Chapter 3.3 Analyses of Seed Germination of Littoral Forest Native Species in Southeastern Madagascar

Faly Randriatafika, Johny Rabenantoandro and Rivo A. Rajoharison

Abstract

Here we present data on the properties of seeds relevant to restoration activities. Seeds from pioneer species were most abundant from May to September. Most seeds from non-pioneer species ripened during the hot wet season. More than half of the species have germination rates below 50%, but once germinated, no species had mortality rates higher than 30%. It is important to intensify studies to understand the causes of dormancy as this might help improve storage conditions and increase germination rates for species with long dormancies.

Résumé

Analyse de la germination des semences des espèces autochtones de la forêt littorale du sudest de Madagascar. Nous présentons ici les données sur les propriétés des semences qui sont adaptées à la restauration écologique. Les semences des espèces pionnières sont plus abondantes entre les mois de mai et de septembre. Les semences des espèces non pionnières arrivent généralement à maturité au cours de la saison chaude et humide. Plus de 50% des espèces ont des taux de germination inférieurs à 50%. Après germination, aucune espèce ne montre un taux de mortalité supérieur à 30%. Les graines restent dormantes à divers degrés. Il est important d'intensifier les études pour comprendre les causes de la dormance dans la mesure où cela permettrait d'améliorer les conditions de stockage et d'augmenter les taux de germination pour les espèces présentant des semences à dormance prolongée.

Introduction

Following the initial plant inventories of the littoral forests of the Tolagnaro region conducted by the Missouri Botanical Garden (Lowry and Faber-Langendoen 1991), a major gap still remained in the reproductive ecology and propagation of numerous members of the local flora. Studying germination is an essential part of planning species rehabilitation and conservation work because it enhances propagation techniques. With this in mind, a nursery system was established in 1999 to study the propagation of numerous native plant species. The results of this research are presented here.

Methodology

Seed collection

Seeds are defined as part of the organs that plants develop to ensure reproduction (Côme 1975). In the angiosperm spermatophyte, adult individuals often carry out this function. For propagation, seeds or fruits should generally be collected between ripeness and the commencement of natural dissemination (Morandini 1962). Phenological results were used for monitoring biodiversity and to assist in planning future ecological rehabilitation work.

The seeds were generally collected during the fruit maturation period, which was identified beforehand based on a detailed phenological dataset of the Tolagnaro region littoral forest plants (Bollen 2003). The collection methodology is based on norms and standards established by Kew Garden, Millennium Seed Bank (2001). The seeds were either gathered off the ground or collected directly from the plant. The following information was recorded for each collection: date, scientific name (genus and species), sampling method, plant description, characteristics (pioneering, intermediate, or climax species), habitat, and uses. A collection sheet was filled-out for

QIT Madagascar Minerals, BP 225, Tolagnaro 614, Madagascar. Email: johny.rabenantoandro@riotinto.com, faly.randriatafika@riotinto.com, and rivo.rajoharison@riotinto.com each specimen and each seed lot was given an individual number, which was used for all nursery operations (from collection to stock to germination).

Seed treatment and conservation

According to Ewart (1908), seeds are classified into one of three different groups based on their viability or longevity: macrobiotic seeds that remain viable for more than 15 years, mesobiotic seeds that remain viable between 3 and 15 years, and microbiotic seeds that are only viable up to 3 years. The classification most often used to describe seed types was formulated by Roberts (1973) and includes orthodox seeds, which can withstand natural or artificial desiccation (water content of 4 - 6%) or consistently low temperatures over an extended period, and recalcitrant seeds that are difficult to keep over the long term, but which can be conserved if their specific characteristics are known.

In order to categorize littoral forest species behavior, we consulted the scientific literature including numerous works published by the Kew Garden. However, certain aspects of the germination ecology of several plant species occurring in the Tolagnaro littoral forests were still unknown. In order to advance in understanding the different seed types of the local flora, a series of tests were conducted. These employed a progressive desiccation method which placed the seeds in a hermetically sealed container with silica gel until the relative humidity (RH) was under 15%. The species that managed to germinate at this level of humidity were defined as being orthodox and those that did not as recalcitrant.

Treatment of seeds consisted of separating the seed from the fruit or from other parts, and cleaning the seed. The seeds were treated based on their type of fruit: fleshy stone or bay fruits were pulped and cleaned using different-sized screens, and the dried fruits were cleaned and sorted. The previously cleaned seeds were then spread out on a grass mat, sheltered from the sun, and divided into two lots: 1) planted directly at the Mandena nursery to analyze germination and produce plants, and 2) used for the behavior test (i.e. orthodox or recalcitrant character) and for long-term conservation in a seed bank. The orthodox seeds obtained from the analysis were sent to the KEW Millennium Seed Bank (MSB) and to the Antananarivo Silo National des Graines Forestières (SNGF) for long-term ex-situ conservation.

Germination

The nursery was designed for seed germination analysis and, above all, to produce plants for ecological rehabilitation. The technique consists of sowing previously treated and sorted seeds directly in plastic pots filled with topsoil. Several parameters were considered and monitored during the experiments, the most important are: 1) Emergence (E), which is defined as the number of days between the seeding date and the initial germination emergence; 2) Germination rate (GR), using the formula GR = n/N x 100 (where n = number of germinated seeds and N = Number of seeds planted); and 3) Mortality rate (MR), using the formula MR = m/N x 100 (where m = number of dead seeds).

Figure 1. Monthly variation in seed collection of non-pioneering (A) and pioneering (B) species.

Results

Seed collection

Between 1998 and 2004, 119 species were studied (Table 1). Figure 1a illustrates the monthly variation in seed availability of non-pioneer species. It shows that

stocks of seeds are available year round in the forest. However, most seed-producing species are much more abundant in January and February, and then decrease until September when they flower. Moreover, Figure 1b shows the monthly variation in seed collection for pioneering species. The trend in the fructification periods of most pioneering species is inversely correlated to the general fructification trend of seeds from nonpioneering species.

The presence of seeds is positively correlated to monthly rainfall (Spearman correlation: $r_s = 0.88$, p < 0.001, n = 12). The presence of seeds from pioneering species is negatively correlated to the mean ambient temperatures ($r_s = 0.88$, p < 0.001, n = 12; Figs. 2a, b).

Figure 2. Correlation between non-pioneer species and monthly rainfall (A) and between pioneer species and mean, monthly temperatures (B).

Figure 3. Germination tests showing (A) species distribution by germination rate, (B) relation between germination rate and type of fruit, (C) species distribution by emergence in days, and (D) percent of species distribution by mortality rate.

SI/MAB Series 11 = 121

Conservation test

Among the 114 plants tested and documented, 50 species are presumed orthodox, 19 recalcitrant, and 45 intermediate.

Germination

For all plants treated at the nursery, we were able to distinguish between the easily germinating species and those requiring special treatment. These analyses are presented separately for germination rate and types of fruits (Figs. 3a, b), germination emergence (Fig. 3c), and mortality rate (Fig. 3d). Over 50% of species have an average germination rate below 50%. Stone fruits have a higher germination rate (Fig. 3b). Delayed germination may be due to seed dormancy and inhibition phenomena. Nevertheless, over 72% of seeds were able to germinate in less than two months. Over 60% of species have mortality rates below 5%, and no species mortality exceeds 30% (Fig. 3d).

Fruit type did not have any effect on the time to emergence but germination rate was negatively correlated with the time required to emergence ($r_s = 0.28$, p = 0.017, n = 75; Fig. 4).

Figure 4. Correlation between germination rate and time to emergence.

Discussion

In this study, certain aspects of the relationship between seeds and their environment have been elucidated, and progress has been made on the selection of appropriate plants, which is based on seed characteristics, for the rehabilitation project:

 A positive correlation exists between general seed production and rainfall, and a negative between the seed production of non-pioneering species and monthly temperature.

- Dormant or inhibited species require more in-depth research to determine the type of dormancy or inhibition (embryonic dormancy or tegument inhibition).
- There may be many causes for the low germination rates. These include external factors such as high relative humidity and temperatures in the study area. These factors may influence seed quality and viability.

In our collection of seeds from the littoral forests of southeastern Madagascar and studies of their development, we found considerable variation in their life-history traits with regard to germination ecology. There is a need to identify other aspects of the germination of these plants, for example dormancy phenomena, to help further advance ecological restoration and plantations. These studies are also an effective means for advancing *ex-situ* conservation of biodiversity.

References

- Bollen, A. 2003. Fruit-frugivore interactions in a Malagasy littoral forest: A community-wide approach of seed dispersal. Ph.D., Departement Biologie, Faculteit Wetrschappen, Universitiet Antwerpen, Antwerpen, 174 p.
- Côme, D. 1975. Quelques problèmes de terminologie concernant les semences et leur germination Pp. 11-26 in: Chaussat, R. and Y. Le Deunff, eds., *La Germination des Semences, Formation permanente en Ecologie et Biologie*. Gauthier-Villars, Paris.
- Ewart, A.J. 1908. On the longevity of seeds. Proceedings of the Royal Society, Victoria 2:1-210.
- Lowry, P.P. and D. Faber-Langendoen. 1991. Overall flora and vegetation study. In Ilmenite Project. Social and Environmental Impact Assessment. Supporting Document no 4. Presented by QIT Madagascar Minerals S.A. to the Madagascar National Environment Office, May 2001.
- Millenium Seed Bank. 2001. A Field Manual for Seed Collectors. Royal Botanic Garden, Kew.
- Morandini, R. 1962. Le traitement des graines forestières, équipement et méthodes. I. Production, récolte et extraction des graines. *Unasyla* 15:1-15.
- Roberts, E.H. 1973. Predicting the viability of seeds. Seed Science Technology 1:499-514.

Table 1. Collection period for seeds of native plant species in the littoral forests of Tolagnaro.

	Scientific Name	Common Name	Family	January	February	March	April	May	June	July	August	September	October	November	December
1	Albizia sp.	sambalahy	Fabaceae							х	х	Х	х		
2	Ambavia gerrardii	roadria	Annonaceae	х	х										
3	Anthocleista longifolia	lendemilahy	Gentianaceae	х	х	х									
4	Aphloia theiformis	fandramanana	Aphloiaceae	х	х	х	х	х	х	х					х
5	, Apodytes bebile	bibilahy	Icacinaceae								х				
6	Apodytes bebile	hazomamy	Icacinaceae		х										
7	Asteropeia micraster	fanolamena	Asteropeiaceae		х	х	х	х							
8	Asteropeia multiflora	fanolafotsv	Asteropeiaceae			х									
9	Astrotrichilia elliotii	saanira	Meliaceae	х	х								х	х	х
10	Beccariophoenix	boakabe	Arecaceae								х				
	madagascariensis														
11	Beilschmiedia madagascariensis	kanav	Lauraceae		х	х									
12	Brexia madagascariensis	voakarepoka	Celastraceae	х	х	х									х
13	Brochoneura acuminata	mafotra	Myristicaceae	x	~	~									~
14	Brochoneura sp	mafotra rano	Myristicaceae	x	x										
15	Burasaia madagascariensis	farisaty	Menispermaceae	~	~										x
16	Buxus madagascarica	haramhoanio	Buxaceae	x	x										~
17	Cadia commersoniana	kelimaneza	Fahaceae	~	~							¥	¥		
18	Campylospermum obtusifolium	hazomhato	Ochnacaea					¥	Y	¥	¥	Ŷ	~		
19	Canarium hoivinii	ramy	Burseraceae	Y	¥	Y	Y	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ			
20	Canthium sp	fantsikahitra	Bubiaceae	~	~	Ŷ	Ŷ	Ŷ	~	~	~	~			
20	Canthium sp.	hazonaalala	Rubiaceae	v	v	v	v	Ŷ	v	v	v	v			
21	Cassia sp	caropgaza	Fabaceae	~	^	^	^	Ŷ	~	^	^	^			
22	Cassia sp.	sarondolo	Fabaceae					Ŷ	×						
23	Carbara manahas	kabokala	Δροουροορο	v	v	v	v	Ŷ	×						
24	Chrysophyllum delphinense	nantohotika	Sanotaceae	~	Ŷ	^	^	^	^						
25	Coffee commerceniana	kotofotev	Publaceae	~	Ŷ										
20		kulululsy	Rignoniacco	X	X										
27	Colea oblusilolla.	ISIKUIIUI UKUIIUI U	Digitottiaceae												х
20	Crataeva UDOvala	Delalaky	Capparaceae	X											
29	Cryptocarya sp.	varonyy	Lauraceae												х
3U 21		VUalitsiialla	Aranaceae							X	х	X			
31 00		mampay	Fabaceae	Х	х							х	х	х	х
32	Daibergia manuma	manary tolono	Fabaceae											Х	
33			Ebenaceae	X	X	X	X	X							
34	Diospyros sp.	IOFOIOKY	Epenaceae	Х	х	х	х	х							
30	Dodonaea viscosa	ISIOKATIOTTIDY	Sapindaceae									х	х	Х	
30	Dombeya australis	Derenoka Gliverederederedereder	Iviaivaceae							х	х				
37	Dracaena bakeri	falinandro kely	Convallariaceae			Х	Х	Х							
38	Dracaena reflexa	talinandro de	Convallariaceae					Х	Х	Х					
39	Drypetes madagascariensis	kambatrikambatry	Eupnorblaceae	Х										Х	х
40	Dypsis saintelucei	boaka	Arecaceae				Х								
41	Dypsis lutescens	jambo coco	Arecaceae			Х									
42	Dypsis scottiana	amboza	Arecaceae				Х	Х	Х	Х		Х			
43	Eligmocarpus cynometroides	hazomainty	Fabaceae			х	Х	Х	Х	Х	Х	Х	Х	Х	
44	Embelia procumbens	vahy taratasy	Myrsinaceae		Х	Х	Х	Х							
45	Eremolaena rotundifolia	tontombavy be	Sarcolaenaceae				х								
46	Erythroxylum corymbosum	menavoa	Erythroxylaceae	Х	Х									Х	Х
47	Eugenia cloiselii	ropasy	Myrtaceae	Х	Х							Х	Х	Х	Х
48	Eugenia sp. 1	ropoaky	Myrtaceae		Х	х									
49	<i>Eugenia</i> sp. 2	rotry	Myrtaceae	Х	х		х	х						Х	Х
50	Faucheria hexandra	nanto	Sapotaceae											Х	

SI/MAB Series 11 = 123

Table 1. Continued.

	Scientific Name	Common Name	Family	January	February	March	April	May	June	July	August	September	October	November	December
51	Ficus sp.	fihamy	Moraceae						х	х	х	x	х	х	х
52	Ficus sp.	nonoky	Moraceae					х						х	
53	Ficus sp.	sarinonoka	Moraceae			х									
54	Flagellaria indica	vahipika	Flagellariaceae	х	х	х	х	х							
55	Gaertnera arenaria	tanatananala	Rubiaceae	х	х	х	х	х							
56	Garcinia sp.	disaky	Clusiaceae	х	х	х									
57	Garcinia sp.	sivory	Clusiaceae	х									х		
58	Homalium planiflorum	zoramena	Salicaceae					х							
59	Homalium sp.	ambiripiso	Salicaceae			х	х								
60	Homalium sp.	maranitratoraky	Salicaceae					х							
61	Homalium sp.	zoralahy	Salicaceae							х					
62	Hyperacanthus mandenensis	taholagna	Rubiaceae	х			х	х							
63	Intsia bijuga	harandrato	Fabaceae	х	х	х	х	х	х	х					
64	Leptolaena delphinensis	fontombavy	Sarcolaenaceae		х	х	х	х	х						
65	Leptolaena pauciflora	fonto	Sarcolaenaceae									х	х	х	
66	Ludia sp.	zora	Salicaceae				х								
67	Macaranga obovata	mokarana	Euphorbiaceae											х	
68	Macnhersonia radlkoferi	sanira fotsv	Sanindaceae	x	x										
69	Magnistinula tamenaka	tamenaka	Chrysobalanaceae	x	~										
70	Malleastrum mandenense	sarionavv	Meliaceae	x	x	x	x	x	x						
71	Mammea sessiliflora	zamho	Clusiaceae	x	x	x	~	~	x						
72	Manouria aegialodes	mannavoa	Bubiaceae	x	x	x	x	x	~						
73	Memecylon sabulosum	tomizo	Melastomaceae	~	~	~	~	~				x			
74	Mimosa latisninosa	rakaraka	Fahaceae						x	x	x	~			
75	Mimusons commersonii	nanto	Sanotaceae	x					~	~	~				
76	Morella spatulata	voalaka	Myricaceae	~		x	x	x	x	x	x				
77	Nepenthes madagascariensis	takotry	Nepenthaceae		x	~	~	~	~	~	~				
78	Olax imernensis	hazomiteraky	Olacaceae	x	~									x	x
79	Oncostemum sp	lona mena	Myrsinaceae	~				x						~	~
80	Onbiocolea delnhinensis	akondronala	Bignoniaceae	x	x	x	x	x	x						
81	Petchia madanascariensis	tandrokosv	Anocynaceae	~	x	x	x	~	~						
82	Phyllarthron ilicifolium	zahamhe	Bignoniaceae		~	~	x								
83	Phylloxylon yylonbylloides	sotro	Fahaceae			v	v	v	v	v	v				
8/I	Pittosnorum sn	memboviteika	Pittosporaceae			^	^	v	Ŷ	Ŷ	^				
85	Planioscynhus sp	voamhirimharika	Sanindaceae			Y	Y	^	^	^					
86	Potamea madagascariensis	resonio	Lauraceae	Y		~	~								
87	Pounartia chanelieri	sisikandrongo	Anacardiaceae	Ŷ	Y										
88	Peiadia angustifolia	volovobitry	Actoração	^	^		v	v							
80	Peoroeparmum lancoolatum	harongampanihy madinika	Clusiaceae		v		^	^							
09		harongampanihy	Clusiaceae		×	v	v	v							
01	Pananaa sh	lona	Murcipaceae		×	Ŷ	Ŷ	×	v				v	v	
02	Pavapala madagassarionsis	rovinala	Strolitziacoao		^	^	^	^	^				Ŷ	~	
92 02	Pateranaa anaaiman not availabla	hazandamha	Streinziaceae	v									^	^	
93		toilovimbinanto	Cabaaraaaaalaaaa	X											
94 05	Rhuo tarantana	toronto	Appoardiacea	X											v
90	niius laidillaila Salaaja madagaaarjanaja	larania	Hupporatogogg			v	v	v	v	v					X
90 07	Sarcolaona arionhora	vualsiiilalla maramavo	Sarcolaonaccao		v	X	X	x	X	X					
91		maramaitaa	Sarcolaenacce		X	X	X								
90 90		fortondoby	Sarcolaenaceae		X	х	х								
39	Sunizulatila tiuliyala	nontohonalar	Sancolaenaceae	х	X										х
100	Stanbanadanhna arresterius	nantoponaky	Sapotaceae		х								. .		
101	Stephanouaphine cremostacnya	navoa	путеласеае									Х	Х	Х	

Table 1. Continued.

	Scientific Name	Common Name	Family	Januar	Februar	March	April	Мау	June	July	Augus	Septemb	Octobe	Novemb	Decemb
				<	~						_	ĕŗ	Ť	ę	ę
102	Suregada baronii	kalavelo	Euphorbiaceae	Х											
103	Tacca leontopetaloides	tavolo	Tacceceae									Х			
104	Tambourissa castri-delphinii	ambora	Monimiaceae	Х	Х	х	Х	Х	х						
105	Tambourissa purpurea	ambora	Monimiaceae			х	Х				х				
106	<i>Tarenna</i> sp.	tanatananala fotsy	Rubiaceae		Х	х									
107	Terminalia fatraea	katrafa	Combretaceae				х								
108	Tina thouarsiana	sagnira	Sapindaceae											х	х
109	Trachylobium verrucosum	manjorofo	Fabaceae							х	х				
110	Trema orientalis	andrarezo	Ulmaceae	х	х	х	х	х	х	х					
111	Tricalysia cryptocalyx	hazongalalalahy	Rubiaceae			х	х	х	х	х	х	х			
112	Turraea lanceolata	sakaimboalavo	Meliaceae		х	х									
113	Uapaca densifolia	voapaka madinika	Euphorbiaceae										х	х	
114	Vaccinium imernense	tsilanitria	Vaccinaceae	х	х										х
115	Vepris elliotii	ampoly	Rutaceae	х	Х									х	х
116	Vernoniopsis caudata	fitobohantsiny	Asteraceae							х	х	х	х		
117	Vitex bracteata	nofotrakoho	Lamiaceae	х			х	х	х	х	х	х	х		
118	Vitex tristis	nofotrakoho marec	Lamiaceae							х					
<u>119</u>	Ximenia caffra	fantsinakoholahy	Celastraceae	х											

SI/MAB Series 11 = 125

07_MadagascarRevisions_R4 3/7/08 3:38 PM Page 126