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Introduction

Rhizobia are widespread soil bacteria able to induce the

formation of root nodules and to fix nitrogen on cultiva-

ted and wild legumes. These rhizobia are of economic

importance in low-input sustainable agriculture, agrofor-

estry, and land reclamation. The taxonomy of bacterial

endosymbionts of leguminous plants has experienced a

profound series of extensions in the recent past (Young

2003). Currently there are five genera of rhizobia in the

a-Proteobacteria, Azorhizobium, Bradyrhizobium, Rhizobi-

um, Mesorhizobium, and Ensifer (Young 2003). New lines

that contain nitrogen-fixing legumes symbionts include

Methylobacterium (Jaftha et al. 2002; Jourand et al. 2004),

Devosia (Rivas et al. 2003), Blastobacter (Van Berkum and

Eardly 2002) and Ochrobactrum (Ngom et al. 2004;

Trujillo et al. 2005) in the a-Proteobacteria; Burkholderia

(Moulin et al. 2001), Cupriavidus (Vandamme and

Coenye 2004) and Ralstonia (Chen et al. 2001) in the

b-Proteobacteria and some unclassified strains in the

c-Proteobacteria (Benhizia et al. 2004) were recently

described.

Both desertification and ecosystem degradation prob-

lems are common in Mediterranean regions, particularly
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Abstract

Aims: In order to understand the genetic diversity of Acacia tortilis ssp. raddi-

ana-rhizobia in Tunisia, isolates from nine geographical locations were

obtained and analysed.

Methods and Results: Characterization using restriction fragment length poly-

morphism analysis (RFLP) of PCR-amplified 16S rRNA gene and the intergenic

spacer (IGS) between the 16S and 23S rRNA genes was undertaken. Symbiotic

efficiency of the strains was also estimated. Analysis of the 16S rRNA by PCR-

RFLP showed that the isolates were phylogenetically related to Ensifer ssp.,

Rhizobium tropicii-IIA, and Rhizobium tumefaciens species. Analysis of 16S-23S

spacer by PCR-RFLP showed a high diversity of these rhizobia and revealed

eleven additional groups, which indicates that these strains are genetically very

diverse. Full 16S rRNA gene-sequencing showed that the majority of strains

form a new subdivion inside the genera Ensifer, with Ensifer meliloti being its

nearest neighbour. Nodulation test performed on the plant host demonstrated

differences in the infectivity among the strains.

Conclusion: Rhizobial populations that nodulate specifically and efficiently

Acacia tortilis ssp. raddiana in representative soils of Tunisia is dominated by

E. meliloti-like genomospecies.

Significance and Impact of the Study: This paper provides the first clear

characterization and symbiotic efficiency data of rhizobia strains nodulating

A. tortilis in Tunisia.
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in the centre and the south of Tunisia, where low precipi-

tation and human activities enhance the erosion and

desertification processes. It is widely recognized that indi-

genous rhizobia play an important role in the dominance

of Fabaceae in poor and arid soils (Zahran 2001) but, so

far, only few wild legumes have been investigated for their

nitrogen-fixing symbionts (Zakhia et al. 2004).

Acacia is widespread in arid regions of Africa and Middle

East (Nabli 1989). They are well nodulated under drought

stress conditions. Plants of the genus Acacia are pioneer

plants, which play an important role for preservation and

fertility of poor and eroded soils in Africa. These legumes

produce extensive, deep root system, in addition to their

potential to fix atmospheric N2 (Nabli 1989). In Tunisia,

Acacia tortilis ssp. raddiana is the only wild and native aca-

cia, which grow spontaneously in arid and Saharan areas.

This acacia is generally overused by local people, who have

no other fuel wood. Regeneration of the tree is made diffi-

cult owing to overgrazing, which adds its limiting effects to

those of aridity (Nabli 1989). The approach adopted to

improve rehabilitation programs and soil fertility is to iso-

late rhizobia from these areas and obtain data on their

diversity and nodulation efficiency.

Among the techniques developed to detect DNA poly-

morphisms in many different organisms including bacteria,

PCR-RFLP of 16S rRNA genes is one of the quickest and

easiest (Laguerre et al. 1994). This genomic technique has

been applied for characterizing rhizobia at the level of spe-

cies and genera (Laguerre et al. 1994; Lafay and Burdon

2001). The 16S rDNA sequence analysis, which is a con-

served gene, supports the well-established subdivision of

rhizobia into species and genera (Young and Haukka

1996). However, DNA sequences in the 16S-23S spacer are

more discriminating and known to exhibit a great deal of

sequence and length variation (Normand et al. 1996).

These variations are used to differentiate genera, species,

and strains of prokaryotes (Normand et al. 1996).

Very little is known about the bacterial symbionts of

Acacia spp., especially A. tortilis in Tunisia (Ba et al.

2002). Our objective was to re-examine the genetic diver-

sity among rhizobia isolated from root nodules of A. tor-

tilis ssp. raddiana and to find their phylogenetic positions

within the family Rhizobiaceae by using 16S and IGS

rDNA analysis.

Materials and methods

Bacterial strains and growth conditions

Strains of rhizobia were isolated from root nodules of A.

tortilis grown in different regions in Tunisia. The collec-

ted nodules were kept in closed containers over silica gel

at room temperature until their isolation in the laborat-

ory. Forty isolates were obtained from nine different loca-

tions in Tunisia (Fig. 1).

Isolations were made according to the procedure des-

cribed by Vincent (1970) using yeast-mannitol agar

(YMA) supplemented with crystal violet (Collins and

Lyne 1985), which inhibited the growth of gram positive

contaminating-bacteria. Cultures used for further study

were purified from single colonies on YMA agar plates

pure cultures (or as the dominant colony type) after incu-

bation at 28�C. All the rhizobia were maintained on YMA

medium (Vincent 1970) and stored with 25% glycerol at

)80�C.

Plant nodulation test and symbiotic efficiency

All isolates were tested for nodulation ability on A.

tortilis-plants. The Acacia seeds were surface sterilized

with concentrated sulphuric acid (H2SO4) for 90 min and

rinsed with sterile water. The seeds were germinated for

72 h on semi-solid agar medium (8 g l)1) in a growth
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Figure 1 Map of Tunisia showing the sites prospected for nodulation

of Acacia tortilis ssp. raddiana. 1, Ariana; 2, Gabes; 3, Belkhir; 4–9,

Bouhedma sites.
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chamber at 28�C, and the seedlings were placed asepti-

cally in Gibson tubes supplemented with a nitrogen free

plant nutrient solution (Gibson 1980). Each tube was

inoculated with a rhizobial suspension from an early sta-

tionary-phase culture. Uninoculated plants were used as

controls. Three replicates were prepared to each treat-

ment. After a month, the plants were harvested and the

number of nodules was estimated. The nitrogen fixation

ability of the strains was estimated from the pink colour

of the nodules and the dark green colour of leaves com-

pared to control plants that were not inoculated.

Morphological tests

Colony shape and colour were determined by using a

magnifying glass. Cell dimensions and morphology were

examined on living cells by phase-contrast microscopy, in

order to confirm strain purity.

16S RNA gene amplification

The prokaryotic specific primers used for 16S rRNA gene

amplification were fD1 (5¢-AGAGTTTGATCCTGGCT-
CAG-3¢) and rD1 (5¢-AAGCTTAAGGTGATCCAG-CC-3¢)
(Weisburg et al. 1991). PCR amplification was carried out

in a 25 ll reaction volume-containing template DNA

(10–50 ng), reaction buffer, 1x freeze-dried marble

(Ready-to-go PCR beads, Pharmacia Biotech) containing

1Æ5 U Taq polymerase, 10 mmol l)1 Tris–HCl,

50 mmol l)1 KCl, 1Æ5 mmol l)1 MgCl2, 0Æ2 mmol l)1

dNTP and 1 lmol l)1 of each of the primers. PCR ampli-

fication was performed with a Perkin–Elmer model

(GeneAmp PCR System 2400). The PCR temperature

profile used was 95�C for 5 min followed by 35 cycles

consisting of 95�C for 30 s, 50�C for 1 min, 72�C for

1 min, with a final extension step at 72�C for 1 min.

Reaction efficiency was estimated by horizontal agarose-

gel electrophoresis (1% w/v) and coloured in an aqueous

solution of ethidium bromide (1 mg ml)1).

16S-23S spacer amplification

Primers FGPS1490 (Navarro et al. 1992) and FGPL132¢
(Ponsonnet and Nesme 1994) were used to amplify the

IGS regions. The conditions for 16S-23S intergenic region

amplification were the same as those used for 16S gene

amplification, except that the annealing steps took place

at 55�C.

Restriction fragment analysis

Eight microliter aliquots of PCR products were digested

with restriction endonucleases (Pharmacia Biotech) as

specified by the manufacturer in a total volume of 20 ll.
Digestion was performed by four enzymes (HaeIII, MspI,

CfoI and RsaI) for 16S rDNA and two enzymes (HaeIII

and MspI) for 16S-23S spacer, used for their highly level

of discrimination (Laguerre et al. 1994). The restriction

fragments were separated by horizontal electrophoresis in

TBE buffer with 2Æ5% (w/v) MetaPhor (FMC Bioprod-

ucts, Rockland, Maine, USA).

16S rRNA gene sequencing

The 16S rRNA gene of the isolate A1, chosen as a repre-

sentative strain, was amplified. The amplified fragments

were purified with the QIAEX II kit (Qiagen Inc., Chats-

worth, CA, USA) and sequenced by the dideoxy chain

termination method of Sanger et al. (1977). The six prim-

ers used for full sequencing of the 16S rRNA gene

were fD1, FGPS485-292, FGPS1047-295, FGPS505¢-313,
FGPS910¢-270 and rD1 (Weisburg et al. 1991).

DNA sequence analysis

The 16S rDNA sequences were aligned and analysed using

Clustal X software. Phylogenetic analysis was inferred by

using the neighbour-joining method (Saitou and Nei

1987) calculated by the Kimura method (Kimura 1980).

The resulting tree was drawn with the Njplot software of

Perrière and Gouy (1996).

Nucleotide sequence accession number

The newly determined 16S rDNA sequence was deposited

in the GenBank Data Library under accession number

DQ092342.

Results

Isolation and morphological characteristics

Forty strains (Table 1) were isolated from root nodules of

A. tortilis spp. raddiana, the only native acacia tree in

Tunisia. Approximately half of rhizobial isolates had the

same colony morphology and growth rate on YMA med-

ium. They were fast growing rhizobia and formed trans-

parent to creamy colonies with 2–4 mm in diameter after

3 days incubation on Petri YMA plates.

Plant infection test and symbiotic efficiency

We tested the infectivity and symbiotic efficiency of 40

strains of rhizobia on A. tortilis spp. raddiana. Only half

of the strains could induce root nodules on their plant

host, appearing after 2 weeks of inoculation with dia-
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meters of 1–4 mm (Table 1). About 42Æ5% of the inocula-

ted strains give pink-nodules and the leaves of the corres-

ponding plants were dark-green, while the control

noninoculated plants were yellow–green.

PCR-RFLP analysis of amplified 16S rDNA genes

The 16S rDNA were amplified and we have obtained a

single band of about 1500 bp for all the strains.

Aliquots of PCR products were digested with four

restrictions enzymes and separated by electrophoresis.

The length of PCR product estimated by summing the

sizes of the restricted fragments was shorter than or equal

to 1500 bp. The patterns of these isolates were compared,

by computer-simulated RFLP analysis, with those of refer-

ence strains published sequences (Neyra et al. 1998). A

total of nine different combinations, each corresponding

to one genotype, were identified among the 40 strains

analysed by RFLP in this study (Table 1). Three groups

correspond to reference species and six groups did not

match with any of the reference species into the family of

Rhizobiaceae. Results obtained showed that the majority

Table 1 Acacia tortilis strains used in this study

Geographic origin

and climate Isolate

16S groups

(PCR-RFLP)

IGS groups

(PCR-RFLP) 16S rDNA analysis

Nodulation test

and NFA

Ariana, humid A12 1 5 Ensifer meliloti-like E

A13 1 5 E. meliloti-like E

A6 2 2 Rhizobium tumefaciens NN

A23 1 11 E. meliloti-like E

A56 3 6 NI I

A54 1 5 E. meliloti-like E

A51 1 5 E. meliloti-like E

A34 4 18 Rhizobium tropicii-IIA PN

A5 2 2 R. tumefaciens NN

A25 4 13 R. tropicii-IIA NN

Bouhedma-S1, arid A26 8 14 NI PN

A45 5 19 NI NN

A22 4 10 R. tropicii-IIA NN

A10 1 3 E. meliloti-like E

Bouhedma-S2, arid A1 1 1 E. meliloti-like E

A2 1 1 E. meliloti-like E

A3 1 1 E. meliloti-like E

A52 1 1 E. meliloti-like E

Bouhedma-S3, arid A46 5 19 NI PN

A33 4 18 R. tropicii-IIA PN

A19 2 8 R. tumefaciens NN

A20 2 8 R. tumefaciens NN

Bouhedma-S4, arid A32 7 17 NI PN

A28 1 16 E. meliloti-like NN

A29 6 16 NI PN

Bouhedma-S5, arid A21 1 9 E. meliloti-like NN

A18 2 8 R. tumefaciens NN

A35 4 18 R. tropicii-IIA NN

A8 1 3 E. meliloti-like E

A9 1 5 E. meliloti-like E

A14 1 5 E. meliloti-like E

A7 1 3 E. meliloti-like E

A53 1 5 E. meliloti-like E

Bouhedma-S6, arid A11 1 4 E. meliloti-like NN

A55 9 20 NI I

Gabes, arid A17 2 7 R. tumefaciens NN

A4 1 1 E. meliloti-like E

A57 7 15 NI E

Belkhir, arid A24 4 12 R. tropicii-IIA I

A47 6 19 NI NN

A, Acacia; E, Ensifer; NI, not identified; NFA, nitrogen fixation ability; E, effective nodulation; I, ineffective nodulation; NN, no nodule formation;

PN, occasional formation of pseudonodules.
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of the strains showed restriction profiles closer to those of

Ensifer meliloti species (47Æ5%). About 15% of the strains

showed restriction patterns identical to those of Rhizobi-

um tropici-IIA. 15% of the strains were related to Rhizobi-

um tumefaciens species. Finally, they were 22Æ5% of the

isolates which were not identified and remained unclassi-

fied.

16S-23S spacer analysis

To investigate further the genetic differences among the

40 rhizobia isolated from A. tortilis ssp. raddiana in

humid and arid areas of Tunisia, we analyse the 16S-23S

spacer by PCR/RFLP. The electrophoresis of the un-

digested PCR products showed that the majority of the

isolates possess one band. The length of the IGS amplified

region was between 1000 and 1350 bp (Fig. 2). Therefore,

we were able to identify 18 groups in this natural popula-

tion of rhizobia.

The amplification products were digested separately

with endonucleases MspI and HaeIII for all the isolates

(Fig. 3). The representative isolates within each cluster

showed the same patterns, but different patterns were

observed among different clusters. After comparing the

restriction patterns obtained by the two endonucleases,

we have obtained 20 groups (Table 1).

Sequence analysis

We sequenced full length of 16S rRNA gene for A1 strain,

which belonged to the biggest group (group 1 of the 16S

rDNA) of the collection. The sequence was aligned and

compared with the 16S rDNA sequences of other mem-

bers of the family Rhizobiaceae available in the GenBank

database. Figure 4 is a dendrogram, which shows the phy-

logenetic relationships of these unclassified rhizobia and

the previously named species of Rhizobiaceae. The tree

showed that the majority of identified strains form a new

subdivion inside the genera Ensifer, with E. meliloti being

its nearest neighbour. This strain showed a 16S rDNA

sequence similarity of 99Æ23% with E. meliloti, 99Æ22%
with Ensifer medicae and 99Æ09% with Ensifer arboris type

strains. DNA–DNA hybridization would be needed to

verify whether these strains represent separate species or

not.

Discussion

In this research, we characterized 40 nodules isolates from

A. tortilis ssp. raddiana in representative soils of Tunisia.

We have used PCR/RFLP analysis of 16S rDNA to charac-

terize these natural rhizobia. We found a high diversity

among rhizobial strains. Our results corroborated several

studies, which revealed a high heterogeneity in the popu-

lations of rhizobia nodulating Acacia spp. (Ndiaye 1996;

De Lajudie et al. 1998; Khbaya et al. 1998; McInroy et al.

1999; Mohamed et al. 2000; Lafay and Burdon 2001;

Odee et al. 2002; Toledo et al. 2003).

We have used PCR-RFLP of the 16S rDNA to charac-

terize all the isolates of our collection. The results

obtained have discriminated nine groups covering three

genera; genus Ensifer was the most represented in our col-

lection. To our knowledge, there are many data showing

that a high proportion of tree-nodulating rhizobia in

Africa, particularely Acacia spp., are more closely related

to Ensifer species (Ndiaye 1996; Khbaya et al. 1998; Ba

et al. 2002).

Full 16S rRNA gene-sequencing of the strain A1 which

belong to the biggest group (group 1) have showed that

the majority of the identified strains that nodulate A. tor-

tilis ssp. raddiana in Tunisia belonged to the genus Ensifer

Figure 2 Electrophoresis of PCR products obtained with the universal

primers FGPS1490-72 and FGPL 132¢-38, which target the ribosomal

IGS of Rhizobium strains that nodulate Acacia spp.

M 1 1 1 1 18 18 5 5 5 5 5 5 5 19 196 M13

Figure 3 Examples of RFLP of PCR-amplified 16S-23S rRNA genes

digested with HaeIII and separated by electrophoresis in 2Æ5% (w/v)

metaphor gel. Numbers 1, 5, 6, 13, 18 and 19 are IGS groups. M,

molecular mass marker (100 bp ladder) from Pharmacia Biotech; the

smallest band of the marker is 100 bp.
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within they can form new species. This strain showed a

16S rDNA sequence similarity of 99Æ23% with E. meliloti,

99Æ22% with E. medicae and 99Æ09% with E. arboris refer-

ence strains but occupied separate phylogenetic position

within the Ensifer genus. Similar results were found by

Zakhia et al. (2004) on rhizobia nodulating wild legumes

B. yuanmingense – B071, AF193818

B. japonicum – USDA110, D13430 

B. elkanii – USDA76, U35000 
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Figure 4 Phylogenetic tree based on 16S rDNA complete sequences of Acacia raddiana strains and references type strains of Rhizobiaceae. Num-

bers into brackets following strains names are Genbank accession numbers or strain designation. Bootstrap values were calculated from 1000

trees and the levels of support for the presence of nodes above a value of 600 are indicated.
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in Tunisia. DNA–DNA hybridizations and GC% are nee-

ded to clarify their taxonomic status inside Rhizobiaceae

family. Our results thus confirm and extend the large

diversity of fast-growing A. tortilis-rhizobia within the

Ensifer-Rhizobium branch.

Our results showed that the majority of rhizobial

strains were related to E. meliloti-like species (47Æ5%) and

only 15% of the strains were related to R. tropici-IIA.

However, rhizobia nodulating A. tortilis in Morocco were

related to E. meliloti and Ensifer fredii species (Khbaya

et al. 1998). Ndiaye (1996) have characterized, by SDS-

PAGE, a collection of A. tortilis-rhizobia from diverse

countries in Africa and he had found that they were rela-

ted to Ensifer teranga, E. fredii, R. tropici, Mesorhizobium

huakuii and Mesorhizobium plurifarium species. Strains

from Tunisia, Senegal and Mauritania were grouped into

Ensifer terangae lineage and into two novels groups

(Ndiaye 1996). Ba et al. (2002) studied eight Tunisian

strains that were more related to E. medicae. However, De

Lajudie et al. (2003) found that these rhizobia were rela-

ted to E. terangae. Recently, Zakhia et al. (2004) investi-

gated one A. tortilis strain and was found to be related to

E. meliloti. This high diversity of A. tortilis-rhizobia in

Tunisia seemed to be related to the soil-origin of plant

host.

Our results together with past surveys of nodule bac-

teria in Tunisia (Aouani et al. 2001; Jebara et al. 2001;

Mhamdi et al. 2002; Zakhia et al. 2004; Zribi et al. 2004)

suggest that Tunisian soils are dominated by fast growing

rhizobia, especially by E. meliloti and E. medicae within

they can form new genomospecies.

Furthermore, 22Æ5% of the isolates had no identity with

any of rhizobial strains, but some of them (7Æ5%) could

induce nodule formation. In fact, unknown associations

were previously found and several strains may represent

new genomospecies nodulating wild legumes in Tunisia

(Zakhia et al. 2004). This non-nodule formation can be

explained by several hypothesis (i) host specificity of

strains to plant genotype (Paffetti et al. 1998). Strains

would be better tested on their original host plants. (ii)

Nodulation test experiment, used here, was not optimal

for these strains. Using sterilized gravel or soil will be tes-

ted to verify this hypothesis. (iii) These strains are only

accidentally associated with A. tortilis but are in fact bet-

ter adapted for nodulation of another legume host spe-

cies. In fact, in the natural environment, A. tortilis grow

intermingled with other leguminous plant (perennial or

annual) that might utilize nonidentified-rhizobia (Nasr,

personal communication). Surveys of how strains are dis-

tributed on hosts in natural environments, together with

cross inoculation experiments using additional legume

species, will be necessary to clarify patterns of symbiotic

specificity in these organisms. (iv) These bacteria origin-

ally symbiotic have lost their unstable symbiotic gene

during laboratory experiments (isolation, purification and

conservation) (Laguerre et al. 1993). Sutherland et al.

(2000) have found that all strains had lost infectivity dur-

ing storage. The symbiotic plasmid has been previously

shown to be unstable under laboratory conditions (Rom-

ero et al. 1991). (v) These strains have acquired symbiotic

genes by lateral gene transfer, which were lost during

laboratory experiments. Several papers reported that soils

contain a large diversity of nonsymbiotic bacteria which

can acquire symbiotic properties by lateral gene transfer

between bacteria in the soil (Segovia et al. 1991; Sullivan

et al. 1995, 1996).

Moreover, several new bacterial strains, belonging to

a- b- and c-proteobacteria, were isolated from the root

nodules of tropical legumes (Benhizia et al. 2004; Young

2003).

Further studies will help to classify these symbiotic bac-

teria and to understand their phylogenetic relationships

to other rhizobial species.

Our results showed that 15% of the isolates were

related to R. tumefaciens species, but could not induce

tumour formation. In fact, several Rhizobium strains lack-

ing their pathogenic gene were isolated from root nodules

of tropical legumes in Africa (De Lajudie et al. 1999;

Khbaya et al. 1998) and cultivated legumes in Tunisia

(Mhamdi et al. 2002, 2005). It seems likely that under soil

conditions, R. tumefaciens behaves as a pathogen or a

symbiont according to its plasmid content. The symbiotic

state could be unstable under laboratory conditions

(Mhamdi et al. 2002).

We have used PCR with RFLP analysis to analyse 16S-

23S spacer variation among our rhizobial isolates. We

found a high diversity in the length of the amplification

bands among the rhizobium strains. Therefore, we were

able to distinguish 18 groups on the basis of IGS length.

Furthermore, restriction digestion of the amplified IGS

allowed us to distinguish two other new patterns. A sim-

ilar result was also found by Paffetti et al. (1996) when

investigating several strains belonging to E. meliloti by

using PCR with RFLP of the IGS. However, digestion of

the amplified 16S-23S spacer with nine restriction

enzymes did not allow Khbaya et al. (1998) to distinguish

additional groups. PCR-RFLP of the IGS have discri-

minated 11 supplementary groups than obtained by

PCR-RFLP of the 16S rDNA gene. Thereby, our results

confirmed the higher discriminating level for the IGS

than for the 16S rDNA (Navarro et al. 1992; Normand

et al. 1996; Yu and Mohn 2001).

Distribution of rhizobial strains appeared to be inde-

pendent to the site of origin and to site-climate. These

results corroborated with those of Khbaya et al. (1998)

and Ndiaye (1996).
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Results obtained from nodulation test showed that

50% of the isolates failed to renodulate their host plant.

Non-nodulating or erratic-in-nodulation Acacia species

have been reported (Odee et al. 1995; Frioni et al. 1998;

Mohamed et al. 2000). Most (80%) of our rhizobial

strains, which could renodulate their host plant were rela-

ted to E. meliloti species. Similar results were found by

Ndiaye (1996) and Ba et al. (2002) on rhizobia nodulat-

ing A. tortilis in Africa.

A collection of A. tortilis spp. raddiana-nodulating bac-

teria has been characterized, and had revealed a high

diversity. Some strains may represent new genomospecies

to be further characterized to clarify their phylogenetic

positions. These rhizobia can be used to develop efficient

inoculants in order to restore acacia forest and then soil

fertility in arid and Saharan regions. This study provides

the first clear characterization and symbiotic efficiency of

rhizobia strains nodulating A. tortilis in Tunisia.
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