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Allanblackia stuhlmannii is an endangered forest tree valued for its edible nut oil. Its limited 
regenerative potential in the wild hinders the sustainable utilization of its products. To achieve mass 
production of A. stuhlmannii, its amenability to micropropagation technique was examined. Explants 
were best surface sterilized at 8% sodium hypochlorite for 10 min and rinsed using sterile distilled 
water. Of eight basal nutrient media tested, Lloyd and McCown Woody plant medium (WPM) was the 
most suitable (88.89% explants survival). Microshoots were induced from apical meristems cultured on 
WPM supplemented with different concentrations of 6-benzyladenine (BAP), kinetin (KN), 
Dichlorophenoacetic acid (2, 4 - D), Naphthalene acetic acid (NAA) and Thidiazuron (TDZ), (P < 0.05). All 
responding explants produced a single microshoot irrespective of the type and concentration of PGRs 
used. 1.2 mg/lBAP and 1.2 mg/lKIN exhibited the most rapid and consistent shoot length increase (P < 
0.05). Prolonged culture or sub culturing did not promote further shoot proliferation. Callus was 
induced from leaf explants cultured on WPM fortified with Gamborg’s vitamins, 3% sucrose, 1 mg/lKIN 
combined with 1.2 mg/l 2, 4 - D. No somatic embryos emerged from the callus. The success in explant 
sterilization and induction of microshoot and callus in this study is a milestone step in the regeneration 
of A. stuhlmannii. 
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INTRODUCTION 
 
 
Allanblackia stuhlmannii  Eng. (Clusiaceae) locally known 
as ‘Msambu’ is a forest tree with high market potential 
and grows naturally in East and West Usambara forests, 
Nguru and Uluguru forest mountains in Tanzania (El 
Tahir and Mlowe, 2002; Meshack, 2004, Van, 2005). 
During World War I, German soldiers in Tanzania used 
fat extracted from A. stuhlmannii nuts as an alternative 
edible fat to butter (Saka, 1995). The communities living 
around the Eastern ArcMountains, particularly farmers, 
use the oil extracted from A. stuhlmannii nuts for food 
and soap production (Lovett, 1983; Monela et al., 2001; 
Osemeobo, 2005, Pye-Smith, 2009). 
 
 
*Corresponding author. E-mail: jonneondo@yahoo.com. Tel: 
+254 723 595 319. 

They also use dry leaves of this tree as medicinal tea to 
treat chest pain and smear heated seed oil on aching 
joints, rashes and wounds (Meshack, 2004). 
Phytochemical analysis of A. stuhlmannnii crude extracts 
showed that Guttiferone F, a prenylatedbenzophenone, a 
compound related to a group of compounds that have 
been studied for their anti-HIV property, was present 
(Fuller et al., 2003). This tree species also has a great 
commercial potential for margarine production from its 
edible seed oil whose extraction requires less chemical 
processing and refraction than palm oil (Atangana et al., 
2006). Already, the oil from A. stuhlmannii has received 
the approval of the European Union (EU) Novel Food 
Regulations that certify safe usage as a foodstuff 
(Hermann, 2009; Ramni et al., 2010).   

Regeneration of  A.  stuhlmannii  via  seed  is  however  
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slow and low (low seed fecundity/viability). Germination 
typically takes 1 to 7 months to begin and a minimum of 
18 months to complete after sowing (Mwaura and 
Munjuga, 2011). Rooting of cuttings is poor while survival 
rate of grafted materials is dismal (Mwaura and Munjuga, 
2011). Under natural conditions, the trees begin to bloom 
at the age of 12 years.  The fruits take over a year to 
mature and become ripe between November and March 
and between August and October (Mathayo et al., 2009). 
Rodents and monkeys eat the fruits, and hence, 
providing the only mode of seed dispersal (Glynn and 
Ritzl, 2000). The limited regenerative potential and 
dispersal powers of A. stuhlmannii in the wild are likely to 
be a vulnerable element of the local biodiversity (Amanor 
et al., 2003; Attipoe et al., 2006). Loss of A. stuhlmannii 
biodiversity is likely to result to decline in the quality of 
harvested products (Amanor et al., 2003; Cordeiro et al., 
2007; Egyir, 2007). Sustainable development of 
A.stuhlmannii industry will greatly dependent on mass 
production of A. stuhlmannii. A micropropagation protocol 
with high multiplication rates will greatly contribute in the 
domestication and hence, conserve this economically 
endangered tree species. 

Micropropagation offers a rapid means of producing 
large quantity of clonal planting stocks and propagation of 
some commercial crops and also tree species that are 
difficult to establish conventionally (Bonga, 1987; Merkle 
and Dean, 2000; Thorpe et al., 1990). Micropropagation 
of a wide range of tree species have been successfully 
achieved (Pankaj and Toshiyuki, 2001). However, 
numerous recalcitrant forest trees of economic value are 
still difficult to establishment in vitro (Anna et al., 2010). 
There are no documented studies on the 
micropropagation of A. stuhlmannii or any member of this 
genus. The use of explants from mature plants is not 
frequently accomplished, mainly due to the high level of 
contamination (Drew, 1988), reduced or absence of 
morphogenetic ability (Bonga, 2010) and poor rooting of 
the regenerated shoots. The selection of suitable 
explants and establishment of shoot cultures are two 
critical factors for cloning of trees while maintaining clonal 
fidelity and purity (Maynard, 1988). Induction of cellular 
differentiation in vitro however, depends on genetic 
totipotency, culture medium formulation, and incubation 
conditions (Gasper et al., 1996). During the in vitro 
culture process, undesirable or inhibitory compounds 
such as excess phenolic metabolites (Carlberg et al., 
1983), ethylene (Mensuali-Sodi et al., 1996) and 5-
hydroxy methyl furfural?, an inhibitory by-product of 
autoclaving sucrose, can be produced during medium 
preparation. These compounds hinder successful in vitro 
induction of cellular differentiation.  As a result, there is 
need for preliminary experiments for selecting or 
modifying the known basal media that will be suitable for 
micropropagation of the plant species (Preece and 
Compton, 1991).  In this paper, we reported on the 
adoptable     explant      sterilization      protocol,     direct  

 
 
 
 
organogenesis and callus induction from leaf explants of 
A. stuhlmannii. 
 

 
MATERIALS AND METHODS 

 
Collection and management of plant material  
 

Plant materials used in this study were collected in October, 2009 
at Amani Nature Reserve (ANR) located in the Southern part of the 
East Usambara Mountains (4°48 to 5°13’S, 38°32 to 48°E) in 
Tanzania. The plant materials consisted of mature seeds, seedlings 
and cuttings from coppices. They were thoroughly washed at 

sampling site and then stored in cool boxes and later transported to 
Kenya Forestry Research Institute (KEFRI) at Muguga in Kenya. On 
arrival, the seedlings were transplanted in potting bags containing 
well mixed loam soil. The seeds were germinated on growth trays 
half of which contained sawdust mixed with sand (1:1) and the 
other half contained sawdust mixed with decomposing manure. 
Both transplantation and germination were done in a glasshouse at 
KEFRI. The cuttings were dipped vertically in sawdust mixed with 
sand (1:1) in a nursery at KEFRI. They were all watered twice a 
week using a sprinkler. Seeds that germinated were transplanted 
into similar potting bags. Well adapted seedlings were used as 
stock plants in subsequent experiments. 
 
 
Explants preparation and establishment of sterilization 
protocol 

 
All the glassware and metallic equipment used for this section were 

sterilized by autoclaving at 121°C at 1.06 kg cm
-
² pressure for 15 

min before use. Young emerging leaves shoot apices and slender 
branches were harvested from stock plants and used as explants. 
The explants were placed in a glass jar containing 500 ml of water 
into which three drops of Tween

®
 20 and five drops of Dettol

®
 soap 

detergent had been added. The jar was swirled gently for 15 min 
before washing the explants with running tap water for 10 min. 
Under a clean lamina flow hood, half the number of harvested 

explants was subjected to sodium hypochlorite and the other half 
subjected to formaldehyde (sterilants) at varying concentrations and 
exposure times using the following experimental designs: In 
experiment 1; explants were separately exposed to the two 
sterilants at four concentration levels that is, 0 10, 15 and 20% with 
each concentration level having two exposure times (10 and 20 
min). In experiment 2; explants were exposed to 2% Redomil

®
 

solution for 15 min prior subjection to sodium hypochlorite at three 
concentration levels (6, 8 and 10%) each subjected to three 
exposure times (6, 8 and 10 min). In experiments (1 and 2), 
explants were rinsed three times using sterile distilled water and 
placed on sterile blotting paper. The shoots were trimmed to a 
length of 1 cm and leaves cut into squares of 1 cm dimension 
before culturing in full strength MS medium. All cultures were daily 
monitored and assessed for fungal and bacterial infection. The 
number of explants infected by either fungi or bacteria or both 
(using morphological descriptors) and those that died due to 
bleaching were recorded after one week for two consecutive weeks 
(whereby score 1 represented presence of bacteria and fungi and 
score 0 represented absence of bacteria and fungi). 
 
 
Effect of different basal media on explants survival 

 
Eight nutrient media namely; Murashige and Skoog medium, 
Gamborg (B5) medium, Lloyd and McCown’s Woody Plant medium 

(WPM), White’s medium, Preece Hybrid medium, Driver and 
Kiniyuki walnut (DKW)medium, Anderson medium, and Quorin and  
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Table 1. Comparison of element levels in the various media used to assess explants survival rate.  

 

Concentration (mg/l) Anderson’s 
medium 

DKW 
medium 

Lloyd and McCown's 
woody plant medium 

Quorin and 
Lepoivre medium 

Murashige and 
Skoog medium 

White's 
medium 

Gamborg 
(B5) medium 

Preece hybrid 
medium Macro elements 

NH4NO3 400 1416 400 400 1650 0 0 908 
KNO3 480 0 0 1800 1900 80 2500 0 
K2SO4 0 1559 990 0 0 0 0 1275 
MgSO4.7H2O 180.7 361.49 180.7 175.8 180.5 720 121.6 271.1 
KH2PO4 0 265 170 270 170 0 170 217.5 
CaCl2 332.2 112.5 72.5 0 332 0 113.2 92.5 
Ca(NO3)2.4H2O 0 1367 386 833.8 0 300 0 876.5 
Na(H2PO4).H2O 330 0 0 0 0 16.5 130.4 0 
(NH4)2SO4 0 0 0 0 0 0 134 0 
         
Micro elements         
CoCl2.6H2O 0.025 0 0 0.025 0.025 0 0.025 0 
CuSO4.5H2O 0.025 0.25 0.25 0.025 0.025 0 0.025 0.25 
FeNa2EDTA 36.7 33.8 36.7 36.7 36.7 3.47 36.7 30.83 
H3BO3 3 4.8 6.2 6.2 6.2 1.5 3 5.5 
KI 0.75 0 0 0.08 0.83 0.75 0.75 0 
MnSO4.H2O 10 33.5 22.3 0.76 16.9 5.31 10 27.9 
Na2MoO4.2H2O 0.25 0 0.25 0.25 0.25 0 0.25 0.32 
ZnSO4.7H20 2 17 8.6 8.6 8.6 2.67 2 4.3 
NiSO4 0 0.005 0 0 0 0 0 0 
Zn(NO3)2 0 17 0 0 0 0 0 8.5 
         
Vitamins         
Glycine 0 0 2 0 2 0 0 1 
Nicotinic acid 0 0 0.5 0 0.5 0 1 0.25 
Pyridoxine 0 0 0.5 0 0.5 0 1 0.25 
Thiamine 0.4 0 0 0 0.2 0 10 0 
Myo-inositol 100 0 0.5 0 100 0 100 0 
Adenine 
hemisulphate 

80 0 0 0 0 0 0 0 

 
 
 

Lepoivre medium were tested for their suitability in 
micropropagation of A. stuhlmannii. Table 1 presents the 
ion composition of these media. All the media were 
supplemented with 30 gl

-1
sucrose and 0.8 g/l agar. The pH 

value of each media was adjusted to 5.75 using 0.1M HCl 
or 0.1M NaOH and dispensed in 150 mm (height) by 25 
mm (diameter) culture tubes (10 ml of medium per tube). 
The media were then sterilized in an autoclave at 121˚C at 
1.06 kg cm

-2
pressure for 15 min before use. Cultures were 

grown at 25 ± 1°C and a 16 h photoperiod provided by 

white fluorescent Philips light bulbs (40 W) in the growth 
chamber. 
 
 
Effect of plant growth regulators and their 
concentrations on proliferation stage 

 
Modified Lloyd and McCown’s Woody plant medium 
(modification: 76 mg/l CaCl2 and 6.0 mg/l H3BO3) was used 
to test the effect of different PGRs at varying 

concentrations on shoot proliferation. In the single plant 
growth regulator applications, 1.2 mg/l, 2.4 mg/l and 3.6 
mg/l separately for BAP and KIN and 1.2 mg/land 2.4 mg/l 
for TDZ and a control (media without PGRs) totaling to 
nine treatments were set. In the combination sets, three 
different concentrations of BAP (1.2, 2.4 and 3.6) mg/land 
two concentrations of NAA (0.2 and 0.4) mg/l were 
combined in six different treatments. In another 
combination, three different concentrations of KIN (1.2, 2.4 
and 3.6) mg/land two concentrations of NAA that is, 0.2 
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Table 2. Fungal and bacterial contamination levels and explants mortality when exposed to different concentrations of Sodium 
hypochlorite and Formaldehyde at varying exposure times (Rep = 9). 
 

Sterilant Concentration (ml) % Exposure time  (min) 
Contamination (%) 

Fungi Bacteria Explants mortality (%) 

Sodium 0 10 100.00 96.00 0.00 
      
Hypochlorite 0 20 100.00 92.10 0.00 
 10 10 16.70 33.30 33.30 
 10 20 33.30 33.30 83.30 
 15 10 33.30 16.70 100.00 
 15 20 0.00 0.00 100.00 
 20 10 16.70 16.70 100.00 
 20 20 0.00 0.00 100.00 
      
Formaldehyde 10 10 67.00 67.00 67.00 
 10 20 33.00 33.00 67.00 
 15 10 33.00 33.00 33.00 
 15 20 0.00 33.00 100.00 
 20 10 33.00 33.00 100.00 
 20 20 0.00 0.00 100.00 
      
L.S.D0.05   57.71 57.71 36.50 

 
 
 

and 0.4 mg/l were combined in six different treatments. In yet 
another combination, two concentrations of TDZ (1.2 and 2.4) 
mg/land, two concentrations of NAA (0.2 and 0.4) mg/l were 

combined in four different treatments.  All the media were 
supplemented with 30 mg/l sucrose and 8 mg/l agar while medium 
sterilization and culture conditions were effected as described 
earlier. Induction of microshoots and their length was evaluated at 
an interval of 4 weeks after initiation. 

 
 
Effect of plant growth regulators and their concentrations on 
callus induction stage 

 
Lloyd and McCown’s Woody plant medium with two modifications 
(76 mg/l CaCl2 and 6.0 mg/l H3BO3) supplemented with Gamborg’s 
vitamins (McCown and Sellmer, 1987 and Gamborg et al., 1974) 
was used to test the effect of different plant growth regulators at 
varying concentrations on induction of callus from leaf discs. Three 
different concentrations of KIN (0.5, 1 and 2) mg/l and four 
concentrations of 2, 4-D (1, 1.25, 1.5 and 2) mg/l were combined in 

five different treatments including a control (media without PGRs).  
All the media were supplemented with 30 mg/l sucrose and 8 mg/l 
agar and medium sterilization and culture conditions as described 
earlier. The percentage proportion of callus induction around the 
leaf discs was evaluated at an interval of 4 weeks after initiation. 

 
 
Effect of plant growth regulators and their concentrations on 
rooting of shoots 

 
In the first experiment, half strength MS and WPM media in which 
half of each media contained 30 mg/l and the other half contained 1 
mg/l sucrose were prepared. All the media were fortified with IBA, 
IAA and NAA at various concentrations (0.0, 0.01, 0.05, 0.1 and 
2.5) mg/l separately and 8 mg/l agar added into each treatment. In 
the second experiment, a two-step procedure (Bennett et al., 1994; 
Gasper and Coumans, 1987) was used. Stable shoot were initially 

cultured in half-strength MS medium (containing 30 mg/l sucrose 
and 8 mg/l agar) fortified with IBA, IAA and NAA at 0, 0.01, 0.03, 
0.05 and 0.1  mg/l  concentration  levels  separately.  The  shootlets 

were then transferred into the same MS medium but without PGRs 
after three weeks and regularly checked for any sign of rooting. 
 

 
Data collection and analysis 
 
Data was collected in MS Excel spreadsheets and analysed using 
Statistical Analysis System (SAS) and Genstat 12th Edition, 
statistical softwares.  Mean number of explants contaminated by 
bacteria and fungi and those that died as a result of bleaching / 
scorching was determined. The best sterilant suitable concentration 
and the preferred time of exposure were deduced from the 
analyzed means, hence, adopted as the sterilization protocol. The 
medium with the highest explants survival rate was also 
determined. ANOVA tests showing the effects of variations and 
interactions of the various plant growth regulators used and 
duration (weeks) on induction of microshoots, callus and roots were 
compared at P > 0.05 (Turkey’s test). 
 
 
RESULTS 
 
Sterilization protocol  
 
Results on the effectiveness of sodium hypochlorite and 
formaldehyde in the sterilization of A. stulhmannii 
explants show that, increase in concentration and time of 
exposure, resulted in high explant mortality rate and 
decrease in bacterial and fungal (although, inconsistent) 
contamination levels, P < 0.05, (Table 2) with sodium 
hypochlorite being the preferred sterilant. The trend 
observed in the outcome of experiment 1 was used to 
design experiment 2 in which the concentration level and 
exposure time of sodium hypochlorite were optimized 
with regard to reduction in bacterial and fungal 
contamination levels and explant mortality rate.  

To adequately control fungal contamination, explants
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Table 3. Fungal and bacterial contamination levels and mortality of explants exposed to varying concentrations at 
different exposure durations of Sodium hypochlorite (%), Rep = 9. 
 

Concentration (ml) % Time (min) 
Contamination (%) 

Fungi Bacteria Explants mortality (%) 

6 6 66.70 66.70 0.00 
6 8 100.00 66.70 0.00 
6 10 100.00 66.70 0.00 
8 6 66.70 33.30 0.00 
8 8 66.70 33.30 0.00 
8 10 33.30 0.00 0.00 

10 6 66.70 33.30 33.30 
10 8 33.30 0.00 66.70 
10 10 0.00 0.00 100.00 

L.S.D0.05  73.82 87.34 46.69 
 
 
 

Table 4. Explants survival rate on various nutrient media. 
 

Type of media No. of cultured explants No. of live explants Explant survival (%) Grade 

Anderson’s  medium 18 4 22.22 Low 
White’s medium 18 5 27.78 Low 
Murashige and Skoog 18 6 33.33 Low 
Preece medium 18 10 55.56 Average 
Quoirin and Lepoivre 18 11 61.11 Average 
Gamborg 18 11 61.11 Average 
Driver and kiniyuki 18 12 66.67 Average 
Lloyd and McCown's (WPM) 18 16 88.89 High 
L.S.D0.05   11.27  

 
 
 

were subjected to 2% Redomil
®
 solution (Perez et al., 

2009) prior exposure to sodium hypochlorite in the 
sterilization experiment 2 (Table 3). It was observed that, 
A. stuhlmannii explants were best surface sterilized when 
exposed to 2% Redomil

®
 solution for 15 min followed by 

10 min exposure to 8% sodium hypochlorite and finally 
rinsed three times using sterile distilled water (Table 3). 
 
 
Media selection 
 
When explant survival rates on the selected media were 
compared using LSD0.05 (Turkey’s test), significant 
differences were observed (Table 4). The medium with 
high explants survival rate (Lloyd and McCown's Woody 
plant medium with 88.89% explants survival rate) was 
preferred for subsequent experiments. The modification 
introduced in the selected medium significantly reduced 
in vitro shoot-tip necrosis and phenol exudation by 
explants. 
 
 
Direct shoot induction 
 
When the response (mean shoot length of in vitro 
explants) of PGRs treatments were compared using 
Turkey’s test, significant differences were observed. 

Treatment 1.2 mg/l KIN  exhibited  the  most  significant 

increase in shoot elongation compared to any other 
treatment while 6 mg/lBAP combined with 2 mg/l of 2, 4 - 
D was the most effective combined PGRs application 
treatment (Plate 1). 
 

 

Callus induction 
 
The mean (%) of callus induced from leaf discs of A. 
stuhlmannii differed significantly between the PGRs 
treatments used (Tables 5 to 6). Callus was induced from 
leaf disks (especially from the midrib) cultured on 
modified WPM supplemented with Kinetin combined with 
2, 4 – D (Plate 2). 
 
 

Root induction 
 
No explants rooted in the two-step experimental setup 
are described in the methodology. 
 

 

DISCUSSION 
 
Explant sterilization 
 
Surface sterilization of explants is a prerequisite to 
successful establishment of clean cultures for 
manipulation. In this study, although, there was a
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Plate 1. Direct shoot formation from nodal explants cultured on WPM supplemented with KIN, BAP and TDZ alone or in 

combination with NAA or 2, 4-D. Key :i) KIN(A)……………..1.2KIN ii) BAP+2,4-D(d)…….2,2,4-D+2BAP; iii) 
BAP+NAA(e)……..3.6BAP+0.4NAA; iv) TDZ+NAA(b)…….1.2TDZ+0.2NAA; v) BAP(a)……...……2.4BAP; vi) 
TDZ(c)………..….2.4TDZ+0.4NAA; vii) KIN+NAA(b)…….2.4KIN+0.2NAA; viii) KIN+NAA(c)……..3.6KIN+0.4NAA..  

 
 

 
Table 5. The mean shoot length of microshoots induced from nodal explants cultured on WPM supplemented with KIN,BAP, TDZ 

alone or in combination with NAA and 2,4-D , Rep = 9. 
 

Treatment (mg/l) 
Shootlength (cm) 

Week 4 Week 8 Week 12 

Control 1.04 ± 0.010
a
 1.11 ± 0.006

a
 1.15 ± 0.030

a
 

3.6KIN + 0.4NAA 1.13 ± 0.021
ab

 1.21 ± 0.014
abcd

 1.21 ± 0.014
ab

 

1.2BAP + 0.4NAA 1.14 ± 0.015
abc

 1.21 ± 0.023
abcd

 1.21± 0.019
ab

 
2.4TDZ + 0.2NAA 1.15 ± 0.015

abc
 1.36 ± 0.055

cde
 1.21 ± 0.013

ab
 

1.2KIN + 0.4NAA 1.15 ± 0.017
bc

 1.21 ± 0.023
abcd

 1.22 ± 0.018
abc

 
2,2,4-D+4BAP 1.15 ± 0.016

bcd
 1.22 ± 0.016

abcd
 1.25 ± 0.020

abc
 

3.6BAP + 0.4NAA 1.15 ± 0.013
bcd

 1.21 ± 0.013
abc

 1.21 ± 0.015
ab

 
1.2BAP +0 .2NAA 1.15 ± 0.015

bcd
 1.22 ± 0.013

abcd
 1.25 ± 0.013

abc
 

1.2TDZ + 0.4NAA 1.16 ± 0.012
bcde

 1.42 ± 0.067
e
 1.26 ± 0.018

abcd
 

2,2,4-D + 2BAP 1.16 ± 0.014
bcde

 1.21 ± 0.014
abc

 1.24 ± 0.010
abc

 
1.2KIN + 0.2NAA 1.16 ± 0.015

bcde
 1.23 ± 0.016

abcde
 1.28 ± 0.009

abcde
 

2.4BAP + 0.4NAA 1.19 ± 0.014
bcdef

 1.24 ± 0.017
abcde

 1.23 ± 0.016
abc

 
2.4KIN + 0.4NAA 1.19 ± 0.014

bcdef
 1.24 ± 0.017

abcde
 1.23 ± 0.019

abc
 

3.6BAP + 0.2NAA 1.19 ± 0.018
bcdefg

 1.24 ± 0.025
abcde

 1.25 ± 0.027
abc

 

1,2,4-D + 2BAP 1.19 ± 0.020
bcdefgh

 1.25 ± 0.021
abcde

 1.33 ± 0.025
bcde

 
1,2,4-D + 4BAP 1.19 ± 0.024

bcdefgh
 1.26 ± 0.030

abcde
 1.30 ± 0.027

abcde
 

1.2KIN 1.20 ± 0.021
bcdefgh

 1.39 ± 0.071
cde

 1.44 ± 0.066
e
 

1.2BAP 1.20 ± 0.021
bcdefgh

 1.40 ± 0.070
de

 1.43 ± 0.077
de

 
3.6KIN + 0.2NAA 1.20 ± 0.021

bcdefgh
 1.24 ± 0.025

abcde
 1.28 ± 0.016

abcde
 

2.4TDZ 1.20 ± 0.028
bcdefgh

 1.17 ± 0.015
ab

 1.35 ± 0.030
bcde

 
2.4KIN 1.20 ± 0.024

bcdefgh
 1.35 ± 0.058

bcde
 1.38 ± 0.055

cde
 

2.4BAP 1.21 ± 0.026
bcdefgh

 1.37 ± 0.058
cde

 1.36 ± 0.052
bcde

 
1.2TDZ 1.21 ± 0.022

bcdefgh
 1.24 ± 0.017

abcde
 1.20 ± 0.022

ab
 

1,2,4-D + 6BAP 1.25 ± 0.021
cdefgh

 1.34 ± 0.026
bcde

 1.37 ± 0.025
bcde

 
3.6BAP 1.26 ± 0.026

defgh
 1.36 ± 0.031

cde
 1.38 ± 0.035

cde
 

1.2TDZ + 0.2NAA 1.27 ± 0.027
efgh

 1.11 ± 0.006
a
 1.27 ± 0.018

abcde
 

3.6KIN 1.28 ± 0.027
fgh

 1.36 ± 0.013
cde

 1.38 ± 0.036
cde

 
2.4TDZ + 0.4NAA 1.28 ± 0.024

fgh
 1.36 ± 0.032

cde
 1.36 ± 0.052

a
 

2.4KIN + 0.2NAA 1.30 ± 0.021
fgh

 1.36 ± 0.030
cde

 1.35 ± 0.030
bcde

 
2.4BAP + 0.2NAA 1.30 ± 0.026

gh
 1.36 ± 0.034

cde
 1.34 ± 0.032

bcde
 

2,2,4-D + 6BAP 1.30 ± 0.026
h
 1.36 ± 0.028

cde
 1.35 ± 0.041

bcde
 

L.S.D0.05 0.058 0.096 0.089 
 

Mean values within a column followed by the same letter are not significantly different by Turkey’s test (P≥0.05). Letters are assigned in 

ascending order to treatments with higher mean values within the column. 
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Table 6. Callus induction (mean %) from leaf disk cultured on WPM supplemented with KIN+2, 4-D at various concentration (Re p= 9). 
 

Callus induction (%) 
Week 4 Week 8 Week 12 

 Treatment (mg/l) 

Control 0.00
a
 0.00

a
 0.00

a
 

2KIN + 2 2,4-D
(a)

 0.000
a
 0.11

a
 0.11

a
 

0.5KIN + 1 2,4-D
(b)

 8.33
b
 8.33

b
 8.33

b
 

2KIN + 1.5 2,4-D
(c)

 10.56
b
 10.56

b
 10.56

b
 

1KIN + 1.25 2,4-D
(d)

 32.22
c
 32.22

c
 32.22

c
 

L.S.D0.05 13.581 13.582 13.582 
 

Mean values within a column followed by the same letter are not significantly different by Turkey’s test (P < 0.05). 
 

 
 

 
   
   Plate 2.  Callus induction from leaf explants (green line indicate the pinkish callus). 
 
 
 

significant reduction of fungal and bacterial contamination 
when the concentrations of the sterilant and exposure 
time were increased (P < 0.05), the mortality rate 
increased significantly (P < 0.05) thereby rendering 
higher concentration levels and exposure time unsuitable 
for adoption. The final sterilization experiment showed 
that, subjection of A. stuhlmannii explants to 2% 
Redomil

®
 solution for 15 min prior to immersion in 8% 

(ml) sodium hypochlorite at exposure time of 10 min 
results in clean and live explants than any other 
concentration level and exposure time used in the 
experiments (Tables 2 and 3). This is in agreement with 
Karkonen et al. (1999) findings on Melaleuca alternifolia. 
This was adopted in this research work as the best 
sterilization protocol for A. stuhlmannii seedlings grown in 
the glasshouse.  
 
 
Media selection 
 
It is evident that, Lloyd and McCown's Woody plant 
medium (with 88.89% explants survival) is the best 
nutrient medium that can used in tissue culture of A. 
stuhlmannii (Table 4).The eventual death of in vitro 
explants on various media such as MS medium, 

Anderson’s medium, and Quorin and Lepoivre medium 
was due to production of phenolic compounds and 
possibly as a result of unsuitability of constituents of 
individual medium (Preece and Compton, 1991). There is 
a general tendency of attributing the occurrence of shoot-
tip necrosis and subsequent death of in vitro explants to 
the high salt concentration found in some medium for 
example, MS medium (Bairu et al., 2009). The 
aforementioned phenomena reduced cell competence 
and led to eventual loss of their totipotency (Bairu et al., 
2009). Alterations of NH4/NO3 ratio and sulphur content 
have been shown to significantly reduce shoot-tip 
necrosis (Laskshmi and Raghava, 1993). The amounts of 
calcium and boron in the media also play a critical role in 
plant tissue culture. Due to its versatility and specificity, 
calcium plays major structural and functional roles in 
plants (Hepler, 2005). Plants rely on the unique 
properties of calcium for their structural, enzymatic and 
signaling functions and also its role in physiological 
processes such as cell elongation and cell division 
(Hirschi et al., 2004).  Boron requirements on the other 
hand differ widely among plant species and are known to 
have a narrow range between deficiency and toxicity 
levels when compared to other mineral nutrients 
(Abdulnour et al., 2000). McCown’s woody plant  medium  
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was the medium selected for subsequent experiments. 
 
 

Direct shoot induction 
 
The achievement of uniform and consistent in vitro shoot 
growth is highly problematic for most woody tree species 
especially those with strong episodic growth 
characteristic (Gupta et al., 1981; McCown, 2000), such 
as A. stuhlmannii. For many other tree species, in vitro 
clonal propagation is either not possible or the frequency 
of plant regeneration is too low to be of commercial use 
(Bonga et al., 2010). Experiments comparing different 
cytokinin regimes showed that, explants produced 
between 90 to 100% of responsive (organogenic) 
explants (Werner et al., 2001). The use of different plant 
growth regulators either alone or in combinations, 
significantly affected shoot length of the cultured nodal 
explants (Zaer, 1982; Nehra et al., 1994; Perez-Tornero 
and Burgos, 2009). Explants cultured in treatment 1.2 
mg/lKIN exhibited significant increase in shoot elongation 
as compared to any other treatments. The shoot of 
explants cultured on media with high PGR 
concentrations, mostly suffered hyperhydricity 
(vitrification) and hence leaf fall and browning of the 
shoot apexes (Kataeva et al., 1994). Treatment 6 
mg/lBAP combined with 2 mg/ 2, 4- D was the most 
effective PGRs combination in inducing shoot elongation. 
Existing reports suggests that, when auxins at lower 
concentrations are combined with cytokinins, they have 
critical role in plant regeneration in several systems like 
Petasiteshybridus (Wldi et al., 1998), Eucalyptus grandis 
(Luis et al., 1999), Hybanthusenneaspermus (Prakash et 
al., 1999), Coleus forskohlii (Sairam et al., 2001) and 
Eleusine indica (Yemets et al., 2003).  Subsequent 
subculture of explants to either fresh media or media 
without PGRs resulted in massive loss of explants. All the 
attempts to induce roots on stabilized in vitro shoots 
failed. 
 
 
Callus induction 
 
Induction of somatic embryogenesis is a complex 
phenomenon, which is regulated by numerous factors. In 
most cases, treatments with exogenous PGRs are 
required to manipulate cell differentiation (Carman, 
1990). Callus was successfully induced from leaf discs 
(particularly from the midrib) cultured on WPM 
supplemented with Gamborg’s vitamins, 3% (w/v) 
sucrose and 8 mg/l, 1 mg/l Kinetin combined with 1.2 
mg/l 2, 4 - D. Somatic embryogenesis was however not 
achieved. Induction of callus in A. stuhlmannii leaf discs 
is a possible indication of the potential of this tree species 
to produce primary somatic embryos that can be made to 
undergo secondary somatic embryogenesis (SSE). SSE 
is a phenomenon whereby new somatic embryos are 
initiated from pre-existing somatic embryos (Raemakers  

 
 
 
 
et al., 1995). Some cultures are able to retain their 
competence for SSE for many years, and thus provide 
material for various studies, as described for 
Vitisrupestris (Martinelli et al., 2001). Since new embryos 
are continually formed from existing embryos, SSE has 
the potential to produce many plants and once initiated, 
may continue to produce embryos over a long period of 
time (Pinto et al., 2002). Therefore, in plants with long life 
cycles, such as dicotyledonous woody plants for 
example, A. stuhlmannii preserving embryogenic lines 
can be a cost-effective maintenance while those line are 
tested in field (Handley, 1995).  
 
 

Conclusion 
 
Sterilization protocol for A. stuhlmannii was successfully 
established. The ability to induce shoots from nodal 
explants and callus from leaf discs clearly indicates that 
this tree species is amenable to micropropagation 
technique. There is however need to study the effects of 
using other polyamines such as putrescine and 
spermidines in optimization of shoot multiplication and 
root induction for this particular tree species.  
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