THE SYSTEM OF RICE INTENSIFICATION (SRI): A Different Intensification

21st Session of International Rice Commission 3-5 May, Chiclayo, Peru

> Norman Uphoff, CIIFAD Cornell University, USA

What Are Rice Sector Needs?

- Higher yields in many countries, not all
- Lower costs of production to improve farmer incomes
- Reduced water requirements
- Resistance to biotic and abiotic
 stresses climate becoming bigger problem
- Less adverse environmental impact
 less GHGs, less impact on soil/water quality
- Improved grain quality higher milling outturn, better eating qualities – <u>SRI does all</u>

What Are Trends in Rice Sector?

- Trend toward younger seedlings
- Lower plant density
- Reduced water applications
- More attention to soil organic matter
 [Not the only trends GMOs, use of agrochemicals, mechanization, etc.]
 Agronomically and biologically sound practices were <u>anticipated by SRI</u>

The System of Rice Intensification (SRI) is a 'work in progress' – not finished But we know that SRI methods can usually: 1. Raise output by 50% or more with 2. Significant reductions in: – Seed requirements -- by 80-90% – Water requirements -- by 25-50% Agrochemicals – little or no need 3. Any/all varieties of seeds can be used 4. Costs of production -- lower by 10-25% – Farmer incomes -- rise by 50-100% 5. Favorable environmental impacts

Brief History of SRI:

SRI was developed in Madagascar 20 years ago by <u>Fr. Henri de Laulanié, S.J.</u>, who spent 34 years working with farmers, observing, experimenting, and having also some 'good luck'

- 1983 Synthesized SRI practices after 20 years
- 1994 Tefy Saina and CIIFAD began cooperation
- 1999 Nanjing Agricultural University in China and AARD in Indonesia did first trials outside of Madagascar

• 2006 – SRI effects validated in 20 other countries: Bangladesh, Benin, Cambodia, Cuba, Gambia, Guinea, India, Laos, Mali, Mozambique, Myanmar, Nepal, Pakistan, Peru, Philippines, Senegal, Sierra Leone, Sri Lanka, Thailand, and Vietnam

Summary of results from SRI vs. BMP evaluations in China and India (t ha⁻¹), 2003 or 2004

Province/state	No. of on-farm comparison trials (area)	BMP ave. yield	SRI ave. yield	SRI advantage (% incr.)
Zhejiang province	(16.8 ha of SRI rice with 2 hybrid varieties)	8.8*	11.9*	3.1* (35.2%)
Sichuan province	8 trials (0.2 ha each)	8.13*	11.44*	3.31* (40.7%)
Andhra Pradesh state	1,525 trials (average 0.4 ha; range 0.1-1.6 ha)	6.31	8.73	2.42 (33.8%)
Tamil Nadu state	100 trials (SRI and BMP trials each 0.1 ha)	5.66	7.23	1.57 (27.7%)

* Note that Chinese comparisons were made using hybrid rice varieties.

SRI <u>gets MORE from LESS</u> by mobilizing biological processes **SRI requirements:**

- <u>More labor</u> initially -- while learning method, but can become <u>labor-saving</u>
- <u>Water control needed for best results</u>
- <u>Access to biomass</u> for compost is desirable, but can use chem. fertilizer
- <u>Skill and motivation</u> from farmers
- <u>Crop protection</u> in some cases

Basic Practices:

- Start with young seedlings 8-12 days old (<15 days) to preserve their potential for profuse growth of tillers and roots
- Use single seedlings widely spaced plant in a square pattern, quickly, gently
- Apply <u>minimum water</u> with no standing water in fields, enough to keep soil moist
- Weed with a <u>'rotating hoe'</u> to <u>aerate soil</u> while controlling weeds, returned to soil
- Provide <u>organic matter</u> -- as much as possible -- for <u>soil organisms</u> and plants

Different Paradigms of Production

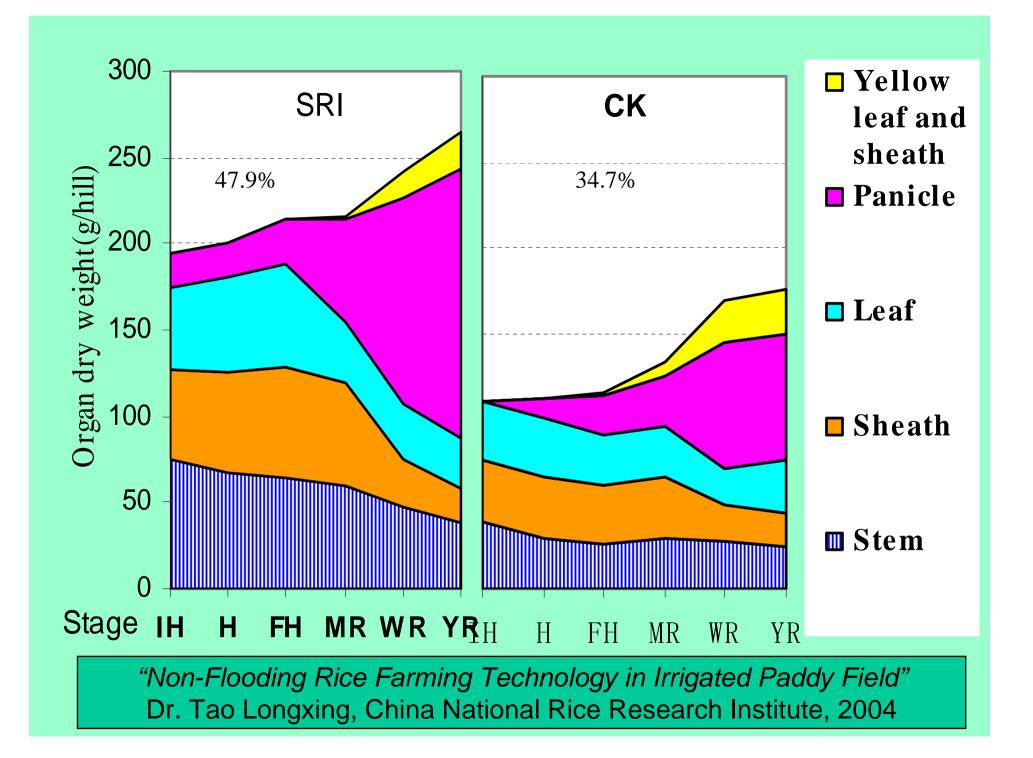
- <u>GREEN REVOLUTION</u> strategy based on:

 (a) Changes in <u>genetic potential</u> of plants, and
 (b) Increases in the <u>use of external inputs</u> -more water, fertilizer, insecticides, etc.
- SRI intensifies management, changing the way that plants, soil, water & nutrients are managed:

 (a) To promote the growth of root systems and
 (b) To increase the <u>abundance and diversity</u> of soil organisms -- to enlist their benefits

 These changes → <u>better PHENOTYPES</u>

Ms. Im Sarim, Cambodia, with rice plant grown from a single seed, using SRI methods and traditional variety -- yield of 6.72 t/ha



Women in Dông Trù, Vietnam, who are training other farmers in SRI methods to accomplish potential water-saving possible

Rice fields in Sri Lanka: same variety, same irrigation system, and *same drought* : conventional methods (left), SRI (right)

Rice in Dông Trù, Vietnam: normal methods on right; SRI with close spacing in middle; SRI with wider spacing on left

Economics of Cultivation (ha⁻¹) Tamil Nadu Agric. Univ. study (N=100)

	Conventional practices	SRI practices
Income from grains (Rs. 5.00 / kg)	US\$ 659	US\$ 870
Income from straw (Rs. 0.25 / kg)	US\$ 49	US\$ 63
Gross return	US\$ 708	US\$ 933
Cost of cultivation	US\$ 466	US\$ 414
Net return	US\$ 242	US\$ 519
B : C ratio	1.52	2.25

LESS CAN PRODUCE MORE

by utilizing biological potentials & processes

- Smaller, younger rice seedlings become larger, more productive mature plants
- Fewer rice plants per hill and per m² give higher yield if used with other SRI practices
- Half as much water produces more rice because aerobic soil conditions are better
- Greater output is possible with use of fewer or even no external/chemical inputs
- Even more output within a shorter time

There is nothing magical about SRI – all can be explained in sound scientific terms

Next Frontier: Rainfed SRI

- Reports from three countries showing rainfed (unirrigated) SRI yield = 6-7 t/ha
- Philippines: 2002 trials 5 spacings, 4 replications, 4000 m² = ave. 7.2 t/ha
- Myanmar: 2001-2003 farmer field school demo-fields (N=30): 6.7 t/ha
- India, West Bengal state (N=163) raised from 2.2 t/ha to 7.7 t/ha – max. of 16 t/ha (15 t/ha IWMI evaluation)

THANK YOU

Web page:
 <u>http://ciifad.cornell.edu/sri/</u>

 Email: <u>ciifad@cornell.edu</u> or <u>ntu1@cornell.edu</u> or
 tefysaina.tnr@simicro.mg

Country	Evaluation done by/for:	Yield Increase	Water- Saving	Cost Reduction	Increase in Net Income	Comments
BANGLA DESH IRRI-funded evaluation	BRAC/SAFE BRRI/Syn- genta BD Ltd (Hossain, 2004)	24%	NC	7%	59% (32-82%)	On-farm evaluations (N=1,073), funded by IRRI PETRRA project
CAM- BODIA National Survey	GTZ (Anthofer et al., 2004)	41%	Flooding at TP reduced 96.3%→ 2.5%	56%	74%	Survey of 500 SRI users, 100 non-users, randomly sampled in 5 provinces; use of SRI has grown to >40,000 farmers in 5 years
Long-term Users	CEDAC (Tech, 2004)	105%	50%	44%	89%	120 farmers who had used SRI for 3 years
CHINA	China Agric. University (Li et al., 2005)	29%	44%	7.4% [ext. service promoting fertilizer & new seeds]	64%	SRI use in village had gone from 7 in 2003, to 398 in 2004; farmers considered labor- saving main benefit

Country	Evaluation done by/for:	Yield Increase	Water- Saving	Cost Reduction	Increase in Net Income	Comments
INDIA Tamil Nadu	Tamil Nadu Agr. Univ. (Thiyagaraja n et al., 2004)	28%	40- 50%	11%	112%	100 on-farm comparisons in Tamiraparani Basin, supervised by TNAU and State extension service
Andhra Pradesh	Andhra Pradesh Agr. Univ. (Satyanara- yana, 2005)	38%	40%	NA	NA	On-farm trials supervised by ANGRAU and State extens. service (N=1,535)
West Bengal	IWMI-India (Sinha and Talati, 2005)	32%	Rainfed version of SRI	35%	67%	SRI use in villages had gone from 4 farmers to 150 in 3 seasons
INDO- NESIA	Nippon Koei- DISIMP (Sato, 2006)	84%	40%	24%	412%	3 years of evaluation in E. Indonesia; 1,849 trials conducted on 1,363 ha

Country	Evaluation done by/for:	Yield Increase	Water- Saving	Cost Reduction	Increase in Net Income	Comments
NEPAL	District Agric. Dev. Office (Uprety, 2005)	82%	43%	2.2% [rotary hoes not widely available]	163%	Morang district users from 1 in 2003 to >1,400 in 2005; data from 412 farmers
SRI LANKA	IWMI (Namara et al., 2004)	44%	24%	11.9- 13.3%	90-117%	Survey of 60 SRI users, 60 non- users, randomly sampled in 2 districts
VIET- NAM	National IPM Program (Dông Trù village)	21%	60%	24%	65%	Record-keeping by Farmer Field School alumni on SRI results
AVER- AGE		52%	44%	25%	128%	

Roots of a single rice plant (MTU 1071) grown at Agricultural Research Station Maruteru, AP, India, kharif 2003

Resistance to Abiotic and Biotic Stresses:

- Drought tolerance/resistance
- Resistance to <u>lodging</u> to better tolerate wind, rain and storm damage
- <u>Cold</u> tolerance has been seen
- <u>Salinity</u> tolerance? no evidence yet
- Cope with future <u>climate change?</u>
- Resistance to <u>pests and diseases</u> trophobiosis as explanation?

Nie Fu-Qiu, Bu Tou village, Zhejiang province, who got a record yield of 12.1 t/ha with SRI in 2004; in 2005, although his area was hit by 3 typhoons, his SRI crop did not lodge; it produced 11.38 t/ha, with a seed-set rate of 93.4% (CNRRI)

Shortening of Crop Cycle

Reported in more and more situations:

- Best data from District Agricultural Development Office/Morang in Nepal
 - Shorter cycle <u>reduces risks</u> of biotic and abiotic stresses
 - Also may permit additional cropping

We are see that <u>weeding</u>, i.e., active soil aeration, shortens the crop cycle and raises crop yield – saving water

Nepal: Monsoon Season, 2005

412 farmers in Morang district using SRI methods, doing different numbers of WEEDINGS – <u>show this can raise yield</u> Ave. SRI yield = 6.3 t/ha, vs. control = 3.1 t/ha

No. of	No. of	Average	Range
weedings	<u>farmers</u>	<u>yield</u>	<u>of yields</u>
1	32	5.16	(3.6-7.6)
2	366	5.87	(3.5-11.0)
3	14	7.87	(5.85-10.4)

Nepal: Monsoon Season, 2005

51 farmers in Morang district who planted popular <u>Bansdhan</u> variety using SRI methods (usual maturity @ 145 days)

Age of	N of	Days to	Reduction
seedling	<u>farmers</u>	<u>harvest</u>	<u>(in days)</u>
> 14 d	9	138.5	6.5
10 - 14 d	37	130.6	14.4
8 - 9 d	5	123.6	21.4
[WWF/AP	evaluation	n: 7-10 da y	vs reduction]

PRADESH THE MOR HINDU 16 NOV. 2005 YSR announces 4-cr. programme for popularising SRI method

World Wide Fund for Nature. ANGRAU take up pilot project

212 farmers

fertility management.

planting of seed in a

particular manner and

Discouraging farmers

from growing paddy is

meant for conserving

restricting free power,

water and not for

says Chief Minister

weed control

K. Venkateshwarlu

implementing the method TARAMATIPET (RANGA REDDY DT): in 10 districts in the Bowled over by the success of State the System of Rice Intensification (SRI), Chief Minister Y. S. . It involves water and soil

Rajasekhara Reddy on Tuesday announced a Rs. 4-crore programme of training and having demonstration plots for popularising this novel paddy cultivation method in every village in the State. The Government will also think of supporting pur-

chase of weeders. Dr. Reddy who landed right on the farm of G. Nagaratnam Naidu here, appeared pleased with the way paddy was raised using SRI method, held a tuft of freshly harvested crop and showed it to media persons. "We will leave no paddy in rabi was basically

stone unturned in popularising meant for conserving water for SRI during the ongoing Rythu the coming years when the rain-Sadassu". fall could be less. It was not for The method being adopted by restricting free power supply, 212 farmers in 10 districts of the which would continue for the

State under a pilot project taken next four years. up jointly by the World Wide Taking a dig at the previous Fund for Nature and Acharya N. Telugu Desam Government, he G. Ranga Agricultural University said a party, which was not able involved water and soil fertility to supply power for ten minutes, management, planting of seeds was now finding fault with Conin a particular manner and weed gress Government's policy on control. free power supply covering 95 The crop raised used less of per cent of farmers.

water and the yield was high. It Only income tax payees and had nothing to do with seed va- big farmers having more than riety called "Sri Vari" as is being three pumpsets were being popularly perceived.

Interacts with farmers

Later Dr. Reddy preferred to wants to support big farmers." sit down with the farmers who The Government also encourhave adopted the SRI cultivation aged farmers to go in for crop and heard them share their ex- diversification for which Rs. 17 periences. Mr. Naidu said under crores has been earmarked as SRI, he planted only 2 kg of seed, subsidy. used less water and obtained 92 Agriculture Minister, N

bags of rice per acre. Balama- Raghuveera Reddy and Major Irnemma of Mahbubnagar, Vara- rigation Minister, P. Lakshlaxmi of Anantapur, K.V. Rao of maiah were present. Guija ries to narrate.

ing farmers from going in for WWF dialogue project spoke.

Guntur had similar success sto-Biksham, Policy Advisor, Global BOWLED OVER: Chief Minister Y.S. Rajasekhara Reddy harvesting a tuft of System of Freshwater Programme, WWF Rice Intensification (SRI) paddy at a farm in Taramatipet in Ranga Reddy District Dr. Reddy said the Govern-introduced the farmers and Vi- on Tuesday. Ministers N. Raghuveera Reddy and Ponnala Lakshmaiah are also seen. Dr. Reddy said the oovern-ment's campaign on discourag-nod Goud project coordinator, - PHOTO: D. GOPALAKRISHNAN

Questions: Willem Janssen

- Under what <u>conditions</u> functioning well?
 - <u>Soil type</u> -- no limitations (AP data) but <u>well-drained soils</u> are best
 - <u>Water control</u> reliability of supply is key
 - Labor availability for initial use
 - <u>Motivation</u> of farmers (and support staff)
 need to overcome skepticism
- Is SRI <u>scale-sensitive</u> or <u>scale-neutral</u>?
 - More advantageous for small farmers
 - But <u>no limitation on scale</u> -- AP example: 40 ha of contiguous SRI fields \rightarrow 11.15 t/ha

Questions: Willem Janssen

- How compatible with <u>other resource-</u> <u>saving technologies</u>? e.g. zero-tillage?
 - No incompatibilities identified so far
 - ZT-SRI combination in China, Cambodia
 - Cover crops/green manures suitable too
 - Linking intensification with diversification
- What institutional implications of SRI?
 - Moving toward <u>'post-modern agriculture'</u>?
 - More farmer-centered research?
 - More <u>farmer-to-farmer extension</u>?
 - Irrigation Depts. > Agriculture Depts.?

Farmer Innovation Is Important

- New and better <u>implements</u> are reducing SRI labor requirements
- New and better <u>methods of crop</u> <u>establishment</u> – also saving labor
- Extrapolation of SRI concepts and practices to <u>other crops</u>
- Farmer-to-farmer dissemination has been essential for SRI's spread

SRI Seeder Developed in Cuba

Designed/built by Luis Romero (14 t/ha), 40x40 cm spacing -- too wide; his neighbor built 12-row seeder to be ox-drawn

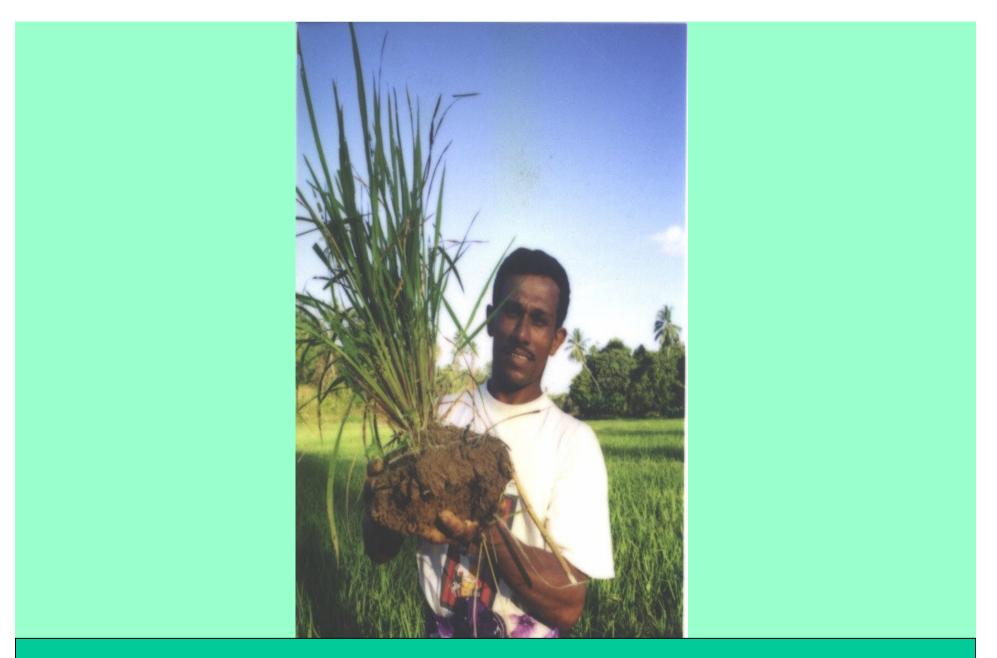
Roller-marker devised by Lakshmana Reddy, East Godavari, AP, India, to save time in transplanting operations; Reddy's yield in 2003-04 rabi season was 17.25 t/ha paddy (dry wt)

Weeder designed by Nong Sovann, Kampong Spreu province, Cambodia; built for \$3, with a \$20 increase in value of rice

Four-row weeder developed by Gopal Swaminathan, Cauvery Delta, Tamil Nadu, India; who also devised the *Kadiramangalam* version of SRI for production in high-temperature regions

Liu Zhibin, Meishan, Sichuan province, China, standing in his <u>raised-bed, no-till</u> SRI field; measured yield was 13.4 t/ha; his SRI yield in 2001 was 16 t/ha, setting Sichuan record

Winter wheat crop (Poland) before going into winter dormancy


Sugar Cane Adaptation

- Andhra Pradesh State, India: Farmer adaptation based on SRI experience:
- Instead of planting 8-12" sets in rows 3' apart

 incubate 3" sets (with one bud each) in
 plastic bags and compost, in warm, humid
 environment for 45 days; plant 1' apart in
 rows 5-6' apart -- reduce material by 85%
- Save cost of 3 irrigations and 1 herbicide
- Yield is <u>100 tons/acre</u> instead of <u>30 tons</u>

G. Swaminathan work on cotton: Seedlings are planted in cups, 1 acre = 1 cup of hybrid seed At 10 days, the bottom of cup is removed; seedlings are planted at spacing of 2 x 4 foot + mulching Yield 20% more, less weed problem, reduced watering, and less cost

H. M. Premaratna, Mellawellana, Sri Lanka, trained >4,000 farmers on SRI at own expense; now working for Oxfam

Mey Som, the first Cambodian farmer to use SRI; now known as 'the professor' for his extensive SRI training efforts

COSTS OF CULTIVATION PER HECTARE – TNAU STUDY

Practices	Tractor hours @ Rs. 150 / hr		Bullock pair @ Rs. 200 / hr		Men's Labour @ Rs. 40 / man-day		Women's Labour @ Rs. 40 / man-day		Cost (Rs.)	
	Conv.	SRI	Con	SRI	Conv	SRI	Conv.	SRI	Conv.	SRI
Nursery Preparation	1	-	-	-	6	3	0.5	5.5	2,110	681
Main Field Preparation	7.5	7.5	2	2	12	12	-	-	2,005	2,005
Manures & Fertilizers	-	-	-	-	7	7	10	10	7,254	7,254
Transplanting	-	-	-	-	5	5	55	75	2,400	3,200
Weeding	-	-	-	-	-	38	80	-	3,200	1,520
Irrigation	-	-	-	-	7.5	6	-	-	300	240
Plant Protection	-	-	-	-	2	2	2	2	660	660
Harvesting	1	1	-	-	12.5	12.5	75	75	3,500	3,500
Total	9.5	8.5	2	2	52	85.5	222.5	167.5	21,429	19,060
Cost saving in S	RI syste	m ov	er co	nven	tional	system	$\mathbf{n} = \mathbf{R}\mathbf{s}$	2.369 (11 %	

Cost saving in SRI system over conventional system = Rs. 2,369 (11%)

RAINFED/UPLAND SRI

Report from PRADAN team, Purulia district, West Bengal, India:

- Working with very poor households in rainfed communities, high food insecurity
- Program was evaluated in 2004 by IWMI-India Program (Sinha and Talati, 2005):
 - SRI use had gone from 4 to 150 households within three seasons
 - Returns/ha were increased by 67%, without full use of SRI methods
 - 8% reduction in labor requirements
 - Top yield reached 15 t/ha -- phenomenal

Average productivity	
(tons/hectare)	2.2
Average productivity of SRI	
intervention (tons/hectare)	7.7

Yield Range (t/ha)	No. of families	%		
1 to 3	5	3.1		
3 to 5	13	8.0		
5 to 7	48	29.4		
7 to 9	52	31.9		
9 to 11	33	20.2		
>11	12	7.4		
TOTAL	163	100		

RAINFED/UPLAND SRI

Report from Farmer Field School program of the Metta Development Foundation, Kachin State, northern Myanmar:

2001-2003: 258 FFSs with 5,202 trainees

By end of 2005: > 20,000 SRI users

FFS methodology particularly relevant for SRI and appropriate fit between agronomic and dissemination strategies

Average FFS study-field yields, 2001-2003

		Rice yields (tons per hectare)								
Year	FFSs	Baseline	FFS yield	Increase						
2001	10	2.1	5.4	158%						
2002	10	1.9	6.7	257%						
2003	10	2.2	7.1	216%						
Mean		2.1	6.4	210%						

Mean rice production increase per FFS family over three years, 2002-2004

.		Production of rice per fami									
Year	(N)	Before FFS	After FFS	Added yield							
2002	202	2,188	4,152	1,964							
2003	198	1,948	4,186	2,237							
2004	212	1,995	4,218	2,185							
2002-04	612	2,043	4,186	2,129							

Costs of production and net return of farmers in real terms (kg of rice/ha), 2002-2004

		Production cost (kg/ha)				yields /ha)	Net income (kg/ha)			
Year	(N)	Before FFS	After FFS	% Change	Before FFS	After FFS	Before FFS	After FFS	Increase	
2002	202	1,865	1,791	-4.0	2,084	5,422	219	3,631	3,412	
2003	198	1,713	1,797	4.9	1,882	6,723	169	4,926	4,757	
2004	212	1,794	1,798	0.2	2,249	7,104	455	5,306	4,852	
Mean	612	1,791	1,795	0.2	2,076	6,425	285	4,630	4,346	

Cost to produce one ton of rice before and after FFS (in kg)

FFS Sites			2002			2003 2004				2002-2004			
		(N)	В	Α	(N)	В	Α	(N)	B	Α	(N)	B	Α
Site	1	24	870	364	20	870	165	20	820	279	64	853	269
Site	2	20	860	337	18	860	216	22	875	239	60	865	264
Site	3	18	889	357	22	911	212	20	1157	513	60	986	361
Site	4	22	953	365	20	941	268	20	748	232	62	881	288
Site	5	20	850	424	22	941	449	24	1333	644	66	1041	506
Site	6	15	833	243	20	860	337	19	785	249	54	826	276
Site	7	23	833	231	18	680	160	20	700	198	61	738	196
Site	8	18	1133	583	20	850	338	25	569	199	63	851	373
Site	9	23	900	367	18	1400	593	20	757	204	61	1019	388
Site 1	L O	19	974	360	20	1160	593	22	791	212	61	975	388
Ave.		202	895	330	<i>198</i>	910	267	212	798	253	612	868	283

B = **Before FFS**, **A** = **After FFS** (**N**) = **number of farmers**

Farmers' mean SRI yields of rice on own fields during same year as their FFS training and in the 1-3 years after FFS graduation, through 2004

FFS Years	(N)	Ave. yield (tons/ha) in year of FFS	(N)	Yields (tons/ha) in years after graduation		
				Year 1	Year 2	Year 3
2001	41	3.75	202	4.27	4.47	4.54
2002	35	3.56	198	4.08	4.64	
2003	33	4.07	212	4.76		

Yield improvements associated with use of improved practices learned in FFS, separately and together with other practices, in year after FFS

Practices (and % of farmers		% increase in yield over baseline yield before FFS							
adopting them)	Ν	1	2	3	4	5	6		
Better variety only (5%)	6	18.33							
Higher quality seed only (15%)	18		27.66						
Higher quality seed + better variety (15%)	18			68.88					
SRI only (13%)	16				142.50				
Better variety + SRI (8%)	10					184.00			
Higher quality seed + SRI (35%)	44					188.64			
Higher quality seed + better variety + SRI (10%)	12						253.33		
Significance (subset for alpha = .05)	124	1.000	1.000	1.000	1.000	0.223	1.000		

Number of non-FFS farmers associated with the 2001 FFS cohort and their production increases (in percent), 2002-2004

FSS Sites	FFS	farmers		Plus Non-FFS Farmers							
	(N)	2002	(N)	2002	(N)	2003	(N)	2004			
Nawng Hkying	24	82%	20	50%	32	45%	46	43%			
10 Miles	20	95%	25	39%	35	42%	42	40%			
Gat Sha Yang	18	102%	15	40%	22	45%	30	42%			
N-gan	22	147%	23	60%	28	49%	32	50%			
Nawng Hkyi	20	59%	30	45%	38	43%	48	52%			
Gara Yang	15	87%	26	45%	39	45%	51	43%			
Ja Pu	23	74%	32	34%	38	37%	49	38%			
Awng Mye Tit	18	100%	26	61%	35	56%	47	51%			
Mai Sak Pa	23	76%	23	45%	32	48%	43	50%			
Lawa Yang	19	105%	18	68%	29	65%	38	63%			
Mean	20	90%	24	49%	33	48%	43	47%			
Total	218		252		361		419				

Percent of farmers in Kachin communities benefiting from FFS

	Percentage of farmers of a community benefiting from FFS									
FFS Sites	1st year	2nd year	3 rd year	4 th year						
Nawng Hkying	34	63	80	100						
10 Miles	31	69	85	95						
Gat Sha Yang	36	66	80	96						
N-gan	40	82	91	98						
Nawng Hkyi	29	74	85	100						
Gara Yang	23	62	82	100						
Ja Pu	32	76	85	100						
Awng Mye Tit	27	66	79	97						
Mai Sak Pa	35	70	83	100						
Lawa Yang	33	64	83	98						
Mean	32	69	83	98						