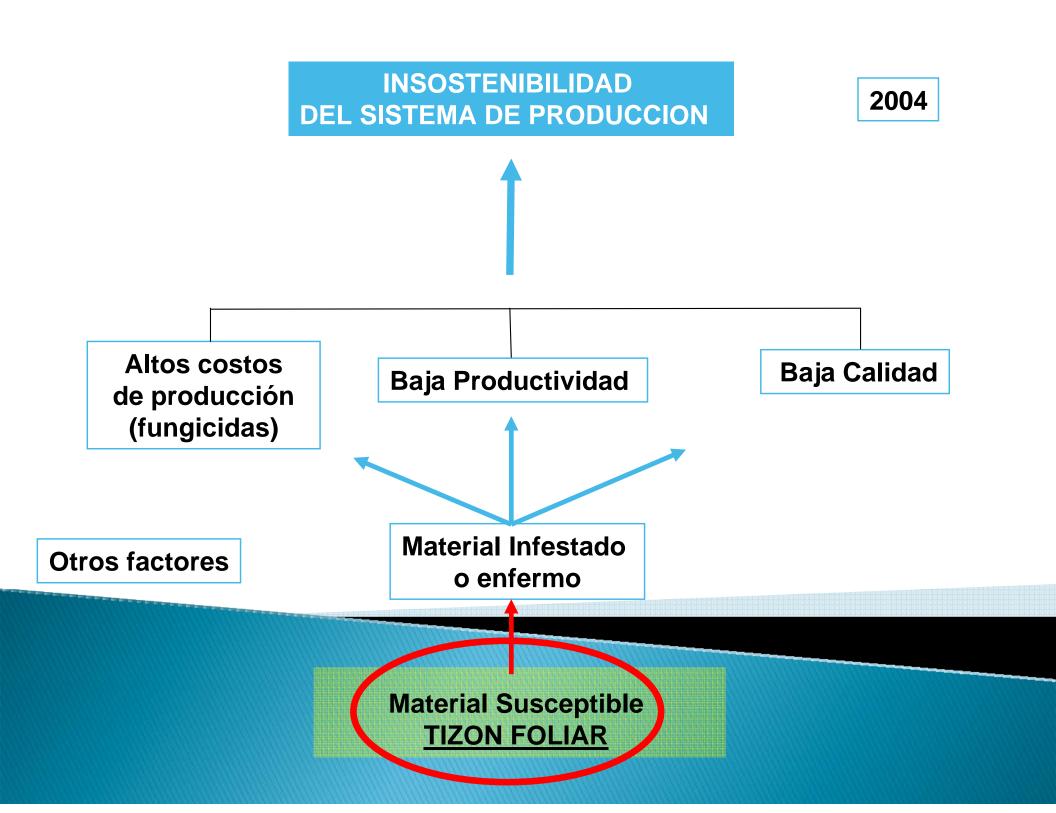
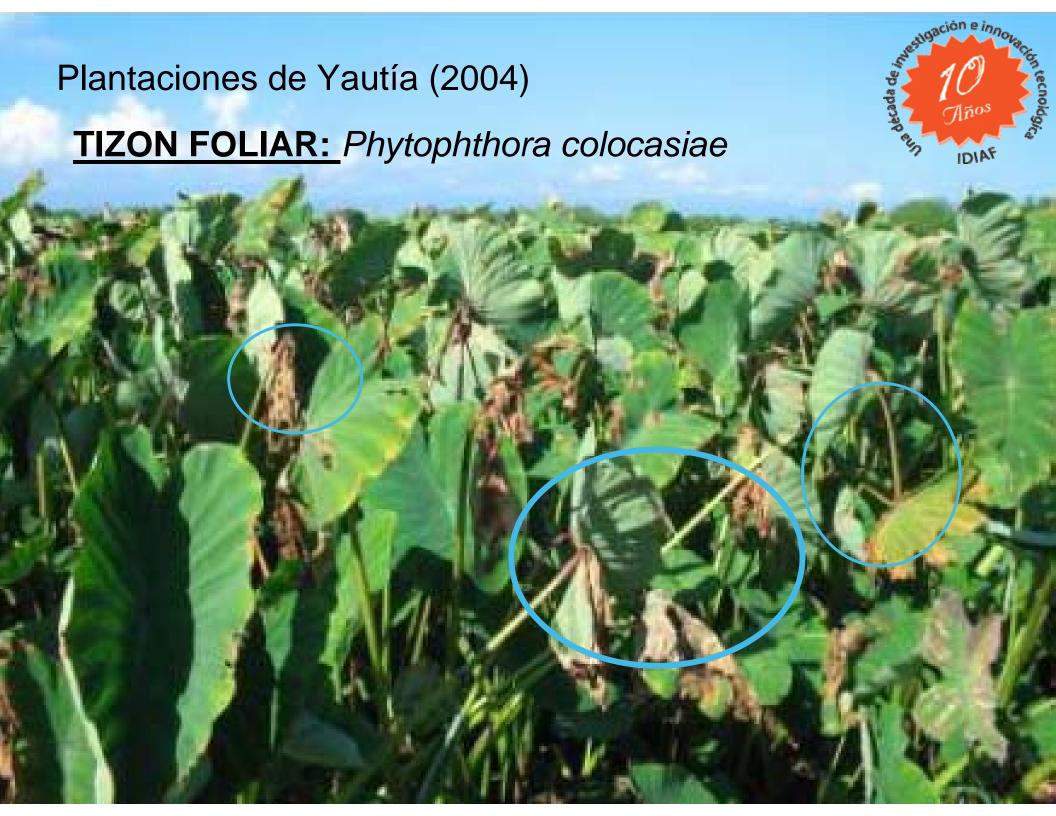


Diagnóstico, Saneamiento y Multiplicación *In vitro* de la Yautía Coco (*Colocasia esculenta*)

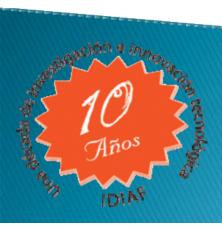

José Efraín Camilo Santos Esclaudys Pérez González


I. Introducción

La Yautía Coco (Colocasia esculenta L. Schott)

- 1. Parte de la canasta alimenticia
- 2. Contribuye a la seguridad alimentaría; Fuente:
 - Alimento: energía,
 - Generación de empleos (20,000 empleos),
 - Generación de ingresos
- 3. Generador de divisas: US\$ 9.4 millones (2003)

1.2 Síntomas


Ataca

- Hojas
- Tallo
- Colmos

Diseminación:

- Agua de riego, lluvia, viento
- Material de siembra

1.3. Efectos

1. Reducción de ingresos:

- Aumento en los costos de producción, por uso de insumos (sin efecto significativo en la producción)
- Reducción en los rendimientos en más del 70%.

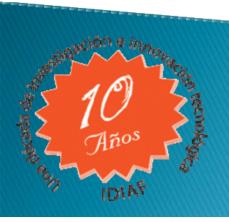
2. Reducción en más del 70% el área de siembra:

- 29,000 tareas en el 2003 vrs 7,000 tareas en el 2005.

1.3. Efectos (2)

1.3.1. Reducción en la generación de Divisas:

- US\$ 9.4 millones 2003 vrs ??? en el 2004 (90%)


1.3.2. Aumento de precios locales en más del 200%.

SEA 2005

Objetivo General:

Desarrollar un protocolo para el diagnóstico, saneamiento y multiplicación masiva In vitro de la Yautía Coco (Colacasia esculenta).


Objetivos específicos;

- Evaluar tres métodos de desinfección y tres tamaño de explante en el <u>establecimiento</u> In vitro de ápices y meristemos de Yautía Coco (Colacasia esculenta).
- Evaluar el efecto del fotoperíodo en la fase de multiplicación de explantes de Yautía Coco (Colacasia esculenta).
- Evaluar el efecto del estado físico del medio de cultivo en la fase de multiplicación de Yautía Coco (Colacasia esculenta).

Objetivos específicos 2

- Evaluar el efecto de tres porcentajes de sacarosa (2, 4, 6 %) y tres niveles de auxina (0.01, 0.02 y 0.03 mg/l de AIA) en medio líquido y semi sólido en la fase de enraizamiento *In vitro* de Yautía Coco.
- Realizar una búsqueda exploratoria de material de Yautía Coco tolerante al Tizón Foliar en la región noreste.

II. MATERIALES Y METODOS

- Ubicación: Laboratorio de Biotecnología del ISA, La Herradura, Santiago.
- Selección de plantas:
 - Zonas productoras
 - Características tolerantes (*C. esculenta*)
 - Sanas
 - Plantas con síntomas
- Desinfección:
 - Hipoclorito de sodio 25% por 10 Minutos.
- Medio Basal: MS + recomendaciones de Dottin 1997.

2.1. Desinfección:

Tratamientos

Tamaño del explante	Método de desinfección				
	Na OCL 25% 15 minutos	Alcohol 70% Na OCL 25% 15 minutos	Na OCL 25% 15 minutos Tween 80		
0.5 mm	0.5 Na 1	0.5 ANa 4	0.5 NaT 7		
1 mm	1 Na 2	1 ANa 5	1 NaT 8		
5 mm	5 Na 3	5 ANa 6	5 NaT 9		

Variables medidas: # de explantes establecidos y contaminados

Completo al azar, con arreglo factorial, tres repeticiones $Y_{ijk} = \mu + T_i + M_j + (TM)_{ij} + \in_{ijk}$

2.2. Fase de Multiplicación

Tratamientos

	Condición física del medio			
Condición de luz	Semi sólido	Líquido		
16 horas luz	16 HL-S	16 HL – L		
24 horas Luz	24 HL - S	24 HL - L		

Variables medidas: # de brotes por explante y longitud de brotes.

Diseño completo al azar con arreglo factorial, cuatro repeticiones Y_{ijk} = μ +L_i + M_i + (LM)_{ij} + €_{ijk}

2.3. Fase de Enraizamiento y Adaptación.

Tratamientos

Tipo de Medio	2% Sacarosa		4% Sacarosa		6% Sacarosa				
	AIA		AIA		AIA				
	0	0.1	0.2	0	0.1	0.2	0	0.1	0.2
Medio semi sólido	T1	T2	Т3	T4	T5	Т6	Т6	Т8	Т9
Medio líquido	T10	T11	T12	T13	T14	T15	T16	T17	T18

Variables medidas: Número de raíces y longitud de raíces.

Diseño completo al azar, con arreglo factorial, cuatro repeticiones $Y_{ijk} = \mu + M_i + S_j + A_k + (MS)_{ij} + (MA)_{ik} + (SA)_{jk} + (MSA)_{ijk} + \in_{ijkm}$

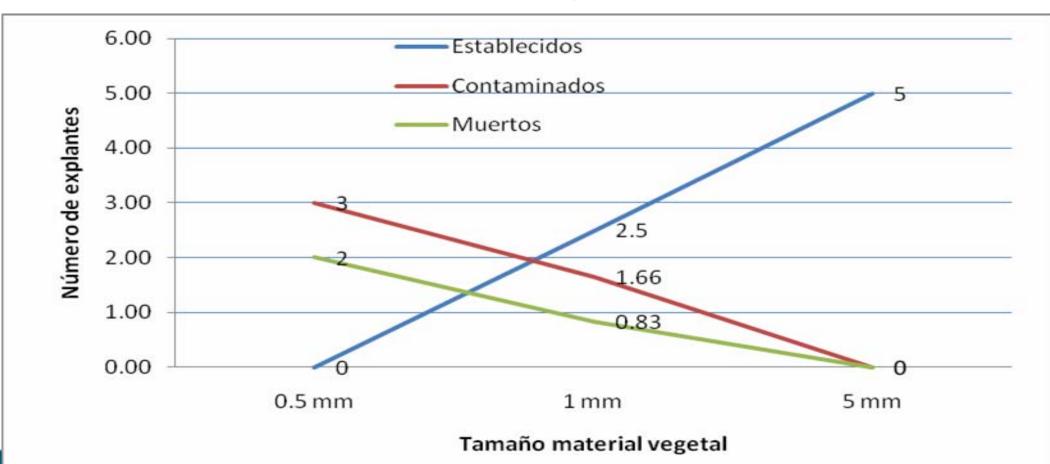
2.5. Seleccionar y multiplicar individuos tolerantes (de plantas libres en el campo.

Visitas exploratorias en las zonas de:

Nagua, San Francisco de Macorís y Salcedo.

Se considero tolerante a:

- 1. Menos del 15% de las hojas afectadas y;
- 2. Menos del 10% del área foliar afectada, a una edad de 120 días.

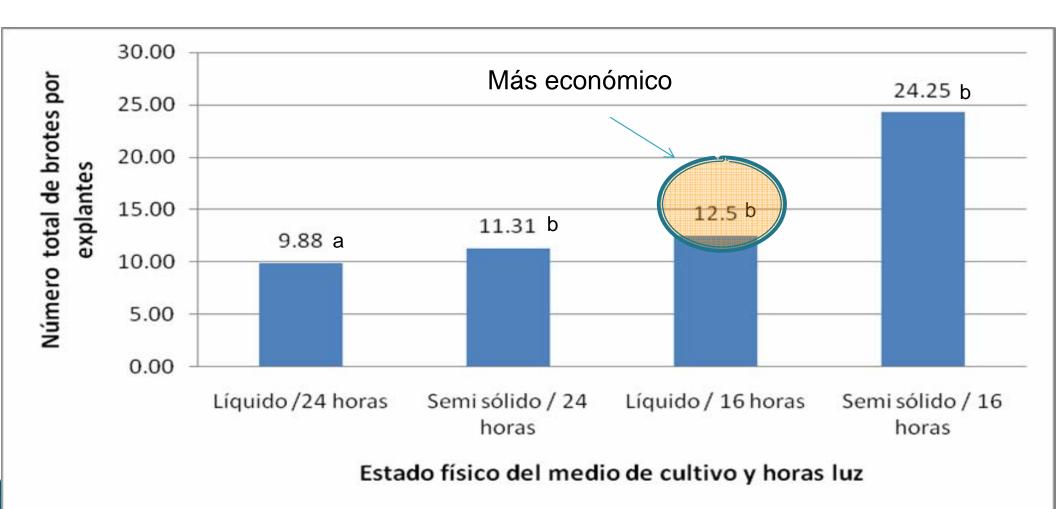

Número de explantes

Tratamiento	Establecidos	Contaminados	
0.5 Na-T 7	0.00 a	3 a	
1 A-Na 5	0.83 ab	2.17 ab	
1 Na-T 8	2.50 abc	1.67 ab	
0.5 A-Na 4	3.17 abc	0.83 ab	
5 Na 3	3.33 abc	0.33 b	
1 Na 2	3.83 bc	0.67 b	
5 A-Na 6	4.17 bc	0.33 b	
0.5 Na 1	5.00 c >	Cantidad 0 b	Contidad
5 Na-T 9	5.00 c =	0 b	<u>Cantidad</u>

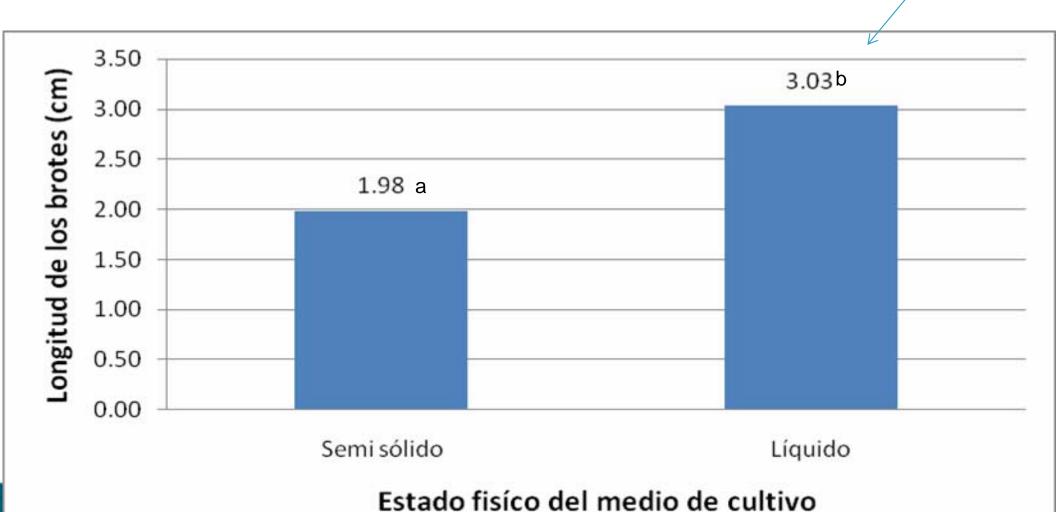
Letras distintas indican diferencias significativas (p < = 0.05).

No diferencia significativa (# explantes muertos)

Relación significativa entre el <u>tamaño</u> del material vegetal y la <u>cantidad</u> de explantes.

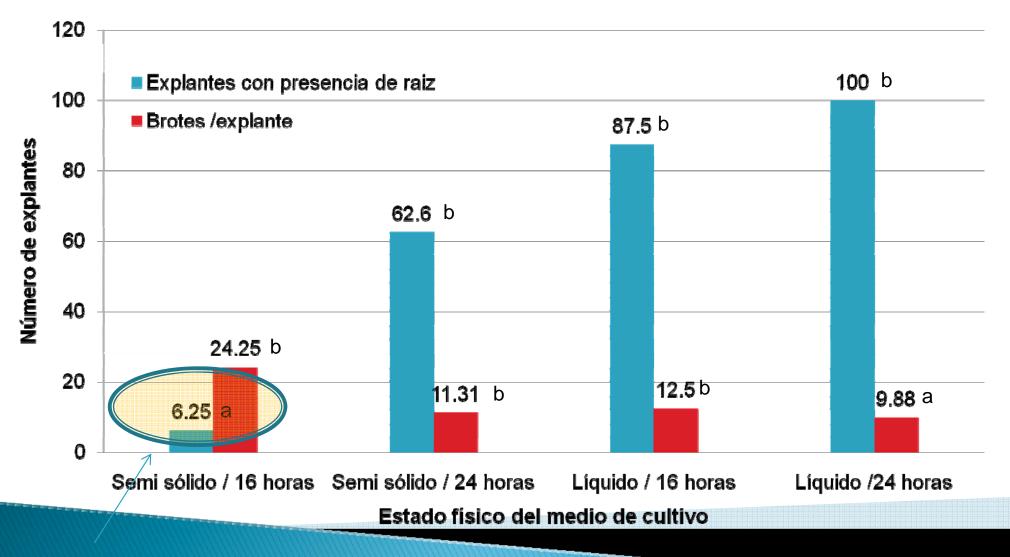

El r² fue de 0.67 y 0.45

3.2. Fase de Multiplicación



Letras distintas indican diferencias significativas(p<= 0.05)

Interacción altamente significativa entre el estado físico del medio de cultivo y las horas luz


3.2. Fase de Multiplicación (2)

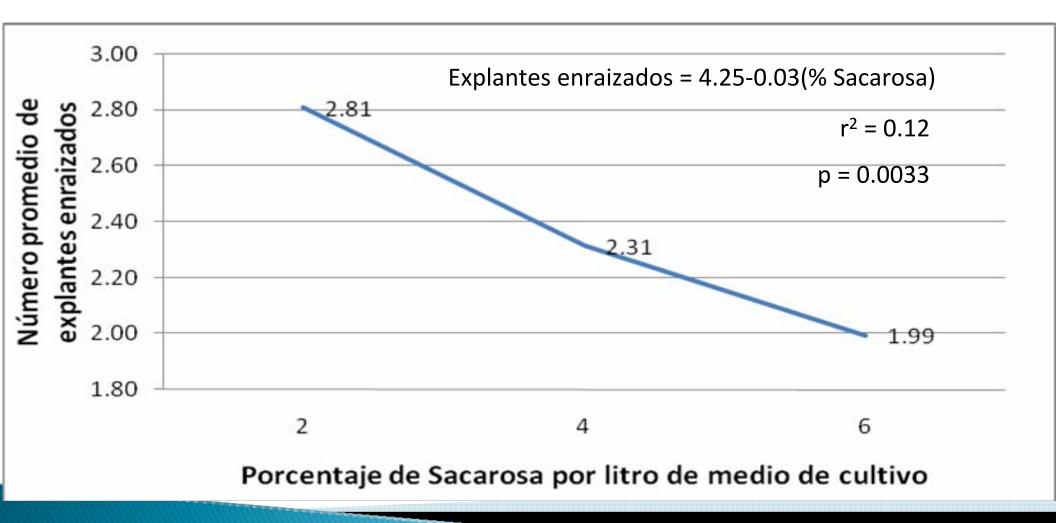
53% mayor

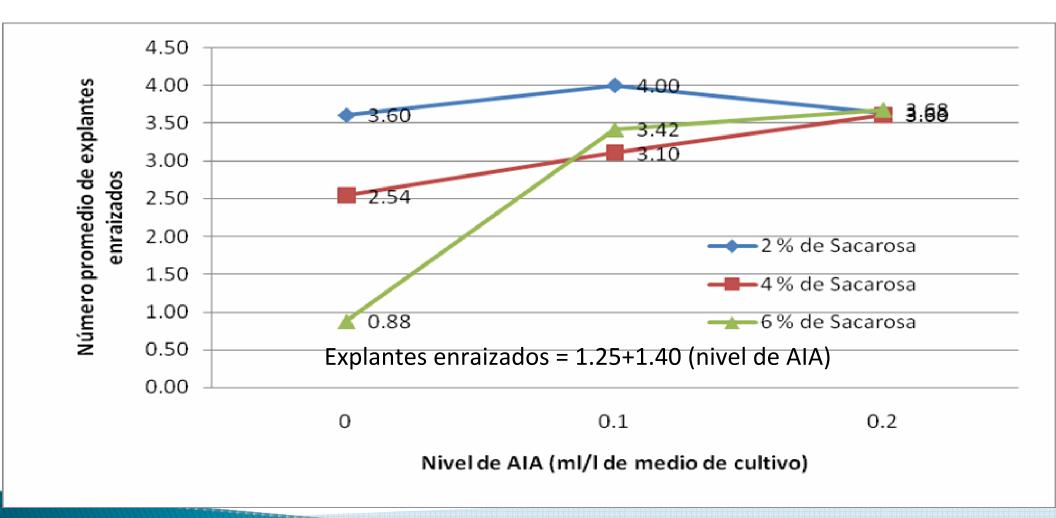
Solo se encontró diferencia significativa para el estado físico del medio de cultivo sobre la longitud de los brotes

Presencia de raíz

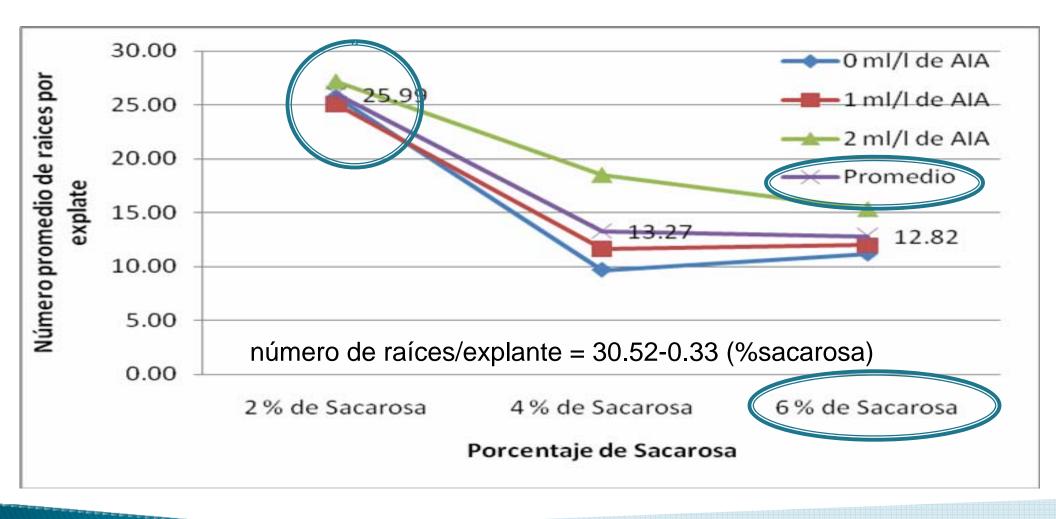
Menor formación de raíces

> Cantidad de brotes < raíces</p>
Utilidad en el ultimo subcultivo

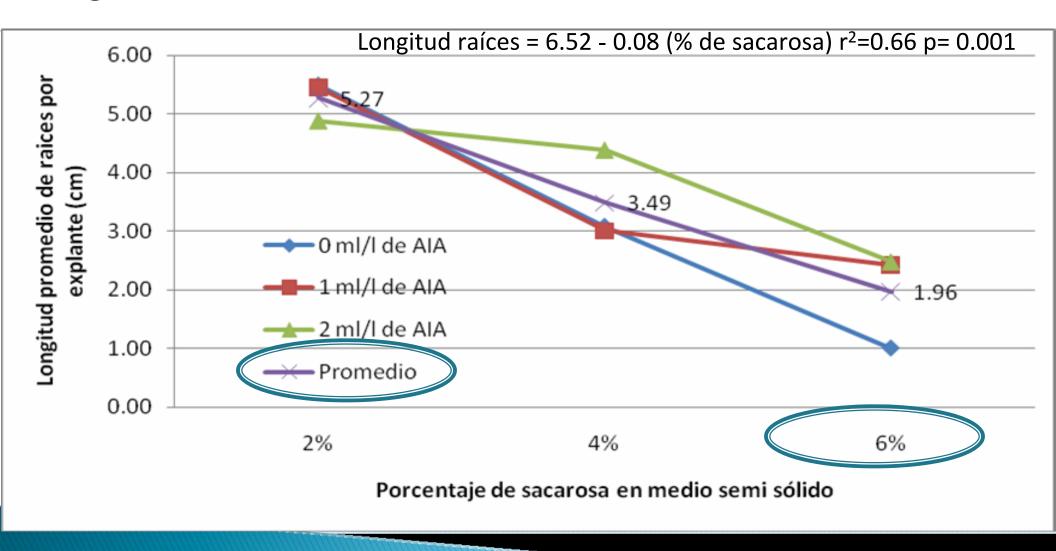



Explantes enraizados (Interacción Medio x Sacarosa)

Efecto significativo sacarosa


Se observó una relación negativa en la cantidad de explantes enraizados a medida que se aumenta el nivel de sacarosa

Explantes enraizados (Interacción AIA x Sacarosa)


La menor cantidad promedio de explantes enraizados se observó cuando se utiliza 0 ml/l de AIA y 6% de sacarosa (p=0.05)

Número de raíces

Sólo el efecto de la sacarosa es estadísticamente significativo $r^2 = 0.39$ y p = 0.001.

Longitud de raíces

La longitud promedio de la raíces se reduce de 5.27 a 1.96 por explante al pasar de 2% de sacarosa a un medio de cultivo con 6%.

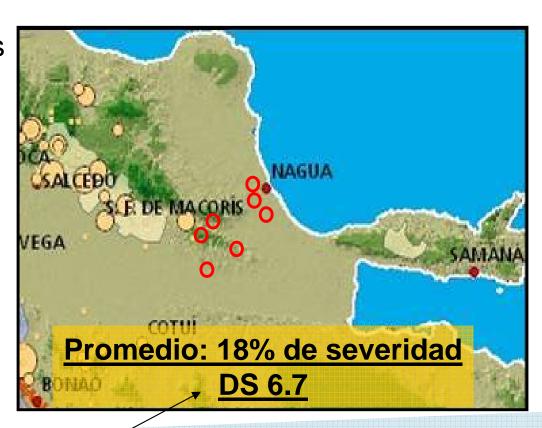
3.4. Fase de Adaptación

3.4.1. Evaluación de adaptación de vitro plantas:

3.4.1. Evaluación de adaptación de Vitro plantas:

stintas indican diferencias significativas/n

	Medio de Cultivo	AIA	% Sacarosa	% de sobrevivencia		
	Liquido	0	4	14.29	Α	
	Semi sólido	0	← 6	14.29	Α	
	Liquido	0.1	4	14.29	Α	
	Liquido	0.2	4	89.29		В
	Semi sólido	0.2	2	92.86		В
	Semi sólido	0.1	6	96.43		В
	Liquido	0	6	100.00		В
Mejores	Liquido	0.2	2	100.00		В
	Liquido	0.1	6	100.00		В
parámetros e	n Liquido	0.1	2	100.00		В
enraizamiento	Semi sólido	0	2	100.00		В
	Semi sólido	0	4	100.00		В
	Semi sólido	0.1	4	100.00		В
	Liquido	0	<u> </u>			
	Semi sólido	0.2	4	100.00		В
	Liquido	0.2	6	100.00		В
	Semi sólido	0.2	6	100.00		В
	Semi sólido	0.1	2	1,00.00		В



3.5. Seleccionar y multiplicar individuos tolerantes de plantas libres en el campo.

Plantas seleccionadas: (visitas zonas de Nagua, San Francisco y Salcedo)

- 2 Rafael Polanco en Sabaneta,
- 1 en el Gajo de Nagua,
- 5 en Arrollo al Medio Arriba Nagua
- <u>1</u> en el kilómetro 3, Osiris Calvo.

Promedio: 45% de incidencia DS 22.5

Del total de plantas observas en las zonas el 100% tuvo en promedio una incidencia y severidad de ataque de la enfermedad superior a las establecidas

4. Conclusiones

A mayor tamaño del material de siembra o adición de Tween-80 a la solución de desinfección se obtienen mayor cantidad de explantes establecidos y libres de bacterias.

El medio de cultivo líquido y la exposición de los explantes a 16 horas luz es la combinación más adecuada en la fase de multiplicación, al tener alto <u>índice de multiplicación</u>, <u>no</u> requerir de agar y sólo 16 horas luz.

4. Conclusiones (2)

La fase de enraizamiento, aumentar el <u>nivel de sacarosa</u> de 2 a <u>6%</u> afecta negativamente la cantidad de explantes <u>enraizados y</u> <u>la cantidad y longitud de las raíces</u>. El medio de cultivo más adecuado es cuando se utiliza 2% de sacarosa independientemente del estado físico del medio o nivel de AIA.

4. Conclusiones (3)

No se observó establecimiento de la enfermedad (tizón foliar) en los explantes cultivados in vitro.

Las 9 plantas tolerantes en el campo y seleccionadas no mantuvieron los niveles de tolerancia.

