

Overview

- Background information
- Pitahaya production worldwide
- The need for pitahaya research
- Current research efforts at UC
- Field observations & results to date
- What next?

The Pitahaya

- Also known as Strawberry Pear, Dragon Fruit in South East Asia, and Pitaya in Central America
- Native to tropical America, range from Southern Mexico to Northern South America
- Taken by the french to South East Asia at the turn of the 19th century

Pitahaya Types

- Over 25 species of Hylocereus identified
- Differentiated by stem & fruit characteristics (fruit skin and flesh color)
- Uncertainty about proper ID
- Two commonly available in CA:
 - Hylocereus undatus (red skin, white flesh)
 - Hylocereus sp. (primarily red skin & red flesh)
 - Many Hylocereus hybrids (several skin and flesh colors combinations, from yellow to deep magenta or dark red)
- Selenecereus megalanthus
 - Yellow or Colombian yellow, thorny skin and white, translucent flesh

Why Pitahayas?

- Great potential as a new crop for growers in California
- Increasing demand for new, exotic fruits
- Current demand exceeds supply, current prices are high (retail @ \$10/pound)
- Relatively high antioxidant activity when compared to other subtropical fruits

Pitahayas in California

Commercial Production

- US production is limited to small scale producers of Hylocereus sp. in California and Florida, few large plantings
- Mostly white fleshed varieties used for fresh consumption or for décor/garnish
- Red fleshed varieties becoming more popular for fresh consumption and for processing

Commercial Production

- Nicaragua is main producer of Hylocereus sp. (red flesh) in Central America
 - 800-1000 Hectares planted under various production systems
- Fruit consumed fresh or processed for use in ice cream and refreshments
- Pitahaya pulp exported to US and as fresh fruit to Canada and Europe (APRONOT)

UC Small Farm Program/UCCE San Diego County

Commercial Production

- Colombia top producer of yellow pitahaya (Selenecereus megalanthus) in South America
- Ecuador also producing both Hylocereus sp. and Selenecereus megalanthus
- Vietnam main producer of Hylocereus undatus in South East Asia
- Israel also a significant producer/shipper to the European Union

Varieties??

- Twenty five species and up to 70 different clones available in Southern California
- No data or information available on the performance of various clones
- Lack of reliable, consistent information about varieties a major challenge to growth of industry
- 18 varieties under experimentation at SCREC

Commercial Varieties?

- Five clones grown commercially in Nicaragua
 - Orejona, Rosa, Cebra, Lisa, San Ignacio
 - Many other clones available
 - All produce fruit without hand/cross pollination
- Several clones promoted as "superior" but no replicated research data available
- Huge challenge for commercial production

Current Research Efforts

- Evaluate varieties for commercial production in California
 - Concentrate on self-fertile varieties with good yield, fruit & flavor characteristics
- Use molecular markers to narrow gene pool for breeding program
- Determine irrigation requirements
- Evaluate promising varieties in controlled environments

Varieties Under Study

- Cebra (Nic)
- Rosa (Nic)
- Orejona (Nic)
- Lisa (Nic)
- Sin Espinas (Nic)
- San Ignacio (Nic)
- Mexiana (Mex)
- Colombiana (SD/Col)
- Valdivia Roja (Mex)

- Bien Hoa Red (SD)
- Bien Hoa White (SD)
- Delight (SD)
- American Beauty (FL)
- Haley's Comet (FL)
- Physical Graffity (FL)
- Vietnamese Jaina (FL)
- Yellow Dragon (FL/Col)
- Seoul Kitchen (FL)

Propagation

- Cuttings is most preferred method for commercial plantings
 - use one year old wood, at least 12 inches long
 - May fruit after one year
- Seed germinates readily, great potential for breeding program
 - Slow grower, may take up to 6 years to fruit
- Grafting is also possible, but benefits not quite clear yet

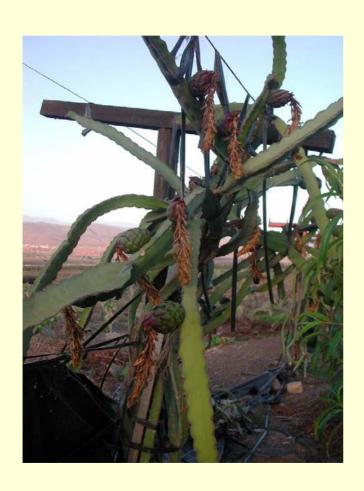
Planting & Planting density

- Rooted cuttings are most common method, but direct planting of cuttings is possible
- 12 to 18 inch long cutting is ideal
- Plant spacing depends on production system
 - 6 by 10 feet spacing used in Nicaragua (600 pl/ac)
 - 4 by 6 observed in California and reported in Spain
- Spacing depends on trellis system and plant structure desired

Pruning

- There is no best way to prune
- Pruning system will depend on trellis/support system, variety, location, goals and desired plant structure
- Three basic Strategies or goals for pruning:
 - Training usually prune to encourage upright growth during first year
 - Sanitation removal of dead or diseased stems
 - Thinning to improve air circulation and exposure to sunlight

Trellising


- Impacted by variety, location and desired plant structure
- Many different types used in producing areas
 - Anything that can support a plant can be used
 - Live tutors used in Central America by small scale producers but not an option for SD because of water cost
 - Concrete posts used in Southeast Asia
 - Combination of metal pipes and treated posts used in San Diego
- Wire support system used in trials

Single post support system

- Up to about 5-6 feet, depending on height of operator
- Promotes an umbrella or mushroom like structure
- Planting managed more like an orchard

T Support System

Ladder type support system

- Similar growth as T-type
- Used with multiple cuttings per planting

Wire support system

Pollination

- Night blooming cactus, large flowers
- Some are self-pollinating and some require hand/cross pollination
- Pollinized by moths and bats in Central America
- Hand and cross pollination has improved fruit set in Israel (up to 100% set)
- For commercial production we should concentrate on self pollinating clones

UC Small Farm Program/UCCE San Diego County

Pest Problems

- No major pest problems observed yet
- Cactus scale a problem in the greenhouse but not in the field
- Rodents (gophers and squirrels) can be a significant problem'
- Ants & aphids a problem, damage young shoots, and flower buds
- Weeds

Cactus Scale

Gophers & Rodents

Ants & Aphids

UC Small Farm Program/UCCE San Diego County

Weeds

UC Small Farm Program/UCCE San Diego County

Fruit Uses

- Used in refreshments in Central America
- Red flesh used as colorant in the processed food industry (Snapples, Sobe)
- Consumed fresh, as a desert item in the US, Canada, and Europe
 - Sliced in salads or cut in hald and served chilled, with flesh eaten with spoon
- Used for decoration Southeast Asia, US

Results to Date

- Varieties in trial adapted well to growing conditions at SCREC
- Most selections set fruit WITHOUT hand pollination
 - Pollination done by bees & other insects
- Plants in trial produce well WITHOUT shade
- Fruit size & quality good, good marketable yields but results NOT FINAL yet

Results to Date

Variety	Color Skin/Flesh	Avg. Wt. (gms)	Brix Score	Days to Harvest
1. Cebra	Red/Red	468	17.05	46
2. Rosa	Red/Red	384	17.01	45
3. Orejona	Red/Red	438	17.3	45
4. Lisa	Red/Red	465	17.02	44
5. Sin Espinas	Pink/Red	393	16.5	43
6. San Ignacio	Red/Red	552	15.6	48
7. Mexicana	Pink/White	495	14.04	40
9. Valdivia Roja	Red/Red	250	17.9	40
10. Bien Hoa Red	Greenish Red/Fuccia	360	18.9	41
11. Bien Hoa White	Pink/White	388	11.85	37
12. Delight	Red/Pinkish White	371	18.08	41
13. American Beauty	Greenish Red/Fuccia	380	18.51	43
14. Haley's Comet	Red/Fuccia	482	16.7	38
15. Physical Graffity	Red/Pink	374	17.93	40
18. Seoul Kitchen	Red/White	518	12.36	41

UC Small Farm Program/UCCE San Diego County

Results for Pitahaya Field Day

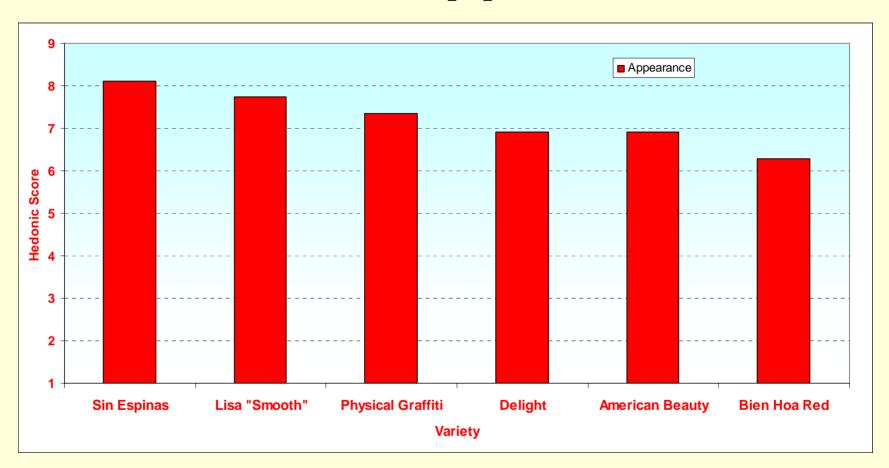
- External Appearance
- Flavor
 - When you can see fruit color
 - When you can't see fruit color (under red light)

American Beau 261 = 469

Lisa "Smooth" 728 = 871

Bien Hoa Red 203 = 562

Physical Graffiti 863 = 706


Delight 283 = 512

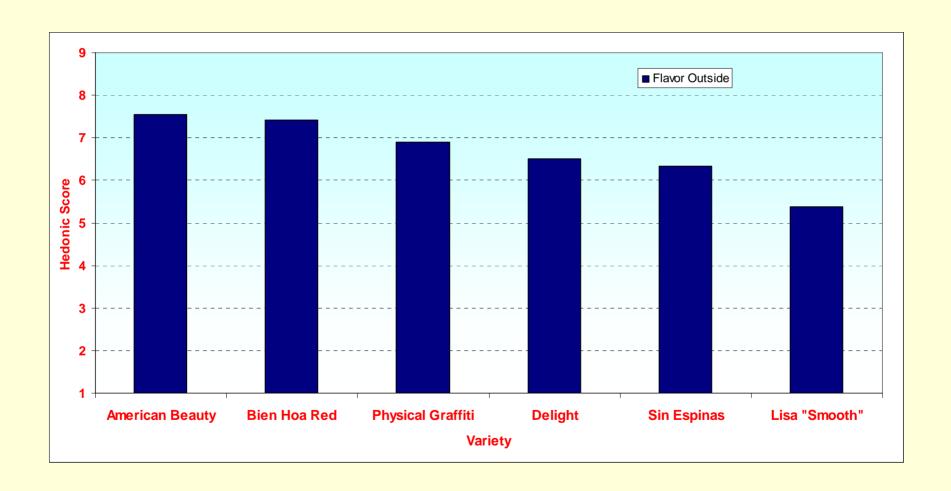
Sin Espinas 268 = 102

External Appearance

American Beauty 261 = 469

Bien Hoa Red

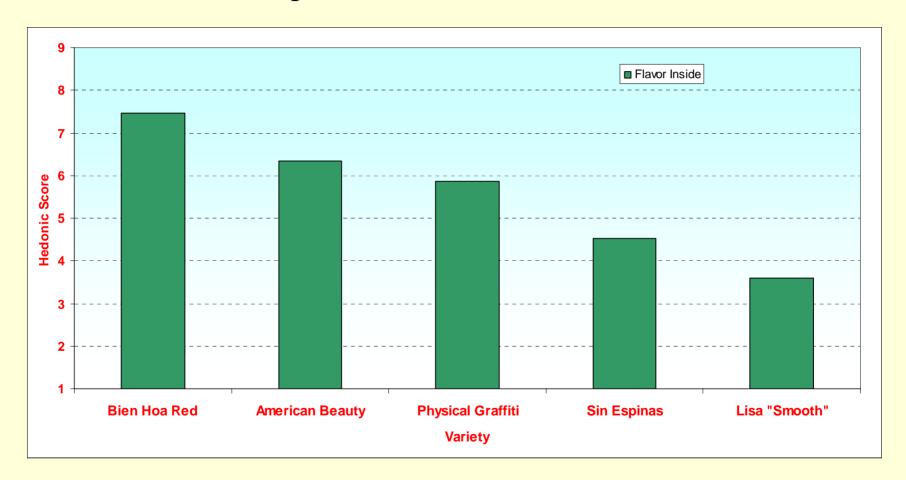
203 = 562

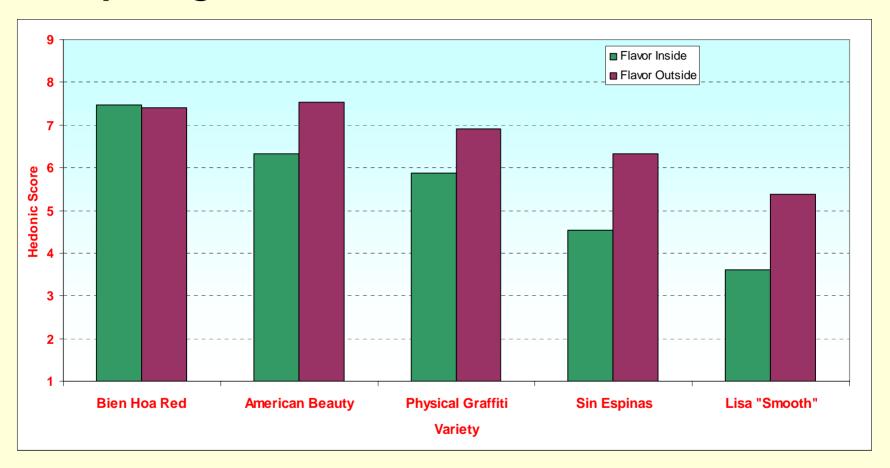

Lisa "Smooth" 728 = 871

Physical Graffiti 863 = 706

Delight 283 = 512

Sin Espinas 268 = 102


Flavor When you CAN see fruit color

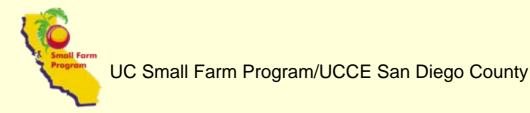

Flavor

When you CAN'T see fruit color

Flavor

Comparing the difference between 2 flavor tests

Future Research Efforts


- Continue evaluation of varieties for commercial production in California
- Initiate breeding program based on field observation and results of molecular marker work
- Determine irrigation requirements
- Evaluate superior varieties in controlled environments

Questions??

Ramiro Lobo
UC Farm Advisor, Farm Advisor
Small Farms & Agricultural Economics
UCCE San Diego County
(760)745-4716

relobo@ucdavis.edu

http://cesandiego.ucdavis.edu

