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Feeding and healing the world.:
through regenerative agriculture and
permaculture

CHRISTOPHER J. RHODES
ABSTRACT

The study of soil is a mature science, whereas related practical methods of
regenerative agriculture and permaculture are not. However, despite a paucity of
detailed peer reviewed research published on these topics, there is overwhelming
evidence both that the methods work and they may offer the means to address a
number of prevailing environmental challenges, e.g. peak oil, climate change,
carbon capture, unsustainable agriculture and food shortages, peak phosphorus
(phosphate), water shortages, environmental pollution, desert reclamation,
and soil degradation. What is lacking is a proper scientific study, made in
hand with actual development projects. By elucidating the scientific basis of
these remarkable phenomena, we may obtain the means for solving some of the
otherwise insurmountable problems confronting humanity, simply by observing,
and working with, the patterns and forces of nature. This article is intended as
a call to arms to make serious investment in researching and actualising these
methods on a global scale. Despite claims that peak oil is no longer a threat
because vast resources of gas and shale oil (tight oil) can now be recovered by
Sfracking (hydraulic fracturing) combined with horizontal drilling, the reality is
that proven actual reserves are only adequate to delay the peak by a few years.
Furthermore, because of the rapid depletion rates of flow from gas wells and
oil wells that are accessed by fracking, it will be necessary to drill continuously
and relentlessly to maintain output, and there are material limits of equipment,
technology and trained personnel to do this.

Moreover, to make any sensible difference to the liquid fuel crisis, which is the
most immediate consequence of peak oil, it would be necessary to convert the
world's one billion vehicles to run on natural gas rather than liquid fuels refined
Jrom crude oil, and this would take some considerable time and effort. The loss
of widespread personalised transportation is thus inevitable and imminent,
meaning a loss of globalised civilisation and a mandatory return to living in
smaller localised communities. Permaculture and regenerative agriculture offer
potentially the means to provide food and materials on the small scale, and address
the wider issues of carbon emissions, and resource shortages. Since over half the
World's population lives in cities, it seems likely that strengthening the resilience
of these environments, using urban permaculture, may be a crucial strategy in
achieving a measured descent in our use of energy and other resources, rather
than an abrupt collapse of civilization.
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]. Introduction

“The nation that destroys its soil destroys itself.” Franklin D. Roosevelt
(US President, 1933-1945).

The above quotation is taken from a letter!, dated February 26, 1937,
written by Roosevelt to the State Governors, urging uniform soil
conservation laws. in reference to the infamous period dramatised in "The
Grapes of Wrath" by John Steinbeck, and published in 1939, which draws
out in painful detail the tribulations of families trying to survive in the
dust-bowls of the mid-West during the Great Depression era of the 1930s,
struggling toward California in a search for jobs and land, but mostly
land on which crops would grow. The Grapes of Wrath won the annual
National Book Award and the Pulitzer Prize and was cited prominently
when Steinbeck won the Nobel Prize for Literature in 1962.

The study of soil>? is a mature topic, and has become a science,
although much of our practical knowledge of how to use soil most
effectively, stems from empirical observation — discovering directly what
works and what fails. Throughout history, civilisations have thrived or
declined according to the quality of their soils, since the latter is a crucial
factor in the ability of humans to feed ourselves and our animals. In
thel8th century, the English gentleman farmer, Jethro Tull (1674-1741)
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introduced an improved seed-drill that enabled an efficient and consistent
planting of seeds, such that the latter were used less wastefully. He also
invented a horse-drawn hoe that allowed fields once choked with weeds
to be brought back into production. It was Tull, however, who conceived
the erroneous belief that weed seeds were introduced from manure, and
that fields should be heavily ploughed in order to pulverise the soil and
release nutrients from it. Guided by this line of thinking, in the 20th
century, farmers ploughed fields well beyond the degree necessary to
control weeds, and by a combination of such over-ploughing and drought,
the dust-bowls were created in the prairie region of the Central United
States and Canada.

The ancient Greek philosophers, who believed that they could
comprehend the universe by logic alone, and without making recourse to
experiments, concluded that plants obtained all their component elements
from the soil in which they grew. In the 17th century, Jan Baptist van
Helmont (1577-1644) grew a willow tree, weighing 5 pounds, under
carefully controlled conditions, in which only water was added to it, and
discovered after five years of growth, that its total weight, including its
roots, was 165 pounds. The weight of the original oven-dried soil was 200
pounds, and when it was again dried and weighed, a mere two ounces had
been lost. This, van Helmont assumed, was a matter of experimental error
and concluded that the soil had lost nothing. Since rain water was the
only additional ingredient, he inferred that water was the single essential
element of growth. In fact, van Helmont’s experimental technique was
better than he thought: the two ounces that he had observed to be lost from
the soil was genuine, since it represented the quantity of soil-minerals
taken up by the tree as it grew. In 1771, the noted English chemist Joseph
Priestley performed a series of experiments which imputed a role for
atmospheric gases in the growth of plants. At that time, it was thought that
a noxious substance, phlogiston, was released into the air when a flame
burned. In one of his experiments, Priestley burned a candle in an enclosed
container until the flame was extinguished, and found that when a mouse
was placed in the "phlogistated" air of the container it died. In contrast, the
air was made able to support the life of a mouse when a sprig of mint was
first introduced to the container, which he concluded had changed the air
by removing the phlogiston from it. The Dutch physician Jan Ingenhousz
(1730-1799) then proved that plants "dephlogistate" air only in sunlight,
and not 1n darkness, and that the green parts of plants are necessary for
this process of dephlogistation; sunlight alone being ineffective for the
task. The phlogiston theory was subsequently disproved by the French
chemist, Antoine Laurent Lavoisier (1743-1794). Lavoisier showed that
both burning candles and breathing animals consume a gas in the air which
he named oxygen, leading to the inference that plants produced oxygen
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when illuminated by sunlight. Tragically, Lavoisier was condemned to
death and beheaded during the French revolution. Ingenhousz extended
his earlier work and proposed that plants use sunlight to decompose
carbon dioxide (CO3), thus incorporating its carbon as they grow, while
expelling the counterpart oxygen (O;) as waste.

That a considerable sophistication in understanding about the growth
of plants and their relationships with soil and with atmospheric gases
had been attained can be seen from the following description® given by
William Allen Miller in his Elements of Chemistry, published in 1857:

“It has already been remarked that the food of plants is derived from two
sources, viz., the atmosphere and the soil. From the atmosphere, carbonic
and nitric acids, ammonia and water are supplied; whilst from the soil are
furnished the various saline materials necessary for the healthy growth
of the plant. Now, in certain cases, all these materials, with the exception
generally of carbonic acid and water, may be present in quantity 100
scanty to produce a luxuriant crop, and the great practical problem
submitted to the farmer for solution is the discovery of the nature of the
missing materials in any given case, and of the means by which these
materials may be most cheaply and effectively supplied.
When a crop is carried off from the land, it necessarily takes with it
a certain amount of mineral matters. If these mineral bodies be present
in the soil in small quantity, and if fresh crops be continually carried off
without provision for the return of the matters so removed, the land will
in process of time become exhausted of one or more of these necessary
ingredients and sterility will be the inevitable result. ”

Thus, in the middle of the 19th century, chemical fertilisers began to
be deliberately applied to soils to assist crop yields. It became clear that
nitrogen was an essential element for the growth of plants and, in 1880,
the presence of Rhizobium bacteria in the roots of legumes was found to
be responsible for the increase of nitrogen in the soils in which they grew.
Thus it was demonstrated that the fertility of soil depended on the living
(organic) species it contained, and not only on its mineral (inorganic)
components. By a combination of crop rotation, the introduction of
mechanised farming, and the use of chemical and natural fertilisers, the
areal yields of wheat in Western Europe doubled in the period 1800-1900.

2. Soll

Soil is made up of layers (soil horizons) which mainly consist of minerals
that differ from their primary materials in texture, structure, colour,
porosity, consistency, reactivity (pH, redox behaviour), and in chemical,
biological and other physical characteristics. Soil is the final result of the
consequences, in combination, of climate (temperature, precipitation),
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Figure 1 Vertical structure of a typical soil. Mediterranean red soil. A, soil:

B, rlaterite, a regolith; C, saprolite, a less-weathered regolith; the bottom-most

layer represents bedrock. Credit Carlosblh.
relief’ (slope), organisms (flora and fauna), primary materials (original
minerals), and timescale. The material we know as soil (Figure 1) consists
of rock particles that have been altered by chemical and mechanical
processes, including weathering (disintegration) and accompanying
mechanisms of erosion (movement). Soil forms a porous structure and
may be envisaged as a three-state system: solid(s) (minerals — clay, silt
and sand), liquid (water), and gas (air). The density of most soils lies in the
range 1 -2 g cm™,

A good quality soil contains (by volume) 45% minerals, 25% water,
25% air, and 5% of organic material. In a given soil, the mineral and
organic components are considered to be constant, while the percentages
of water and air may vary. such that the increase in one is balanced by
the reduction in the other, i.e. air may be driven out by water, or water be
replaced by air as the soil drains. The simple mineral mixture of sand, silt,
and clay will evolve, as time passes, into a soil profile that contains two or
more horizons, which differ in certain properties, as indicated above. The
depth of the horizons can vary considerably from one to another and the
boundaries between them are rarely sharply defined. Since the pore space
of soil contains both gases and water, the aeration of the soil influences not
only the health of the flora and fauna it contains, but also the emission of
greenhouse gases.

The soil-evolution process is most strongly influenced by the presence
of water, since this medium can promote the growth of plant-life, the
leaching of minerals from the soil profile, and the transportation and
immobilisation of various constituent components. Clay and humus are
colloidal particles (< 1 micron in size) present in soil, both of which act as
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a repository for nutrients and moisture, and serve to buffer the variation
in nature and concentration of cations and anions that are present in the
soil. Thus, the contribution provided by these materials to the health and
properties of soil is far in excess of what might be deduced from their
relative proportion by mass of the soil. Colloids are able to solubilise,
initially immobile, ions in response to changes in soil pH, and plant root
behaviour. The availability of nutrients is also influenced by the soil pH.
Most nutrients originate from minerals and are stored in organic material,
both living (e.g. bacteria) and dead, and on colloidal particles as ions. The
action of microbes on organic matter and minerals may release nutrients,
render them immobile, or cause them to be lost from the soil by leaching
when they are converted to soluble forms, or by their conversion to gases.
Most of the available nitrogen in soils originates from the “fixation™ of
atmospheric nitrogen gas by bacteria. Of all the components, it is water
that has the greatest influence on the formation and fertility of soil, even
more so than soil organic matter (SOM).

2.1. Organisms

The activities of plants, animals, insects, fungi, bacteria, and humans
too, all play a part in the formation of soil. Fauna, such as earthworms,
centipedes, and beetles, and microorganisms mix soils by forming
burrows and pores, which allow moisture and gases to diffuse through
the soil matrix. As plant roots grow in soil, channels are also created.
Plants with deep taproots can penetrate the different soil layers by many
metres and draw-up nutrients from considerable depths. Organic matter is
contributed to the soil by plant roots that extend near the surface, where
they are quite readily decomposed. Micro-organisms, including fungi
and bacteria, facilitate chemical exchanges between roots and soil and
act as a reserve of nutrients. Soil erosion may arise from the mechanical
removal, by human activities, of plants that provide natural surface cover.
The different soil layers may be mixed together by microorganisms, a
process which stimulates soil formation, since less extensively weathered
material is mixed with more well developed layers closer to the surface.
Some soils may contain up to one million species of microbes per gram
(most of those species being unclassified), making soil the most abundant
ecosystem on planet Earth. It is said that one teaspoonful of soil may
contain up to a billion organisms.

Vegetation can prevent soil erosion caused by excessive rain and
resulting surface run-off. Plants are also able to shade soils, keeping
them cooler and reducing the loss, by evaporation, of soil moisture; yet
conversely, through transpiration, plants may also cause soils to lose
moisture. Plants can synthesise and release chemical agents (including
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enzymes) — “exudates” — through their extended root-systems, which
are able to decompose minerals and so improve the structure of the soil.
Dead plants, fallen leaves and stems begin their decomposition on the
surface, where organisms feed on them and mix the organic material into
the upper soil layers; these additional organic compounds become part
of the soil formation process. In addition to the essential characteristics
of a particular soil, e.g. its density, depth, chemistry, pH, temperature
and moisture, the precise type and quantity of vegetation that may be
grown at a particular location depends on a combination of the prevailing
climate, land topography. and biological factors ("Section 21").

2.2. Time

Soil formation is a time-dependent process that depends on the interplay
of various different and interacting factors. Soil is a continuously evolving
medium, and it requires around 800-1,000 years to form a layer of fertile
soil 2.5 cm (one inch) thick. Fresh material, e.g. as recently deposited
from a flood, shows no trace of soil development because insufficient
time has passed for the material to form a structure that may be later
defined as soil. Rather, the original soil surface is buried, and the new
deposit must be transformed afresh. Over a period ranging from hundreds
to thousands of years, the soil will develop a profile that depends on the
nature and degree of biota and climate. Soil-forming mechanisms continue
to proceed, even on “stable” landscapes that may endure sometimes for
millions of years. In a relentless process, some materials are deposited
on the surface while others are blown or washed from the surface. At
the behest of such additions, removals, and alterations, soils are always
subject to new conditions. It is a combination of climate, topography and
biological activity that decides if these changes are rapid or protracted.

2.3. Water uptake by plants

90% of water is taken up by plants through “passive absorption”, which
1s the result of the upwardly drawing force of evaporation (transpiration)
from the long column of water that extends from the plant's roots to its
leaves. An osmotic pressure gradient is further generated by the high
concentration of salts within the roots, and this acts to force water into
the roots from the soil. The latter process becomes more important during
times of low water transpiration, when the ambient temperature is lower
(for example at night) or when the humidity is high. From one study’ of a
single winter rye plant, grown for four months in one cubic foot of loam
soil, it was determined that the plant developed 13,800,000 roots with a
combined length of 385 miles (616 km) and a surface area of 2,550 square
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feet (237 m?); additionally 14 billion hair roots were formed at a combined
length of 6,600 miles (10,560 km) and a surface area of 4,320 square
feet (402 m?). Since the total surface area of the root system amounts
to 6,870 square feet (639 m?), and the total surface area of the loam soil
was estimated to be 560,000 square feet (52,080 m?), it can be deduced
that the roots were in contact with only 1.2% of the soil. Since the flow
of water in soil is only around 2.5 cm per day, the roots must constantly
seek out moisture, and so are constantly dying and growing as they try
to locate such moisture in high concentrations. When the soil moisture 1s
so low that that the plants wilt, they may be permanently damaged with a
loss in crop yields.

2.4. Consumption and efficiency of water use

Most of the water taken up by a plant is eventually lost through
transpiration. Substantial evaporative loss from the soil surface also occurs.
The combination of transpiration and evaporative loss of soil moisture 1s
called evapotranspiration. The total water consumed (consumptive use) in
growing a plant is the sum of evapotranspiration plus the amount of water
held in the plant. This is practically identical to evapotranspiration because
such a small fraction (0.1-1.0%) of the water used is actually contained
in the plant. In addition to consumptive use, run-off and drainage must
be added to determine the total amount of water necessary to grow crops.
Application of loose mulches initially reduces evaporative losses from
a field following irrigation, but ultimately the total evaporative loss 1s
close to that for an uncovered soil; the main advantage of using mulch 1s
that moisture is retained during the seedling stage. In some permaculture
designs (see Section on Greening the desert), systems of swales are
installed which, along with heavy mulching, vastly reduce the amount
of water used to grow crops, perhaps by 90% or more. The efficiency of
water use is measured by the transpiration ratio, which is the ratio of the
total water transpired by a plant to the dry weight of the harvested plant
at a particular location. Thus, alfalfa may have a transpiration ratio of 500
(depending on where they are grown) and as a result 500 kg of water will
produce 1 kg of dry alfalfa. Typical transpiration ratios for crops lie in the
range 300 — 700.

2.5. Soil atmosphere

In comparison with the atmosphere above it, the gas-composition of a
living soil is generally decreased in its concentration of O, and increased
in that of CO,. because oxygen is consumed by microbes and plant
roots. with the simultaneous release of CO;. Hence, in the soil pore
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space, the CO; concentration may be 10-100 times higher than its
atmospheric concentration of 0.04%; the pores are also saturated with
water vapour. If the soil porosity is sufficient, O, can diffuse into the
soil where it is consumed, and CO; (whose concentration may otherwise
become elevated to toxic levels) can diffuse out, along with other gases
and water. The degree of porosity and consequent ability of the soil to
diffuse gases is determined largely by its texture and structure. The flow
of gases is impeded by platy and compacted soil, and when O, levels
fall, anaerobic bacteria may be encouraged to reduce nitrate anions to N,
N>O, and NO - greenhouse gases which then escape into the atmosphere.
In consequence, while O;-rich (aerated) soil is a net sink of methane CHy
— thus reducing the concentration of a gas with an instantaneous radiative
forcing factor (global warming potential) roughly 100 times that of CO,
— when soils are depleted of O, and subjected to elevated temperatures,
they can become net emitters of greenhouse gases.

2.6. Soil density?

Particle density is the density of the mineral particles that make up a soil,
i.e. excluding pore space and organics, and this averages approximately
2.65 g em™ (165 Ib ft?). The soil bulk density (Table 1) includes also the
volume of air-space and organic materials. A high bulk density indicates
either that the soil is compacted or that it has a high sand content. The
bulk density of cultivated loam is about 1.1-1.4 g cm™ (for comparison,
water is 1.0 g cm™). A lower bulk density alone does not indicate that a
soil 1s suitable to grow plants in, since its texture and structure are also
important factors.
Table I Representative bulk densities of soils’. The percentage pore space was

calculated using 2.7 g em? for particle density except for the peat soil, which is
estimated

Soil treatment and identification Bulk density (g em™) | Pore space (%)
Tilled surface soil of a cotton field 1.3 51
Traflicked inter-rows where wheels passed surface | 1.67 37
TrafTic pan at 25 cm deep 1.7 |36
Undisturbed soil below traffic pan, clay loam  |1.5 43
Rocky silt loam soil under aspen forest 1.62 40
L.oamy sand surface soil 1.5 43
Decomposed peat 1.55 65

2.7. Soil porosity

“Pore space” may be defined as the proportion of the bulk volume that
1S open space, occupied by either air or water. Ideally this should occupy
50% of the soil volume, because air space is needed to supply oxygen to
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microorganisms so that they can decompose organic matter, humus, and
plant roots. An adequate pore space is also prerequisite to the storage and
diffusion of water and its dissolved nutrients in soil.

The four categories of pores are:
(1) Very fine pores: < 2 microns (um); (2) Fine pores: 2-20 pum;
(3) Medium pores: 20-200 pum; (4) Coarse pores: > 200 pm.

In comparison, root hairs are 812 um (1 pm = 10 m) in diameter (a
human hair has a diameter of around 70 um). When the pore dimension 1s
less than 30 um, the attractive forces that retain water in the pore exceed
those acting to drain it, whereupon the soil becomes water-logged and
unable to breathe. Hence, for a growing plant, soil pore size is of greater
importance than total pore space. A medium-textured loam provides the
ideal balance of pore sizes. Loam is soil composed of sand, silt, and clay
in a relatively balanced proportion of about 40:40:20, respectively. Large
pore spaces that allow rapid air and water movement are more effective
than smaller pore spaces. Tillage initially increases the number of larger
pores, but these are eventually degraded by the loss of aggregation
between soil particles.

2.8. So1l texture

The mineral components of soil, sand, silt, and clay determine a soil's
texture (Figure 2). In the illustrated textural classification triangle, the
only soil that does not exhibit one of those predominately is called "loam."
While even pure sand, silt, or clay may be considered a soil, a loam soil.
with a small amount of SOM, is considered ideal for growing crops in.
Soil texture affects the behaviour of a soil, in particular, its retention
capacity for nutrients and water. Sand and silt are the products of physical
and chemical weathering; clay, on the other hand, is a product of chemical
weathering but is frequently precipitated from dissolved minerals as a
secondary mineral. The fertility of a soil depends on the specific surface
area of its particles and their cation-exchange capacity (CEC). Thus, in
order of decreasing particle size (vide infra), sand is the least effective,
followed by silt, with clay being the most efficacious. According to its
higher specific surface area, silt is more chemically active than sand, but
for clay, the very high specific surface area and generally large number
of surface negative charges, contributes a high retention capacity for
nutrients and water. The presence of sand resists compaction and increases
the porosity of soil. Due to stronger interactions between its particles,
clay soils resist wind and water erosion better than silty and sandy soils.
There are somewhat different classifications for the limits of particle size
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according to which sand, silt and clay may be classified, but roughly, a silt
i1s in the range 4-63 um, with sand being larger (up to 250 um for “fine
sand”), while clay is <4 pm. Clay is identified as a colloid at < 1 pum.
When the organic component of a soil is substantial, the soil is called an
organic soil rather than a mineral soil, e.g.

i 0% clay; SOM > 20%.

Z. 0-50% clay; SOM 20-30%.

3. > 50% clay; SOM > 30%.
100
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Figure 2 A soil texture diagram - soil types according to their clay, silt and sand
composition, as used by the USDA, redrawn from the USDA webpage: htip./soils.
usda.gov/education/resources/lessons/texture/. Credit Mikenorton.

2.9. So1l structure

Clumping of the soil textural components of sand, silt, and clay forms
aggregates and the further association of those aggregates into larger units
forms soil structures called peds. The peds evolve into units that may have
various shapes, sizes and degrees of development. A soil clod, however, is
not a ped but rather a mass of soil that results from mechanical disturbance.
The soil structure affects aeration, water movement, conduction of heat,
resistance to erosion and plant root growth. Water has the strongest effect
on soil structure due to its solution and precipitation of minerals and
its effect on plant growth. Soil structure often gives clues to its texture.
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organic matter content, biological activity, past soil evolution, human use,
and the chemical and mineralogical conditions under which the soil was
formed. While texture is defined by the mineral constituents of a soil and
is an intrinsic property, soil structure can be improved or destroyed by the
choice and timing of farming practices.

A classification of soil structures:
I. Types: Shape and arrangement of peds

a. Platy: Peds are flattened one on top of the other 1-10 mm thick. Found
in the A-horizon of forest soils and lake sedimentation.

b.Prismatic and columnar: prism-like peds are long in the vertical
dimension, 10—100 mm wide. Prismatic peds have flat tops, columnar
peds have rounded tops. Tend to form in the B-horizon in high sodium
soil where clay has accumulated.

c. Angular and subangular: Blocky peds are imperfect cubes, 5-50 mm,
angular have sharp edges, subangular have rounded edges. Tend to
form in the B-horizon where clay has accumulated and indicate poor
water penetration.

d.Granular and crumb: Spheroid peds of polyhedra, 1-10 mm, often
found in the A-horizon in the presence of organic material. Crumb
peds are more porous and are considered ideal.

2. Classes: Size of peds whose ranges depend upon the above type

a.Very fine or very thin: <1 mm platy and spherical; <5 mm blocky;
<10 mm prism-like.

b.Fine or thin: 1-2 mm platy, and spherical; 510 mm blocky; 1020 mm
prism-like.

¢. Medium: 2-5 mm platy, granular; 10-20 mm blocky; 20-50 prism-
like.

d.Coarse or thick: 5-10 mm platy, granular; 20-50 mm blocky; 50-
100 mm prism-like.

e. Very coarse or very thick: >10 mm platy, granular; >50 mm blocky;
>100 mm prism-like.

3. Grades: A measure of the degree of development or cementation

within the peds that results in their strength and stability.

a. Weak: Weak cementation allows peds to fall apart into the three
constituents of sand, silt and clay.

b.Moderate: Peds are not distinct in undisturbed soil but when removed
they break into aggregates, some broken aggregates and little
unaggregated material. This is considered ideal.

c.Strong: Peds are distinct before removed from the profile and do not
break apart easily.

d.Structureless: Soil is entirely cemented together in one great mass,
such as slabs of clay, or no cementation at all, such as with sand.
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On the practical scale, the structure of a soil is determined by swelling
and shrinkage effects whose forces tend initially to act in a horizontal
direction, and result in vertically oriented prismatic peds. Since there
is a differential drying rate with respect to the surface, for clayey soil.
horizontal cracks are formed which reduce columns to blocky peds.
The peds are further broken into spherical forms by the actions of roots,
rodents, worms, and freezing/thawing cycles. At the smaller scale, plant
roots extend into voids where they cause the open spaces to increase
and further reduce the size of physical aggregation, while roots, fungal
hyphae and earthworms create microscopic tunnels and break up the
peds. Viewed at an even smaller dimension, soil aggregation continues
as bacteria and fungi exude polysaccharides (exudates) that bind soil into
small peds. The formation of this desirable soil structure is encouraged by
the addition of raw organic matter to provide food for bacteria and fungi.
At the molecular dimension, the aggregation or dispersal of soil particles
is influenced by the soil chemistry. Due to the presence of polyvalent
cations, the faces of the clay layers carry a net negative charge, while the
edges of the clay plates bear a slight positive charge; thus the edges of
some clay particles become attracted to the faces of others and flocculation
can occur. However, monovalent cations such as sodium may displace the
polyvalent cations: thus, the positive charge on the edges is decreased,
while the negative surface charges become effectively stronger. This
leaves a net negative charge on the clay particles, which tend to repel one
another and so the flocculation of clay particles into larger assemblages is
discouraged. As a result, the clay disperses and settles into voids between
peds, causing them to close. In this way, the aggregation is impaired
and the soil 1s made impenetrable to air and water. Such soils are called
“sodic” and tend to form columnar structures near the surface.

2.10. Soil consistency

The consistency of a soil refers to its ability to stick together and resist
fragmentation and provides some indication of potential problems with
the material in cultivating plants and in engineering the foundations for
buildings. Consistency is measured at three moisture conditions: air dry,
moist and wet. Such measures of consistency are to some extent subjective
because they use the "feel" of the soil in those states, rather as does
“tilth”, which can be determined by the feel of soil as it moves through
a farmer’s fingers. A soil with good tilth means that it has the correct
structure and nutrients to grow healthy crops. Farmers sometimes make
sure that their crop rotation is such to permit good seed bedding, along
with the development of a strong root system that allows the nutrients to
be distributed throughout the various depths of the soil. The resistance
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of a soil to fragmentation and crumbling is determined by rubbing a
sample of dry soil, while its resistance to shearing forces is estimated by
applying thumb and finger pressure to a moist sample of soil; plasticity is
measured by manually moulding a sample of wet soil. While knowing the
consistency of soil is useful in estimating its ability to support buildings
and roads, more precise measures of soil strength are generally made
prior to actual construction.

2.11. Soil temperature

The temperature of a soil regulates seed germination, root growth, and the
availability of nutrients, and may vary from permafrost at a few inches
below the surface, up to 38 °C (100 °F) in soil at warmer climes. Snow
cover will reflect light, and the rate at which the soil warms can be reduced
by heavy mulching, which also attenuates the influence of fluctuations
in the surface temperature. At a depth of 50 cm (20 inches) and below,
the temperature of soil is virtually constant and can be approximated by
adding 1.8 °C (3.2 °F) to the annual mean air temperature at a particular
location. Agricultural activities are normally adapted to the prevailing
soil temperature in order to: (1) maximise germination and growth by
timing of planting; (2) optimise use of anhydrous ammonia by applying
to soil below 10 °C (50 °F); (3) prevent heating and thawing due to frosts
from damaging shallow-rooted crops; (4) prevent damage to soil tilth by
the freezing of saturated soils; and (5) improve uptake of phosphorus by
plants. Where necessary, soil temperatures can be raised by drying or by
the use of clear plastic mulches, while, as noted, organic mulches tend to
reduce the rate of soil warming.

2.12. Soil colour

The colour of soil depends principally on the minerals it contains.
Many of the colours are owed to the presence of various iron minerals
(Figure 3), and the development and distribution of colours in a soll
profile are a consequence of chemical and biological weathering of the
primary minerals present, particularly through redox reactions. When
iron is present, secondary minerals may be produced with red or yellow
colours, while organic matter decomposes into black and brown coloured
compounds, while black deposits may also be formed from Mn, S
and N. The many and various components, by acting as pigments, can
produce a variety of coloured patterns within a soil. Uniform or gradual
colour changes tend to be the result of aerobic (oxidising) conditions,
while anaerobic (reducing) environments cause a rapid flow of colour,
with complex, mottled patterns and points where the colour is highly
concentrated.
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Figure 3 Iron rich red soil near Paint Pots mineral springs in Kootenay
National Park, British Columbia, Canada. Credit Marek Slusarczyk.

2.13. lon-exchange by soils
2.13.1. Cation exchange.

The exchange of cations between soil particles and soil water, buffers

(moderates) the pH and changes the structure of a soil. The process may
also “purify” water by adsorbing cations of all types, some of which may
be desirable or undesirable, while passing other cations into the aqueous
phase as water percolates through the soil.

Cations are bound at the surface of soil particles because of the presence
of negative charges there — there are four sources of the latter.

.

Isomorphous substitution occurs in clay when lower valence
cations substitute for higher valence cations in the crystal structure
(e.g. when Al occupies a position that would be otherwise taken
by a Si atom - clays are aluminosilicates — a negative charge
1s created, (O)4Al7). In terms of creating an effective surface
change on a soil particle, such substitution in the outermost
layers is more effective than in the innermost layers because the charge
strength decreases with the inverse square of the distance.
At the edges of a particle there are oxygen atoms with unsaturated
valencies, because there are discontinuities in the structure, leaving
some of the tetrahedral and octahedral structures incompletely
bonded. These oxygen atoms carry a negative charge (O)
Hydroxyl groups on the clay surfaces may be ionised, yielding H*
into solution, leaving oxygen atoms with a negative charge.
Likewise, hydroxyl groups on particles of humus may be ionised,
passing H™ into solution, leaving oxygen atoms with a negative
charge.
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The binding of cations to the particles tends to save them from being
washed away, thus preserving the fertility of soils in areas where rainfall
is moderate. Different cations have a greater or lesser affinity for the
soil particles, and if they were present in equal concentrations, would be
retained in the following order:

AP* > H* > Ca?* > Mg?* > K*= NH* > Na*

However, a far dominant concentration of a single type of cation may
swamp the system, as occurs, for example, when large quantities of
fertiliser are added to soil. An increase in the acidity of the soil (more
protons H*), may cause the other cations to be exchanged into solution,
while the associated surface negative changes are balanced by H". These
are referred to as pH-dependent charges, which unlike permanent charges
developed by isomorphous substitution, are variable and increase with
increasing pH. The charges on the oxygen atoms (O~) become effectively
neutralised by addition of the proton to form an O-H group. Plant roots
can release H* to the soil thereby mobilising the cations so that they can be
absorbed by them. Once in solution, however, the cations can be washed
away, thus impoverishing the soil fertility.

2.13.2. Cation exchange capacity

The ability of a soil to exchange cations with the soil water solution is
referred to as the cation exchange capacity (CEC). This may also be
considered as the ability of the soil to remove cations from the soil water
solution and to hold those for later absorption by plants as the plant roots
release H* to the solution. More specifically, CEC is the concentration of
exchangeable protons (H*) that will combine with 100 grams (dry weight)
of soil and whose measure is one milliequivalent per 100 grams of soil
(1 mequiv./100 g). H* cations have a single charge and one-thousandth of
a gram of hydrogen ions per 100 g dry soil gives a measure of 1 mequiv.
of hydrogen ion. The sterility of many tropical soils may be explained by
an absence of both clay and humus colloids (which are responsible for the
CEC) in hot, humid, wet climates, due to leaching and decomposition,
respectively. Some typical values of CEC for different soils and clays are
listed in Table 2.

2.13.3. Anion exchange capacity

The anion exchange capacity (AEC) of a soil may be usefully considered
to reflect its ability to remove anions from the soil water solution and
sequester them for later exchange as the plant roots release carbonate
anions to the solution. Amorphous and sesquioxide clays have the highest
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AEC, followed by iron oxides. Iron and aluminium hydroxide clays are
able to exchange their hydroxide anions (OH") for other anions, including
phosphates, which tend to be held at anion exchange sites. The order of
affinity in terms of anion exchange is:

H,PO4 > SO42 > NO3~> CI

Colloids with a low CEC tend to have some AEC, although the values are
always much lower than for CEC, and are of the order of tenths to a few
milliequivalents per 100 g dry soil. As the soil pH rises, the concentration
of hydroxyl anions (OH") increases, and these may displace anions from
their storage points on the surface of the colloids and into solution: hence.
the AEC is found to decrease with increasing pH (i.e. as the solution
becomes more alkaline).

Table 2 Cation exchange capacity for soils; soil textures; soil colloids’

Soil State CEC (mequiv / 100 g)
Charlotte fine sand Florida 1.0
Ruston fine sandy loam Texas 1.9
Gloucester loam New Jersey |11.9
Grundy silt loam [linois 26.3
Gleason clay loam California |31.6
Susquehanna clay loam Alabama 343
Davie mucky fine sand Florida 100.8
Sands s 1-5
Fine sandy loams e 5-10
Loams and silt loams = 5-15
Clay loams = 15-30
Clays = =30
Sesquioxides - 0-3
Kaolinite - 3-15
Ilite - 25-40
Montmorillonite - 60-100
Vermiculite (similar to illite) |- 80-150
Humus - 100-300
2.14. Soil pH

The soil reactivity is expressed in terms of pH, which is a measure of
hydrogen ion (H") concentration in an aqueous solution and ranges in
values in the range 0-14 (acidic to basic). A neutral pH is 7, and so soils
with a pH < 7 are acidic, while those at pH > 7 are alkaline. In practice,
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measured soil pH values range from 3.5 to 9.5, and soils measured outside
of these limits are toxic to life forms. To place this in context, at 25°C an
aqueous solution with a pH of 3.5 contains 107°2 moles of H" per litre
of solution (and also 10-'%5 moles per litre of OH"). At a pH of 7, the
solution contains10~7 moles H* per litre and also 10~7 moles of OH™ per
litre. hence its neutrality. A pH of 9.5 contains 107 moles of H" per litre
of solution (and also 1025 mole per litre OH") . At a pH of 3.5, a solution
contains one million times more H™ per litre than a solution with a pH
0f 9.5 (9.5 — 3.5 = 6 or 10°) and is accordingly more acidic by that same
amount. Highly acidic soils tend to contain toxic levels of aluminum and
manganese. Plants that need calcium require a moderately alkaline soil
but most minerals are more soluble in acid soils. A high acidity has a
negative effect on soil organisms, while most agricultural crops do best
on mineral soils with a pH of 6.5 and organic soils with a pH of 5.5, by
exchange of Na* for Ca®".

In areas where the rainfall is heavy, soils tend to become acidic because
basic cations (e.g. Mg?*, Ca?*) are out competed and exchanged from the
soil colloids by the mass action of H* from the water. The reason that
such cations are described as “basic™ is their association with carbonate
anions (CO3%), which yield hydroxyl anions via the equilibrium:
H,0O + CO32 2HCO35 + OH". Persistent, heavy rainfall can then wash
out nutrients leaving the soil sterile. Once the colloids are saturated with
H*, the addition of more H* (or aluminium cations) drives the pH lower
still, as the soil is left with no buffering capacity. In areas of extremely
heavy rainfall, and where temperatures are high, the clay and humus may
be washed out or degraded, which further reduces the buffering capacity
of the soil. In contrast. in areas where rainfall is low, Ca*" 1ons remain
unleached and the pH may rise to 8.5; with the addition of “exchangeable
sodium” (which acts by effectively attracting carbonate anions into the
solution, e.g. CaCO3=Ca?** + CO3*), soils may reach a pH of 10. At
pH > 9, plant growth is reduced because the mobility of micro-nutrients
is reduced; however, water soluble-chelates of them can be added as
compensating agents. Levels of sodium can be reduced by the addition of
gypsum (calcium sulfate) by exchange of Na* for Ca*",

2.15. Soil humus

Humus is a colloidal material and represents the penultimate state of
decomposition of organic matter; while it may linger for a thousand years,
taken over the longer scale of the age of the other soil components, it is
temporary. It is composed of the very stable lignins (30%) and complex
sugars (polyuronides, 30%), and on a dry weight basis, the CEC of humus
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is many times greater than that of clay; cation exchange sites are also
present on the roots of plants.

2.16. Soil resistivity

The electrical resistivity of soil can determine the rate of galvanic corrosion
of metallic structures in contact with it. Conductivity may be increased
by a greater moisture content or increased electrolyte concentration, thus
lowering the resistivity, and so increasing the rate of corrosion. Typical
soil resistivity values vary in the range 2-1000 Q2 m, but more extreme
values are fairly common.

3. Degradation of soil®’

In 2011, the world population of humans passed the 7 billion mark, and
it is estimated that by 2050, there will be 9 billion of us. Soil not only
provides us with food, fibres and fuel, but it supports wildlife and a range
of rural and urban activities. From the end of the 1940s to the beginning of
the 1990s, over 90% of the degradation of productive land occurred from
overgrazing, deforestation and other degenerative agricultural practices.
Such losses to the health of soil affect all of us, particularly the 3.7 billion
who are malnourished and the 3 billion living in poverty. Among all other
considerations of the challenge to feed such a multitude, the quality and
fertility of soil is a critical aspect and good soil should be regarded as
a fundamental resource that requires urgent conservation. Soil may be
degraded by different processes: hydraulic erosion, wind erosion, changes
in its material composition and physical degradation.

3.1. The current situation

According to the ISRIC World Soil Information data®, 46.4% of the
world’s soil is less productive than it was. Around 33% of this loss of
some biological function in soil is occurring in Asia, and about 20% in
Africa. Globally, 15.1% of soil is unsuitable for farming, but to regenerate
it would necessitate very substantial financial investments. About 9.3
million ha (0.5%) of soil is completely biologically inactive (dead). More
than 50% of the soils that have been degraded by deforestation are located
in Asia and 15% in South America. Deforestation 1s the main cause of
soil degradation both in South America (41%) and in Asia (40%) and in
Europe too (38%). 36% of the world's soils that have been degraded by
overgrazing are in Africa. Indeed, overgrazing is the major reason for
soil degradation in Africa (50%), in the South Pacific and in Australia
(80%). 37% of soils degraded by inappropriate agricultural practices are
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in Asia, and these are the most common cause of soil degradation in North
and Central America (58%), and the second most common cause of soil
degradation in Africa (25%). 50% of the 133 million ha degraded by the
overexploitation of vegetation cover for domestic purposes is in Africa.
That noted, almost all the soil degraded by industrial pollution is in Europe.
As a solution, the importance of soil ecosystem management, especially
in the search for solutions to fight desertification and certain forms of soil
degradation should be emphasised. This involves taking a holistic view of
the soil system as an element which is part of a greater whole, rather than
considering it in isolation, as has been done traditionally.

3.2. Human causes of soil degradation

Soil is mainly degraded by human activities, principally those of
agriculture. Land-clearing, irrigation, the spraying of chemical fertilisers
and pesticides, overgrazing and the mechanical effect of heavy farming
equipment passing over the soil, all take their toll. Soil formation, and
the composition of humus, are profoundly influenced by the clearing
and deforestation of land to grow crops on, because the varied primitive
vegetation is replaced by secondary vegetation, of which monoculture
is the most severe example. The upper layers of soil, along with that of
humus, are damaged by tillage and a compacted layer (plough sole) may
form if the ploughs regularly pass through soil at the same depth. When
farm machinery heavier than about 5 tonnes is used, soil compaction may
be another result. By threatening the productive capacity of vegetation,
overgrazing strips soils and increases their sensitivity to hydraulic erosion
(56% of soil degradation) and wind erosion (28% of soil erosion). Over
application of pesticides and artificial fertilisers may kill soil fauna and
diminish the degree of aeration of soil, resulting in soil run-off which
causes floods and mudslides. Overgrazing and excessive tillage may lead
to severe dust storms as occurred in the USSR in 1960 and in Africa
where 2-3 billion tonnes of soil is blown free of the continent and skyward
annually, thus steadily eroding the fertility of its soil. The ability of soils
to sequester CO; may be hampered by farming methods which change
its structure and composition, and the conversion of meadows, forests
and peat bogs into fields causes a reduction in the amount of so1l carbon.
The degradation of soil drives the loss of biodiversity, and also impacts
on global warming through changes in the local albedo and the emission
of greenhouse gases such as methane and nitrous oxide, as the oxygen
tension of the soil becomes diminished.
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4. Permaculture”!? — in summary

Since permaculture 1s implicit to much of the following discussion,
It seems appropriate to give a brief overview of the topic now, before
describing i1t more fully in Section 12. The term “permaculture” (a
portmanteau word derived from permanent agriculture or culture) was
comed by Bill Mollison and David Holmgren in the mid-1970s, to
describe an “integrated, evolving system of perennial or self-perpetuating
plant and animal species useful to man.” According to Holmgren, “A
more current definition of permaculture, which reflects the expansion of
focus implicit in Permaculture One, is *Consciously designed landscapes
which mimic the patterns and relationships found in nature, while
yielding an abundance of food, fibre and energy for provision of local
needs.” People and their buildings and the ways they organise themselves
are central to permaculture. Thus the permaculture vision of permanent
(sustainable) agriculture has evolved to one of permanent (sustainable)
culture.” Broadly, permaculture may be classified (insofar as such an
holistic entity may be) as a branch of ecological design and ecological
engineering which aims to develop sustainable human settlements and
self-maintained agricultural systems modelled from natural ecosystems.
Masanobu Fukuota'' (1913-2008) was a Japanese farmer and philosopher
who established an ecological farming approach called “natural farming”,
which has been attributed by some as containing the essential roots of
permaculture. The method 1s sometimes also called "the Fukuoka
Method", "the natural way of farming" or "do-nothing farming": the latter
refers not to lack of labour, but to an avoidance of manufactured inputs
and equipment. The system exploits the complexity of living organisms
that sculpts each particular ecosystem. Fukuoka saw farming as not purely
a means of producing food but as an aesthetic or spiritual approach to life,
the ultimate goal of which was, "the cultivation and perfection of human
beings". Natural farming is a closed system, one that demands no inputs
and mimics nature, and also differs from conventional organic farming,
which Fukuoka considered to be another modern technique that disturbs
nature. Fukuoka claimed that his approach prevents water pollution, loss
of biodiversity and soil erosion and yet there is no compromise in the
amount of food that it can provide. Modern permaculturists make similar
claims, and even that the method can produce greater yields per hectare
than conventional farming can. Albeit, we should perhaps take stock of
the fact that modern farming has only been “conventional” for about 60
years! One major change incurred by converting to permaculture is that
cereals cannot be produced at the scale of industrialised agriculture, and
amendments in our diet, to consume more vegetables, fruit, nuts, berries,
efc. would be necessary, which can be produced effectively by its means.
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The core tenets of permaculture are:

E Take care of the earth (“earth care”): Provision for all life systems
to continue and multiply. This is the first principle, because without
a healthy earth, humans cannot flourish.

. Work with nature.

. Act to oppose destruction and damage.

. Consider the choices we make.

. Aim for minimal environmental impact.

. Design healthy systems to meet our needs.

. Take care of the people (“people care”): Provision for people to
access those resources necessary for their existence.

. Look after ourselves and others.

. Working together.

. Assist those still without access to food and clean water.

. Develop environmentally friendly lifestyles.

. Design sustainable systems.

. Share the surplus (“fair shares”): Healthy natural systems use

outputs from each element to nourish others. Humans can do the
same; by taking control of our own needs, we can set resources
aside to further the above principles.

. Resources are limited and only by curbing our consumption and
population will there be enough for all, now and in the future.

. Build economic lifeboats.

. Develop a common unity.

. Modify our way of life now — don’t wait: become part of the
solution not part of the problem.

. Need to become reconnected with the natural world: shift in

thinking and being.

Permaculture is about making an effective design, emphasising patterns
of landscape, function, and species assembly. It asks the questions: Where
does this element go? How can it be placed with other elements for
the maximum benefit of the system overall? The fundamental principle
of permaculture is, therefore, to maximise useful connections between
components to achieve their best synergy in the final and optimal design.
Permaculture does not focus on individual elements, in isolation, but
rather on the relationships created among those elements in the way
they are placed together; the whole becoming greater than the sum of
its parts. Therefore, permaculture design aims to minimise waste, human
labour, and inputs of energy and other resources, by building systems
with maximal benefits between design elements to achieve a high level
of holistic integrity and resilience. Permaculture designs are “organic”
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and evolve over time according to the interplay of these relationships and
elements and can become extremely complex systems, able to produce a
high density of food and materials with minimal input.

5. Regenerative agriculture!?'?: the transition

Much of the energy involved in regenerative agriculture and permaculture
1s provided quite naturally by native soil fauna, and is derived from
photosynthesis, where the fuel for soil microbes is delivered from plants
as the factories that supply carbon-rich nutrients. The main difference
between the two approaches is that permaculture follows an initial
design, while regenerative agriculture tends to be more pragmatic and
1s an adaptation of existing methods of field farming. The health of the
soil 1s improved in both processes since its organic component becomes
regenerated. In a wonderful symbiosis, the living soil microbes, especially
fungi, can draw other nutrients and water from the soil to nourish the
plants. The individual elements of life feed one another in a mutually
dependent and beneficial manner. While the strategies of the two methods
can be defined and envisaged quite clearly, the intermediate means for
transition from industrial to regenerative agriculture and permaculture is
rather more nebulous, since it has not been done before, or at least not
in the degree that necessity now demands. So how might we perform
this revolution in the least painful way? Undoubtedly, a decolonising and
restructuring of present industrialised agriculture is necessary, along with
an appreciation and magnification of native and traditional food systems.
Overall, a change in thinking and concept is required from conflict and
limit to cooperation and abundance. The scale of the transition may be
compared with other milestone transitions throughout human history,
such as the hunter-gatherers becoming farmers, and the progression
ultimately to modern industrial societies. It is the latter that are under
threat and unsustainable, and a compromise devolution to a more localised
collective of small communities (pods) is required, supplied by local farms
and infrastructure, with rail links between them for essential movement
of goods and people. The maintenance of the internet and electronic
communications would seem desirable since ideas and knowledge can be
transmitted from pod to pod and between countries and continents.

In the 1970s, studies were undertaken that evaluated the massive
inefficiency in energy requirements for food production. It was concluded
that 10 calories of energy are expended to bring 1 calorie of food onto the
dinner plate. It has been stressed that essential agricultural production
is needed to provide food and fibre — ie. the essential products of
biomass. Biofuel may also be regarded as a product, if the consideration
also includes fermentation of sugars derived from starch into ethanol,
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or hydrothermal production of liquid and gaseous fuels from biomass
by heating it under pressure in the presence of water. The impending
stress of "climate change" is well acknowledged, e.g. sea-level rise and
the spreading desertification of formerly green lands, but its impact on
agriculture is rarely mentioned by climate-modellers. However, as an
example, it is speculated that the Colorado River basin could dry up. Its
mighty dams would then look something like the pyramids of Egypt,
maybe leaving future generations to speculate as to what their purpose
was, and upon the nature of the civilisation that created them. As climate
zones shift, it is the variability of the weather that will have greater impact
than ramping "mean temperatures" on the enormous investment made
by humans in agriculture. The capital outlays required for new dams,
irrigation supplies and the retraining of farmers will need to be contrasted
with that for flood-defences in vulnerable locations (e.g. New Orleans
and the east coast of England). Most likely, both cannot be supported, and
it may prove expedient to simply let some regions "go to the sea".

Figure 4 Rainforests are an example
of biodiversity on the planet, and
typically possess a great deal of
species diversity. This is the Gambia
River in Senegal's Niokolo-Koba
National Park. Credit Atamari.

Biodiversity is a natural means for leveling-out the gains and losses
of living system (Figure 4). It is cooperative in the sense that pests are
not encouraged as they are by growing single strains of crop, and that
suitably matched plants help each other to grow — the holistic whole being
more robust than the simple measure of its components. The term "global
village" tends to signify an interconnected unity of trade or electronic
communication, while aspects of cultural diversity and biodiversity are
ignored. However, it is a necessity to preserve and expand the traditional
food and fibre production systems that are tried and tested and whose
regenerative capabilities have been demonstrated over millennia. We may
adapt to, or readopt, cultures that have been lost, as industrial civilisation
has supplanted them, and it is the latter that we must seek to break away
from to arrive at a sustainable future, if we are to survive as a human
species that is. If "global village" means "global supermarket”, the term
lends acceptance to the concomitant rule of multinational corporations. If
we restructure societies to become self-sustaining, rather than dependent
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on inputs and indeed outputs, as they are now, we also must abandon
"limited liability" and the legal designation of "corporations" as "persons”
with the same rights as individual citizens. Traditional food systems are
storehouses both of biodiversity and cultural diversity. It 1s a pity that the
seed-banks around the world contain no information about the culture,
economy, details of cultivation methods, flavour or other human aspects
of the crops and the food they produce. Including my own musings on
the topic, most commentators on the post peak oil world refer to the
need to localise food systems, such that small populations are provided
for locally by means of community farms. However, establishing
regenerative systems to grow food and fibre must include cities too, the
design of which must be analysed in terms of the natural mechanisms that
interweave them.

It is seldom realised that the rural development or redevelopment urged
by the industrialised nations for the developing world are precisely those
they need to adopt themselves. Schumacher's "Buddhist economics”
which he describes in the bestselling'® "Small is beautiful — a study of
economics as if people mattered", applies equally to the industrialised
world as it must de-industrialise, and take lessons from simpler societies
which consume far less per head of population. The example of Cuba
may be drawn-upon as a source of optimism by other nations, since it
has survived and indeed thrived through implementing a system of
community gardens, and using methods of permaculture, to cope with the
abrupt loss of cheap and plentiful o1l, fertilisers and pesticides gifted from
the Soviet Union, when that latter regime collapsed in 1989. Though there
are presently considerable economic problems in Cuba, the population
was able to adapt and feed itself during what was imitially referred to as
“the special period during peacetime”, and now simply as “the special
period”. That noted, the average number of calories consumed per day
dropped from 2,908 to 1,863 in five years, and the average Cuban lost
20 pounds in weight during that time'’. The Gaia hypothesis, originated
by James Lovelock in the 1960s'?, has acted as an iconic beacon to the
environmental movement, drawing-in a range of people dissatisfied with
the industrial and materialistic way of life, and who seek alternative, more
natural and or spiritually rewarding lifestyles, and with less detriment to
the planet and life upon it. "Gaia" is holistic in nature and is based on
ecology. Rather than an industrialised "global village" it implies a "globe of
villages". Food and fibre production is one of the most important features
of the transition to a post-fossil fuel era, to which the establishment of
regenerative food systems is essential.
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6. Water shortages

Along with cheap crude oil, water is a resource that will begin to run-
short within a few decades, as is espoused in the book'® entitled "Mirage",
written by Barnett, which focuses on water-use in the USA and in Florida
particularly. It is well known that to the east of the longitudinal line
along the 100th meridian, rainfall 1s plentiful, while to the west of it the
climate is relatively arid. Indeed it was once believed that farmers in
the "east" would never have to worry about watering their crops, but in
recent years demand for water has surged with calamitous environmental
consequences. Barnett refers to a house falling into a "sinkhole", which 1s
a collapse in the limestone rock that underlies Florida as a consequence
of its natural dissolution by underground water. These can be opened-up
as a result of human activities including well-drilling and moreover the
excessive pumping of groundwater. She discusses the complex politics
involved in "development”, and the overpopulation of that southern
tip of the Florida peninsular particularly by retirees ("sentors"), thus
requiring an infrastructure — including very green and hence heavily
watered lawns and golf-courses, efc. — to a degree that surpasses even
what can be provided by the greatly abundant rainfall there. Meeting the
shortfall necessitates the extraction of groundwater on a huge scale with
environmental, economic, political and social consequences, including at
least one death as Barnett describes in the chapter "Water wars". Indeed
the history of water supply in the United States 1s wryly inscribed in the
quotation (attributed to Mark Twain), "whiskey's for drinkin' and water's
for fightin'.”

A central theme in the book is that water is a commodity. Often the
real costs of water provision are borne by states or municipalities rather
than by corporations, who cash-in on a cheap resource for which no
regard is consequently imbued, nor for environmental actions such as
damming rivers as mighty as the Colorado for various "aquatic" projects.
Bottled "spring" water is an immensely overpriced designer toy, costing
around 10,000 times as much as tap water and often with much the same
analytical composition. Indeed, not all spring-water does in fact come
from a spring, and is to a large degree, pumped groundwater. The Ogallala
aquifer flows for 174,000 square miles under the great plains from South
Dakota to the Texas panhandle, and it is the main source of water for
the US collective national breadbasket, supplying as it does one third of
all the groundwater used for irrigation in the entire country. However,
Ogallala is not replenished as most aquifers are. Instead it contains "fossil
water", set in the ground from the melt of the last ice-age 10,000 years
ago, and once it is used-up there is no more. Access to cheap electric
pumps in the 1950s permitted farmers to draw this legacy upward at
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increasing rates with the result that the Ogallala has fallen by 100 feet in
parts of New Mexico, Kansas, Oklahoma and Texas. It is inevitable and
a matter of time that all wells sunk into this huge aquifer will run dry,
with impacts on agriculture overall, including the vast corn crop grown
to produce corn ethanol, as a replacement fuel for those currently refined
from crude oil. The Aquifer Storage and Recovery (ASR) technology is
given special mention. The idea is that during wet periods, when water
is plentiful, water is pumped into gigantic underground aquifers set deep
into Florida's limestone, and which can be pumped-up again during dry
months. Some 36 million gallons a day are drawn from Peace River,
which starts in Central Florida's Green Swamp and ends 105 miles further
south in the Charlotte Harbour Estuary. There are almost 1,700 ASR wells
in the US altogether, most of them in the states of California, Nevada.
Texas and Florida, and all of them particularly short of water. However,
caution 1s urged, as the first well sunk at Peace River became seriously
contaminated with arsenic, present naturally in the aquifer. Desalination
is another technology often invoked as a solution to water shortages
especially in near-coastal regions, even though it is very costly to set up a
desalination plant in the first place, and running one requires considerable
amounts of energy. Nor 1s the technology guaranteed: e.g. a plant at
Tampa Bay built at a cost of $110 million suffered all kinds of difficulties
and finally the high-tech membranes required to separate water from
salt by reverse-osmosis clogged up. Groundwater pumping was actually
reduced by one third in the region, without the need for desalinated water,
purely through more conventional means of reservoir and surface water
treatment combined with aggressive water-conservation measures.
While the competition over the use of arable land to grow either food
or fuel crops is a well established and critical factor in making biofuels
at scale, there 1s less awareness about the water required to wrrigate the
land on which the crops are to be grown. It is unequivocal that China is
the new industrial nation, in an unparalleled phase of its economic and
social development. This might be expected to continue for as long as the
West can afford to buy its cheap goods, but in the current recession, that
duration 1s debatable. Underpinning Chinese industrial growth, as for all
industrial growth, is energy, and in recognition of peak oil, emphasis is
on biofuel (and all other kinds of energy resources in China, including
coal-to-liquids, CTL conversion) as products need to be transported for
sale. It 1s aimed that by 2020, 12 million metric tons of biofuels will be
produced in China. To put this into context, this is equivalent to around
one fifth of the petroleum-derived fuel used in the UK annually. The fuel
is to be bioethanol, fermented from corn (maize) which is a relatively
water-efficient starch crop. According to one analysis'” in order to irrigate
sufficient corn to produce 12 million tonnes of bioethanol, a quantity of
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water equivalent to the annual discharge of the Yellow River (Figure
5) would be required. 64% of China's arable (crop-growing) land 1s in
the northern part of the country, and is already under pressure since the
existing use of water exceeds its reserves and water tables are falling'®.
We have neither sufficient land nor water to maintain the illusion that we
can continue as we are, certainly not in terms of liquid transportation fuel
and thus transport itself, merely by substituting declining oil and natural
gas supplies by biofuels. Massive water demand should be anticipated in
consequence of expanding biofuel production in other countries too. For
example, in India and in the western USA, water tables are falling. As
already noted, agriculture in the US mid-West is maintained by draining
"fossil water" from the Ogallala aquifer, which underlies eight US states.
Once it 1s used up, this supply of water cannot be replenished. It 1s likely
that climate change and the shifting of the temperate regions to the north
may impact further on the American West. In Australia, another major
producer of starch crops, water supplies are also under stress. It has
been reckoned'? that some 5,000—-6000 km?® of water would be needed
to irrigate sufficient crop to supplant the world's petroleum-based fuel
by ethanol generated from corn. We may compare this number with the
entire supply of fresh water available on Earth of 13,500 km® ie. the
crop would require about half of it. Other potential fuel crops, e.g. wheat,
soybeans and rapeseed have an even greater demand for water than does
corn. This is a clear warning and additional expression of the limitations
of crop-based biofuels.

The quantity of water that we use in our daily lives 1s deceptive. For
example, an average Briton is said to use 150 litres of water a day, and
yet the true total rises nearer 3,400 litres per day*’, once the amount of
“embedded water” (hidden water) is included. which is the water used
to grow and produce various products. 65% of the water we use 1s in our
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food, and the quantities of embedded water that are used to provide some
very commonplace items are staggering. For example, it takes 3,000 litres
of water to produce a beefburger, and in Britain some 10 billion burgers
are consumed per year, therefore necessitating the consumption of 30
trillion litres, or 30 km* of water. A tomato has about 13 litres of water
embedded in it; an apple has about 70 litres; a pint of beer about 170
litres; a glass of milk about 200 litres. It takes 27,000 litres of water to
produce one bar of chocolate, 100 litres of water are used to make one
cup of coftfee. It takes 4 litres of water to make one one-litre plastic bottle
of water... that i1s even before the water is put into it. To make a cotton
T-shirt needs 2,000 litres of water, 15,000 litres for either a pair of jeans,
or 1 kg of steak. To make a car takes 400,000 litres*’. The amount of
water used to produce food and goods imported by developed countries is
worsening water shortages in the developing world, and this raises moral
questions, e.g. whether it is appropriate for developed (legacy) nations to
import beans and flowers from water-stressed countries such as Kenya. If
the world's population increases to 8 billion by 2030, 50% more food and
energy will be needed, and the demand on fresh water will rise by 30%.
This not only reflects the rise in population per se, but that more affluent
people eat more food — particularly meat — and the consumer society is
expected to expand within its number.

7. Plant nutrition?!-24

As 1s true of all living organisms, including humans, plants require
essential raw materials to provide both the energy and building blocks
for growth. CO; is absorbed from the air along with water from various
sources, mainly the soil, and together the elements carbon (C), hydrogen
(H) and oxygen (O) are provided. As is discussed subsequently, in addition
to these basic elements, some 16 essential nutrients are also required for
a crop to thrive: three major nutrients, four secondary nutrients and 12
micronutrients?!. During the past half century, there has been a depletion
of the level of micronutrients present in plants and thus available to those
creatures who eat them, including humans. There is a sanguine quote??
from Prince Charles, who runs an organic farm on his Highgrove Estate
in Gloucestershire:

"The New Scientist recently reported alarming research results from
a study of the long term effects of the so-called 'Green Revolution' in
South Asia. New plant varieties fed with high levels of artificial fertiliser
have dramatically increased food production, to no-one's surprise. But it
now becomes clear that those intensively grown crops are nutritionally
deficient. They lack vital trace elements and minerals, particularly iron
and zinc. This deficiency has been passed on through the food to such an
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extent that an 10 loss of 10 points has been observed in a whole generation
of children who have a diet based largely on crops grown in this way."”

Potentially, this is very a serious matter, and I note that Dr Elaine Ingham,
of the Rodale Institute, claims that the nutrient values of foods are lower
by a factor of 10 than those grown in the 1920s?*. She attributes®® the
obesity epidemic in the USA, and more widely the western world, to a
craving of human bodies for essential nutrients, needing to consume more
(micro-) nutritionally-deficient food in order to get them, but ingesting
more calories in the process. Other factors are probably important too,
including societal changes, the wide availability of cheap food rich
in sugar and fat, and a modern tendency to “graze”, thus continually
consuming calories.

As plants grow, they remove these essential elements to a varying degree
from the soil, and rainwater leaches out more, so from time to time they
need to be replenished. In conventional farming/gardening, this is usually
done by adding artificial fertilisers. In permaculture systems, plants die
and rot-down and the nutrients are returned to the soil as part of the natural
recycling process. The availability of nutrients and their uptake by plants
is assisted by mycorrizal fungi (Figure 6) which are found in the rootballs
of most plants. The three major nutrients are nitrogen (N), phosphorus (P)
and potassium (K). Nitrogen is required for healthy stems and leaves, and
is an essential component of the amino acids which form the proteins, and
of the chlorophyll molecules that harvest light to drive photosynthesis.
[t is normally taken up into plants in the form of nitrate (NO3") and to a
lesser degree as ammonium ions (NH4"). Nitrates are easily leached from
soil by rainfall during the winter, but in spring, when the soil warms,
nitrogen is extracted from the air and converted to nitrate by nitrogen-
fixing bacteria. When the soil is waterlogged, denitrification by anaerobic
bacteria occurs. For this reason, plants grow better in well drained soil
where air can percolate through it. Earthworms play a vital role too, by
burrowing through and processing :
soil. This increases the availability
of soil nutrients and creates drainage
channels and spaces for root-systems
to grow into.

Phosphorus 1s taken up as
orthophosphate ions (H2PO47), and
is a critical component of the nucleic
acids, DNA and RNA. The ATP-
ADP energy-transfer process within
plant cells requires phosphorus. The

Figure 6 Root-tip mycelia of the
“Amanita” type. Source:  hup.//

: e biomedcentral.com/1471-2105/6/178.
element is moved around within the ,.4i Thergothon
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plant, being recycled from older parts to points of new growth. The CO,,
released during respiration, reacts with water to produce carbonic acid
and this assists the uptake of PO4*~ by plant roots. A critical factor in the
mobilisation of phosphorus in soil is the conversion of PO4*" to more
soluble protonated forms, HPO4°~ and H>PO4 ", which depends on the
availability of protons. Thus, the presence of carbonic and other acids,
can solubilise phosphate from insoluble forms, e.g. in combination with
Ca?*, Mg?, AI*, Fe?*?" and with other metal cations. The secondary
root-system provided by mycorrizal fungi greatly extends the reach of the
primary roots and more effectively removes the phosphate anions from
the insoluble soil salts. Particular types of both bacteria and fungi are
known that can solubilise phosphate, and there is evidence for a symbiotic
relationship between endomycorrhizal fungi and phosphate-solubilising
bacteria — the phosphate must be absorbed rapidly, before it is reconverted
to an insoluble form. If endomycorrhizal fungi are in the vicinity, some of
this phosphorus 1s absorbed and delivered to the host plants. Moreover, the
bacteria may travel along with the fungal hyphae in search of phosphates,
and possibly the endomycorrhizal fungi are able to stimulate the plant to
create more exudates (messenger molecules) to attract more solubilising
bacteria. Potassium is not an essential building block of plants, but plays
a central role in protein synthesis and in maintaining the balance of water.
[t also makes plants winter hardy and improves their resistance to disease.
Taken up as K' ions, the ratio of N to K has an important effect on plant
growth, the 1deal being N:K = 1 for most crops and 2:3 for root crops
and legumes. Magnesium (Mg**) ions compete with K* for uptake, but,
so long as the K:Mg ratio 1s about 3:1 or 4:1, there is no problem. The
four secondary nutrients are magnesium, calcium, sulfur and silicon.
Magnesium, as Mg?* ions, is the key metal element in chlorophyll, where
it forms the centre of the molecule and its light-absorbing apparatus. It is
also involved in the production of the cellular energy-transfer molecule
ATP. Calcium, in the form of Ca*" ions, is required for the healthy growth
of new stems as it is used to give cell walls their strength. Sulfur is taken
up as sulfate ions (SO4%"). and is an essential constituent of all proteins,
including enzymes. Legumes have higher requirements for S than most
other plants do. Silicon strengthens cell-walls in plants.

As the name implies, smaller amounts of the 12 micronutrients are
required, but they, nonetheless, cannot be ignored for healthy plant growth,
and are usually present sufficiently in most soils. These are sodium, as Na*
ions; nickel, as Ni?* ions; cobalt, as Co?* ions; aluminium, as AI** ions:
boron, as H,BO3™ ions; chlorine, as C1™ 1ons; copper, as Cu®* ions; iron, as
Fe®* ions; manganese, as Mn®* ions; molybdenum, as molybdate (MoQO4>")
ions; selenium, as selenate (SeQ4” ") 1ons: and zinc, as Zn?>" ions. Artificial
fertilisers are manufactured using fossil fuels and have been responsible
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for massive increases in the yield of crops achieved in the last century :
"the Green Revolution" (Section 20). There are estimates that the world
crop yield could fall by about 75% if we stopped using them. Accordingly,
it is argued in some quarters that feeding the world's population, without
modern farming methods and its inputs of energy and fertilisers, would
require much more land than is available. Others, however, including
many aficionados of permaculture, dispute this, and argue that 1f the soil
is brought back to its natural state there will be plenty of food for all,
albeit not the cereal-based diet we are now used to. Interestingly, it seems
that most of us in the UK are deficient in selenium?® because, for the
past 30 years, we have eaten bread made from European wheat rather
than from wheat imported from Canada and the USA. The problem 1s the
different soil. which on this side of the Atlantic 1s low in selenium, but 1s
rich in the element in North America and Canada. Apparently, selenium
levels can be restored to soil by adding selenium-enriched fertiliser, but
this is part of the energy intensive process that we are seeking to avoid, in
preparation for declining oil and gas supplies. On a personal basis, eating
a daily handful of Brazil nuts maintains healthy selenium levels, but since
these are grown and imported, by means of gas and oil, this is not a long-
term solution. If we convert to permaculture and regenerative agriculture
in general, we will need to change our diet to one with little cereal and
provide more of it from nuts, fruits and vegetables, and from animals
whose grazing helps to till and nourish the land naturally on open plains.
Another good source of selenium is garlic, providing it is not cooked for
too long which denatures the compounds that contain it.

8. Glomalin — enduring carbon glue

The name Glomalin®® derives from Glomalis, an order of common
root-dwelling fungi such as Mycorrhizae that colonise the root systems
of plants, (Section 10) and was discovered only as recently as 1996.
Glomalin itself is a glue-like protein which builds a carbon-rich sheath
around the fungal hyphae (thread-like tendrils) that grow out from the
fungus to form a secondary root system. Glomalin contains 30-40% of
its weight of carbon, and it is thought this might account for up to one
quarter of all the carbon that is contained in fertile soils. Glomalin 1s also
a highly resistant material, and can survive decomposition in soils for
anywhere in the range 7-42 years, thus making it potentially significant
to carbon storage by soils. Glomalin also helps to glue together soil
aggregates of other organic (humus) and mineral components, and it 1s
believed to help in the formation of humus — a complex process called
humification. Glomalin gives the soil "tilth", the discrete texture that
allows experienced farmers and gardeners to "know" good soil just by
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feeling its smooth granules. It is thought that glomalin may also make the
hyphae sufficiently rigid they can span the air-spaces between particles of
soil. It is believed that hyphae have a lifespan of days to weeks, but the
much greater longevity of glomalin suggests that the current technique
of weighing hyphae samples to estimate fungal carbon storage may
undervalue grossly the amount of carbon stored in the soil. Sara Wright,
the discoverer of glomalin, and her colleagues discovered that glomalin
makes a far greater contribution of nitrogen and carbon to the soil than is
made by hyphae or other soil microbes?.

Dr Christine Jones, who is an independent scientist based in Australia,
proposes that changes in farming methods to those of "regenerative
agriculture" are necessary for the full carbon-capture potential of soil to be
realised, particularly for Australian soils. She is promoting "liquid carbon
pathways". in which plants pump stable carbon-rich compounds into the
soil?’, as part of a symbiosis with root fungi, which, in return, syphon
nutrients and water from the soil back to the plant via their extensive
hyphae systems. The relationship between the glomalin and the humus is
also symbiotic, since the glomalin contributes to the humification process
and the humus increases the overall fertility of the soil. Humus is an
important material in the retention of water in soil. Dr Jones thinks that
the assistance of the humification process by glomalin is a reason that
the accumulation of carbon in some Australian soils is far higher than
had previously been thought possible. However, she stresses that farmers
may need to rethink their farming practices, to derive full benefits from
the process. She is of the opinion that the answer lies in establishing low-
input "year-long green farming" methods which maintain green, growing
plants throughout much of the year’

Dr David Johnson who is a specialist on mycorrhizal fungi, at Aberdeen
University has said*’:

"Many conventionally grown crops have little or no dependency on
mycorrhizal fungi because they receive lots of inorganic fertilisers that
don't warrant the carbon ‘cost’ of forming the relationship with the fungi,
Jor want of a better expression. So, moving to low-input farming systems
is likely to encourage plants to form mycorrhizas and therefore increase
carbon allocation to this group of organisms."

It 1s also known that long fallow periods, heavy tilling of soil, and a
number of agricultural chemicals (including nitrogen fertilisers) can
damage the fungi and other forms of soil life. Now, there is a corollary
line of thinking from the USA, which proposes that it is soil-depth that
1s critical to whether or not no-till methods actually result in carbon
storage. In essence, no-till involves leaving crop residue on the surface of
the soil, rather than ploughing it underneath. This saves on labour, wear

www.scienceprogress.co.uk Regenerative agriculture and permaculture 377



and tear on machinery, soil erosion, fossil fuels and artificial (o1l and gas
derived) fertilisers and pesticides, makes the soil more productive (brings
it "back to life"), improves habitats for wildlife and overall biodiversity
and conserves water in the soil. If the carbon input (storage) exceeds the
carbon output (lost), then the method can be considered successful, or
the converse if more is lost than gained. Results from no-till studies are
found to vary from region to region, and for example, 40% of Ohio's
cropland is good for carbon storage. Where no-till (practised on a mere
6% of the world's cropland overall, and most of that in the USA and
Canada, Australia and South America - Brazil, Argentina and Chile) does
not prove effective, other carbon-capture methods can be applied instead;
e.g. residue mulching, cover crops, complex crop rotations, mixed
farming systems, agroforestry and biochar . A survey has been carried
out of no-till land in Ohio, Michigan, Indiana, Pennsylvania, Kentucky,
West Virginia and Maryland by Rattan Lal and his colleagues at the Ohio
State's Ohio Agricultural Research and Development Centre, where he 1s
director of the Carbon Capture Management and Sequestration Centre.
According to Lal?®:

"Basically, those soils that are well-drained, are silt/silt-loam in texture,
warm quickly and have some sloping characteristics prone to erosion are
excellent candidates for no-till. Clay soils or other heavy soils that drain
poorly are prone to compaction and are in areas where the ground stays
cooler may not always encourage carbon storage through no-till."”

Lal concludes that, at a depth of just 8 inches, in general, no-till fields will
store carbon better than ploughed fields. However, at depths of 12 inches
and more, the situation may be reversed. It is necessary to “know your
soil”, as farmers traditionally do. "Soil" is part of a complex interactive
system, and there is no simple and single strategy for all cases. The means
must be tailored to achieve the optimum outcome on whatever land 1s
being worked. The real solution is likely to be found in the sum of many
smaller “solutions”.

9. Actual regenerative agriculture!s-2

Agriculture needs to be made sustainable, and yet the term “sustainable
agriculture”, in its current industrialised context, might be considered an
oxymoron. Modern farming practices are based almost entirely on fossil
fuels and natural gas. Liquid fuels, refined from crude oil, are used to run
tractors and other kinds of farm machinery, while methane, from natural
gas, is cracked in a thermal catalytic process, called “steam reforming”,
to make hydrogen, which is combined with nitrogen to form ammonia,
using the Haber-Bosch process. Haber received the 1918 Nobel Prize
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