Floral Biology and Pollination Ecology of *Rhizophora mucronata* in Gulf of Kachchh, Gujarat, India

by Pandey C. N. and Pandey R.

Presented by

C. N. Pandey Chief Conservator of Forests and Director GEER Foundation www.geerfoundation.gujarat.gov.in

Gujarat Ecological Education and Research (GEER) Foundation

MANDATES

Ecological Research

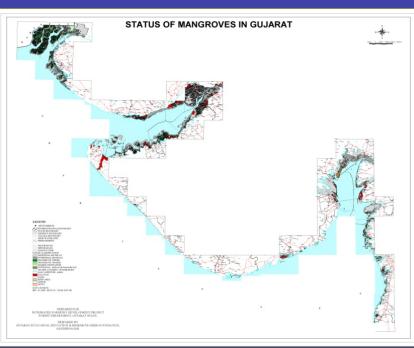
Ecological Education and Awareness

Research Inputs to management

Present work is part of ongoing research project titled

"Study of Pollination Biology and Reproductive Ecology of Major Mangrove Species of Gujarat"

Sponsored By


Ministry of Environment and Forest Government of India

Indian Coast

Long coastline – about 8000 kms. 38 important mangrove sites 4 major coral reefs

Gujarat Coast

- •Longest coastline in India-1650km (22%)
- •66 % of India's coastal wetlands
- •2 gulfs out of 3 in India.
- 2 gulfs cover 60% of state's coastline.
- Major ecosystems: coral reefs & mangroves.
- •High tidal amplitude, gentle slope in coastal areas, large intertidal zone
- Occupies 165000 km² of Indian continental shelf of 468000 km² (35.3%).
- Highly industrialized state- tremendous pressure on these ecosystem.
- Frequent natural threats cyclone, earthquake, drought, warm streams...

Relative Abundance of Mangrove Species in Gujarat

Abundant species Avicennia marina

A. alba

A. officinalis

Species with localized abundance Rhizophora mucronata , Ceriops tagal , Acanthus illicifolius

Species which are rare at state level Aegiceras corniculatum Sonneratia apetala Bruguiera gymnorrhiza Previously reported but not seen in recent past Bruguiera cylindrica Mecently recorded mangrove species Excoecaria agallocha Ceriops decandra Rhizophora apiculata

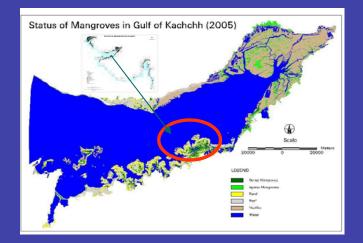
Species diversity is low-only 13 species

Objectives

Examination of floral phenology, floral biology and pollination ecology of *R. mucronata*

Examination of the nature of floral exudate of *R.* mucronata

Temporal relation among anthesis, anther dehiscence, stigma receptivity, nectar (if present) secretion and visitation pattern of floral visitors


Mangrove Species Under Study

Rhizophora mucronata

STUDY AREA, GULF OF KACHCHH, GUJARAT

Location of research stations

Pirotan Island

Bhensbid Island

Sikka Coastal

METHODOLOGY

Flowering phenology -30 trees

Flowering processes-Anthesis, Anther dehiscence & Stigma receptivity(H₂O₂ method) -300 samples for each process (in four time zones)

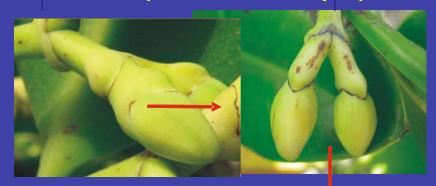
Pollen and ovule production (heamocytometer, light microscopy)

- 60 flowers (for each)

Pollen load on petal hair (light microscopy) – 207 flowers (of different floral stages)

Visitation pattern of pollinator- diurnal and nocturnal

Pollen load on floral visitors (light microscopy)


Nature of floral exudate- (Paper chromatography)

Observations were made during flowering season of R. mucronata in mangrove forests

Floral Phenology Of *Rhizophora mucronata* (November to April)

Anther Dehiscence

Mature buds (May - July

Pollination

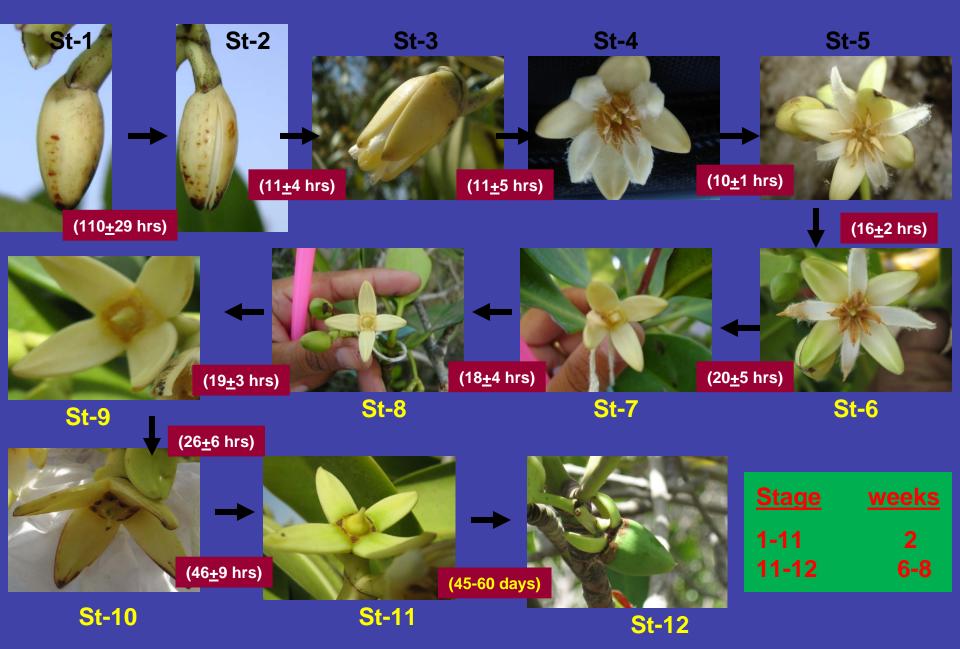
Petal senescence and exudate secretion (May - July)

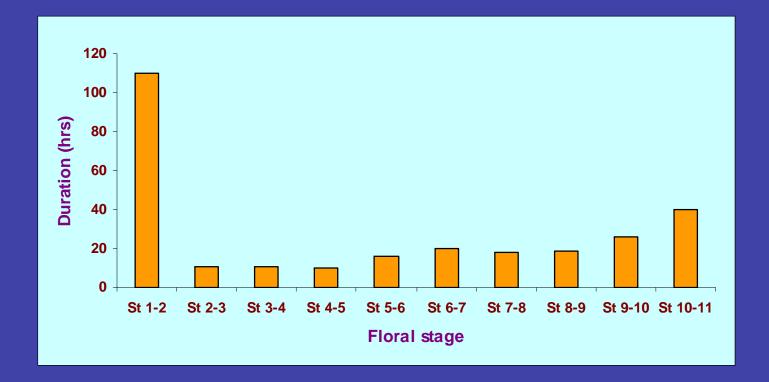
(September – October)

Fertilization and seed setting

Contd...

Propagule development and recruitment




November – December (next year)

Floral biology

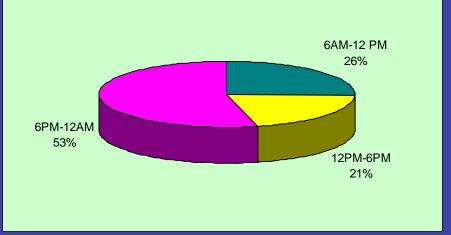
Floral Biology of R. mucronata-12 stages

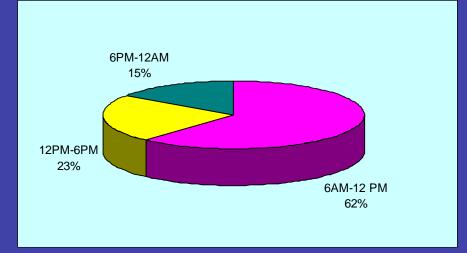
Pace Of Transformation Of Floral Stages

Transformation period from St 1 to St 2 is 110 hrs Transformation period from St 2 to St 11 is about 12 hours Transformation from St 11 to St 12 is 45 to 60 days The transformation was found to be faster in day time than in night

Anthesis

St-2


St-3


Anthesis starts by a slit at the apex of the bud

Anthesis

Initiation of anthesis

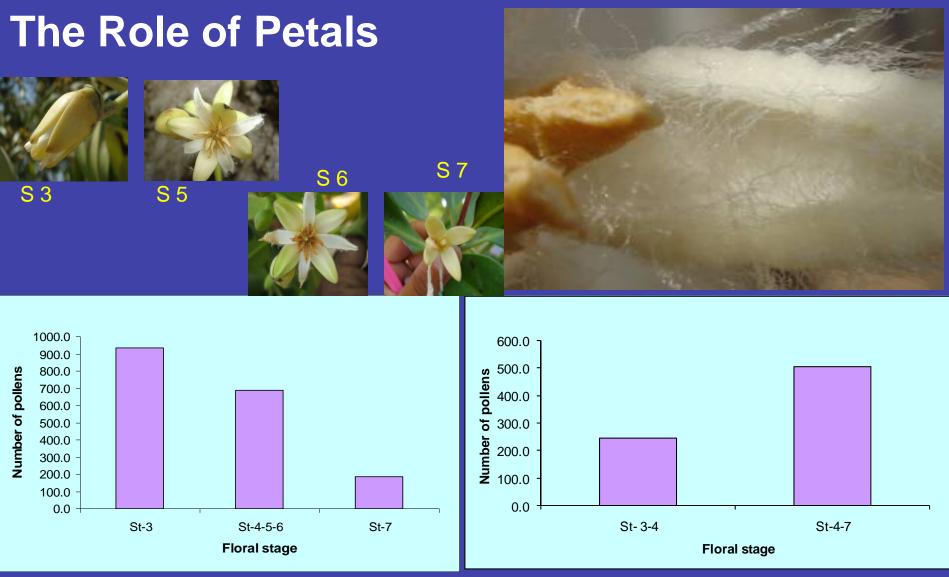
Completion of anthesis

Anthesis reported in day and night both More than 50% anthesis initiate after 6 pm More that 60% of anthesis get completed between 6 am to 12 pm

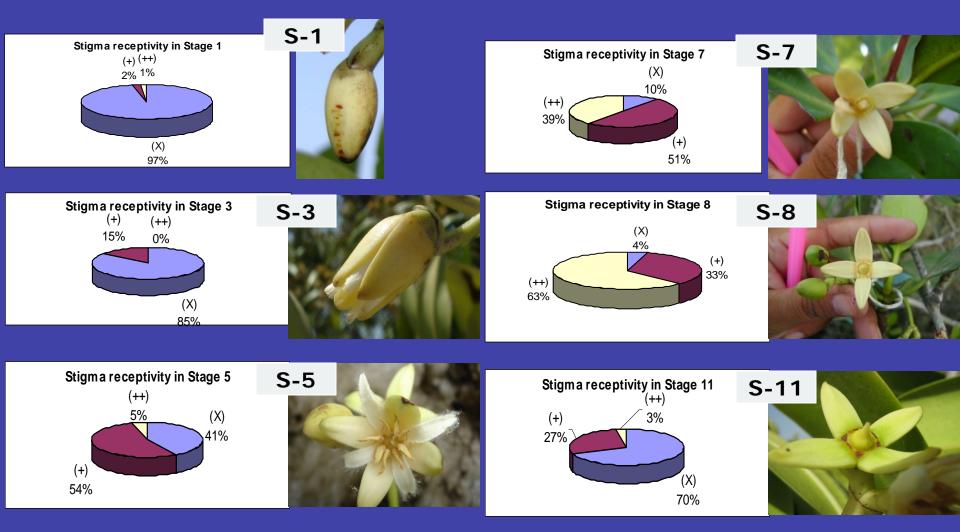
More than 80% Flowers tend to remain open during day period

Anther Dehiscence

Anther dehiscence via longitudinal opening


Opening by breaking of epidermal layer of anther wall of lower portion

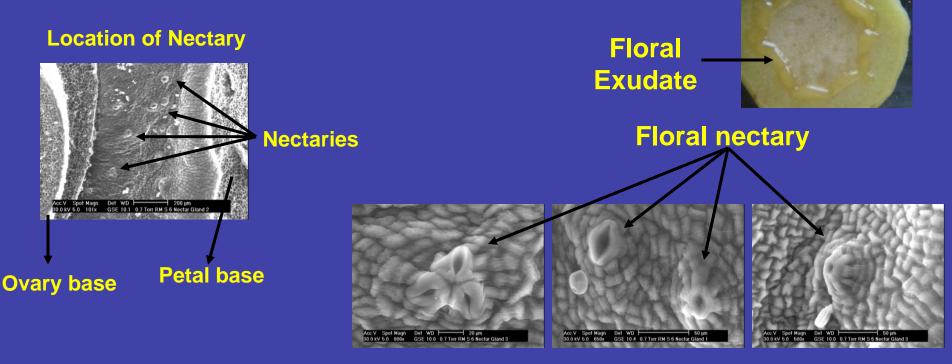
The epidermal layer of anther wall fall on the stigma and partially prevent the self pollination



Pollen load on petals in different floral stages

Pollen dispersal by petals in different floral stages

Regulate pollen dispersal after anther dehiscence


Stigma Receptivity In Different Floral Stages

X- Stigma non receptive +- Receptivity initiated but very mild ++- Strong stigma receptivity

The Role Of Exudates after Petal Fall

- 1. Shown presence of sugar- nectar
- 2. Different proportion of monosaccharide in different floral stages

Secretion after petal and anther fall seems to be a pollinator reward

Floral visitors of R. mucronata

- Total recorded visitor 18
- Diurnal visitors -8
 - Honey bees 2
 - Bees 2
 - Butterfly
 - Birds 1
 - Beetle
- Nocturnal visitors- 1
 Moth
- Diurnal and nocturnal-9

2

7

2

- Spider
- Ants

Out of these, bee and ant were found to be most frequent floral visitors

Diurnal floral visitors of *R. mucronata*

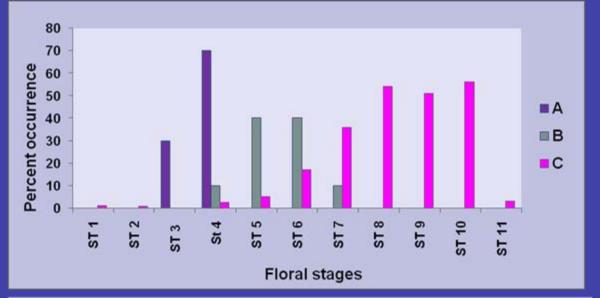
Beetle

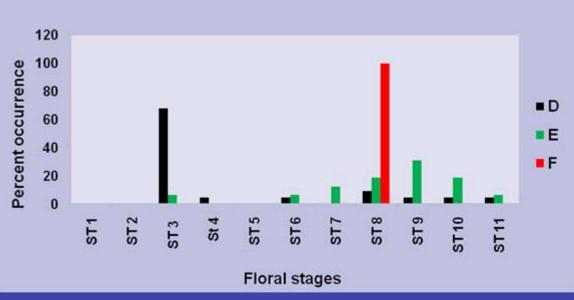
Ants

Spiders- feeding on floral visitors

Tetraganatha sp

Tetraganatha sp


Aragope anusuja



Temporal Relation between Pollen dispersal, Stigma receptivity, Floral visitors

Pollen Dispersal and Stigma receptivity

Floral visitors and nectar secretion

A-Pollen dispersal by Anther B- Pollen dispersal by Petal hair C- High stigma receptivity

> D- Bee (floral visitor) E- Ant (floral visitor) F- Nectar secretion

Inferences from Floral biology •Pollen dispersal by anther and stigma receptivity are totally out of phase- Protandry

 Pollen dispersal by petal hair and stigma receptivity are generally out of phase (overlapping in S-4 to S-6 holding possibilities of self breeding)

•Stigma receptivity, nectar secretion are synchronous- S-8

•Floral visitor & nectar secretion are synchronous - validating Insect pollination

•High possibility of cross pollination

Significant possibility of insect pollination

- •Visitation by bees during S-3 is for pollen collection
- Visitation by bees during S-8 to S-9 is for nectar collection
- •Visitation by ants during S-8 to S-10 is for nectar

•Ants were not seen around stigma - not direct pollinators.

- Insect predators such as spiders, birds may play the role of indirect pollinators
- •Wind is an important factor- could play positive as well as negative role
- •Wind pollination is less assured as compared to biotic (insect) pollination

•Wind pollination is less efficient than biotic (insect) pollination

Is the species evolving from abiotic pollination system to biotic pollination system???

Relevance of the Study

- The information about the floral biology and floral phenology is the prerequisite for in situ conservation of any species
- It appears that the pollination system of the species is not very efficient
- Hence such species need to be conserved ex situ also
- The pollination is acting not only as the reproductive process but also as a productive process where various organisms get their food directly (visitor feeding on pollen or/ and nectar) or indirectly (organisms feeding up on floral visitors)
- The function of the ecosystem could be appreciated in a more comprehensive way

Potential Area for Mangrove Afforestation (Area in km²)

Criteria for identifying potential mangrove afforestation area

1.Mudflats

2.Past history of mangrove forests3.Tidal inundation

Potential area for mangrove afforestation in km^{2-637.15}

Field Difficulties

Field Conditions

Research stations get submerged during high tide every day

Unexpected Tidal Flooding

Unexpected flooding of camping site at field the stations

Field Observations

Group discussions during field observations

Early morning observations

Late evening observations

Counting of floral stages

Collecting floral visitors

Other Field Supports

Make Shift Laboratory

Provision & water supply

Communication arrangement

Hazardous Field Conditions

Saw scale viper (poisonous) on mangrove tree Team member protecting him from poisonous insects

The team

GEER Foundation 1.Mr. C. N. Pandey 2.Dr. Harshad Salvi 3.Ms. Richa Pandey 4.Mr. Shailesh Dodiya 5.Ms Urvi Bhatt 6.Ms Anjali Sharma 7.Mr. Sunil Panchal 8.Mr. Irshad N. Theba 9.Mr. Sandeep Patel 10.Ms Yamini Verma 11.Mr. Nilesh 12.Mr. Juma bhai 13.Mr. Virag 14. Mr. Junusbhai and his team

Technical Guidance 1.Dr. B. K. Jain 2.Dr. K. S. Rao 3.Dr. K. S. S. Mohan 4.Dr. Reddy 5.Dr. Y Jasrai 6.Dr. K. Kathiresan

Students from Various Universities 1.Mr. Niraj 2.Mr. Chetan 3.Mr. Prateek 4.Mr. Sujeet 5.Mr. Amit 6.Mr. Hitesh 7.Mr. Harshad Solanki 8.Mr. Jayesh 9.Mr. Shashikant 10.Ms. Puja 11.Ms Reshma

