INFLUENCE OF Brachystegia spiciformis AND Parinari curatellifolia ON HERBACEOUS FLORA AND SOILS IN MUKUVISI WOODLANDS, HARARE

By

SIMBARASHE CHISEVA

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

Tropical Resource Ecology Programme Department of Biological Sciences Faculty of Science University of Zimbabwe August 2008

ABSTRACT

A comparative study between *B. spiciformis* and *P. curatellifolia's* isolated and clumps of trees' influence on patterning and structure of herbaceous flora and soils with those of adjacent open grasslands was conducted in Mukuvisi Woodlands, Harare, Zimbabwe. The isolated trees which were sampled were stratified based on the woody species and canopy volume intensity into three classes namely dense, medium and sparse.

Species composition, abundance, species diversity (H'), richness (S) and evenness (E), density per unit area were studied as vegetation attributes. Nitrogen (N), phosphorus (P), potassium (K), pH and moisture content (MC) data were recorded as environmental variables.

Totals of 26 and 7 herbaceous plant species were recorded under isolated trees and their adjacent grassland and clumps of trees respectively. Canopy zones of tree clumps and large *B. spiciformis* isolated trees were dominated by *C. dactylon*, while those of *P. curatellifolia* were dominated by *E. indica*. The most common species found in the open grasslands adjacent to both tree species, in descending order of abundance are *S. pyramidalis*, *H. filipendula*, *H. dissoluta*, and *H. contortus*. More distinct effects on herbaceous plants and soils were recorded under large isolated trees and tree clumps.

Sites close to the tree trunks had more evenly distributed plant species, low species richness and low species diversity, high N, P, K, pH and MC compared to open grassland sites. Significant differences (ANOVA, P<0.05) amongst canopy volume classes and sampling sites were recorded in vegetation and environmental attributes for both woody species' isolated trees. Under both woody species' tree clumps, highly significant differences (ANOVA, P<0.05) were found in H', S, density per site and P levels.

There was a significant interaction between tree species-canopy volume class and sampling location in influencing herbaceous vegetation structure. Structurally, herbaceous layer was unistratal, sparse and flat while open grassland was bistratal, dense and moderate in height. The significant differences in herbaceous vegetation and soils variables suggest that large well-established *B. spiciformis* and *P. curatellifolia* tree species greatly influence their herbaceous flora and soils.

The two study hypotheses that *B. spiciformis* and *P.curatellifolia* have no major influence on subcanopy vegetation structure and composition as well as the subcanopy soils in Mukuvisi Woodlands were rejected.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. S. Kativu, for his guidance and helpful comments given throughout the study. I thank Prof. C.H.D. Magadza who helped in shaping the concept of the study, his valuable advice and assistance on data analysis. My sincere thanks are also due to Mr. W. Kadye who also assisted in the data analysis. The national herbarium helped in specimen identification. Mukuvisi Woodlands Association (MWA) gave permission to access the study area. I am greatly indebted to Mr. Mabeza (Research Officer) who assisted in logistical support.

Special thanks go to T. Nyenda and R. Veremu for assistance in the field. I am grateful to Mr. and Mrs. Chiseva, Mr. and Mrs. Vambe, my brothers, and sisters for their unwavering support and encouragement during the study period. All your encouragement and emotional support throughout my academic career has made me never look back. My special appreciation is finally extended to wife Vimbayi, whose moral support, encouragement, patience, tolerance and prayers contributed much to the success of this study. Warm thanks to Mr. M. Sihwanya, who assisted me in many ways throughout my academic career.

CONTENTS

ABSTRACT	V
ACKNOWLEDGEMENTS	iv
LIST OF CONTENTS	iv
LIST OF FIGURES	VV
LIST OF TABLES	vvi
LIST OF APPENDICES	ix
1.0 INTRODUCTION	1
1.1 Background	1
1.2 Research problem	2
1.3 Aim of the study	3
1.3.1 Specific objectives of the study	3
1.4 Research questions	3
1.5 Null hypotheses of the study	4
1.6 Justification	4
1.7 Study area	5
1.7.1 Location	
1.7.2 Climate	5
1.7.3 Relief, Geology and Soils	5
1.7.4 Fauna	6
1.7.5 Flora	6
1.7.6 History of land use	9
2.0 LITERATURE REVIEW	10
2.1 Modification of environment by woody plants	10
2.1.1 Soil moisture content	10
2.1.2 Soil nutrients	12
2.1.3 Impacts of shading	13
2.2 Effects of woody plants on herbaceous plants	14

2.3 Influence of woody plant species on ecosystem productivity	.15
2.4 Disturbance of vegetation community	16

3.0 MATERIALS AND METHODS	18
3.1 Study layout	
3.2 Sampling procedures	
3.3 Herbaceous species sampling procedures	19
3.3.1 Herbaceous layer species composition	19
3.3.2 Classification of focal trees using canopy volume	20
3.3.3 Inclusion criteria for herbaceous plants	
3.4 Soil sampling procedures	20
3.4.1 Soil sampling	
3.5 Vegetation variables	
3.5.1 Species composition and abundance	21
3.5.2 Diversity of species composition	21
3.5.3 Herbaceous species density	
3.7 Data analysis	24

4.0 RESULTS	26
4.1 Herbaceous species composition and abundance	26
4.2 Comparisons of herbaceous vegetation attributes	28
4.2.1 Species diversity (H')	28
4.2.1.1 Effects of tree species-canopy volume, sampling site and their interaction on species	
diversity (H')	29
4.2.2 Species evenness (E)	.29
4.2.2.1 Effects of tree species-canopy volume, sampling site and their interaction on species	
evenness	29
4.2.3 Species richness (S)	30
4.2.3.1 Effects of tree species-canopy volume, sampling site and their interaction species	
richness	30
4.2.4 Density per site	30
4.2.4.1Effects of tree species-canopy volume, sampling site and their interaction on herbaceous	
plants density	31
4.3 Comparisons of vegetation attributes between tree clumps	34

4.4 Comparisons of soil properties	34
4.4.1 pH (<i>CaCl</i> ₂)	
4.4.1.1Effects of tree species-canopy volume, sampling site and their interaction on pl	Н34
4.4.2 Potassium levels	
4.4.2.1Effects of tree species-canopy volume, sampling site and their interaction on po	tassium37
4.4.3 Phosphorus levels	
4.4.3.1Effects of tree species-canopy volume, sampling site and their interaction on ph	
4.4.4 Nitrogen levels	
4.4.4.1Effects of tree species-canopy volume, sampling site and their interaction on nit	trogen41
4.4.5 Moisture content levels	-
4.4.5.1Effects of tree species-canopy volume, sampling site and their interaction on mo	
content	
4.5 Comparisons of subcanopy soil properties between tree clumps	
4.6 Herbaceous vegetation and environment relationships	
4.6.1 Isolated trees	
4.6.2 Tree clumps	
4.7 Structure and pattern of herbaceous vegetation	
4.7.1 Isolated trees	
4.7.2 Tree clumps	55
5.0 DISCUSSION AND CONCLUSIONS	57
5.1 Discussion	57
5.1.1 Effects of woody species and canopy volume on herbaceous species composition	and
abundance	57
5.1.2 Impacts of tree canopy on environmental variables	59
5.1.3 Impacts of tree species and canopy on herbaceous species diversity	63
5.1.4 Herbaceous vegetation and environmental relationships	65
5.1.5 Impacts of tree canopy on herbaceous vegetation structures	67
5.2 Conclusions	69
REFERENCES	71
APPENDICES	79

LIST OF FIGURES

Figure 1.Location and map of Mukuvisi Woodlands
Figure 2. Aerial view of species composition sampling quadrats in canopy zones of isolated trees and adjacent open grassland
Figure 3.Aerial view of soil sampling locations within and around isolated tree canopy zone23
Figure 4. Sampling sites densities (%) for dense, medium and sparse canopy volumes of <i>P. curatellifolia</i>
Figure 5. Sampling sites densities (%) for dense, medium and sparse canopy volumes of <i>B. spiciformis</i>
Figure 6. Changes in pH along the six sampling sites located line transects under dense, medium and sparse canopy volumes study tree species
Figure 7. Changes in potassium along the six sampling sites located line transects under dense, medium and sparse canopy volumes study tree species
Figure 8. Changes in phosphorus along the six sampling sites located line transects under dense, medium and sparse canopy volumes study tree species
Figure 9. Changes in nitrogen along the six sampling sites located line transects under dense, medium and sparse canopy volumes study tree species
Figure 10. Changes in moisture content along the six sampling sites located line transects under dense, medium and sparse canopy volumes study tree species
Figure 11. CCA biplot showing the relationship between species and environmental variables under isolated trees
Figure 12. CCA biplot showing the relationship between quadrats and environmental variables under isolated trees
Figure 13. CCA triplot for tree clumps showing the separation of sampling sites, herbaceous species and environmental variables
Figure 14. Projections of isolated trees herbaceous vegetation variables on Axes 1 and 2
Figure 15. PCA scatter plot of sample quadrants under isolated trees
Figure 16. Projections of tree clumps herbaceous vegetation variables and quadrats on Axes 1 and 2

LIST OF TABLES

Table 1.Replicates for the isolated trees in the present study	19
Table 2. Herbaceous vegetation sampled in the study	26
Table 3. Number of herbaceous plant species per tree species and canopy volume class	26
Table 4. Mean herbaceous plants sampling sites species diversity (H'), species evenness (E) richness (S) and density	· •
Table 5. Herbaceous vegetation and soil attributes for quadrats in <i>B. spiciformis</i> and <i>P. curd</i> tree species relative to tree volume (Mean ± Standard Deviation, SD)	
Table 6. Canonical Correspondence Analysis (CCA) summary outputs for isolated trees bas species composition, abundance, and the measured explanatory variables in Mukuvisi Woodlands	
Table 7. Canonical Correspondence Analysis (CCA) summary output for tree clumps based species composition, abundance, and the measured explanatory variables in Mukuvisi Woodlands.	
Table 8. Isolated trees eigen values and variance accounted by Principal Components (PC) 2.	
Table 9. Tree clumps eigen values and variance accounted by Principal Components (PC) 1 2.	

LIST OF APPENDICES

Appendix A. Sample field data sheets	
Appendix B. List of grass species recorded in the quadrats under B. spiciformis and	0
isolated trees and clumped trees in Mukuvisi Woodlands	
Appendix C. Canonical Correspondence Analysis and Permutation Tests	
Appendix D. ANOVA summaries	