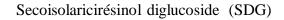


Etudes métabolomiques par RMN sur différents organes de Lin

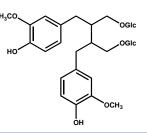
francois.mesnard@u-picardie.fr
EA 3900 – BIOPI – BIOlogie des Plantes et Innovation - UPJV

Cosmétopée 30 mai 2013

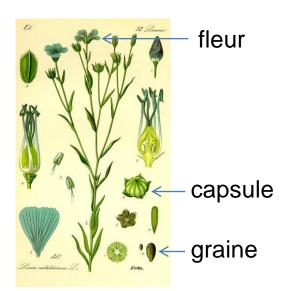


Contexte

Le lin (*Linum usitatissimum*) : une plante d'intérêt 2 types de lin pour des domaines d'application différents


- * lin fibre:
 - industrie textile
 - construction (isolation)
- * lin oléagineux:
 - construction (huile, peinture)
 - industrie agroalimentaire (acides gras polyinsaturés)
 - industrie pharmaceutique et cosmétique (lignanes)

- propriétés dans la prévention contre les cancers hormono-dépendants,
- phytoestrogènes,
- action antiradicalaire


Etude des graines

✓ Projet régional METADYN

Partenaires: GEC, LG, Plateformes UPJV, Laboulet Semences, MPI Jena

✓ Les graines de lin

Après floraison, formation du fruit (capsule), à l'intérieur duquel, il y a les graines (~8 -10 par capsule)

Graine : embryon (huile) et tégument avec plusieurs couches cellulaires (lignanes, mucilage)

*

graine mature

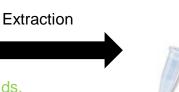
coupe de graine

partie interne : embryon

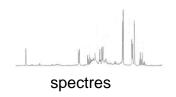
partie externe : tégument

Etude des graines

✓ <u>Mise au point d'un protocole de préparation d'échantillons adaptés à l'analyse</u> <u>métabolomique par RMN</u>


Considération des contraintes expérimentales propres aux études métabolomiques en fonction des contraintes propres au matériel végétal:

- ☐ Graine de lin (mucilage, huile, métabolites complexés)
- ☐ Analyse métabolomique (maximum de métabolites détectés, protocole rapide et reproductible)
- ✓ Application à différentes variétés de lin

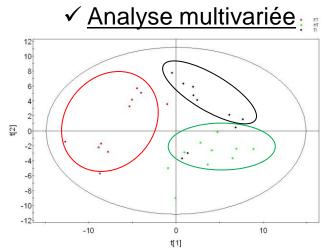


HT: High content in omega 3 fatty acids, **FT**: Weak content in omega 3 fatty acids

TI: Average content in omega 3 fatty acids

Analyse par RMN ¹H

Modifications du contenu en autres métabolites?

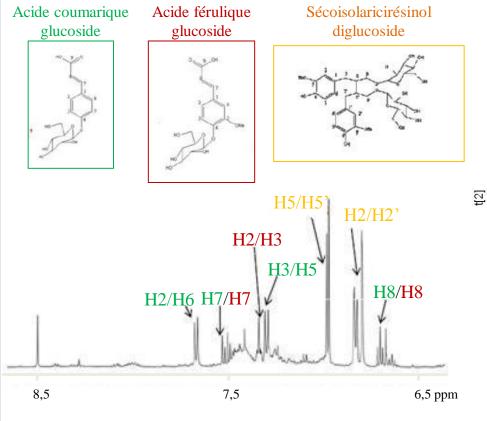

Etude des graines

✓ <u>Découpage des spectres et intégration</u>

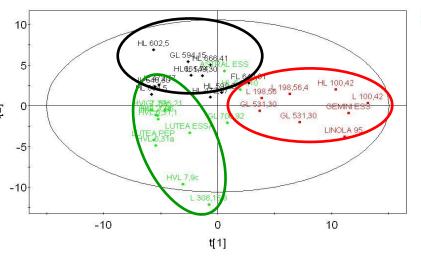
✓ Génération d'une matrice de données

	1																	1		J													
				-				1	٦	!	J.	L.	Į.						J				J	,	L.	u	Jħ	L_					FTn
				ľ	T	95	0	j	1	Ţ	5	20	ė.	Ī	İ	ij	ř		5	is A	12	1	L	i	2.0	15	,e	0.	5 6		Ť		••
		ļ		I				L				1	į					_	Ĭ		~			Ľ.	_]						I	T2
	4	ľ		Ů	j	J	Ĺ	_	١	65	L	ال	ľ	1	ı	أـ	o J	j	j	U	V	10	1.5	10		5	LO		ı	,,,	Г		14
9,5	g)	85	83	7	2	70	15	6.0	5.			4,5	4	-	5	3.0	3	-	.0	1.5	Į.	-	5	0	7	1			Ī	i	ľ	1	
								1	٦		J.	L.	l					3.4	J				J	A.U	L.	W/	Jħ	L _					HTn
				ľ	T	95	اُ	8.5	8	ľ	5	7.0	6.	ij	ı	ij	ř	Ü	5	Ä	72	1	i l	5	2.0	15	ā	0.	5 0		Ť		•
	Τ	İ	İ	İ	-	1		, AU		(A.	_		ļ	ı	ľ	Ĭ	ı	j	Ĭ	1	Ą	ul	04,	ů.		Î		1				1	HT2
		ľ		j	j	J	Ĺ			6.5	L		I	1	I			ĺ	J	U	Ī	10	1,5	10		5	LO		Ł	-	.	4	
- 05	2		81	1 3	ļ	-	15	- F	5	-		45	4	J		30		-	0	1,5	1	-	5	i e	+	J			t	ľ	ľ	1	L
***								1			J.	L.											J	, l	L.	w/	Jħ						TIn
					-			+	ļ	ļ,	5	7.0	å		H	ļ		١		,	ļ	4	_	i 1	20	ļ				,-			·•
	_	ļ	ļ	Ļ	1	1	Ĺ	Ú	1	u			Ĥ		ŀ	Į,			Ĺ	Ñ	Ų	J	i d	۱	_	ļ	Ľ	-	1	,	T	T	2
		1	+	90,	i		7	-		65	6	-	I	í		٠,		10	ļ,	+	9 a	20	1,5	10	-	5 0		4			1	1	4
	_	Ļ	_	Ų	IJ	Ш	IL.	_	J	ı	L	N	¥"	10.0	19	الہ	j	JJ,	ılı	IJ\	V	L	_	L			,		т	1			

ppm	FT I	FT	FT	HT	HT	HT	TI	TI .	TI
-0.48226	-0.127424	-0.0300475	-0.0353806	0.0638466	0.236487	0.0983232	0.0583065	0.143433	0.197317
-0.442104	-0.241539	-0.0768318	-0.0455758	0.037622	0.310559	0.14205	0.283255	0.202784	0.304014
-0.401948	0.0252702	-0.0217774	-0.0454519	-0.100814	-0.0386402	0.0458529	0.0970842	0.00279558	0.159951
-0.361791	0.00690592	0.429927	0.599574	0.237024	0.278574	0.0999329	0.292397	0.0969406	0.261016
-0.321635	-0.283444	0.00749474	-0.0177874	0.0813148	0.200645	0.0895787	-0.0435649	0.296977	0.0988321
-0.281479	-0.213461	-0.0211594	-0.198867	-0.0201786	0.182978	0.135664	-0.00856326	0.147246	0.361015
-0.241323	-0.0971256	0.40019	-0.157604	0.140149	0.177931	0.0339688	0.454134	0.337236	0.382694
-0.201166	-0.932479	-0.339542	-0.170063	-0.290741	-0.0121055	-0.0940321	-0.291783	0.00530684	-0.0072944
-0.16101	-0.689967	-0.538908	-0.498176	-0.328488	-0.610462	-0.436835	-0.431529	-0.37196	0.0111927
-0.120854	4.55711	4.75329	4.43635	4.88858	4.70692	4.50379	4.4444	4.88873	4.9621
-0.0806977	2.2014	0.0468816	0.559972	0.382601	-0.5042	-0.264439	-0.0291405	-0.346116	-0.557645
-0.0405415	26.8639	9.38107	20.7548	13.6578	5.57178	7.16943	7.26907	-0.6525	-2.64788
-0.00038521	981.932	990.374	985.024	988.386	992.375	993.11	991.932	998.082	999.034
0.039771	10.6354	18.5356	13.8145	16.8247	20.7528	24.4667	21.0865	31.5653	37.7129
0.0799273	-2.87402	-1.03937	-1.86323	-1.36436	-0.568294	-1.16714	-0.762385	-0.156828	0.759558
0.120084	4.36316	4.60185	4.86441	4.44667	4.55514	4.38939	4.49358	4.47082	4.58077



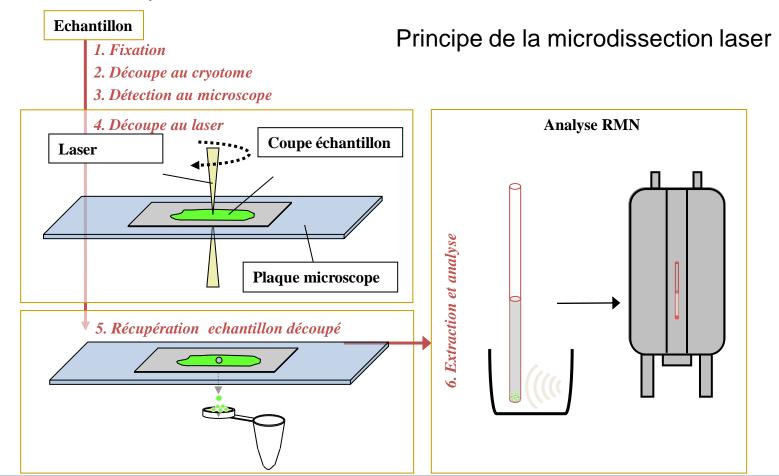
→ Discrimination entre les trois groupes de graines



Etude des graines

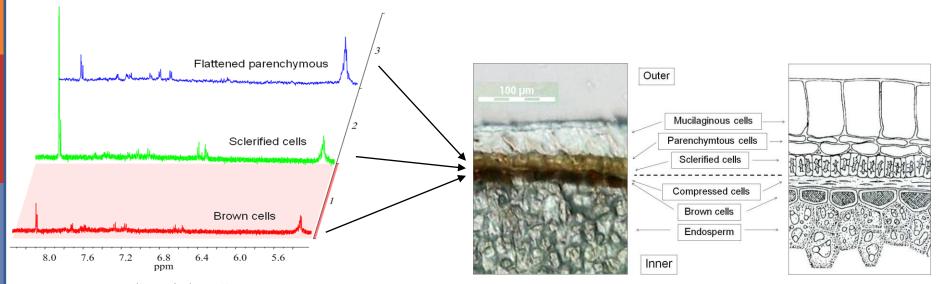
✓ <u>Détermination des déplacements chimiques discriminants et identification de</u> molécules

✓ Constitution d'une base de données



✓ <u>Développement d'un outil</u> <u>pour la sélection variétale</u>

Etude des graines


✓ Micrométabolomique

Etude des graines

✓ <u>Découpe de différentes couches du tégument et analyse RMN des échantillons</u>

Spectre RMN 1H d'extrait des différentes couches du tégument microdisséqué

→ Localisation tissulaire de l'accumulation du SDG

Etude des graines

✓ Suite du travail

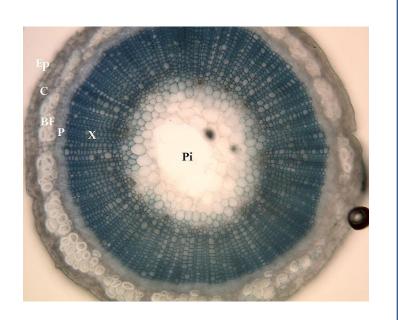
Projet FUI Granolin : évaluer l'influence des conditions

pédoclimatiques sur le contenu de la graine de lin

Programme GENESYS du projet PIVERT: étude métabolomique et transcriptomique de la graine de lin au cours de son développement: interaction tégument-embryon

Etude des tiges

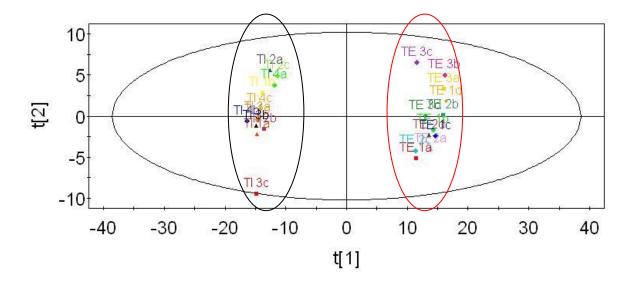
✓ Partenaires


USTL, UMR INRA 1281 SADV - S Hawkins, URCA, UMR INRA 614 FARE - B Chabbert

✓ La tige de lin

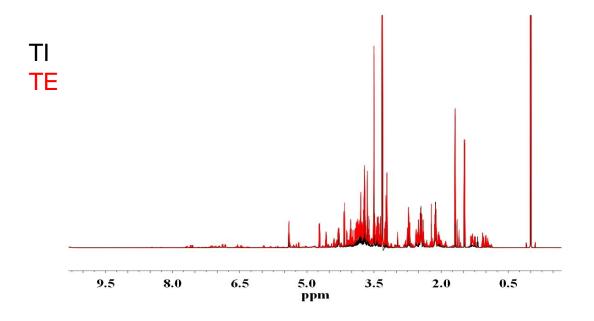
CT tige →2 types de tissus bien distincts :

- -tissus interne (riche en lignine)
- -tissus externe (pauvre en lignine, riche en cellulose)
- -modèle intéressant pour l'étude des mécanismes moléculaires de régulation de la biosynthèse de la lignine (intérêt biofuel)


Différences métaboliques entre ces deux types tissulaires?

Etude des tiges

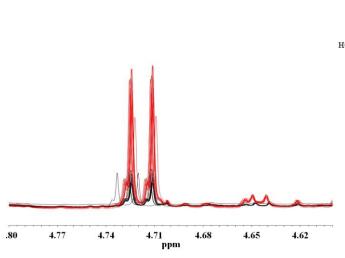
✓ <u>ACP</u>

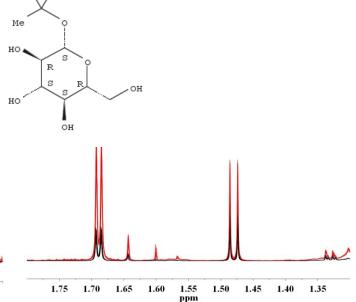


Distinction des groupes TI et TE

Etude des tiges

→ Recherche des métabolites discriminants

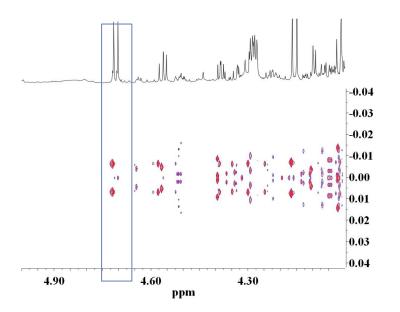

tissus externes plus riches en métabolites (semi-)polaires que tissus internes



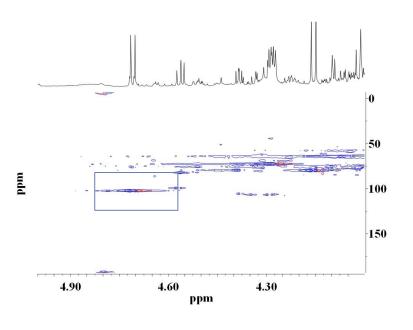
Etude des tiges

✓ Exemple de métabolite discriminant

Linamarin > pour TE



Etude des tiges


Linamarin

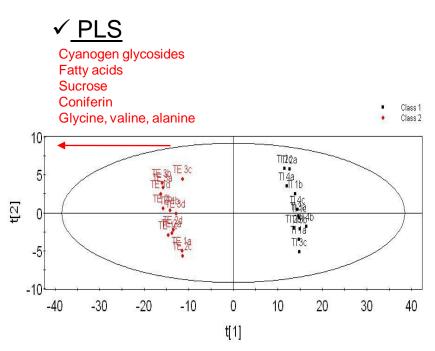
✓ Spectre J-Res

d à 4.72 ppm, J=7.7Hz

✓ Spectre HSQC

corrélation ¹H/¹³C 4.72 ppm/102 ppm

Etude des tiges


metabolite	Chemical shift	Type of signal	J (Hz)		
	(ppm)				
isoleucine	0.95	t	7.5		
	1.02	d	7		
Linoleic acid	0.96	t	7.6		
valine	1.00	d	7	[
	1.05	d	7.1		
Linolenic acid	1.01	t	7.6		
Lotaustralin or	1.07	t	7.6		
neolinustatin	1.60	s			
	1.64	s			
	1.89	dd	7.4/13.7	[
	1.98 and/or 2.00	dd	7.4/13.7	9	
	and/or 2.02				
Lactate	1.33	d	5.4		
Threonine	1.33	d	5.4		
	3.51	d	5.1		
	4.22	m			
Alanine	1.48	d	7.3	(
	3.72	q	7.3	(
linamarin	1.69	s			
	1.69	s			
	3.25	dd	7.8/9.3		
	3.39	t	9.4		
	3.49	t	9.1		
	3.87	dd	2/12		
	4.72	d	7.7		

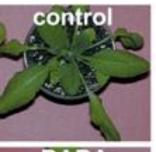
Proline	2.00	m	
	2.09	m	
	2.34	m	
	3.41	m	
	4.07	dd	6.5/8.7
Glutamine	2.13	m	
	2.45	m	
	3.71	t	6.2
Aspartic acid	2.64		
	2.81		
	3.83	dd	3.6/9.4
Choline	3.21	s	
Sucrose	3.43	t	
	3.50	dd	3.9/9.9
	3.65	S	
	4.02	t	8.4
	4.17	d	8.6
	5.40	d	3.8
Glycine	3.50	s	
Coniferin	3.90	S	
	4.24	dd	
	5.01	m	
	6.32	td	5.8/16
	6.57	d	16
	7.03	dd	2/8.3
	7.12	d	8.4
	7.14	d	2

metabolite	Chemical shift	Type of signal	J (Hz)
	(ppm)		
Trigonelline	4.45	S	
	8.10	m	
	8.86	m	
	9.14	S	
Glucose-b	4.58	d	8
Glucoside coumarylic	5.00	d	
alcohol			
	6.29	td	5.8/16
	6.58	d	16
	7.07	d	8.7
	7.42	d	8.7
Glucose-a	5.18	d	3.7
Fumaric acid	6.55	S	
Tryptophan	7.13	t	
	7.21	t	
	7.28	S	
	7.46	d	
	7.71	d	
Formic acid	8.46	S	

→ Hypolignification est associée à l'accumulation intensive d'oligolignols

Plant Physiology, 2012 (158) 1893-1915

Etude des feuilles



✓ Les feuilles de lin

✓ Le stress hydrique

depuis 50 ans, BABA: action élicitrice reconnue, protection des plantes contre pathogènes récemment, rôle dans la tolérance au stress hydrique (*Arabidopsis*)

Modifications métaboliques induites par BABA chez le lin?

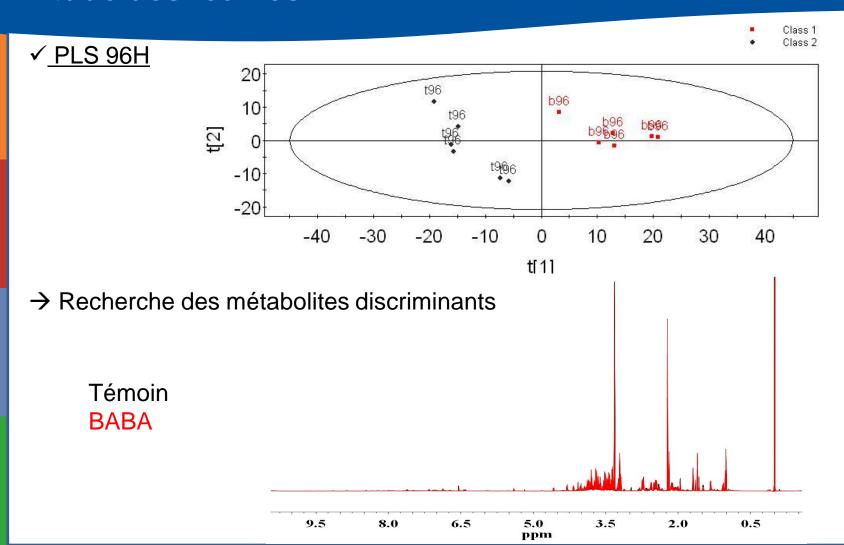
Etude des feuilles

✓ Réalisation de cultures de lin avec ou sans BABA

✓ Extraction des feuilles à différents temps de culture

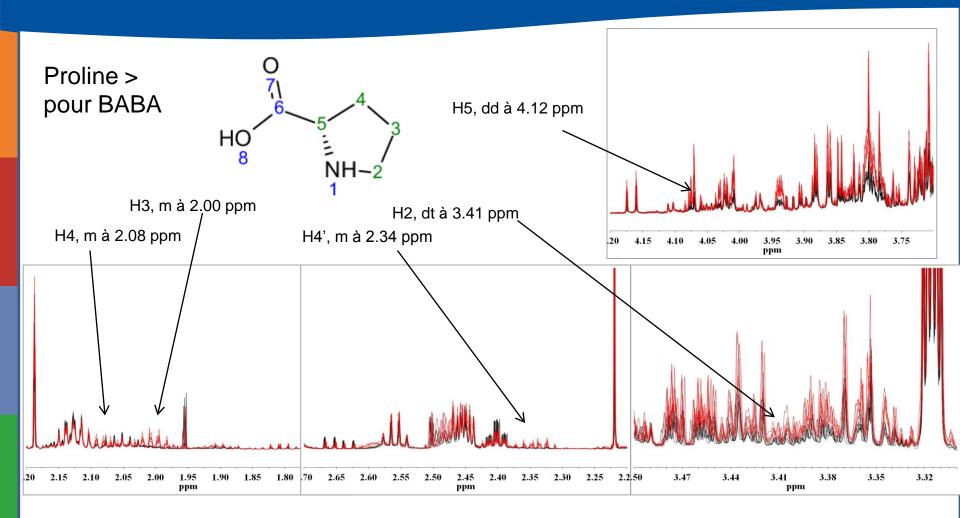


Etude des feuilles


Oy: distinction des groupes BABA et témoin

Ox : distinction des durées de culture

Temps longs: distinction + forte



Etude des feuilles

Etude des feuilles

.10

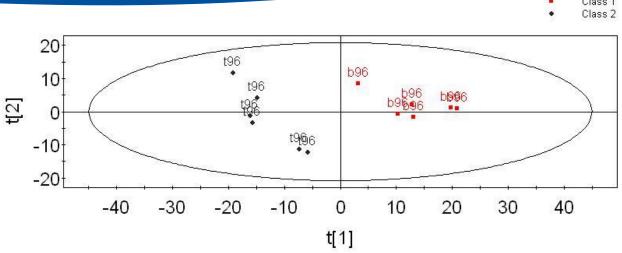
4.07

4.04

Myoinositol > pour BABA Fructose > pour BABA OHH5, t à 4.02 ppm H4, m à 3.94 ppm

4.01

ppm


3.95

3.92

3.98

Etude des feuilles

Accumulation de sucres, d'acides aminés, de polyols avec traitement BABA→ métabolites de la réponse à la perte de turgescence lors d'un stress osmotique rôle du BABA dans la tolérance au stress hydrique chez le lin

✓ Suite du travail

Projet NoStressWall: évaluer l'influence du stress hydrique sur les différents organes du lin et de brachypodium

Remerciements

- ✓ Tous les membres de l'unité BIOPI,
- ✓ Partenaires de l'UPJV
 LG, GEC, plateformes
- ✓ Partenaires nationaux
 UMR INRA 1281 SADV; UMR INRA 614 FARE ; LBLGC EA1207
- ✓ <u>Partenaires internationaux</u>

 Research Group Biosynthesis / NMR MPI for Chemical Ecology Jena

 Dpt of Pharmacognosy Institute of Biology, Leiden University
- ✓ <u>Partenaires industriels</u>
 Laboulet Semences, Linéa, Lesieur, Alban Muller, Aegilops