Regular Article

Adansonia digitata (Baobab) fruit pulp as substrate for Bacillus Endoglucanase production

1Ibrahim*, A.D., 1Mukhtar, Sa’adat I., 2Ibrahim, M.N., 3Oke, M. A. and 3Ajijolakewu, A.K

1Dept. of Microbiology, Faculty of Science, Usmanu Danfodiyo University, Sokoto, Nigeria
2Asad Pharmaceuticals Ltd, Plot 150 Independence Road, Kano, Nigeria
3Department of Microbiology, Faculty of Science, University OF Ilorin, Nigeria
*Corresponding author email: aid4life@yahoo.com

In recent years the cost of carbon source for microbial enzymes production has necessitated a drive towards cheaper and sustainable sources. In this study, Adansonia digitata (Baobab) fruit pulp was utilized as substrate for Bacillus endoglucanase production and the effects of varying temperature, pH, incubation period, inoculum size and substrate concentration on endoglucanase production were investigated. The cellulolytic activity of the isolates was screened based on halo of clearance on Carboxymethyl cellulose agar, while the endoglucanase activity of the selected Bacillus species was monitored using 3, 5-dinitrosalicylic acid (DNS) method. Out of 4 Bacillus species screened, only Bacillus amyloliquefaciens and Bacillus subtilis showed cellulolytic activity with B. amyloliquefaciens having the highest activity of 20.0 mm. Therefore B. amyloliquefaciens was selected for studies on the effect of fermentation conditions on endoglucanase activity. The maximum yield of endoglucanase was produced at temperature of 55 °C, pH 2, 1% inoculum size and 1% substrate concentration for 4 days incubation period. The results of this study suggest that Adansonia digitata fruit pulp can be harnessed at low concentration for large scale endoglucanase production by Bacillus, and the endoglucanase produced by B. amyloliquefaciens could be a thermostable enzyme with novel characteristics suitable for application in biofuel and textile industry.

Keywords: Adansonia digitata, Bacillus amyloliquefaciens, cellulase, Endoglucanase, fermentation
process for the depolymerization of cellulose requires three types of enzymes: Endoglucanase (EG or C X), hydrolyses internal β-1,4 glucan chain of cellulose at random, primarily within amorphous regions and displays low hydrolytic activity towards crystalline cellulose (Walsh, 2002; Grassin and Fauquembergue, 1996); Exoglucanase i.e., exoacting cellobiohydrolases (CBH), removes cellobiose from the non-reducing end of cello-oligosaccharide and of crystalline, amorphous and acid or alkali treated cellulose; alpha-Cellobiase or β-glucosidase (BGL), hydrolyses cellobiose to yield two molecules of glucose which completes the depolymerization of cellulose (Himmel et al., 1994).

Cellulases have enormous potential in industrial applications. Glucose produced from cellulosic substrate are further used as substrate for subsequent fermentation or other processes which could yield valuable end products such as ethanol, butanol, methane, amino acid, single-cell protein etc., (Walsh, 2002). Cellulases have been used for several years in food processing, feed preparation, waste-water treatment, detergent formulation, textile production and in other areas. Additional potential applications include the production of wine, beer and fruit juice. Nevertheless, all these uses are of rather small magnitude compared with cellulase requirements for bioconversion of lignocellulosic biomass to fuel ethanol (Philippidis, 1994).

Cellulases were initially investigated several decades back for the bioconversion of biomass. With the shortage of fossil fuels and the rising need to find alternative sources of renewable energy and fuels, there is a renewed interest in the bioconversion of lignocellulosic biomass to fuel ethanol (Philippidis, 1994).

Materials and Methods

Sample collection
One hundred grams of Adansonia digitata fruit pulp was purchased in Mabera area within Sokoto metropolis, Nigeria. The Bacillus species were previously isolated from fadama soil within Usmanu Danfodiyo University Permanent site using standard procedures as described by Oyeleke and Manga. (2008) and identified following series of biochemical test as described by Holt et al. (1994).

Preparation of Inoculum
The inoculum was prepared as described by Ibrahim et al. (2011b). It was prepared by suspending the young active colonies from the culture into sterile distilled water, by serial dilution and plating, the number of viable colonies in the inoculum was found to be 2.2 x 10^6 CFU/ml was used as inoculum for the subsequent studies.

Screening for cellulase production
Carboxyl methyl Cellulose (CMC) agar plates were prepared by enriching nutrient agar with 1% CMC using the method of Maki et al. (2011). The isolate was spread on the solidified CMC agar and was incubated for 48 hrs to express cellulose depolymerization
through cellulase production into its surrounding medium. To visualize the hydrolysis zone, the plates were flooded with an aqueous solution of 0.1% Congo red for 15 min and washed with 1 M NaCl (Maki et al., 2011). To indicate the cellulase activity of the organisms, diameters of clear zone around colonies on CMC agar were measured.

Production of cellulase enzymes
The two bacteria species were separately grown and tested for production of cellulase in submerged culture in a salt medium, containing 0.01% MgSO₄, 0.1% (NH₄)₂SO₄, 0.2% KH₂PO₄, 0.7% K₂HPO₄, 0.05% Na-citrate, supplemented with 0.1% Adansonia digitata fruit pulp as carbon source. The cultures were grown at 37°C for 24 h. Culture broth was sampled at different times during growth to determine cellulase production by measurement of absorbance at 540 nm.

Effect of fermentation conditions
The effects of fermentation conditions such as pH, temperature, inoculum size, incubation period and substrate concentration were studied as described by (Bertrand et al. 2004). Initial pH of the medium was set at 2.0, 3.0, 4.0, 5.0, and 6.0 using 1 N HCl or 1 N NaOH (at constant inoculum size of 1%, temperature 55°C, incubation period of 3 days and 1% substrate concentration). Based on the results of this experiment a pH of 2.0 was adopted in subsequent experiments. The inoculum size of 1, 2, 3, 4 and 5%; temperatures 35°C, 45°C, 55°C, and 65°C, incubation periods of 1, 2, 3, 4 and 5 days and substrate concentration (Adansonia digitata fruit pulp) of 1, 2, 3, 4 and 5% were studied using the same procedures. At certain intervals the fermentation medium was agitated. Each assay was carried out in duplicate and the mean of the duplicate analysis was reported in each figure.

Endoglucanase assay:
Endoglucanase activity was determined by the method of Mandels et al., (1976). Endoglucanase activity was measured by monitoring the amount of reducing sugar liberated from carboxyl methylcellulose (CMC). Endoglucanase activity was assayed by adding 1ml of enzyme (fermented broth supernatant) to 0.5 ml of 1% (w/v) CMC as a substrate and incubated for 30 min at 37°C in a water bath. The reaction was stopped by adding 1 ml of 3, 5 dinitrosalicylic acid, followed by boiling for 10 min. The final volume was made to 5 ml with distilled water and the absorbance due to the produced 3-amino, 5-nitrosalicyclic acid was measured at 540 nm with a spectrophotometer (Jenway 6100). One unit of enzyme activity was expressed as the amount of enzyme required to release one micromole of reducing sugar / mL under the standard assay condition.

Results
The cellolulytic activity of the Bacillus species based on the zone of clearance on carboxymethylcellulose (CMC) agar was measured and presented in Table 1. Bacillus amyloliquefaciens had the highest cellolulytic activity of 20.0 mm, followed by Bacillus subtilis with zone of 18.0 mm while Bacillus brevis and Bacillus firmus had no zone of clearance.

Bacillus amyloliquefaciens which showed the highest zone of clearance was selected for further study on the effect of temperature on the activity of endoglucanase produced the result presented in Figure 1. The result shows that the cellulase yield was maximum at 55°C with a reducing sugar concentration of 0.45 mg/ml and showed slight reduction in the activity at 65°C with reducing sugar concentration of 0.41mg.

The effect of pH on the endoglucanase activity of Bacillus amyloliquefaciens was examined at various pH values ranging from 2 to 6 as shown in Figure 2. The maximum activity was displayed at pH 2 with a reducing sugar concentration of 0.20 mg/ml and the least activity was displaced at the pH
of 5 with a reducing sugar activity of 0.14mg/ml.

Figure 3 shows a gradual increase in endoglucanase activity through 24, 48, 72 and maximum at 96 hours with reducing sugar concentration of 0.43mg/ml.

The endo-glucanase activity showed a gradual decrease on further extension of incubation period beyond 4 days. There was no increase in the endoglucanase activity when the size of the inoculum was increased from 1 - 5% (Figure 4). The maximum cellulase activity was 0.43 mg/ml when 1% of inoculums were used. After that, there was a gradual decrease in endoglucanase activity to 0.39 mg/ml when inoculums size was increased to 5%.

The effect of substrate concentration was shown in Figure 5. From the figure substrate concentration of 1% gave the highest endoglucanase activity with reducing sugar value of 0.44 mg/ml while the substrate concentration of 5% gave the lowest endoglucanase enzyme of 0.24 mg/ml yield from Bacillus amyloliquefaciens.

Table 1: Result of cellulase activity of the identified Bacillus species

<table>
<thead>
<tr>
<th>Bacterial species</th>
<th>Diameter of zones of clearance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. amyloliquefaciens</td>
<td>20.0</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>18.0</td>
</tr>
<tr>
<td>B. brevis</td>
<td>-</td>
</tr>
<tr>
<td>B. firmus</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 2: Effect of pH on endoglucanase produced by B. amyloliquefaciens

Figure 1: Effect of temperature on endoglucanase enzyme produced by B.amyloliquefaciens

Figure 3: Effect of incubation period on endoglucanase produced by B. amyloliquefaciens
Discussion

The cellolulytic activity of *B. amyloliquefaciens* in this study is somewhat greater than *Bacillus subtilis*. This variation in cellolulytic activity produced by these species may be due to differences in their genetic makeup. Ibrahim et al. (2011a) observed similar result on *Bacillus* spp screened for amylase production. *B. amyloliquefaciens* has been reported to produce endoglucanase (Thangaswamy et al., 2011). This *B. amyloliquefaciens* with high cellolulytic activity could be a potential candidate for large scale endoglucanase production.

The *B. amyloliquefaciens* in this study showed maximum activity within reported temperature range (55 °C). The reported alkaline cellulases from *Bacillus* sp. present an optimum activity from 40 to 70°C (Hakamada et al., 1997; Ito, 1997; Christakopoulos et al., 1999; Mawadza et al., 2000; Kim et al., 2005). This shows that the endoglucanase produced by *B. amyloliquefaciens* is a thermophilic endoglucanase with promising potentials for exploitation by industries or processes that operate at this temperature.

Enzymes have pH range within which they function best with their activity being maxima at the optimum pH and decreased at higher or lower pH values (Lehninger, 1993). The endoglucanase in this study showed an optimum pH which was found to be acidic (pH 2). A slightly near neutral pH (pH 4.8) has been reported (Vries and Visser, 2001; Thangaswamy et al., 2011). This implies that endoglucanase from *B. amyloliquefaciens* holds commercial value for industries that carry out their operations at acidic pH.

The effect of incubation period on endoglucanase production increased progressively and attained the peak activity at the fourth day of incubation and declined on the fifth day. The current result slightly differs from that of Thangaswamy et al. (2011) who reported peak activity at the first three days. The decline in endoglucanase activity on 5th day may be explained by the fact that at this stage the isolates have entered their late stationary phase. In other words, the isolates have a long lag and initial stationary phase. Production of enzymes is usually initiated during the log phase of the growth and reaches maximum levels during the initial stationary phase (Sudharhsan, et al.,...
2007). Even though extra cellular enzymes are produced from log phase to initial stationary phase, within the phases the production may vary.

Decrease in endoglucanase activity with further increase in inoculum size might be due to clumping of cells which could have reduced sugar and oxygen uptake rate, and also enzyme release and may probably be due to limiting nutrients at higher inoculum size (Dhanya et al., 2006). This implies that one percent of this isolate is needed for maximum production of cellulase which makes inoculum development and viability much easier in an industrial process.

Further increase in *Adansonia digitata* fruit pulp beyond 1% did not result in proportionate increase in endoglucanase yield. Mandels and Reese (1959) also reported that maximum yield of cellulase were obtained on 1% substrate. This may be due to the fact that certain sugars are inhibitors of enzyme production while others stimulate enzyme production. Ibrahim et al. (2011a) reported that *Adansonia digitata* fruit pulp inhibited the production of amylase by *Bacillus licheniformis*.

**Conclusion**
The study shows that *Bacillus subtilis* and *Bacillus amyloliquefaciens* from indigenous fadama soil can produce cellulase when cultured on *A. digitata* fruit pulp as substrate and the optimum conditions for cellulase production are at a temperature 55 °C, pH 2, 1% inoculum size and substrate concentration for 4 days incubation period. The results of this study suggest that *Adansonia digitata* fruit pulp can be harnessed at low concentration for large scale bacillus cellulase production, and the cellulase produced by *B. amyloliquefaciens* could be a thermostable enzyme with novel characteristics suitable for application in biofuel and textile industry.

**References**


