

RÉFÉRENCES

Alimentation des ruminants en AB - Cahier 1

Techn'ITAB

Valeur nutritive des matières premières cultivées en agriculture biologique et utilisées par les ruminants

L'objectif de ce guide est de fournir des références aux éleveurs biologiques en valorisant les résultats des essais et des observations réalisés sur la ferme expérimentale de Thorigné d'Anjou de 1999 à 2008.

La conduite en agriculture biologique est en effet susceptible de modifier fortement les caractéristiques des aliments :

- l'absence de fertilisation minérale azotée conduit fréquemment à une faible teneur en matières azotées des céréales;
- les cultures associées sont fréquentes (associations céréales/protéagineux, prairies à flore à flore variées).

Dans ce document sont présentés les résultats concernant les matières premières. Nous aborderons successivement :

- I Les céréales
- II Les associations céréales/protéagineux
- III Les protéagineux

La ferme expérimentale de Thorigné d'Anjou

La ferme expérimentale de Thorigné d'Anjou est située à vingt kilomètres au nord ouest d'Angers. Conduite en agriculture biologique depuis sa création à l'automne 1998, elle valorise des terres au potentiel agronomique modeste : des limons sableux siliceux, peu profonds et caillouteux, sensibles au tassement, séchants, fréquemment hydromorphes (alios plus ou moins prononcé), initialement acides, avec lessivage du fer, risque de libération d'alumine et d'accumulation de matières organiques peu évoluées. Ils ont une faible CEC (en moyenne 60 meq/kg). Ce type de sol, à faible potentiel, est fréquent dans le Segréen. L'exploitation est conduite dans l'objectif d'atteindre l'autonomie alimentaire totale du troupeau, avec un niveau élevé d'exigence sur les performances zootechniques individuelles et sur la qualité de finition des animaux. La fertilisation azotée repose totalement sur :

- la fixation symbiotique par les légumineuses,
- les apports de fumier et de compost,
- les restitutions au pâturage par le troupeau allaitant,
- les rotations de longue durée (5 à 9 ans).

Aucun achat d'engrais organique azoté n'a été réalisé.

DES DONNÉES ISSUES DE LA FERME DE THORIGNÉ D'ANJOU

Les 290 échantillons analysés concernent :

- Les parcelles de céréales, de protéagineux, et d'asssociations céréales protéagineux cultivées dans l'objectif d'atteindre l'autonomie alimentaire du troupeau de vaches allaitantes (115 échantillons dont 51 pour l'association triticale/pois fourrager).
- Des essais en petites parcelles sur les associations céréales/protéagineux, conduits sur la période 2002
 2008 (139 échantillons pour 40 mélanges). Dans les essais, les associations ont été comparées à des céréales cultivées pures, avec le triticale comme témoin.
- Des essais en petites parcelles sur les protéagineux de printemps (pois, lupin, féverole) conduits sur la période 2002 – 2004 (36 échantillons).

Les essais permettent de comparer les valeurs nutritives toutes choses égales par ailleurs.

LES ANALYSES RÉALISÉES

Les analyses ont été effectuées par le laboratoire départemental d'analyses de la Mayenne (LDA 53). Sur chaque échantillon ont été analysés les teneurs en matière sèche (MS), matières minérales (MM), matières azotées totales (MAT), cellulose brute (CB), matières grasses (MG), Phosphore total (P), Calcium total (Ca), Magnésium total (Mg). La digestibilité enzymatique à la pepsine cellulase (dCO) a été utilisée pour prédire la digestibilité de la matière organique (dMO), en utilisant l'équation

suivante (AUFFRERE et al, 2007) : $dMO = 0,699 \times dCO + 22,6$, $R^2 = 0.96$, ETR = 3,2.

Les valeurs énergétiques (UFL, UFV) et azotées (PDIA, PDIN, PDIE) ont été prédites conformément aux recommandations INRA (BAUMONT et al, 2007). Les teneurs en phosphore et en calcium ont été exprimées en minéral total et en minéral absorbable (MESCHY, 2007).

Pour les associations céréales/protéagineux nous avons :

- 1 mesuré avec précision la proportion de chaque composante dans le grain récolté,
- 2 analysé séparément chaque espèce,
- 3 calculé la valeur nutritive du mélange au prorata de la contribution de chaque espèce.

Cette approche permet de quantifier les interactions entre espèces. L'hypothèse faite est celle de l'additivité des valeurs.

Des essais réalisés avec des jeunes bovins dans les fermes expérimentales des Etablières (85), Mauron (56), et de la Jaillière (44), ont mis en évidence une valorisation animale des PDIE du pois et du lupin, nettement supérieure à la valeur prédite par l'analyse (tableau 1). Dans les tableaux de résultats concernant ces deux espèces et dans les associations comprenant du pois nous avons fait figurer deux valeurs PDIE : PDIE = PDIE prédite par l'analyse et PDIE c. = PDIE corrigées.

Les résultats ont été exprimés par kilo de matières sèche (MS) et par kg brut standardisé à 86% MS (la teneur en MS des matières premières à la récolte pouvant varier entre 84 et 90%).

Tableau 1 – Valeur PDIE des protéagineux

Drotó	nainauv	Kg brut	PDIE INRA	Valorisation animale PDIE				
Protes	agineux	/jour	2002 g/kg brut	g/kg brut	% IN	IRA		
Pois	Etalières Mauron Mauron	3 3 4	80 83 83	111 129 110	+39 % +55 % +32 %	+42 %		
Féverole	Etablieres La Jaillière	3 2,5	93 99	104 97	+12 % +2 %	+7 %		
Lupin	Mauron La Jaillière	2,4 2,7	103 102	145 132	+41 % +29 %	+35 %		

Abréviations utilisées

Statistiques:

Moy: Moyenne ET: Ecart type

ETR: Ecart type résiduel

Aliments:

MS : teneur en matière sèche de l'aliment exprimée en %

MM : teneur en matières minérale exprimée en g/kg MS

M0 : teneur en matière organique (= MS - MM) exprimée en g/kg MS

N: teneur en azote

MAT: teneur en matières azotées totales (N x 6,25) exprimée en g/kg MS

CB: teneur en cellulose brute Weende exprimée en g/kg MS

MG: teneur en matières grasses exprimée en g/kg MS

dCO: digestibilité enzymatique à la pepsine cellulase exprimée en % de la MO, utilisée pour prévoir la digestibilité de la matière organique (dMO)

dMO : digestibilité de la matière organique exprimée en %

UFL: valeur énergétique nette exprimée en «unité fourragère lait», UFL/kg MS ou UFL/kg

UFV : valeur énergétique nette exprimée en «unité fourragère viande», UFV/kg MS ou UFV/kg

PDIA: protéines digestibles dans l'intestin d'origine alimentaire, exprimées en g/kg MS ou en g/kg

PDIN : PDIA + protéines microbiennes digestibles dans l'intestin correspondant à l'azote de l'aliment dégradé dans le rumen, exprimées en g/kg MS ou en g/kg

PDIE: PDIA + protéines microbiennes digestibles dans l'intestin correspondant à l'énergie de l'aliment dégradé dans le rumen, exprimées en g/kg MS ou en g/kg

PDIE c. : PDIE corrigées à partir de la valorisation réelle constatée dans des essais zootechniques réalisés sur jeunes bovins. Cette correction concerne les pois et le lupin blanc.

P : teneur en phosphore total exprimée en g/kg MS ou en g/kg

Ca : teneur en calcium total exprimée en g/kg MS ou en g/kg

Mg: teneur en magnésium exprimée en g/kg MS ou en g/kg

P abs : teneur en phosphore absorbable exprimée en g/kg MS ou en g/kg

Ca abs : teneur en calcium absorbable exprimée en g/kg MS ou en g/kg

I - Les céréales

LE TRITICALE, CÉRÉALE DE L'ÉLE-VEUR BIOLOGIQUE

Cette céréale est productive en grain et en paille. Elle supporte des conditions de milieu difficiles (excès d'eau, froid, sols acides,...), et est peu sensible aux maladies. Elle constitue un bon tuteur pour les protéagineux, et offre une couverture du sol favorable à la maîtrise des adventices.

LE BLÉ TENDRE EST PLUS EXIGENT

Le blé est plus exigent que le triticale au niveau du sol et est plus sensible aux maladies. En conditions favorables, sa production de grain est comparable à celle du triticale. En conditions difficiles, elle est plus faible. Sur l'ensemble des essais variétés réalisés sur la ferme expérimentale, l'écart moyen de productivité en faveur du triticale est de 6 Qx/ha (+13% par rapport au blé). La production de paille du blé est plus faible; son rôle de tuteur est limité.

L'ORGE EST MOINS PRODUCTIVE

L'orge est sensible aux maladies et à la verse. son potentiel de production est nettement inférieur à celui du triticale.

UNE NUTRITION AZOTÉE FRÉQUEM-MENT LIMITANTE

La teneur en MAT des céréales cultivée en agriculture biologique varie beaucoup (de 90 à 140 g/kg MS). En absence de fertilisation minérale, la nutrition azotée de la céréale est souvent limitante (environ 6 fois sur 10 sur la ferme expérimentale). Elle conduit alors à des teneurs en MAT et à des valeurs PDIN très faibles (tableau 2). Cela justifie l'utilisation privilégiée des cultures associées.

La teneur en MAT de la céréale dépend de :

- 1 la pluviométrie hivernale,
- 2 du précédent,
- 3 du potentiel agronomique de la parcelle,
- 4 du rendement obtenu (effet de dilution),
- 5 de la variété cultivée.

Les trois premiers facteurs influencent les reliquats azotés en sortie d'hiver. Dans les essais de variétés réalisés sur la ferme expérimentale dans le cadre du réseau ITAB, la variabilité mini — maxi intra essai de la teneur en MAT des céréales est d'environ 30 g/kg MS sur blé et de 10 g/kg MS sur triticale. Les variétés productives sont en général pauvres en MAT et inversement.

En conditions de nutrition azotée limitante de la céréale, la digestibilité et la valeur énergétique de la céréale sont légèrement plus faibles (-0,02 à -0,03 UFL/kg MS) et la teneur en MAT et la valeur PDIN sont faibles (en moyenne environ 65 g/kg MS).

Dans les cinq essais comparatifs blé vs triticale, avec des variétés productives, (tableau 10), la digestibilité et la valeur énergétique du triticale sont inférieures respectivement de un point de digestibilité et de 0,02 UFL/kg de MS. Ces écarts sont significatifs mais faibles. La teneur en MAT et les valeurs PDI sont comparables. La teneur en P du triticale est plus élevée de 0,5 g/kg MS.

Dans les deux essais comparatifs triticale précoce (bienvenu) vs orge (laverda, séduction), l'orge a en moyenne obtenu une digestibilité et une valeur énergétique plus faible respectivement de 3,4 points de digestibilité et de 0,06 UFL/kg MS. Les teneurs en MAT et les valeurs PDIN des deux céréales sont comparables. La teneur en phosphore de l'orge est supérieure de 0,5 g/kg MS (tableau 11).

Blé.

Comparativement aux tables INRA (BAUMONT et al 2007, SAUVANT et al 2004), les céréales biologiques récoltées en situation de nutrition azotée limitante ont une valeur énergétique plus faible (-0,04 UFL), et une teneur en matières azotées plus faible notamment sur blé (-17g de PDI/kg MS).

En situation favorable, les écarts sont beaucoup plus faibles. La teneur en Ca des céréales récoltées sur la ferme expérimentale est plus faible. (-0, 4 à -0,5 g/kg MS sur triticale et blé); la nature des sols de la ferme expérimentale constitue une hypothèse explicative.

Triticale.

Tableau 2 - Valeur nutritive du blé et du triticale (incidence des conditions de nutritions azotées)

	Céréale			Triticale	(N = 17)		Blé (N=15)				
Nutrition azotée			limit	ante	favo	rable	limit	ante	favo	rable	
Nombre d'années			(6		4		5	;	3	
		Unité	Moy	ET	Moy	ET	Moy	ET	Moy	ET	
Rendement		Qx/ha	43,3	12,8	42,4	16,2	47,7	14,4	35,4	9,3	
Par kg de matière sèc	che										
	MO	g/kg MS	980	3	981	1	983	1	985	2	
	MAT	g/kg MS	100	8	126	14	97	8	127	10	
Constituants Organiques	СВ	g/kg MS	33	3	34	2	31	3	32	3	
Organiques	MG	g/kg MS	15	1	15	2	17	2	15	1	
	dCO	%	91,5	1,3	93,2	1	92,4	0,5	93,6	0,7	
	dMO	%	86,5	0,9	87,7	0,7	87,2	0,3	87,2	0,5	
Energie	UFL	/kg MS	1,12	0,02	1,15	0,01	1,14	0,01	1,16	0,0	
Lifergie	UFV	/kg MS	1,12	0,02	1,16	0,02	1,14	0,01	1,17	0	
A	PDIA	g/kg MS	21	2	27	3	24	2	31	3	
Azote	PDIN	g/kg MS	65	5	82	9	64	5	85	7	
	PDIE	g/kg MS	93	2	99	3	96	2	103	3	
Equilibre	PDIN/UFL		58	4	71	8	57	5	74	4	
	Р	g/kg MS	3,9	0,3	3,9	0,2	3,5	0,2	3,2	0,4	
Minéraux	Ca	g/kg MS	0,4	0,1	0,4	0,1	0,3	0,1	0,3	0,0	
	Mg	g/kg MS	1,2	0,1	1,1	0,1	1,1	0,1	1,0	0,0	
Minéraux absorbables	P abs	g/kg MS	2,9	0,2	2,9	0,2	2,5	0,1	2,3	0,3	
absorbables	Ca abs	g/kg MS	0,3	0,1	0,3	0,1	0,2	0,1	0	0,0	
Par kg brut (86% MS)											
Energie	UFL	/kg	0,96	0,01	0,99	0,01	0,98	0,01	1	0,0	
	UFV	/kg	0,96	0,02	1	0,02	0,98	0,02	1	0,0	
A	PDIA	g/kg	18	1	23	3	20	2	27	2	
Azote	PDIN	g/kg	56	4	70	8	55	4	73	6	
	PDIE	g/kg	80	2	85	2	83	2	89	3	
Minéraux	P abs	g/kg	2,5	0,2	2,5	0,1	2	0,1	2	0,3	
absorbables	Ca abs	g/kg	0,2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	

II - Les associations céréales/protéagineux

Les associations céréales/protéagineux ensilées sont composées d'une ou deux espèces de céréales et une ou deux espèces de protéagineux. L'objectif est de récolter un mélange productif, riche en légumineuses, en évitant la verse, et avec une bonne maîtrise des adventices. Les principales associations étudiées sont : triticale/pois fourrager, triticale/avoine/pois fourrager, et blé/pois protéagineux. Nous avons également testé l'introduction de vesce commune dans l'association triticale pois fourrager et les associations triticale précoce/pois protéagineux et orge/pois protéagineux.

Le choix du protéagineux associé est lié à la compatibilité des stades de récolte et à la hauteur de végétation. Le pois fourrager (Assas, Picar) nécessite un tuteur. Il est adapté à des mélanges à base de triticale, ou des triticale + avoine. Pour éviter la verse la densité de semis doit être limitée à 20 g/m². Le pois protéagineux est inadapté aux mélanges à base de triticale classique. Son utilisation est à réserver à des mélanges à base de blé et d'orge. Avec la vesce le risque de verse est très important. Elle doit de ce fait être introduite en faible quantité (maximum 15 à 20 grains/m²). Son utilisation est à réserver aux mélanges récoltés en ensilage. Les associations comportant des pois protéagineux sont composées en pourcentage

des densités utilisées en culture pure. Sur blé nous avons étudié les associations blé 30 /pois 70 et blé 50/pois 50. Comparativement à un blé pur semé à 330 g/m² et un pois semé à 90 g/m², une association blé 30/pois 70 sera semée avec 110 g/m² de blé et 65 g/m² de pois. L'objectif est alors de récolter un mélange riche en pois, sans verse (les cultures pures de pois d'hiver sont systématiquement versées à la récolte).

L'augmentation de la valeur azotée des associations est liée au cumul de deux facteurs :

- 1 la valeur azotée plus élevée des protéagineux,
- 2 l'incidence de la présence de protéagineux sur la valeur azotée de la céréale.

La teneur en MAT de la céréale associée augmente avec la proportion de protéagineux récoltés. Cette augmentation est constatée sur triticale, blé et orge. Le rythme moyen d'augmentation est d'environ 6 g de MAT/kg de MS par tranche de 10% de protéagineux. Pour l'association triticale/pois, l'augmentation de la teneur en MAT de la céréale (D MAT) en fonction du pourcentage de protéagineux (%P) est de : D MAT = 0,59 x %P (r² = 0,75).

Association blé/pois protéagineux.

Lorsque la proportion de protéagineux est élevée, la teneur en MAT de la céréale peut parfois atteindre 150 g/kg MS.

La céréale est plus compétitive pour l'azote minéral du sol que le protéagineux en raison d'une croissance racinaire plus rapide et de besoins supérieurs en début de cycle. Cette forte compétitivité de la céréale stimule la fixation symbiotique par le protéagineux associé.

La teneur en MAT des pois varie également beaucoup selon les conditions climatiques des essais (230 à 300 g MAT/kg MS). Elle varie dans le même sens que la MAT de la céréale cultivée pure. Lorsque les disponibilités en azote minéral du sol sont plus importantes la teneur en MAT des pois est élevée.

LES PROTÉAGINEUX ASSOCIÉS

Dans les essais réalisés, le pois fourrager a une digestibilité inférieure à celle du pois protéagineux (moins trois points) et une valeur énergétique inférieure de 0,05 UFL/kg MS. Les teneurs en MAT et les valeurs PDI sont comparables (tableau 3)

Dans les trois essais comportant de la vesce commune, la teneur en MAT de la vesce commune est

Association triticale/pois fourrager/vesce.

beaucoup plus élevée que celle du pois fourrager (+ 98 g/kg MS) et la valeur PDIN est plus élevée de 53 g/kg MS. La valeur énergétique des deux protéagineux est comparable. La teneur en phosphore de la vesce est nettement plus élevée (tableau 3). Malgré l'intérêt zootechnique de ce protéagineux, son utilisation en récolte en grain sera limitée par les risques de verse.

 $Comparative ment \, aux \, tables \, INRA$ $(BAUMONT\,et\,al\,2007,SAUVANT$ et al 2004), le pois fourrager a une digestibilité et une valeur énergétique plus faible (- 5.9 points de

Tableau 3 - Valeur nutritive des protéagineux associés

Non	nbre d'essais			5 (200	2-2008)		3 (2006-2008)				
Nature				ois rager		ois éag.		ois rager		sce mune	
Nb échantillons			1	6	2	:3	;	3	;	3	
Variétés			As	sas	Lucy,	Isard	As	sas	Co	rail	
		Unité	Moy	ET	Moy	ET	Moy	ET	Moy	ET	
Par kg de matière	sèche										
	МО	g/kg MS	970	3	966	2	970	1	965	2	
	MAT	g/kg MS	257	25	251	23	254	13	352	13	
Constituants Organiques	СВ	g/kg MS	65	7	78	11	61	3	52	3	
Organiques	MG	g/kg MS	17	9	21	9	12	1	9	1	
	dCO	%	90,9	1,8	95,2	1,1	91,4	0,6	92,7	0,4	
	dMO	%	86,1	1,2	89,1	0,8	86,5	0,4	84,4	0,5	
Energie	UFL	/kg MS	1,15	0,01	1,20	0,02	1,14	0,02	1,14	0,0	
Ellergie	UFV	/kg MS	1,15	0,01	1,21	0,01	1,14	0,01	1,12	0,0	
	PDIA	g/kg MS	36	3	36	3	36	2	33	1	
Azote	PDIN	g/kg MS	162	15	158	4	160	8	213	8	
	PDIE	g/kg MS	94	2	95	2	95	2	107	1	
	PDIE c.	g/kg MS	134	3	136	3	134	3	107	1	
Equilibre	PDIN/UFL		141	14	131	11	140	5	188	7	
	Р	g/kg MS	4,2	0,9	4,5	0,6	4,1	0,4	6	0,9	
Minéraux	Ca	g/kg MS	1	0,1	0,9	0,2	0,9	0,1	0,9	0,2	
	Mg	g/kg MS	1,5	0,1	1,4	0,1	1,4	0	1,4	0,1	
Minéraux	P abs	g/kg MS	3,1	0,7	3,3	0,4	3,2	0,3	4,4	0,8	
absorbables	Ca abs	g/kg MS	0,5	0	0,5	0,1	0,5	0	0,5	0,1	
Par kg brut (86%	MS)										
Energie	UFL	/kg	0,99	0,01	1,03	0,01	0,98	0,01	0,98	0,0	
	UFV	/kg	0,99	0,01	1,04	0,01	0,98	0,01	0,96	0,0	
	PDIA	g/kg	31	3	31	3	31	2	29	1	
Azote	PDIN	g/kg	139	13	136	12	137	7	183	7	
	PDIE	g/kg	81	2	82	2	81	2	92	1	
	PDIE c.	g/kg	115	2	117	2	116	3	92	1	
Minéraux	P abs	g/kg	2,6	0,6	2,9	0,4	2,8	0,3	3,8	0,6	
absorbables	Ca abs	g/kg	0,5	0	0,4	0,1	0,4	0	0,4	0,1	
	•										

digestibilité et - 0,06 UFL/kg MS), une teneur en MAT et une valeur PDIN légèrement plus élevée (+ 18 g MAT et + 12 g de PDI/kg MS). Sur pois protéagineux les écarts constatés sont faibles. La vesce commune récoltée sur la ferme expérimentale a, comparativement aux tables INRA, une teneur en MAT nettement plus élevée (+56 g MAT et + 32 g PDIN par kg MS), une teneur en phosphore plus élevée (+0,9 g/kg MS) et une teneur en calcium plus faible (- 0,9 g/kg MS). Le très faible nombre de résultats incitera à la prudence dans l'interprétation.

LES ASSOCIATIONS : UNE PRO-DUCTIVITÉ MOYENNE INFÉRIEURE À COMPARABLE À CELLE DU TRI-TICALE CULTIVÉ PUR

La productivité des cultures associées est fréquemment inférieure à celle du triticale. Dans le tableau 4, elle est exprimée en base 100 du triticale cultivé pur. La variabilité selon les années est importante. Deux associations testées trois ans ont en moyenne une production comparable à la culture pure : triticale/pois et triticale/avoine/pois avec le pois fourrager semé à la densité de 20 g/m². L'augmentation de la densité de protéagineux semés se traduit en moyenne par une baisse des rendements.

LA PROPORTION DE PROTÉAGI-NEUX VARIE BEAUCOUP

La proportion de protéagineux récoltés varie beaucoup (tableau 5). Les proportions les plus faibles ont été constatées en 2003 à la suite d'un gel partiel des protéagineux. Avec les associations, on sait ce que l'on sème, et on constate ce que l'on récolte. La proportion de protéagineux récoltés augmente avec la densité semée avec une variabilité très importante. Les associations triticale/pois et triticale/avoinepois, avec le pois fourrager semé à 20 g/m², et les associations céréale 30/pois protéagineux 70 produisent en moyenne un concentré comportant environ 35% de pois.

UNE VALEUR PDIN PLUS ÉLEVÉE

La valeur PDIN moyenne des céréales cultivées pures est faible. Les associations permettent d'obtenir une valeur PDIN plus élevée (tableau 6). Les associations comportant à la récolte environ 35% de pois permettent de produire un concentré équilibré (90 – 95 g PDIN/UFL). Là encore, la variabilité est importante.

L'ASSOCIATION TRITICALE/POIS : SOLUTION À PRIVILÉGIER POUR LA RÉCOLTE EN GRAIN

Six essais ont permis de comparer les associations triticale/pois fourrager et triticale/avoine/pois fourrager. Dans les trois premiers, le pois était semé à la densité de 15 g/m² et l'avoine à la densité de 60 g/m². Dans les trois suivants, le pois fourrager était semé à la den-

Tableau 4 - Rendement des associations en base 100 du triticale cultivé pur

Culture	Nb essais	Moyenne	Mini	Maxi
blé culture pure	5	93	81	104
triticale - pois fourrager (15 g/m²)	3	85	71	95
triticale - avoine (60 g/m²) - pois fourrager (15g/m²)	3	90	82	99
triticale - pois fourrager (20g/m²)	3	100	92	110
triticale - avoine (30 g/m²) - pois fourrager (20 g/m²)	3	100	90	111
triticale - pois fourrager (30 g/m²)	3	94	85	102
triticale - pois fourrager (20 g/m²) - vesce (20 g/m²)	3	86	76	95
blé 30 - pois protéagineux 70 (65 g/m²)	5	84	65	98
blé 50 - pois protéagineux 50 (45 g/m²)	3	92	86	105
triticale précoce 30 - pois protéagineux 70 (65 g/m²)	3	77	66	98
orge 30 - pois protéagineux 70 (65 g/m²)	2	55	52	59

Tableau 5 – Proportion de protéagineux à la récolte

Culture	Nb essais	Moyenne	Mini	Maxi
triticale - pois fourrager (15 g/m²)	3	14	12	19
triticale - avoine (60 g/m²) - pois fourrager (15g/m²)	3	10	8	13
triticale - pois fourrager (20 g/m²)	3	35	22	55
triticale - avoine (30 g/m²) - pois fourrager (20 g/m²)	3	32	23	48
triticale - pois fourrager (30 g/m²)	3	45	31	66
triticale - pois fourrager (20 g/m²) - vesce (20 g/m²)	3	46	29	78
blé 30 - pois protéagineux 70 (65 g/m²)	5	34	11	45
blé 50 - pois protéagineux 50 (45 g/m²)	3	17	4	25
triticale précoce 30 - pois protéagineux 70 (65 g/m²)	3	36	26	42
orge 30 - pois protéagineux 70 (65 g/m²)	2	34	26	42

Tableau 6 - Valeur PDIN/kg MS

Nb essais	Moyenne	mini	maxi
5	72	59	90
5	70	60	91
2	64	64	64
3	98	92	104
3	88	75	102
3	106	97	121
3	103	95	115
3	118	104	140
3	133	110	173
5	108	92	134
3	95	81	118
3	112	98	133
2	101	98	104
	5 5 2 3 3 3 3 3 5 3	5 72 5 70 2 64 3 98 3 88 3 106 3 103 3 118 3 133 5 108 3 95 3 112	5 72 59 5 70 60 2 64 64 3 98 92 3 88 75 3 106 97 3 103 95 3 118 104 3 133 110 5 108 92 3 95 81 3 112 98

sité de 20 g/m² et l'avoine à la densité de 30 g/m² (tableau 7).

Dans les trois premiers essais la proportion de protéagineux récoltés est faible. Cela s'explique pour partie par le gel partiel de 2003 et par la densité de semis modeste du pois fourrager. Dans l'association triticale/avoine/pois fourrager, la forte présence d'avoine s'est traduite par une baisse sensible de la valeur énergétique du mélange

récolté (- 0,07 UFL/kg MS).

L'avoine a un pouvoir couvrant important. Elle constitue un excellent tuteur, et est peu sensible à l'excès d'eau. Elle est très sensible à la rouille, et son potentiel modeste limite le rendement. Son caractère étouffant pour les autres espèces conduit à limiter fortement la quantité semée dans le mélange. Cela nous a conduit pour les trois essais suivants à baisser la densi-

Tableau 7 - Valeur nutritive du triticale – pois fourrager et du triticale/avoine/pois fourrager

Non	nbre d'essais			3 (2	2002, 2	003, 20	05)	3 (2006, 2007, 2008)						
			Triti pı			cale ois	Triti avoi	cale -pois	Triti pı			cale ois	Triti avoi	
		Unité												
	Triticale	gr/m²	30	00	30	00	24	40			30	00	27	70
Semis	Avoine	gr/m²					6	0					3	0
	Avoine	gr/m²	30	00	1	5	1	5	30	00	2	0	2	0
			Moy	ET	Moy	ET	Moy	ET	Moy	ET	Moy	ET	Moy	ET
Rendement		Qx/ha	56,3	5,0	48,0	10,1	51,0	7,8	46,1	13,3	46,6	15,1	46,5	15,
Avoine		%					27,2	5,2					8,0	2,9
Protéagineux		%			14,0	4,0	9,9	2,0			35,3	17,0	32,4	13,
Par kg de matiè														
	МО	g/kg MS	981	1	978	1	977	1	981	1	979	4	977	1
0	MAT	g/kg MS	119	21	146	25	137	21	102	11	167	21	162	17
Constituants Organiques	СВ	g/kg MS	35	2	37	2	69	10	33	3	42	6	53	2
o.gaqaoo	MG	g/kg MS	17	1	18	3	25	3	16	1	13	1	17	2
	dCO	%	91,9	1,6	91,8	0,7	84,2	1,3	91,8	1,6	92,1	1,2	90,2	0,0
	dMO	%	86,9	1,1	86,8	0,5	81,4	0,9	86,8	1,1	87,0	0,9	85,6	0,4
Energie	UFL	/kg MS	1,14	0,02	1,14	0,02	1,06	0,02	1,13	0,03	1,14	0,01	1,12	0,0
Ellergie	UFV	/kg MS	1,14	0,03	1,14	0,02	1,04	0,02	1,13	0,03	1,14	0,01	1,12	0,0
	PDIA	g/kg MS	25	4	28	6	26	4	21	2	29	1	28	1
Azote	PDIN	g/kg MS	77	14	95	17	88	14	66	6	106	12	103	10
	PDIE	g/kg MS	96	5	98	6	90	4	94	3	97	1	94	0
	PDIE c.	g/kg MS			103	5	94	3			111	5	107	5
Equilibre	PDIN/UFL		68	11	83	13	83	12	59	5	93	12	92	9
	P	g/kg MS	3,7	0,2	4,0	0,5	3,8	0,4	4,1	0,1	4,4	0,2	4,2	0,2
Minéraux	Ca	g/kg MS	0,4	0,1	0,6	0,1	0,7	0,1	0,4	0,1	0,6	0,1	0,6	0,
	Mg	g/kg MS	1,2	0,1	1,3	0,0	1,2	0,0	1,2	0,1	1,3	0,1	1,2	0,
Minéraux	P abs	g/kg MS	2,8	0,2	3,0	0,4	2,8	0,3	3,1	0,1	3,3	0,1	3,2	0,
absorbables	Ca abs	g/kg MS	0,2	0,0	0,3	0,0	0,4	0,0	0,2	0,0	0,3	0,1	0,3	0,
Par kg brut (86°	% MS)													
Energie	UFL	/kg	0,98	0,02	0,98	0,02	0,91	0,02	0,97	0,02	0,98	0,01	0,97	0,0
Ellergie	UFV	/kg	0,98	0,03	0,98	0,02	0,90	0,02	0,97	0,02	0,98	0,01	0,96	0,0
	PDIA	g/kg	21	4	24	5	22	4	18	2	25	1	24	1
Azote	PDIN	g/kg	66	12	81	14	75	12	57	5	92	11	89	9
	PDIE	g/kg	83	4	84	5	78	3	81	2	83	1	81	0
	PDIE c.	g/kg			89	4	81	3			95	4	92	5
Minéraux	P abs	g/kg	2,4	0,2	2,6	0,3	2,4	0,3	2,7	0,1	2,8	0,1	2,7	0,1
absorbables	Ca abs	g/kg	0,2	0,1	0,3	0,0	0,3	0,0	0,2	0,0	0,3	0,1	0,3	0,1

té d'avoine semée (30 gr/m² au lieu de 60) et a augmenter la densité de protéagineux (20 gr par m² au lieu de 15). Dans ces essais, la proportion de protéagineux récoltés est plus importante et le concentré produit équilibré (en moyenne 93g PDIN/UFL avec 35% de pois).

Association triticale/ pois fourrager/ avoine.

Tableau 8 - Valeur nutritive des composantes de l'association triticale/avoine/pois fourrager

Nomb	re d'essais			3	(2002,200	3,2005) tr	iticale - a	voine - po	ois	
			Triti	cale	Avo	oine	Po	ois	Méla	inge
		Unité	Moy	ET	Moy	ET	Moy	ET	Moy	ET
Densité de semis		gr/m²	24	10	6	0	1	5	-	
Rendement		Qx/ha	32	6	14	3	5	1	51	8
Proportion		%	63	4	27	5	10	2	100	
Par kg de matière so	èche									
	MO	g/kg MS	979	1	975	1	970	3	977	1
	MAT	g/kg MS	130	29	112	7	259	27	137	21
Constituants Organiques	СВ	g/kg MS	34	2	151	16	68	7	69	10
Organiques	MG	g/kg MS	16	3	50	5	19	8	25	3
	dCO	%	91,7	0,7	64,3	1,5	89,8	2,4	84	1,3
	dMO	%	86,7	0,5	67,6	1,1	85,4	1,7	81,4	0,9
Energie	UFL	/kg MS	1,13	0,02	0,87	0,01	1,14	0,02	1,06	0,02
Lifetgle	UFV	/kg MS	1,13	0,03	0,79	0,02	1,14	0,02	1,04	0,02
	PDIA	g/kg MS	27	6	19	1	37	3	26	4
Azote	PDIN	g/kg MS	84	19	70	5	162	17	88	14
	PDIE	g/kg MS	98	6	70	2	94	2	90	4
	PDIE c.	g/kg MS					133	3	94	3
Equilibre	PDIN/UFL		74	15	80	4	143	16	83	12
	Р	g/kg MS	3,9	0,3	3,2	0,2	4,1	1	3,8	0,4
Minéraux	Ca	g/kg MS	0,5	0,1	0,8	0,1	1	0	0,7	0,1
	Mg	g/kg MS	1,2	0,0	1,1	0,1	1,5	0	1,2	0
Minéraux	P abs	g/kg MS	3	0,2	2,4	0,2	3,1	0	2,8	0,3
absorbables	Ca abs	g/kg MS	0,3	0	0,5	0	0,6	0	0,4	0
Par kg brut (86% MS	S)									
Energie	UFL	/kg	0,97	0,02	0,75	0,01	0,98	0,01	0,91	0,02
Ellergie	UFV	/kg	0,97	0,03	0,68	0,02	0,98	0,02	0,90	0,02
	PDIA	g/kg	24	5	16	1	31	3	22	4
Azote	PDIN	g/kg	72	16	60	4	140	15	75	12
	PDIE	g/kg	85	5	61	2	81	2	78	3
	PDIE c.	g/kg					115	2	81	3
Minéraux	P abs	g/kg	2,5	0,2	2,1	0,2	2,6	0,6	2,4	0,3
absorbables	Ca abs	g/kg	0,2	0	0,4	0	0,5	0	0,3	0

Association triticale, pois fourrager, vesce.

L'AVOINE RISQUE DE FAIRE CHU-TER LA VALEUR DU CONCENTRÉ RÉCOLTÉ

La présence d'avoine ne présente pas d'intérêt car :

- elle ne permet pas d'amélioration significative du rendement,
- 2 elle a une valeur nutritive nettement plus faible que celle du triticale et risque de faire chuter la valeur énergétique du concentré récolté,
- 3 elle tend à faire légèrement baisser la proportion de protéagineux récoltés dans 5 essai sur 6 (en moyenne – 4%).

La valeur moyenne des composantes de l'association triticale/ avoine/pois au cours des trois premiers essais est présentée dans le tableau 8. Comparativement au triticale associé, l'avoine a une teneur en cellulose brute beaucoup plus élevée (+117 g/kg MS), une teneur en matières grasse plus élevée (+ 34 g/kg MS), une digestibilité et une valeur énergétique beaucoup plus faibles (respectivement - 19,1 points de digestibilité et - 0,26 UFL/kg MS soit un écart de valeur énergétique de 23%). La teneur en MAT et la valeur PDIN de l'avoine sont également légèrement plus faibles. La forte présence d'avoine s'est traduite dans ces essais par une baisse de 6% de la valeur énergétique du concentré, sans augmentation de la valeur azotée.

UNE AUGMENTATION DE LA DEN-SITÉ DE PROTÉAGINEUX SEMÉS PRÉSENTE DES RISQUES

L'augmentation de la densité de protéagineux semés, dans les associations à base de triticale, s'accompagne en moyenne :

- 1 d'une augmentation de la densité de protéagineux récoltés,
- 2 d'une baisse des rendements,
- 3 d'un fort risque de verse, particulièrement avec l'utilisation de vesce.

La présence d'une forte proportion de protéagineux permet une augmentation sensible de la teneur en MAT du concentré produit, de sa valeur PDIN, et de l'équilibre PDIN/UFL (tableau 9).

La densité de semis de pois protéagineux conseillée, dans l'état actuel de nos connaissances reste donc de 20 g/m².

Tableau 9 – Incidence de la densité de protéagineux et de l'introduction de vesce

No	ombre d'essais				3	3 (2006, 2	007, 2008)		
Nature				cale ur		cale is f.	Triti poi		Tritica f./ve	le/pois esce
		Unité	Moy	ET	Moy	ET	Moy	ET	Moy	ET
Pois assas semé		gr/m²			2	20	3	0	2	0
Vesce corail sem	Vesce corail semée								2	0
		Unité	Moy	ET	Moy	ET	Moy	ET	Moy	ET
Rendement		Qx/ha	46,1	13,3	46,6	15,1	40,9	16,2	37,0	13,8
Protéagineux		%	0,0		35,3	17,0	44,6	18,8	46,3	27,5
Par kg de matière	e sèche									
Constituants	MAT	g/kg MS	102	11	167	21	185	31	212	60
Constituants	dMO	%	86,8	1,1	87,0	0,9	87,0	0,4	87,3	0,2
Energia	UFL	/kg MS	1,13	0,03	1,14	0,01	1,15	0,01	1,14	0,00
Energie	UFV	/kg MS	1,13	0,03	1,14	0,01	1,14	0,01	1,14	0,01
	PDIN	g/kg MS	66	6	106	12	118	19	133	35
Azote	PDIE	g/kg MS	94	3	97	1	97	0	101	3
	PDIE c.	g/kg MS			111	5	115	8	108	116
Equilibre	PDIN/UFL		59	5	93	12	103	16	116	31
	Р	g/kg MS	4,1	0,1	4,4	0,2	4,6	0,3	5,0	0,9
Minéraux	Ca	g/kg MS	0,4	0,1	0,6	0,1	0,7	0,2	0,7	0,2
	Mg	g/kg MS	1,2	0,1	1,3	0,1	1,3	0,1	1,3	0,2

UN CONCENTRÉ ÉQUILIBRÉ AVEC L'ASSOCIATION BLÉ - POIS

L'association blé 30/pois protéagineux 70 (tableau 10), est moins productive que le triticale (en moyenne de 16%). Elle permet en moyenne de produire un concentré équilibré (92 g PDIN/UFL), avec une bonne valeur énergétique (1,18 UFL/kg MS). Le blé associé obtient, comparativement au blé pur, une teneur en MAT et une valeur PDIN plus élevée (respectivement + 22 g de MAT et + 15 g de PDIN / kg de MS).

Tableau 10 - Valeur nutritive du triticale, du blé, et de l'association blé 30/pois protéagineux 70

No	mbre d'essais				5 (2002, 2	2003, 2	005, 2	007, 2	(800			
Nature			Tritic	ale	Blé			ВІ	é 30 -	pois 7	0	
			pu	r	pur	•	В	lé	Po	is	Méla	nge
		Unité	Moy	ET	Moy	ET	Moy	ET	Moy	ET	Moy	ET
Rendement		Qx/ha	55	5	51	9	31	8	16	7	46	6
Proportion		%	100	0	100	0	66	14	34	14	100	0
Par kg de matière s	èche											
	МО	g/kg MS	981	1	984	1	983	1	967	2	978	2
	MAT	g/kg MS	111	19	105	20	127	16	251	24	168	26
Constituants	СВ	g/kg MS	35	2	31	3	29	1	78	12	45	8
Organiques	MG	g/kg MS	16	1	17	2	16	1	22	8	18	4
	dCO	%	91,5	1,2	92,9	0,9	93,7	0,8	95,6	1,1	94,3	8,0
	dMO	%	86,6	0,9	87,6	0,6	88,1	0,6	89,4	0,8	88,5	0,6
Energie	UFL	/kg MS	1,13	0,02	1,15	0,02	1,16	0,01	1,21	0,01	1,18	0,02
Litergie	UFV	/kg MS	1,13	0,03	1,15	0,02	1,17	0,02	1,22	0,01	1,18	0,02
	PDIA	g/kg MS	23	4	26	5	31	4	36	3	32	3
Azote	PDIN	g/kg MS	72	13	70	13	85	11	157	15	108	16
	PDIE	g/kg MS	95	4	98	5	103	4	96	2	101	2
	PDIE c.	g/kg MS							136	3	114	6
Equilibre	PDIN/UFL		64	10	60	11	73	9	130	12	92	12
	Р	g/kg MS	3,9	0,3	3,4	0,1	3,5	0,2	4,4	0,5	3,8	0,3
Minéraux	Ca	g/kg MS	0,4	0,1	0,3	0,1	0,4	0,1	1,0	0,2	0,6	0,1
	Mg	g/kg MS	1,2	0,1	1,1	0,1	1,1	0,1	1,4	0,1	1,2	0,1
Minéraux	P abs	g/kg MS	2,9	0,2	2,5	0,1	2,6	0,2	3,2	0,4	2,8	0,3
absorbables	Ca abs	g/kg MS	0,2	0,0	0,2	0,0	0,2	0,0	0,5	0,1	0,3	0,1
Par kg brut (86% MS	S)											
Energie	UFL	/kg	0,97	0,02	0,99	0,01	1,00	0,01	1,04	0,01	1,01	0,01
	UFV	/kg	0,97	0,02	0,99	0,02	1,00	0,01	1,05	0,01	1,02	0,01
	PDIA	g/kg	20	4	22	4	27	3	31	3	28	3
Azote	PDIN	g/kg	62	11	60	11	73	9	135	13	93	14
	PDIE	g/kg	82	4	84	4	89	3	82	2	86	2
	PDIE c.	g/kg							117	2	98	5
Minéraux	P abs	g/kg	2,5	0,2	2,1	0,1	2,2	0,1	2,8	0,3	2,4	0,2
absorbables	Ca abs	g/kg	0,2	0,1	0,2	0,0	0,2	0,0	0,5	0,1	0,3	0,1

L'ASSOCIATION TRITICALE PRÉ-COCE/POIS PROTÉAGINEUX : DÉ-CEVANTE

Les autres associations céréale 30/pois protéagineux se sont avérées décevantes au niveau de leur productivité par hectare. La baisse de rendement consécutive à la culture associée est beaucoup plus importante avec le triticale qu'avec le blé (tableau 11). Les cultures associées avec blé, triticale, et orge obtiennent en moyenne une proportion de protéagineux assez comparable (35,9 à 39,2%). Dans les associations avec du blé ou du triticale, les valeurs nutritives

sont comparables. La valeur énergétique de l'association avec de l'orge est plus faible (- 0,05 UFL/kg MS par rapport à l'association avec le blé).

MOINS DE PROTÉAGINEUX AVEC L'ASSOCIATION BLÉ 50/POIS PRO-TÉAGINEUX 50

L'association blé 50/pois protéagineux 50 a logiquement obtenu une plus faible proportion moyenne de protéagineux. Sa productivité et sa valeur nutritive sont intermédiaires entre la culture pure et l'association blé 30/pois protéagineux 70 (tableau 12).

Tableau 11 - Valeur nutritive des associations céréale 30 – pois protéagineux 70

Nomb	Nombre d'essais				3 (2	2005, 2	007, 20	08)			2 (2007, 2008)					
١	lature			cale ur	_	lé ur		i. 30 p.70		30 p.70	Triti p	cale ur		ge ire		rge p.70
		Unité														
Rendement		Qx/ha	53	5,9	46,7	6,3	39,8	5,0	42,7	5,2	50,3	5,7	29,8	5,9	32,0	1,5
Protéagineux		%					35,9	8,8	38,4	6,1					39,2	15,4
Par kg de matiè	re sèche															
	МО	g/kg MS	982	1	985	1	975	2	977	2	981	2	972	5	970	8
	MAT	g/kg MS	109	26	107	26	175	29	177	29	94	8	93	0	170	17
Constituants	СВ	g/kg MS	30	2	32	4	47	9	48	8	30	2	70	11	63	7
Organiques	MG	g/kg MS	14	0	18	2	17	6	20	5	14	0	21	2	18	2
	dCO	%	92,8	0,9	92,9	1,2	93,8	0,6	94,5	0,4	92,3	0,1	87,3	1,6	91,8	2,9
	dMO	%	87,4	0,7	87,6	0,8	88,2	0,5	88,6	0,3	87,1	0,1	83,7	1,1	86,8	2,0
	UFL	/kg MS	1,14	0,02	1,16	0,02	1,17	0,02	1,18	0,02	1,13	0,00	1,07	0,00	1,13	0,02
Energie	UFV	/kg MS	1,14	0,02	1,16	0,03	1,17	0,02	1,19	0,02	1,13	0,00	1,05	0,01	1,13	0,03
	PDIA	g/kg MS	23	5	26	7	30	5	33	5	20	2	27	0	36	1
Azote	PDIN	g/kg MS	71	17	71	17	112	19	114	18	61	5	64	0	111	10
	PDIE	g/kg MS	95	6	99	7	98	3	101	3	92	2	95	0	101	2
	PDIE c.	g/kg MS					113	5	116	6					116	4
Equilibre	PDIN/UF	·L	62	13	61	14	95	14	96	14	54	5	59	0	98	7
	Р	g/kg MS	3,8	0,1	3,4	0,1	4,3	0,6	4,0	0,3	3,7	0,1	4,2	0,3	4,6	0,3
Minéraux	Ca	g/kg MS	0,4	0,0	0,3	0,1	0,6	0,1	0,6	0,1	0,4	0,0	0,6	0,2	0,7	0,0
	Mg	g/kg MS	1,1	0,0	1,0	0,1	1,2	0,1	1,2	0,1	1,1	0,0	1,2	0,1	1,3	0,0
Minéraux	P abs	g/kg MS	2,8	0,1	2,5	0,1	3,2	0,4	2,9	0,3	2,8	0,1	3,2	0,2	3,4	0,2
absorbables	Ca abs	g/kg MS	0,2	0,0	0,2	0,0	0,3	0,1	0,3	0,1	0,2	0,0	0,3	0,1	0,4	0,0
Par kg brut (86%	(MS)															
Facusia	UFL	/kg	1,0	0,0	1,0	0,0	1,0	0,0	1,0	0,0	1,0	0,0	0,9	0,0	1,0	0,0
Energie	UFV	/kg	1,0	0,0	1,0	0,0	1,0	0,0	1,0	0,0	1,0	0,0	0,9	0,0	1,0	0,0
	PDIA	g/kg	20	5	23	6	26	4	29	4	17	2	24	0	31	1
Azote	PDIN	g/kg	61	15	61	15	96	16	98	16	53	5	55	0	95	8
	PDIE	g/kg	82	5	85	6	84	3	87	3	79	2	81	0	87	2
	PDIE c.	g/kg					97	4	100	5					100	4
Minéraux	P abs	g/kg	2,4	0,2	2,1	0,1	2,7	0,4	2,5	0,2	2,4	0,0	2,8	0,2	3,0	0,2
absorbables	Ca abs	g/kg	0,2	0,0	0,1	0,0	0,3	0,1	0,3	0,1	0,2	0,0	0,3	0,1	0,3	0,0
Remarque : tritica	le Rienven	u blé · Ana	cha Cá	zanna	Attlace											

Remarque : triticale Bienvenu, blé : Apache, Cézanne, Attlass

TRIER DES ÉCHANTILLONS

Pour estimer la valeur nutritive des associations nous conseillons, dans les conditions du terrain, de prélever des échantillons dans chaque remorque, de constituer après brassage un échantillon moyen par parcelle et de le trier (les associations binaires se trient facilement avec un tamis) pour déterminer la proportion de protéagineux. Les analyses de laboratoire posent en effet deux problèmes :

- 1 la représentativité des échantillons,
- 2 le choix des hypothèses par le laboratoire lorsque la proportion des composantes n'est pas connue.

Une valeur nutritive indicative est proposée dans les abaques des tableaux 13 et 14. Ces abaques sont valables dans les conditions de nutrition azotée limitantes de la céréale cultivée pure. Les résultats sont exprimés par kilo brut standardisé à 86% de matière sèche.

Tableau 12 - Valeur nutritive des associations blé 50/pois protéagineux 50 et blé 30/pois protéagineux 70

Nom	bre d'essais			3 (2002, 2003, 2005)								
	Nature		_	3lé our		é 50 s p.50		é 30 s p.70				
		Unité										
Rendement		Qx/ha	56,1	6,5	52,0	7,6	48,5	5,9				
Protéagineux		%			16,8	11,8	32,8	19,0				
Par kg de matie	ère sèche											
Constituants	MAT	g/kg MS	113	23	145	32	172	35				
Organiques	dMO	%	87,9	0,6	87,8	0,7	88,4	0,7				
Energie	UFL	/kg MS	1,16	0,02	1,16	0,03	1,18	0,02				
	UFV	/kg MS	1,16	0,03	1,17	0,03	1,19	0,03				
Azote	PDIN	g/kg MS	75	15	95	20	111	21				
	PDIE	g/kg MS	100	6	101	5	102	3				
	PDIE c.	g/kg MS			108	8	115	9				
Equilibre	PDIN/UFL		65	12	82	16	94	16				
	Р	g/kg MS	3,4	0,2	3,6	0,4	3,8	0,5				
Minéraux	Ca	g/kg MS	0,4	0,0	0,5	0,1	0,6	0,1				
	Mg			0,1	1,2	0,1	1,3	0,1				

Tableau 13 - Abaque de valeur indicative de l'association triticale/pois fourrager

% pois fourrager		%	0	10	20	30	40	50
MAT		g/kg	86	103	120	135	149	163
Energie	UFL	/kg	0,96	0,97	0,98	0,98	0,98	0,98
	UFV	/kg	0,96	0,96	0,97	0,97	0,98	0,98
Azote	PDIN	g/kg	56	67	77	87	95	103
	PDIE	g/kg	80	81	82	82	83	83
	PDIE c.	g/kg		84	88	92	96	100
Equilibre	PDIN/UFL		58	69	79	89	97	105
Minéraux absorbables	P abs	g/kg	2,5	2,5	2,5	2,6	2,6	2,6
	Ca abs	g/kg	0,2	0,2	0,2	0,3	0,3	0,3

Tableau 14 - Abaque de valeur indicative de l'association blé/pois protéagineux

% pois protéagineux		%	0	10	20	30	40	50
MAT		g/kg	83	101	118	133	148	161
Energie	UFL	/kg	0,98	0,99	1,00	1,01	1,01	1,02
	UFV	/kg	0,98	0,99	1,00	1,01	1,02	1,02
Azote	PDIN	g/kg	56	67	77	87	95	104
	PDIE	g/kg	83	84	84	85	85	86
	PDIE c.	g/kg		87	91	96	99	103
Equilibre	PDIN/UFL		57	67	77	86	94	102
Minéraux absorbables	P abs	g/kg	2,2	2,2	2,3	2,4	2,4	2,5
	Ca abs	g/kg	0,1	0,2	0,2	0,2	0,3	0,3

III - Protéagineux

Pois protéagineux.

DES CULTURES ALÉATOIRES

En culture pure les protéagineux sont des cultures aléatoires pour plusieurs raisons :

- 1 difficultés à semer tôt au printemps sur des terres hydromorphes,
- 2 risques de sécheresse et de coup de chaleur à partir de la floraison.
- 3 risque de gel sur protéagineux d'hiver,
- 4 fort risque d'anthracnose sur lupin.

Les rendements obtenus sont en moyenne modestes. La variabilité selon les années est importante (tableau 15). Dans une optique de recherche d'autonomie la féverole d'hiver semble, dans les conditions des Pays de la Loire, un bon compromis : elle constitue un excellent précédent, c'est une culture non salissante, et sa teneur en matières azotées est un peu plus élevée que celle du pois.

La teneur en MAT des protéagineux varie en moyenne entre 264 g/kg MS sur pois et 381 g/kg MS sur lupin. La variabilité de la teneur en MAT des pois est impor-

tante (tableau 16).

Le lupin blanc a une teneur élevée en MAT, en cellulose brute et en matière grasse. Sa valeur énergétique est très élevée (1,31 UFL /kg MS). Parmi les protéagineux cultivables en culture pure, c'est l'espèce qui obtient la valeur PDIN la plus élevée (en moyenne 238 g PDIN/kg MS). Il constitue un excellent complément azoté; sa culture est malheureusement très aléatoire.

La valeur énergétique du pois protéagineux est élevée (en moyenne 1,22 UFL/kg MS). Sa teneur en MAT et sa valeur PDIN sont beaucoup plus faibles que celles du lupin (en moyenne 166 g PDIN/kg MS).

La valeur azotée de la féverole est intermédiaire (la valeur PDIN moyenne varie entre 178 g de PDIN/kg de MS sur féverole d'hiver et 203 g de PDIN sur féverole de printemps à fleur blanche). Sur féverole de printemps, les variétés à fleur blanche ont une digestibilité et une valeur énergétique plus élevée (+ 0,07 UFL/kg MS). Elles ont également en moyenne une teneur en MAT et une valeur PDIN

légèrement plus élevée (+11 g PDIN/kg MS). Le nombre modeste de résultats incitera à la prudence dans l'interprétation des résultats des féveroles de printemps.

La féverole d'hiver à fleurs colorées a, comparativement au pois protéagineux, une digestibilité et une valeur énergétique plus faibles (respectivement de - 3,3 points et - 0,05 UFL/kg MS).

Comparativement aux tables INRA (BAUMONT et al 2007, SAUVANT et al 2004), les protéagineux cultivés sur la ferme se caractérisent en moyenne par une valeur azotée comparable et une teneur en calcium plus faible (-1,1 g/kg MS) pour le lupin, une valeur azotée plus élevée (+ 16 g PDIN/kg MS) et une teneur en phosphore plus élevée (+ 0,8 g/kg MS) pour le pois, une valeur azotée comparable et une teneur en phosphore plus élevée sur féverole de printemps à fleurs blanches (+ 0,8 g/kg MS), et enfin une valeur énergétique et azotée légèrement plus faible sur féverole d'hiver à fleurs colorées. Nous ne disposons pas d'éléments probants pour expliquer les écarts de teneur en MAT constatés.

Tableau 15 – Rendements des protéagineux (en vraie grandeur sur la ferme expérimentale)

			Nbre d'années	Moy.	E.T.	Mini	Max
Pois	Printemps	Qx/ha	4	28,3	15,7	16,1	50
Lupin	Printemps	Qx/ha	5	15,2	10	3,4	27
Féverole	Hiver	Qx/ha	6	28	14,7	11,2	48,6

Lupin.

Tableau 16 - valeur nutritive des protéagineux

			•					Féverole					
Nature			Pois protéag.			Lupin blanc		Printemps			Hiver		
					k			blanches		colorées		colorées	
Nombre d'années			6			6		3		4		7	
												40	
Echantillons			27		25		6		8		19		
		Unité	Moy	ET	Moy	ET	Moy	ET	Moy	ET	Moy	ET	
Par kg de matiè	re sèche												
	MO	g/kg MS	963	3	961	2	960	2	958	2	964	3	
	MAT	g/kg MS	264	30	381	17	320	34	301	22	279	15	
Constituants	СВ	g/kg MS	69	11	134	14	88	5	89	6	90	5	
Organiques	MG	g/kg MS	18	8	96	11	13	2	14	1	13	2	
	dCO	%	95,6	1,3	90,8	1,7	96,1	0,7	89,2	1,4	91,1	1,1	
	dMO	%	89,5	0,9	86,1	1,1	89,8	0,5	85,0	1,0	86,2	0,8	
Enorgio	UFL	/kg MS	1,22	0,02	1,31	0,03	1,20	0,01	1,13	0,05	1,17	0,04	
Energie	UFV	/kg MS	1,23	0,02	1,31	0,03	1,20	0,02	1,12	0,06	1,17	0,05	
	PDIA	g/kg MS	37	4	52	3	54	6	53	4	48	3	
Azote	PDIN	g/kg MS	166	19	238	10	203	21	192	14	178	10	
	PDIE	g/kg MS	98	3	117	2	113	6	109	4	107	3	
	PDIE c.	g/kg MS	139	5	159	3							
Equilibre	PDIN/UFL		136	15	181	9	170	17	170	14	152	11	
	Р	g/kg MS	5,4	0,7	4,3	0,5	6,3	0,6	6,4	0,7	5,5	0,8	
Minéraux	Ca	g/kg MS	0,8	0,3	2,7	0,4	1,3	0,2	1,2	0,2	1,3	0,1	
	Mg	g/kg MS	1,5	0,2	1,5	0,1	1,6	0,1	1,7	0,1	1,4	0,1	
Minéraux	P abs	g/kg MS	4,0	0,5	3,2	0,4	4,7	0,5	4,7	0,5	4,1	0,7	
absorbables	Ca abs	g/kg MS	0,8	0,1	1,5	0,2	0,7	0,1	0,7	0,1	0,6	0,1	
Par kg brut (86% MS)													
Energie	UFL	/kg	1,05	0,02	1,13	0,02	1,03	0,01	0,97	0,04	1,00	0,04	
	UFV	/kg	1,06	0,02	1,12	0,03	1,03	0,01	0,96	0,05	1,00	0,05	
Azote	PDIA	g/kg	32	4	45	3	46	5	45	4	41	3	
	PDIN	g/kg	143	16	205	9	175	18	165	12	153	8	
	PDIE	g/kg	85	3	101	2	97	5	94	4	92	2	
	PDIE c.	g/kg	119	4	136	3							
Minéraux	P abs	g/kg	3,5	0,4	2,8	0,3	4,0	0,4	4,1	0,4	3,5	0,4	
absorbables	Ca abs	g/kg	0,7	0,1	1,3	0,2	0,6	0,1	0,6	0,1	0,5	0,0	

A retenir

- Les céréales cultivées pures en agriculture biologique, en situation de nutrition azotée limitante, ont une teneur en matières azotées et une valeur énergétique faible. Le triticale a une valeur nutritive proche du blé. Cette espèce rustique constitue la céréale de l'éleveur biologique.
- Les associations céréales/protéagineux constituent la solution pour produire un concentré plus riche en matières azotées. La présence de protéagineux contribue à la nutrition azotée de la céréale. L'association à privilégier pour la récolte en grain est l'association triticale/pois fourrager. La proportion de protéagineux récoltés est variable. Avec 35% de pois récoltés elle permet de produire un concentré équilibré à 90 95 g de PDIN/UFL. L'introduction d'avoine ne présente pas d'avantages. L'association blé 30/pois protéagineux 70 permet également d'atteindre en moyenne cet objectif. Elle est par contre moins productive.
- Deux abaques ont été élaborés pour estimer la valeur nutritive de l'association binaire à partir du pourcentage de pois récoltés.
- Sur pois, lupin, et féverole la hiérarchie des valeurs des tables INRA est globalement respectée ; nous ne disposons pas d'éléments probants pour expliquer les petits écarts constatés.
- La teneur en calcium des matières premières récoltées sur la ferme expérimentale est généralement faible ; la nature des sols de la ferme expérimentale constitue une hypothèse explicative.

Pour en savoir plus

- AUFRERE J., BAUMONT R., DELABY L., PECCATTE J-R., ANDRIEU J., DULPHY J-P., Prévision de la digestibilité des fourrages par la méthode pepsine-cellulase. Le point sur les équations proposées, INRA Prod. Anim., 2007, 20(2), 129-136
- BAUMONT R., DULPHY J.-P., SAUVANT D., MES-CHY F., AUFRERE J., PEYRAUD J.L., 2007. Valeur alimentaire des fourrages et de matières premières : tables et prévisions. In : Alimentation des bovins, ovins et caprins. Besoins des animaux. Valeurs des aliments. Tables INRA 2007. Editions Quae, Versailles, France, 149-179.
- MESCHY F., Alimentation minérale et vitaminique des ruminants : actualisation des connaissances, INRA Prod. Anim., 2007, 20(2), 119-128
- SAUVANT D., PEREZ J.-M., TRAN G.(éds), 2004. Table de composition et de valeur nutritive des matières premières destinées aux animaux d'élevage. Paris, INRA-AFZ, 301 p.

Rédaction: Jean-Paul Coutard (Chambre d'Agriculture de Maine et Loire - Ferme expérimentale de Thorigné d'Anjou) - jean-paul.coutard@maine-loire.chambagri.fr - Les données valorisées proviennent d'essais réalisés avec la participation financière de la région Pays de la Loire et du Conseil Général de Maine et Loire.

Relecture: René Baumont (INRA de Theix) et Joannie Leroyer (ITAB)

Mise en pages : Aude Coulombel (ITAB)

Ce cahier sera suivi d'un cahier références numéro 2 : « Valeur nutritive des fourrages pour les ruminants en AB »

Avec le soutien financier du Ministère de l'Alimentation, de l'Agriculture et de la Pêche (Compte d'Affectation Spécial du Développement Agricole et Rural) et de France Agri Mer.

Septembre 2009

