J. Lichtenzveig • C. Scheuring • J. Dodge • S. Abbo
 H.-B. Zhang
 Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L.

Received: 22 July 2004 / Accepted: 20 October 2004/Published online: 11 December 2004 © Springer-Verlag 2004

Abstract

Large-insert bacterial artificial chromosome (BAC) libraries, plant-transformation-competent binary BAC (BIBAC) libraries, and simple sequence repeat (SSR) markers are essential for many aspects of genomics research. We constructed a BAC library and a BIBAC library from the nuclear DNA of chickpea, Cicer arietinum L., cv. Hadas, partially digested with HindIII and BamHI, respectively. The BAC library has 14,976 clones, with an average insert size of 121 kb , and the BIBAC library consists of 23,040 clones, with an average insert size of 145 kb . The combined libraries collectively cover ca. $7.0 \times$ genomes of chickpea. We screened the BAC library with eight synthetic SSR oligos, $(\mathrm{GA})_{10},(\mathrm{GAA})_{7},(\mathrm{AT})_{10},(\mathrm{TAA})_{7},(\mathrm{TGA})_{7},(\mathrm{CA})_{10}$, $(\mathrm{CAA})_{7}$, and $(\mathrm{CCA})_{7}$. Positive BACs were selected, subcloned, and sequenced for SSR marker development. Two hundred and thirty-three new chickpea SSR

[^0]markers were developed and characterized by PCR, using chickpea DNA as template. These results have demonstrated that BACs are an excellent source for SSR marker development in chickpea. We also estimated the distribution of the SSR loci in the chickpea genome. The SSR motifs (TAA) ${ }_{n}$ and (GA) n were much more abundant than the others, and the distribution of the SSR loci appeared non-random. The BAC and BIBAC libraries and new SSR markers will provide valuable resources for chickpea genomics research and breeding (the libraries and their filters are available to the public at http://hbz.tamu.edu).

Introduction

Chickpea (Cicer arietinum L.) is the third most important pulse crop in the world (FAO 2003, http:// www.fao.org; Ladizinsky 1995) and a good source of plant protein (12.4-31.5\%) and carbohydrates (52.4$70.9 \%$) (Williams and Singh 1987). Nevertheless, relatively limited genetic and genomic tools are available for the crop. Chickpea is a self-pollinating diploid, $2 \mathrm{n}=16$, and has a genome size of $740 \mathrm{Mb} / 1 \mathrm{C}$. While this size is slightly larger than that of the model legume, Medicago truncacula ($530 \mathrm{Mb} / 1 \mathrm{C}$), it is much smaller than other major legume crops such as soybean, peanut, garden pea, alfalfa, and lentil (Arumuganathan and Earle 1991). The first genetic map of chickpea was developed by combining the mapping results from three interspecific mapping populations (Simon and Muehlbauer 1997). However, due to the low polymorphism levels of isozymes (Ahmad et al. 1992; Kazan et al. 1993; Labdi et al. 1996), RFLPs, and RAPD markers (Udupa et al. 1993), this first map had a low marker density (Simon and Muehlbauer 1997).

Simple sequence repeat (SSR), or microsatellite markers, have been documented in several crop species to overcome the low polymorphism of other marker
types (Cregan et al. 1999a; Bhattramakki et al. 2000). SSRs are tandem repeats of di- to tetra-nucleotide sequence motifs flanked by conserved sequences (Tautz and Renz 1984). Because different alleles vary in length, depending upon the number of repeats, PCR with primers complementary to the flanking sequences of the SSR locus can detect these length polymorphisms (Cregan et al. 1999a). Because they are highly polymorphic, PCR-based, and readily portable within a species (Edwards et al. 1996), SSR markers have been the DNA markers of choice in many crop species. Weising et al. (1992) demonstrated that the simple sequence motifs, $(\mathrm{GACT})_{4}, \quad(\mathrm{GATA})_{4}, \quad(\mathrm{GTG})_{5}, \quad(\mathrm{CA})_{8}$, and $(\text { GGAT })_{4}$, are present as polymorphic repeats in the chickpea genome. Sharma et al. (1995) found that SSRs are abundant in the chickpea genome and have a high level of intraspecific polymorphism, suggesting that SSR markers are well suited for chickpea genome mapping and gene tagging. Winter et al. (1999) reported the first chickpea genetic map based on SSR markers and a list of 174 primer pairs flanking such loci. These SSR markers have been extensively used to study the genetic relationships among Cicer species (Udupa et al. 1999; Choumane et al. 2000), construct genetic maps (Tekeoglu et al. 2002; Flandez-Galvez et al. 2003), and map genes of agronomic importance (Winter et al. 2000; Cho et al. 2002; Rajesh et al. 2002, 2004; Udupa and Baum 2003). Despite the high demand for SSR markers in chickpea, only 174 have been reported to date. In contrast, more than $2,000 \mathrm{SSR}$ loci have been mapped in soybean (Cregan et al. 1999a; http://129.186.26.94/). Thus, a large number of additional SSR markers are needed for comprehensive chickpea genome research and marker-assisted breeding.

Large-insert arrayed DNA libraries have been documented to be essential resources for advanced genome research. Because of their high stability, low chimerism, and easy DNA purification, large-insert bacterial artificial chromosome (BAC) libraries, especially plant-transfor-mation-competent binary BAC (BIBAC) libraries, have emerged as the large-insert arrayed libraries of choice for plant genome research (Ren et al. 2004). BAC and BIBAC libraries have been developed for all major model and crop plants such as soybean, maize, rice, sorghum, cotton, and wheat (e.g., see http://hbz.tamu.edu) and are widely used in many areas of genomics and genetics research, including high-resolution gene mapping, positional cloning, integrative physical and genetic mapping (e.g., Chang et al. 2001; Tao et al. 2001; Chen et al. 2002; Wu et al. 2004a), region-targeted marker development (Cregan et al. 1999b), and comparative genome analysis. To facilitate chickpea genome research, Rajesh et al. (2004) recently prepared a BIBAC library of 23,780 clones, with an average insert size of 100 kb and a coverage of $3.8 \times$ genome equivalents. However, it has been demonstrated in other species that BAC libraries constructed with multiple enzymes and having higher genome coverage are needed for comprehensive genome research (Ren et al. 2004; Wu et al. 2004b, c).

Several methods have been developed for SSR isolation, including small-insert ($\sim 500 \mathrm{bp}$) genomic DNA libraries (Hüttel et al. 1999), small-insert SSR-enriched DNA libraries (Edwards et al. 1996), and large-insert BAC libraries (Bhattramakki et al. 2000). Utilizing BAC clones as a source for SSR isolation has several advantages over the other methods. First, since most BAC clones have inserts of 100 kb or larger, a significant proportion of the chickpea BACs would be expected to contain at least one SSR. The SSR loci contained in the BACs can be identified and cloned by simply screening a BAC library with SSR oligos, followed by subcloning the SSR-containing BACs (Bhattramakki et al. 2000). Second, although it is not difficult to isolate non-targeted SSR markers from many different sources, it is more problematic to isolate an SSR marker for a specific gene of interest from small-insert libraries than from BAC libraries. Cregan et al. (1999b) generated SSR markers from soybean BAC libraries for two regions involved in resistance to the soybean cyst nematode. Rajesh et al. (2004) isolated two BAC clones from the existing chickpea BAC library that hybridized to the SSR marker Ta96, which is tightly linked to a Fusarium wilt resistance gene (FOC3). Third, using a BAC as an intermediary facilitates the development of additional markers for fine mapping of genes and QTLs located in a particular genomic region (Cregan et al. 1999b). Finally, the BAC library utilized for the isolation of the SSR markers could also be used for the development of a chickpea physical map, with the simultaneous anchoring of the SSR markers on the physical map (Wu et al. 2004a).

In this study, we developed two new BAC and BIBAC libraries for chickpea and generated 233 new SSR markers from the BAC library. These new BAC and BIBAC libraries, combined with the recently developed chickpea BIBAC library (Rajesh et al. 2004), will provide sufficient clone resources for comprehensive genome research of the species. The 233 new SSR markers developed in this study together with the 174 SSRs developed by Winter et al. (1999) will significantly facilitate high-density genetic map development, gene mapping, and positional gene cloning in chickpea.

Materials and methods

Construction and characterization of BAC and BIBAC libraries

BAC and BIBAC libraries were constructed from the nuclear DNA of cv. Hadas according to a procedure previously developed in our laboratory (Zhang 2000; Ren et al. 2004; Wu et al. 2004b). Young leaves were used for megabase-sized DNA preparation (Zhang et al. 1995; Zhang 2000). In order to minimize plastid DNA contamination, the nuclei were purified by several washes and centrifugations. The nuclear DNA was prepared at $5 \mu \mathrm{~g}$ DNA per $100-\mu \mathrm{l}$ plug. The plugs were
partially digested with HindIII or BamHI, under conditions producing the largest number of fragments in the size range of $100-300 \mathrm{~kb}$. The fragments were subjected to two rounds of size selection by pulsed-field gel electrophoresis. The fragments were ligated into either HindIII-digested and dephosphorylated pIndigoBAC-5 (Epicentre Technologies, USA) or BamHI-digested and dephosphorylated binary vector pCLD04541 (Tao and Zhang 1998). The ligated DNA was transformed into electrocompetent DH10B cells (Invitrogen, USA). Recombinant colonies were selected on LB agar plates containing IPTG and Xgal with chloramphenicol for the pIndigoBAC-5 clones or tetracycline for the pCLD04541 clones (Zhang 2000; Wu et al. 2004b). White colonies were arrayed into 384 -well plates containing freezing media (Zhang et al. 1996; Zhang 2000; Ren et al. 2004) with appropriate antibiotics.

To estimate the insert sizes of the clones, random clone samples from the BAC and BIBAC libraries were analyzed. DNA was isolated, digested with NotI, and subjected to pulsed-field gel electrophoresis (Zhang 2000; Ren et al. 2004; Wu et al. 2004b), and the genome coverages of the libraries were estimated (Wu et al. 2004b). For library screening with different probes, the libraries were double gridded onto Hybond- N^{+}membrane (Amersham, USA) in a format of 3×3, using the GeneTAC G3 Robotic Workstation (Genomic Solutions, USA), and the highdensity clone filters of the libraries were processed as described by Zhang (2000). To estimate the percentage of clones that were derived from the chloroplast genome, two of the BIBAC library high-density clone filters were screened with the probes derived from three chloroplast gene clones, $n d h A, r b c L$, and $p s b A$.

BAC library screening with SSR oligos

To identify the BACs containing SSR loci, the filters of the chickpea BAC library were screened with the synthetic SSR oligos $(\mathrm{GA})_{10},(\mathrm{GAA})_{7},(\mathrm{AT})_{10},(\mathrm{TAA})_{7}$, $(\mathrm{TGA})_{7},(\mathrm{CA})_{10},(\mathrm{CAA})_{7}$, and $(\mathrm{CCA})_{7}$. The filters were prehybridized for at least 2 h at $37^{\circ} \mathrm{C}$ in the hybridization solution containing $5 \times \mathrm{SSC}, 0.5 \%$ SDS, 0.025 M potassium phosphate buffer, pH 6.5, and $5 \times$ Denhardt's solution. The oligos were end-labeled in a reaction containing 100 ng oligo mix, $1 \times$ Kinase forward buffer, 5 U T4 polynucleotide kinase (Invitrogen), and $200 \mu \mathrm{Ci}$ of $\gamma\left[{ }^{32} \mathrm{P}\right]$-ATP in a total volume of $10 \mu \mathrm{l}$. The reactions were incubated at $37^{\circ} \mathrm{C}$ for 30 min . Approximately 1 ng random primer-labeled pIndigoBAC-5 DNA was included in the probe to provide background hybridization to aid positive clone identification. The filters were hybridized overnight at $37-42^{\circ} \mathrm{C}$, depending on oligo sequences, in a hybridization oven. The filters were washed twice for 15 min each in $2 \times \mathrm{SSC}, 0.2 \% \mathrm{SDS}$, and 0.05% Na-pyrophosphate, twice for 1 h each in $1 \times \mathrm{SSC}$, 0.1% SDS, and 0.05% Na-pyrophosphate at $37-42^{\circ} \mathrm{C}$, depending upon the oligounucleotides used as a probe, and then were exposed to XAR-5 film.

Subcloning of SSR-positive BACs
Positive BAC clones were selected and re-arrayed into 384-well plates, using the GeneTAC G3 Robotic Workstation. Clones were grown overnight in LB medium containing appropriate antibiotics. DNA was isolated and digested with Sau3AI, which has 4-bp recognition site and thus cuts the DNA frequently. Because the restriction sites of Sau3AI are complementary to the internal four nucleotides of the BamHI sites, its restricted fragments can be cloned into the BamHI site. The digests were electrophoresed on agarose gels, and DNA fragments in the size range of $400-1,500 \mathrm{bp}$ were excised from the gel and purified by electroelution and dialysis. The size-selected DNA was ligated into the BamHI-digested and dephosphorylated pGEM11 (Promega, USA). The ligated DNA was transformed into DH10B cells by electroporation (Invitrogen). Recombinant clones were selected on the LB agar with $50 \mathrm{mg} / \mathrm{l}$ ampicillin, IPTG, and Xgal. White colonies were picked into 384 -well plates containing freezing media (Zhang 2000) with ampicillin.

Screening of SSR-positive subclones

High-density clone filters of the subclone library were prepared and screened with the above SSR oligos, along with a small amount of random primer-labeled pGEM11 to provide background hybridization for clone orientation. Positive subclones were re-arrayed into 384-well plates, using the GeneTAC G3 Robotic Workstation. Subclone DNA was isolated with the Qiaprep Spin Mini Prep Kit (Qiagen, USA), using the manufacturer's protocol and sequenced with 3.2 pmol of primer (SP030 or SP010, Operon Technologies, USA) in $10-\mu l$ reaction, using ABI PRISM BigDye Terminator (version 3.0) Ready Reaction Cycle Sequencing Kits (Applied Biosystems, USA). Sequencing reactions were run on an ABI PRISM 3100 DNA Analyzer (Applied Biosystems). The complementary reaction was run, whenever necessary, to aid in sequencing the complete SSR locus and its flanking regions. The sequence data were analyzed using the Sequencher, version 2.1 software (Gene Codes, USA). Sequences found to contain SSR motifs were subjected to BLAST search.

Primer design and optimization of amplification reactions

Primers complementary to the flanking regions of the selected SSR loci were designed using the Primer3 software (http://www-genome.wi.mit.edu/genome_soft-ware-other-primer3.html). The following criteria were applied: (1) PCR product size $=100-500 \mathrm{bp}$, with an optimal size of 200 bp ; (2) primer size $=18-25$ nucleotides with an optimal size of 20 nucleotides;

A: BACs
Fig. 1 Bacterial artificial chromosomes (BACs) and plant-transfor-mation-competent binary BACs (BIBACs) randomly selected from the chickpea BAC and BIBAC libraries. The clones were grown in LB medium with appropriate antibiotics overnight. DNA was isolated, digested with NotI to release the inserts from the cloning vector, and

B: BIBACs
subjected to pulsed-field gel electrophoresis with lambda ladder markers. The gels were stained with ethidium bromide and photographed. The insert size of each clone was estimated by the sum of the sizes of all insert bands of the clone
comparison with the internal size standard (ABI PRISM GeneScan-500 ROX, Applied Biosystems).

Results

BAC and BIBAC library construction
and characterization
We constructed a BAC library and a BIBAC library for chickpea cv. Hadas. The BAC library was constructed in the HindIII site of the pIndigoBAC vector and consisted of 14,976 clones arrayed in 39384 -well microplates. Analyzing a random sample of 50 clones showed that the library had an average insert size of 121 kb , with a range from 40 kb to 170 kb , and 72% having insert sizes of greater than 100 kb , thus providing a genome coverage of $2.5 \times$ for chickpea (Fig. 1a). The BIBAC library was constructed in the BamHI site of the binary BAC vector pCLD04541 and consisted of 23,040 clones arrayed in 60 384-well microplates. Analyzing a random sample of 79 clones showed that the library had an average insert size of 145 kb , with a range from 45 kb to 295 kb , and 84% having insert sizes of greater than 100 kb , resulting in $4.5 \times$ genome coverage (Fig. 1b). Therefore, the combination of the two libraries resulted in a total coverage of $7.0 \times$ genome equivalents, providing a probability of greater than 99.9% obtaining a single-copy clone. Analysis of the BIBAC library with chloroplast DNA probes showed that less than 0.3% of the clones were derived from ctDNA, an extremely low percentage of ctDNA-derived clones.

Development of SSR markers from BACs

To identify the SSR loci in the chickpea genome, the BAC library was double gridded onto membranes and
hybridized with radioactively labeled synthetic SSR oligonucleotides in two phases. In the first phase, 4,608 random clones were selected and screened with $(\mathrm{CA})_{10}$, $(\mathrm{GA})_{10},(\mathrm{GAA})_{7}$, and $(\mathrm{TAA})_{7}$. Three hundred eightyfour of the positive BAC clones were randomly selected, subcloned, blotted, and hybridized with each of the labeled SSR oligos, respectively. A total of 293 positive subclones were selected and sequenced. The insert sizes of such subclones ranged from 200 bp to $1,500 \mathrm{bp}$, with an average size of 761 bp . Sequence comparative analysis of the subclones resulted in 117 singletons and 53 contigs containing 176 subclones. In other words, the 293 subclones represented a total of 170 independent SSR loci. The 53 contigs each consisted of two to seven subclones, with an average of 2.2 subclones per contig, with one exception for the contig identified with the $(\mathrm{CA})_{10}$ oligo consisting of 41 subclones. The sequence of the contig was found to be identical to the Cicer arietinum satellite DNA CaSat2 at the nucleotide level (BLAST code no. AJ006005.1/CAA006005 or AJ006006.1/CAA006006).

In the second phase, the entire BAC library was screened with $(\mathrm{GA})_{10}, \quad(\mathrm{TA})_{10}, \quad(\mathrm{GAA})_{7}, \quad(\mathrm{TAA})_{7}$, $(\mathrm{CAA})_{7}$, and (TGA) $)_{7}$. As before, selected positive clones were subcloned, re-screened, and sequenced. In this phase, a total of 359 SSR-positive subclones were sequenced, of which 145 were assembled into 60 contigs, with two or more subclones for each contig, and the remaining 214 subclones were singletons. Therefore, 274 independent loci were isolated from this second phase.

In summary of both phases, a total of 14,976 BAC clones were screened with the SSR oligos, and 1,720 (11.5%) were identified to strongly hybridize to at least one of the synthetic SSR probes. The two phases of SSR isolation resulted in a total of 444 independent loci.

Of the 444 subclones, 325 subclones contained SSR loci with four or more repeat units, while the rest (27%) had no SSR or had SSRs with three or fewer repeat units and therefore, were not considered for further analysis. BLAST analysis showed that 10 of the 325 SSR-containing subclones had high similarity to the chickpea Ty3-gypsy-like retrotransposon at the nucleotide level (BLAST code no. AJ411814.1/CAR411814), and 15 had high similarity to other repetitive sequences such as transposons and retrotransposons from various plant species. For eight subclones, the SSR loci were located too close to the cloning site, impeding the possibility to design primers. To limit potential redundancy of the chickpea SSRs, the loci isolated in the present study were compared to the published chickpea SSR markers (Hüttel et al. 1999; Winter et al. 1999). Since the sequence data of the primer pairs flanking the SSRs were the only sequence data available for such loci, the presence of both primers flanking the respective SSR motif was used to detect the redundancy. Only two subclones, H4D12 and H1P01, were found to match the detection criterion: H4D12 containing the primers and the SSR motif of marker TAA137 and H1P01 corresponding to those of marker GAA51 (Winter et al. 1999;

Table 1). As a result, a total of 290 new subclones containing independent SSRs were found suitable for primer design.

Primer design and optimization of amplification reactions

Of the 290 SSR subclones, 25 contained two SSR loci and one had three loci, separated by at least 30 bp of non-repetitive DNA. Since neither of the markers previously isolated by Winter et al. (1999), TAA137 and GAA51, were mapped yet, independent primer pairs were also designed for these two loci. Therefore, primer pairs were designed for a total of 319 SSR loci. We evaluated 291 of the SSR primer pairs by PCR, using the genomic DNA of Hadas as template. Of the 291 primer pairs tested, $48(16.5 \%)$ resulted in no PCR products under a number of annealing/elongation temperature combinations; ten (3.4%) resulted in smeared products, indicating that these primer pairs may be complementary to repetitive sequences; and 233 primer pairs resulted in clear amplicons. The sequences of the 233 primer pairs and respective SSR loci, the annealing/elongation temperatures employed for their amplification, as well as the expected and observed length of their PCR products in the cv . Hadas are presented in Table 1.

In general, the observed locus size matched the expected size, but there were a few exceptions: in three cases, the observed loci were significantly larger than expected (e.g., H1H07), and in 24 cases, the opposite was evident (e.g., H1A10). The stutter patterns that are commonly observed for long SSRs were in accordance with the SSR dominant motif: for dinucleotides-SSR motifs, the stutters appeared every 2 bp (e.g., H1H15, Fig. 2), while for trinucleotide-SSRs, the stutters appeared every 3 bp (e.g., H4G07 and H5H06, Fig. 2). Under the optimal PCR conditions (Table 1), most of the primer pairs (76.8%) amplified a unique locus (e.g., HIH15, Fig. 2); however, in $54(23.2 \%$) cases more than one locus was amplified. For instance, H4G07 and H5H06 primer pairs amplified two and four loci, respectively (Table 1; Fig. 2). We evaluated the allelic segregation of the multiple-fragment amplification products by using a recombinant inbred line population derived from the cross between the cv. Hadas and the desi Indian accession ICC5810. The independent segregation of at least one of the amplicons was established for 14 out of 21 primer pairs amplifying polymorphic patterns. Of these 14 primer pairs, 11 (H1D24, H1H08, H1J07, H1O06, H2B02, H2B061, Н3C041, Н3H122, H4D11, H5A04, and H5G12) produced only one polymorphic amplicon between Hadas and ICC5810-a direct indication of the independent segregation of such amplicons. For the other three primer pairs, H1B13 and H1P092 produced two polymorphic amplicons, while H 3 C 11 produced three polymorphic amplicons. The polymorphic amplicons were confirmed to segregate
Table 1 Simple sequence repeats ($S S R$ s) isolated from the chickpea genome by use of bacterial artificial chromosomes

Primer pair name	Primer pairs ($5^{\prime}-3{ }^{\prime}$)	SSR loci ${ }^{\text {a }}$	Annealing/ elongation Tem (${ }^{\circ} \mathrm{C}$) ${ }^{\mathrm{b}}$	Fragment size ${ }^{\text {a }}$ (bp)	
				Expected	Observed ${ }^{\text {c }}$
H1A06	TGGATAATTGTAGGGTAAGAAATGC TGTGTAATTTAAGTGTGGGGGTATT	(TAA) 23	60/72	181	181
H1A10	TTGGAAGTTTAAGTGTTTGCTTC TTCATAAAGAGAAACACTTGTTCAAT	$(\mathrm{TGA})_{3}(\mathrm{TAA})_{54}$	57/60	289	112
H1A12	CGAGCCTCACTTAACCATTG CGATGTATAACTCGATTTTTCTTTT	(TTA) 29	50/60	308	302
H1A17	TGAGTGTTCTTTTCTTAGAGTGTGC CAAGCCAATTCTTCTCATAACAAC	(TTA) ${ }_{31}$	58/65	235	155
H1A18	CTTTCCTTGGTCTTTGTCTTCAT tTGTAATTAATGAACATGAGTTAAGAGT	$(\mathrm{TTA})_{31}$ TTTTA T TAAAA $(\mathrm{TTA})_{7}$	58/65	244	244
H1A19	AGTGGAACCCACCAAATTTTA AACGAAACCCTTATATTTCTTCTCT	$(\mathrm{TTA})_{4}$	60/72	149	149
H1B02	GATGCCCTTACATAATTCAAATAGC ATCCCTATTCAACCTTCCTTCTAGT	(TTA) ${ }_{43}$	57/65	425	425
H1B04	TAGTTGAAACACACGGGTTA AAAGTGAAATATGTCATCCTTATTA	(TTA) ${ }_{35}$	50/60	260	204
H1B06	GACTCACTCTCCAAATGGAACC AAGCCCATGAAAACCATATATTC	(TTA) 28	60/72	197	155/197
H1B081	GGCCAACTATAACATCACCA GTAAACCCACCCAACAATTT	$(T T A)_{5} 790 \mathrm{bp}(\mathrm{TTA})_{36} \mathrm{GTA}(\mathrm{TTA})_{4}$	54/72	140	140
H1B082	AAATTGTTGGGTGGGTTTACTC GGGTCTAGCCCAATAATACCTTT	$(\mathrm{TTA})_{5} 790 \mathrm{bp}(\text { TTA })_{36}$ GTA (TTA) ${ }_{4}$	58/65	225	110/125
H1B09	GGTTTCATGACCTGCACCTA AAGAACCGAAAACACTTGTGA	$(\mathrm{TAA})_{14}(\mathrm{AT})_{3}$	58/65	210	210
H1B11	GCAGCTGTTGACATCTAATTTTG ACCGAAAACACTTGTGATTGTTA	$(\mathrm{TAA})_{20}$	62/72	203	156
H1B13	CGGTCTTCCTTTTCCTTTTTATTAT AAAATGTGTTTTATGGGTTAAGTTCA	(TTA) 40	58/65	204	148/197
H1B17	ATTCGAGGTGGTACCTCTAGTGA GAGGAACCGACGATGTATCTATT	$(\mathrm{TAA})_{38}$	57/65	199	199
H1C091	ACCACCGGAAGTCAATTTTT TTGGGTTTGACCCATATGAA	$(G A A)_{5} 119 \mathrm{bp}(\mathrm{TAA})_{29}$	60/72	119	119
H1C092	CAATAAAACACTTTGTTCCTTTTT TGTAGAAAGAAAGCTAGCATGG	$(\mathrm{GAA})_{5} 119 \mathrm{bp}(\text { (TAA })_{29}$	55/65	242	242
H1C19	AGAAAAGTTAAGATAAAAATCTCAGCA TCCTCTTCTCATAATTGAAATGAA	$\left.(\mathrm{TAA})_{5} \mathrm{TGA}^{(T A A)}\right)_{6} 13 \mathrm{bp}(\mathrm{TAA})_{8}$	54/72	152	152
H1C22	ATTTATACAAAGTTTTTGAAGTCG CTTGTAAGTAGATAGTTTCACCAAA	$(\mathrm{CAA})_{5}(\mathrm{TAA})_{47} \mathrm{AA}(\mathrm{TAA})_{2}$ TAAAA $(\mathrm{TAA})_{22}$	54/65	316	316
H1D02	TCCCTAGGTGCAATAGGAAAA CGTTCACATACCGCCATATT	$(\mathrm{TAA})_{2}(\mathrm{TAG})_{2}$ TAA $(\mathrm{TGA})_{3}(\mathrm{TAA})_{19}$	50/60	296	261
H1D221	TTCTAGAAACTGTCGACTGATAG ACTTAATCCATGAAATTTGTTTT	$(T A A){ }_{25} C A A(T A A){ }_{23} 537 \mathrm{bp}(\mathrm{TAA})_{4}$	54/65	238	238
H1D222	AACAATCGTAATTAAAGGAGAAT TAACCGCTACCTTTTATTAATTT	$(\mathrm{TAA})_{25} \mathrm{CAA}(\mathrm{TAA})_{23} 537 \mathrm{bp}(\text { TAA })_{4}$	54/72	158	158/172
H1D24	TTTCGGTGAACAAAAACTAACTA ACGGTTAAATAGATGAGTCAAAA	(TTA) ${ }_{14}$ TTG (TTA) 6	55/65	189	173/189/264/269
H1E06	GCAAATGTAACATCCTAAAATTAAAA	$(\mathrm{TTA})_{13}$ TAA $(\mathrm{TTA})_{14}$	57/72	201	201

Table 1 (Contd.)

Primer pair name	Primer pairs ($5^{\prime}-3^{\prime}$)	SSR loci ${ }^{\text {a }}$	Annealing/ elongation Tem ($\left.{ }^{\circ} \mathrm{C}\right)^{\mathrm{b}}$	Fragment size ${ }^{\text {a }}$ (bp)	
				Expected	Observed ${ }^{\text {c }}$
H1E12	TCTTATAATAAAATTAAAAACACGTCAA	$(\mathrm{TA})_{7}(\mathrm{CA})_{4}$	60/72	131	131
	TGACATTTGACGTTTGTGCT				
	ACCCCAATAGCGAATTTGAC				
H1E192	AAAACCCTTGCCACCTCAT	$(\mathrm{TA})_{7} \mathrm{~T}(\mathrm{TAA})_{26} 61 \mathrm{bp}(C A)_{7}$	57/65	125	119
	GGAGAATGGAAGAAAAGAAGGA				
H1E20	CTGAATCTGTGTTGGCCATT	$(\mathrm{GAA})_{4}$	57/72	119	119
	TCAACCACCTCCTAAGACCA				
H1E22	TCATCTTAGAGTTCAACGAGAGA	(TTA) ${ }_{14}$	57/65	139	113
	TGAGTAGTGGCTTCTAACAAAGA				
H1F021	GAGGCGAGAAGAAGGAAGAG	$(G A A)_{5} 39 \mathrm{bp}(\mathrm{TTA})_{29}\left[\mathrm{CTA}(\mathrm{TTA})_{5}\right]_{2}$	60/72	100	100
	GGAAGAAAAATAGTAACAAGAAGACCA				
H1F022	GGTTCTGGTCTTCTTGTTACTATTT	$(\mathrm{GAA})_{5} 39 \mathrm{bp}(T T A)_{29}\left[C T A(T T A)_{5}\right]_{2}$	55/60	226	187
	TGAAATATGTCATCCTTATTACTAACT				
H1F05	ATAACTCAAATCGTTTCACAAGA	$(\mathrm{TAA})_{36}$	57/65	173	173
	AAACCCCTTTTTATTTTCAATTT				
H1F14	GAGAGAGAGGAAGGGAAACG	$(\mathrm{TTTA})_{4}(\mathrm{TTA})_{11}$	60/72	204	204
	TCCTAACTTGCTCCTTAACCTTG				
H1F17	GGGGAGGAAGAAGATGGAA	(TA) ${ }_{27}$	56/72	239	233
	GCGTTATGGGTGAAATGGTA				
H1F21	GTTTCGCTCACATACCATCG	$(\mathrm{TAA})_{20}$	58/65	316	316
	GGGAAAGTCTTGCTCCTACG				
H1F22	TAATGTAATTTTGTCTTTAACGTTTCC	TTACTA(TTA) 2_{24} TTG(TTA) ${ }_{11}$ CTA TTACTA (TTA) ${ }_{9}$ TTG(TTA) ${ }_{8} \mathrm{CTA}$ [TTACTA(TTA) ${ }_{18}$	57/65	306	171/306
	ATTGTGTTGTGTTATTTTAACTTTTGG				
H1F24	AACGGAGAGTTGATTTCACA	$(\mathrm{TAA})_{5} \mathrm{TGA}(\mathrm{TAA})_{6} 13 \mathrm{bp}(\mathrm{TAA})_{8}$	50/60	268	268
	TGCTAGCTCTACACATGATATACT				
H1G11	GCAAACAAGAACCGAAAACA	(TTA) ${ }_{11}$	60/72	196	195
	GCTTGACATGCAAATTGTTG				
H1G16	GTTTGCTTTCAACACCGAGA	$(\mathrm{TAA})_{2}$ TAT $(\mathrm{TAA})_{17}$	58/65	265	265
	CCCATGAAGGCCTGAATTAT				
H1G20	TCAACACTTGTTTGAGATTGTT	$(\mathrm{GA})_{7}$	56/72	271	271
	GGTTCTCTAATGGCTTTATTCA				
H1G22	AACAGACGAGACTGGGGTTC	(GA)n, $n=3-8$. In total, 8 SSRs interrupted by $9-23 \mathrm{bp}$	60/72	303	301/307
	CTTCATCATCACGCCTCATC				
H1G24	CTTTCCCCCTTTTTCATTCA	$(\mathrm{GA})_{5} 17 \mathrm{bp}(\mathrm{GA})_{5} 17 \mathrm{bp}(\mathrm{GA})_{5}$ - Except for 1 base the 17 bp are identical	57/72	235	192/207/235
	ACGCTCGCGTTTATTCTCAG				
H1H011	CATGTGCCCAAATGCTATTA	$(G A)_{16} 139 \mathrm{bp}(\mathrm{TA})_{5}$	60/72	157	157
	CAAGTTTGAAATGCCAATTTTT				
H1H06		$(\mathrm{GA})_{10}$	56/72	190	170/190
	TTTTGACGAAAACGGAGAAA		56/72		
H1H07	AAATTGTTGATTTTAACTAACCAAGA	$(\mathrm{GA})_{27}$		165	192
H1H08H1H11	GTGAGACACATGAGTGCAAAAA	$(\mathrm{GA})_{24} \mathrm{AA}(\mathrm{GA})_{6}$$(\mathrm{GA})_{15}$	60/72	167	120/167
	GTGAGACACATGAGTGCAAAAA				
	TGATTTTTGCTGGAATCAAT		57/72	152	152

 N

H1H13
H1H14
H1H15
H1H18
H1H20
H1H22
H1H24
H1J24
H1101
H1I05
H1108
H1109
H1I16
H1I17
H1I18
H1I20
H1I24
H1J04
H1J07
H1J12
H1J15
H1J16
H1K18
H1K23
H1L161
H1
Table 1 (Contd.)

Primer pair name	Primer pairs ($5^{\prime}-3^{\prime}$)	SSR loci ${ }^{\text {a }}$	Annealing/ elongation Tem (${ }^{\circ} \mathrm{C}$) ${ }^{\mathrm{b}}$	Fragment size ${ }^{\text {a }}$ (bp)	
				Expected	Observed ${ }^{\text {c }}$
H1M07	GAAAAACACTTTTGACAGAAACG	(CA) ${ }_{8}$	56/72	192	192
H1N12	AAAAATTGGTTCTCAAGAGTAAA	$(\mathrm{CA})_{5} 46 \mathrm{bp}(\mathrm{CA})_{5}$	57/65	187	187
	ATGAGGATTGGACGTAATCA			194	
H1O01	AGCCCGTAAGTGGTATCCAA				
H1O06	CGTTCTCGAATCAAAGAGGA	$(\mathrm{GAA})_{21} 69 \mathrm{bp}(\mathrm{AT})_{7} 14 \mathrm{bp}(\mathrm{AT})_{12}$	60/72	226	183/188/226
	AGGAAGGCAGAAAGGAAACA				
H1O09	CATGGGATGATTCAGAGGAA	(GAA) 132	60/72	478	133
	TCATTTCCCATTTGTTGACAT				
H1O10	TGGTTTTTCCAAGAATGCAA	$(\mathrm{GAA})_{10}$	57/72	197	175/197
	TTTTGGATGATGAATAAAGGAA				
H1O12	GAAAATGGAAATGCAGCAGA	$(\mathrm{CTT})_{2} 9 \mathrm{bp}(\mathrm{CTT})_{11}$	60/72	224	224
H1O14	GCCACTTTCACTTGAAACCA	$(\mathrm{GAA})_{5}$	56/72	148	148
	TGTCACTGATACTGCCTCCTG				
H1P01	CAAAGCAGAATGTCCATCAAA	$(\mathrm{GAA})_{6}$	56/72	146	146
	CTGTTTTTGCCATCAAGCAT				
H1P181	ATGGCAACATGGGATGATT	$(G A A))_{90} 30 \mathrm{bp}(\mathrm{GAA})_{4}$	57/65	321	81
	TTTTGGTTTTGCCATTAAGC				
H1P182	TATGCTTAATGGCAAAACCA	$(\mathrm{GAA})_{90} 30 \mathrm{bp}(G A A)_{4}$	54/72	100	100/198
	TTTTGGTCATTTTTGTCCTT				
H1P02	AAGAGGAAAGCTCCTCCAAC	$(\mathrm{GAA})_{5}$	60/72	128	128
	TCTTCAACAGGTTTGCCTTT				
H1P091	GTCTCGGTTTTGCATGACAC	$\begin{aligned} & (G A A)_{6} 61 \mathrm{bp}(\mathrm{TTA})_{16} \mathrm{TCA}(\mathrm{TTA})_{22} \\ & \mathrm{TTG}(\mathrm{TTA})_{5} \end{aligned}$	60/72	146	126/146
	GGAACACCGGTTCCCATC				
H1P092	GAACCGGTGTTCCCTTTTT	$\begin{aligned} & \left(\mathrm{GAA}_{6} 61 \mathrm{bp}(T T A)_{16} T C A(T T A)\right. \\ & 22 T T G(T T A)_{5} \end{aligned}$	57/65	229	163/229
	GAAAGGTATAGAATGTGTTTAATGGA				
H1P17	TGCCTCCCACTTACATTAGG	$(\mathrm{CAA})_{12}(\mathrm{GAA})_{8}$	60/72	205	205
H1P23	TTGCACGAAGACCATTAGAA ACCAAAGGCTCAAGGAGAAA	$(\mathrm{TAA})_{5}$	60/72	193	193
	TGGAACTTGAGGTGTTGCTT				
H2A02	TGATATTATTGTGATATTGGATGTCG	$(\mathrm{TGA})_{4}$	60/72	199	196/347/372/396/406
	TCCTCGGAATCACTAGGTTTG				
H2A04	GATTTTCTTGAAAACAACATATAGTCA VTGTGTTGGAGGTTTGTTGA	$(\mathrm{TA})_{7}(\mathrm{TGA})_{5}$	60/72	134	134
H2A08	AGGCAATTATTAGGGGTTAGTG	(GA) ${ }_{9}$	60/72	136	136/139
	TTGGTTTATGCTGCACGTTT				
H2A11	GCATGTTCGATGGAAGAGAA	$(\mathrm{CAA})_{5}$	60/72	133	133
	TAGAACCAGAGGCAGAGCAA				
H2B02	GCCATGAAATTACACAAAATGG	$(\mathrm{GAA})_{6} 24 \mathrm{bp}(\mathrm{GAA})_{10}$	62/72	200	140/192/200
	GGTGGTTTACGGGTTGTTCT				
H2B061	TCTTGAAGCAAAAGAAGTCAAAAG CAAGTGATAAGTAGGAAGGCAGAA	$(G A A)_{2} G(G A A)_{19} 70 \mathrm{bp}(\mathrm{TA})_{7} 14 \mathrm{bp}(\mathrm{TA})_{11}$	60/72	163	120/128/163
H2B18	CAATTTAATCGGAACATTGTCTTC	(TTG) ${ }_{7}$	60/72	170	130/137/160/203/221
	TTCACAAACATCACAACCATAAAC				

(TA) $6_{6} 22 \mathrm{bp}(\mathrm{TA})_{6}$	60/72	144	144
$\begin{gathered} (T A)_{7} A A(T A)_{8} 49 \mathrm{bp}(\mathrm{TGA})_{6} \\ 89 \mathrm{bp}(\mathrm{CTA})_{5} \mathrm{GTG}(\mathrm{TA})_{7} \end{gathered}$	60/72	159	159
$(\mathrm{TA})_{7} \mathrm{AA}(\mathrm{TA})_{8} 49 \mathrm{bp}(T G A)_{6}$ $89 \mathrm{bp}(\mathrm{CTA})_{5}$ GTG (TA) $)_{7}$	60/72	117	117
$\begin{aligned} & (\mathrm{TA})_{7} \mathrm{AA}(\mathrm{TA})_{8} 49 \mathrm{bp}(\mathrm{TGA})_{6} \\ & 89 \mathrm{bp}(C T A)_{5} G T G(T A)_{7} \end{aligned}$	60/72	148	148
$(\mathrm{CAA})_{4}$	60/72	130	130
$(\mathrm{TAG})_{5}$	60/72	149	149/205
(GA) ${ }_{9}$	60/72	154	154
$(\mathrm{TAA})_{27}$	58/65	186	186
$(\mathrm{GA})_{15}$	54/65	170	170
$(\mathrm{GA})_{12}$	60/72	144	144
$(\mathrm{GTT})_{3} \mathrm{GT}(\mathrm{GTT})_{4}$	58/65	186	186
(TAA) ${ }_{35}$	60/72	225	225
$(\mathrm{TTG})_{2} \mathrm{TGG}_{(\mathrm{TTG}}^{4} 4$ TTA $(\mathrm{TTG})_{2}$	60/72	177	177/155/165/197
$(\mathrm{TTA})_{13}$ CTA (TTA) ${ }_{19}$	60/72	190	190
$(\mathrm{TGA})_{4}(\mathrm{TG})_{3}$	60/72	190	190
$(\mathrm{GA})_{18}$	58/65	183	183
$(\mathrm{TGA})_{4}$	60/72	193	193
$(\mathrm{TGA}) 4$	60/72	169	169
(TTG) ${ }_{4}$	60/72	151	151
$(\mathrm{TTA})_{30} \mathrm{CTA}(\mathrm{TTA})_{5}$	58/65	207	207
$(G A)_{6} 58 \mathrm{bp}(\mathrm{TTTA})_{8}(\mathrm{TTA})_{29}$	60/72	151	151
$(\mathrm{GA})_{6} 58 \mathrm{bp}(T T T A)_{8}(T T A)_{29}$	60/72	204	204
$(\mathrm{TA})_{4} 165 \mathrm{bp}(\mathrm{TG})_{3}$	60/72	253	253
$(\mathrm{CA})_{3}(\mathrm{ATC})_{3} 253 \mathrm{bp}(T C)_{6} 5 \mathrm{bp}(T C)_{17}$	60/72	252	252
$(\mathrm{TTA})_{20}$	60/72	246	246

Table 1 (Contd.)

Primer pair name	Primer pairs ($5^{\prime}-3^{\prime}$)	SSR loci ${ }^{\text {a }}$	Annealing/ elongation Tem (${ }^{\circ} \mathrm{C}$) ${ }^{\mathrm{b}}$	Fragment size ${ }^{\text {a }}$ (bp)	
				Expected	Observed ${ }^{\text {c }}$
H3A09	CTGTGATAGGTCTGAAACTCGAA	$\begin{aligned} & (\mathrm{TTA})_{23} \operatorname{TTG}(\mathrm{TTA})_{2} \operatorname{TTT}(\mathrm{TTA})_{2} \\ & (\mathrm{TTG})_{3}(\mathrm{TTA})_{12} \mathrm{TTT}(\mathrm{TTA})_{15} \end{aligned}$	58/65	391	391
H3A10	TTCGGTATTAAATTCTTCGCAAC TTTAAGGCTTCAGGTATTGATTTCT TCACACATGCCAACTTAAAATAAAA	$(\mathrm{TTA})_{24}$	58/65	246	246
H3A12	AACCTTAGACTGTGTTCGCTGA TCAATCTTTTGTTGTTACTATGAATCTG	$(\mathrm{GA})_{11}$	60/72	179	179
H3B01	AGTTGCGACGAGAGTAGTTATTTTT AATGTTTTTCTTTCACTCACACTTG	$(\mathrm{TA})_{5} \mathrm{~T}(\mathrm{TA})_{3}$	60/72	254	254
H3B04	TGTTTCCTGATGTTGAGAAACTC TATTTTATGATATCCGCGGTGAC	$(\mathrm{TC})_{9}(\mathrm{AC})_{7}$	60/72	197	197
H3B08	TGTAATAAAACAAAATCCTCACACC AGATTAAGCCTGAATTGGTTGAA	$(\mathrm{ATC})_{5}$	58/65	199	199
H3C041	GGTGAAGAGAGAGAGAAAGTGAAAC	$(G A)_{5} 11 b p(G A)_{5} 35 b p(G A)_{4} 13 b p$ $(G A)_{9} 23 \mathrm{bp}(G A)_{4} 21 \mathrm{bp}(\mathrm{GA})_{4} 13 \mathrm{bp}$ $(\mathrm{GA})_{4} 20 \mathrm{bp}(\mathrm{GA})_{4} 31 \mathrm{bp}(\mathrm{ATG})_{4}$	60/72	199	153/188/199
H3C042	CTCTCTCTCATCAATCAATCAGTTTT AAACGTGAGAGAGATAGAAGAAACG	$(\mathrm{GA})_{5} 11 \mathrm{bp}(\mathrm{GA})_{5} 35 \mathrm{bp}(\mathrm{GA})_{4} 13 \mathrm{bp}$ $(\mathrm{GA})_{9} 23 \mathrm{bp}(\mathrm{GA})_{4} 21 \mathrm{bp}(\mathrm{GA})_{4} 13 \mathrm{bp}$ $(\mathrm{GA})_{4} 20 \mathrm{bp}(\mathrm{GA})_{4} 31 \mathrm{bp}(A T G)_{4}$	60/72	206	206
H3C06	CTTTTAGGTGAAACTTCCTCTTGAC AATTTCGTGAATCATTAAAAATAGAGG CACATGACTATCTAGACATTTTATTTATC	(TAA) ${ }_{23}$	58/65	171	171
H3C08	TTGTTTGAGAAGAAGATGGGTTT ATGCACAGACTGCATTAAATGAT	$(\mathrm{GA})_{4} 15 \mathrm{bp}(\mathrm{GA})_{4} 22 \mathrm{bp}(\mathrm{TGA})_{4}$	60/72	183	183
H3C10	TTTTGTCTATTGTGTTGAATTACTTTTT AGGTTGATATCCTAAACAAGGACTCT	$(\mathrm{TAA})_{33} 40 \mathrm{bp}(\mathrm{TAA})_{4}$	60/72	224	165/196/224
H3C11	GCCCATATTCAATTCTTACCATTATTA ACCTTTAACGCTAATAGAGTGAGTTTA	(TTA) 4_{40}	60/72	205	142/205/240
H3D05	AGACGTGTTCCCTTTCTTTTAACTA GCCGACACAAAGTTTATGATTTT	$(\mathrm{TAA})_{41}$	58/65	307	307
H3D09	GGCAAAATCTCTCCATAAGAGG CACACTTTAGCACAATGCAGAA	$(\mathrm{TC})_{10}(\mathrm{TA})_{12}$	55/65	224	224
H3E04	GATTTAACGTGTCGCGTCTTC GCCTTATGTGTTTTCCTTAGTGATT	$(\mathrm{TTA})_{36}(\mathrm{CTA})_{5}$	58/65	313	313
H3E052	TAGACCCTTGCTTCTTGTTCCT	$\begin{aligned} & (\mathrm{TTC})_{3}(\mathrm{TAC})_{2} 22 \mathrm{bp}(\mathrm{TC})_{22}(\mathrm{AC})_{11} 251 \mathrm{bp} \\ & (T T C)_{3} 20 \mathrm{bp}(T C)_{7} 5 \mathrm{bp}(C A)_{5} C C(C A)_{4} \end{aligned}$	60/72	184	184
H3E08	AATCTTGTTGGTTCTTTGGTCA CGTCGTTAAATGTGTGGAATTT GCAGGAAGAACACACAAACAAT	$(\mathrm{GAT})_{4}$	60/72	270	270
H3F08	AAACACCCGTGATTCTCTAAAGTT TGACACCTAATTTTATTCGGTTTTT	$(\mathrm{TTA})_{34}$	58/65	246	246
H3F09	AGCATGTAGTAGGAGGCAAGTATG GTAGGTTCCCGCTACATTACTTTTA	(TTA) 4_{44}	60/72	241	241
H3G031	CCCAAGAACTTGGAAAAATATG	$\begin{aligned} & (G A)_{3} A A(G A A)_{5}(G A A A)_{3} 25 \mathrm{bp}(G A)_{5} \\ & 50 \mathrm{bp}(\mathrm{TTA})_{31}\left[\mathrm{TTTAA}(\mathrm{TAA})_{3}\right]_{2} \mathrm{~T}(\mathrm{TA})_{4} \end{aligned}$	60/72	201	201

气

$$
\stackrel{\stackrel{\infty}{4}}{\frac{\infty}{2}} \frac{\infty}{\approx}
$$

$$
\text { t. } \stackrel{\sim}{\square} \quad \stackrel{\infty}{n}
$$

$\underset{T(T A)_{4}}{(\mathrm{GA})_{5}} 50 \mathrm{bp}(T T A)_{31}\left[\text { TTTAA }(T A A)_{3}\right]_{2}$
$(\mathrm{TA})_{8}(\mathrm{TAA})_{19}$
$(\mathrm{GA})_{10}$

$\left.{ }_{(G A)}\right)_{8} 235 \mathrm{bp}$ (CAAA) 25 bp (TC)
$\left.\underset{25}{(\mathrm{GA})_{8}} 235 \mathrm{bp}(T T C)_{3}(T C)_{4}\right) 25 \mathrm{bp}(T C)_{11}$
$(\mathrm{TTA})_{33} 27 \mathrm{bp}(\mathrm{TA})_{9} 9 \mathrm{bp}(\mathrm{TAA})_{3}$
(TAA) ${ }_{16}$
E

$\underset{228 \mathrm{bp}(T C)_{10} 44 \mathrm{bp}(T T C)_{3}}{(\mathrm{TTTA})_{21} 8 \mathrm{bp}(\mathrm{TTGAA})_{3}(\mathrm{TTC})_{4}}$

$(T T A)_{17}$
$(T T A))_{32}$
(TTC) ${ }_{4}$

(ATC) $426 \mathrm{bp}(\mathrm{GAA})_{4}$ $(\mathrm{ATC})_{4} 226 \mathrm{bp}(G A A)_{4}$ $(\mathrm{GAT})_{4}$ $(\mathrm{TTA})_{29} \mathrm{TTT}(\mathrm{TTA})_{16}(\mathrm{CTA})_{3} \mathrm{CTG}(\mathrm{CTA})$
$2(\mathrm{TTA})_{8} \mathrm{~T}(\mathrm{TTA})_{11} \mathrm{TTTT}(\mathrm{TTA})_{4} \mathrm{TTT}(\mathrm{TTA})_{3}$ ${ }_{(T A)}^{7} 14 \mathrm{bp}(T A)_{4}(A T)_{4}(G T)_{3} 70 \mathrm{bp}$
$(\mathrm{TA})_{4} \mathrm{AAT}^{(\mathrm{TA})}{ }_{9} 37 \mathrm{bp}(\mathrm{TA})_{8}(\mathrm{CA})_{8}$
$\left.\underset{(T A)_{4} A A T}{(T A)} 14\right)_{9}(T A)_{4} 37 b p(T A)_{8}(C A)_{8}$ ®

-

$$
\underset{\sim}{0} \underset{\sim}{d}
$$

Table 1 (Contd.)

Primer pair name	Primer pairs ($5^{\prime}-3^{\prime}$)	SSR loci ${ }^{\text {a }}$	Annealing/ elongation Tem (${ }^{\circ} \mathrm{C}$) ${ }^{\text {b }}$	Fragment size ${ }^{\text {a }}$ (bp)	
				Expected	Observed ${ }^{\text {c }}$
H4D02	CAAATCCCTTTTATTTTTCCTTCATA	$\begin{aligned} & (\mathrm{TAA})_{5} \text { CAA }(\mathrm{TAA})_{4} \\ & \text { TAG }(\mathrm{TAA})_{5} \text { TAG }(\mathrm{TAA})_{43} \end{aligned}$	58/65	288	288
H4D07	CTCCCTAAGTAGAACTCACCAATTGTA AGAGTGAGTTTTGCGAAGTCTG CCACTGATTCTCCGTAGGTAAA	$(\mathrm{GA})_{9}$	60/72	205	200/205/213
H4D08	TGTCCTTTATTTCTTAAGCACACAT GAGATGGATGTTATTGGACTCATC	$(\mathrm{TAA})_{4} 9 \mathrm{bp}(\mathrm{TAA})_{25}$	58/65	189	189
H4D11	TCTTATGCACACATTTATTCTGAAATC CATCTGTTAAAATATGGTTGCCTATAA	$(\mathrm{TAA})_{48} 14 \mathrm{bp}(\mathrm{TAA})_{3}$	58/65	276	141/173/276
H4D12	GTGGCAGCCATAATAATCAATGT TTTGTTTCATATTTCTTGTTTCGTT	(TAA) ${ }_{23}$	57/60	200	200
H4E04	ACTTTATGATGTAAAATATGCATGGTC TCTTTTGTTTTACTAATGCTCATGTCT	$(\mathrm{TTA})_{56}(\mathrm{TTTA})_{3}$	58/65	346	346
H4E09	TGCTATTTGTACTAGGACTTAAGGAAA TGTTTAAAGTACCCATTAAAAACGTAA	(TTA) 35	58/65	253	253
H4F01	ATTCACTTTGCTTTGGTGTGAT ATTGAGCATTGACAACAAAAGG	(TC) ${ }_{9}$	60/72	217	206/217
H4F02	ATAAATAGCTAATGGCCTATTGTGTTC TCTTTTGCACAAGTAAAATAATGATAA	(TTA) ${ }_{35}$	58/65	181	151/181
H4F03	ССТTTAACAAACAAAACAAACTTCC GGTCGTCTGTAACATCCTATATCAA	$(\mathrm{TAA})_{25}$	58/65	284	284
H4F07	AACGCCTGCATTTTATTTTTGT GGATTCTATTCAAAGCCCAATC	$(\mathrm{GAT})_{5}$	60/72	170	170
H4F09	TCATCGACTGTATTGAGGAAAAA GCACCTTCAGTTTGAATTGTGT	(TC) ${ }_{11}$	60/72	266	266
H4G01	ATTGACTTTATGTTGTGATTTTCTTCA TATCATGCATATTTTCAACTTGTCCTA	$(\mathrm{TTA})_{29} \mathrm{TTG}_{(\mathrm{TTA})}^{19}$	58/65	255	255
H4G02	AAATAACTCATTACGTACCCCGAAC	$(\mathrm{ATC})_{7}(\mathrm{AAC})_{5} \mathrm{~A}(\mathrm{CAA})_{5}$ $(\mathrm{CACAA})_{2} \mathrm{CAAT}(\mathrm{CAA})_{4} 6 \mathrm{bp}(\mathrm{CAA})_{3}$	60/72	188	188
H4G04	TGCATAAAATTAATTCAACAACCA GTTTGAATGTGTGGCATTTGATA	$(\mathrm{CA})_{3} \mathrm{C}(\mathrm{CA})_{3}$	60/72	200	94/105/153
H4G05	TGCTAAACTATCTTCTGACCTTTTTG AAAAATGCTATTACTGGATAAACACAA	$(\mathrm{TAA})_{17}(\mathrm{CAA})_{3}$	57/60	202	202
H4G07	ATTAGAGGCAAACAAGAACTTGAAAC TGACACCTAATTTTATTCGGTTTTTAT	$(\mathrm{TAA})_{33}$	57/60	265	197/265
H4G08	AAATGAAAAATGGGGTTAGGAA CGTTCTTTGACTTGAAGGATTT	$(\mathrm{GAT})_{6}$	58/65	239	239
H4G09	GGGGATGAGTGAAATTTTTGAG TTTCAACTTCAGTGCAAACTCAT	$(\mathrm{TTG})_{3} \mathrm{~T}(\mathrm{GTT})_{6}$	60/72	176	152/162
H4G10	CACAAATCAGTATACAACACATCACTC	$(\mathrm{CTA})_{2}(\mathrm{TTA})_{29} \mathrm{ATA}(\mathrm{TTA})_{2}$ TCA (TTA) ${ }_{9}\left[\text { TCA }(\mathrm{TTA})_{2}\right]_{2}$ TCA 25 bp $(\mathrm{TA})_{5} 9 \mathrm{bp}(\mathrm{TAA})_{3}$	58/65	279	167
H4G11	ATCTAAGTGAGCGGCTACTAAATCA GTAGTCATGCAGCCTATAAAAACAA	(TAA) ${ }_{18}$	58/65	195	195
H4H01	TAGTATTTTTCTTTCATTTCCTTCGTT TTGCTTTAATTCATTATGGTATATTTATG	$(\mathrm{TTA})_{43} \mathrm{CTA}(\mathrm{TTA})_{30}$	58/65	299	299

$$
(\mathrm{TAA})_{36}
$$

$(\mathrm{TA})_{8} \mathrm{~A}(\mathrm{TA})_{2}(\mathrm{TAA})_{5} \mathrm{TAT}(\mathrm{TAA})_{8}$	60／72	174	174
$(\mathrm{CA})_{3} \mathrm{C}(\mathrm{CA})_{3}$	60／72	182	182
（TTTA）${ }_{6}$	60／72	213	213
$(\mathrm{TAA})_{16}(\mathrm{AT})_{3}$	60／72	235	204
$\left.(\mathrm{TAA})_{29} \mathrm{GAA}^{(\mathrm{CAA}}\right)_{6}(\mathrm{TAA})_{17}(\mathrm{CAA})_{4}$	58／65	329	329
$(\mathrm{GAT})_{3} 23 \mathrm{bp}(\mathrm{GAT})_{3} \mathrm{~T}(\mathrm{GAT})_{3}$	60／72	200	200
$(\mathrm{ATC})_{7}$	58／65	212	204／212
$(\mathrm{GAA})_{7}$	60／72	193	193
（TAA）${ }_{16}$	58／65	201	201 （＋smear：163－173）
$(\mathrm{TTA})_{18} \mathrm{CCA}(\mathrm{TTA})_{8} \mathrm{TT}(\mathrm{TTA})_{3}$	58／65	218	218
$(\mathrm{TAA})_{11}$ ATAAAA $(\mathrm{TAA})_{25}$	57／60	211	211
$(\mathrm{TC})_{6} \mathrm{TT}(\mathrm{TC})_{5}$	60／72	266	266
$(\mathrm{TTA})_{50}$	58／65	267	123
$(G A)_{7} 280 \mathrm{bp}(\mathrm{CAA})_{5}$	60／72	185	185
$(\mathrm{GA})_{7} 280 \mathrm{bp}(\text { CAA })_{5}$	60／72	199	199
$(\mathrm{CAT})_{6}$	60／72	142	142
$(\mathrm{CAA})_{5}$	57／60	183	183
$(\mathrm{GA})_{4} \mathrm{GG}(\mathrm{GA})_{4}$	60／72	192	192
$(\mathrm{GA})_{5}$	58.65	178	178
（TTA）${ }_{34}$	58／65	218	218
$(T T A)_{5} 238 \mathrm{bp}(\mathrm{GAT})_{6} 22 \mathrm{bp}(\mathrm{TTG})_{4}$	60／72	173	173
$(T T A)_{31} 167 \mathrm{bp}(\mathrm{TTA})_{4} \mathrm{~T}(\mathrm{TTA})_{4} 18 \mathrm{bp}$ $(\mathrm{TTA})_{9} \mathrm{~T}(\mathrm{TTA})_{2}(\mathrm{AT})_{3}$ TAT $(\mathrm{TTA})_{2}$ TAT $(\mathrm{TTA})_{7}$	58／65	234	234
$(\mathrm{ATC})_{5}$	60／72	198	190／198
$(\mathrm{TC})_{4} 7 \mathrm{bp}(\mathrm{TCA})_{8}$	60／72	192	192
$(\mathrm{TAA})_{36}$	57／60	201	104／201

H4H02会 $\stackrel{\circ}{\text { 운 }}$ H4H07 H4H08

焉壱 $\stackrel{ \pm}{3}$会 H5B04 H5B06 H5B09 | \bar{I} |
| :--- |
| | H5C122 H5D02 H5E02会象需亏

荅
号 포
号
号
 45F11
H5F11
H5G01 H5G12

AATGATATCTTTTTAAAACCAGAAGG
GAGAAATTTTATTTGTGGGGATG
荡

0
4
4
0
0
2
2
0
4
0
0
0
0
3
CAAATTTTGTAATTTGGTAAGTAGC
GAAAATATATTAAAAAATACAATTGGACGA CGTGACAACATCTTCCACTTATG
GGTGATGTGAAAAATTGGTGATGA
ACCACTAAGCAATGTCTTCCTTC CGTGACAACATCTTCCACTTATG
GGTGATGTGAAAAATTGGTGATGA
ACCACTAAGCAATGTCTTCCTTC 0
4
0
0
0
0
0
0
0
0
0
0
4
4
0
0
0
0
4
4
4〇LVOVVVOVVLOLLDOLLDVLOVDLLS CTIGAGThGitgctictac
Table 1 (Contd.)

Primer pair name	Primer pairs ($5^{\prime}-3^{\prime}$)	SSR loci ${ }^{\text {a }}$	Annealing/ elongation Tem (${ }^{\circ} \mathrm{C}$) ${ }^{\mathrm{b}}$	Fragment size ${ }^{\text {a }}$ (bp)	
				Expected	Observed ${ }^{\text {c }}$
H5H02	CATATTGTTGTACTGTCCTTTTGAG	$\begin{aligned} & (\mathrm{TTG})_{3} \operatorname{TTT}(\mathrm{TTG})_{5} \operatorname{TTT}(\mathrm{TTG})_{2} \\ & \text { TTT }(\mathrm{TTC})_{3} \end{aligned}$	60/72	148	148/190/197
H5H032	TATAATAAATACCTTCGGGGTTGAA AATACCCCAATTTTGTCTGATACAT TGAAGCAAACCGAATAAAAGTTATC	$(\mathrm{TC})_{32}(\mathrm{TA})_{12} 241 \mathrm{bp}(T A)_{13}$	58/65	213	213
H5H06	ACTTATTTTGCTCAACATCAAGACAC CACCGAAAATAATTGATTTAAGTAACA	(TTA) ${ }_{3}$	58/65	221	187/196/208/221
H5H12	TTGTTACAATGCATATTTTTTTAGC	$(\mathrm{GA})_{7} \mathrm{GC}(\mathrm{GA})_{4}$ AAGG (GA) ${ }_{4} \mathrm{CA}$ $(\mathrm{GA})_{9} \mathrm{GG}(\mathrm{GA})_{5} \mathrm{GG}(\mathrm{GA})_{7}$	60/72	183	183
H6A03	GGGAGCTTAATTATTTCTTCATTACA ATGAATTCACTCAAAGACACAGATT	$(\mathrm{ATC})_{3} 27 \mathrm{bp}(\mathrm{TC})_{4}$	60/72	181	181
H6B11	agCTCTCCATATCTGAGGCTTT TCACTGTATCGGAGTTCTACTGC	$(\mathrm{TTC}){ }_{6}$	60/72	193	170/193/202
H6B12	TTTCTCACCTCGTTGGTATATGA CGTTTGATTGATGATAGTGATGC	$(\mathrm{ATC})_{4}$	60/72	183	183
H6C06	ACAATGCAATACTAATATGCAAAATTC AACCAGATTAAATAGGTGATTTTATGA	$(\mathrm{TAA})_{3}$ TGTA $(\mathrm{TAA})_{33}$	60/72	226	184
H6C07	CAAAAGTGCAATTAAGCCTACATAATA	$\begin{aligned} & (\mathrm{GAT})_{3}(\mathrm{TAA})_{17} \mathrm{TCA}(\mathrm{TAA})_{2} \text { TCA } \\ & (\mathrm{TAA})_{13} \mathrm{TCA}(\mathrm{TAA})_{5} \end{aligned}$	58/65	201	201
H6C09	CCATTTTGTTTTAACACATATTTAACG TATGTGCGGTGAGACACTTATTT TTTGAGAAAGAGAGTGGAGGAAC	$(\mathrm{GTT})_{3}$	60/72	186	186
H6C11	TTGGGTTATCCAAAGAATAAAATATAA TTATATGGACTATGTATGTCAATTAAATC	$(\mathrm{TAA})_{23}(\mathrm{CAA})_{2}(\mathrm{TAA})_{2}$	58/65	188	188/191/212/218
H6D02	CTTCCGAATATGGACTTGGTTT CATAAATCTAAGTTACGGGTCTGGT	$(\mathrm{TA})_{7} \mathrm{AC}(\mathrm{TA})_{7}$	58/65	185	170/185
H6D05	TCTTTATCAAATCATTCAACTTACGA	$(\mathrm{GA})_{4} \mathrm{AC}(\mathrm{GA})_{3} \mathrm{GG}(\mathrm{GA})_{5}$ $\mathrm{TA}(\mathrm{GA})_{3}\left[\mathrm{CA}(\mathrm{GA})_{3}\right]_{3}$	60/72	210	210
H6D11	AAAGATGGGAACTTGAGATGTTG AATAGCTACTCAAGGCTGAAGAAA	$(\mathrm{TAA})_{11}$	58/65	200	278
H6E07	GTTTAAATGGGTCTAAACAGTCGATTT GTGTGTGCATGCATATGTGTATAAT	(TTA) 4_{1}	58/65	240	240
H6F01	AAAGCAGAATGTCCATCAAATAAA TTGTTGACATAAATGACATGGTTC	$(\mathrm{GAA})_{10}$	60/72	204	192
H6F09	GCTGATTCAGAGTATGAGAAATTCA AGAAATGTGATTCCAACAATTCAA	$(\mathrm{TC})_{8}(\mathrm{TA})_{8}(\mathrm{TG})_{9}$	60/72	222	222
H6F10	TCATCACAAATTTATAACATCACTGTC TTTGATTAGATGAGTTTACGTGAGG	$(\mathrm{ATC})_{4} 46 \mathrm{bp}(\mathrm{ATC})_{4} 45 \mathrm{bp}(\mathrm{ATC})_{4}$	60/72	232	232/245
H6G01	ATTGAAGAAGGAACTAAACAACTATCG	$(\mathrm{TAA})_{10} \mathrm{CAA}(\mathrm{TAA})_{14}\left[\mathrm{TTA}(\mathrm{TAA})_{3}\right]_{2}$ TTA $(\text { TAA })_{6}$ TAT (TAA) $14(\mathrm{CT})_{2}$ $(\mathrm{CA})_{2}(\mathrm{CT})_{2}$	60/72	321	168
H6G06	AAACCTATCAGCCCTAATTCAAA GACGAAGAATAAGAACCCAGATG	$(\mathrm{ATC})_{4}$	60/72	193	193
H6G07	TCTATCAGAGATATTAAGTTGAACG	$(\mathrm{TAA})_{23}$	60/72	189	189

H6G10	AAGACCTTCAATGGTAAAATTCG	$(\mathrm{GA})_{12}$	60/72	200	200
	AGAGGATAAATCACCCATTTTGA				
H6H04	TTCAACCCTCAATTCTCTTTGAT	(TC) ${ }_{4}$ TTCCC (TC) $45 \mathrm{bp}(\mathrm{CAT})_{4}$ CACC (CAA) $39 \mathrm{bp}(\mathrm{TC})_{4} 23 \mathrm{bp}$ (TC) $4_{4} 10 \mathrm{bp}$ (TC) 4	60/72	241	241
	GAGACCTCAATTGGGTACAAGAG				
H6H111	AGTCATCAGAAAGAAAAGGCAAG	$(G A T)_{5} 99 \mathrm{bp}(\mathrm{GA})_{4}$	60/72	182	182
	TGTCAAAAGAAGGAAACATTCCA				
H6H112	TCTCACTTTCTTGTGTTTTCCAG	$(\mathrm{GAT})_{5} 99 \mathrm{bp}(G A)_{4}$	60/72	171	171
	TTACCCTAATAGATGGGTGTGGA				
${ }^{\text {a }}$ When more than one SSR was detected for a given locus, the SSR flanked by the specified primer pair is shown in italics ${ }^{\mathrm{b}}$ Based on data of genomic DNA from the kabuli chickpea cv. Hadas					
${ }^{\mathrm{c}}$ Determined on 4.25% polyacrylamide gels, using the ABI GeneScan histogram		A Sequencer system. Amplicon size	ished	the	licon

Fig. 2 Amplification products of the primer pairs H1H15, H4G07, and H 5 H 06 , using genomic DNA of cv. Hadas as template. The amplicons are depicted as blue-lined peaks in the histogram of readings of fluorescently labeled dUTP detected with the ABI PRISM 377-XL DNA Sequencer and analyzed with the GeneScan software. Red lines correspond to the internal size standard
independently among the recombinant inbred lines generating two and three markers, respectively.

Discussion

We constructed a BAC library and a BIBAC library from chickpea, C. arietinum. The two libraries contain a total of 38,016 clones and are equivalent to ca $7.0 \times$ genomes of chickpea, providing a greater than 99.9% probability of obtaining a single-copy sequence from the libraries. These two new libraries along with the recently published BIBAC library that has 23,780 clones equivalent to $3.8 \times$ genomes of chickpea (Rajesh et al. 2004) total 61,796 clones, equivalent to $10.8 \times$ genomes. This number of genome equivalents should be sufficient for various aspects of chickpea genomics research. Since the three libraries were developed from two different restriction enzymes with complementary recognition sites in which HindIII is AT-rich and BamHI is GC-rich, it is expected that the genome coverage of these libraries would be more representative of the chickpea genome than the coverage based on a library constructed with a single enzyme. This is especially critical in the development of physical maps using the libraries (Chang et al.

2001; Tao et al. 2001; Ren et al. 2003, 2004; Wu et al. 2004a, c, d; Xu et al. 2004). Moreover, since different chickpea genotypes were employed for the construction of the libraries (Rajesh et al. (2004) used cv. FLIP 8492 C vs cv. Hadas used in the present study), the new BAC and BIBAC libraries represent different set of alleles that might be useful for future gene discovery studies. Additionally, the libraries were prepared using two different vectors, the F plasmid-based pIndigoBAC5 that was used in the chickpea BAC library and the P2 plasmid-based pCLD04541 that was used in the BIBAC libraries developed in the present study and by Rajesh et al. (2004). The use of two different vector systems further enhances the true genome coverage of the libraries (Ren et al. 2004; Wu et al. 2004b). Finally, the transformability of the BIBAC libraries via Agrobacterium in plants would further enhance the utility of the libraries for chickpea genome research, especially positional cloning and functional analysis of the chickpea genome. It has been reported in several species that DNA fragments of larger than 100 kb could be transformed into plants via BIBACs by use of the Agrobac-terium-mediated transformation (Hamilton et al. 1996, 1999; Liu et al. 1999, 2002; He et al. 2003). Application of the chickpea transformation protocols (Kar et al. 1996; Krishnamurthy et al. 2000) in combination with these plant-transformation ready BIBACs may allow the transformation of large regions containing desirable traits into cultivated chickpea lines for genetic improvement.

In the present study, we generated and characterized 233 new SSR markers for chickpea. These SSR markers significantly increase the available arsenal of 174 SSR markers previously reported by Winter et al. (1999). For 27 of the markers (11.6\%), discrepancies were observed between the expected locus and the PCR products in terms of amplicon size and/or amplicon number. Presumably, the discrepancies in fragment size might be a result of artificial deletions or insertions during the DNA duplication in the host bacterium often observed due to the repetitive nature of the loci, but further studies will be needed to answer this question. Röder et al. (1998) found that the primer pairs that amplified fragments with unexpected sizes were non-functional since they were usually monomorphic. We tested the primer pairs, using two C. arietinum cultivars, Hadas and ICC5810; 39\% of them resulted in clear polymorphic patterns (data not shown). Eleven percent of the fragments whose sizes deviated from the expected (Table 1) were found to be polymorphic among the chickpea lines, but about three to four times less than the general estimate of 39%. Of the primer pairs that produced more than one amplicon, 40% were found to be polymorphic among the lines. The SSR markers developed herein have resulted in useful tools for chickpea molecular genetic map construction and gene mapping (J. Lichtenzveig et al., in preparation). The SSR markers reported here were generated from a large-insert BAC library, whereas those of Winter et al. (1999) from a
small-insert DNA library. The development of SSR markers from large-insert BACs has added several advantages to the markers (see "Introduction").

Analysis of the SSR motifs $(\mathrm{GA})_{10},(\mathrm{TA})_{10},(\mathrm{GAA})_{7}$, $(\mathrm{TAA})_{7},(\mathrm{CAA})_{7}$, and $(\mathrm{TGA})_{7}$ (prefixed with H3-, H4-, H5-, or H6- in Table 1) showed that the SSR abundances were significantly different among different motifs in the chickpea genome, with the (TAA) $)_{n}$ and (GA) n_{n} being the most abundant and the (TGA) n_{n} being extremely rare. The percentage (50.6%) of the SSR loci containing perfect repeats is much lower than that identified from a small-insert DNA library by using $(\mathrm{TAA})_{n},(\mathrm{GA})_{n}$, and $(\mathrm{GAA})_{n}$ as probes (Winter et al. 1999). This discrepancy may be due to the different SSR oligo probe combinations, the source libraries, and/or preferential selection of strongly hybridizing clones for SSR isolation. The high percentage (49.4\%) of the SSR loci containing interrupted and compound repeat motifs within a genomic span of $1,500 \mathrm{bp}$ (the longest sequence) might suggest that the SSR loci tend to cluster in the genome. The clustering distribution of SSR loci was previously observed by genetic mapping of SSRs (Winter et al. 1999; J. Lichtenzveig et al., in preparation).

Acknowledgements This research was supported by Research Grant Award No. US-3034-98R from BARD, the United States-Israel Binational Agricultural Research and Development Fund. The authors would like to thank the Texas A\&M University GENE finder Genomic Resources for their assistance in preparing the library filters, and Haddassa VanOss, the Hebrew University in Jerusalem, for her assistance in evaluating the SSR primers.

References

Ahmad F, Gaur PM, Slinkard AE (1992) Isozyme polymorphism and phylogenetic interpretation in the genus Cicer L. Theor Appl Genet 83:620-627
Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Rep 9:208-218
Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988-1002
Chang YL, Tao Q, Scheuring C, Meksem K, Zhang H-B (2001) An integrated map of Arabidopsis thaliana for functional analysis of its genome sequence. Genetics 159:1231-1242
Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537-545
Cho S, Kumar J, Shultz JL, Anupama K, Tefera F, Muehlbauer FJ (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica 128: 285-292
Choumane W, Winter P, Weigand F, Kahl G (2000) Conservation and variability of sequence-tagged microsatellite sites (STMSs) from chickpea (Cicer aerietinum L.) within the genus Cicer. Theor Appl Genet 101:269-278
Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler, AL, Kaya N, Van Toai TT, Lohnes DJ, Chung J (1999a) The integrated map of the soybean genome. Crop Sci 39:1464-1490

Cregan PB, Mudge J, Fickus EW, Marek LF, Danesh D, Denny R, Shoemaker RC, Matthews BF, Jarvik T, Young ND (1999b) Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theor Appl Genet 98:919-928
Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758-760
Flandez-Galvez H, Ford R, Pang ECK, Taylor PWJ (2003) An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite and resistance gene analog markers. Theor Appl Genet 106:1447-1456
Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93:9975-9979
Hamilton CM, Frary A, Xu Y, Tanksley SD, Zhang H-B (1999) Construction of tomato genomic DNA libraries in a binaryBAC (BIBAC) vector. Plant J 18:223-229
He RF, Wang Y, Shi Z, Ren X, Zhu L, Weng Q, He GC (2003) Construction of a genomic library of wild rice and Agrobacte-rium-mediated transformation of large insert DNA linked to BPH resistance loci. Gene 321:113-121
Hüttel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 42:210-217
Kar S, Johnson TM, Nayak P, Sen SK (1996) Efficient transgenic plant regeneration through Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.). Plant Cell Rep 16:32-37
Kazan K, Muehlbauer FJ, Weeden NF, Lazinsky G (1993) Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.). Theor Appl Genet 86:417-426
Krishnamurthy KV, Suhasini K, Sagare AP, Meixner M, de Kathen A, Pickardt T, Schieder O (2000) Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Rep 19:235-240
Labdi M, Robertson LD, Singh KB, Charrier A (1996) Genetic diversity and phylogenetic relationships among the annual Cicer species as revealed by isozyme polymorphisms. Euphytica 88:181-188
Ladizinsky G (1995) Chickpea. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman, New York, pp 258-261
Liu Y, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA 96:6535-6540
Liu YG, Liu H, Chen L, Qiu W, Zhang Q, Wu H, Yang C, Su J, Wang Z, Tian D, Mei M (2002) Development of new trans-formation-competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning. Gene 282:247-255
Rajesh PN, Tullu A, Gil J, Gupta VS, Ranjekar PK, Muehlbauer FJ (2002) Identification of an STMS marker for the doublepodding gene in chickpea. Theor Appl Genet 105:604-607
Rajesh PN, Coyne C, Meksem K, DerSharma K, Gupta V, Muehlbauer FJ (2004) Construction of a HindIII bacterial artificial chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor Appl Genet 108:663-669
Ren C, Lee M-K, Yan B, Ding K, Cox B, Romanov MN, Price JA, Dodgson JB, Zhang H-B (2003) A BAC-based physical map of the chicken genome. Genome Res 13:2754-2758
Ren C, Xu ZY, Sun S, Lee M-K, Wu C, Zhang H-B (2004) Genomic libraries for physical mapping. In: Meksem K, Kahl G (eds) Handbook of plant genome mapping: Genetic and physical mapping. Wiley-VCH, Weinheim, in press
Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007-2023
Sharma PC, Winter P, Bunger T, Huttel B, Weigand F, Weising K, Kahl G (1995) Abundance and polymorphism of di-, tri-, and tetra-nucleotide tandem repeats in chickpea (Cicer arietinum L.). Theor Appl Genet 90:90-96

Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115-119
Su XZ, Wu Y, Sifri CD, Wellems TE (1996) Reduced extension temperatures required for PCR amplification of extremely A + T-rich DNA. Nucleic Acids Res 24:1574-1575
Tao Q, Zhang H-B (1998) Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors. Nucleic Acids Res 26:4901-4909
Tao Q, Chang YL, Wang J, Chen H, Islam-Faridi MN, Scheuring C, Wang B, Stelly DM, Zhang H-B (2001) BAC-based physical map of the rice genome constructed by restriction fingerprint analysis. Genetics 158:1711-1724
Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127-4138
Tekeoglu M, Rajesh PN, Muelhlbauer FJ (2002) Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Appl Genet 105:847-854
Udupa SM, Baum M (2003) Genetic dissection of pathotype-specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106:1196-1202
Udupa SM, Sharma A, Sharma AP, Pai RA (1993) Narrow genetic variability in Cicer arietinum L. as revealed by RFLP analysis. J Plant Biochem Biotechnol 2:83-86
Udupa SM, Robertson LD, Weigand F, Baum M, Kahl G (1999) Allelic variation at (TAA) n_{n} microsatellite loci in a world collection of chickpea (Cicer arietinum L.) germplasm. Mol Gen Genet 261:354-363
Weising K, Kaemmer D, Weigand F, Epplen JT, Kahl G (1992) Oligonucleotide fingerprinting reveals various probe-dependent levels of informativeness in chickpea (Cicer arietinum). Genome 35: 436-442
Williams PC, Singh U (1987) The chickpea nutritional quality and evaluation of quality in breeding programs. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 329-356
Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Ar-reguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90-101
Winter P, Benko-Iseppon A-M, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Meuhlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum \times C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet 101:1155-1163
Wu C, Sun S, Nimmakayala P, Santos F, Meksem K, Springman R, Ding K, Lightfoot DA, Zhang H-B (2004a) A BAC- and BIBAC-based physical map of the soybean genome. Genome Res 14:319-326
Wu C, Xu Z, Zhang H-B (2004b) DNA libraries. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine, vol 3, 2nd edn. Wiley-VCH, Weinheim, pp 385-425
Wu C, Nimmakayala P, Santos FA, Springman R, Tao Q, Meksem K, Lightfoot DA, Zhang H-B (2004c) Construction and characterization of a soybean bacterial artificial chromosome library and use of multiple complementary libraries for genome physical mapping. Theor Appl Genet 109:1041-1050
Wu C, Sun S, Lee M-K, Xu ZY, Ren C, Zhang H-B (2004d) Whole genome physical mapping: an overview on methods for DNA fingerprinting. In: Meksem K, Kahl G (eds) Handbook of plant genome mapping: Genetic and physical mapping. Wiley-VCH, Weinheim, in press
Xu ZY, Sun S, Covaleda L, Ding K, Zhang A, Scheuring C, Zhang H-B (2004) Genome physical mapping with large-insert bacterial clones by fingerprint analysis: methodologies, source clone genome coverage and contig map quality. Genomics $84: 941-$ 951

Zhang H-B (2000) Construction and manipulation of large-insert bacterial clone libraries manual. Texas A\&M University, College Station. Available via http://hbz.tamu.edu
Zhang H-B, Zhao X-P, Ding X-L, Paterson AH, Wing RA (1995) Preparation of megabase-size DNA from plant nuclei. Plant J 7:175-184

Zhang H-B, Woo S-S, Wing RA (1996) BAC, YAC and cosmid library construction. In: Foster G, Twell D (eds) Plant gene isolation: principles and practice. Wiley, Chichester, pp 75-99

[^0]: Communicated by R. Bernardo
 J. Lichtenzveig and C. Scheuring contributed equally to this study.
 J. Lichtenzveig • S. Abbo

 Institute of Plant Science and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
 E-mail: abbo@agri.huji.ac.il
 Tel.: + 972-8-9489443
 Fax: + 972-8-9489899
 C. Scheuring \cdot J. Dodge \cdot H.-B. Zhang (\boxtimes)

 Department of Soil and Crop Sciences and Institute for Plant Genomics and Biotechnology, Texas A\&M University, College Station, TX 77843-2123, USA
 E-mail: hbz7049@tamu.edu
 Tel.: + 1-979-8622244
 Fax: + 1-979-8624790
 Present address: J. Lichtenzveig ACNFP at Murdoch University, Murdoch, WA 6150, Australia
 J. Lichtenzveig

 CSIRO Plant Industry,
 Private Bag 5, Wembley, WA 6913, Australia

