Antinociceptive properties of *Trigonella foenumgreacum* seeds extracts

A. Laroubi¹*, L. Farouk¹, R. Aboufatima, A. Benharref², A. Bagri³ and A. Chait¹

1Laboratory of Animal Physiology unit of Ecophysiology, Cadi-Ayyad University, Faculty of Science Semlalia Marrakech, Morocco.
2Chemistry Laboratory of the Natural Substances and the Heterocycles, Cadi-Ayyad University, Faculty of Science Semlalia Marrakech, Morocco.
3Laboratory of Biochemistry and Neurosciences, Faculty of Sciences and Technology, University Hassan 1er, B.P.: 577, Settat 26000, Morocco.

Accepted 23 December, 2008

*Corresponding authors. E-mail : lar_amine@yahoo.fr.
Fax: +21224437412.

Non-standard Abbreviations

ASA, acetylsalicylic acid; Tfga, aqueous extract; Tfgb, butanolic extract; COX I, cyclooxygenase I; COX II, cyclooxygenase II; Tfgd, dichloromethane extract; Tfge, ethyl acetate extract; Tfgh, hexane extract; I.P, intraperitoneal; I.C.V, intra-cerebroventricular; NSAIDs, nonsteroidal anti-inflammatory drugs; Tfg, *Trigonella foenum-graecum*; s.c, subcutaneously; S.S., saline solution; SN, nervous system.

INTRODUCTION

Trigonella foenum-graecum (Leguminosae), known in Morocco as “Helba”, is one of the oldest medicinal plants, originating in India and Northern Africa. It is extensively cultivated in most regions of the world (Bellakhdar, 1997). The applications of Tfg were documented in ancient Egypt, where it was used in incense and to embalm mummies (Basch et al., 2003). In Chinese traditional medicine, the seeds of this plant have been prescribed as a tonic for stomach disorders, and the whole aerial part of the plant is used as a folk medicine for the treatment of renal diseases in the Northern-east region of China and Morocco (Laroubi et al., 2007). The seeds of Tfg which are commonly used as a condiment in Moroccan eating are reported to have nutritive properties and to stimulate digestive process. Its leaves are used internally and externally to reduce swelling, prevent falling of hair and in the treatment of burns (Bellakhdar, 1997). Tfg is known to have several pharmacological effects such as hypoglycaemia (Abdel-Barry et al., 2000), hypocholesterolemia (Kholsa et al., 1995), antioxidation (Dixit et al., 2005), and laxation (Dirk et al., 1999).

Most protocols for the control of pain rely on using nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics. However, both of them produce several side effects. NSAIDs produce gastrointestinal disturbances and ulceration, renal damage and hypersensitivity reac-
tion resulting from a non selective inhibition of cyclooxygenase I (COX I) and cyclooxygenase II (COX II) (Tjolsen et al., 1992; Vane and Botting, 2003). Opioids induce nausea, constipation, confusion, respiratory depression, and possibly dependence (Dray and Urban, 1996). Therefore, searching for less harmful compounds is still an out-standing domain of investigation. Some research focused on plant medicines used in traditional medicine as they could be good sources for natural analgesic agents. There are several reports concerning the antino-ciceptive and anti-inflammatory effects of Tfg seeds in Moroccan traditional medicine (Bellakhdar, 1997). This plant is known to contain alkaloids, saponins, flavo-noids, Sali-cylate, and nicotinic acid (Saxena and Sha-lem, 2004; Yingmei et al., 2001). The present study was designed to investigate if the Tfg seeds extract has antinociceptive effect.

MATERIAL AND METHODS

Animals

Male Swiss mice weighing 20 - 30 g and male Sprague-Dawley rats weighing 180 - 280 g were used. The animals were kept in a room maintained on a 12h/12h light/dark cycle, on 25°C constant temperature and on 55% relative humidity. They had free access to food and water. Before testing, they were allowed to adapt in the test room for at least 12 h. Each rat was used in a single experiment. All experiments were carried out in accordance with the European community guidelines (EEC Directive of 24 November 1986; 86/609/EEC). All efforts were made to minimise animal suffering and to reduce the number of animals.

Plant materials

T. foenum-graecum seeds were collected in the Chaouia region of Morocco, it was identified and stored by Pr A.Ouhamou in the Herbarium of Faculty of Science Semlalia Marrekech (voucher number 4228).

Preparation of extracts

The seeds were dried and coarsely powdered. A 210 g powder was extracted (24 h) in a Soxhlet apparatus using methanol and concentrated on a rotaevaporator. The methanolic extract (51.71 g) was successively separated with water, hexane, dichloromethane, ethyl acetate and n-butanol according to the method of Shaheen et al. (2000). The extraction has given 18.06 g of aqueous extract (Tfga), 7.51 g of hexane extract (Tfgh), 12.57 g of dichloromethane extract (Tfgd), 4.34 g of ethyl acetate extract (Tfge) and 8.52 g of butanolic extract (Tfgb).

The extracts were prepared just before use. A preliminary experiment was made to check effective doses. Three doses (200, 350 and 500 mg/kg) of each extract were selected for intra-peritoneal (I.P) injections and two doses (50 and 90 µg/3 µl/rat) were selected for intra-cerebro-ventricular (I.C.V) injections. Control animals were treated with saline solution (S.S.)

The dose employed in present research is based on that used in the traditional medicine (Bellakhdar, 1997), and the precedents researches (Laroubi et al., 2007).

Writhing test

The anti-nociceptive effect was evaluated in mice by the writhing test induced by 0.6% acetic acid (0.1 ml/10 g; I.P). Each dose of the extracts was administered 30 min before the acetic acid injection. 5 min after the administration of the acid, the number of writhes and stretching movements (contraction of the abdominal musculature and extension of hind limbs) was counted over a 5 min for a period of 30 min. The strength of the elicited analgesic effect was compared to that of an effective dose of acetylsalicylic acid (ASA, 200 mg/kg) (De Miranda et al., 2001).

Formalin test

Each mouse was placed 5 min before formalin injection in a transparent plastic cage for habituation to the new environment. A dose of 20 µl of 2% formalin was injected subcutaneously (s.c) to the plantar region of its right hind paw. The doses of the extracts and ASA were injected I.P 30 min before the formalin injection. The time spent licking the injected paw was recorded every 5 min using a chronometer. Observations were carried out for 30 min (Tjolsen et al., 1992).

Hot plate test

The heated surface of a hot plate analgesia meter (Ugo Basil,Italy; Socrel DS-37) was maintained at 55 ± 0.2°C. Each animal was placed into a glass cylinder (diameter 20 cm) on the heated surface of the plate. The latency to exhibit noiceptive reaction was determined before and 30, 45 and 60 min after IP injections and also before and 10 and 30 min after ICV injection. Licking of paws and jumping were the parameters evaluated as the thermal reactions. In order to minimise damage to the animal paw the cut-off time for latency of response was taken as 20 s (Shaheen et al., 2000).

Surgical preparation and technique of intra-cerebro-ventricular injection

The rats were anaesthetized with Ketamine (60 to 80 mg/kg, I.P) and were implanted stereotaxically with a cannula that descended into the lateral ventricle (coordinates: 1.3 mm posterior to the Bregma, lateral 1.6 mm from midline, deep 3.2 mm from the dura). The cannula was fixed to the skull by mean of dental cement. Animals were allowed to recover for 7 days during which they were handled daily.

On the day of the experiment, an injection cannula, connected by a polyethylene tube type PE-10 to an inhalation syringe of 10 µl, was introduced into the fixed cannula. A volume of 50 and 90 µg/rat of every extract of Tfg seeds, or S.S were injected into the lateral ventricle (volume of injection: 3 µl) through the injection cannula (0.15 mm inner diameter).

At the end of the experiments, the rats were anaesthetized and perfused intracardially with 0.9 saline followed by a 10% formalin solution. The brain were extracted, fixed in 10% formalin for 2 days, and cut at 80 µm. Localization of the cannulae tips was determined according to the Atlas of Paxinos and Watson (1986).

Phytochemical screening

Phytochemical screening of the tested extracts was performed to detect the eventual presence of different classes of constituents, such as: alkaloids with H2SO4 and Dragendorff’s reagents, flavonoids with the use of Mg and HCl, tannin with FeCl3 solution, anthocyanes with HCl, sterols and/or terpenes with acetic anhy-
Table 1. The effect of IP administration of *T. foenum-graecum* seeds extracts on abdominal constriction test of mice.

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Dose (mg/kg)</th>
<th>Number of abdominal constriction</th>
<th>Inhibition %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>........</td>
<td>80.50 ± 14.74</td>
<td>........</td>
</tr>
<tr>
<td>ASA</td>
<td>200</td>
<td>40.75 ± 10.43***</td>
<td>49.38</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>71.50 ± 17.27</td>
<td>11.18</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>350</td>
<td>59.13 ± 14.66*</td>
<td>26.55</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>52.88 ± 12.56**</td>
<td>34.31</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>74.38 ± 11.58</td>
<td>7.6</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>350</td>
<td>57.75 ± 15.16**</td>
<td>28.26</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>48.13 ± 8.04***</td>
<td>40.21</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>73.12 ± 20.61</td>
<td>9.16</td>
</tr>
<tr>
<td>Hexane</td>
<td>350</td>
<td>76.00 ± 18.75</td>
<td>5.59</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>67.62 ± 9.55</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>76.62 ± 9.66</td>
<td>4.81</td>
</tr>
<tr>
<td>Aqueous</td>
<td>350</td>
<td>69.25 ± 7.92</td>
<td>13.97</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>64.63 ± 9.41*</td>
<td>19.71</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>75.62 ± 14.90</td>
<td>6.05</td>
</tr>
<tr>
<td>Butanolic</td>
<td>350</td>
<td>72.37 ± 13.54</td>
<td>10.09</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>63.75 ± 13.69*</td>
<td>20.81</td>
</tr>
</tbody>
</table>

*Denotes significant difference from the corresponding values obtained from control rats. *P < 0.05; **P < 0.01; ***P < 0.001.

dride and H$_2$SO$_4$, quinones with HCl and ammoniac, and saponin with ability to produce suds (Farouk et al., 2008).

Drugs

Drug solutions were prepared just before the start of the experiments. Intra-peritoneal (I.P) injections were performed using a volume of 10 ml/kg body weight whereas intra cerebro-ventricular (ICV) injections were performed using a volume of 3 µl/rat. Each drug was dissolved in appropriate solvents as follows: Acetic acid (0.6 %) and formalin (2 and 10%) in water, extracts of plant and acetylsalicylic acid in saline solution. The chemicals used in the extractions were: methanol, hexane, dichloromethane, ethyl acetate and butanol.

Statistical analysis

The results were presented as means ± S.E.M and the comparisons between the experimental groups were made using Student's *t*-test and ANOVA. *: P < 0.05; **: P < 0.01; ***: P < 0.001 were considered as indicative of significance. The inhibition percents were calculated by the following formula:

Inhibition percent = (1-Vt/Vc) x 100,

Where Vt and Vc represent the number of writhes or the licking paw time of the treated and control groups respectively.

RESULTS

Tfg seeds extracts, dichloromethane (*Tfgd*) and ethyl acetate (*Tfge*), significantly (p<0.01 for most doses and p<0.001 for 500 mg/kg of *Tfge*) reduced the writhing and the stretching reactions induced by 0.6% acetic acid. As shown in Table 1, there was a dose dependent effect. The percent of reduction were 26.55 and 28.26% for 350 mg/kg, whereas it was 34.31 and 40.21% for 500 mg/kg for *Tfgd* and *Tfge* respectively. The aqueous (*Tfga*) and the butanolic (*Tfgb*) extracts at 500 mg/kg induced a percent of reduction of the writhing response of 19.71 and 20.81% respectively (Table 1). ASA 200 mg/kg was effective in reducing the writhing response by 49.38%.

Intraplantar injection of 2% formalin evoked a characteristic biphasic licking response. The duration of licking for the early phase (0 - 5 min) was 84.25 ± 9.52 s, whereas for the late phase (15 - 30 min) it was 49.98 ± 24.54 (control group, Table 2). The doses of 500 mg/kg *Tfgd* produced a marked reduction of 18.86 and 50.26% of the licking time in the early and late phase, respectively (Table 2) but weaker doses have no significant effect. The *Tfge* inhibited significantly the two phases of the formalin response but higher inhibition (58.48% at 500 mg/kg) was seen in the second phase (Table 2). ASA was significantly more active in the second phase (61.1%; P< 0.01). As shown in Table 2, a pre-treatment with different doses of hexane extract (*Tfgh*) has no significant effect on the duration of licking in both phases.

In the hot-plate test, I.P administration of 500 mg/kg of *Tfgd* or of *Tfga* produced a significant (P<0.05) increase in the latency 45 min after the administration of extract (Figure 1A and E). However, *Tfgd* (200, 350 and 500 mg/kg) and *Tfga* (200, 350 and 500 mg/kg) showed no significant anti-nociceptive effect in this test (Figure 1C...
Table 2. Effects of T. foenum graecum seeds extracts on the nociceptive responses in the formalin test.

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Dose mg/kg</th>
<th>Licking response (Sec)</th>
<th>Inhibition %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Early phase</td>
<td>Late phase</td>
</tr>
<tr>
<td>Control</td>
<td>...</td>
<td>84.25 ± 9.52</td>
<td>49.98 ± 24.54</td>
</tr>
<tr>
<td>ASA</td>
<td>200</td>
<td>75.28 ± 7.87*</td>
<td>19.44 ± 12.03**</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>81.38 ± 12.90</td>
<td>40.89 ± 25.10</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>350</td>
<td>78.34 ± 9.00</td>
<td>28.47 ± 14.19*</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>68.36 ± 14.89*</td>
<td>24.86 ± 10.45*</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>87.50 ± 8.93</td>
<td>46.14 ± 25.40</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>350</td>
<td>73.16 ± 7.38*</td>
<td>29.00 ± 12.71*</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>71.53 ± 7.99**</td>
<td>20.75 ± 14.19**</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>86.32 ± 7.37</td>
<td>42.89 ± 15.58</td>
</tr>
<tr>
<td>Hexane</td>
<td>350</td>
<td>81.96 ± 5.76</td>
<td>46.93 ± 21.91</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>83.63 ± 5.11</td>
<td>45.00 ± 21.91</td>
</tr>
</tbody>
</table>

*denote the significance levels as compared with control groups (Saline solution).

The analgesic effects observed were dose dependants which indicate that the compounds presents in the extracts exert their effects by activation of specific receptors. Tfg seeds contain saponins, alkaloids and flavonoids that have been shown to possess analgesic activity in other plant extracts (Golshani et al., 2004). The different degree of effectiveness between the extracts may probably depend on their compounds concentrations and on some physical factors such as the polarity which is related to the nature of the solvent used. Besides, the effectiveness may also depend on the nature of the receptors that could be activated. Some hypothesis on this will be suggested as the results obtained in the three pain models are discussed.

Assessment of the abdominal constrictions elicited by acetic acid revealed that the extract of Tfg seeds, when given IP, produces significant dose-related analgesic effect. It has been suggested that acetic acid acts by releasing endogenous mediators that stimulate the nociceptive neurons (Collier et al., 1968). It was postulated that the abdominal constriction response is induced by resident peritoneal macrophages.
Figure 1. The effect of dichloromethane (A), ethyl acetate (B), hexane (C), aqueous (D) and butanolic (E) extracts of *T. foenum graecum* seeds on the hot plate test. Each column and vertical bar represents mean ± S.E.M. of six to eight mice. The extracts were administered intraperitoneally at doses of 200, 350 and 500 mg/kg.

**Denotes significant differences (P < 0.05) from the corresponding values from control.

Figure 2. The effect of dichloromethane (A), ethyl acetate (B), hexane (C), aqueous (D) and butanolic (E) extracts of *T. foenum graecum* seeds on the hot plate test. Each column and vertical bar represents mean ± S.E.M. of six rats. The extracts were administered intra-cerebro-ventricularly at doses of 50 and 90 μg/3μl.

**Denotes significant differences (P < 0.05) from the corresponding values from control.
and mast cells, as shown by Reibero et al. (2000), or by both mechanisms.

In our experiment using the formalin test, the ethyl acetate and dichloromethane extracts suppressed both phases suggesting that both extracts contain molecular products active on the SN centrally and peripherally. Indeed, in this test there is a distinctive biphasic nociceptive response termed early and late phases (Hunskaar and Hole, 1987). Drugs that act primarily on the central nervous system inhibit both phases equally, whereas peripherally acting drugs inhibit the late phase. The early phase is probably a direct result of stimulation of nociceptors in the paw. The late phase is due to the release of serotonin, histamine, bradykinin and prostaglandins during the inflammatory process (Tjolsen et al., 1992). But also could be due, to a lesser degree, to the activation of central nociceptive neurons (Tjolsen et al., 1992; Parvizpur et al., 2006). The Tfg extracts anti-nociceptive and anti-inflammatory properties reported in our study resemble the NSAIDs properties, specifically the salicylates and their derivatives.

In the hot plate test, only the ethyl acetate extract significantly increase the latency. It could be suggested that ethyl acetate Tfg extract contains products that may exert analgesic effect through activation of central mechanisms. Indeed, the hot-plate test is commonly used to assess opioidergic analgesic mechanisms (Araujo et al., 2005) and narcotic analgesia (Asongale et al., 2004). Our hypothesis is further confirmed by the observed analgesic effect elicited by ICV injections of this extract. The nature of the neurochemical substrate of such effect is not known but it could be suggested that probably an activation of the opioidergic system may occur. However, pharmacological experiment using naltrexone to reverse such analgesic effects are needed to support this assumption (Parvizpur et al., 2004). The remaining Tfg extracts were ineffective in the hot plate test suggesting that the compounds they contain has no central action. They have a similar profile as ASA which exerted little or no influence on the response in tests with phasic stimuli such as the hot-plate and early phase of formalin test. This suggests that the compounds of these extracts may have similar properties as NSAIDs as it was suggested from the results obtained in the formalin test.

In conclusion, our results support the traditional use of Tfg in some painful conditions. However, further investigations are needed to elucidate the mechanisms related to the actions of the Tfg seeds extracts. As a next step, studies in our laboratory are currently under way to isolate and characterize the active principles of each extracts.

ACKNOWLEDGEMENT

We gratefully acknowledge Mr. Regragui Abderazzak for giving us animals.

REFERENCES

