

Forest Ecology and Management 164 (2002) 31-38

Forest Ecology and Management

www.elsevier.com/locate/foreco

# Propagating framework tree species to restore seasonally dry tropical forest: implications of seasonal seed dispersal and dormancy

David Blakesley<sup>a,\*</sup>, Stephen Elliott<sup>b</sup>, Cherdsak Kuarak<sup>b</sup>, Puttipong Navakitbumrung<sup>b</sup>, Sudarat Zangkum<sup>b</sup>, Vilaiwan Anusarnsunthorn<sup>b</sup>

<sup>a</sup>Horticulture Research International, East Malling, West Malling, Kent ME19 6BJ, UK <sup>b</sup>Science Faculty, Biology Department, Forest Restoration Research Unit, Chiang Mai University, Chiang Mai 50200, Thailand

Received 4 December 2000; received in revised form 10 April 2001; accepted 10 April 2001

#### Abstract

One effective approach to forest restoration in degraded tropical forestland is the so-called 'framework species method' which involves planting 20–30 indigenous forest tree species to re-establish a basic forest structure that catalyses the recovery of biodiversity. For the seasonally dry tropical forests of Doi Suthep-Pui National Park in northern Thailand, a provisional list of 36 potential framework species was compiled, from 19 different families representing a broad spectrum of the tree flora. This paper examines the seed germination characteristics of these species when grown as a nursery 'crop' for planting to restore degraded sites, focussing on germination phenology and dormancy. It considers how such characteristics affect the first stage of nursery production from seed collection to pricking out seedlings in the nursery. Twenty-nine species had a germination percentage of 60% or greater, which is acceptable for nursery production. The median length of dormancy (MLD) ranged from 7 days in the case of *Erythrina subumbrans* to 219 days for *Lithocarpus garrettianus*. Germinated rapidly and eight germinated slowly, the remainder being intermediate. Seedling emergence ranged over a period of 7 days in the case of *Erythrina stricta* and *E. subumbrans* to 322 days in the case of *L. garrettianus*. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Tropical forest restoration; Seed dormancy; Germination; Seedling development; Framework tree species

#### 1. Introduction

Deforestation is a serious environmental problem throughout the tropics causing rural poverty, watershed degradation and loss of biodiversity. Efforts to

\*Corresponding author. Tel.: +44-1732-84-3833; fax: +44-1732-84-9067. restore forests are increasing, but such efforts are often limited due to lack of knowledge about how to propagate the majority of indigenous tree species. One effective approach to forest restoration is the 'framework species method' (Goosem and Tucker, 1995; Lamb et al., 1997; Tucker and Murphy, 1997) first developed to restore forest in degraded areas of Queensland's Wet Tropics World Heritage Site in Australia. The method depends on tree planting to restore basic forest structure which then encourages

E-mail address: david.blakesley@hri.ac.uk (D. Blakesley).

the recovery of biodiversity. Seven years after planting 20-30 framework tree species in degraded grassland sites in Queensland, the regenerating forests developed closed canopies up to 8.7 m tall and was naturally colonised by up to 49 additional tree species (Tucker and Murphy, 1997). Framework tree species are fast growing with dense spreading canopies which rapidly shade out weeds. They also provide resources for wildlife (such as fruit, nectar or perching sites) at an early age. Animals (especially birds and bats) attracted by such resources, disperse the seeds of additional non-planted tree species into the planted sites, thus accelerating the return of biodiversity. Seed of framework species should be easy to collect and germinate in nurseries. A reasonable growth rate is also required in the nursery to ensure efficient use of nursery space and facilities.

Although detailed information exists on the propagation of commercially valuable tree species, very little is known about potential framework tree species, which tend to be non-commercial, indigenous forest tree species with high ecological value but low or unexplored economic value. For the vast majority of the huge diversity of forest tree species in Southeast Asia flowering, fruiting and germination phenology are not known and propagation techniques have not yet been developed. Of the 36 potential framework species reported here, only Bishofia javanica, Duabanga grandiflora, Hovenia dulcis and Prunus cerasoides have been studied previously (Datta and Sharma, 1989; Frett, 1989; Kamaluddin and Grace, 1993; Kopachon et al., 1996; Hardwick et al., 1997) and none within the context of producing a 'crop' of framework species.

Producing a wide range of framework tree species is far more complex than mass propagation of a small number of commercial plantation species. Indigenous tree species in Thailand produce seeds at different times throughout the year. However, seeds of tree species in seasonally dry tropical forests in the neotropics tend to germinate at the beginning of the rainy season (Garwood, 1983), providing seedlings with sufficient time to establish a good root system before onset of drought conditions during the following dry season. However, it is not clear how germination phenology and year-round seed dispersal affect the nursery operation. What may be the optimum strategy to enable trees to establish themselves naturally may work against the needs of small-scale tree nursery managers.

A list of 36 potential framework species from 19 different families was drawn up, based on pilot studies in the nursery, preliminary field trials over 3 years and fruiting characteristics. This included pioneers such as Melia toosendan and climax species such as H. dulcis. Key families include the Moraceae (four species), Meliaceae (two species), Leguminosae (two species) and Fagaceae (six species) (Table 1). The list is necessarily provisional because long-term field trials are needed to determine the age at which the listed tree species first produce wildlife resources and the degree to which they enhance biodiversity recovery. The present paper examines seed germination characteristics of potential framework species when grown as a crop, focussing on dispersal, germination phenology and dormancy. It considers how such characteristics affect the first stage of nursery production, from seed collection to pricking out seedlings in the nursery. It also reviews the suitability of the species as framework species based on the essential criterion of seed germination.

#### 2. Materials and methods

#### 2.1. Study site

Trees were propagated in a nursery at 1000 m elevation near the headquarters of Doi Suthep-Pui National Park, north-west of Chiang Mai, northern Thailand (18°51'N latitude and 98°54'E longitude). The area experiences a monsoonal climate with pronounced dry and wet seasons. Average annual precipitation recorded at nearby weather stations at similar elevations ranges from 1670 to 2094 mm. The wet season lasts from May to October and the dry season from November to April.

All the seed was collected in natural or slightly disturbed forest ecosystems close to the nursery between elevations of 700–1600 m. This elevation range covers all the major forest types in the park, including the deciduous forest associations of the lowlands (deciduous dipterocarp oak, bamboo deciduous forest and mixed evergreen deciduous forest) and the evergreen forest of the uplands (Maxwell and Elliott, in press).

Table 1

Forest types, altitudinal ranges (northern Thailand) and fruit types of potential framework species

| Species                                                             | Family         | Forest type <sup>a</sup> | Altitude range (m) | Fruit type            |
|---------------------------------------------------------------------|----------------|--------------------------|--------------------|-----------------------|
| Balakata baccata (Roxb.) Ess.                                       | Euphorbiaceae  | MED/E                    | 400-500            | Drupe                 |
| Bischofia javanica Bl.                                              | Euphorbiaceae  | BD/MED/E                 | 525-1250           | Drupe                 |
| Callicarpa arborea Roxb. var. arborea                               | Verbenaceae    | DDO/BD/MED               | 375-1250           | Berry                 |
| Castanopsis calathiformis (Skan) Rehd. and Wils.                    | Fagaceae       | EP                       | 1050-1500          | Nut                   |
| Castanopsis tribuloides (Sm.) A. DC.                                | Fagaceae       | MED/E/EP                 | 900-1685           | Nut                   |
| Cinnamomum iners Reinw. ex Bl.                                      | Lauraceae      | MED/E                    | 700-1425           | Berry                 |
| Debregeasia longifolia (Burm. f.) Wedd.                             | Urticaceae     | MED/EP                   | 525-1685           | Achene                |
| Duabanga grandiflora (Roxb. ex DC.) Walp.                           | Sonneratiaceae | MED/E                    | 650-1450           | Capsule               |
| Eriobotrya bengalensis (Roxb.) Hk. f. forma<br>multinervata Vidal   | Rosaceae       | Е                        | 1000–1650          | Drupe                 |
| Erythrina stricta Roxb.                                             | Leguminosae    | BD/E/EP                  | 400-1680           | Pod                   |
| Erythrina subumbrans (Hassk.) Merr.                                 | Leguminosae    | MED/E                    | 500-1680           | Pod                   |
| Eugenia albiflora Duth. ex Kurz                                     | Myrtaceae      | MED/E/EP                 | 800-1525           | Berry                 |
| Eurya acuminata DC. var. wallichiana Dyer                           | Theaceae       | E                        | 1000-1500          | Berry                 |
| Ficus altissima Bl.                                                 | Moraceae       | BD/MED                   | 350-1050           | Fig                   |
| Ficus racemosa var. racemosa                                        | Moraceae       | MED                      | 350-500            | Fig                   |
| Ficus semicordata BH. ex J.E. Sm. Var. semicordata                  | Moraceae       | BD/E/EP                  | 350-1550           | Fig                   |
| Ficus subulata Bl. var. subulata                                    | Moraceae       | MED/E                    | 825-1400           | Fig                   |
| Gmelina arborea Roxb.                                               | Verbenaceae    | BD/MED/E/EP              | 350-1475           | Drupe                 |
| Heynea trijuga Roxb. ex Sims                                        | Meliaceae      | BD/MED/E/EP              | 550-1680           | Capsule               |
| Hovenia dulcis Thunb.                                               | Rhamnaceae     | E                        | 1025-1300          | Capsule               |
| Lithocarpus elegans (Bl.) Hatus. ex Soep.                           | Fagaceae       | B/MED/EP                 | 450-1450           | Nut                   |
| Lithocarpus garrettianus (Craib) A. Camus                           | Fagaceae       | B/MED/E                  | 550-1100           | Nut                   |
| Manglietia garrettii Craib                                          | Magnoliaceae   | Е                        | 1050–1600          | Aggregate<br>follicle |
| Markhamia stipulata (Wall.)<br>Seem. ex K. Sch. var. kerrii Sprague | Bignoniaceae   | BD/MED/E/EP              | 950–1500           | Capsule               |
| Melia toosendan Sieb. and Zucc.                                     | Meliaceae      | MED/E                    | 700-1450           | Drupe                 |
| Michelia baillonii Pierre                                           | Magnoliaceae   | MED/E                    | 650–1100           | Aggregate<br>follicle |
| Nyssa javanica                                                      | Polygalaceae   | MED/E                    | 550-1400           | Drupe                 |
| Ostodes paniculata Bl.                                              | Euphorbiaceae  | E                        | 1000-1350          | Capsule               |
| Phoebe lanceolata (Nees) Nees                                       | Lauraceae      | MED/E/EP                 | 550-1550           | Drupe                 |
| Planchonell punctata Flet.                                          | Sapotaceae     | DDO/BD/MED/E/            | EP 350-1525        | Berry                 |
| Prunus cerasoides D.Don                                             | Rosaceae       | MED/E/EP                 | 1050-1685          | Drupe                 |
| Quercus semiserrata Roxb.                                           | Fagaceae       | MED/E/EP                 | 800-1675           | Nut                   |
| Quercus vestita Rehd. and Wils.                                     | Fagaceae       | E/EP                     | 1200-1600          | Nut                   |
| Rhus rhetsoides Craib                                               | Anacardiaceae  | MED/E/EP                 | 650-1550           | Drupe                 |
| Sapindus rarak DC.                                                  | Sapindaceae    | MED/E                    | 625-1620           | Drupe                 |
| Spondias axillaris Roxb.                                            | Anacardiaceae  | MED/E/EP                 | 700–1600           | Drupe                 |

<sup>a</sup> BD: bamboo and deciduous; DDO: deciduous dipterocarp oak; MED: mixed evergreen and deciduous; E: evergreen; EP: evergreen and pine (*sensu* Maxwell and Elliott, in press).

#### 2.2. Seed germination

Seeds of the 36 potential framework species were collected from single parent trees of each species when fruits were mature and ripe. Fruits were cut from branches or collected from the ground only if they were 'fresh' and undecayed. Following the removal of the fruit pericarp, seeds were sown within 2–3 days of collection into modular plastic trays, on to the surface of a medium of two parts forest soil to one part coconut husk. For each species, 72 seeds were divided into three replicate batches of 24 which were randomly assigned to different benches and watered daily. Each replicate consisted of 24 adjacent compartments  $(3.5 \text{ cm} \times 3.0 \text{ cm} \times 7.0 \text{ cm})$  in one-seed tray. Seed trays were placed on the top of concrete benches,

partially shaded under a transparent plastic roof (approximately 40% full sunlight, similar to the light intensity in partially regenerating gaps). Once the first pair of leaves had fully expanded, seedlings were

Table 2

Seed germination data of potential framework tree species, suitable for forest restoration plantings in northern Thailand

| Species                                                             | Seed collection<br>month<br>December | Mean germinationMLD (days) <sup>b</sup> percentage <sup>a</sup> (S.D.) |     | Time over which<br>seeds germinated<br>(days) <sup>b</sup> | Germination and<br>synchrony<br>categories <sup>c</sup> |
|---------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----|------------------------------------------------------------|---------------------------------------------------------|
| Balakata baccata (Roxb.) Ess.                                       |                                      | 25 (6.3)                                                               | 67  | 112                                                        | IG/AS                                                   |
| Bischofia javanica Bl.                                              | November                             | 43 (14.6)                                                              | 85  | 154                                                        | SG/AS                                                   |
| Callicarpa arborea Roxb. var. arborea                               | August                               | 67 (21.7)                                                              | 86  | 63                                                         | SG/IS                                                   |
| Castanopsis calathiformis (Skan)<br>Rehd. and Wils.                 | June                                 | 61 (19.2)                                                              | 16  | 42                                                         | RG/IS                                                   |
| Castanopsis tribuloides (Sm.) A. DC.                                | September                            | 83 (8.3)                                                               | 31  | 42                                                         | IG/IS                                                   |
| Cinnamomum iners Reinw. ex Bl.                                      | April                                | 75 (8.3)                                                               | 17  | 63                                                         | RG/IS                                                   |
| Debregeasia longifolia (Burm. f.) Wedd.                             | March                                | 100 (0)                                                                | 15  | 14                                                         | RG/S                                                    |
| Duabanga grandiflora (Roxb. ex DC.) Walp.                           | April                                | 86 (2.9)                                                               | 31  | 42                                                         | IG/IS                                                   |
| Eriobotrya bengalensis (Roxb.)<br>Hk. f. forma multinervata Vidal   | September                            | 79 (3.6)                                                               | 16  | 203                                                        | RG/AS                                                   |
| Erythrina stricta Roxb.                                             | May                                  | 67 (33.3)                                                              | 10  | 7                                                          | RG/S                                                    |
| Erythrina subumbrans (Hassk.) Merr.                                 | April                                | 39 (2.4)                                                               | 7   | 7                                                          | RG/S                                                    |
| Eugenia albiflora Duth. ex Kurz                                     | May                                  | 71 (12.5)                                                              | 24  | 147                                                        | IG/AS                                                   |
| Eurya acuminata DC. var. wallichiana Dyer                           | March                                | 69 (6.4)                                                               | 60  | 126                                                        | IG/AS                                                   |
| Ficus altissima Bl.                                                 | March                                | 97 (2.4)                                                               | 34  | 105                                                        | IG/AS                                                   |
| Ficus racemosa var. racemosa                                        | February                             | 92 (4.2)                                                               | 27  | 70                                                         | IG/IS                                                   |
| Ficus semicordata BH. ex J.E.<br>Sm. var. semicordata               | March                                | 92 (5.0)                                                               | 52  | 41                                                         | IG/IS                                                   |
| Ficus subulata Bl. var. subulata                                    | January                              | 71 (8.3)                                                               | 60  | 175                                                        | IG/AS                                                   |
| Gmelina arborea Roxb.                                               | March                                | 83 (18.2)                                                              | 25  | 14                                                         | IG/S                                                    |
| Heynea trijuga Roxb. ex Sims                                        | November                             | 83 (14.4)                                                              | 96  | 203                                                        | SG/AS                                                   |
| Hovenia dulcis Thunb.                                               | August                               | 71 (15.0)                                                              | 97  | 154                                                        | SG/AS                                                   |
| Lithocarpus elegans (Bl.) Hatus. ex Soep.                           | September                            | 69 (9.6)                                                               | 143 | 231                                                        | SG/AS                                                   |
| Lithocarpus garrettianus (Craib) A. Camus                           | September                            | 56 (37.3)                                                              | 219 | 322                                                        | SG/AS                                                   |
| Manglietia garrettii Craib                                          | October                              | 74 (4.8)                                                               | 81  | 140                                                        | IG/AS                                                   |
| Markhamia stipulata (Wall.) Seem. ex K.<br>Sch. var. kerrii Sprague | March                                | 56 (2.1)                                                               | 13  | 15                                                         | RG/.S                                                   |
| Melia toosendan Sieb. and Zucc.                                     | April                                | 67 (15.0)                                                              | 15  | 70                                                         | RG/IS                                                   |
| Michelia baillonii Pierre                                           | June                                 | 31 (6.9)                                                               | 101 | 63                                                         | SG/IS                                                   |
| Nyssa javanica                                                      | July                                 | 67 (19.1)                                                              | 39  | 70                                                         | IG/IS                                                   |
| Ostodes paniculata Bl.                                              | November                             | 53 (16.8)                                                              | 124 | 203                                                        | SG/AS                                                   |
| Phoebe lanceolata (Nees) Nees                                       | April                                | 79 (4.2)                                                               | 44  | 56                                                         | IG/IS                                                   |
| Planchonella punctata Flet.                                         | June                                 | 89 (1.7)                                                               | 17  | 35                                                         | RG/IS                                                   |
| Prunus cerasoides D.Don                                             | March                                | 74 (4.8)                                                               | 52  | 63                                                         | IG/IS                                                   |
| Quercus semiserrata Roxb.                                           | June                                 | 92 (7.2)                                                               | 18  | 35                                                         | RG/IS                                                   |
| Quercus vestita Rehd. and Wils.                                     | September                            | 74 (13.4)                                                              | 14  | 21                                                         | RG/S                                                    |
| Rhus rhetsoides Craib                                               | December                             | 50 (50.0)                                                              | 24  | 28                                                         | IG/IS                                                   |
| Sapindus rarak DC.                                                  | January                              | 83 (8.3)                                                               | 45  | 98                                                         | IG/AS                                                   |
| Spondias axillaris Roxb.                                            | March                                | 43 (4.8)                                                               | 11  | 21                                                         | RG/S                                                    |

<sup>a</sup> Three replicates.

<sup>b</sup> Pooled replicates.

<sup>c</sup> RG: rapid germination; IG: intermediate germination; SG: slow germination; S: synchronous; IS: intermediate synchrony; AS: asynchronous.

34

pricked out and transplanted into individual containers. Germination was monitored throughout the germination period and was defined as emergence of any part of the shoot. The dates of the first and last seeds to germinate were recorded, and the median length of dormancy (MLD) calculated (pooling individuals of each species from the three replicate batches) from the germination times of all seeds which germinated.

## 3. Results

Germination percentage, one of the key selection criteria for framework species, ranged from 25 to 100% (Table 2). However, 80% of species had a germination percentage of 60% or greater, which is more acceptable for this type of nursery operation. Only three species had low germination percentages: *Balakata baccata* (25%); *Michelia baillonii* (31%); *Erythrina subumbrans* (39%). However, these species still qualify as potential framework species due to other attributes, such as high growth rate in containers or good field performance (unpublished data).

The MLD ranged from 7 to 219 days. For the purposes of nursery production, germination was defined as rapid if the MLD was 21 days or less, and slow if the MLD was 84 days or more. Twelve species could be classified as having rapid germination: Castanopsis calathiformis; Cinnamomum iners; Debregeasia longifolia; Eriobotrya bengalensis; Erythrina stricta; Erythrina subumbrans; Markhamia stipulata; Melia toosendan; Planchonella punctata; Quercus semiserrata; Quercus vestita; Spondias axillaris. In contrast, Bischofia javanica, Callicarpa arborea, Heynea trijuga, Hovenia dulcis, Lithocarpus elegans, Lithocarpus garrettianus, Michelia baillonii and Ostodes paniculata were categorised as having slow germination. The remaining 16 species had MLD's of between 3 and 12 weeks and could be regarded as having intermediate germination rates.

Considering the framework species as a whole, most species (28 or 78%) fell into the categories of rapid or intermediate germination. Of the 21 species collected in the late dry and early wet season, only one species, *Michelia baillonii* germinated slowly (Fig. 1). In contrast, of the 15 species collected in the late wet and early dry season, seven species germinated slowly (19% of the total); the remaining eight were intermediate or rapid. This seasonal variation resulted in a peak in nursery germination in the first-half of the year, when the median seeds of 72% of species germinated (Fig. 2). This coincided with the end of the latter part of the dry season and the early part of the wet season.



Fig. 1. The relationship between the MLD and the month of seed collection of species collected in Doi Suthep-Pui National Park (700–1600 m asl). Each point represents an individual species.



Fig. 2. Number of species located in Doi Suthep-Pui National Park (700-1600 m asl), whose median seed emergence falls in each month.

Seedling emergence ranged over 7 days for both Erythrina spp. to 322 days for L. garrettianus. For tree production in the nursery, germination was defined as synchronous if all seedlings of a given species emerged within 21 days, and highly asynchronous if this occurred over a period of more than 84 days. Seven species germinated synchronously, six of which also had an MLD of less than 21 days (Table 2): Debregeasia longifolia; Erythrina stricta; Erythrina subumbrans; Markhamia stipulata; Quercus vestita; Spondius axillaris. The other species which germinated synchronously, Gmelina arborea, also germinated relatively rapidly, with an MLD of 25 days. Species exhibiting highly asynchronous germination were distributed across intermediate- and slowgerminating species. Of the latter group of species, none germinated synchronously; 63 days was the shortest time of seedling emergence, and the mean emergence time for the eight species was 164 days.

#### 4. Discussion

Few phenological studies have been reported with the framework species described in this paper. The most studied has been *Hovenia dulcis*, with several reports on seed germination (Frett, 1988, 1989; Kopachon et al., 1996) and the successful micropropagation of axillary buds from mature trees (Echeverrigaray et al., 1998).

Hardwick et al. (1997) studied germination and emergence of Prunus cerasoides collected on Doi Suthep, and also found that it fruited late in the dry season with a high germination percentage. Bischofia javanica has previously been propagated from seed, and grown in controlled environments to stimulate different forest canopies (Kamaluddin and Grace, 1993). This study showed that B. javanica has a wide acclimation potential to the changing light levels, which may occur in gaps. There is a report of soft rot on seedlings of Duabanga grandiflora (Datta and Sharma, 1989). Although there are a number of other publications relating to related taxa within the families reported here, particularly in America and the neotropics, no other relevant work has been published on the potential framework species described in this paper.

Because of the rainfall patterns in a seasonally dry tropical forest, the ideal time to plant out containergrown tree seedlings is at the start of the wet season. It is a considerable challenge to produce a crop of seedlings, of a plantable size, of 36 framework tree species, all to be dispatched at the same time of year when seeds are available at different months throughout the year and they exhibit widely different rates of germination and growth in the nursery. The present study has shown that nursery production of such a 'collection' of native species, about which very little is known, presents considerable logistical problems for the nursery manager, even to get the seedlings to the point of pricking out into containers. The first of these is that to propagate 36 framework species, at least one collection trip would be required in every month of the year and probably more in March, April and September when 18 species (50% of the framework species) are available for collection. Furthermore, these species exhibit considerable variation in dormancy and germination synchrony. It can be clearly seen from the scatter plot of MLD (Fig. 1) that species with seeds dispersed in the late dry/early wet season tend to germinate quickly in the nursery, whereas those with species dispersed towards the end of the wet season and into the dry season, are likely to have a much longer dormancy period. Seven of the framework species appear to be ideal for nursery production, because they are collected at one time of the year in the late dry/early wet season (with the exception of Quercus vesita) and germinate rapidly and synchronously. These species, therefore, require minimum time in the germination facility where they are particularly susceptible to pests and diseases. The other species collected at this time (with the exception of Michelia baillonii) have intermediate germination, and vary in the synchronicity of germination, and include species such as Eurya acuminata and Ficus subulata which are highly asynchronous. Another predictable group of species, in terms of nursery planning, are those dispersed in the late wet/early dry season which germinate slowly and also asynchronously.

Whilst it is beyond the scope of this paper to consider the manipulation of growth and development of framework species in containers, it is clear from the above discussion that seedlings will be ready for pricking out throughout the year. Further work is now underway to assess the second stage of nursery production of these species, from pricking out through to weaning and dispatch.

## Acknowledgements

FORRU was funded with financial support from Riche Monde (Bangkok) Ltd. and United Distillers PLC. Shell Forestry Limited, the Biodiversity Research and Training Programme and the Science Faculty of Chiang Mai University sponsored the research described in this paper. Other donors have included The Fagus Anstruther Memorial Trust, The Peter Nathan Trust, The Robert Kiln Charitable Trust, The Barbara Everard Trust for Orchid Conservation, Mr. Alan and Mrs. Thelma Kindred, Mr. Nostha Chartikavanij, Mr. R. Butterworth and Mr. James C. Boudreau. The authors thank J.F. Maxwell for identifying the tree species named in this paper. Voucher specimens are stored at the Chiang Mai University Herbarium, Biology Department. The authors are grateful to all research assistants and volunteers who assisted with data collection and processing and care of the plants in the nursery including: Jumpee Bunyadit, Thonglaw Seethong, Tim Rayden, Kevin Woods, Rungtiwa Bunyayod and Janice Kerby. The Head and staff of Doi Suthep-Pui National Park Headquarters provide essential collaboration for FORRU's research. We are especially grateful to the Head of the National Park, Mr. Paiboon Sawetmelanon, Mr. Amporn Panmongkol (Deputy Head) and Mr. Prasert Saentaam.

### References

- Datta, B., Sharma, G.D., 1989. Report on soft rot of *Duabanga grandiflora* seedling (Roxb. ex DC.) Walp. Curr. Sci. 58, 574–575.
- Echeverrigaray, S., Mossi, A.J., Munari, F., 1998. Micropropagation of raisin tree (*Hovenia dulcis* Thunb.) through axillary bud culture. J. Plant Biochem. Biotechnol. 7, 99–101.
- Frett, J.J., 1988. Requirements for germination of *Hovenia dulcis* seeds. Hortscience 23, 677.
- Frett, J.J., 1989. Germination requirements of *Hovenia dulcis* seeds. Hortscience 24, 152.
- Garwood, N.C., 1983. Seed germination in a seasonal tropical forest in Panama: a community study. Ecol. Monogr. 53, 159– 181.
- Goosem, S.P., Tucker, N.I.J., 1995. Repairing the Rainforest— Theory and Practice of Rainforest Re-establishment in North Queensland's Wet Tropics. Wet Tropics Management Authority, Cairns, pp. 71.
- Hardwick, K., Healey, J., Elliott, S., Garwood, N.C., Anusarnsunthorn, V., 1997. Understanding and assisting natural regeneration processes in degraded seasonal evergreen forests in northern Thailand. For. Ecol. Manage. 99, 203–214.
- Kamaluddin, M., Grace, J., 1993. Growth and photosynthesis of tropical forest tree seedlings (*Bischofia javanica* Blume) as influenced by a change in light availability. Tree Physiol. 13, 189–201.
- Kopachon, S., Suriya, K., Hardwick, K., Pakaad, G., Maxwell, J.F., Anusarnsunthorn, V., Garwood, N.C., Blakesley, D., Elliott, S., 1996. Forest restoration research in northern Thailand. 1.

Fruits, seeds and seedlings of *Hovenia dulcis* Thunb. Nat. Hist. Bull. Siam. Soc. 44, 41–52.

- Lamb, D., Parrotta, J., Keenan, R., Tucker, N.I.J., 1997. Rejoining habitat remnants: restoring degraded rainforest lands. In: Laurence, W.F., Bierrgaard Jr., R.O. (Eds.), Tropical Forest Remnants: Ecology, Management and Conservation of Fragmented Communities. University of Chicago Press, Chicago, IL, pp. 366–385.
- Maxwell, J.F., Elliott, S., in press. Vegetation and Vascular Flora of Doi Suthep-Pui National Park, Chiang Mai Province, Thailand. The Biodiversity Research and Training Programme, Bangkok.
- Tucker, N.I.J., Murphy, T.M., 1997. The effects of ecological rehabilitation on vegetation recruitment: some observation from the Wet Tropics of North Queensland. For. Ecol. Manage. 99, 133–152.