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Abstract

There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained
on farm and in species’ natural populations in order to enhance their use and conservation. Such evaluations are relevant
for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of
domestication and local populations can offer yet-unknown traits of high value to further domestication. For many
outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain
local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities
of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better
understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic
resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial
analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and
cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal
conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ
collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya’s
putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in
Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization
of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous
studies could do, i.e. at province and department level in Ecuador and Peru, respectively.
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Introduction

Many useful tropical and subtropical tree species, even those

commonly cultivated, are still in incipient stages of domestication,

with their genetic resources often principally or exclusively, present

in situ, i.e. on farm in home gardens or orchards and/or in natural

populations. The local diversity of these tree species could offer

yet-unknown traits of high value to further domestication [1]. For

many outcrossing species, such as most tropical tree species, this

genetic diversity is important to sustain local production as many

of these species are vulnerable to inbreeding depression [2].

Diversity is also a key factor for adaption to environmental

changes [2]. However, tree species are increasingly vulnerable to

losses of genetic diversity, referred to as genetic erosion, due to

decreased population sizes resulting from land use changes and

land degradation, and due to changes in local climate that may

select against some genotypes [3]. Therefore, there is a growing

call to assess the conservation status of the genetic resources of tree

species [4].

The formulation of effective and efficient conservation strategies

requires a thorough understanding of spatial patterns of genetic

diversity [5]. A better knowledge of areas of high genetic diversity

is also important in optimizing the use of genetic resources, as the

likelihood to find interesting materials for breeding is higher where

levels of genetic diversity are maximal [6], [7]. Initiatives to

prioritize research on global plant genetic resources, such as those

lead by the Food and Agriculture Organization of the United

Nations (FAO), include calls for more inventories and surveys to
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increase understanding of variation in plant genetic resources,

explicitly referring to the application of molecular tools in such

assessments [8], [9].

This study focuses on cherimoya (Annona cherimola Mill.), an

underutilized fruit tree species that belongs to the Annonaceae, a

family included within the Magnoliales in the Eumagnoliid clade

among the early-divergent angiosperms [10]. This Neotropical tree

species still is in its initial stages of domestication [11] and it is

considered at high risk of losing valuable genetic material from its

genepool [12]. Cherimoya fruits are widely praised for their excellent

organoleptic characteristics, and the species is therefore considered

to have a high potential for commercial production and income

generation for both small and large-scale producers in subtropical

climates [13]. Cherimoya presents protogynous dichogamy, i.e. it

has hermaphroditic flowers wherein female and male parts do not

mature simultaneously, which favors outcrossing in its native range

[14]. For commercial production, hand pollination with pollen and

stamens is common practice due to lack in overlap of the female and

male stages and absence of pollinating agents outside its native range

[14]. At present, advanced commercial production is found in Spain,

the world’s largest cherimoya producer, with around 3000 ha of

plantations, while small-scale cultivation occurs throughout the

Andes, Central America and Mexico.

Most early chroniclers and scientists proposed the Andean

region, and more specifically, the valleys of southern Ecuador and

northern Peru, as cherimoya’s centre of origin [12], [15], [16].

The existence of natural cherimoya forest patches, which are

scattered across the inter-Andean valleys in Ecuador and northern

Peru, supports this hypothesis. Nonetheless the possibility that

these are feral populations cannot be excluded. This phenomenon

has been observed in the case of several fruit tree species, such as

olives [17]. An alternative hypothesis for the centre of origin of

cherimoya is Central America [18], which would imply that the

area of northern Peru and southern Ecuador is a secondary centre

of diversity. Most relatives of cherimoya are native to Central

America and southern Mexico, which is an argument in favor of

this alternate hypothesis (H. Rainer, Institute of Botany, University

of Vienna, 2011, pers. comm.). In any case, cherimoya fruits were

consumed in the Andean region in antiquity [12] and the

movement of germplasm across Mesoamerica, southern Mexico

and the Andes probably took place in pre-Columbian times.

The conservation status of cherimoya genetic resources has

improved considerably in recent years. Due to increasing

commercial prices for cherimoya at local markets, Andean farmers

are stimulated to conserve in situ the cherimoya trees growing in

their backyards. Indeed, trees established in home gardens and

orchards are common throughout the Andean region in Bolivia,

Ecuador and Peru, which usually originate from planted local

seeds or chance seedlings [11], and among them some individuals

show promising traits for future breeding programs [19]. In Peru,

the local cultivar ‘Cumbe’ is already fetching retail prices

significantly above the prices of unselected cherimoya fruit types

[20]. In contrast to most tropical and subtropical underutilized

fruit tree species, cherimoya genetic resources are also well

conserved ex situ. Several field collections have been established in

Spain, Peru and Ecuador, preserving over 500 different accessions

[11], [21]. The Spanish collection based at la Estación

Experimental La Mayora in Malaga, which holds over 300

accessions (190 of them collected in the Andean region), is

currently used as a source of materials for the Spanish cherimoya

breeding program and has been thoroughly analyzed using

isozymes [22]–[24] and microsatellite markers [11], [25]–[27].

The recent development of new molecular tools in combination

with new spatial methods and increased computer capacity has

created opportunities for new applications of genetic diversity

analyses [28]–[30]. Whereas neutral molecular markers are

considered a sound tool to measure patterns and trends in the

use and conservation of plant genetic resources [31], Geographic

Information Systems (GIS) provide opportunities to carry out

spatial analyses of genetic diversity patterns identified with these

markers [32]. GIS can be used to interpolate genetic parameters

between sampled populations (e.g. [33]–[35]), to apply re-

sampling of georeferenced samples within a defined buffer zone

[36], [37], or to develop grid-based genetic distance models [38],

[39]. GIS are also an acknowledged tool to prioritize areas for

conservation of plant genetic resources [40]. Several studies have

used spatial analysis to develop conservation strategies for plant

genetic resources based on molecular marker data (e.g. [36], [41]).

Moreover, results obtained using GIS can be presented in a clear

way on maps, which facilitates the incorporation of these findings

into the formulation of conservation strategies and the implemen-

tation of conservation measures [42].

In this article we further explore the possibilities of incorporating

molecular marker data into GIS to better visualize and understand

spatial patterns of genetic diversity, as a key input to optimize

conservation and enhance use of local plant diversity, based on a

case study of cherimoya. The specific objectives of this article are to

(1) apply innovative spatial analysis to improve understanding of the

geographic distribution of cherimoya ‘s genetic diversity in its

putative native range, based on microsatellite molecular markers

(SSRs); and (2) formulate optimal conservation strategies by

prioritizing areas for in situ conservation and identifying existing

diversity gaps in ex situ collections. Based on the outcomes, we

discuss how these spatial analyses can be used to define possible

strategies that guarantee the long term conservation of cherimoya

genetic resources and how these analyses can be applied to improve

conservation and use of tree and crop genetic resources in general.

Results

A total of 1504 trees were analyzed in this study, i.e. 395 from

Bolivia, 351 from Ecuador and 758 from Peru. Of those, 502 are

currently conserved in ex situ collections (either in Ecuador, Peru or

Spain) whereas the remainder trees were sampled in situ. The

molecular analysis included a core set of nine microsatellite loci

[27] resulting in 71 different alleles. In all analyses of a-diversity

and b-diversity (also referred to as divergence) we applied circular

neighborhood re-sampling technique resulting in a total dataset of

48,128 trees (Figure 1). This technique facilitates analysis of

patterns in genetic variation across extensive distribution ranges

while maintaining high-resolution grids.

Allelic richness
Allelic richness is a straightforward measure of genetic diversity

that is commonly used in studies based on molecular markers that

aim at selecting populations for conservation [5], [43]. Figure 2

presents the distribution of the average number of alleles per locus

found in the study area. It clearly shows that a higher number of

alleles is present in the northern part of the study area, specifically

in northern Peru, around Cajamarca Department, while other

areas of high diversity are located on the border zone between

Ecuador (Loja Province) and Peru (Piura Department), in the

northern part of Ecuador around its capital Quito and in the

northern part of the Lima Department in Peru.

Despite the effort to implement a similar sampling density

throughout the study area, some areas (often locations with a

higher abundance of traditionally managed cherimoya trees and

stands) have been sampled more intensively than others (Figure 1),

Spatial Analysis of Plant Genetic Resources
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generating a sampling bias [44]. The rarefaction methodology

corrects this sampling bias by recalculating allelic richness in each

grid cell to a minimum sample size [5]. Figure 3 shows only the

grid cells where 20 or more trees were present after applying a

one-degree circular neighborhood, and for which allelic richness

was corrected following the rarefaction methodology to a

minimum sample size of 20 trees. The Cajamarca Department

in northern Peru remains the area with the highest diversity, up to

an average of 5.18 different alleles per locus. After correction by

rarefaction, diversity in Ecuador, especially around Quito, is

reduced, whereas the same seems to happen in the northern part

of the Lima Department, in Peru, indicating the presence of a

sampling bias around the capitals of both countries. The area

around the Peruvian capital Lima, an important commercial

cherimoya cultivation area, shows the lowest allelic richness within

Peru, probably due to the widespread cultivation of a vegetatively

propagated cultivar, ‘Cumbe’. Another striking result is that allelic

richness in Bolivia, already low in the uncorrected analysis, is even

lower with correction of sampling bias, resulting in an even higher

contrast between cherimoya genetic diversity in Bolivia and that

found in Peru and Ecuador.

Locally common alleles
Priority for conservation should be given to populations that

retain locally common alleles; these are alleles that occur in high

frequency in a limited area, and can indicate the presence of

genotypes adapted to specific environments [43]. Figure 4 shows

the richness of locally common alleles per locus in the study area.

The high diversity levels found in the Cajamarca Department in

northern Peru are reconfirmed. Besides harboring the highest

number of different alleles, it also contains the highest number of

locally common alleles. This makes this area a priority for in situ

conservation, both of cultivated trees on farm and of natural

stands. The border region between Peru and Ecuador (Piura

Department and Loja Province) is another area where a high

concentration of locally common alleles has been observed and

may, therefore, be a second area to prioritize in situ conservation

efforts. To a lesser extent, the area around Quito in Ecuador and

the northern part of the Lima Department in Peru also present

locally common alleles.

Expected Heterozygosity (He), Fixation Index (F) and
Genetic Distance (GD)

In situ conservation should focus on viable populations, where

inbreeding and subsequent loss of alleles are minimal. Parameters

that allow assessment of inbreeding are expected heterozygosity

(He) and the fixation index (F). The fixation index (F) was used to

detect areas subjected to high inbreeding depression and, as the

inverse to that, excess in heterozygosity [45]. Figure 5 shows the

values for He in the study area, again confirming Cajamarca

Figure 1. Number of trees per grid after re-sampling. This map is made with a 10-minutes grid applying a one-degree circular neighborhood.
doi:10.1371/journal.pone.0029845.g001
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Department in northern Peru as the area with the highest genetic

diversity. High He values, however, radiate towards the south (as

opposed to the higher diversity towards the north found in the

allelic richness analyses) indicating higher levels of diversity in

terms of heterozygosity in central Peru compared to Ecuador.

Figure 6 shows the values for the fixation index, with F values close

to 0 in the Cajamarca Department indicating that natural and

cultivated cherimoya tree stands in this area have not experienced

inbreeding. The highest values for F are observed in central

Ecuador, suggesting that the level of inbreeding is highest in that

part of cherimoya’s Andean distribution range.

The most important Peruvian commercial cherimoya cultiva-

tion area, located near the Capital Lima, particularly shows

negative F values, i.e. excess of heterozygosity. Most of the

cherimoyas cultivated in this area are vegetatively propagated

clones of the cultivar ‘Cumbe’ which resulted in highly

heterozygous values from the molecular analysis, i.e. the ‘Cumbe’

accession conserved in the Spanish genebank is heterozygote for

eight of the nine microsatellite loci analyzed in this study (Ho value

of 0.89). An analysis of the average genetic distance, between the

‘Cumbe’ accession and the genotypes in each grid cell with 20 or

more re-sampled trees in the study area, clearly shows lowest

genetic distance values near the Peruvian capital, Lima, indicating

that the cherimoya trees in this area are very similar to the cultivar

‘Cumbe’ (Figure 7). This area clearly differs from the rest of the

cherimoya distribution area in our study, which is more likely to be

a product of natural gene flow patterns.

b-diversity (divergence)
Besides a-diversity parameters, aimed at identifying those areas

with highest allelic richness and balanced allele frequencies, in situ

conservation also needs to take into account allelic composition

(b-diversity or divergence) as it is possible that populations with

low allelic richness possess unique allele compositions, different

from those of populations in other areas of the range, which

would warrant their in situ conservation [5]. Applying the

Structure software (see [46]) and using the statistic parameter

DK [47] to define the number of clusters with genetically similar

trees present in the study area, we differentiated two main

populations. Figure 8 shows the differentiation of the populations

among distribution areas in cluster A and B, respectively. Cluster

A has the highest presence in the areas previously identified as

those with the highest allelic richness (Cajamarca Department in

northern Peru, border zone between Ecuador and Peru and the

area around Quito in Ecuador), whereas cluster B is mainly

confined to southern Peru and Bolivia. Bolivian cherimoya trees

are almost exclusively assigned to cluster B. Particular areas that

did not show a strong linkage to either of the two clusters

included the surroundings of the city of Lima and Loja Province

in southern Ecuador.

Figure 2. Allelic richness. This map shows the average number of alleles per locus in all 10-minutes grid cells applying a one-degree circular
neighborhood.
doi:10.1371/journal.pone.0029845.g002
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Ex situ conservation status
Of the 1504 trees included in this study, 502 genotypes are

currently conserved in ex situ collections (either in Ecuador, Peru or

Spain). Only eight alleles, corresponding to 11% of the total of 71

alleles that have been found in the study area, are not represented

in any accession of these collections. Figure 9 shows the

distribution of the missing alleles. There is only a small area with

a significant portion of missing alleles (3 in total), i.e. in southern

Ecuador (Azuay Province). Natural cherimoya forest patches and

areas of traditional cherimoya cultivation in this province should

be prioritized for future cherimoya collection missions. With

almost 90% of alleles found to be present in ex situ collections, it

can be concluded that, in general, cherimoya diversity from the

countries analyzed is fairly well conserved ex situ.

Distribution range of cherimoya in the Andes
The above results and subsequent conclusions are obviously

only of practical use if the sampling performed was indeed

representative for the distribution of cherimoya in the study area.

Maxent species distribution modeling software was applied to

model cherimoya’s distribution range in Ecuador, Peru and

Bolivia based on the climatic niche in which the 1504 sampled

trees of our study were located. The modeled distribution was then

compared with the sampled areas in these countries.

Cross-validation, to evaluate the quality of the distribution

model, returned an Area Under Curve (AUC) value of 0.9, which

indicates good model performance [48]. AUC is a commonly used

parameter in the validation of distribution models. Another

measure of validation, the Kappa value, returned a value of

0.799 indicating the model performed even excellent [49].

In general, sampling covered most of the cherimoya-modeled

distribution (Figure 10); 46% of the modeled distribution area is

covered by grid cells with 20 or more re-sampled trees (Figure 10,

dark blue areas). In 24.5% of the potential area of cherimoya

occurrence less than 20 trees were re-sampled (light blue areas)

whereas 29.5% of the modeled range was not sampled (red areas)

and are considered sample gaps. The largest sample gaps are

located in northern Peru in the transition zone between the

Peruvian Andes and the Amazon (in the Departments of San

Martin and Amazonas) and in southern Peru (in the Departments

of Junı́n, Pasco, Huancavelica, Ayacucho and Puno). The Andean-

Amazon transition zone should be priority for future complemen-

tary cherimoya collection trips because it is adjacent to an area

where already high levels of diversity have been found, i.e.

Cajamarca Department in northern Peru.

Cherimoya was predicted absent by the distribution model in a

significant area of southern Peru, indicating that the environmen-

tal conditions in substantial parts of that region are not suitable for

Figure 3. Allelic richness corrected for sample size by using rarefaction. This map shows the average number of alleles per locus in the 10-
minutes grid cells applying a one-degree circular neighborhood and a correction by rarefaction to a minimum sample size of 20 trees.
doi:10.1371/journal.pone.0029845.g003
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cherimoya cultivation (Figure 10). This explains why no trees have

been sampled in that area.

Discussion

Areas of high diversity in the cherimoya centre of origin
Our results are in line with a previous genetic study of the

Spanish cherimoya collection that also distinguished populations

in Ecuador and northern Peru from those in southern Peru [11],

and corroborate with results from isozyme markers that showed

high genetic variation present in Peru and Ecuador [24].

However, our study is based on a much higher number of samples

and, therefore, provides much more detail for prioritizing areas for

in situ conservation and germplasm collection.

At the allele level, our analysis confirms that, within our study

area, the highest allelic richness as well as the highest number of

locally common alleles are found in the area of southern Ecuador

and northern Peru, i.e. the putative centre of origin of cherimoya.

Northern Peru, and more specifically the Cajamarca Department,

shows the highest levels of genetic diversity.

The highest values of the fixation index, which is an indication

of inbreeding, were found in Ecuador. Inbreeding may occur

because of reduction and fragmentation of natural stands and

cultivated areas, increasing the risk of allele loss, which eventually

leads to genetic erosion [50]. Our results do not allow us to

determine how much genetic erosion has taken place in Ecuador

in comparison to Peru and Bolivia, but the high inbreeding values

in Ecuador could explain why currently allelic richness is lower in

this country than in northern Peru.

At the population level, significant differences can be observed

between the cherimoya germplasm present in the area with highest

diversity (where genotypes belonging to cluster A are predominant)

and genotypes found in areas with lower diversity, i.e. in southern

Peru and Bolivia (represented by cluster B). Cluster A seems likely

to represent material that is genetically closer to the ‘‘wild’’

cherimoya type. No natural cherimoya stands have been observed

in Bolivia, and this probably explains why no genotypes pertaining

to cluster A have been recorded there. Cluster B probably

corresponds to a genepool that is genetically different from most of

the wild or semi-domesticated cherimoya found in northern Peru

and Ecuador and that could have formed the basis for Bolivian

cherimoya cultivation. Looking at the areas of high cluster B

dominance, Bolivian germplasm probably originates from south-

ern Peru.

Although most early chroniclers and scientists proposed

southern Ecuador and northern Peru to be cherimoya’s centre

of origin [12], [15], [16], [51], the possibility of that area being a

secondary centre of origin cannot be discarded. A diversity study

Figure 4. Locally common alleles. This map shows the average number of alleles per locus in a 10-minutes grid cell that are relatively common
(occurring with a frequency higher that 5%) in a limited area (in 25% or less of the grid cells) applying a one-degree circular neighborhood.
doi:10.1371/journal.pone.0029845.g004
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similar to the one described in this study, but including cherimoya

genotypes from Central America and Mexico, would shed light on

the genetic variation across the complete pre-Columbian distri-

bution range of cherimoya and provide additional clues on the

primary centre of origin and diversification of this species.

Ex situ and in situ conservation of cherimoya genetic
resources in the Andean region

Most alleles identified in our study are represented in one or

more of the existing ex situ collections in Ecuador, Peru and Spain.

The results obtained suggest that the highest priority for further

collection should be the Azuay Province in Ecuador, since

cherimoya stands in this area harbor most alleles not yet included

in genebanks. It is also one of the areas with the highest risk of

allele loss because of the high observed levels of inbreeding,

compared to other parts of the study area. An additional priority

area for germplasm collection is the transition zone from the

Andes to the Amazon in Peru (in the higher elevation areas of the

Departments of San Martin and Amazonas), which was not

sampled in this study. According to the distribution model there is

a high probability of finding cherimoya stands in this region,

which probably is also high in genetic diversity, because it is

adjacent to the area with the highest diversity found in this study,

i.e. the Cajamarca Department in northern Peru.

A priority for in situ conservation should be the Cajamarca

Department, the area with the highest levels of genetic diversity. A

second area of priority should be the Loja Province in southern

Ecuador, an area with a high number of locally common alleles.

Both areas are assigned mostly to cluster A. Since trees pre-

dominantly assigned to cluster B have a particular allelic

composition in comparison to trees predominantly grouped in

cluster A, genotypes of cluster B should also be considered in

conservation activities. The part of Lima Department north of the

Peruvian capital, which is assigned mostly to cluster B, could be

prioritized for in situ conservation of genotypes from this cluster. In

contrast to the low levels of allelic richness around Lima city in the

southern part of the Lima Department, the northern part of this

Department contains a fair number of locally common alleles.

The long-term conservation of cherimoya genetic resources is

far from guaranteed. As commercial prices for fruits can fluctuate,

short-term incentives for farmers to maintain cherimoya as a

profitable crop are reduced and a decline in commercial interest

may lead to the replacement of cherimoya trees by other crops,

increasing the risks of genetic erosion. Around Quito, for example,

most of the traditional cherimoya cultivation is being replaced by

avocado plantations, which are commercially more attractive (X.

Scheldeman, pers. obs.). An increase in commercial prices for

cherimoya products will not necessarily promote the conservation

Figure 5. Expected heterozygosity (He). This map shows the average He value in each 10-minutes grid cell with 20 or more trees applying a one-
degree circular neighborhood.
doi:10.1371/journal.pone.0029845.g005
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of the existing genetic diversity. Indeed, in our study we found low

levels of genetic diversity around the Peruvian capital, Lima where

the clonally propagated cultivar ‘Cumbe’ is widely cultivated,

because it fetches higher prices in the market.

A promising strategy to enhance in situ conservation on farm is

through the promotion of seed or bud-for-grafting exchange

between farmers [52]. During the CHERLA project, cherimoya

fairs, which facilitate exchange of plant material, were organized

in different areas of this study, including the Cajamarca and Piura

Departments in Peru, Loja Province in Ecuador and various

departments in Bolivia. Seed and bud exchange can also be a way

to conserve local races from unfavorable alterations in the local

environment due to climate change, by re-distributing them in

new areas with suitable climate conditions [53]. Another way to

ensure conservation of genetic resources of tree species while their

use is stimulated could be the establishment of local clonal seed

orchards if and when adequate propagation techniques, to enable

the multiplication of clones, are made available as well [1], [54].

This is the case for cherimoya, as demonstrated by the successful

clonal propagation of the cultivar ‘Cumbe’ around the city of

Lima.

Ideally, each area targeted for in situ conservation - where the

existing cherimoya stands and forest patches can evolve within the

local environment - should be backed up by ex situ conservation of

germplasm (which currently is the case for cherimoya), and be

monitored periodically to assess the dynamics in diversity use and

risks of genetic erosion. Ex situ collections of fruit tree species often

consist of living trees, such as the cherimoya collections. This

allows conservation of superior combination of alleles that can be

propagated vegetatively through grafting. Additional reasons

include the following: (1) many tropical and subtropical trees

(including cherimoya) have seeds with recalcitrant or intermediate

behavior, which cannot be stored for long-term conservation; and

(2) pollen, fruits and seeds can be collected continuously for

characterization, evaluation and genetic improvement once trees

have reached the reproductive stage. Nevertheless, the high costs

for research institutions to maintain field genebanks of woody

perennial species, can be a reason to minimize ex situ collections

and focus especially on in situ conservation [55]. In that case, it is

important to screen the existing accessions through morphological,

biochemical and/or molecular characterization to maximize the

conservation of genetic diversity and potentially interesting

functional attributes in a reduced collection [6]. This approach

has already successfully been used in the cherimoya collection la

Mayora, Malaga, Spain [27]. Ex situ conservation may particularly

be important for areas that suffer from inbreeding -an indicator for

high rates of allelic loss and genetic erosion- such as central

Ecuador in the case of cherimoya, whereas in situ conservation

Figure 6. Fixation index (F). This map shows the average F value in each 10-minutes cell with 20 or more trees applying a one-degree circular
neighborhood. Yellow areas indicate cherimoya stands where observed heterozygosity is as expected, red areas indicate stands where observed
heterozygosity is lower than expected (indicating inbreeding) whereas observed heterozygosity is higher than expected in green areas.
doi:10.1371/journal.pone.0029845.g006
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may be most successful in areas of high diversity where still low

rates of inbreeding are observed such as in the cherimoya stands

from northern Peru.

Use of GIS and molecular markers to enhance
conservation and use of plant genetic resources

Despite the advances in new computational applications and the

use of molecular tools, spatial analyses are still underutilized in

efforts to conserve plant diversity [56]. With respect to targeting

collection sites and prioritizing the conservation of plant genetic

resources, spatial analyses of diversity have been carried out mainly

at the species level for crop genepools (e.g. [57]–[59]). Only a few

studies have mapped intraspecific diversity to enhance the

conservation of genetic resources of specific crops and trees (e.g.

[36], [41]). Kiambi et al. [41] grouped samples using a grid to

compare diversity between geographic areas of similar size, whereas

Lowe et al. [36] applied re-sampling to enable the calculation of

diversity estimates with high degrees of confidence. However, these

studies were carried out with fewer than 100 individuals per species,

which limits the type of spatial analysis that can be carried out over

the geographic distribution range of species. Our analysis combines

both techniques on a large dataset (1504 trees), which can be

conceptualized as a continuous distribution of plant individuals, in

which each individual is connected to its neighboring trees because

they share the same seed system, and/or breed with each other.

Based on this concept, trees have been sampled in this study

following a scattered distribution to calculate, across the Andean

distribution range of cherimoya, several diversity estimates

important to prioritize areas for conservation, including two

recommended parameters: allelic richness [5] and the number of

locally common alleles [43]. Since the application of molecular tools

is becoming cheaper, intraspecific diversity studies with large

datasets will probably be more common in the near future, allowing

for studies of this sort on other tree species and annual crops.

The size of the grid cells and width of the circular neighborhood

for this type of spatial analysis depends on how many plant

individuals have been collected across the landscape, and the

minimum number of plant individuals that is considered sufficient

to make confident estimates of genetic parameters per grid cell.

Application of circular neighborhood provides an effective way to

decrease grid cell size, which facilitates detection of spatial patterns

in genetic variation across an extensive distribution range. By re-

sampling the trees in the landscape, it generates a high number of

grid cells with a sufficient number of trees to make confident

calculations of genetic parameters per grid cell. It also makes

analyses less sensitive to grid origin definition and enables the

inclusion of isolated trees in the calculation of the genetic

parameters, i.e. together with their closest neighboring trees.

Figure 7. Genetic distance to the Peruvian cultivar ‘Cumbe’. This maps shows the average genetic distance (GD) to the cultivar ‘Cumbe’, in
each 10-minutes cell with 20 or more trees applying a one-degree circular neighborhood. As reference of the cultivar, the ‘Cumbe’ accession from the
collection la Mayora, Malaga, Spain, was used.
doi:10.1371/journal.pone.0029845.g007
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Ideally, the sampling strategy for this type of analysis should be

identified based on a pre-defined grid, aiming at measuring the

same number trees per grid cell. However, due to logistical

constraints and because a species simply may be more abundant in

some areas than in others, in practice, sampling will always be sub-

optimal to a certain degree. Of all the genetic parameters, allelic

richness is most sensitive to uneven sampling and, accordingly, we

have corrected sample size by rarefaction [5]. Repeated

subsampling of a minimum number of tree individuals per grid

cell is another possibility to correct for sampling bias [60]. This

technique could also be used to correct other genetic parameters

than allelic richness for sampling bias, such as expected

heterozygosity, although these are less sensitive to uneven

sampling [61].

Given the sampling distribution in our study area and the fact

that for the calculation of most genetic parameters, we maintained

a minimum of 20 re-sampled trees per grid cell, we defined a cell

size of 10 minutes and a circular neighborhood with a diameter of

one degree, which enabled us to detect spatial patterns of genetic

variation at administrative level one in Ecuador, Peru and Bolivia

(provinces and departments). For studies of plant species, in which

individuals are sampled in a more clumped distribution compared

to our scattered sampling distribution and/or in lower densities

across the landscape, larger grid cells and/or a larger width of

circular neighborhood could be applied, always assuring a

sufficient number of trees per grid cell. The overall resolution of

the study will obviously be lower.

Following Frankel et al. [6], we hypothesized that areas with

high diversity measured by neutral molecular markers (like our

microsatellite loci) have a high probability to contain genetic

material that will also show diversity in functional traits, including

traits of agronomic interest. Molecular markers are considered an

appropriate indicator to quantify patterns and trends in the use

and conservation of plant genetic resources [31]. However, while

neutral molecular marker surveys are suitable for diversity studies,

direct measurement of traits in field trials may be more desirable to

evaluate the genetic health and adaptive capacity of tree

populations [50]. Nevertheless, molecular marker studies repre-

sentative of the whole genome provide a less expensive and

scientifically sound alternative to assess the genetic resource status

of tree species, for which, in comparison to annual crops, field

trials are particularly expensive because of the long generation

times [62]. Markers of DNA sequences related to phenotypic

traits, including expressed sequence tagged (EST) markers and

markers in specific genes, could be of interest to include in spatial

analysis of patterns and trends in plant genetic resources. More

Figure 8. Genetic structure of Andean cherimoya distribution in Population clusters A and B. This map shows in each 10-minutes cell
with 20 or more trees applying a one-degree circular neighborhood, the average probability of finding a cherimoya tree belonging to cluster A or B.
Dark blue areas show a higher probability of finding trees belonging to cluster A whereas dark green areas show a higher probability of finding trees
belonging to cluster B. Light blue colored areas are not clearly assigned to any of the two clusters.
doi:10.1371/journal.pone.0029845.g008
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and more are becoming available, especially for important crops

where sequencing programs have been performed or will be

carried out in the near future. An example in cherimoya is a

recently described gene involved in seedlessness in a sister species,

Annona squamosa [63]. However these markers are less polymorphic

than neutral ones, such as those that have been used in our study,

so the use of neutral markers to study spatial patterns of genetic

diversity is still necessary.

It is difficult to compare our results with those of Lowe et al.

[36] and Kiambi et al. [41] because of the differences in

methodology used. To examine molecular marker studies on the

same species, minimum standard sets of markers have already

been suggested [64]. Standardization of methodologies in studies

on different species would improve comparability of results and

also would facilitate Meta-analyses, for example to better

understand how well genetic diversity of tropical and subtropical

tree species is protected on farm and in protected areas.

In our study we only examined spatial patterns of genetic

variation without relating them to other spatial attributes. GIS can

also be used to link genetic data to available spatial information

relevant to conservation of plant genetic resources, for instance to

reveal short-term threats such as accessibility and long-term threats

such as climate change. With this type of analysis, hotspots of

diversity under threat could be identified following Myers et al. [65]

but instead of looking at species level, this could be done at the

intraspecific level, to ensure the conservation of priority populations

of specific crops and useful tree species. Spatial information on the

patterns and characteristics of human societies can be used to

understand the drivers behind threats. In a study on changes in

cassava diversity in the Peruvian Amazon, GIS was used to correlate

cassava diversity data with biotic and socio-economic spatial data to

identify possible drivers behind diversity and genetic erosion [66].

This can be useful information in the development of adequate

policies and measures to promote in situ conservation of plant

genetic resources on farms and in natural populations.

Materials and Methods

Sampling and SSR analysis: A total of 1504 cherimoya

accessions have been analyzed in this study, 395 from Bolivia, 351

from Ecuador and 758 from Peru. DNA was extracted from young

leaves after [67]. Based on polymorphism, a set of nine SSRs has

been selected from those previously developed in cherimoya [26].

A 15 mL of reaction solution containing 16 mM (NH4)2SO4,

67 mM Tris-ClH pH 8.8, 0.01% Tween20, 2 mM MgCl2,

0.1 mM each dNTP, 0.4 mM each primer, 25 ng genomic DNA

and 0.5 units of BioTaqTM DNA polymerase (Bioline, London,

UK) was used for amplification on an I-cycler (Bio-Rad

Laboratories, Hercules, CA, USA) thermocycler using the

following temperature profile: an initial step of 1 min at 94uC,

Figure 9. Gap analysis of alleles not found in ex situ collections. Richness analysis of alleles (eight alleles out of the total of 71 observed
alleles) that are not found in any ex situ collection based on 10-minutes grid with a one-degree circular neighborhood.
doi:10.1371/journal.pone.0029845.g009
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35 cycles of 30 s at 94uC, 30 s at 45uC–55uC and 1 min at 72uC,

and a final step of 5 min at 72uC. Forward primers were labeled

with a fluorescent dye on the 59 end. The PCR products were

analyzed by capillary electrophoresis in a CEQTM 8000 capillary

DNA analysis system (Beckman Coulter, Fullerton, CA, USA).

Samples were denaturalized at 90uC during 120 s, injected at

2.0 kV, 30 s and separated at 6.0 kV during 35 min. Each

reaction was repeated twice and the Spanish cultivar Fino de Jete

was used as control in each run to ensure size accuracy and to

minimize run-to-run variation.

Data cleaning: The coordinates of the respective tree

locations were checked in DIVA-GIS (www.diva-gis.org) on

erroneous points based on passport data at administrative level

one (e.g. departments, provinces) with a buffer of 20 minutes

(approx 30 km), and outliers based on climate data derived from

the Worldclim data set [68] (two or more of the 19 bioclim

variables according the Reverse jackknife method [69]). Based on

these analyses, two points were excluded. The cleaned dataset thus

included microsatellite data of 1504 georeferenced trees. Taking

into account that nine SSR markers were analyzed, this results in a

total of 27,072 georeferenced alleles.

Spatial analysis – Circular neighborhood: Grids for all

genetic parameters were generated in DIVA-GIS and are based

on a grid with a cell size of 10 minutes (which corresponds to

approximate 18 km in the study area) applying a circular

neighborhood with a diameter of one degree (corresponding to

approximate 111 km) constructed in Excel. The circular neigh-

borhood is used to re-sample the allelic composition of a single tree

to all surrounding grid cells, in this case, 32 cells with a size of

10 minutes, within a diameter of one degree around its location.

In this way, the allelic composition of each sampled tree is

representative for the area within the defined buffer zone.

Applying the circular neighborhood re-sampling technique

resulted in a total dataset of 48,128 trees and 866,304 alleles.

Spatial analysis – a-diversity: After applying circular

neighborhood to all trees, genetic parameters were calculated in

GenAlEx per 10-minutes grid cell, for all trees present in each cell

after re-sampling. Genetic parameters included the average

number of alleles per locus (Na), the number of locally common

alleles per locus (alleles occurring with a frequency higher than 5%

in 25% or less of the grid cells), average expected heterozygosity

per locus (He), fixation index (F) and genetic distance (GD) (see

[45]). Na and the number of locally common alleles per locus were

presented for all grid cells with trees included. Na was corrected by

rarefaction to a minimum sample size of 20 trees per cell with the

HP-RARE software (see [70]); consequently, this parameter was

only calculated for grid cells with 20 or more re-sampled trees.

This minimum sample size was also used as a threshold of the

Figure 10. Modeled distribution of cherimoya. Areas of the modeled distribution in dark blue are covered by the 10-minutes grid cells with 20
or more trees applying circular neighborhood. Light blue areas of modeled distribution coincide with grid cells that contain less than 20 trees after re-
sampling. Red areas indicate potential areas for cherimoya occurrence and cultivation that have not been in sampled.
doi:10.1371/journal.pone.0029845.g010
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number of trees per grid cell to get interpretable results for the

parameters He, F and GD. GD, which was used to calculate

distance in allelic composition of each cherimoya genotype to the

commercial variety ‘Cumbe’, was calculated in GenAlEx using the

GD option for codominant markers (see [71]). Final GD value per

grid cell was the average GD for all re-sampled trees present in

each cell. The reference tree was the accession ‘Cumbe’ from the

Spanish cherimoya genebank in Malaga.

Spatial analysis - b-diversity: Population structure was

defined by running the software Structure (see [46]) on all 1504

samples applying a 10,000 burn-in period, 10,000 Markov chain

Monte Carlo (MCMC) repetitions after burn-in, and 20 iterations.

Optimal K was selected after [47] by running Structure for K

values between one and 10 and defining the final number of

clusters where value of DK was highest. This was at K = 2, hence a

map was developed for these two clusters, which we named

respectively A and B. We used the probabilities of each tree

belonging to cluster A and B to visualize the clusters on a map.

Mapping of probabilities was done based on the average value of

all trees per 10-minutes cell for those grid cells with 20 or more re-

sampled trees after applying the one-degree circular neighbor-

hood.

Spatial analysis - Ex situ conservation status: The

private alleles function in GenAlEx (PAS) was used to identify the

alleles exclusively found in trees that were sampled in situ. To

visualize patterns in these alleles that are not included in any

genebank, a point-to-grid richness analysis, using a 10-minutes

grid, was carried out in DIVA-GIS based on the one-degree

circular neighborhood re-sampled tree grid.

Spatial analysis - distribution modeling: To identify how

well the sampling covered the Andean distribution range of

cherimoya, and thus to identify potential collection gaps, we

modeled the distribution (presence only) of cherimoya in the study

area using the distribution modeling program Maxent (see [72],

[73]). With this technique, potential distribution areas are

identified as those areas where similar environmental conditions

prevail as those at the sites where the species has already been

observed. The data required to identify these areas include species

presence points as well as layers of environmental variables

covering the study area. Maxent is a species distribution modeling

tool for which the applied algorithm has been evaluated as

performing very well, in comparison to other ecological niche

modeling software [74], [75]. Therefore, it was selected for this

study’s distribution modeling analysis. The coordinates in the

passport data of the sampled trees were used for the presence point

input. For environmental layer input, we used the 10-minutes grids

of 19 bioclimatic variables (see [76]), derived from the Worldclim

dataset [68]. The modeled distribution area was restricted using

the 10 percentile training presence threshold, which indicates the

probability value at which 10% of the presence points falls outsides

the potential area. The modeled distribution was generated in

Maxent with 80% of the points (training data) and was cross-

validated in DIVA-GIS with 20% of the remaining tree

observations (test data). Besides 20% of the presence points, test

data included randomly generated points in 0.16 the bounding

box of the presence points as a proxy for absence points (5 times

the number of presence points). Based on the cross-validation, the

Area Under Curve (AUC) and Kappa value were calculated in

DIVA-GIS as measures of model performance.

All maps were edited in ArcMap.
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