Golden Rice: Introduce Provitamin A in Rice Endosperm

Yingying Wu

Vitamin A deficiency

Source: WTO

•Vitamin A deficiency can result in permanent blindness and increase the incidence and severity of infectious diseases.

•It is estimated that a quarter of a million children go blind each year because of nutritional deficiency in southern Asia.

•Success may be got by using recombinant technologies to produce provitamin A in a major staple food, rice. No rice cultivars produce provitamin A in endosperm, which is the edible part of the grain.

Co-creator of Golden Rice: Professor Ingo Potrykus

What is Golden Rice?

- 'Golden Rice' is a kind of rice engineered to produce beta-carotene (provitamin A).
- The carotenoids produced in the endosperm of the gains give rise to a characteristic yellow color.

Common white rice and golden rice

Carotenoid Biosynthesis in Golden Rice

The synthesis of betacarotene requires plant enzymes: phytoene synthase; phytoene desaturase and zetacarotene desaturase and lycopene cyclase;

The Original Golden Rice

Structures of the T-DNA region of pB19hpc used in single transformations

pZPsC and pZLcyH used in co-transformations. LB, left border; RB, right border; "!", polyadenylation signals; p, promoters; psy, phytoene synthase; crtl, bacterial phytoene desaturase; lcy, lycopene beta-cyclase; tp, transit peptide.

Phenotypes of transgenic rice seeds. Bar, 1 cm. (A)
Panel 1, untransformed control; panels 2 through 4, pB19hpc single transformants lines h11a (panel 2), h15b (panel 3), h6 (panel 4). (B) pZPsC/ pZLcyH co-transformants lines z5 (panel 1), z11b (panel 2), z4a (panel 3), z18 (panel 4). •Precultured immature rice embryos were inoculated with *Agrobacterium* LBA4404;

•Golden rice was created by transforming rice with two betacarotene biosynthesis genes:

•psy (phytoene synthase) from daffodil (Narcissus pseudonarcissus)

•*crt1* from the soil bacterium *Erwinia uredovora*

•The insertion of a *lyc* (lycopene cyclase) gene was thought to be needed but further research showed that it is already being produced in wild type rice endosperm.

Under greenhouse conditions it produces 1.6 ug/g carotenoids.

Golden Rice 2

Phytoene synthase is the limiting step for carotenoid biosynthesis and is

a major regulatory step;

There was no shortage of the precursor geranyl geranyl diphosphate and no problem with product sequestration;

The Golden Rice 2 reported has up to 37 ug/g carotenoid of which 31 ug/g is beta-carotene. Golden Rice 2 produces 23 times more carotenoid then golden rice;

The Golden Rice 2 combines the phytoene synthase gene from maize with *crt1* from the original golden rice.

Expression of a *psy* transgene increases the carotenoid content of maize callus.

Individual maize calli cotransformed with the plasmid containing the maize *psy* (right, Zm *psy*) and an empty vector (EV) control (left).

Histogram shows the total colored carotenoid content of maize calli transformed with a given *psy* gene (from Arabidopsis thaliana (At), Daucus carota (Dc), Narcissus pseudonarcissus (Np), Zea mays (Zm), Capsicum annuum (Ca), Oryza sativa (Os) or Lycopersicon esculentum (Le)). Data shown represents the 75th percentile for each population of transgenic calli expressed as a percentage of the median empty vector (EV) control value. The second y-axis (diamonds) shows the percentage of calli from each population with a carotenoid content more than fivefold that of the EV median.

• Carotenoid enhancement of the rice endosperm by transformation with *psy* and *crtl*. Photograph of polished wild-type and transgenic rice grains containing the T-DNA with the daffodil *psy* (Np) or maize *psy* (Zm) showing altered color due to carotenoid accumulation.

 The total carotenoid content of T₁ rice seed containing a T-DNA with the psy gene from either rice, maize, pepper, tomato or daffodil from the five events with the highest carotenoid content for each T-DNA

Table 1 Carotenoid content and composition of transgenic rice endosperm								
			Colored carotenoid composition, % of total in					
	Event identity (number of	Total carotenoid content in T	I <u>T₁ (T₂^a) seed</u>					
psy	analyzed)	(T_2^{a}) seed $(\mu,g/g dry weight)$) B-	α-	<u>β</u> -	Zeaxanthir	1. utala	
Source			carotenecarotenecryptoxanthin					
Maize	11059-5 (6)	14.5 (14.4)	89.0 (83.3)	9.7 (10.4)	0.6 (2.6)	0.3 (1.9)	0.4 (1.7)	
	11059-11 (6)	9.8 (14.2)	85.8 (84.7)	10.4 (9.5)	1.7 (2.9)	1.0 (1.6)	1.0 (1.3)	
	11059-14 (5)	13.7 (16.0)	87.1 (86.0)	11.0 (9.3)	1.2 (2.3)	0.3 (1.3)	0.4 (1.1)	
	11059-16 (6)	10.1 (11.8)	85.6 (85.8)	10.5 (8.9)	1.7 (2.7)	1.2 (1.5)	1.0 (1.1)	
	11059-17 (6)	11.5 (16.5)	86.7 (85.0)	10.4 (9.1)	1.5 (2.6)	0.9 (1.8)	0.5 (1.5)	
Pepper	7651-3 (5)	2.9 (2.1)	80.5 (72.7)	9.8 (11.2)	2.7 (4.9)	3.6 (4.9)	3.5 (6.2)	
	7651-19 (5)	4.7 (5.2)	77.9 (76.6)	12.4 (11.9)	2.6 (4.5)	4.0 (4.9)	3.1 (2.1)	
	7651-21 (5)	4.2 (4.9)	77.8 (78.8)	12.6 (9.9)	2.6 (5.0)	4.1 (4.0)	2.8 (2.2)	
Tomato	7650-4 (5)	1.1 (2.2)	64.3 (65.9)	15.5 (9.9)	3.7 (4.7)	5.1 (9.0)	11.4 (10.6)	
	7650-8 (4)	0.9 (1.3)	61.5 (58.9)	15.7 (9.8)	4.8 (6.8)	5.6 (12.3)	12.4 (12.2)	
	7650-11 (2)	1.2 (2.0)	68.0 (68.4)	13.8 (11.9)	4.9 (6.7)	4.7 (6.8)	8.7 (6.2)	
Rice	11586-1	13.1	81.2	13.6	1.7	1.2	2.2	
	11586-12	18.4	85.0	12.2	1.0	0.7	1.0	
	11586-14	11.6	86.4	9.6	1.9	1.0	1.0	
	11586-20	12.5	78.4	10.1	2.2	1.3	1.9	
Daffodi	17609-10	1 2	68.5	11.6	6.2	6.8	7.0	
	7609-16	0.8	58.5	10.8	4.6	9.4	15.0	
	7609-21	0.8	65.8	10.5	4.7	7.8	10.4	

 a The number given represents the average carotenoid content of the homozygous T₂ grain analyzed.

Conclusion

• 'Golden Rice' is a kind of rice engineered to produce beta-carotene (provitamin A).

• Golden rice was created by transforming rice with two beta-carotene biosynthesis genes: *psy* (phytoene synthase) from daffodil (*Narcissus pseudonarcissus*) *crt1* from the soil bacterium *Erwinia uredovora*.

• The Golden Rice 2 combines the phytoene synthase gene from maize with *crt1* from the original golden rice.

Reference

Ye et al. 2000. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. *Science 287 (5451): 303-305 PMID 10634784*

Paine et al. 2005. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. *Nature Biotechnology doi:10.1038/nbt1082*