UF/IFAS Extension The Journey to Sustainability Begins with Education

UF/IFAS Sarasota County Extension 6700 Clark Road Twin Lakes Park Sarasota, Florida 34241 (941) 861-5000

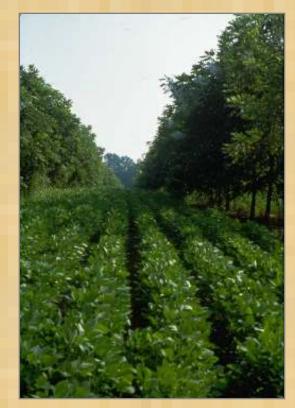
Fruit Tree-Based Agroforestry (aka Alley Cropping)

Robert A. Kluson Agriculture/Natural Resources Agent II UF/IFAS – Sarasota County Extension

Outline

Overview of Agroforestry
 – Principles & concepts

- Alley cropping
 - Benefits and costs
 - Examples


What is agroforestry?

Agroforestry is...

... intensive land management that optimizes the benefits (physical, biological, ecological, economic, social) arising from biophysical interactions created when trees and/or shrubs are deliberately combined with crops and/or livestock.

Agroforestry Benefits

Aesthetics	Promotion of wildlife and plant diversity and provision of recreational and leisure areas.	
Animal Production	Improvement of health and weight and reduction of feed costs. Shielding of noise and odor.	
[continued from previous page] Carbon Storage	Incorporation of large quantities of carbon in woody vegetation within the agricultural landscape.	
Economic	Promotion of income from multiple products with steady cash flow. Reduction of input costs and improvement in quality and yield of crops.	
Energy Conservation	Reduction of farm and household energy costs and inputs.	

Agroforestry Benefits

Pest Management	Provision of barriers to reproduction and spread of pests, and habitat for beneficial insects and birds.
Soil Conservation	Reduction of loss of nutrients, organic matter and sediment erosion.
Streams and Wetlands	Interception of agricultural runoff and sediment, protection of banks from erosion and safeguarding of habitat.
Water Conservation and Quality	Reduction of water use by plants, filtering of chemicals from runoff, promotion of infiltration to groundwater, and treatment of waste effluent and salinization.
Wildlife Habitat	Provision of cover, food, nest sites, and corridors for movement.

Agroforestry is.....

Silvopasture

Forest Farming

Riparian Forest Buffers

Windbreaks

... putting the right plant, in the right location, for the right reason.

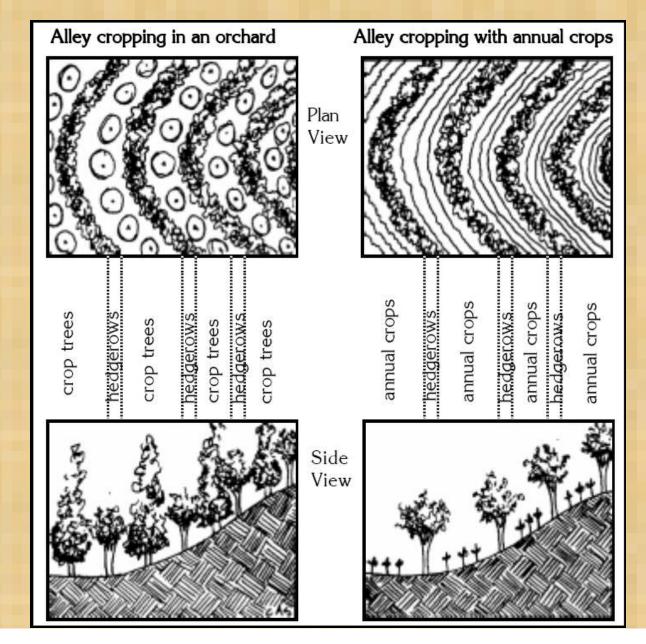
Alley Cropping

Growing an annual or perennial crop simultaneously with a long term tree crop. The agricultural crop generates annual income while the longer-term tree crop matures.

IFAS Extensic

Alley Cropping Benefits

- Diversify farm enterprise
- Reduce erosion
- Improve water quality
- Protect crops
- Improve utilization of nutrients
- Enhance wildlife habitat
- Improve aesthetics
- Store carbon



Alley Cropping

Figure 1. Alley cropping can combine a wide variety of tree and crop species, depending on the age of the trees, the light and water requirements of the crop, and the goals of the landowner.

Alley Cropping - Spatial Design

Alley Cropping - Temporal Design

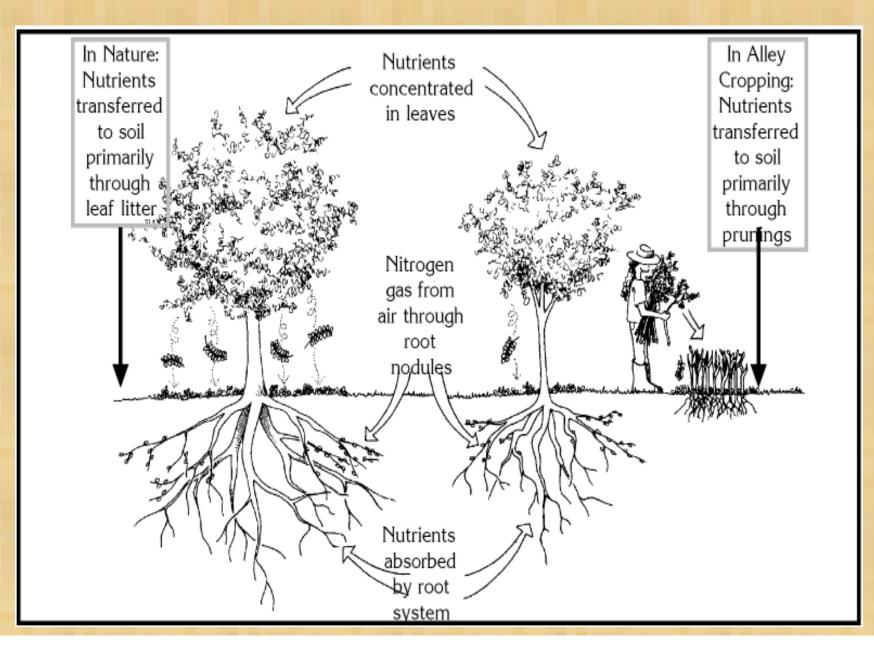
While trees mature, crops provide income.

Alley Cropping Alternative Enterprises

Hay

Vegetables

Fruits & Berries



Pros and Cons of Orchard Alley Cropping

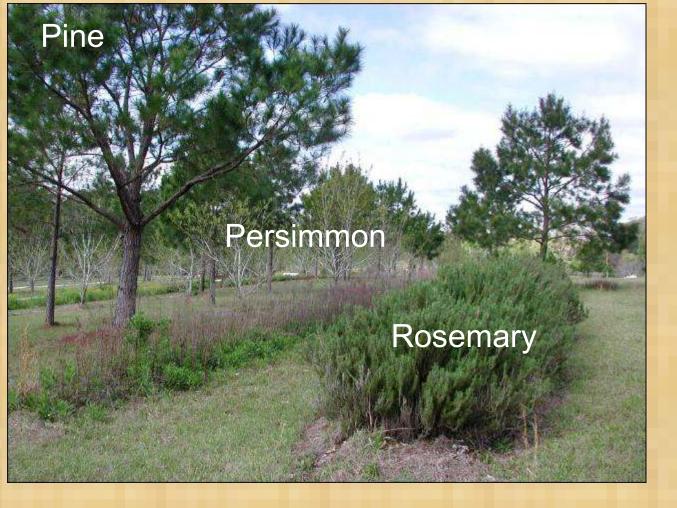
Studies throughout the tropics have shown that the practice of alley cropping has the potential to provide large amounts of nutrients to the crops, often similar quantities of nutrients to those normally applied to crops in chemical form. However, it is important to weigh some of the main costs and benefits to decide if this practice might work for your situation.

Benefits/Returns:	Costs:
Fertility improvement—natural source of nitrogen	Substantial up-front investment to plan and install
Organic matter—high quality nutrient rich mulch essential to farm fertility. Mulch also aids in weed suppression and water conservation.	Risk of competition with crops for light, water and nutrients if not installed or managed properly (correct spacing, regular pruning, etc.)
Erosion control—for long-term farm viability	Hedgerows require a certain amount of space on the project, occupying area that could be devoted to crops.
Increased farm self-sufficiency—reduced dependence on outside sources of nitrogen fertilizer or mulch	Labor intensive rather than capital intensive—could be problematic if labor is in shorter supply than cash

Alley Cropping Fertility Benefits

Alley Cropping Example "Fruit Tree & Perennial Herbs"

Knoll Organic Farm, Brentwood, CA


Alley Cropping With Vegetables - Fairview Gardens Farm, Goleta, CA -

Alley Cropping Example "Grapes & Annuals"

Agroforestry Diversity Example

Table 1. Trees Used in Agroforestry Designs.				
Alder	Mimosa			
Ash	Oaks			
Basswood	Ornamentals (various)			
Birch	Paulownia			
Black Locust	Peach			
Chestnut	Pecan			
Christmas Conifers	Persimmon			
Cottowood	Pines			
Dogwood	Poplars			
Hazelnut	Sycamore			
Honey Locust	Walnut			
Maples	Willows			

Some Temperate Fruits That Can Be Grown In SW FL

- Citrus
- Blueberries

- Stone Fruits- Peaches, Plums, and Nectarines
- Muscadine Grapes
- Pecans
- Persimmons
- Blackberries

Some Subtropical Fruits That Can Be Grown In SW FL

- Avocado
- Carambola
- Guava
- Canistel
- Jackfruit
- Lychee
- Mango

Things to Consider Before Planting

- How much time do you want to devote?
- What type of marketing opportunities exist?
- Start up costs
- Production costs
 - Pruning
 - Labor
 - Freeze protection
 - Pests management

Crowley Training Center Old Miakka, Sarasota County, FL

Partnerships:

- Crowley Museum & Nature Center
- FAMU Center for Viticulture and Small Fruit Research
- UF/IFAS Grape Genetics and Pathology Research Program
- FL Grape Growers Association
 - Manasota Chapter
- FAMU Meat Goat Program
- UF/IFAS Low Chill Peach Breeding Program
- Fairchild Tropical Botanical Garden
 - Tropical Fruit Program

•UF/IFAS/FAMU Small Farm & Alternative Enterprise Program

Fruit Tree-Based Agroforestry Project Goals

- Fruit and vegetables can add value to small farm production systems resulting in diversified, profitable agriculture
- Alley cropping is a practice of intercropping for sustainable agriculture systems or agroecosystems

Farm As An Agroecosystem

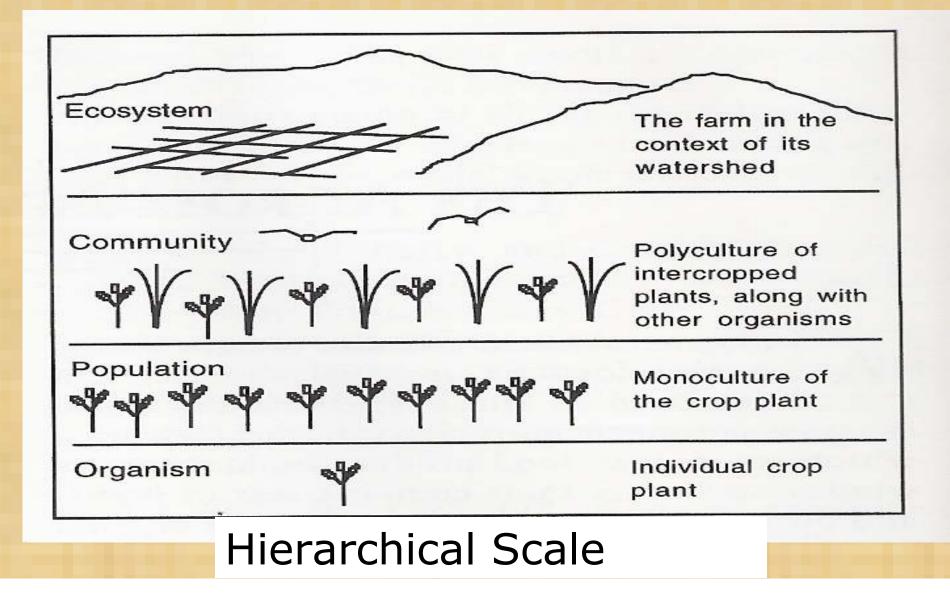
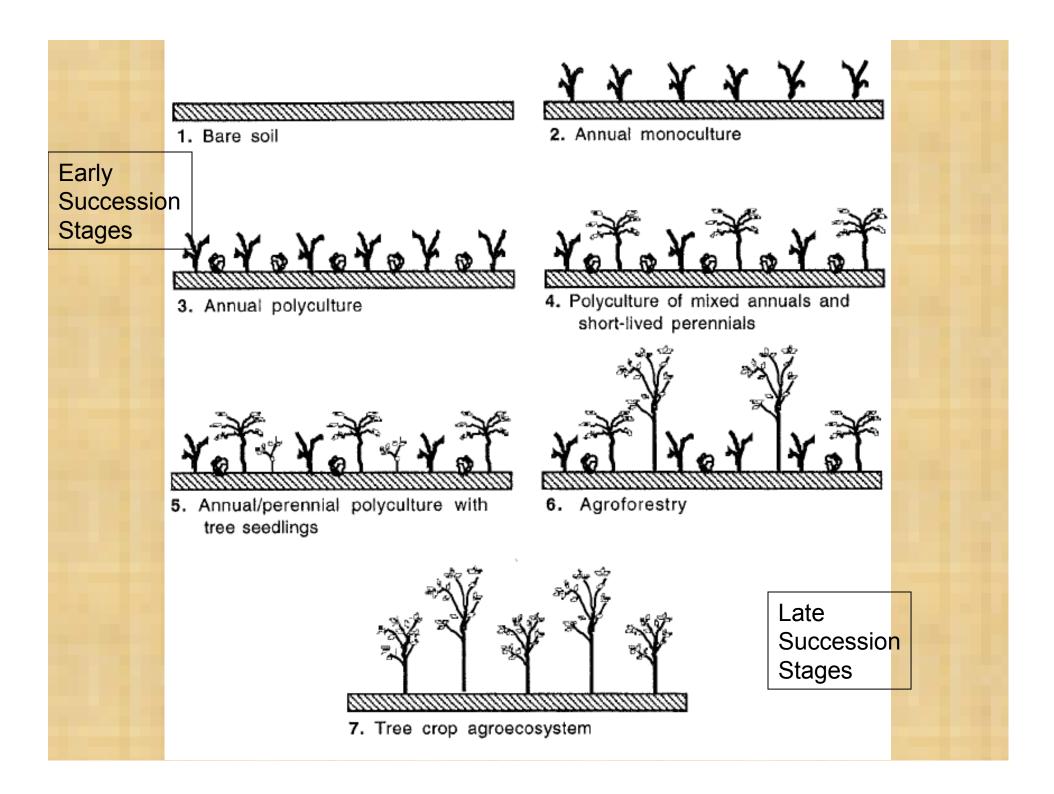
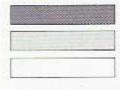



TABLE 17.3 Desirable ecological characteristics of agroecosystems in relation to successionaldevelopment

	g	Successional reatest deve Middle	0	Benefit to agroecosystem
Characteristic	Early	Iviliaule	Late	Denent to agroecosystem
High species diversity				Reduced risk of catastrophic crop loss
High total biomass				Larger source of soil organic matter
High net primary productivity				Greater potential for production of harvestable biomass
Complexity of species interactions				Greater potential for biological control
Efficient nutrient cycling	n 6			Diminished need for external nutrient inputs
Mutualistic interference				Greater stability; diminished need for exter- nal inputs

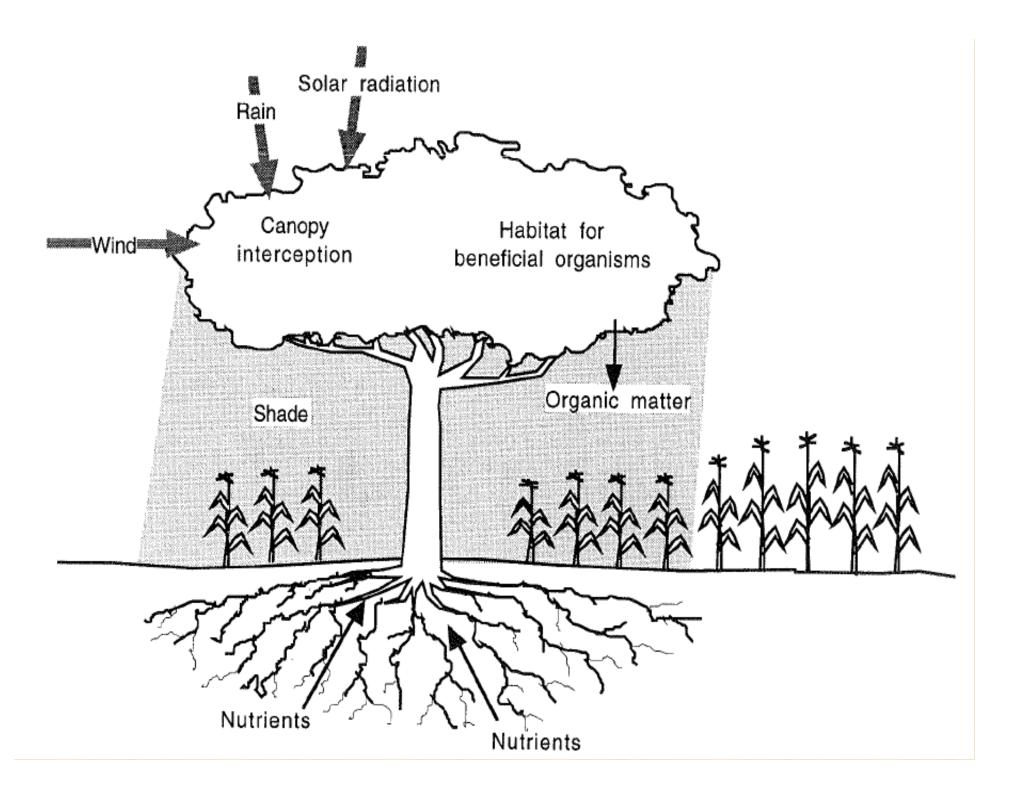

TABLE 1	16.2	Dimensions	of	ecological	diversity
in an eo	cosyst	em			

Dimension	Description
Species	Number of different species in
	the system
Genetic	Degree of variability of genetic
	information in the system
	(within each species and among
	different species)
Vertical	Number of distinct horizontal
	layers or levels in the system
Horizontal	Pattern of spatial distribution of
	organisms in the system
Structural	Number of locations (niches,
	trophic roles) in the system orga-
	nization
Functional	Complexity of interaction, en-
	ergy flow, and material cycling
	among system components
Temporal	Degree of heterogeneity of cycli-
	cal changes (daily, seasonal, etc.)
	in the system

TABLE 16.3 Methods of increasing ecological diversity in an agroecosystem

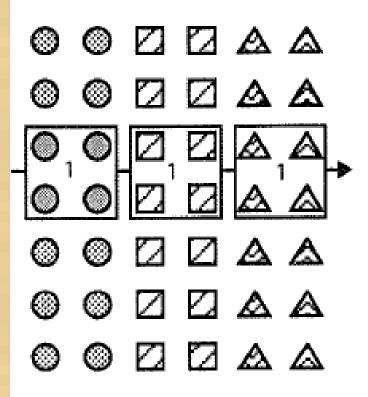
Dimensions of ecological diversity affected

Method	Species	Genetic	Vertical	Horizontal	Structural	Functional	Temporal
Intercropping							
Strip cropping							
Hedgerows & buffers							
Cover-cropping							
Rotations							
Fallows							
Minimum tillage							
High inputs of organic matter							
Reduction of chemical use							


Direct or primary effect

Indirect, secondary, or potential effect

Little or no effect


	Creator of interference (A)	Receiver(s) of interference (B)	Type & identity of interference	Location of interference	Effect on A*	Effect on B*
Competition	Roles inter- changeable	Roles inter- changeable	Removal of resources	Shared habitat	_	
Parasitism	Parasite	Host	Removal of nutrients	Body of host	+	-
Herbivory	Herbivore	Consumee	Removal of biomass	Body of consumee; shared habitat	+	– or +
Epiphytism	Host	Epiphyte	Addition of habitat surface	Body of host	0	+
Proto- cooperation	Roles inter- changeable	Roles inter- changeable	Addition of material or structure	Shared habitat or body of A/B	+ (0)	+ (0)
Mutualism	Roles inter- changeable	Roles inter- changeable	Addition of material or structure	Shared habitat or body of A/B	+ ()	+ ()
Allelopathy	Allelopathic plant	Potential habitat associates	Addition of active compound	Habitat of organism A	+ or 0	+, -, or 0

*Symbols in parentheses refer to effect when the organisms are not interacting

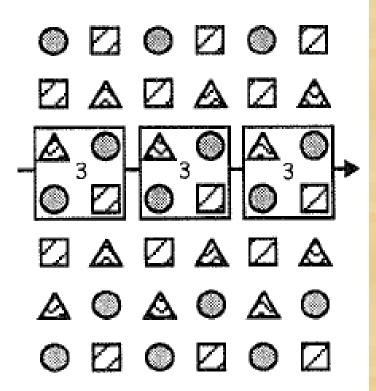
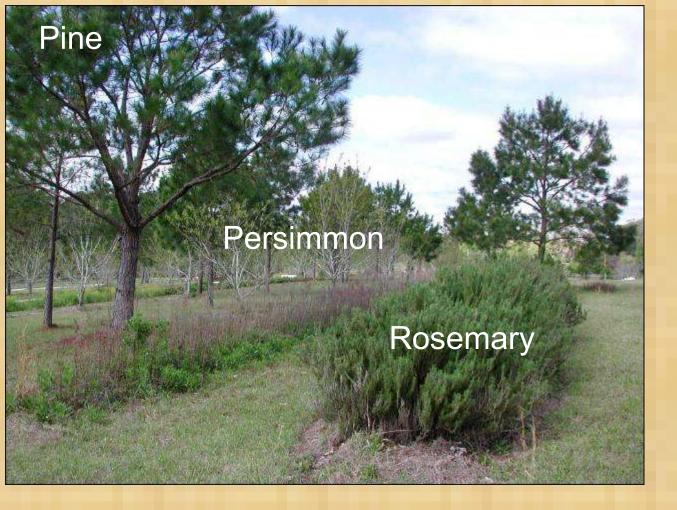


Table 1: Examples of Potential Tree Species for Alley Cropping									
Generalized Effects on Companion Crops									
Tree Species	* SI	nade Produ	iced	** Ro	oot Compe	tition	Special Remarks		
	Low	Medium	High	Low	Medium	High			
Black Walnut	Х			Х			High value. Contains growth inhibitor that affects some companion crops.		
Pecan		x			х		High value both nuts and wood.		
Chestnut			х		х		Some varieties susceptible to chestnut blight.		
Ash		х			х		Can be susceptible to borers and ash yellow disease.		
Oak			х		х		White oaks most valuable. Slow growing.		
Pine			х		х	Х	Several suitable species.		
Poplar		x				Х	Lower value but fast growing.		
Nut/Fruit Shrubs	Х			х			Several suitable species. Good in combination with trees.		
Paulownia			Х	х			Asian market. Susceptable to insect, disease, and cold.		

Agroforestry Diversity Examples



1 species per box = low alpha diversity 3 types of boxes = high beta diversity

3 species per box = high alpha diversity 1 type of box = low beta diversity

Agroforestry Diversity Example "High Alpha, Low Beta Type"

For more information

Center for Subtropical Agroforestry Gainesville, FL http://cstaf.ifas.ufl.edu/index.htm

For more information, contact

USDA National Agroforestry Center Lincoln, NE 68583-0822 17.0 -Inside Agroforestry www.unl.edu/nac Working Trees for Wildlife ... Including The Carbon Sink Working Trees for Livestock Working Trees for Treating Waste Working Trees for Communities Working Trees Agroforestry for Livestock Working Trees: 16位 Windbreaks for Carbon in the U.S. Working Trees le Carbon Cycle Balance Agroforestry Notes AGROFORESTRY rotoroury N News & Nic-NACo Opcoming Protein FTXO About Ageofiers About the Case own IN PA Click here. NAC Branch Publications / lansarce Links Desire PMTE Contemportant Contemportant Supervised Association

ACKNOWLEDGMENTS

- Roy Beckford, UF/IFAS Lee County Extension, "Non-timber Forest Products for Forest Landowners"
- S. R. Gliessman, 1998, Agroecology: Ecological Processes in Sustainable Agriculture, Sleeping Bear Press

Online Resources

- Agroforestry Net
 <u>http://www.agroforestry.net/index.html</u>
- Atlas of Florida Vascular Plants
 <u>http://florida.plantatlas.usf.edu/</u>
- Association for Temperate Agroforestry
 <u>http://www.aftaweb.org/</u>
- A.T.T.R.A. Agroforestry
 <u>http://www.attra.org/</u>
- Center for Agroforestry, Univ. of Missouri
 <u>http://www.centerforagroforestry.org/index.htm</u>
- E.C.H.O. Agroforestry
 <u>http://www.echotech.org/mambo/index.php?option=com_weblinks&catid=42&Itemid=23</u>
- EDIS publications on agroforestry and alley cropping
 <u>http://edis.ifas.ufl.edu/</u>
- Elevitch, C. & K. Wilkinson. A Guide to Orchard Alley Cropping For Fertility, Mulch and Soil Conservation.

http://www.scribd.com/doc/6693883/Orchard-Alley-Cropping

- UF/IFAS Fruitscapes
 <u>http://trec.ifas.ufl.edu/fruitscapes/</u>
- USDA Agroforestry Center <u>http://www.unl.edu/nac/</u>

