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Abstract Large-insert bacterial artificial chromosome
(BACQ) libraries, plant-transformation-competent binary
BAC (BIBAC) libraries, and simple sequence repeat
(SSR) markers are essential for many aspects of ge-
nomics research. We constructed a BAC library and a
BIBAC library from the nuclear DNA of chickpea,
Cicer arietinum L., cv. Hadas, partially digested with
HindIll and BamHI, respectively. The BAC library has
14,976 clones, with an average insert size of 121 kb, and
the BIBAC library consists of 23,040 clones, with an
average insert size of 145 kb. The combined libraries
collectively cover ca. 7.0x genomes of chickpea. We
screened the BAC library with eight synthetic SSR oli-
80s, (GA)o, (GAA)7, (AT)j9, (TAA)7, (TGA)7, (CA)y0,
(CAA);, and (CCA);. Positive BACs were selected,
subcloned, and sequenced for SSR marker development.
Two hundred and thirty-three new chickpea SSR
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markers were developed and characterized by PCR,
using chickpea DNA as template. These results have
demonstrated that BACs are an excellent source for SSR
marker development in chickpea. We also estimated the
distribution of the SSR loci in the chickpea genome. The
SSR motifs (TAA), and (GA), were much more abun-
dant than the others, and the distribution of the SSR loci
appeared non-random. The BAC and BIBAC libraries
and new SSR markers will provide valuable resources
for chickpea genomics research and breeding (the
libraries and their filters are available to the public at
http://hbz.tamu.edu).

Introduction

Chickpea (Cicer arietinum L.) is the third most impor-
tant pulse crop in the world (FAO 2003, http://
www.fao.org; Ladizinsky 1995) and a good source of
plant protein (12.4-31.5%) and carbohydrates (52.4—
70.9%) (Williams and Singh 1987). Nevertheless, rela-
tively limited genetic and genomic tools are available for
the crop. Chickpea is a self-pollinating diploid, 2n= 16,
and has a genome size of 740 Mb/1C. While this size is
slightly larger than that of the model legume, Medicago
truncacula (530 Mb/1C), it is much smaller than other
major legume crops such as soybean, peanut, garden
pea, alfalfa, and lentil (Arumuganathan and Earle 1991).
The first genetic map of chickpea was developed by
combining the mapping results from three interspecific
mapping populations (Simon and Muehlbauer 1997).
However, due to the low polymorphism levels of iso-
zymes (Ahmad et al. 1992; Kazan et al. 1993; Labdi et al.
1996), RFLPs, and RAPD markers (Udupa et al. 1993),
this first map had a low marker density (Simon and
Muehlbauer 1997).

Simple sequence repeat (SSR), or microsatellite
markers, have been documented in several crop species
to overcome the low polymorphism of other marker



types (Cregan et al. 1999a; Bhattramakki et al. 2000).
SSRs are tandem repeats of di- to tetra-nucleotide se-
quence motifs flanked by conserved sequences (Tautz
and Renz 1984). Because different alleles vary in length,
depending upon the number of repeats, PCR with
primers complementary to the flanking sequences of the
SSR locus can detect these length polymorphisms
(Cregan et al. 1999a). Because they are highly poly-
morphic, PCR-based, and readily portable within a
species (Edwards et al. 1996), SSR markers have been
the DNA markers of choice in many crop species. We-
ising et al. (1992) demonstrated that the simple sequence
motifs, (GACT);, (GATA)s;, (GTG)s, (CA)g, and
(GGAT)y, are present as polymorphic repeats in the
chickpea genome. Sharma et al. (1995) found that SSRs
are abundant in the chickpea genome and have a high
level of intraspecific polymorphism, suggesting that SSR
markers are well suited for chickpea genome mapping
and gene tagging. Winter et al. (1999) reported the first
chickpea genetic map based on SSR markers and a list
of 174 primer pairs flanking such loci. These SSR
markers have been extensively used to study the genetic
relationships among Cicer species (Udupa et al. 1999;
Choumane et al. 2000), construct genetic maps (Tekeo-
glu et al. 2002; Flandez-Galvez et al. 2003), and map
genes of agronomic importance (Winter et al. 2000; Cho
et al. 2002; Rajesh et al. 2002, 2004; Udupa and Baum
2003). Despite the high demand for SSR markers in
chickpea, only 174 have been reported to date. In con-
trast, more than 2,000 SSR loci have been mapped in
soybean (Cregan et al. 1999a; http://129.186.26.94/).
Thus, a large number of additional SSR markers are
needed for comprehensive chickpea genome research
and marker-assisted breeding.

Large-insert arrayed DNA libraries have been docu-
mented to be essential resources for advanced genome
research. Because of their high stability, low chimerism,
and easy DNA purification, large-insert bacterial artificial
chromosome (BAC) libraries, especially plant-transfor-
mation-competent binary BAC (BIBAC) libraries, have
emerged as the large-insert arrayed libraries of choice for
plant genome research (Ren et al. 2004). BAC and BIBAC
libraries have been developed for all major model and
crop plants such as soybean, maize, rice, sorghum, cotton,
and wheat (e.g., see http://hbz.tamu.edu) and are widely
used in many areas of genomics and genetics research,
including high-resolution gene mapping, positional
cloning, integrative physical and genetic mapping (e.g.,
Chang et al. 2001; Tao et al. 2001; Chen et al. 2002; Wu
et al. 2004a), region-targeted marker development (Cre-
gan et al. 1999b), and comparative genome analysis. To
facilitate chickpea genome research, Rajesh et al. (2004)
recently prepared a BIBAC library of 23,780 clones, with
an average insert size of 100 kb and a coverage of 3.8x
genome equivalents. However, it has been demonstrated
in other species that BAC libraries constructed with
multiple enzymes and having higher genome coverage are
needed for comprehensive genome research (Ren et al.
2004; Wu et al. 2004Db, c).
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Several methods have been developed for SSR isola-
tion, including small-insert (~500 bp) genomic DNA
libraries (Hiittel et al. 1999), small-insert SSR-enriched
DNA libraries (Edwards et al. 1996), and large-insert
BAC libraries (Bhattramakki et al. 2000). Utilizing BAC
clones as a source for SSR isolation has several advan-
tages over the other methods. First, since most BAC
clones have inserts of 100 kb or larger, a significant
proportion of the chickpea BACs would be expected to
contain at least one SSR. The SSR loci contained in the
BAC:s can be identified and cloned by simply screening a
BAC library with SSR oligos, followed by subcloning
the SSR-containing BACs (Bhattramakki et al. 2000).
Second, although it is not difficult to isolate non-tar-
geted SSR markers from many different sources, it is
more problematic to isolate an SSR marker for a specific
gene of interest from small-insert libraries than from
BAC libraries. Cregan et al. (1999b) generated SSR
markers from soybean BAC libraries for two regions
involved in resistance to the soybean cyst nematode.
Rajesh et al. (2004) isolated two BAC clones from the
existing chickpea BAC library that hybridized to the
SSR marker Ta96, which is tightly linked to a Fusarium
wilt resistance gene (FOC3). Third, using a BAC as an
intermediary facilitates the development of additional
markers for fine mapping of genes and QTLs located in
a particular genomic region (Cregan et al. 1999b). Fi-
nally, the BAC library utilized for the isolation of the
SSR markers could also be used for the development of
a chickpea physical map, with the simultaneous
anchoring of the SSR markers on the physical map (Wu
et al. 2004a).

In this study, we developed two new BAC and BI-
BAC libraries for chickpea and generated 233 new SSR
markers from the BAC library. These new BAC and
BIBAC libraries, combined with the recently developed
chickpea BIBAC library (Rajesh et al. 2004), will pro-
vide sufficient clone resources for comprehensive gen-
ome research of the species. The 233 new SSR markers
developed in this study together with the 174 SSRs
developed by Winter et al. (1999) will significantly
facilitate high-density genetic map development, gene
mapping, and positional gene cloning in chickpea.

Materials and methods

Construction and characterization of BAC
and BIBAC libraries

BAC and BIBAC libraries were constructed from the
nuclear DNA of cv. Hadas according to a procedure
previously developed in our laboratory (Zhang 2000;
Ren et al. 2004; Wu et al. 2004b). Young leaves were
used for megabase-sized DNA preparation (Zhang et al.
1995; Zhang 2000). In order to minimize plastid DNA
contamination, the nuclei were purified by several
washes and centrifugations. The nuclear DNA was
prepared at 5 pg DNA per 100-ul plug. The plugs were
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partially digested with HindIIl or BamHI, under con-
ditions producing the largest number of fragments in the
size range of 100-300 kb. The fragments were subjected
to two rounds of size selection by pulsed-field gel elec-
trophoresis. The fragments were ligated into either
HindIll-digested and dephosphorylated pIndigoBAC-5
(Epicentre Technologies, USA) or BamHI-digested and
dephosphorylated binary vector pCLD04541 (Tao and
Zhang 1998). The ligated DNA was transformed into
electrocompetent DHIOB cells (Invitrogen, USA).
Recombinant colonies were selected on LB agar
plates containing IPTG and Xgal with chloramphenicol
for the pIndigoBAC-5 clones or tetracycline for the
pCLD04541 clones (Zhang 2000; Wu et al. 2004b).
White colonies were arrayed into 384-well plates con-
taining freezing media (Zhang et al. 1996; Zhang 2000;
Ren et al. 2004) with appropriate antibiotics.

To estimate the insert sizes of the clones, random clone
samples from the BAC and BIBAC libraries were ana-
lyzed. DNA was isolated, digested with Notl, and sub-
jected to pulsed-field gel electrophoresis (Zhang 2000; Ren
etal. 2004; Wu et al. 2004b), and the genome coverages of
the libraries were estimated (Wu et al. 2004b). For library
screening with different probes, the libraries were double
gridded onto Hybond-N " membrane (Amersham, USA)
in a format of 3x3, using the GeneTAC G3 Robotic
Workstation (Genomic Solutions, USA), and the high-
density clone filters of the libraries were processed as de-
scribed by Zhang (2000). To estimate the percentage of
clones that were derived from the chloroplast genome,
two of the BIBAC library high-density clone filters were
screened with the probes derived from three chloroplast
gene clones, ndhA, rbeL, and psbA.

BAC library screening with SSR oligos

To identify the BACs containing SSR loci, the filters of
the chickpea BAC library were screened with the syn-
thetic SSR OligOS (GA)](), (GAA)7, (AT)](), (TAA)7,
(TGA)7, (CA)yp, (CAA);, and (CCA),. The filters were
prehybridized for at least 2 h at 37°C in the hybridiza-
tion solution containing 5x SSC, 0.5% SDS, 0.025 M
potassium phosphate buffer, pH 6.5, and 5x Denhardt’s
solution. The oligos were end-labeled in a reaction
containing 100 ng oligo mix, 1x Kinase forward buffer,
5 U T4 polynucleotide kinase (Invitrogen), and 200 uCi
of 7[**P]-ATP in a total volume of 10 pl. The reactions
were incubated at 37°C for 30 min. Approximately 1 ng
random primer-labeled pIndigoBAC-5 DNA was in-
cluded in the probe to provide background hybridiza-
tion to aid positive clone identification. The filters were
hybridized overnight at 37-42°C, depending on oligo
sequences, in a hybridization oven. The filters were
washed twice for 15 min each in 2x SSC, 0.2% SDS, and
0.05% Na-pyrophosphate, twice for 1 h each in 1x SSC,
0.1% SDS, and 0.05% Na-pyrophosphate at 37-42°C,
depending upon the oligounucleotides used as a probe,
and then were exposed to XAR-5 film.

Subcloning of SSR-positive BACs

Positive BAC clones were selected and re-arrayed into
384-well plates, using the GeneTAC G3 Robotic
Workstation. Clones were grown overnight in LB med-
ium containing appropriate antibiotics. DNA was iso-
lated and digested with Sau3Al, which has 4-bp
recognition site and thus cuts the DNA frequently. Be-
cause the restriction sites of Sau3Al are complementary
to the internal four nucleotides of the BamHI sites, its
restricted fragments can be cloned into the BamHI site.
The digests were electrophoresed on agarose gels, and
DNA fragments in the size range of 400-1,500 bp were
excised from the gel and purified by electroelution and
dialysis. The size-selected DNA was ligated into the
BamHI-digested and dephosphorylated pGEM11 (Pro-
mega, USA). The ligated DNA was transformed into
DHI10B cells by electroporation (Invitrogen). Re-
combinant clones were selected on the LB agar with
50 mg/l ampicillin, IPTG, and Xgal. White colonies
were picked into 384-well plates containing freezing
media (Zhang 2000) with ampicillin.

Screening of SSR-positive subclones

High-density clone filters of the subclone library were
prepared and screened with the above SSR oligos,
along with a small amount of random primer-labeled
pGEMI11 to provide background hybridization for
clone orientation. Positive subclones were re-arrayed
into 384-well plates, using the GeneTAC G3 Robotic
Workstation. Subclone DNA was isolated with the
Qiaprep Spin Mini Prep Kit (Qiagen, USA), using the
manufacturer’s protocol and sequenced with 3.2 pmol
of primer (SP030 or SP010, Operon Technologies,
USA) in 10-pl reaction, using ABI PRISM BigDye
Terminator (version 3.0) Ready Reaction Cycle
Sequencing Kits (Applied Biosystems, USA). Sequenc-
ing reactions were run on an ABI PRISM 3100 DNA
Analyzer (Applied Biosystems). The complementary
reaction was run, whenever necessary, to aid in
sequencing the complete SSR locus and its flanking
regions. The sequence data were analyzed using the
Sequencher, version 2.1 software (Gene Codes, USA).
Sequences found to contain SSR motifs were subjected
to BLAST search.

Primer design and optimization of amplification
reactions

Primers complementary to the flanking regions of the
selected SSR loci were designed using the Primer3
software (http://www-genome.wi.mit.edu/genome_soft-
ware-other-primer3.html). The following criteria were
applied: (1) PCR product size = 100-500 bp, with an
optimal size of 200 bp; (2) primer size = 18-25
nucleotides with an optimal size of 20 nucleotides;



Random clones

A: BACs

Fig. 1 Bacterial artificial chromosomes (BA4Cs) and plant-transfor-
mation-competent binary BACs (BIBACs) randomly selected from
the chickpea BAC and BIBAC libraries. The clones were grownin LB
medium with appropriate antibiotics overnight. DNA was isolated,
digested with Notl to release the inserts from the cloning vector, and

however, when SSRs consisted of more than 20 repeats of
TA or TAA, the optimal primer size was 25 nucleotides
with a maximum of 28; and (3) primer 7,,, = 50-65°C, with
an optimal T}, of 60°C. For each primer pair, an optimal
combination of annealing and elongation temperatures
was determined using genomic DNA of cv. Hadas. Each
PCR reaction was conducted in a volume of 15 pl con-
taining 15 ng template DNA, 1 uM of each primer,
0.2 mM each dNTP (Biological Industries, Israel), 0.7 U
of Tag DNA polymerase (Tag-Zol of Tal-Ron, Israel),
and 1.5 pl 10x PCR buffer containing 3.5 mM MgCl,.
The reaction was carried out in a Biometra TGradient
thermocycler (Biometra, Germany). The PCR tempera-
ture regime comprised an initial denaturation step at 94°C
for 3 min, followed by 35 cycles of denaturating at 94°C,
20 s, annealing at a range of 50-62°C, 30 s, and elonga-
tion at 60, 65, or 72°C for 50 s, and a final elongation at 60,
65, or 72°C for 5 min. The reduction in elongation tem-
perature relative to the standard 72°C was necessary to
stabilize the long (TA/TAA) SSRs (Su et al. 1996). PCR
products were initially evaluated on 1.8% agarose gels
stained with ethidium bromide. Once the optimal PCR
conditions were established, the amplicon number and
size were determined by amplifying the SSR loci, using
fluorescently labeled dUTP and analyzing the PCR
products with ABI PRISM 377-XL DNA Sequencer
(Applied Biosystems). The amplification reaction (8 pl)
consisted of 7.5 ng DNA, 1 uM each primer, 0.2 mM
each ANTP (Biological Industries), 0.35 U of Tag DNA
polymerase (Taq-Zol of Tal-Ron, Israel), 0.8 ul of
respective 10x PCR buffer (containing 3.5 mM MgCl,),
and 62 nM of ABI PRISM [R110]JdUTP (Applied
Biosystems). Electrophoresis was performed on 4.25%
polyacrylamide gels following the standard procedures
for the ABI PRISM 377-XL DNA Sequencer. Fragment
sizes were calculated using the ABI PRISM GeneScan
Analysis Software, version 2.1 (Applied Biosystems), by
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subjected to pulsed-field gel electrophoresis with lambda ladder
markers. The gels were stained with ethidium bromide and
photographed. The insert size of each clone was estimated by the
sum of the sizes of all insert bands of the clone

comparison with the internal size standard (ABI PRISM
GeneScan-500 ROX, Applied Biosystems).

Results

BAC and BIBAC library construction
and characterization

We constructed a BAC library and a BIBAC library for
chickpea cv. Hadas. The BAC library was constructed in
the HindllI site of the pIndigoBAC vector and consisted
of 14,976 clones arrayed in 39 384-well microplates.
Analyzing a random sample of 50 clones showed that the
library had an average insert size of 121 kb, with a range
from 40 kb to 170 kb, and 72% having insert sizes of
greater than 100 kb, thus providing a genome coverage of
2.5x for chickpea (Fig. 1a). The BIBAC library was con-
structed in the BamHI site of the binary BAC vector
pCLDO04541 and consisted of 23,040 clones arrayed in 60
384-well microplates. Analyzing a random sample of 79
clones showed that the library had an average insert size of
145 kb, with a range from 45 kb to 295 kb, and 84%
having insert sizes of greater than 100 kb, resulting in 4.5x
genome coverage (Fig. 1b). Therefore, the combination
of the two libraries resulted in a total coverage of 7.0x
genome equivalents, providing a probability of greater
than 99.9% obtaining a single-copy clone. Analysis of the
BIBAC library with chloroplast DNA probes showed that
less than 0.3% of the clones were derived from ctDNA, an
extremely low percentage of ctDNA-derived clones.

Development of SSR markers from BACs

To identify the SSR loci in the chickpea genome, the
BAC library was double gridded onto membranes and
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hybridized with radioactively labeled synthetic SSR
oligonucleotides in two phases. In the first phase, 4,608
random clones were selected and screened with (CA)o,
(GA)10, (GAA);, and (TAA),. Three hundred eighty-
four of the positive BAC clones were randomly selected,
subcloned, blotted, and hybridized with each of the
labeled SSR oligos, respectively. A total of 293 positive
subclones were selected and sequenced. The insert sizes
of such subclones ranged from 200 bp to 1,500 bp, with
an average size of 761 bp. Sequence comparative anal-
ysis of the subclones resulted in 117 singletons and 53
contigs containing 176 subclones. In other words, the
293 subclones represented a total of 170 independent
SSR loci. The 53 contigs each consisted of two to seven
subclones, with an average of 2.2 subclones per contig,
with one exception for the contig identified with the
(CA)o oligo consisting of 41 subclones. The sequence
of the contig was found to be identical to the Cicer
arietinum satellite DNA CaSat2 at the nucleotide level
(BLAST code no. AJ006005.1/CAA006005 or
AJ006006.1/CAA006006).

In the second phase, the entire BAC library was
screened with (GA)jp, (TA)1g, (GAA);, (TAA),,
(CAA);, and (TGA),. As before, selected positive clones
were subcloned, re-screened, and sequenced. In this
phase, a total of 359 SSR-positive subclones were se-
quenced, of which 145 were assembled into 60 contigs,
with two or more subclones for each contig, and the
remaining 214 subclones were singletons. Therefore, 274
independent loci were isolated from this second phase.

In summary of both phases, a total of 14,976 BAC
clones were screened with the SSR oligos, and 1,720
(11.5%) were identified to strongly hybridize to at least
one of the synthetic SSR probes. The two phases of SSR
isolation resulted in a total of 444 independent loci.

Of the 444 subclones, 325 subclones contained SSR
loci with four or more repeat units, while the rest (27%)
had no SSR or had SSRs with three or fewer repeat units
and therefore, were not considered for further analysis.
BLAST analysis showed that 10 of the 325 SSR-con-
taining subclones had high similarity to the chickpea
Ty3-gypsy-like retrotransposon at the nucleotide level
(BLAST code no. AJ411814.1/CAR411814), and 15 had
high similarity to other repetitive sequences such as
transposons and retrotransposons from various plant
species. For eight subclones, the SSR loci were located
too close to the cloning site, impeding the possibility to
design primers. To limit potential redundancy of the
chickpea SSRs, the loci isolated in the present study
were compared to the published chickpea SSR markers
(Hittel et al. 1999; Winter et al. 1999). Since the
sequence data of the primer pairs flanking the SSRs were
the only sequence data available for such loci, the
presence of both primers flanking the respective SSR
motif was used to detect the redundancy. Only two
subclones, H4D12 and H1PO1, were found to match the
detection criterion: H4D12 containing the primers and
the SSR motif of marker TAA137 and HIPO1 corre-
sponding to those of marker GAAS51 (Winter et al. 1999;

Table 1). As a result, a total of 290 new subclones
containing independent SSRs were found suitable for
primer design.

Primer design and optimization of amplification
reactions

Of the 290 SSR subclones, 25 contained two SSR loci
and one had three loci, separated by at least 30 bp of
non-repetitive DNA. Since neither of the markers pre-
viously isolated by Winter et al. (1999), TAA137 and
GAAS51, were mapped yet, independent primer pairs
were also designed for these two loci. Therefore, primer
pairs were designed for a total of 319 SSR loci. We
evaluated 291 of the SSR primer pairs by PCR, using
the genomic DNA of Hadas as template. Of the 291
primer pairs tested, 48 (16.5%) resulted in no PCR
products under a number of annealing/elongation
temperature combinations; ten (3.4%) resulted in
smeared products, indicating that these primer pairs
may be complementary to repetitive sequences; and 233
primer pairs resulted in clear amplicons. The sequences
of the 233 primer pairs and respective SSR loci, the
annealing/elongation temperatures employed for their
amplification, as well as the expected and observed
length of their PCR products in the cv. Hadas are
presented in Table 1.

In general, the observed locus size matched the ex-
pected size, but there were a few exceptions: in three
cases, the observed loci were significantly larger than
expected (e.g., HIHO07), and in 24 cases, the opposite was
evident (e.g., H1A10). The stutter patterns that are
commonly observed for long SSRs were in accordance
with the SSR dominant motif: for dinucleotides-SSR
motifs, the stutters appeared every 2 bp (e.g., HIHIS,
Fig. 2), while for trinucleotide-SSRs, the stutters ap-
peared every 3 bp (e.g., H4G07 and H5HO06, Fig. 2).
Under the optimal PCR conditions (Table 1), most of
the primer pairs (76.8%) amplified a unique locus (e.g.,
HIH15, Fig. 2); however, in 54 (23.2%) cases more than
one locus was amplified. For instance, H4G07 and
H5HO06 primer pairs amplified two and four loci,
respectively (Table 1; Fig. 2). We evaluated the allelic
segregation of the multiple-fragment amplification
products by using a recombinant inbred line population
derived from the cross between the cv. Hadas and the
desi Indian accession ICC5810. The independent segre-
gation of at least one of the amplicons was established
for 14 out of 21 primer pairs amplifying polymorphic
patterns. Of these 14 primer pairs, 11 (H1D24, HIHOS,
H1J07, H1006, H2B02, H2B061, H3C041, H3H122,
H4D11, H5A04, and H5G12) produced only one poly-
morphic amplicon between Hadas and ICC5810—a di-
rect indication of the independent segregation of such
amplicons. For the other three primer pairs, HIB13 and
HI1P092 produced two polymorphic amplicons, while
H3Cl11 produced three polymorphic amplicons. The
polymorphic amplicons were confirmed to segregate
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CACC (CAA); 39 bp (TC), 23 bp

(TC); TTCCC (TC), 15 bp (CAT),
(TC); 10 bp (TC)4

(GAT)s 99 bp (GA),

(GAT)s 99 bp (GA)s

(GA)12

given locus, the SSR flanked by the specified primer pair is shown in italics

Based on data of genomic DNA from the kabuli chickpea cv. Hadas
“Determined on 4.25% polyacrylamide gels, using the ABI PRISM 377-XL DNA Sequencer system. Amplicon size was established according to the highest amplicon peak in the

GeneScan histogram

AAGACCTTCAATGGTAAAATTCG
AGAGGATAAATCACCCATTTTGA
TTCAACCCTCAATTCTCTTTGAT
GAGACCTCAATTGGGTACAAGAG
AGTCATCAGAAAGAAAAGGCAAG
TGTCAAAAGAAGGAAACATTCCA
TCTCACTTTCTTGTGTTTTCCAG
TTACCCTAATAGATGGGTGTGGA

H6HI111

*When more than one SSR was detected for a

b

H6G10
H6HO04
H6H112
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Fig. 2 Amplification products of the primer pairs HIH15, H4G07,
and H5HO06, using genomic DNA of cv. Hadas as template. The
amplicons are depicted as blue-lined peaks in the histogram of
readings of fluorescently labeled dUTP detected with the ABI
PRISM 377-XL DNA Sequencer and analyzed with the GeneScan
software. Red lines correspond to the internal size standard

independently among the recombinant inbred lines
generating two and three markers, respectively.

Discussion

We constructed a BAC library and a BIBAC library
from chickpea, C. arietinum. The two libraries contain a
total of 38,016 clones and are equivalent to ca 7.0x ge-
nomes of chickpea, providing a greater than 99.9%
probability of obtaining a single-copy sequence from the
libraries. These two new libraries along with the recently
published BIBAC library that has 23,780 clones equiv-
alent to 3.8x genomes of chickpea (Rajesh et al. 2004)
total 61,796 clones, equivalent to 10.8x genomes. This
number of genome equivalents should be sufficient for
various aspects of chickpea genomics research. Since the
three libraries were developed from two different
restriction enzymes with complementary recognition
sites in which HindIII is AT-rich and BamHI is GC-rich,
it is expected that the genome coverage of these libraries
would be more representative of the chickpea genome
than the coverage based on a library constructed with a
single enzyme. This is especially critical in the develop-
ment of physical maps using the libraries (Chang et al.
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2001; Tao et al. 2001; Ren et al. 2003, 2004; Wu et al.
2004a, c, d; Xu et al. 2004). Morecover, since different
chickpea genotypes were employed for the construction
of the libraries (Rajesh et al. (2004) used cv. FLIP 84—
92C vs cv. Hadas used in the present study), the new
BAC and BIBAC libraries represent different set of al-
leles that might be useful for future gene discovery
studies. Additionally, the libraries were prepared using
two different vectors, the F plasmid-based pIndigoBAC-
5 that was used in the chickpea BAC library and the P2
plasmid-based pCLD04541 that was used in the BIBAC
libraries developed in the present study and by Rajesh
et al. (2004). The use of two different vector systems
further enhances the true genome coverage of the li-
braries (Ren et al. 2004; Wu et al. 2004b). Finally, the
transformability of the BIBAC libraries via Agrobacte-
rium in plants would further enhance the utility of the
libraries for chickpea genome research, especially posi-
tional cloning and functional analysis of the chickpea
genome. It has been reported in several species that
DNA fragments of larger than 100 kb could be trans-
formed into plants via BIBACs by use of the Agrobac-
terium-mediated transformation (Hamilton et al. 1996,
1999; Liu et al. 1999, 2002; He et al. 2003). Application
of the chickpea transformation protocols (Kar et al.
1996; Krishnamurthy et al. 2000) in combination with
these plant-transformation ready BIBACs may allow the
transformation of large regions containing desirable
traits into cultivated chickpea lines for genetic
improvement.

In the present study, we generated and characterized
233 new SSR markers for chickpea. These SSR markers
significantly increase the available arsenal of 174 SSR
markers previously reported by Winter et al. (1999). For
27 of the markers (11.6%), discrepancies were observed
between the expected locus and the PCR products in
terms of amplicon size and/or amplicon number. Pre-
sumably, the discrepancies in fragment size might be a
result of artificial deletions or insertions during the
DNA duplication in the host bacterium often observed
due to the repetitive nature of the loci, but further
studies will be needed to answer this question. Réder
et al. (1998) found that the primer pairs that amplified
fragments with unexpected sizes were non-functional
since they were usually monomorphic. We tested the
primer pairs, using two C. arietinum cultivars, Hadas
and ICC5810; 39% of them resulted in clear polymor-
phic patterns (data not shown). Eleven percent of the
fragments whose sizes deviated from the expected (Ta-
ble 1) were found to be polymorphic among the chick-
pea lines, but about three to four times less than the
general estimate of 39%. Of the primer pairs that pro-
duced more than one amplicon, 40% were found to be
polymorphic among the lines. The SSR markers devel-
oped herein have resulted in useful tools for chickpea
molecular genetic map construction and gene mapping
(J. Lichtenzveig et al., in preparation). The SSR markers
reported here were generated from a large-insert BAC
library, whereas those of Winter et al. (1999) from a

small-insert DNA library. The development of SSR
markers from large-insert BACs has added several
advantages to the markers (see “Introduction”).

Analysis of the SSR motifs (GA)](), (TA)]O, (GAA)7,
(TAA);, (CAA);, and (TGA); (prefixed with H3-, H4-,
H5-, or H6- in Table 1) showed that the SSR abun-
dances were significantly different among different mo-
tifs in the chickpea genome, with the (TAA), and (GA),
being the most abundant and the (TGA), being ex-
tremely rare. The percentage (50.6%) of the SSR loci
containing perfect repeats is much lower than that
identified from a small-insert DNA library by using
(TAA),, (GA),, and (GAA), as probes (Winter et al.
1999). This discrepancy may be due to the different SSR
oligo probe combinations, the source libraries, and/or
preferential selection of strongly hybridizing clones for
SSR isolation. The high percentage (49.4%) of the SSR
loci containing interrupted and compound repeat motifs
within a genomic span of 1,500 bp (the longest se-
quence) might suggest that the SSR loci tend to cluster
in the genome. The clustering distribution of SSR loci
was previously observed by genetic mapping of SSRs
(Winter et al. 1999; J. Lichtenzveig et al., in prepara-
tion).
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