds with positive correlation co-efficient ( $\mathrm{r}=0.891$ ) (table 13a, b).

### 2.4.4.3. Phytoplankton and Zooplankton:

In the present observations, analysis of phytoplankton samples showed the occurrence of 26 genera in control pond and 34 genera in probiotic experiment pond. 26 genera were occurred in both the ponds are same while 9 new genera found in experiment pond only (table. 14).

Qualitative analysis of zooplankton showed 10 species of rotifers, 11 species of cladocerans, 7 species of copepods and 2 species of ostracods in control pond (table. 15) and 11 species of rotifers, 12 species of cladocerans, 7 species of copepods and 2 species of ostracods in probiotic experiment pond (table.16, fig.39).

Total zooplankton population in probiotic experimental pond showed higher number when compared to control pond, but in monthwise higher percentage was in July (control pond) and May (probiotic experiment pond) month sample during the study period. In the present study, higher number of rotifers, cladocerans, copepods and ostracods were noticed in probiotic experimental pond in the month of July (427nos), July (458nos), May (325nos) and June (243nos) whereas in control pond during the month of July (351nos), July (415nos), May (235nos) and June (231nos) months respectively (table. 17 fig. 38, 39). The order of different groups of zooplankton contribution in control

Table- 14: Diversity of Phytoplankton in control and probiotic experiment pond of freshwater prawn M. rosenbergii culture

| Control | Probiotic experiment |
| :---: | :---: |
| Anabaena sp. | Anabaena sp. |
| Chaetophora sp. | Ankistroclesmus sp. |
| Chlamydomonas | Capsosira sp |
| Chlorella sp. | Chaetophora sp. |
| Cladophora | Chamaesiphon sp. |
| Closterium sp. | Chlamydomonas |
| Cymbella sp. | Chlorella sp. |
| Desmidium sp. | Cladophora |
| Diatoma | Closterium sp. |
| Eugleana | Coelospherium sp. |
| Fragillaria | Cyclotella sp. |
| Gleocapsa sp. | Cymbella sp. |
| Microcystis sp. | Desmidium sp. |
| Microsteries sp. | Diatoma |
| Navicula sp. | Eugleana |
| Nitella sp. | Fragillaria |
| Nostoc sp. | Gleocapsa sp. |
| Oscillatoria sp. | Lyngbya sp. |
| Phormidium | Microcystis sp. |
| Pleodorina sp. | Microsteries sp. |
| Spirogyra sp. | Navicula sp. |
| Spirulina sp. | Nitella sp. |
| Tubellaria sp. | Nostoc sp. |
| Ulothrix sp. | Oscillatoria sp. |
| Volvox sp | Pecliostrum sp. |
| Zygnema sp. | Phormidium |
|  | Pleodorina sp. |


|  | Scenedesmus sp. |
| :--- | :--- |
|  | Spirogyra sp. |
|  | Spirulina sp. |
|  | Tubellaria sp. |
|  | Ulothrix sp. |
|  | Volvox sp. |
|  | Zygnema sp |

Table- 15: Qualitative analysis of zooplankton in Control pond of freshwater prawn M. rosenbergii culture (February - December 2008)

| Rotifers | Cladocerans | Copepods | Ostracods |
| :--- | :--- | :--- | :--- |
| Asplanchna sp. | Ceriodaphnia cornuta | Cryptocyclops bicolor | Cypris sp. |
| Brachionus | Ilyocryptus spinifer | Sinodiaptomus | Stenocypris sp. |
| calyciflorus | Diaphanosoma excisum | (Rhinediaptomus) Indicus |  |
| B. caudatus | D. sarsi | Deshevidia sp | Mesocyclops hyalinus |

Table- 16: Qualitative analysis of zooplankton in probiotic Experiment pond of freshwater prawn M. rosenbergii culture (February - December 2008)

| Rotifers | Cladocerans | Copepods | Ostracods |
| :--- | :--- | :--- | :--- |
| Asplanchna sp. | Ceriodaphnia cornuta | Cryptocyclops bicolor | Cypris sp. |
| Brachionus | Ilyocryptus spinifer | Sinodiaptomus | Stenocypris |
| calyciflorus | Diaphanosoma | excisum | (Rhinediaptomus) Indicus |
| B. caudatus | D. sarsi |  |  |
| B. patulus | Dunhevidia sp | Mesocyclops hyalinus |  |
| B. | Leydigia sp. | M. aspericornis |  |
| quadrangularis | Monia macrocopa | M. leukarti | Thermocyclops sp. |
| B. rubens | Pleuroxus aduncus | Heliodiaptomus viduus |  |
| B. falcatus | Simocephalus |  |  |
| B. urcelaris | vetuloides |  |  |
| B. forficula | Daphnia carinata |  |  |
| Filinia sp. | Macrothrix sp. |  |  |
| Keratella |  |  |  |
| quadrata |  |  |  |

and probiotic experiment pond were cladocerans > rotifers> copepods > Ostracods > neonates > Copepodids \& nauplii > eggs.

Mean $\pm$ S.E of total zooplankton population groups in different months of culture period in control and probiotic experiment pond are presented in table. 17a. Higher mean values were recorded in all the monthly samples in probiotic experiment pond except in October month in both the pond.

Monthwise zooplankton total population and their percentage contribution of control and experimental pond are presented in table. 18 and fig 40, 41. Higher total percentage of $14.3,12.1,11.6$ and 11.1 in the month of July, May, June and March in control pond whereas $14.1,13.4,11.3$ and 10.7 percentage in the month of May, July, March and June in probiotic experiment pond respectively (fig.43). T test analysis of monthwise zooplankton of control and experiment pond was also tabulated in table 18a.

In the present experiment, the groupwise zooplankton population in control and probiotic experiment pond and their correlation co-efficient values are presented in table. 19, 19a and fig.42. The total copepods population and their percentage composition in control and probiotic experiment pond are presented in table. 20 and fig.44. The high percentage of copepods was 13.82 and 15.80 in the month of May in control and probiotic experiment pond respectively. In our investigations higher numbers of copepods were noticed in the month of May in which Crytocyclops bicolor contributes higher species when compared to other species in control pond (table. 20). In the present study, the resulted copepods, mesocyclons genera contributed $31.05 \%$ and $35.89 \%$ in control pond and probiotic experiment pond, respectively (table. 20).

The noticed cladocerans population and their percentage contribution in control and experiment ponds were presented in table. 21 and fig. 45 . Higher percentage

Table -17: Total zooplankton populations in the control and probiotic Experiment pond of freshwater prawn M. rosenbergii culture (February - December 2008)

|  | Feb |  | Mar |  | Apr |  | May |  | June |  | July |  | Aug |  | Sept |  | Oct |  | Nov |  | Dec |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Groups | C | E | C | E | C | E | C | E | C | E | C | E | C | E | C | E | C | E | C | E | C | E |
| Copepods | 79 | 168 | 198 | 218 | 183 | 145 | 235 | 325 | 198 | 251 | 168 | 183 | 162 | 162 | 125 | 156 | 112 | 147 | 124 | 145 | 116 | 156 |
| Cladocerans | 156 | 218 | 128 | 245 | 225 | 172 | 312 | 662 | 356 | 456 | 415 | 458 | 232 | 232 | 328 | 338 | 199 | 264 | 265 | 288 | 187 | 258 |
| Rotifers | 118 | 127 | 320 | 356 | 301 | 335 | 231 | 288 | 228 | 284 | 351 | 427 | 146 | 174 | 95 | 117 | 102 | 122 | 148 | 188 | 125 | 152 |
| Ostracods | 71 | 108 | 216 | 234 | 87 | 127 | 224 | 252 | 231 | 243 | 179 | 193 | 118 | 151 | 174 | 197 | 112 | 128 | 172 | 184 | 65 | 96 |
| Eggs | 112 | 128 | 126 | 182 | 68 | 77 | 0 | 15 | 75 | - | 78 | 88 | 195 | 215 | 112 | 125 | 121 | 128 | 165 | 188 | 114 | 182 |
| Neonates | 183 | 95 | 163 | 177 | 0 | 18 | 322 | 347 | 165 | 186 | 325 | 347 | 66 | 87 | 116 | 126 | 57 | 88 | 55 | 87 | 112 | 178 |
| Copepodids \&Nauplii | 115 | 152 | 218 | 257 | 126 | 135 | 168 | 176 | 176 | 184 | 242 | 267 | 36 | 53 | 32 | 58 | 38 | 43 | 61 | 76 | 28 | 48 |

## C- Control

E - Experiment

Table 17a. Mean and SE values of total zooplankton population in control and probiotic experiment pond

| Month | Ponds | Mean $\pm$ SE |
| :--- | :--- | :---: |
| February | Control | $119.142 \pm 14.988$ |
|  | Experiment | $142.285 \pm 15.688$ |
| March | Control | $195.571 \pm 25.296$ |
|  | Experiment | $238.428 \pm 22.680$ |
| April | Control | $165.000 \pm 36.255$ |
|  | Experiment | $144.142 \pm 37.161$ |
| May | Control | $248.666 \pm 23.807$ |
|  | Experiment | $295.000 \pm 74.442$ |
| June | Control | $204.142 \pm 32.142$ |
|  | Experiment | $267.33 \pm 40.943$ |
| July | Control | $251.429 \pm 44.842$ |
|  | Experiment | $280.428 \pm 51.591$ |
| August | Control | $136.428 \pm 26.138$ |
|  | Experiment | $153.428 \pm 24.380$ |
| September | Control | $140.285 \pm 35.109$ |
|  | Experiment | $159.571 \pm 33.701$ |
| October | Control | $105.857 \pm 19.87$ |
|  | Experiment | $131.428 \pm 19.870$ |
| November | Control | $141.428 \pm 27.187$ |
|  | Experiment | $165.142 \pm 21.147$ |
| December | Control | $106.714 \pm 18.824$ |
|  | Experiment | $152.857 \pm 25.248$ |

Number of samples 11

Fig. 38 Total zooplankton population in control pond of $M$. rosenbergii culture


Fig. 39 Total Zooplankton population in Probiotic experiment pond of $M$. rosenbregii culture


Table- 18 Monthwise total zooplankton population and percentage in the control and probiotic experiment freshwater prawn $M$. rosenbergii culture pond

| Months | Control |  | Probiotic Experiment |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Total | percentage | Total | percentage |
| February | 834 | 6.787 | 996 | 6.801 |
| March | 1369 | 11.141 | 1669 | 11.397 |
| April | 990 | 8.057 | 1009 | 6.870 |
| May | 1492 | 12.142 | 2065 | 14.102 |
| June | 1429 | 11.630 | 1604 | 10.734 |
| July | 1758 | 14.307 | 1963 | 13.405 |
| August | 955 | 7.772 | 1074 | 7.334 |
| September | 982 | 7.992 | 1117 | 7.607 |
| October | 741 | 6.030 | 920 | 6.282 |
| November | 990 | 8.057 | 1156 | 7.894 |
| December | 747 | 6.079 | 1070 | 7.307 |
|  | 12287 |  | 14643 |  |

Table-18a: Monthwise zooplankton in control and Probiotic experiment ponds (t-test analysis)

| Groups | Ponds | Mean $\pm$ SE | T-test value | Significance |
| :--- | :--- | :--- | :---: | :---: |
| Copepods | Control | $154.545 \pm 14.175$ | 10.902 | 0.000 |
|  | Experiment | $186.909 \pm 17.096$ | 10.932 | 0.000 |
| Cladocerans | Control | $254.818 \pm 26.9$ | 9.473 | 0.000 |
|  | Experiment | $326.454 \pm 43.489$ | 7.506 | 0.000 |
| Rotifers | Control | $196.818 \pm 28.225$ | 6.973 | 0.000 |
|  | Experiment | $173.909 \pm 32.734$ | 7.137 | 0.000 |
| Ostracods | Control | $149.909 \pm 18.634$ | 8.045 | 0.000 |
|  | Experiment | $233.636 \pm 16.713$ | 10.405 | 0.000 |

Mean of 11 sample
Significant at the 5\% level ( $\mathrm{P}<0.05$ )

Fig. 40 Monthwise total zooplanktons percentage in control pond of $M$. rosenbergii culture


Fig. 41 Monthwise total zooplankton percentage in Probiotic experiment pond of $M$. rosenbergii culture


| $\square$ February | $\square$ March | $\square$ April | $\square$ May |
| :--- | :--- | :--- | :--- |
| $\square$ June | $\square$ July | $\square$ August | $\square$ September |
| $\square$ October | $\square$ November | $\square$ December |  |

Fig. 42 Groupwise zooplankton population in control and probiotic experiment ponds of M. rosenbergii culture


Zooplanktons

Fig. 43 Monthwise zooplankton in control and probiotic experiment ponds of $M$. rosenbergii culture


Months
$\square$ Control pond ■Experiment pond

Table- 19: Groupwise zooplankton population and percentage in control and Probiotic Experiment pond

| Months | Control |  | Probiotic Experiment |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Total | percentage | Total | percentage |
| Copepods | 1700 | 13.83 | 2056 | 14.04 |
| Cladocerans | 2803 | 22.81 | 3591 | 24.52 |
| Rotifers | 2165 | 17.62 | 2570 | 17.55 |
| Ostracods | 1649 | 13.42 | 1913 | 13.06 |
| Eggs | 1166 | 9.48 | 1328 | 9.06 |
| Neonates | 1564 | 12.72 | 1736 | 11.85 |
| Copepodids <br> \& Nauplii | 1240 | 10.09 | 1449 | 9.89 |
|  | 12287 |  | 14643 |  |

Table- 19a: Correlation coefficient (r-value) of total zooplankton species of control and probiotic experiment pond

| Total Zooplankton <br> species | Correlation <br> (r-value) | Significance |
| :---: | :---: | :---: |
| Groupwise total | 0.996 | 0.000 |
| Monthwise total | 1.896 | 0.000 |
| Total Rotifer <br> Population | 0.992 | $0.000 \dagger$ |
| Total Copepods <br> Population | 0.762 | $0.006 \dagger$ |
| Total Cladoceran <br> Population | 0.697 | $0.017 \bullet$ |
| Total Ostracods <br> Population | 0.990 | $0.000 \dagger$ |

- :Significance at 0.05 level $\dagger$ : Significance at 0.01 level

Table -20: Total copepods population and percentage in Control and Probiotic Experiment ponds

| Months | Control |  | Probiotic Experiment |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Total | percentage | Total | percentage |
| February | 79 | 4.64 | 168 | 8.17 |
| March | 198 | 11.64 | 218 | 10.56 |
| April | 183 | 10.76 | 145 | 7.05 |
| May | 235 | 13.82 | 325 | 15.80 |
| June | 198 | 11.64 | 251 | 12.20 |
| July | 168 | 9.88 | 183 | 8.90 |
| August | 162 | 9.52 | 162 | 7.87 |
| September | 125 | 7.35 | 156 | 7.58 |
| October | 112 | 6.58 | 147 | 7.14 |
| November | 124 | 7.29 | 145 | 7.05 |
| December | 116 | 6.82 | 156 | 7.58 |
|  | 1700 |  | 2056 |  |

Table- 21: Cladocerans population and percentage in Control and Probiotic Experiment ponds

| Months | Control |  | Probiotic Experiment |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | percentage | Total | percentage |  |
| February | 156 | 5.56 | 218 | 6.07 |  |
| March | 128 | 4.56 | 245 | 6.82 |  |
| April | 225 | 8.02 | 172 | 4.78 |  |
| May | 312 | 11.13 | 662 | 18.40 |  |
| June | 356 | 12.70 | 456 | 12.69 |  |
| July | 415 | 14.80 | 458 | 12.75 |  |
| August | 232 | 8.27 | 232 | 6.46 |  |
| September | 328 | 11.70 | 338 | 9.41 |  |
| October | 199 | 7.09 | 264 | 7.35 |  |
| November | 265 | 9.45 | 288 | 8.02 |  |
| December | 187 | 6.67 | 258 | 7.18 |  |
|  | 2803 |  |  |  |  |

Table- 22: Total rotifer population and percentage in Control and Probiotic Experiment ponds

| Months | Control |  | Probiotic Experiment |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Total | percentage | Total | percentage |
| February | 118 | 5.45 | 127 | 4.94 |
| March | 320 | 14.78 | 356 | 13.85 |
| April | 301 | 13.90 | 335 | 13.03 |
| May | 231 | 10.66 | 288 | 11.20 |
| June | 228 | 10.53 | 284 | 11.05 |
| July | 351 | 16.21 | 427 | 16.61 |
| August | 146 | 6.74 | 174 | 6.77 |
| September | 95 | 4.38 | 117 | 4.55 |
| October | 102 | 4.71 | 122 | 4.74 |
| November | 148 | 6.83 | 188 | 7.31 |
| December | 125 | 5.77 | 152 | 5.91 |
|  | 2165 |  | 2570 |  |

Table- 23: Total Ostracods population and percentage in control and probiotic Experiment ponds

| Months | Control |  | Probiotic Experiment |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Total | percentage | Total | percentage |
| February | 71 | 4.30 | 108 | 5.64 |
| March | 216 | 13.09 | 234 | 12.23 |
| April | 87 | 5.27 | 127 | 6.63 |
| May | 224 | 13.58 | 252 | 13.17 |
| June | 231 | 14.00 | 243 | 12.70 |
| July | 179 | 10.85 | 193 | 10.08 |
| August | 118 | 7.15 | 151 | 7.89 |
| September | 174 | 10.55 | 197 | 10.29 |
| October | 112 | 6.79 | 128 | 6.69 |
| November | 172 | 10.43 | 184 | 9.61 |
| December | 65 | 3.94 | 96 | 5.01 |
|  | 1649 |  | 1913 |  |

Table- 24: Species wise total zooplankton in control and Probiotic experiment ponds (Ttest analysis)

| Class | Ponds | Mean $\pm$ SE | T-test value | Significance |
| :--- | :--- | :--- | :---: | :---: |
| Copepod sp., | Control | $238.571 \pm 49.723$ | 4.798 | $0.003 \dagger$ |
|  | Experiment | $293.714 \pm 44.132$ | 6.655 | $0.000 \dagger$ |
| Cladoceran sp., | Control | $255.090 \pm 58.448$ | 4.364 | $0.001 \dagger$ |
|  | Experiment | $299.333 \pm 39.743$ | 7.532 | $0.000 \dagger$ |
| Rotifers sp., | Control | $216.500 \pm 39.668$ | 5.458 | $0.000 \dagger$ |
|  | Experiment | $233.636 \pm 23.019$ | 10.149 | $0.001 \dagger$ |
| Ostracods sp., | Control | $824.500 \pm 214.5$ | 3.844 | 0.162 |
|  | Experiment | $956.500 \pm 14.5$ | 6.596 | $0.010 \bullet$ |

Number of samples 11 • : Significance at 0.05 level $\dagger$ : Significance at 0.01 level

Fig. 44 Total copepods population in control and probiotic experiment ponds of $M$. rosenbergii culture


Months
回 Control Copepods $\square$ Experiment Copepods

Fig. 45 Total cladoceran population in control and probiotic experiment ponds of $M$. rosenbergii culture


Months
contributions presented in probiotic experimental pond during May month only when compared to control pond, whereas in control pond in the month of July (14.80\%), June (12.70\%), September (11.70\%) and May (11.13\%) represented higher numbers. In the present experiments, higher numbers of cladocerans were observed during July month in control pond and in this Ceriodaphnia cornata contribute maximum numbers. In addition to this, in the cladocerans, Ceriodaphnia cornuta contribute $25.33 \%$ and $19.66 \%$ in control and probiotic experiment pond, respectively (table. 21).

Higher number of rotifers were noticed in the month of July and its specieswise, Asplancha sp. contributes higher number. The recorded total rotifer population in the present study in control and probiotic experiment pond and their percentage contribution during culture period are presented in table 22 and fig.46. Brachinous constituted important genera of rotifer 7 and 8 species of these genera occurred in control and probiotic experiment pond respectively. $71 \%$ of Brachionus genera and $22 \%$ of Asplancha sp. contributed in rotifers of control ponds where as in probiotic experimental pond $70 \%$ and $11.28 \%$ respectively (table.22).

In the present experiment, the Ostracods recorded higher number in experimental pond when compared to control pond (table. 23 and fig.47). In the present study, higher percentage and numbers were observed in the month of May, March, September in control and June, March, July in probiotic experimental pond respectively. Cypris and Stenocypris are the two genera of Ostracods were recorded in both the ponds. Cypris sp. was (63\%) in control and $50.75 \%$ in probiotic experiment pond occurred higher percentage in both the ponds than that of stenocypris sp. (table 23).

Among specieswise, Asplanchna sp. (rotifer), Ceriodaphnia cornuta (cladocerans), Cryptocyclops bicolor (copepods) and Cypris (ostracods) showed higher number in

Fig. 46 Total Rotifer population in control and probiotic experiment ponds of $M$. rosenbergii culture

$\square$ Control Rotifers ■ Experiment Rotifers

Fig. 47 Total ostracods population in control and probiotic experiment ponds of $\boldsymbol{M}$. rosenbergii culture


Months

- Control Ostracods © Experiment Ostracods
control pond whereas in probiotic experiment pond Brachionus calyciflorus (rotifer), Ceriodaphnia cornuta (cladocerans), Cryptocyclops bicolor (copepods) and Cypris (ostracods) showed higher numbers. The similar trend was recorded in month/groupwise total zooplankton population.

In t-test analysis, monthwise and specieswise total zooplankton showed significant $(\mathrm{P}<0.05)$ results (table.24). The total specieswise population showed higher degree of correlation in rotifer population ( $\mathrm{r}=0.992$ ) and Ostracods $(0.990)$ in between the control and experiment pond and the results were found to statistically significant at various levels (table.19a)

### 2.4.5. Length and weight of harvested prawn M. rosenbergii:

Totally nine trial netting were done in both the ponds during the culture period and their average body weight for control and probiotic experimental ponds were presented in table. 25. Higher average body weight was recorded in probiotic experiment pond compared to the control pond. The increased mean body weight were recorded in August (19.90 g) and September ( 54.22 g ) but in October it was decreased and in November mean weight increased ( 49.2 g ) and again decreased ( 32.46 g ) condition was noticed in December month in the experimental pond. In this present study, same trend also noticed in length parameters.

The ranges of length, weight of the prawn $M$. rosenbergii of control and experimental pond were presented in table. 26. In general, length proportionately increased in August, September and October whereas it was stagnant in November and December month (fig.48). The mean and S.E values and t' test analysis of length and weight of control and probiotic experiment pond were recorded in table. 26a, b and fig. 49 .

Table- 25: Average animal body weight of control and Probiotic experiment pond of $M$. rosenbergii culture period.

| S.No. | Days of <br> Culture | Control <br> Pond (gm) | Probiotic <br> experiment <br> pond (gm) |
| :--- | :--- | :---: | :---: |
| 1 | $65^{\text {th }}$ day | 7.82 | 9.32 |
| 2 | $90^{\text {th }}$ day | 12.48 | 16.96 |
| 3 | $124^{\text {th }}$ day | 19.80 | 24.10 |
| 4 | $146^{\text {th }}$ day | 27.02 | 33.50 |
| 5 | $176^{\text {th }}$ day | 36.75 | 42.84 |
| 6 | $229^{\text {th }}$ day | 42.49 | 54.22 |
| 7 | $252^{\text {td }}$ day | 46.75 | 49.21 |
| 8 | $284^{\text {th }}$ day | 38.10 | 40.00 |
| 9 | $304^{\text {th }}$ day | 31.32 | 32.46 |

Table- 26: The length and weight ranges of control and Probiotic experiment pond of $M$. rosenbergii culture

| Month | Parameters | Control pond | Experimental pond |
| :--- | :--- | :---: | :---: |
| August | Length $(\mathrm{cm})$ | $5-15$ | $11-15$ |
|  | Weight $(\mathrm{gm})$ | $4-28$ | $12-39$ |
| September | Length | $10-17$ | $7-21$ |
|  | Weight | $9-42$ | $8-73$ |
| October | Length | $5-16$ | $7-21$ |
|  | Weight | $4-39$ | $7-78$ |
| November | Length | $9-17$ | $8-21$ |
|  | Weight | $8-49$ | $5-75$ |
| December | Length | $8-17$ | $7-21$ |
|  | Weight | $7-60$ | $8-75$ |

Number of samples 100

Table- 26a: The mean and S.E. values of length and weight of control and Probiotic experimental pond of $M$. rosenbergii culture

| Month | Parameters | Control pond | Experimental pond |
| :--- | :---: | :---: | :---: |
| August | Length | $9.705 \pm 0.325$ | $13.025 \pm 0.219$ |
|  | Weight | $14.735 \pm 0.903$ | $19.900 \pm 0.850$ |
| September | Length | $12.875 \pm 0.308$ | $17.888 \pm 0.426$ |
|  | Weight | $17.041 \pm 1.181$ | $54.222 \pm 2.605$ |
| October | Length | $14.022 \pm 0.151$ | $13.833 \pm 0.663$ |
|  | Weight | $28.750 \pm 0.713$ | $32.277 \pm 3.567$ |
| November | Length | $14.400 \pm 0.476$ | $17.578 \pm 0.399$ |
|  | Weight | $38.100 \pm 2.062$ | $49.210 \pm 4.015$ |
| December | Length | $14.720 \pm 0.274$ | $13.400 \pm 0.289$ |
|  | Weight | $31.320 \pm 1.804$ | $32.466 \pm 2.162$ |

Table- 26b: T-test analysis values of length and weight of control and Probiotic experiment pond

| Month | Parameters | Control pond | Experimental pond |
| :--- | :---: | :---: | :---: |
| August | Length | 29.795 | 59.413 |
|  | Weight | 16.303 | 23.386 |
| September | Length | 41.699 | 41.90 |
|  | Weight | 14.420 | 20.812 |
| October | Length | 93.041 | 20.865 |
|  | Weight | 40.314 | 9.049 |
| November | Length | 30.246 | 43.983 |
|  | Weight | 18.472 | 12.257 |
| December | Length | 17.358 | 46.287 |
|  | Weight | 53.726 | 15.016 |

Table- 26c: Correlation co-efficient (r-value) of control and probiotic experiment pond

| Month | Control pond |  | Experimental pond |  |
| :--- | :---: | :---: | :---: | :---: |
|  | r-value | P-value • | r-value | P-value • |
| August | 0.801 | 0.000 | 0.519 | 0.001 |
| September | 0.759 | 0.000 | 0.756 | 0.000 |
| October | 0.865 | 0.000 | 0.942 | 0.000 |
| November | 0.844 | 0.000 | 0.900 | 0.000 |
| December | 0.920 | 0.000 | 0.884 | 0.000 |

- : Significance at the 0.05 level

Table- 27: Correlation co-efficient values of length of control pond during the M. rosenbergii culture period

| Month | r- Value | Significance |
| :--- | :---: | :---: |
| August. Vs September. | 0.124 | 0.220 |
| August Vs October | 0.241 | $0.016 \bullet$ |
| August Vs. November | 0.164 | 0.103 |
| August Vs. December | 0.232 | $0.020 \bullet$ |
| September Vs October | 0.244 | $0.014 \bullet$ |
| September Vs. November | 0.178 | 0.076 |
| September Vs December | 0.335 | $0.001 \dagger$ |
| October Vs. November | 0.76 | 0.452 |
| October Vs December | 0.299 | $0.003 \dagger$ |
| November Vs December | 0.505 | $0.000 \dagger$ |

- : Significance at the 0.05 level $\dagger$ : Significance at the 0.01 leve

Table- 28: Correlation co-efficient values of length of experimental pond

| Month | r-value | Significance |
| :--- | :---: | :---: |
| August. Vs September. | 0.039 | 0.704 |
| August Vs October | 0.178 | 0.080 |
| August Vs. November | 0.105 | 0.303 |
| August Vs. December | 0.077 | 0.450 |
| September Vs October | 0.106 | 0.298 |
| September Vs. November | 0.769 | $0.000 \dagger$ |
| September Vs December | 0.198 | $0.051 \bullet$ |
| October Vs. November | 0.119 | 0.244 |
| October Vs December | 0.229 | $0.023 \bullet$ |
| November Vs December | 0.281 | $0.005 \dagger$ |

-: Significance at the 0.05 level $\dagger$ : Significance at the 0.01 level

Table- 29: Correlation co-efficient values of weight of control pond

| Month | r- Value | Significance |
| :--- | :---: | :---: |
| August. Vs September. | 0.092 | 0.364 |
| August Vs October | 0.097 | 0.337 |
| August Vs. November | 0.043 | 0.673 |
| August Vs. December | 0.008 | 0.934 |
| September Vs October | 1.000 | $0.00 \dagger$ |
| September Vs. November | 0.480 | $0.00 \dagger$ |
| September Vs December | 0.373 | $0.00 \dagger$ |
| October Vs. November | 0.293 | $0.003 \dagger$ |
| October Vs December | 0.412 | $0.000 \dagger$ |
| November Vs December | 0.392 | $0.000 \dagger$ |
| $\dagger$ |  |  |

Table- 30: Correlation co-efficient values of weight of experimental pond

| Month | r- value | Significance |
| :--- | :---: | :---: |
| August. Vs September. | 0.195 | $0.052 \bullet$ |
| August Vs October | 0.168 | 0.095 |
| August Vs. November | 0.229 | $0.022 \bullet$ |
| August Vs. December | 0.392 | $0.000 \dagger$ |
| September Vs October | 0.099 | 0.329 |
| September Vs. November | 0.720 | $0.000 \dagger$ |
| September Vs December | 0.080 | 0.426 |
| October Vs. November | 1.000 | $0.000 \dagger$ |
| October Vs December | 0.134 | 0.182 |
| November Vs December | 0.159 | 0.114 |

- Correlation is significant at the 0.05 level ( 2 - tailed )
$\dagger$ Correlation is significant at the 0.01 level ( $2-$ tailed $)$

Fig. 48 Mean length of $M$. rosenbergii in control and probiotic experiment pond


Fig. 49 Mean weight of $M$. rosenbergii in control and probiotic experiment pond


In the present study, the correlation co-efficient (r-value) of length and weight of $M$. rosenbergii in control and experimental pond culture showed significant ( 0.01 levels) results, (table. 26c). Correlation co-efficient values of length and weight of control and probiotic experiment pond between months during the culture period of $M$. rosenbergii showed statistically significant at various levels (table. 26-30).

### 2.4.6. Growth performance of freshwater prawn M. rosenbergii

The partial harvest details like numbers of count/kg, number of kilogram and export rate (Nellore market rate) were given for control and experiment pond in table. 31, 32. The highest production was recorded in the month of August in control and probiotic experiment ponds 237 kg and 372 kg respectively followed by 176 kg and 245 kg in the month of September in control and probiotic experiment ponds respectively. The lowest production was noticed in the month of November ( 95 kg ) this was found to be significant between the control and probiotic experiment groups of prawns (table. 31, 32). The economic analysis of $M$. rosenbergii culture in control and experiment ponds was presented in table. 33, 34.

After 119 days the harvest was started from August upto December 2008, the final weight, weight gain, FCR and SGR in two types of pond culture were given in table. 35 and fig.50, 51, 52). Statistical analysis of the production data revealed highly significant ( $\mathrm{P}<0.001$ ) differences among the two types of culture for all five parameters. The average weight of harvest prawn which determines the production was highest in probiotic applied culture pond ( 1178 kg ) followed by control $(866 \mathrm{~kg})$. The survival performance of prawn was found that the best and highest survival rate was observed for group of prawn fed with probiotic diet than in the control pond.

Table- 31: Sale of prawns in Chennai commercial market value:
Control pond

| Month | Count | Kilograms | Nos. of animal | Rate (Rs.) | Amount (Rs.) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July | F 35c | 105 | 3675 | 90 | 9,450 |
| August | 29c | 92 | 2668 | 710 | 65,320 |
|  | 35c | 103 | 3605 | 650 | 66,950 |
|  | 38c | 65 | 2470 | 620 | 40,300 |
|  | F 32c | 12 | 384 | 110 | 1,322 |
| 372 |  |  | 9127 | 1,73,890 |  |
| September | 26c | 79 | 2054 | 740 | 58460 |
|  | 36c | 115 | 4140 | 640 | 73600 |
|  | 39c | 25 | 975 | 610 | 15250 |
|  | 43c | 26 | 1118 | 570 | 14820 |
|  |  | 245 | 8287 | 1,62,130 |  |
| October | 27c | 53 | 1431 | 630 | 33390 |
|  | 34c | 52 | 1768 | 560 | 29120 |
|  | 43c | 18 | 774 | 470 | 8460 |
|  | 45c | 46 | 2070 | 450 | 20700 |
|  | F 28c | 17 | 476 | 120 | 2040 |
|  |  | 186 | 6519 | 93,710 |  |
| November | 30c | 41 | 1230 | 600 | 24600 |
|  | 37c | 32 | 1184 | 530 | 16960 |
|  | 45c | 19 | 855 | 450 | 8550 |
|  | 48c | 18 | 864 | 420 | 7560 |
|  | F 31c | 32 | 992 | 120 | 3840 |
|  |  | 142 | 5125 |  | 61,510 |
| December | 29c | 21 | 609 | 690 | 14490 |
|  | 38c | 14 | 532 | 520 | 7280 |
|  | 47c | 38 | 1786 | 430 | 16340 |
|  | 53c | 12 | 636 | 370 | 4440 |
|  | 70c | 43 | 3010 | 200 | 8600 |
|  |  | 128 | 6573 |  | 51,150 |

Table- 32: Sale of prawn in Chennai commercial market value:
Experimental pond



| Harvest and Trial netting |  | 10,000 |
| :---: | :---: | :---: |
| Transport |  | 10,000 |
| Miscellaneous |  | 5,000 |
|  | Total | 91,000 |
|  | Total | 2, 64,335 |
| III. Fixed cost |  |  |
| Interest on capital cost @ 15.5\% |  | 8,292.50 |
| Interest on operational cost @ 15.5\% |  | 40,971.92 |
|  |  | 49,264.42 |
| IV Total cost |  |  |
| Operational cost |  | 2, 64,335 |
| Interest |  | 49,264 |
|  | Total | 3, 13,599 |
| $\mathbf{V}$ Gross income |  |  |
| Sale of prawn ( 866 kg ) |  | 3, 86,820 |
| Sale of fishes (765 kg @ Rs.50) |  | 38,250 |
|  | Total | 4, 25,070 |
| VI Income (V-minus IV) |  | 1,11,471 |
| Net income (VI - I) |  | 57,971 |

Table-34: Economic analysis of probiotic experiment pond of freshwater prawn M. rosenbergii culture

| I. Capital cost | Rs. P |
| :--- | :---: |
| Land lease @ 15000/ha | 22,500 |
| Pond reconstruction | 9,000 |
| PVC pipes, Plastic hose, Outlet wall, Trays | 7,000 |
| Plastic tubs, Nets | 3,000 |
| Electronic equipments | 8,000 |
| Miscellaneous | 5,000 |
|  | $\mathbf{5 4 , 5 0 0}$ |

## II. Operational cost

Seed 60,000 @Rs. 0.60 paise/pl 36,000
Pesticide ..... 450
Bleaching powder 2 bag @ Rs. 430/bag ..... 860
Zeolite 100 kg@ Rs. 44/ kg ..... 4,400
Shell lime 1300 kg @ Rs. 2/kg ..... 2,600
Agrilime 250 kg @ Rs.2/kg ..... 500
Dolamite 200 kg @ Rs. 1.50/kg ..... 300
Groundnet oil cake 200 kg @ Rs.20/kg ..... 4,000
Rice bran 3 bag @ Rs. 230/bag ..... 690
Yeast $4 \mathrm{~kg} @ R s .185 / \mathrm{kg}$ ..... 740
C.P. Dissolved oxygen kit @ Rs. 1950/kit ..... 1,950
C.P. pH kit @ Rs.1100/kit ..... 1,100
Fish fingerlings 500 @ Rs. 2/fish ..... 1,000
Probiotic ..... 12,720
C.P Mutagen (vitamin \& mineral mix) $2 \mathrm{~kg} @$ Rs. 1000 ..... 2,000
C.P Sodamix (Water minerals) $330 \mathrm{~kg} @$ Rs. 13 ..... 4,290
73,600
Pond preparation
Labour 2 days ( 4 person/day) @ Rs. 200/person/day ..... 1,600
Tractor ploughing 2 hours @ Rs. 500/hours ..... 1,000
C.P. Feed 1412 kg @ Rs. 35/kg ..... 49,420
Power 11500 units @ Rs. 5.80/unit ..... 66,700

|  | Total | 1,18,720 |
| :---: | :---: | :---: |
| Labour (2 person) @ Rs. 3000/month |  | 66,000 |
| Harvest and Trial netting |  | 10,000 |
| Transport |  | 10,000 |
| Miscellaneous |  | 5,000 |
|  | Total | 91,000 |
|  | TOTAL | 2,83,320 |
| III. Fixed cost |  |  |
| Interest on capital cast @ 15.5\% |  | 8,447.50 |
| Interest on operational cost @ 15.5\% |  | 43,914.60 |
|  | Total | 52,362 |
| IV Total cost |  |  |
| Operational cost |  | 2,83,320 |
| Interest |  | 52,362 |
|  | Total | 3,32,682 |
| V Gross income |  |  |
| Sale of prawn 1178 kg |  | 5,51,840 |
| Sale of fishes 842 kg @ Rs. 50/kg |  | 42,100 |
|  |  | 5,93,940 |
| VI Net income (V-minus IV) |  | 2,61,258 |
| Income (VI - I) |  |  |

Table 35: Growth performance of the freshwater prawn $M$. rosenbergii in control and probiotic experiment pond.

| Parameters | August |  | September |  | October |  | November |  | December |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | E | C | E | C | E | C | E | C | E |
| Initial mean <br> weight <br> (g) | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 |
| Final mean <br> weight <br> (g) | 12.5 | 38 | 35 | 65 | 32 | 70 | 48 | 75 | 49 | 75 |
| Weight gain <br> $(\mathrm{g})$ | 11.48 | 36.98 | 33.98 | 63.98 | 30.98 | 68.98 | 46.98 | 73.98 | 47.98 | 73.98 |
| SGR • | 15.98 | 24.65 | 18.87 | 35.54 | 14.75 | 32.84 | 19.57 | 30.82 | 17.77 | 27.4 |
| FCR • | 7.40 | 5.26 | 5.95 | 2.21 | 3.60 | 3.18 | 2.66 | 2.06 | 3.27 | 3.14 |
| PER • | 6.82 | 7.12 | 8.25 | 9.27 | 7.94 | 9.01 | 8.93 | 10.2 | 9.21 | 10.8 |

- $\quad$ significant at $\mathrm{P}<0.05$ level

Fig. 50 SGR of control and probiotic experiment ponds of $M$. rosenbergii culture (August - December 2008)


Months

Fig. 51 FCR of control and probiotic experiment ponds of $M$. rosenbergii culture (August- December 2008)



Table. 36. Cost-return and partial budget analysis of Macrobrachium rosenbergii cultured in control and probiotic experiment ponds

| Particulars | Control pond | Probiotic experiment pond |
| :--- | :--- | :--- |
| Total production (kg) | 866 | 1178 |
| Average weight at harvest <br> (g) | $43.66(31.32)$ | $39.46(32.46)$ |
| Price kg_1 (Rs.) | 446.67 | 468.45 |
| Total cost (Rs.) | $3,13,599$ | $3,32,682$ |
| Net revenue (Rs.) | 57971 | $2,06,758$ |
| Productivity ha_1 (kg) | Rs.364 | Rs.325 |
| Productivity of feed (kg_1) | 1412 | 1412 |
| FE | 0.75 | 1.03 |
| FCR | 1.63 | 1.19 |
| Fish production (kg) | 765 | 842 |
| Productivity of labour <br> (kg_1) | 105.05 | 77.24 |
| Employment generated <br> (man days) | 365 | 365 |
| BCR | 1.355 | 1.785 |

The highest SGR of 35.54 was observed for probiotic experiment prawn compared to control group (19.37) during the September and November months respectively. The FCR rate was maximum during the month of August of study period in the probiotic experiment and control pond respectively (table. 35). Results of harvest of M. rosenbergii showed the $90 \%$ survival in control pond and $100 \%$ in experimental pond. Though results indicate similar expenditure for fertilizers, probiotic feed, power, labour, trial netting and harvest for both the pond compared to control pond, experimental ponds realized good profit.

### 2.4.7. Cost-benefit analysis:

The cost - benefit analysis of control and probiotic experiment prawn $M$. rosenbergii was presented in the table.36. Significantly higher ( $\mathrm{P}<0.001$ ) gross earning as well as net profit with a benefit cost ratio was obtained. The benefit cost ratio (BCR 1.785) was increased from probiotic experiment prawn than by control culture pond (BCR -1.355) (table.36) There was no difference was noticed in the total expenditure among the two ponds (Rs. 3,32,682 and Rs. 3,13,599) probiotic experimental and control respectively. The production cost worked out for one kilogram of prawn was Rs. 364.49 in control and Rs. 325.47 in experimental pond. Prawn seedlings were expensive inputs Rs.36, 000 of the total cost for the two feeds, probiotics and supplemental feed. However, Rs. 57,971 and 2, 06,758 of the total net income were obtained in control and probiotic culture pond respectively from prawn sale proceeds. Cost benefit analysis shows that when probiotics are used the cost of production increases by $0.9-15 \%$, for an average production of $1.3 \mathrm{t} / \mathrm{ha}$.

In the present study, the final harvest of fish was taken after 190 days culture period. There production of fishes in control and probiotic experiment pond was 765 kg and 842 kg respectively.

### 2.5. DISCUSSION

### 2.5.1. Physical and chemical parameters of the Soil

### 2.5.1.1. Soil texture

Probiotics used to supply beneficial bacterial strains to rearing water that will help to increase microbial species composition and to improve soil and water quality and maintain healthy environment for prawn culture.

In the present investigation, the soil texture of probiotic experiment pond showed higher mean values in slit and sand when compared to control pond, and the results were found to be statistically significant $(\mathrm{P}<0.05)$ of both ponds. In the present study, the percentage of clay, slit and sand were $20.018 \%, 35.090 \%$ and $29.590 \%$ in probiotic experiment pond respectively. The resulted percentages of soil textures were favourable for the growth of $M$. rosenbergii in probiotic pond than control.

Similar significant differences ( $\mathrm{P}<0.05$ ) was recorded by Mukhopadhyay et al. (1997) who reported $20.2 \%$ clay, $13.5 \%$ slit and $66.5 \%$ sand in low saline M. rosenbergii culture ponds. Further, the present result was coincided with the work of Reddy et al. (1988) who suggested $40 \%$ of sand, $30 \%$ of slit and $30 \%$ of clay as favourable range of soil texture for aquaculture. Further, the present study was supported by Correia et al. (2002) and Wudtisin and Boyd (2006). In the present study, the recorded increased weight and length of prawn may be due to higher percentage of clay (soil texture) in the experimental pond. This present study was concurrence with the work of Mohanty (2009)
who reported that the proportion of sand, slit and clay were increased the yield of prawn/fish in the rice field.

The better soil texture by the application of probiotic to the pond may initiated by Bacillus sp. occurrence more frequently in sediments than in the water, at lower levels, Bacillus spores may account for upto $80 \%$ of the total heterotrophic flora (Paulraj, 2002) and therefore they were naturally ingested by prawn M. rosenbergii that feed in or on the sediments (Rengpipat et al., 1998).

### 2.5.1.2. Organic carbon

Organic carbon of $0.5 \%$ and above was suggested to be favourable level for aquaculture (Boyd, 1995). In the present work, the level of organic carbon (0.149\%) was found to be less than $0.5 \%$ in probiotic experiment pond. The reported results in the present study may be due to many factors such as plankton distribution, bacterial load, age of pond etc., that affect the concentration of organic matter in the pond soil. Further, the present study was confirmed with the work of Chien (1992) and Gately (1990) who reported that $35 \%$ of organic carbon in marine pond was due to concentration of organic matter in pond soil. In the present investigations, the organic component was increased in the month of September and November ( $0.17 \%$ ) in control and in the month of December $(0.17 \%)$ in probiotic experiment pond with significant level. The raised organic compound may be due to increased temperature in those months. Boyd and Zimmermann (2000), Wudtisin and Boyd (2006) and Mohanty (2009) who suggested that the decomposing of organic matter increases with increasing temperature found in the aquaculture ponds. Sahu et al. (2008) found that routine use of commercial probiotic in a shrimp farm resulted in reduced organic matter accumulation, improved water quality and enhanced environmental conditions.

### 2.5.1.3. $\mathbf{p H}$

pH is one of the important factor for decomposition of organic matter which plays a role for the growth of organisms. In the present work, the observed values of pH in both the ponds were within this range $7.4-8.2$ (table.2). The soil pH was reported $7.5-8.5$ to be ideal level of maximum decomposition of organic matter for soil microbes (Boyd, 1995). In the present study, pH was 7.4 noticed during October month in the both culture ponds. The observed higher organic matter in the October month may be due to low pH , which favours slow decomposition and accumulation of organic matter. Similar study was supported by Boyd and Pipoppinyo (1994). Sadek and Moreau (1996) suggested a pH range of $6.5-8.5$ favourable for the prawn/fish culture. Further, the present study was correlated with the report of Mohanty (2009).

The body weight of $M$. rosenbergii was higher during the study period in both ponds except in the month of October due to low pH (7.4), however there is not much variation in body weight (table. 26). Further the present study was concordance with the work of Allan and Maguire (1992) who stated that growth reduction occurred at pH 5.5 and 4.9. The present report was consistence with the work of Chen and Chen (2003) who reported higher growth rate at pH 8.2 and also explained the favourable pH was 7.4 which stimulates growth rate. The present results are in agreement with the work of Cheng et al. (2003a) who reported that pH 7.27 or salinity at $5 \%$ however exhibited the greatest increased resistance to the Lactococcus gravieae infection. Higher growth was resulted at pH 7.7 in probiotic applied pond might be due to that $M$. rosenbergii exhibited increased phagocytic activity and clearance efficiency and greatest increased resistance to the pathogenic infection.

### 2.5.1.4. Nitrogen, Phosphorus and Potassium (NPK)

Nitrogen, Phosphorus and Potassium (NPK) are the widely used inorganic fertilizer which are prepared with varying proportion of nitrogen, phosphorus and potassium. Reddy et al. (1998) suggested that the favourable range of total NPK for aquaculture is $50: 6: 25 \mathrm{mg} / 100 \mathrm{~g}$ of soil and above. Our data showed fluctuation in the concentrations of total nitrogen, total phosphorus and total potash (table. 2) in experimental pond. In the present investigation, the noticed value of NPK was higher in experimental pond than control pond and found to be statistically significant. In the study period, the NPK content decreased subsequently in control pond, particularly in April and May month, whereas in probiotic experimental pond, the recorded values were gradually increasing (table. 2). The increased level of NPK can be attributed addition of probiotic, mutagen and sodamix to probiotic experiment pond. Similar study was also carried out by Rajyalakshmi et al. (1988) who reported lower nitrogen and phosphorus values in the brackish water ponds of Chilka lake fringe area. Reduced sediment nutrients level in the present study was in agreement with previous study, that nitrogen level in water was significantly decreased $(\mathrm{P}<0.05)$ after the probiotic application (Wang et al., 2005).

In the present experiments, the addition of probiotic in experimental pond shows a significant improvement of the amount of total potash. In the present study, small quantity of fertilizer was added to initiate the plankton growth for both ponds. But, the increment nutrient (NPK) was higher in probiotic experimental pond. This may be due to that the application of probiotic can improve microbial growth in the soil, which helps to decompose the organic matter and thus converts into nutrients. Similar study was reported by Dhanahar et al. (2007) who studied the addition of liquid NPK along with dried distillery grain $(4.50 \mathrm{~kg} / \mathrm{h})$ to initiate the plankton blooms and microorganisms. The
present results was supported by Uddin et al. (2007) and Wahab et al. (2008) who also supplied superphosphate in the prawn culture pond.

### 2.5.1.5. Copper

Copper is commonly applied to aquaculture ponds to inhibit phytoplankton growth, kill organisms which produce odorous compounds responsible for off-flavour in fish/shrimp and control fish diseases (Boyd, 1990 and Tucker and Robinson, 1990). In our present study, the copper content ranged from $0.53-1.24 \mathrm{ppm}$ and $0.50-1.24 \mathrm{ppm}$ in control and probiotic experiment pond, respectively and was found to be significant between the control and probiotic culture pond. The recommended copper value for freshwater prawn culture pond soil was 0.15 to 0.40 ppm (Boyd and Zimmermann, 2000). But in the present study, exceeds level of copper did not pose any adverse effect or recognized, during the culture period in both ponds. In the present investigation, the resulted copper was highly significant correlation between copper with organic matter.

### 2.5.1.6. Manganese

Manganese concentration in natural surface water seldom reaches $1.0 \mathrm{mg} / \mathrm{l}$ and is usually less than $0.2 \mathrm{mg} / \mathrm{l}$ (Mc Neely et al., 1979). Manganese activates an essential part of enzyme systems that metabolizes protein and energy in all animals. In the present study, the noticed range of manganese was $(4.27-6.35 \mathrm{ppm})$ in probiotic applied pond whereas (4.336.34 ppm ) in control pond (table.2). Manganese had a significant effect on prawn growth as the prawns grew faster in probiotic applied pond compared to control pond. This may be due that manganese has improved mean feed utilization ranged from 69.9-76.7\%.

Similar study was reported by Adhikari et al. (2007) who reported that the favourable concentration of manganese for higher food utilization and faster molting of
M. rosenbergii whereas the lesser feed utilization may be because of toxic effect of manganese or prawn by impaving normal physiological functions. Manganese may act as enzyme inhibition if it concentrations differ (more than $1.2 \mathrm{mg} / \mathrm{l}$ ) from the actual physiological requirements which may lead to either toxic effect or an inhibition of growth (Bambang et al., 1995). The present study clearly demonstrated that the ranges of available manganese both in control and probiotic experiment ponds are favourable for the growth of M. rosenbergii.

### 2.5.1.7. Iron

Iron is an essential element that has a number of fundamental roles in cellular biochemistry and metabolism. In the present investigation, the resulted value of iron ranged from $3.31-5.34 \mathrm{ppm}$ in control and $3.30-5.30 \mathrm{ppm}$ in probiotic applied pond. The survival noticed in the probiotic applied pond than control were found to be significant $(\mathrm{P}<0.05)$ difference based upon the iron distribution in prawn growth between these two cultures. The present study was supported by Adhikari et al. (2007) who explained that the $0.32 \mathrm{mg} / \mathrm{l}$ of iron was ideal concentrations for the growth of $M$. rosenbergii in freshwater medium. In this study, the higher growth rate observed in the experiment than control pond may be improved feed utilization and increased molting frequency. Iron can also vary its redox state and can be rapidly oxidized from $\mathrm{Fe}^{2+}$ to $\mathrm{Fe}^{3+}$ (ferrous to ferric iron) in the presence of oxygen. This reaction generates the superoxide anion which through a series of redox reactions leads to the generation of toxic hydroxyl; radicals (the Haber - Weins reactions) (De Silva et al., 1996 and Aisen et al., 2001).

### 2.5.1.8. Electrical conductivity

In the present study, the electrical conductivity was ranged from $0.47-1.93 \mu \mathrm{~s} / \mathrm{m}$ and $0.7-1.8 \mu \mathrm{~s} / \mathrm{m}$ in control and probiotic experiment pond respectively. Adhikari (2000)
reported the range of $0.07-0.28 \mu \mathrm{~s} / \mathrm{m}$ electrical conductivity of freshwater ponds in Orissa, India. The present noticed EC are favourable for prawn culture. This resulted E.C was similar to the study of Wang et al. (2005) in P. vannamei ponds.

### 2.5.2. Physico- chemical parameters of pond water

### 2.5.2.1. Colour of the pond water

The observed colour in the present study may be (1) reddish brown, is caused by the blooming of diatoms and species such as Chaetoceras, Navicula, Skeletonema, Cyclotella, Synedia, Achnathes Amphora and Euglena, (2) light or bright green which is due to growth of green algae especially Chlorella, (3) dark green resulted when pond temperature goes high or accumulates fast organic deposits. In this pond blue green algae bloom faster than green algae, (4) dark brown caused due to rapid growth of dinoflagellates and brown algae resulted and (5) appearance of yellowish colour which is due to the growth of Crystophyta (table.3).

The present study was supported by Wang et al. (2005) who observed (combinations of Bacillus, Saccharomyces cerevisiae, Nitrosomonas and Nitrobacter) a brownish-green water color in commercial probiotic applied ponds that most shrimp farmers believed would increased $P$. vannamei growth and survival in China.

### 2.5.2.2. Transparency

In the present study, the recorded transparency ranges were between 18 40 cm in control pond and $20-40 \mathrm{~cm}$ in probiotic experimental pond which was low compared with standard values (25-30cm). Boyd and Zimmermann (2000) reported that the transparency of about 40 cm were ideal for $M$. rosenbergii culture. When water level is more than 1.2 m , the transparency levels are considerably low. In our present investigation, the optimum transparency ( $20-40 \mathrm{~cm}$ ) observed in the probiotic
experimental pond showed higher growth and productions of the algae. The present experiments was supported by different scientists reported different transparencies in $M$. rosenbergii mono and polyculture experiments in various places, (Sampaio and Valenti, 1996) 40-75 cm; 44-59 cm (Sadek and Moreau, 2000); $12-38 \mathrm{~cm}$ (Ranjeet and Kurup, 2002); $15-70 \mathrm{~cm}$ (Correia et al., 2003); $25-35 \mathrm{~cm}$ (Giap et al., 2005); $27-34 \mathrm{~cm}$ (Hossain and Kibria, 2006); $15-52 \mathrm{~cm}$ (Kunda et al., 2008) and $25-30 \mathrm{~cm}$ (Wahab et al., 2008).

Reddy et al. (1998) reported an ideal transparency of $22-35 \mathrm{~cm}$ for freshwater and $26-35 \mathrm{~cm}$ for brackish water aquaculture. Further, the present work was confirmed with work New (2002) who reported $25-40 \mathrm{~cm}$ was ideal for $M$. rosenbergii culture. Further, the higher transparency in the probiotic experiment pond water than control was found to be significant level in this study. The present study was supported by Wang et al. (2005) who reported higher transparency in commercial probiotic fed in white shrimp, $P$. vannamei.

### 2.5.2.3. Turbidity

Turbidity is the quantity of suspended material which interfere the light penetration, the suspended materials limit photosynthesis in the bottom layer of water column. Less than 30 cm is reported to be ideal turbidity for aquaculture. In the present study, the mean turbidity recorded $28.0 \pm 2.304 \mathrm{~cm}$ and $40.545 \pm 3.171 \mathrm{~cm}$ for control and probiotic experiment pond respectively (table. 4a). The observed low turbidity in the control pond culture of $M$. rosenbergii, was directly correlated to temperature variations in the pond, thus influences the production of prawn. It might be due to higher temperature, $\left(26-28^{\circ} \mathrm{C}\right)$ given for optimum production. High turbidity raised the temperature and enhances the dissolved stratification in ponds (Tidwell et al., 1996). It is also reported to
clog the gills of fish and prawns (Ramesha et al., 1999) which leads to stress or death of organisms.

### 2.5.2.4. Temperature

Temperature was one of the important ecological physical factors of pond water which determines the production of prawns. Ideal temperature range for many species of shrimps ares $25-30^{\circ} \mathrm{C}$. In many countries, more than $35^{\circ} \mathrm{C}$ are described as lethal for shrimps culture (Vijaykumaran, 1998).

In the present study, the range of temperature fluctuation during the study period between 26 to $34^{\circ} \mathrm{C}$ and the noticed mean temperature for control was $\left(30.893 \pm 0.258^{\circ} \mathrm{C}\right)$ and for probiotic experimental pond $\left(28.702 \pm 0.342^{\circ} \mathrm{C}\right)($ table.3a), which are favourable for the normal growth of prawn. The present observation was confirmed with the work of Zimmermann (1998) who explained that freshwater prawns cease to grow and may not survive for long period, when water temperatures are below $19^{\circ} \mathrm{C}$ or above $34^{\circ} \mathrm{C}$. Similar results was noticed by New (2002) and Saxena (2003) who recommended $28-31^{\circ} \mathrm{C}$ and $29-31^{\circ} \mathrm{C}$ for optimum growth, respectively.

In the present experiment, it was noted that there was comparatively higher yield of prawn in probiotic experiment than control pond based on temperature variations. This study was supported by Tidwell et al. (1994) who reported that prawns cultured in ponds with water temperature averaging $25^{\circ} \mathrm{C}$ had higher production ( $11.5 \mathrm{~kg} / \mathrm{ha} /$ day $)$ rates than those reported by D'Abramo (1998) for prawns cultured at $29^{\circ} \mathrm{C}(5.5-5.9 \mathrm{~kg} / \mathrm{ha} / \mathrm{day})$. Further, the present observation related to temperature and yield in prawn pond was supported by various authors, (Azim et al., 2001; Cuvin-Araler et al., 2007; Wahab et al., 2008; Kunda et al., 2008; Mohanty, 2009 and Ramakrishna, 2010).

Further the present study was correlated with the study of Sadek and Moreau (2000) recorded $26 \pm 2.9^{\circ} \mathrm{C}$ mean temperature in $M$. rosenbergii, $P$. semisulcatus, monoculture of bispecies culture, polyculture with Florida Red tilapia culture in commercial farm Egypt. Oanh et al. (2000) stated that the optimal temperature for post larvae development of M. rosenbergii from $26-30^{\circ} \mathrm{C}$ in probiotic applied tank. Das et al. (2006) who reported the temperature variation $27-31^{\circ} \mathrm{C}$ between the control and probiotic applied pond which are favourable for the growth of M. rosenbergii. Keysami et al. (2007) also studied the water temperature ranges between $27.1-29.5^{\circ} \mathrm{C}$ in M. rosenbergii culture pond applied with B. subtilis and noticed there were no significant effects of probiotic on the temperature variations in the treated and non treated groups. Deeseenthum et al. (2007) also reported temperature ranges between 21 $35^{\circ} \mathrm{C}$ favourable for $M$. rosenbergii culture in probiotic mixed culture Bacillus KKUU 2 and KKUU3 applied pond and control pond.

### 2.5.2.5. Total solids

In the present observations, the higher levels of total solids were noticed in probiotic experiment pond $(1353.636 \pm 53.746)$ than that of control pond $(1250.454 \pm$ 21.944) which was found to be significant $(\mathrm{P}<0.005)$ (table.4a). According to Reddy et al. (1998), Boyd and Zimmermann (2000) and New (2002), less than 500 ppm total dissolved solids as normal for $M$. rosenbergii culture ponds. Similar studies of higher total suspended solids were reported by various authors in different stocking densities of $M$. rosenbergii monoculture and polyculture system, (Giap et al., 2005). Further, the present report of total solids was correlated with the study of Cuvin - Aralar et al. (2007) who reported $647-1020 \mathrm{mg} / \mathrm{l}$ of total dissolved solids in the cage culture system of $M$. rosenbergii with different stocking density in Eutrophic lake, Philippines. The present
study was further supported by Mohanty (2009) who recorded 363 ppm total suspended solids in their M. rosenbergii with carps in phased harvested system in India.

### 2.5.2.6. pH

The pH of the water is a measurement of the level of hydrogen ion concentration $\left(\mathrm{H}^{+}\right)$ present in the water. It is directly related to alkalinity and hardness or the buffering capacity of water and should be maintained within tolerable limits of species. pH greater than 10 will be lethal to many species (Vijaykumaran, 1998). The optimum pH range for most of the prawn species is $7-9$. In the present study, the resulted mean $\mathrm{pH}(8.363 \pm 0.102$ and $8.209 \pm$ 8.990) was recorded in control and probiotic experimental pond respectively (table.4a). While discussing growth and mortality of shrimp in relation to pH , Boyd (1989) suggested that pH (4) is acid dead point, $\mathrm{pH}(4-6)$ slow growth, $\mathrm{pH}(6-9)$ best growth, $\mathrm{pH}(9-11)$ slow growth and pH (11) alkaline dead point.

The present investigation was supported by Sampaio and Valenti (1996) recorded pH 6.9 - 9.7 range and Sadek and Moreau (2000) found $\mathrm{pH} 8.2 \pm 0.25$ in M. rosenbergii culture pond. Kumar et al. (2000) also recorded almost the same level of pH values in M. rosenbergii ( $8.92 \pm 0.59$ ) and M. malcomsonii ( $8.82 \pm 0.29$ ). Further, the present study was confirmed with the observation of Ranjeet and Kurup (2002) recorded $5.4-8.1$, average pH values in culture of $M$. rosenbergii. Correia et al. (2003) recorded a range of $6-8.4 \mathrm{pH}$ values in different supplemental feeding experiment in Brazil. Danaher et al. (2007) and Wahab et al. (2008) recorded average pH of $(7.89 \pm 0.4)$ with different stocking density of $M$. rosenbergii.

The present noticed pH in culture pond of $M$. rosenbergii was concurrence with the study of many authors in polyculture pond. Azim et al. (2001) recorded ( pH 7.0 - 7.89), Hossain and Kibria (2006) found ( pH 6.8 - 8.1), Cuvin-Aralar et al. (2007) examined ( pH
$6.70-7.69$ and $6.70-7.8$ ), Kunda et al. (2008) recorded (pH $7-9$ ), Wahab et al. (2008) examined ( $\mathrm{pH} 7-9$ ) and Asaduzamann et al. $(2008,2010)$ noticed ( $\mathrm{pH} 6.11-7.6$ ) for the best growth of prawn. Thus, commercial probiotic was helpful in maintaining the pH at desired level for the best growth of prawn M. rosenbergii. The present study was correlated by the investigation of Das et al. (2006) and Oanh et al. (2000) used streptomyces as probiotics and probiotic CP Bio-dream respectively in rearing the freshwater prawn M. rosenbergii.

### 2.5.2.7. Alkalinity $\mathbf{p H}$

In the present study, the levels of alkalinity pH mean were $13.09 \pm 0.41$ and 13.45 $\pm 0.60$ noticed in control and probiotic experiment pond respectively. The variation of total alkalinity pH range does not affect the growth of prawns in this study. The concentration of alkalinity of pond water did not vary significantly among the control and probiotic applied pond. The present study was supported by Preto et al. (2010) who reported the concentration of alkalinity similar to the present results.

### 2.5.2.8. Total Hardness and Alkalinity

Hardness of the water is determined by the concentration of divalent cations present in the water. In the present report, the recorded mean hardness was 211.81 ppm and 188.63 ppm in control and probiotic experimental pond respectively (table.4). However, Boyd and Zimmermann (2000) and New (2002) suggested a normal range of $40-150 \mathrm{ppm}$ and Saxena (2003) reported $100-150 \mathrm{ppm}$ of hardness for optimum growth in M. rosenbergii culture. The present study was supported by Sadek and Moreau (2000) reported $1250-4115 \mathrm{mg} / \mathrm{l}$ higher hardness level but many authors reported that hardness no way enhanced the growth of M. rosenbergii, (Vasquez et al., 1989, Kumar et al., 2000, Giap et al., 2005 and Nair et al., 2006). Wudtisin and Boyd (2006) explained total
hardness was consistently greater in concentration of total alkalinity and this is a common phenomenon in aquaculture ponds.

In freshwater aquaculture systems, alkalinity should be generally between $20-60$ ppm (New, 2002). Saxena (2003) also suggested $>50 \mathrm{ppm}$ of alkalinity was ideal for $M$. rosenbergii culture. But, in the present observations, the resulted hardness was higher compared to New (2002). However, alkalinity above 200 ppm may also have an adverse effect on prawn production (Ramesha et al., 1999). In the present study, the noticed level of mean alkalinities of $81.818 \pm 6.683 \mathrm{ppm}$ in control pond and $87.272 \pm 8.100 \mathrm{ppm}$ in probiotic experiment pond. Boyd and Zimmermann (2000) reported $20-60 \mathrm{mg} / \mathrm{l}$ was normal alkalinity range. Similar results were given by Quareshi et al. (2000) who also reported higher value of total alkalinity in their culture experiment. Ranjeet and Kurup (2002) recorded normal alkalinity level ( $40-87 \mathrm{ppm}$ ) in their $M$. rosenbergii monoculture experiments in coconut garden of Kuttanad, Kerala, India. Further, the present study was supported by observation of Wudtisin and Boyd (2006) reported $117 \pm 58,79 \pm 23$ and $104 \pm 40 \mathrm{ppm}$ of total alkalinity in the ponds. The different levels of total alkalinity were recorded by many authors, (Azim et al., 2004, Danaher et al., 2007, and Wahab et al., 2008) in different stocking density of M. rosenbergii culture.

### 2.5.2.9. Total dissolved Oxygen content

Dissolved oxygen in the culture medium is an important factor not only for the respiration of aquatic organisms but also to maintain a favorable and hygienic environment in the water body. The oxygen level in the studied period was higher in probiotic applied pond than the control group with significant level ( $\mathrm{P}<0.05$ ). New (2002) and Saxena (2003) recommended 4 ppm dissolved oxygen values are ideal for $M$. rosenbergii growth. In the present study, the mean value of the DO concentration was
$3.80 \mathrm{mg} / 1,5.00 \mathrm{mg} / \mathrm{l}$ in control and experimental pond respectively with recommended ranges for fresh water prawn culture (New, 2002 and Preto et al., 2010).

Fresh water prawn become stressed at a DO level below $2 \mathrm{mg} / \mathrm{l}$ and when it declines below $1 \mathrm{mg} / \mathrm{l}$, prawn become exhausted with serious physiological effects leading to suffocation (Boyd and Zimmermann, 2000, Pascual, 2006). The present observation was supported by Hossain and Islam (2006) who reported the minimum and maximum dissolved oxygen ( $20000-25000 \mathrm{PL} / \mathrm{m}^{2}$ ) in control and experiment culture period. Further, the present study was corroborated to the work of Hossain and Paul (2007) who reported $5.1-8.2 \mathrm{mg} / \mathrm{l}$ in low cost diet on farm trial of M. rosenbergii culture. Many authors reported that there was a variation in the DO content in different culture pond of M. rosenbergii, by Lan et al. (2006), Nair et al. (2006) and Asaduzzaman et al. (2008, 2010) during their studied periods.

The addition of fishes in the culture ponds also increased the surface and bottom DO. In addition, fish's activity on the pond bottom and water column brings some oxygen to the bottom layers (Jiménez-Montealegre et al., 2002). In order to overcome the oxygen depletion, introduction of some fish sp., catla, and silver carp was introduced in the present culture, as these fishes heavily consumed the phyto and zooplankton which ultimately improved the oxygen content (Raman, 1992). In the present study, plankton feeding fish consumed excess phytoplankton, leading to reduced nocturnal respiration and thereby DO requirement, which inturns benefited prawn and other species in control pond and also even in probiotic pond (Ahmed et al., 2008b). The present study was supported by Oanh et al. (2000) who studied the effects of probiotic on culture condition of freshwater prawn $M$. rosenbergii larvae.

### 2.5.2.10. Ammonia

Ammonia $\left(\mathrm{NH}_{3}\right)$ is one of the water quality parameter that causes major problems in fish, shell fish and prawn production. Toxicity of ammoniacal nitrogen is attributed primarily to the unionized forms which cause damage directly to gill epithelial tissue (Vijaykumaran, 1998). According to Adhikari and Saha (1999) and Ahmed et al., (2008b) prawns are very sensitive to unionzed ammonia and it should be below 0.02 and 0.015 ppm respectively in the pond water.

Levels of free ammonia observed in the present study are within the normal values in most of the monthly analysis but in mid of the culture period, the free ammonia content showed higher value (table.4) due to heavy phyto and zooplankton population and fast organic degradation. Similar reports were given by Reddy et al. (1998), Boyd and Zimmermann (2000), Kumar et al. (2000), Sadek and Moreau (2000), New (2002), Ranjeet and Kurup (2002), Saxena (2003), Nair et al. (2006), Danaher et al. (2007), Wahab et al. (2008), Kunda et al. (2008) and Mohanty (2009), recorded various level of ammonia on different culture method of $M$. rosenbergii.

However, there are few scientifically documented cases in which bacteria have assisted in bio-augmentation, with the notable exception of manipulating the $\mathrm{NH}_{3} / \mathrm{NO}_{2} / \mathrm{NO}_{3}$ balance (Nikoskelainen et al., 2003) in which nitrifying bacteria are used to remove toxic $\mathrm{NH}_{3}$ and $\mathrm{NO}_{2}$. Fish expel nitrogen waste as $\mathrm{NH}_{3}$ or $\mathrm{NH}_{4+}$ resulting in rapid buildup of ammonia compounds which are highly toxic to fish (Hagopian and Riley, 1998).

### 2.5.2.11. Nitrate

Ammonia is oxidized under aerobic conditions in two steps: oxidation of $\mathrm{NH}_{3}$ to nitrite and oxidation of nitrite to nitrate. Several bacteria e.g. Nitrosomonas, convert
ammonia to nitrite and other bacteria e.g. Nitrobacter, further mineralize nitrite to nitrate. Nitrifying bacteria excrete polymers (Hagopian and Riley, 1998) allowing them to associate with surfaces and form biofilms.

In the present study, the mean of total nitrate content was 3.818 ppm and 2.636 ppm in control and probiotic experiment pond, respectively. Similar study was reported by Ranjeet and Kurup (2002) and noticed. $0.02-0.03 \mathrm{mg} / \mathrm{l}$ of nitrite and $2.5-3.1 \mathrm{mg} / \mathrm{l}$ of nitrate in mono bi-species and polyculture of M. rosenbergii. The present study was supported by Kumar et al. (2000), Sadek and Moreau (2000), Giap et al. (2005), Asaduzzamann et al. (2008) and Mohanty (2009) who were recorded different ranges in their culture ponds of $M$. rosenbergii..

### 2.5.2.12. Chloride

Chloride content of the water changes from season to season, region to region depending on geomorphological variations of the region. Ideal level of chlorides are suggested for freshwater aquaculture is very less ( 31 to 50 ppm ) when compared to brackish and seawater aquaculture (>500 ppm). Boyd and Zimmermann (2000) suggested $<250 \mathrm{ppm}$ of chloride level for freshwater prawn culture. In the present study, higher levels of chlorides were recorded in control pond (mean 294.36 ppm ) than probiotic experimental pond (mean 315.09 ppm ) (table. 4a). Similar results reported by Quareshi et al. (2000) who recorded high chloride content ( 394.9 ppm ) in M. rosenbergii culture pond. In the present experiments, the recorded chloride has no significant difference $(P>0.05)$ between control and experimental pond and noticed chloride level of control pond was marginally higher than that of probiotic experimental pond.

### 2.5.2.13. Calcium

Freshwater prawn, like most crustaceans require high calcium concentrations for enzymatic processes involved in moulting and there is also a relationship between magnesium and neutral - muscular energy transmission. In the present study, the mean values of 81.909 and 34.727 ppm of calcium were recorded in control and probiotic experiment pond respectively (table. 4a). The concentration of the calcium studied in the present work is far less in the experimental prawn, M. rosenbergii culture pond compared to normal value ( $75-150 \mathrm{ppm}$ ) suggested by Reddy et al. (1998). According to Boyd and Zimmermann (2000) suggested $12-29 \mathrm{ppm}$ range for calcium, <20 ppm for magnesium in freshwater culture ponds. New (2002) reported $0.01-18.6 \mathrm{ppm}$ of calcium in prawn culture ponds in Brazil. Wudtisin and Boyd (2006) reported $55 \pm 45,39 \pm 16$ and $34.5 \pm$ 16.1 ppm of average values of calcium in 42 catfish, 40 freshwater prawn and 18 carp ponds in Thailand, respectively. Further, they suggested that calcium concentration was mostly above $20 \mathrm{mg} / \mathrm{l}$ and averages exceed $30 \mathrm{mg} / \mathrm{l}$, compared to catfish, prawn and carp ponds, cat fish ponds had a higher average calcium concentration than other farms. These reported values are in agreement for the present results of noticed values of calcium in control and experimental pond, which are favourable for the growth of M. rosenbergii.

### 2.5.2.14. Magnesium

Calcium and magnesium on an average make up about $48 \%$ and $14 \%$ of the total cations present in the freshwater ecosystem. The mean of total magnesium concentrations recorded in the present study are 34.909 and 42 ppm in control and probiotic experiment pond respectively which are within the range ( $20-200 \mathrm{ppm}$ ). According to Wudstisin and Boyd (2006) the magnesium concentrations normally were above $5 \mathrm{mg} / \mathrm{l}$, with averages $11.6-15.0 \mathrm{mg} / \mathrm{l}$ in catfish, prawn and carp ponds.

Magnesium is absolutely essential for chlorophyll bearing algae and plants. It is generally present in water as bicarbonate and in this form it resembles calcium bicarbonate in reaction with water.

### 2.5.2.15. Sodium, Potassium and Sulphate

In natural water, sodium occurs as halide ( NaCl ). Sodium is metabolised only by blue green algae but potassium is a necessary requirement for all algae. Under low potassium levels, growth and photosynthesis of algae are poor and the rate of respiration will be high (Jhingran, 1983). In the present study, the resulted mean value of sodium, potassium and sulphate were 22.81, 19.45 and 18.45 ppm recorded in control pond whereas $22.18,19.81$ and 16.18 ppm in probiotic experimental pond respectively as per the recommended amount. Boyd and Zimmermann (2000) suggested between $30 \mathrm{mg} / \mathrm{l}$ of sodium, $300-400 \mathrm{mg} / \mathrm{l}$ of potassium, <250 $\mathrm{mg} / \mathrm{l}$ of sulphate for freshwater culture ponds. New (2002) also reported $0.26-30.0 \mathrm{ppm}, 0.01$ -4.9 ppm and $0.1-2.60 \mathrm{ppm}$, sodium, potassium and sulphate ranges in $M$. rosenbergii culture respectively.

### 2.5.2.16. Phosphorus

In the present experimental study, the resulted total phosphorus mean values are $0.950 \pm 0.211 \mathrm{ppm}$ and $0.927 \pm 0.206 \mathrm{ppm}$ for control and probiotic experiment pond respectively. New (2002) reported $0.003-4.4 \mathrm{ppm}$ of total phosphorus value in $M$. rosenbergii culture. The noticed value of the present results showed low value with very little variation among the months (table.4a). The present study was similar to the report of Hassan and Bandhopadhyay (1997) with combined cultivation of M. rosenbergii and Ctenopharyngodon idella culture pond. Findings of this study showed that the use of commercial probiotics in fresh water prawn, M. rosenbergii pond could improve the population density of various beneficial bacterial flora reduced concentration of nitrogen
and phosphorus and increase the yield of prawn. This present study was supported by Wang et al. (2005) who also reported the reduction of nitrogen and phosphorus in commercial applied probiotic in shrimp culture.

### 2.5.2.17. Iron

Iron occurs in natural water either as bivalent ferrous or trivalent ferric form. Iron is necessary for the growth of microorganisms, and successful bacterial strains are able to compete successfully for iron in the highly iron-stressed gut environment (Verschuere et al., 2000a). Sideropheros are low-molecular-weight; ferric iron-specific chelating agents that can dissolve precipitated iron and make it available for microbial growth (Verschuere et al., 2000a)

In the present study, the mean of total iron content was recorded 1.60 and 2.16 ppm in control and probiotic experiment pond respectively. The values recorded in the probiotic experiment pond showed higher iron content compared to New (2002), <1 ppm value. Iron is needed by most bacteria for growth but is generally limited in the tissues and body fluids of animals and in the insoluble ferric $\mathrm{Fe}^{3+}$ form (Verschuere et al., 2000a). Adhikari et al. (2007) studied the impact of manganese and iron in water on survival, growth and feeding of juvenile M. rosenbergii.

### 2.5.2.18. Fluoride

In the present investigation, resulted high fluoride mean values in control pond ( 1.354 ppm ) whereas in probiotic experiment pond showed low ( 0.172 ppm ). This observed value was within the normal range (New and Zimmermann, 2000) for the freshwater prawn culture. Similar values were recorded in the study of Boyd and Zimmerman (2000) in freshwater prawn culture. In the present study, there may be some of slight variations in the results of chloride, nitrate, sodium, fluoride and this may be due
to the progressive growth of the organisms, leading to a rapid increase in biomass, and water quality deteriorates, mainly as a result of the accumulation of metabolic waste of cultured organisms, decomposition of unutilized feed, and decay of biotic materials (Prabhu et al., 1999).

In the present experiments of $\mathrm{DO}, \mathrm{pH}$ and temperature found to be statistically significant $(\mathrm{P}<0.05)$ in both the pond. Similar results were occurred in the one-way ANOVA analysis ( $\mathrm{P}<0.05$ ). The correlation co-efficient results also showed significant results ( 0.01 level) and obtained moderate degree of positive correlation for temperature and low degree of correlation recorded in pH and DO (table.3a,b,c). The eighteen studied water parameters values found to be statistically significant $(\mathrm{P}<0.01)$ in the both ponds of which the turbidity value ( -0.063 ) showed negative correlation co-efficient (table.4b). Prabhu et al. (1999), Wang et al. (2005, 2007a) and Farzanfar (2006) used some microorganisms on a shrimp farm to evaluate them as a factor for controlling the water quality. According to the results of this study, all factor of water quality parameters were at optimum level in the experimental pond compared with the control.

### 2.5.3. Bacteria

Bacteria are the most dominant group of microorganism and occur as cocci, bacilli or spirilli in soil. Bacilli are common, while Spirilli are reported to be very rare. In the present study, in addition to the three common genera viz., Actinobacter, Aeromonas, Enterococcus and Cornybacterium is also recorded in control pond where as in probiotic experimental pond addition to the six common genera Actinobacter, Aeromonas, Lactobacillus, Cornybacterium, Enterococcus, Rhodococcus, Rhodobacter and Acinetobacter were noticed. Of these 15 genera Pseudomonas and Bacillus occurred more common in both the ponds (table.5,6).

Our results with regard to the bacteria in M. rosenbergii culture are similar to those found by these authors. Lalitha and Surendran (2004) isolated 19 genera of bacteria in water and sediment from two farms located at Kottayam district in Kerala, India. Paulraj (2002) reported $40 \%$ and $60 \%$ of gram negative and gram positive bacteria from rearing water of $M$. rosenbergii culture, Chennai, India. Phatarpekar et al. (2002) reported altogether, 16 genera were identified from rearing water, egg, larvae and different organs of berried M. rosenbergii in larval rearing period, Goa, India. The generic composition of the bacterial flora isolated in M. rosenbergii hatchery system (Kennedy et al., 2006) in Chennai, India varied from 14 - 18 genera. Al-Harbi and Uddin (2004a), Lalitha and Surendran (2004) and Jeyasekaran et al. (2006) were examined different genera varied from $14-18$ in $M$. rosenbergii hatcheries.

In the present study, higher distributions of bacteria in the probiotic experiment pond are directly proportional to survival rate and production of $M$. rosenbergii than control. Moriarty $(1996,1998)$ added Bacillus spp. as probiotic in the penaeid shrimp ponds; the result of this study shows increasing survival rate and decreasing of luminous Vibrio densities in the pond water.

Ahn et al. (1999) also reported $64 \%$ gram-negative and $36 \%$ of gram positive bacteria in Wang Song reservoir near Seoul. Phatarpekar et al. (2002) noticed gram negative comprising more than $75 \%$ of the total isolates strain in M. rosenbergii larval rearing. Al-Harpi and Uddin (2004a) examined gram-negative bacteria dominated the genera composition of bacteria from $M$. rosenbergii larva culture system although grampositive bacteria still comprised a noticeable percentage. Lalitha and Surendran (2004) investigated $60-70 \%$ of bacteria in M. rosenbergii culture pond during their study. This present study was supported by Anderson et al. (1990), Joborn et al. (1997), Sugita et al.
(1998), Rengpipat et al. (1998), Moriarty (1998), Maeda (1999), Paulraj (2002), Hong et al. (2005), Kennedy et al. (2006) and Deeseenthum et al. (2007).

The resulted high bacterial load in the present study $\left(1.2 \times 10^{3}-5.3 \times 10^{4}\right)$ in control pond and $\left(3.5 \times 10^{4}-7.1 \times 10^{5}\right)$ in probiotic experiment pond probably due to sedimentation of organic matter and dissolved oxygen in the cultured pond (table.7). Similar results obtained by Phatarpekar et al., 2002 in a clear water system on day $10\left(1.3 \pm 0.9 \times 10^{6} \mathrm{CFU} / \mathrm{ml}\right)$ bacterial load in larval rearing of $M$. rosenbergii. The higher load of bacteria was attributed higher organic matter, (Otta et al., 1999 and Phatarpekar et al., 2002). Similar to the present study, Phatarpekar et al. (2002) observed a positive correlation between the level of total suspended solids and bacterial counts in control pond as in the present study. The total bacterial counts were significantly higher in intestines of the shrimp fed diets supplemented with probiotic B12 compared with the control groups reported by Robertson et al. (2000), and Zhang et al. (2008a).

### 2.5.4. Fungi

Water and oxygen are both absolutely necessary for growth of fungi and in addition, macroelements needed at much higher concentrations, (Onions et al., 1981). Okaemo and Olufemi (1997), Koilraj et al. (1999), Rao and Vasant (2000) and Surendran et al. (2000) reported that number of species occurred in different ponds differed based on the environmental conditions. Higher fungal diversity was also recorded by Girivasan et al. (1998) in peat soil. Okpokwasilli et al. (1998). Kumar and Sharma (1999) and Paulraj (2002) have isolated varied total number of fungus in different studied culture pond.

Totally 12 and 16 genera of fungi are contributed in control and probiotic experiment ponds in the present study respectively (table.8, 9). In this Aspergillus (13), Pencillum (3), Fusarium (2), Prechslora (2) and Curvularia (2) are contributed more than
one species in both the ponds, whereas other fungai have only one species. Similar report was given by Koilraj et al. (1999). In the present study, Aspergillus (38.46\%), Pencillum spp., ( $11.58 \%$ ), and rest of them are only one species contributed $3.84 \%$ in control pond where as in probiotic experimental pond of Aspergillus spp. (39.39\%), Pencillum spp. ( $9.09 \%$ ), Aspergillus is a dominant genera in both the ponds, 10 species and 13 species of this genera occurred in probiotic control pond and probiotic experiment pond respectively. The present study was similar with the result of Girivasan et al. (1998) reported that Aspergillus constitutes nearly $60 \%$ of Deuertomycetes and was represented 10 species.

In the present experiments, 26 and 33 species of fungi were recorded in control and probiotic experiment pond respectively (table.12, 13). The present study was supported with the report made by Manoharachary and Ramarao (1983) who examined 47 fungal species, representing 32 genera from two freshwater mud ponds in Hyderabad, Further, the present work was resembled with the study of Okaeme and Olufemi (1997) reported about 18 species of fungi associated with pond water and soil. However, Okpokwasilli et al. (1998) reported 8 fungal species from a freshwater fish culture pond in Nigeria.

The application of supplemental feed in control and probiotic in experimental pond may modify the abundance of filamentous fungi. In the present study, among the filamentous fungi, the dominant genera observed (Pencillium and Aspergillus) in the probiotic experiment pond are produced antimicrobials and some toxins as well, which can inhibit the growth of a wide range of bacteria and other pathogenic organisms present in the aquatic environment which enhance the growth of the $M$. rosenbergii in experimental culture pond. In the present study, probiotic application does not only improve the soil and water quality but also enhances the proliferation of many beautiful microflora, including fungi. The change in environment microflora, would also influence
the gut of the $M$. rosenbergii that reflect higher production in probiotic experimental culture pond compared to control pond.

Fungi and bacteria have different enzyme capabilities for break down compounds such as tannins, lignin and cellulose and their combined. So, the decomposition rates were higher in the experiment pond soil and indirectly the growth leads to higher in probiotic experiment pond. Bacteria and also fungi are used as food by widely differing animals, (Rheinheimer, 1985). Xianzhen et al. (1994) reported that heterotrophic productivity of aquatic bacteria is closely related to fish/ prawn yield.

### 2.5.5. Planktons

### 2.5.5.1. Phytoplanktons

Phytoplankton growth in ponds is stimulated by the addition of fertilizers and the waste products from shrimp (Burford, 1997) and provides food for assemblages of pond zooplankton and epibenthic fauna (Coman et al., 2003). In the present study 26 and 34 genera of phytoplankton were present in control and probiotic experimental pond respectively (table.14). Similar results were reported by Patnaik et al. (1988) who found 24 genera and 26 genera of phytoplankton in rearing pond and stocking pond, respectively Further, the present investigation was supported with the work of Danaher et al. (2007) estimated 82 genera of phytoplankton from six algal divisions were identified in Nile tilapia and $M$. rosenbergii polyculture. A total of 51 species were identified in 14 shrimp Liptopenaeus vannamei pond in Brazil by Case et al. (2008). The following authors were reported varied total number of phytoplankton of different genera in different culture of M. rosenbergii, Akpan and Okafor (1997), Azim et al. (2001), Aejaz et al. (2005), Uddin et al. (2007), Korai et al. (2008), Kunda et al. (2008) and Wahab et al. (2008).

In the present study, Cyanphyceae, Chlorophyceae and Bacillariophyaceae contributed 11, 19 and 4 species in control pond whereas 7,16 and 3 species in probiotic experiment pond, respectively. Higher species diversity was occurred in Bacillariaphyceae in both the ponds. However, Chlorophyceae was dominant in various freshwater ponds are reported by Anand (1998), Azim et al. (2001), Aejaz et al. (2005), Danaher et al. (2007), Udddin et al. (2007), Korai et al. (2008) and Kunda et al. (2008).

Recent reports demonstrated that many bacterial strains may have a significant algicidal effect on many species of microalgae, particularly of red tide plankton (Fukami et al., 1997). Positive effects of bacteria on cultured microalgae have also been observed (RicoMora et al., 1998). Probiotics could be specifically targeted for microalgae production; however, the subsequent effects of such bacteria towards the larvae must be established. The present study was supported with the work of Gomez-Gil et al. (2002), who found that the shrimp probiotic could be co-cultured with shrimp larvae food, Chaetoceros muelleri, without affecting the microalga.

Phytoplanktons are capable of producing substances toxic to other bacteria and could potentially act in a beneficial manner (Qi et al., 2009). In the present experiments, better algal growth was also observed and it could be associated with the maintenance of higher DO concentration compared with the control. The present study was similar to the work of Wang et al. (2005) in P. vannamei pond in Hai-Yan, China using Bacillus sp. The concentration of DO is associated with the density of phytoplankton and thus a greater deterioration of water quality induced was similar to the reports by Wang et al. (2005) in $P$. vannamei culture pond in China as in the present study.

In the present experiment, the total phytoplankton counts was decreased steadily during the last part of the trial in the control due to increased grazing pressure by the
increased biomass of introduced fish in both the ponds. It is also reported that the filtration rate by fish for both green algae and Cyanobacteria increased linearly when water temperature increased (Turker et al., 2003). Wahab et al. (1999) and Azim et al. (2004) also found similar patterns as in the present study among the phytoplankton community and also stated that prawns were not seen grazing on periphyton. In ponds, freshwater prawn preferred to forage on animals such as trichopteran, chironomids, oligochaets. Nematodes, gastropods and zooplanktons (Coyle et al., 1996; Tidwell et al., 1997a and Uddin et al., 2007) organisms associated with sediments.

### 2.5.5.2. Zooplanktons

Zooplankton assemblage comprises a significant component of the natural biota of shrimp/prawn culture (Martinez-Cordova et al., 1997; Coman et al., 2003, Preston et al., 2003 and Coman et al., 2006) farms. Anderson et al. (1987) reported that $53.77 \%$ of the nutrition of shrimp in pond comes from natural food. Castille and Lawrence (1988) suggested that natural food contributes more than $50 \%$ of the nutrition of $P$. vannamei. There have been numerous studies investigating the general zooplankton response to various sources of stress and subsequently, there use as a biological indicator has been well documented (Webber and Webber, 1998).

Analysis of zooplankton of the present study indicates the occurrence of copepods, cladocerans, rotifers and ostracods in both the ponds. Qualitative analysis of the zooplankton showed the occurrence of 30 and 32 species in control and experiment pond respectively (table. 15, 16). Similar to the present study, Wahab et al. (2008) also reported, 16 genera of zooplankton belonged to copepods (3 genera), cladocera (5 genera), rotifera (7 genera) and crustacean and nauplii in prawn-small fish culture practice in Bangladesh. Further, the present study was in accordance with the work of Uddin et al.
(2001) observed 17 genera of zooplankton were identified in prawn-tilapia stoked at a fixed 3:1 ratio, with and without substrate and periphyton development. (Kunda et al., 2008) found that rotifera ( 7 genera), cladocera 5 genera, copepod 3 genera and crustacean nauplii were reported in prawn - mola different stocking density.

Zooplankton showed variations with regard to their abundance during the different months of culture periods both in control and experiment pond. The initial zooplankton contents were low (115 and 152 numbers in control and experiment ponds, respectively) which increased tremendously in the month of March in both ponds, such a increased zooplankton density might have resulted from the microbial mixture and application of lime in both the ponds, whereas in higher numbers of zooplankton in the experimental pond indicates application of probiotic through feed, vitamin and mineral mix (mutagen) metal and minerals (Sodamix) and also due to the availability of phytoplankton on which zooplankton forage. Compared to the month of March, sudden decreased level of zooplankton was noticed in the month of April in both ponds which could have resulted due to the feeding of $M$. rosenbergii juveniles (table.17). Further, depletion in phytoplankton might also have caused lesser density of zooplankton

In the present observations, the zooplankton density again increased in the month of May and July in both the ponds (table.17a). During this month, higher density of zooplankton was recorded in probiotic experimental pond than in control pond. The abundance of zooplankton was also similar to that found by Azim et al. (2004) in a periphyton based carp culture in Bangladesh, suggesting that the zooplankton community were preferred by adult fish. However, in the present study the introduced fingerlings preferred the zooplankton as their food. Higher density of zooplankton during this month in the present work can be attributed to the availability of suitable phytoplankton. It is also
proposed that the $M$. rosenbergii juveniles which were actively feed on the natural food might have now preferred pelletized feed than the natural food. In this case, the unconsumed pelletized feed which settles at the bottom of the pond might undergone decomposition and provides rich nutrients for the abundance of bacterial population. Availability of a high concentration of bacteria promotes growth of high density protozoans. Protozoans and bacteria inturn are effectively utilized by the zooplankton which increases the density to a very great extent.

The present study was similar to the study of Case et al. (2008) who reported the noticed value of high density of zooplankton in probiotic experimental pond in the present study might be due to application of probiotics to the pond when compared to control, which clearly indicated that probiotic applications enhance the microbial population without harm to cultivable freshwater prawn M. rosenbergii. The same trend was observed by Maeda (1999) who also reported production of high density of zooplankton. The present study was similar to the work of Preston et al. (2003) who reported variations in zooplankton abundance and composition of species. Further, after the first harvest water exchange was done more frequently (weekly once) because $M$. rosenbergii density was high in both the ponds, water was pumped upto 1.2 m and above to avoid the dissolved oxygen problem. Due to this freshwater pumping, the plankton density was less after the first cull harvesting. During the production season, farm managers regularly exchange water. However, Coman et al. (2003) found no significant relationship between the volume of water exchanged and the change of zooplankton density.

The present report showed that zooplankton density of control and probiotic experiment pond was positively correlated with groupwise total and monthwise total zooplanktons. Total copepod population, rotifer, cladocerans and ostracod population of
control and probiotic experimental pond was positively correlated and statistically significant at 0.01 level. Transparency reading were negatively correlated with zooplankton abundance, therefore zooplankton were higher when the algal biomass was higher (Coman et al., 2006). Many earlier investigations also recorded higher survival and weight gain in post larvae of $M$. rosenbergii when fed on zooplankton from a wild source than an artificial diet (Brown et al., 1992; Collins, 1999 and Paulraj, 2002). Larger prawns (40g) have been found to benefit from increased feed quality late in the production season (Tidewell et al., 2004b).

### 2.5.6. Length and weight relationship

The range of length and weight of the control and probiotic experimental pond showed different growth pattern in the present study of M. rosenbergii culture. In control pond, animals weighed of about $4-60 \mathrm{~g}$ from the first harvest to final harvest and the same trend also seen in probiotic experimental pond (5-75 g) (table.26), it indicates normal growth curves were occurred in both ponds simultaneously probiotic application pond showed higher growth rate compared to control pond (fig.48, 49). In the present study, the weight gain of $M$. rosenbergii among experiments was higher in the probiotic experiment pond $(73.98 \mathrm{~g})$ compared ( 47.98 g ) in control pond (table.35). Similarly Siddiqui et al. (1999) who reported the weight gain in prawns ranging from $25.2-37.0 \mathrm{~g}$ at a prawn density of 7500 ha -1 . Further, the present study was coincidence with the work of Venkat et al. (2004) who reported the highest and lowest weight gain in Lactobacillus sporogenes (132.5\%) and Artemia control (99.5\%) respectively in M. rosenbergii post larvae. In the present experiment, the probiotic fed groups were significantly $(\mathrm{P}<0.01)$ higher in length and weight which are highly positive correlated than control groups (table. 26a). The higher weight of prawn may be due to relative weight of hepatopancreas
(observed in the present study) which plays a key role in food assimilation (Dhall and Moriarity, 1984) probably manifest the provision for energy utilization for growth and metabolism. This observation strongly corroborates with the earlier report (Kris et al., 1987 and Kurup et al., 1999).

In the present experiment, the mean $\pm$ SE values of weight showed higher values in probiotic experimental pond upto September month, (54.222 $\pm 2.605 \mathrm{~g})$ (table.26a) after a decline was noticed (i.e. 230 days to 269 days), this may be due to low DO rate observed during the month of October and high temperature in the morning hours and this may influence the low harvest rate. So that the physiological function was low and may leads to less digesting capacity, this may inturn reduce the growth. In the present study also after the first partial harvest, to final harvest three to four types counts (marketable prawns) were caught and found that $68 \%$ of the prawn weighed more than $15 \mathrm{~g} ; 14 \%$ weighed more than $30 \mathrm{~g}, 10 \%$ weighed more than 40 g and $8 \%$ weighed more than 60 g . This was supported by Garcia-Peerez et al. (2000). Danaher et al. (2007) who also suggested that even greater tilapia densities can have effect on prawn yield, survival and total pond production.

In the final harvest i.e., in the month of December, the average mean weight was $32.466 \pm 2.162 \mathrm{~g}$ and $31.320 \pm 1.804 \mathrm{~g}$ in probiotic experimental and control pond respectively (table.26a and fig.49). This was due to the over period of culture, normally the culture period extend upto 6 to 7 month in batch culture (Langer and Somalingam, 1993; Kumar et al., 2000; Sadek and Moreau, 2000; Lan et al., 2006 and Nair et al., 2006) in some culture condition it was extended upto 8 to 9 month (Sampaio and Valenti, 1996; Islam et al., 1999; Ranjeet and Kurup, 2002; Ahmed et al., 2008b; and Mohanty, 2009).

In the present study, it was 304 days in control pond and one day extra for probiotic
experimental pond. In the present study, the length-weight relationship clearly indicates differential growth pattern. The end of the culture period, the growth was decreased. Several authors present separate length-weight and length- length relationships for males and females (Chow and Sandifer, 1991; Primavera et al., 1998 and Tzeng et al., 2001). However such separation of these morphometric relationships for males and females may not be necessary for periods at certain life history stage (Cheng and Chen, 1990; Dall et al., 1990 and Chu et al., 1995).

The present results was correlated with the work of Hui-Rong et al. (2001) who reported that probiotic fed animals was larger than that of unfed ones ( 13.3 cm and 12.7 cm respectively) and mean body weight between the treated and untreated shrimp (23.18 g and 20.6 g ) respectively. In the present study, the reported variations in the length and weight of the animals in control and probiotic experiment pond may be due to environmental factors like pH , temperature etc. Further, the present study was supported by Indulkar and Belsare (2003) who reported higher percentage gain in weight of postlarvae was observed when fed the diet containing probiotic (GP@7.5g kg-1) diet compared to the control diet. Moreover, Garcia-Peerez et al., (2000), Das et al., (2007) and reported that the morphometric differences and variability in morphological characteristics were adaptive responses to the environment especially in crustacean populations.

The present study showed positive correlation in length and weight between months in control and probiotic experimental pond during the culture period (table. 27 30). A difference in the average body weight of the prawn, in control and probiotic experimental pond during the trial netting in the present investigation reveals that higher body weight recorded in the probiotic experimental pond. Durairaj et al. (1992) and

Quareshi et al. (2000) reported similar average weight in all trial netting analysis. But last two trial netting analysis in the present work for both the pond $\left(269^{\text {th }}\right.$ and $293 r d$ days of final netting) showed decreasing trends, it indicates prawn growth is stopped in both the ponds and even though probiotic application was continuously broadcasted to the probiotic experimental pond. The enhanced growth and weight in $M$. rosenbergii probiotic application may be due to the degradation of organic matter thereby significantly reducing the sludge and slime formation. By improving total water quality and FCR, the overall health and immunity of the prawn will be improved, (Green and Green, 2003).

### 2.5.7. Growth and Survival

In the present study, the formulated probiotic have beneficial effects on water quality and disease control as well as survival rates (100 \%) in the experiment ponds. In the present study, the mean average weight ( $32.46 \mathrm{~g} / 0.6 \mathrm{ha} / 305$ days) and the yield (1178 $\mathrm{kg} / 0.6 \mathrm{ha}$ ) characteristic showed higher in probiotic experimental pond. The present result shows the average mean weight ( $31.32 \mathrm{~g} / 0.6 \mathrm{ha} / 304$ days) of $M$. rosenbergii in control pond is mainly due to low survival rate compared to experimental pond. Similar study was recorded by Kurup et al. (1998a) and reported poor percentage of survival ( $16.59 \%$ ) in the control pond and high average weight ( 97.178 g ) by the application of probiotic feed. Further, the present study was supported by Ranjeet and Kurup (2000) and recorded high mean weight $43-83 \mathrm{~g}$ and $12-28 \%$ of survival in batch/size grade culture of M. rosenberigii in Kuttanad, Kerala, India.

Further, Similar results reported by Maeda and Liao (1992) on the beneficial effects of soil extract on the growth and survival of penaeid larva of $P$. monodon. The highest survival and production observed in the probiotic experimental pond in the present study may also be due to application of probiotic in the experimental pond. The present
study was supported by Sadd et al. (1999) who demonstrated the positive effects of probiotic feed supplement, Biogen on the growth and survival Freshwater Prawn, Macrobrachium rosenbergii. Similar to the present study was reported by Oanh et al. (2000) who reported that the length of survival of larvae of $M$. rosenbergii was higher by the application daily usage of probiotic in this study. About $34-75 \%$ of survival of $M$. rosenbergii was reported by different authors (Ang, 1990; John et al., 1995; Siddiqui et al., 1996; Sadek and Moreau, 2000 and Quareshi et al., 2000)..

In the present study, higher growth in probiotic fed diet prawn M. rosenbergii, suggesting that the addition of probiotic enhance the growth performance and feed utilization. The present studied results are in agreement with work of Suralikar (1996) who reported better growth performance in M. rosenbergii post larvae fed on lactic acid bacteria Bactobacillus lactis. Growth response of white prawn, Penaeus indicus, to dietary L-carnitine reported by Jayaprakas and Sambhu (1996). All the probiotic-supplemented diets resulted in an increase of final weight, DWG and RGR, showing that the addition of probiotics increased the growth performance of shrimps, were reported by Swain et al. (1996) for Indian carp (Labeo rohita) and Wang et al. (2007) for shrimp P. vannamei. Noh et al. (1994) and Bogut et al. (1998) showed that a commercial probiotic preparation of Streptococcus faecium improved the growth and feed efficiency of Israeli carp (C. carpio). Himabindu (1998) has reported better growth performance in post - larvae of $M$. rosenbergii when fed with lactic acid bacteria Lactobacillus sporogenes ( $24 \times 10^{7}$ cfu per 100 g ) than when fed with L. acidophilus ( $140 \times 10^{11}$ cfu per 100 g ). Prabhu et al. (1999) studied the usefulness of a probiotic N.S. Series Super SPO TM in maintaining water quality and thereby enhancing growth rate and production in shrimp culture. These results
have been reported also in the Indian white shrimp Fenneropenaeus indicus (Ziaei-Nejad et al., 2006) and in P. vannamei (Wang, 2007).

The present study was confirmed with the experiments of Ang (1990) on the monoculture of $M$. rosenbergii has produced $979.02 \mathrm{~kg} / \mathrm{ha} /$ cycle, the average survival during this trial was $32.4 \%$ and the average weight recorded was 33.6 gms , while Vasudevappa et al. (1998) reported $1,536 \mathrm{~kg} / \mathrm{ha}$ and he recorded $80 \%$ survival and an average weight of 38.4 g at the end of 6 months culture.

Further, the present study was confirmed with the work of Ziaei-Nejad et al. (2006) who examined the effect of commercial Bacillus probiotic by three experiments on the digestive enzyme activity, survival and growth of Fenneropenaeus indicus at various ontogenetic stages. In the present work, the achievement of higher prawn growth rate in probiotic-treated groups was supported by several studies (Moriarty and Body, 1995; Moriarty, 1998; Rengpipat et al., 1998; Cima et al., 1999; Nikoskelainen et al., 2001; Meunpol et al., 2003; Das et al., 2006 and Saad et al., 2009). Survival rates, emergence time of post larvae, completion of post larvae development and water quality were found to be better in all trial with probiotic application in M. rosenbergii hatchery system in the present investigations.

According to the study of Wang and Xu (2006), who mixed probiotics (photosynthetic bacteria and Bacillus sp. isolated from carp ponds) and introduced with aquaculture pond which induced the best growth performance compared with individual probiotics, in growth performance in shrimp. This indicated that the quantity of probiotics is only one of the factors promoting the growth performance of shrimps. The enhanced growth performance in the present studied experimental pond than control of prawn might be due to increasing digestive enzyme activity induced by the probiotics. Furthermore,
bacteria particularly members of the genus Bacillus secrete a wide range of exoenzymes (Moriarty, 1996, 1998) and that enzymes synthesized by the probiotics. The higher level of enzyme activity obtained with diets containing probiotics improved the digestion of protein, starch, fat and cellulose, which might in turn explain the better growth observed with the probiotic supplemented diets. Similar effects have been reported for fish and shrimp, in which digestion was shown to increase considerably in response to probiotics in the diet (Lara-Flores et al., 2003; Tovar-Ramírez et al., 2004; Ziaei-Nejad et al., 2006). Based on these results, use of a $10 \mathrm{~g} \mathrm{~kg}-1$ (wet weight) supplement of probiotics ( $5 \mathrm{~g} \mathrm{~kg}-1$ PSB and $5 \mathrm{~g} \mathrm{~kg}-1 \mathrm{BS}$ ) in shrimp $P$. vannamei diet was recommended to stimulate productive performance, (Wang, 2007).

Probiotic bacteria are a good candidate for improving the digestion of nutrients and growth than that with the control diets in aquatic organisms (Irianto and Austin, 2002; LaraFlores et al., 2003). Further the present study was correlated with the work of Devaraja et al. (2002) investigated shrimp (P. monodon) production showed better growth when ponds treated with two commercial mixed microbial probiotic products. Venkat et al. (2004) evaluated in their results that a significant growth was observed for larvae fed diets supplemented with probiotic in M. rosenbergii. Moriarity et al. (2005) also achieved higher growth and weight of $M$. rosenbergii by the application of probiotics to the prawn culture pond than control groups. Farzanfer (2006) also reported higher growth rate by the use of probiotics in shrimp culture.

### 2.5.8. Feed Conversion Ratio

After complete harvest, the food conversion ratio (FCR) was recorded (1.31) and (0.96) in the present study of control and probiotic experiment pond respectively which was found to be statistically significant at $\mathrm{P}<0.05$ level more or less similar to the values
of (1.73-2.12) reported by Siddiqui et al. (1999). Abraham et al. (1995) observed a similar positive effect on addition of probiotic feed supplement 'Lactose' on the growth of shrimp with significant level $(\mathrm{P}<0.05)$ of FCR than the control group. Further, this was confirmed with the experiments of Tidwell et al. (1997a), with 0.04 ha stocking density $3.9 \mathrm{~m}^{2}$ of M. rosenbergii with different organic fertilization and resulted $2.31-3.11$ FCR values. The present study was in agreement with the work of Uma et al. (1999) who observed a significant improvement in FCR, FER and PER of shrimp larvae when fed with L. plantarum bio-encapsulated Artemia. Similar study was reported by Tidwell et al. (1996) and Quareshi et al. (2000) that $2.31 \pm 0.04$ and $2.34 \pm 0.14$ FCR in Kentucky state university and Mississippi state university (different latitude) respectively. Kumar et al. (2000) were recorded $2.3 \pm 0.1,2.2 \pm 0.1,2.8 \pm 0.1$ FCR in 61 day ungraded and 61 day graded and 133 day graded juveniles of $M$. rosenbergii culture respectively.Sadek and Moreau (2000) reported $1: 4.1 \pm 1$ FCR in monoculture of $M$. rosenbergii. Tidwell et al. (2003) and Correia et al. (2003), reported $0.75-2.28$ FCR in natural and supplementary feeding traits of $M$. rosenbergii. Nair et al. (2006) stated that the apparent FCR which has a direct effect on the cost of production, was the best for all - female (1.26 $\pm$ 0.02 ) followed by all-male $(1.30 \pm 0.05)$ and mixed cultures $(1.62 \pm 0.02)$, applied probiotic along with supplemental feed. Different authors reported less FCR in the experimental pond with different combinations, different food addition polculture, compared to control culture pond of prawn viz., Danaher et al. (2007), Gupta et al. (2007), Hossain and Paul (2007), Uddin et al. (2007), Tidwell and Coyle (2008) and Asaduzzaman et al. (2009).

Further, the FCR was calculated from the month of August to December 2008 (harvest period) and found maximum during the month of August in both ponds (table. 35). The FCR in the final harvest i.e in December month it was 3.27 and 3.14 for control
and probiotic experimental pond respectively which showed significant at $\mathrm{P}<0.05$ level. Similar to the present results, Siddiqui et al. (1997) reported higher FCR values of 3.7 (5 prawn $/ \mathrm{m}^{2}$ ) to 5.6 (20 prawns $/ \mathrm{m}^{2}$ ) for M. rosenbergii cultured in concrete tanks fed diet containing $34 \%$ protein. The present work was corroborated by the work of (Ziaei-Nejad et al., 2000) in Fenner Penaeus indicus, with improved feed conversion ratio (FCR) and specific growth rate (SGR) by the application of commercial Bacillus probiotics. The present investigation was concurrent with the test of Devaraja et al. (2002) investigated shrimp, $P$. monodon showed there were significant difference in FCR (feed conversion ratio) in pond treatment with a product containing Bacillus sp. and Saccharaomyces sp . compound with ponds treated with Nitrosomonas sp. and Nitrobacter sp. and untreated control pond. Similar study was made by Venkat et al. (2004) who observed a significant improvement in FCR, FER and PER of shrimp larvae when fed with L. plantarum bioencapsulated in artemia.

The present study was related to Far et al. (2009) tested a commercial probiotic $B$. subtilis had the greatest FCR, SGR and growth performance by consistant application to the shrimp culture. SGR, FCR and PER are best in probiotic applied M. rosenbergii than control. Increased growth rate in probiotic culture may be due to the improved feed conversion via increased fatty acid oxidation and utilization of dietary energy (Moore et al., 2000). Further, the present study was strongly supported by Haroun et al. (2006) and Saad et al. (2009) by Biogen supplementation to diets resulted in reduced FCR and improved weight gain in M. rosenbergii.

Mortality was not found in the experimental groups in the present experiment indicating no adverse effect of probiotic on survival (one or two by cannabolism or aggressive behaviour).

Further, conversion ratio may differ with the nutritional quality of the food, although food conversion efficiency was reported to vary with environmental conditions. The factors which determine the quality of feed are its nutrient profile, particle size, texture, stability of nutrients, attractability, digestibility, anabolic efficiency and shelf life (Paulraj, 1999). Mariappan and Balasundaram (1999) opined that feed quality is an important criteria which directly influences the growth rate of shrimp/prawn and is a major factor responsible for a profit harvest from shrimp/prawn farms. The quality and content of protein in the feed might also play an important role in feed conversion. The present study also indicates high feed efficiency in probiotic experimental pond (FE-1.03) than in control pond (FE-0.75) (table. 36). The animal counts are considering an important revenue system.

### 2.5.9. Production

In the present study significantly higher $(\mathrm{P}<0.05)$ net production of $M$. rosenbergii noticed in probiotic experiment pond $1178 \mathrm{~kg} / 0.06 \mathrm{ha}-1$ and $866 \mathrm{~kg} / 0.06 \mathrm{ha}-1$ in control pond were calculated. The higher production in probiotic application may be due to increase in length and weight by probiont added its antagonism towards pathogenic bacteria, the growth enhancement factor may be due to the proteolytic enzyme produced by Bacillus sp. as Rengpipat et al. (1998). Further, the enzymatic activities are reported by Das et al. (2006).

Further, the present study was conformed with the work of Lan et al. (2006) who examined the effect of different stocking density $1,2,3$ and $4 \mathrm{PL} / \mathrm{m}^{2}$ in rotational rice prawn system for 210 days culture of $M$. rosenbergii resulted $28.8-49.8 \%$ survival in $100 \mathrm{~m}^{2}$ plots and their yield ranged $194-373 \mathrm{~kg}$. Further, the present results was coincided with the work of Kunda et al. (2008) also reported $49-57 \%$ survival for prawn
culture with $45-58 \mathrm{~g}$ of individual weight and the net production of freshwater prawn ranged $294-596 \mathrm{~kg} / \mathrm{ha}$ respectively, during 4 month culture period depending on stocking density $10000-25000 \mathrm{PL} / \mathrm{ha}$. Wahab et al. (2008) also stated similar reports that the mean harvesting weight ( 55.24 g ) and survival ( $48 \%$ ) of prawn were significantly higher in the stocking density of $15,000 \mathrm{PL} / \mathrm{m}^{2} / \mathrm{ha}$ and mola $2000 / \mathrm{m}^{2} / \mathrm{ha}$, then in treatments of 20000 and $25000 \mathrm{PL} / \mathrm{m}^{2}$ stocking density. In the present investigation, the increased net profit was achieved by using the probiotics in the water and by incorporating the "Sanolife" probiotics along with feed, so that the intestinal tract of the prawn was colonized by probiotic bacteria successfully. This study was correlated with the work of Moriarty et al. (2005) also explained the same reason for the increased weight of the prawn.

The production from all male in the present study was higher than that of all female prawn. The net revenue was higher in male prawn in probiotic applied pond than control pond over Rs. 2, 06, 758 and Rs. 57,971 respectively. In the present study, the less production of female in both culture ponds, partially owing to the discount allowed for egg carrying female at marketing times. In the present study, females contribute $14.06 \%$ and 166 kg in probiotic experiment pond whereas in control pond was $27.06 \%$ and 131 kg , compared to other counts. Similar study was reported by Nair et al. (2006). The observed higher production (survival and weight) may also due to favourable water quality and biological parameters which are enhanced by the application of probiotic to the pond along with supplemental feed. Alam (1992) and Wahab et al. (2008) observed a prawn production of 220 kg ha- 1 in rice fields from a 160 days culture period, close to the production found in this study.

The higher profit in probiotic applied pond might be due to better production of prawn compared to control. This present study was supported by Venkat et al. (2004) who have been reported highest and lowest body weight gain (production) were observed in probiotic fed group and control respectively. The present study was in concordance with the work of Aly et al. (2008) who also reported higher production in probiotic applied groups of prawn than control ones. Similar reports were also given by Padma kumar et al. (1992); Raja and Joshi (1992) and Durairaj et al. (1992).

In the present investigation, the included number of $M$. rosenbergii in each kg was 28 - 72 counts and $26-70$ c in control and probiotic experiments respectively. The number variation in the experiment culture pond may be due to size variation, heterogeneous individual growth, especially among males, forms a major obstacle in profitability in $M$. rosenbergii culture, (Ravishankar and Keshavanath, 1988). Below 20g animals contributed $10.79 \%$ in probiotic experiment pond and $17.27 \%$ in control pond. Similar study was carried out by Ranjeet and Kurup (2002) and have been reported that the larva first hatched contributed $25.63 \%$ of animal 50 g class group conversely, the percentage of weight class $>120 \mathrm{~g}$ was high the later hatched group ( $63.4 \%$ ) but the $<50 \mathrm{~g}$ weight class constituted only $16 \%$. The trend followed more or less a similar pattern in size-graded post larval groups.

### 2.5.10. Fish Yield

In the present study, catla and carp yield showed $765 / \mathrm{kg} / 0.6 \mathrm{ha} / 210$ days and 842 $\mathrm{kg} / 0.6 \mathrm{ha} / 211$ days, in control and probiotic experiment ponds respectively. Both the pond showed 100 percent survival, the average mean body weight was 1.53 kg in control and 1.68 kg in probiotic experiment pond. In the present experiment, the fishes were introduced inorder to check plankton and their weight of Catla catla showed increased
upto 4 kg which are more or less similar to the findings of Siddiqui et al. (1999) who reported the weight gain of 249.3 - 278.3 and $195.2-296.4 \mathrm{~g}$ for catla and rogu respectively in polyculture with $M$. rosenbergii.

Karplus et al. (1986b) reported $352 \mathrm{~kg} / \mathrm{ha}$ of prawn of stocking density of $1 / \mathrm{m}^{2}$ in polyculture for 110 day culture period. Brown et al. (1991) commented that polyculture considerably complicates the grow-out management of prawns. Jose et al. (1992) obtained 106 $254 \mathrm{~kg} / \mathrm{ha}$ in an experiment of polyculture in which prawn were stocked at a rate of $1 / \mathrm{m}^{2}$. The present study was similar to Islam et al. (1995) reported a production of $172 \mathrm{~kg} / \mathrm{h} /$ year where $M$. rosenbergii was stocked at $15000 \mathrm{~h}-1$ with silver carp, catla, rohu and mirgal. The present study was similar to Islam et al. (1999) reported a production of $172 \mathrm{~kg} / \mathrm{h} / \mathrm{ye}$ ar where M. rosenbergii was stocked at 15000h-1 with silver carp, catla, rohu and mirgal. Uddin (2007) and Kunda et al. (2008) showed that in mixed culture the feeding niches of tilapia and prawn only partially overlap, and recommended this duo-culture as an alternative to polyculture of Chinese and Indian carps.

Cent percent survivals of fishes were recorded in both the ponds. But the observed similar survival ( $75-76 \%$ ) of prawn with different tilapia densities revealed that addition of substrates might have minimized the territoriality and different water quality parameters fell in the favorable limits of $M$. rosenbergii due to maintaining a high C : N ratio in all treatments. A limited level of cannibalism during the molting is normal and may be responsible for a mortality of $4 \%$ monthly (AQUACOP, 1990).

### 2.5.11. Economic analysis:

In the present study, the seed and feed cost occupied $13.89 \%$ and $18.55 \%$ in control pond whereas $12.46 \%$ and $20.50 \%$ in probiotic experiment pond, respectively (table. 33, 34). Sandifer (1982) are of the view that the largest single item in the
economics of shrimp farming was the seed cost representing on an average between $58.3 \%$ and $63.8 \%$ of the variable production cost. Ang (1990) reported that cost of postlarvae and feed are the two major expenditures in M. rosenbergii culture in Malaysia. Rhodes (2000) reported values of feed cost portions of the operating costs of the farms ranging between $5 \%$ in the USA to $52 \%$ in Malaysia with $41 \%$ in Brazil. Quareshi et al. (2000) also reported that $65 \%$ of the total expenditure accounted for the feed used for raising prawn to marketable size. Schwantes et al. (2009) stated that feed and seed were necessary and were higher proportion of costs, averaging $56 \%$ and $17 \%$ respectively Prawn juveniles were expensive inputs (about $47 \%$ of the total cost) in all treatments followed by prawn feed (16.17\%), Similar reports was given by Ramakrishna (2010).

Variable costs in prawn culture are cost of seed, feed, fertilizers, labour (family and hired), harvesting and marketing and miscellaneous. Muir (2003a) reported that prawn production cost comprise $28 \%$ of seed, $21 \%$ of feed and only $4 \%$ of labour. Ahmed et al. (2008) survey in Bangladesh showed, the average annual cost for human labour were calculated at US\$ 112.61/ha/yr for extensive farms, in comparison to US\$ $152.45 / \mathrm{ha} / \mathrm{yr}$ for semi - intensive farms. In the present study, the labour cost was Rs.43.88/- (US\$ 0.91) in control pond whereas Rs.30.61/- (US\$ 0.63) in probiotic experiment pond. Nair et al. (2006) reported that the variable cost was Rs. 70,138 in all-male (the highest), Rs.45,720 in all female (the lowest) and Rs. 5,789 in mixed pond. Fixed cost included depreciation (water pump, net, feed machine etc), land use and interest on operating capital (Shang, 1990), within variable cost seed and feed dominated all other cost averaging $39 \%$ and $33 \%$ of the total cost (Ahmed, 2004).

In the present study, land lease cost (rental cost) was Rs. $22,500 / \mathrm{pond} / \mathrm{yr}$. In the present investigation, the capital cost of control pond were Rs. 51,500/- (US \$ 1072.91)
and in probiotic experimental pond Rs.52, 500/- (US \$ 1093.73). Schwantes et al. (2009) stated that land rented cost was 5 to 75 dollars/ha/yr on a average 40 dollars in Thailand.

In the present observation, the cost of production of one kg of prawn in control pond is Rs.362.12/- (US\$ 7.59) while in probiotic experiment pond it is Rs.282.41/- (US\$ 6.78). The high price cost of one kg prawn in the probiotic experimental pond indicates application of probiotic and mineral combinations may enhance the microbial niche in the pond that improves the water quality and soil fertility. The highest average price of one kg of prawn was Rs. $295.07 / \mathrm{kg}$ in all-male ponds, followed by the mixed ponds Rs. $288.71 / \mathrm{kg}$ and the all- female ponds Rs.262.04/kg, (Nair et al., 2006).

In the present study, Rs. 4,25,070/- (US\$ 1435.43), as gross income while the net income was Rs.57,971/- (US\$ 362.52) in control pond while in experimental pond gross and net income was Rs.5,93,940 /- (US\$ 5877.08), Rs. 2,29,600/- (US\$ 4783.33) respectively. In Southwest Bangladesh, the net income of farming is an average (US\$ 1430/ha/yr), Muir (2003a). Hossain and Islam (2006) obtained highest net profit (TK 69006/ha) in stocking density of $10000 \mathrm{PL} / \mathrm{m}^{2}$ and the lowest (TK. 28375/ha). Mohanty (2009) reported net-return from rice-fish/prawn culture ranged between Rs.49, 997/-ha to Rs. 74,533/-ha in various stocking density studies.

In the present study, the economic analysis of the data revealed that the net revenue realized was the highest in the control (Rs.57, 971) pond when compared to probiotic experimental pond (Rs. 2, 06, 758/-). The present study was supported by Moriarty et al. (2005) suggested the net profit was therefore greater which was achieved by using the respective probiotic in the water by incorporating the Sanolife probiotic in all the feed. Further the present study was similar to the study of Zhong and Guang (2008) who applied the probiotic bacteria, Bacillus sp. and EM at different stages of P.vannamei pond
cultures, increasing the average per hectare upto 6400 Euro. Mohanty (2009) reported in rice-fish/prawn culture, when phased harvest is practiced, the net return was enhanced further by $49 \%$. Average net profit US\$ $3918 / \mathrm{ha} / \mathrm{yr}$ were realized in Thailand $M$. rosenbergii culture by Schwantes et al. (2009). A number of authors worked out the cost and returns of monoculture and polyculture systems of M. rosenbergii (Ghaffer et al., 1988; Law et al., 1990; Prakash et al., 1990; Padma kumar et al., 1992; Law et al., 1993; Mathew, 1994; Sadek and Moreau, 1998; Quareshi et al., 2000; Nair et al., 2006; Uddin et al., 2007 and Kunda et al., 2008).

The Benefit-Cost ratio (BCR) of the semi - intensive system is 1.73 which is significantly higher than in the extensive system (1.57), in Bangladesh farming (Ahmed et al., 2008a). In the present study BCR of control and experiment pond was 1.35 and 1.78 respectively. Significant BCR was also reported by Nair et al. (2006) and Kunda et al. (2009). The higher BCR ratio was reported by many authors applying supplemental feed, probiotic application, stocking densities, mono-sex culture, selective harvest, monoculture and polyculture with availability of food, FCR rate and distribution of micro- organisms (Mohanty, 2009 and Ramakrishna, 2010). In the present study, there was a significant different $(\mathrm{P}<0.05)$ of gross income and net income between two farming system. The rate of income in control and probiotic experimental pond are depending upon the stocking rate, survival rate and growth rate, which are in turn affected by feeding, fertilization rate and environmental factors such as water quality are responsible for increasing farm productivity.

